WO2019179163A1 - 光谱检测仪 - Google Patents

光谱检测仪 Download PDF

Info

Publication number
WO2019179163A1
WO2019179163A1 PCT/CN2018/118283 CN2018118283W WO2019179163A1 WO 2019179163 A1 WO2019179163 A1 WO 2019179163A1 CN 2018118283 W CN2018118283 W CN 2018118283W WO 2019179163 A1 WO2019179163 A1 WO 2019179163A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
visible light
incident
fiber
Prior art date
Application number
PCT/CN2018/118283
Other languages
English (en)
French (fr)
Inventor
冯旭东
赵振英
Original Assignee
谱诉光电科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810227688.5A external-priority patent/CN108169135B/zh
Application filed by 谱诉光电科技(苏州)有限公司 filed Critical 谱诉光电科技(苏州)有限公司
Publication of WO2019179163A1 publication Critical patent/WO2019179163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry

Definitions

  • the invention relates to the field of detection technology, and in particular to a spectrum detector.
  • the front spectrum includes a variety of spectra, such as reflection and scattering absorption spectra, fluorescence spectra, and photoluminescence spectra, on the surface of the sample and inside the sample, essentially a reflection (specular reflection or diffuse reflection) spectrum.
  • the existing front-spectrum spectrum detection mainly includes vertical reflection type Y-type fiber coupling detection, lens group transmission and reception integrated detection, and integrating sphere transmission and reception detection.
  • the main disadvantages are as follows: the spectral energy distribution of the light source is uneven, and the light intensity of different bands is different. The difference is large (such as the light intensity of the tungsten lamp in the 400-550nm band is one-tenth of the light intensity at 1000nm), and the detection sensitivity and detection accuracy of the weak light band of the light source (such as the 400-550nm band of the tungsten lamp) Extremely vulnerable.
  • an object of the present invention is to provide a spectrum detector for improving the uniformity of spectral energy distribution of a light source, thereby improving detection sensitivity and detection accuracy.
  • an embodiment of the present invention provides a spectrum detector, including a visible light source and a visible light adjustment component;
  • the visible light adjustment component includes a first concave mirror, a first fiber connector inserted with a first incident fiber, and a first a filter, a second concave mirror, and a second fiber optic connector inserted with the second incident fiber;
  • the visible light source is between the first concave mirror and the second concave mirror and between the first fiber optic connector and the second fiber optic connector, the first concave mirror is for Forming a visible light source on an end face center of the first fiber optic splice, the second concave mirror for imaging the visible light source on an end face center of the second fiber optic splice; the first filter Located between the visible light source and the second concave mirror; a passband portion of the first filter is in a weak light band of the visible light source, and a stopband portion of the first filter is in a The strong light band of the visible light source;
  • the first visible light emitted by the visible light source is collected and reflected by the first concave mirror, and then concentrated into the first incident optical fiber inserted in the center of the end face of the first optical fiber connector; the second light emitted by the visible light source
  • the visible light is irradiated onto the second concave mirror through the first filter, and after being specularly reflected, it is again condensed through the first filter into the center of the end face of the second fiber optic connector.
  • the second incident optical fiber; the visible light adjusting component adjusts the visible light by adjusting the output intensity of the first incident optical fiber and the second incident optical fiber.
  • an embodiment of the present invention provides a first possible implementation manner of the first aspect, wherein the visible light source and the first optical fiber connector are both located at a double focal length surface of the first concave mirror The visible light source and the second fiber optic connector are both located on a double focal length surface of the second concave mirror.
  • an embodiment of the present invention provides a second possible implementation manner of the first aspect, wherein the spectrum detector further includes an ultraviolet light source and an ultraviolet light adjusting component; the ultraviolet light along a direction of propagation of the light
  • the light adjustment component includes, in order, a light source collimating lens, a second filter, a light source focusing lens, and a third optical fiber connector inserted with a third incident optical fiber, both of which are disposed coaxially with the ultraviolet light source; wherein the second optical filter The sheet is a low pass UV filter;
  • the ultraviolet light emitted by the ultraviolet light source is collimated by the light source collimating lens, the second filter is filtered, and the light source focusing lens is focused, and then enters the center of the end face of the third optical fiber connector.
  • the third incident optical fiber is disposed; the ultraviolet light adjusting component outputs the filtered ultraviolet light after filtering through the third incident optical fiber.
  • the embodiment of the present invention provides a third possible implementation manner of the first aspect, wherein the spectrum detector further includes a set coaxially arranged from bottom to top.
  • the lumped fiber optic connector is provided with a first through hole for accommodating a first exit end of the first incident optical fiber, a second exit end of the second incident optical fiber, and the first a third exit end of the three incident fibers; an exit end face of the first exit end, an exit end face of the second exit end, and an exit end face of the third exit end are both located on a paraxial focal plane of the mixed light collimating lens ;
  • a first opening and a second opening are respectively defined in the upper and lower ends of the integrating sphere; the sample glass piece is embedded in a hollow portion of the hollow carrier plate, and the sample sample glass is used for placing the sample to be tested ;
  • the modulated visible light output by the first exit end and the second exit end and the adjusted ultraviolet light output by the third output end are collimated by the mixed light collimating lens to become mixed parallel incident light;
  • the mixed parallel incident light enters the integrating sphere from the second opening, passes through the inside of the integrating sphere and the first opening, and is irradiated onto the sample to be tested on the sample glass sheet.
  • the embodiment of the present invention provides a fourth possible implementation manner of the first aspect, wherein the light mixing collimating lens has a second main optical axis Through hole
  • the spectrum detector further includes an exiting fiber and a fiber optic spectrometer; an exit end of the exiting fiber is connected to the fiber optic spectrometer, and an incident end of the exiting fiber passes through the first through hole and the second through hole in sequence And the incident end surface of the exiting fiber is flush with the lowest point of the inner wall of the integrating sphere.
  • the embodiment of the present invention provides a fifth possible implementation manner of the first aspect, wherein the light mixing collimating lens is embedded in the second opening,
  • the spectrometer further includes a light transmissive window embedded in the first opening.
  • the embodiment of the present invention provides a sixth possible implementation manner of the first aspect, wherein the light source collimating lens, the light source focusing lens, and the third The core of the incident fiber and the mixed light collimating lens are both of the far ultraviolet JGS1 quartz glass materials.
  • an embodiment of the present invention provides a seventh possible implementation of the first aspect, wherein a further between the integrating sphere and the hollow carrier plate is disposed a reference code disk, the reference code disk comprising a plurality of reference regions of different light transmittance or different light reflectivity; the mixed parallel incident light passing through the first opening is irradiated on the reference region .
  • an embodiment of the present invention provides an eighth possible implementation of the first aspect, wherein the reference area comprises an optical whiteboard, an optical blackboard, and a light transmissive area.
  • the embodiment of the present invention provides the ninth possible implementation manner of the first aspect, wherein the spectrum detector further includes a code wheel drive motor; the reference code a center of the disk is provided with a circular hole, and the reference code disk is fixed to the end of the rotating shaft of the code wheel driving motor through the circular hole;
  • the code wheel drive motor is configured to drive the reference encoder disk to rotate, so that the reference regions of each block are respectively rotated between the first opening and the sample glass plate.
  • the embodiment of the present invention provides the tenth possible implementation manner of the first aspect, wherein the reference code disc is further provided with the reference area a corresponding plurality of synchronization trigger holes; the spectrum detector further comprising a fiber optic spectrometer and a plurality of optical switches corresponding to the synchronous trigger holes, each of the optical switches being respectively connected to the optical fiber spectrometer; The switch is configured to send a synchronization trigger signal to the fiber optic spectrometer when the corresponding sync trigger hole is detected.
  • the embodiment of the present invention provides the eleventh possible implementation manner of the first aspect, wherein each of the synchronization trigger holes is different in the reference code disc
  • the radius is on the circumference; the optical switch includes a photoelectric pair tube.
  • the spectrum detector comprises a visible light source and a visible light adjusting component;
  • the visible light adjusting component comprises a first concave mirror, a first fiber joint inserted with the first incident fiber, a first filter, and a second concave mirror And a second fiber optic connector inserted with a second incident fiber;
  • the visible light source is between the first concave mirror and the second concave mirror and between the first fiber optic connector and the second fiber optic connector, the first concave mirror is for The visible light source is imaged at the center of the end face of the first fiber optic splice, and the second concave mirror is used to image the visible light source at the center of the end face of the second fiber optic splice;
  • the first filter is located between the visible light source and the second concave mirror The passband portion of the first filter is in the weak light band of the visible light source, the stopband portion of the first filter is in the strong light band of the visible light source, and the first visible light emitted from the visible light source is reflected through the first
  • the convergence enters into the first incident fiber inserted in the center of the end face of the first fiber connector; the second visible light emitted by the visible light source passes through the first filter to be irradiated
  • the two concave mirrors are mirror-reflected and then converge through the first filter to enter the second incident fiber inserted in the center of the second fiber joint end face; the visible light adjusting component passes the first incident fiber and the second incident fiber output intensity The adjusted visible light is adjusted evenly.
  • the spectrum detector provided by the embodiment of the invention separately images and collects light in two directions emitted by the visible light source, and performs strong light filtering treatment on the light in one direction through the first filter, so that the finally obtained mixed light is
  • the light intensity of different bands is relatively uniform, which improves the uniformity of the spectral energy distribution of the light source, thereby improving the detection sensitivity and detection accuracy.
  • FIG. 1 is a schematic structural diagram of a spectrum detector according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a light mixing collimating lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a light mixing collimating optical path according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a reference encoder disk according to an embodiment of the present invention.
  • the existing light source used in the front-spectrum spectrum detection has a problem that the spectral energy distribution is uneven, and the light intensity of the different wavelength bands is greatly different, and the detection sensitivity and detection accuracy of the weak light band of the light source are highly susceptible.
  • a spectrum detector provided by the embodiment of the invention can improve the uniformity of the spectral energy distribution of the light source, thereby improving the detection sensitivity and the detection accuracy.
  • FIG. 1 is a schematic structural diagram of a spectrum detector according to an embodiment of the present invention.
  • the spectrum detector includes a visible light source 1 and a visible light adjustment component; and the visible light adjustment component includes a first concave mirror 2
  • the visible light source 1 is located between the first concave mirror 2 and the second concave mirror 6 and between the first optical fiber connector 3 and the second optical fiber connector 7, wherein the visible light source 1 can be, but is not limited to, Tungsten halogen lamp.
  • the first concave mirror 2 is for imaging the visible light source 1 on the center of the end face of the first fiber optic splice 3
  • the second concave mirror 6 is for imaging the visible light source 1 on the end face of the second fiber splice 7.
  • the visible light source 1 and the first optical fiber connector 3 are both located on the double focal length surface of the first concave mirror 2; the visible light source 1 and the second optical fiber connector 7 are both located in the second concave mirror 6 Double focal length surface.
  • the first filter 5 is located between the visible light source 1 and the second concave mirror 6.
  • the first filter 5 may be a material absorption type broadband band pass filter, and the pass band portion of the first filter 5 is in a weak light band of the visible light source 1 (such as a tungsten halogen lamp 400-550 nm band), the first filter
  • the stop band portion of the light sheet 5 is in the strong light band of the visible light source 1 (such as the 550-1000 nm band of the tungsten halogen lamp), and the transition from the pass band to the stop band is relatively gentle, and the first filter 5 can be filtered (substantially weakened).
  • Optical band retaining the weak light band.
  • the first concave mirror 2 is defined behind the visible light source 1 (upper right direction in FIG. 1), and the second concave mirror 6 is located in front of the visible light source 1 (the lower left direction in FIG. 1).
  • the fiber connector 3 is located on the left side of the visible light source 1 (the upper left direction in FIG. 1), and the second fiber connector 7 is located on the right side of the visible light source 1 (the lower right direction in FIG. 1).
  • the principle of the visible light adjustment by the above spectrum detector is as follows: The light emitted from the visible light source 1 is radiated toward the front-rear direction; for the first visible light radiated in the backward direction, since the first concave mirror 2 can image the rear-side light-emitting center of the visible light source 1 at the end point of the end face of the first optical fiber connector 3 Therefore, the first visible light emitted from the visible light source 1 is reflected and collected by the first concave mirror 2, and then concentrated into the first incident optical fiber 4 inserted in the center of the end surface of the first optical fiber connector 3; Visible light, since the second concave mirror 6 can image the front side illuminating center of the visible light source 1 at the center point of the end face of the second fiber optic connector 7, the second visible light emitted by the visible light source 1 toward the front After passing through the first filter 5, it is irradiated onto the mirror surface of the second concave mirror 6, and after mirror reflection, passes through the first filter 5 again, and is concentrated into the center of
  • the backward light entering the first incident optical fiber 4 is full spectrum visible light
  • the forward light entering the second incident optical fiber 8 is the filtered visible light weak light band, the first incident optical fiber 4 and the second incident optical fiber 8
  • the weak light band in the full spectrum visible light obtained by mixing the output light is supplemented and enhanced. Fine-tuning the position of the first concave mirror 2 can appropriately adjust the size of the imaging spot at the center of the end surface of the first optical fiber connector 3, thereby adjusting the intensity of the full-spectrum visible light entering the first incident optical fiber 4. The larger the spot area is, the first is entered. The more full spectrum visible light intensity attenuation in the incident fiber 4 is.
  • the visible light adjusting component outputs the intensity-adjusted adjusted visible light through the first incident optical fiber 4 and the second incident optical fiber 8.
  • the spectrum detector provided by the embodiment of the invention separately images and collects light in two directions before and after the visible light source 1 (such as a halogen tungsten lamp), and then performs light filtering treatment on the light in one direction, and the resulting mixture is mixed.
  • Light adjusted visible light
  • the way to use the light in both directions before and after the light source is equivalent to using two identical light sources, and the light energy utilization is more efficient, and at the same time
  • the problem of time drift of two light sources and inconsistent temperature drift is also avoided.
  • the forward light (second visible light) of the visible light source 1 passes through the first filter 5 twice, which is equivalent to the use of two filters in series, and the filtering effect is better.
  • the spectrum detector further includes an ultraviolet light source 9 and an ultraviolet light adjusting component; the ultraviolet light adjusting component sequentially includes a light source collimating lens 10 and a second color filter 11 which are both disposed coaxially with the ultraviolet light source 9 along the light propagation direction.
  • the ultraviolet light emitted by the ultraviolet light source 9 is collimated by the light source collimating lens 10, filtered by the second filter 11, and focused by the light source focusing lens 12, and then enters the third incident optical fiber 14 inserted in the center of the end surface of the third optical fiber connector 13.
  • the ultraviolet light adjusting component outputs the filtered ultraviolet light after filtering through the third incident fiber 14.
  • an ultraviolet light source 9 such as a xenon lamp
  • a light source collimating lens 10 may be from left to right. The right is on the same horizontal axis.
  • the principle of filtering out sharp lines in the ultraviolet light source 9 is as follows: as shown in FIG. 1, the ultraviolet light emitted from the ultraviolet light source 9 is collimated by the light source collimating lens 10 to become parallel light, and the parallel light passes through the second filter 11 Thereafter, it is irradiated onto the light source focusing lens 12, and after being focused by the light source focusing lens 12, it is concentrated into a spot spot projected to the center of the end surface of the third optical fiber connector 13, and collected into the third incident optical fiber 14 inserted in the center of the end surface of the third optical fiber connector 13. .
  • the light source collimating lens 10 and the light source focusing lens 12 can both be of the far ultraviolet type JGS1 quartz glass material, and the light source collimating lens 10 and the light source focusing lens 12 can transmit visible light and short-wave ultraviolet light and part of far-ultraviolet light.
  • the core of the third incident optical fiber 14 can also be JGS1 quartz glass material, which can efficiently transmit ultraviolet light of 185 nm or more and full spectrum visible light.
  • the second filter 11 can be a low-pass ultraviolet filter or other low-pass ultraviolet filter, which can filter light in the visible band above 480 nm, retain the light in the ultraviolet band of 210-450 nm, and pass the second filter.
  • the sharp and strong lines in the spectrum emitted by the ultraviolet light source 9 are filtered out, so that the subsequent spectral detection process can be effectively avoided due to the intensity change of the light source.
  • a false signal peak appears in the middle, which leads to the problem of false detection.
  • the present embodiment uses an integrating sphere to collect the returned outgoing light.
  • the incident light is attenuated by the integrating sphere scattering and mixing (integral sphere method), and the light intensity is relatively high, and the light source power is required to be high.
  • a large amount of incident light is not directly passed through the sample in the integrating sphere. After multiple reflections, the instrument is moved, which raises the baseline spectrum, which affects the sensitivity and dynamic detection range of the instrument. Based on this, as shown in FIG.
  • the above-mentioned spectrum detector further includes a lumped fiber optic connector 15, a light-mixing collimating lens 16, an integrating sphere 17, a hollow carrier 19, and a sample loaded coaxially from bottom to top. Glass sheet 20.
  • Both the mixed light collimating lens 16 and the loaded glass piece 20 can be made of JGS1 quartz glass, so that the absorption of short-wave ultraviolet light is scarce.
  • the lumped fiber connector 15 is provided with a first through hole for accommodating the first exit end of the first incident fiber, the second exit end of the second incident fiber, and the third of the third incident fiber.
  • the exit end; the exit end face of the first exit end, the exit end face of the second exit end, and the exit end face of the third exit end are all located on the paraxial focal plane of the mixed light collimating lens 16.
  • the upper and lower ends of the integrating sphere 17 are respectively provided with a first opening and a second opening; the sample glass piece 20 is embedded in the hollow portion of the hollow carrier plate 19, and the sample glass piece 20 is used for placing the sample to be tested 21.
  • the adjusted visible light output by the first output end and the second output end and the adjusted ultraviolet light outputted by the third output end are collimated by the mixed light collimating lens 16 to become mixed parallel incident light; and the parallel incident light is mixed from the second
  • the opening enters the integrating sphere 17, passes through the inside of the integrating sphere 17 and the first opening, and is irradiated onto the sample 21 to be tested on the sample glass sheet 20. Since the mixed parallel incident light is the collimated parallel light, it is only passed through the inside of the integrating sphere 17 and does not illuminate the diffuse reflection material of the inner wall of the integrating sphere 17, so that the incident light without the sample conversion can be avoided in the integrating sphere.
  • the elevation of the baseline spectrum is affected, which affects the sensitivity and dynamic detection range of the instrument.
  • the diffusion loss of the incident light inside the integrating sphere 17 is greatly reduced, and the incident light is increased. usage efficiency.
  • FIG. 2 is a schematic structural diagram of a light mixing collimating lens according to an embodiment of the present invention.
  • the central main optical axis of the light mixing collimating lens 16 is shown in FIG. 2 .
  • a second through hole 16-1 is provided in the upper opening.
  • the above-mentioned spectrum detector further includes an exiting optical fiber 22 and an optical fiber spectrometer 23; the exit end of the outgoing optical fiber 22 is connected to the optical fiber spectrometer 23, and the incident end of the outgoing optical fiber 22 passes through the first through hole and the second through hole 16 in succession. -1, and the incident end face of the exiting fiber 22 is flush with the lowest point of the inner wall of the integrating sphere 17.
  • FIG. 3 is a schematic structural diagram of a light mixing collimating optical path according to an embodiment of the present invention.
  • the first through hole 15-2 of the lumped fiber connector 15 can accommodate four bare fibers, and the incident end of the outgoing fiber 22 is from the central axis of the lumped fiber connector 15. (in the first through hole 15-2) passes through and projects above the light mixing collimator lens 16, and its incident end face 22-1 is higher than the center highest point of the upper convex surface 16-2 of the collimator lens 16.
  • the exit ends of the first incident fiber 4, the second incident fiber 8, and the third incident fiber 14 are both extended into the first through hole 15-2 of the lumped fiber connector 15 to be combined.
  • the three incident fibers are closely attached to the exiting optical fiber 22 and distributed at an angle of 120° around the exiting optical fiber 22, and the exit end faces 4-1, 8-1, 14-1 and the upper end face 15-1 of the lumped fiber optic connector 15 are provided. Flush.
  • the light mixing collimating lens 16 is located above the lumped fiber optic splice 15 with its focus falling in the center of the upper end face 15-1 of the lumped fiber splice 15, namely the first incident fiber 4, the second incident fiber 8, and the third incident fiber.
  • the exit end faces 4-1, 8-1, and 14-1 of the 14 are all located on the paraxial focal plane of the light-mixing collimator lens 16, and the incident light collected by the three incident fibers from the light source is respectively emitted from the exit end faces 4-1, 8. After the -1, 14-1 are emitted, they are collimated by the light-mixing collimating lens 16 and become mixed parallel incident light.
  • the above-mentioned light mixing collimating lens 16 is embedded in the second opening of the integrating sphere 17, and the spectrum detector further includes a mosaic inlaid on the integrating sphere 17.
  • the light transmission window 18 can be made of JGS1 quartz material, and the absorption of short-wave ultraviolet light is scarce.
  • the integrating sphere 17 is closed by the light mixing collimator lens 16 and the light transmission window 18, and the integrating sphere 17 can be prevented from being wetted.
  • the upper and lower ends of the integrating sphere 17 are provided with circular openings (first opening and second opening) having the same diameter as the mixed light collimating lens 16, and the hollow loading plate
  • the middle position of 19 is also opened with the same size circular hole (hollow portion) through which the mixed parallel incident light passes through the second opening and the integrating sphere 17, through the light transmission window 18 and the inlay at the first opening of the integrating sphere 17.
  • the sample-loading glass piece 20 on the hollow carrier plate 19 is irradiated onto the sample 21 to be tested.
  • the emitted light returned from the sample 21 to be tested is in a scattering state (the light directions are different), and passes through the sample glass sheet 20 and the light transmission window 18 to enter the inside of the integrating sphere 17, in these different directions. After a plurality of diffuse reflections of the exiting light through the inner wall material of the integrating sphere 17, the light energy is uniformly distributed to the integrating sphere 17. As shown in FIG. 1, the emitted light returned from the sample 21 to be tested is in a scattering state (the light directions are different), and passes through the sample glass sheet 20 and the light transmission window 18 to enter the inside of the integrating sphere 17, in these different directions. After a plurality of diffuse reflections of the exiting light through the inner wall material of the integrating sphere 17, the light energy is uniformly distributed to the integrating sphere 17. As shown in FIG.
  • the incident end of the exiting optical fiber 22 passes through the second through hole 16-1 of the light mixing collimating lens 16 and protrudes above the upper convex surface 16-2 of the light mixing collimating lens 16;
  • the light-mixing collimating lens 16 is embedded in the second opening of the integrating sphere 17, and the incident end surface 22-1 of the exiting optical fiber 22 is higher than the upper convex surface 16-2 of the light-mixing collimating lens 16, and the inner wall of the integrating sphere 17 is the lowest.
  • the spot is flush; after the emitted light returned from the sample 21 is mixed by the integrating sphere 17, a part of the emitted light enters the exit fiber 22 via the incident end face 22-1, and is finally sent to the fiber spectrometer 23 for detection and analysis. Since the integrating sphere 17 is used to collect the returned light, the influence of the irregular and uneven sample on the emitted light can be eliminated, and the repeatability and accuracy of the spectrum acquisition of the sample before the sample can be improved.
  • the signal is further provided with a reference encoder disk 24 between the integrating sphere 17 and the hollow carrier plate 19.
  • the reference encoder disk 24 includes a plurality of reference regions of different light transmittance or different light reflectivity. The mixed parallel incident light passing through the first opening of the integrating sphere 17 is irradiated on the reference area.
  • the reference calibration can be performed by using reference areas with different transmittances or different reflectances, thereby reducing the time of the light source intensity.
  • the influence of drift and temperature drift on the detection results, and the inconsistency of the variation of the light intensity drift of different light sources can easily lead to the problem of detecting false signals in the shape distortion of the spectral curve.
  • the above reference areas include an optical whiteboard, an optical blackboard, and a light transmissive area.
  • 4 is a schematic structural diagram of a reference encoder disk according to an embodiment of the present invention.
  • the reference code disk 24 is mainly composed of a disk 24-1, a fan-shaped optical whiteboard 24-2, and a sector-shaped optical blackboard 24- 3 and the fan-shaped sample light transmitting region 24-4, the optical whiteboard 24-2 and the optical blackboard 24-3 are used as a reference during the detection of the sample to be tested.
  • the fan-shaped optical whiteboard 24-2, the fan-shaped optical blackboard 24-3 and the fan-shaped sample light-transmitting region 24-4 are distributed at an angle of 120° on the disk 24-1; the fan-shaped optical white plate 24-2 is in the ultraviolet and visible bands.
  • the whiteboard body is embedded in the disc 24-1, and its diffuse reflection surface is flush with the disc surface;
  • the fan-shaped optical blackboard 24-3 is made of black light absorbing material, and the blackboard body is also embedded in the disc 24 In -1, the black light absorbing surface is flush with the disk surface;
  • the fan-shaped sample light transmitting region 24-4 is a hollowed out area on the disk 24-1, and the incident light irradiated onto the sample to be tested and the outgoing light returned from the sample may be Free to pass through the area.
  • the principle of the reference calibration is as follows: when the fan-shaped optical blackboard 24-3 is turned onto the sampling optical channel between the light-transmitting window 18 and the loaded glass sheet 20, the mixed parallel incident light collimated by the mixed-light collimating lens 16 After passing through the light transmission window 18, it is absorbed onto the optical blackboard 24-3, and at this time, almost no outgoing light enters the integrating sphere 17, and one frame of spectral intensity data can be measured as a dark signal baseline spectrum; when the sector optical whiteboard 24- 2 When the image is transferred to the sampling optical channel, the mixed parallel incident light passes through the light transmission window 18 and is irradiated onto the optical whiteboard 24-2, and the reflected light scattered by the optical whiteboard 24-2 is returned to the inside of the integrating sphere 17, at this time.
  • a frame of spectral intensity data can be measured, and the spectral intensity of the incident light obtained by subtracting the baseline spectrum of the dark signal from the spectral intensity data can be used as a reference spectrum; when the fan-shaped sample transmission region 24-4 is transferred to the sampling optical channel, the hybrid is parallel
  • the incident light can directly pass through the vacancy and be irradiated onto the sample to be tested, and the exiting light returned from the sample to be tested passes through the fan-shaped sample light transmitting region 24-4, and enters the integrating sphere 17 through the light transmitting window 18, at this time.
  • Can measure the output of the sample The intensity of the light, the measured spectral intensity data minus the baseline spectrum of the dark signal, gives the net intensity of the light emitted by the sample.
  • the net intensity spectral data of the sample exiting light can be directly used for subsequent spectral analysis, or can be compared with the reference spectrum to obtain a more accurate relative spectral intensity of the sample light.
  • the spectrum detector further includes a code wheel drive motor 25 for driving the reference code disk 24 to rotate.
  • the center of the disc 24-1 of the reference encoder disk 24 is provided with a circular hole 24-5 for connecting the shaft of the code wheel drive motor 25.
  • the reference encoder disk 24 is fixed to the end of the rotary shaft of the code wheel drive motor 25 through the circular hole 24-5.
  • the reference code disk 24 is further provided with a plurality of synchronous trigger holes corresponding to the reference area;
  • the spectrum detector further includes the optical fiber spectrometer 23 shown in FIG. 1 and the synchronous trigger hole.
  • the optical switch includes a photoelectric pair tube for transmitting a synchronous trigger signal to the optical fiber spectrometer when the corresponding synchronous trigger hole is detected.
  • the fiber optic spectrometer can determine the reference area on the sampled optical channel by receiving the synchronous trigger signal, thereby achieving automatic measurement of the corresponding light intensity.
  • the outer circumference of the disc of the disc 24-1 of the reference encoder disk 24 is further provided with a whiteboard synchronization trigger hole 24-6, a blackboard synchronization trigger hole 24-7 and sample synchronization.
  • Trigger holes 24-8 are three synchronous trigger holes, and the three holes are distributed on the circumference of different radii.
  • the optical switch such as photoelectric pair tube
  • the optical switch is respectively disposed at positions corresponding to the three circumferences, and the optical switch generates a sudden signal when the corresponding synchronous trigger hole is rotated to the position of the corresponding optical switch.
  • the spectrum detector is triggered to detect and analyze the corresponding light intensity.
  • the spectrum detector provided by the embodiment can realize synchronous automatic measurement of the reference light intensity, synchronous automatic deduction of the dark signal baseline spectrum, synchronization automatic completion and reference light comparison in the process of detecting the sample.
  • the real-time online calibration is performed by the reference code disk 24, which effectively avoids the accuracy of the detection result of the illumination intensity of the light source with time and ambient temperature, and does not need to manually measure the reference calibration instrument during the detection process. Faster and more accurate results.
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be a fixed connection or a detachable connection, unless otherwise explicitly defined and defined. , or connected integrally; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation may be a fixed connection or a detachable connection, unless otherwise explicitly defined and defined.
  • connected integrally may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种光谱检测仪,包括可见光源(1)、第一凹面反射镜(2)、插入有第一入射光纤(4)的第一光纤接头(3)、第一滤光片(5)、第二凹面反射镜(6)以及插入有第二入射光纤(8)的第二光纤接头(7);第一滤光片(5)的通带部分在可见光源(1)的弱光波段,第一滤光片(5)的阻带部分在可见光源(1)的强光波段。可见光源(1)发出的第一可见光经第一凹面反射镜(2)进入第一入射光纤(4),可见光源(1)发出的第二可见光先后经第一滤光片(5)、第二凹面反射镜(6)、第一滤光片(5)进入第二入射光纤(8),这样对可见光源(1)发出的两个方向的光分别加以成像收集,通过第一滤光片(5)对一个方向的光进行强光滤光处理,使得到的混合光在不同波段光强相对均匀,即提高了光源光谱能量分布的均匀性,提高了检测灵敏度和检测准确性。

Description

光谱检测仪 技术领域
本发明涉及检测技术领域,尤其是涉及一种光谱检测仪。
背景技术
在检测样品的吸收光谱、荧光光谱以及光致发射光谱时,受样品形态的限制,激发光源和光谱检测往往需要位于样品表面前方的同一侧,这类光谱检测称为前表光谱检测。前表光谱包括样品表面和样品内部的反射和散射吸收光谱、荧光光谱以及光致发光光谱等多种光谱,本质上是一种反射(镜面反射或漫反射)光谱。
现有的前表光谱检测主要有垂直反射式Y型光纤耦合检测、透镜组收发一体式检测以及积分球收发检测等几种结构,主要存在如下缺点:光源光谱能量分布不均匀,不同波段光强相差较大(如钨灯的400-550nm波段的光强为其1000nm处光强的几十分之一),光源弱光波段(如钨灯的400-550nm波段)的检测灵敏度和检测准确性极易受影响。
发明内容
有鉴于此,本发明的目的在于提供一种光谱检测仪,以提高光源光谱能量分布的均匀性,从而提高检测灵敏度和检测准确性。
第一方面,本发明实施例提供了一种光谱检测仪,包括可见光源和可见光调整组件;所述可见光调整组件包括第一凹面反射镜、插入有第一入射光纤的第一光纤接头、第一滤光片、第二凹面反射镜以及插入有第二入射光纤的第二光纤接头;
所述可见光源位于所述第一凹面反射镜和所述第二凹面反射镜之间以及所述第一光纤接头和所述第二光纤接头之间,所述第一凹面反射镜用于将所述可见光源成像在所述第一光纤接头的端面中心上,所述第二凹面反射镜用于将所述可见光源成像在所述第二光纤接头的端面中心上;所述第一滤光片位于所述可见光源与所述第二凹面反射镜之间;所述第一滤光片的通带部分在所述可见光源的弱光波段,所述第一滤光片的阻带部分在所述可见光源的强光波段;
所述可见光源发出的第一可见光经由所述第一凹面反射镜反射收集后,汇聚进入插在所述第一光纤接头端面中心的所述第一入射光纤内;所述可见光源发出的第二可见光穿过所述第一滤光片照射到所述第二凹面反射镜上,经镜面反射后再次穿过所述第一滤光片汇聚进入插在所述第二光纤接头端面中心的所述第二入射光纤内;所述可见光调整组件通过所述第一入射光纤和所述第二入射光纤输出强度均匀化调整后的调整可见光。
结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,所述可见光源和所述第一光纤接头均位于所述第一凹面反射镜的二倍焦距面上;所述可见光源和所述第二光 纤接头均位于所述第二凹面反射镜的二倍焦距面上。
结合第一方面,本发明实施例提供了第一方面的第二种可能的实施方式,其中,所述光谱检测仪还包括紫外光源和紫外光调整组件;沿着光的传播方向,所述紫外光调整组件依次包括均与所述紫外光源同轴设置的光源准直透镜、第二滤光片、光源聚焦透镜以及插入有第三入射光纤的第三光纤接头;其中,所述第二滤光片为低通型紫外滤光片;
所述紫外光源发出的紫外光先后经由所述光源准直透镜准直、所述第二滤光片滤光、所述光源聚焦透镜聚焦后,进入插在所述第三光纤接头端面中心的所述第三入射光纤内;所述紫外光调整组件通过所述第三入射光纤输出滤光后的调整紫外光。
结合第一方面的第二种可能的实施方式,本发明实施例提供了第一方面的第三种可能的实施方式,其中,所述光谱检测仪还包括从下到上依次同轴设置的集总光纤接头、混光准直透镜、积分球、中空载物板和载样玻璃片;
所述集总光纤接头设置有第一通孔,所述第一通孔用于容纳固定所述第一入射光纤的第一出射端、所述第二入射光纤的第二出射端和所述第三入射光纤的第三出射端;所述第一出射端的出射端面、所述第二出射端的出射端面和所述第三出射端的出射端面均位于所述混光准直透镜的近轴焦平面上;
所述积分球的上下两端分别开设有第一开口和第二开口;所述载样玻璃片镶嵌在所述中空载物板的中空部分,所述载样玻璃片上用于放置被测样品;
所述第一出射端和所述第二出射端输出的调整可见光以及所述第三出射端输出的调整紫外光,经由所述混光准直透镜准直后变为混合平行入射光;所述混合平行入射光从所述第二开口进入所述积分球,穿过所述积分球内部和所述第一开口,照射到所述载样玻璃片上的被测样品上。
结合第一方面的第三种可能的实施方式,本发明实施例提供了第一方面的第四种可能的实施方式,其中,所述混光准直透镜的中心主光轴上开设有第二通孔;
所述光谱检测仪还包括出射光纤和光纤光谱仪;所述出射光纤的出射端连接所述光纤光谱仪,所述出射光纤的入射端先后穿过所述第一通孔和所述第二通孔,且所述出射光纤的入射端面与所述积分球的内壁最低点齐平。
结合第一方面的第三种可能的实施方式,本发明实施例提供了第一方面的第五种可能的实施方式,其中,所述混光准直透镜镶嵌在所述第二开口内,所述光谱检测仪还包括镶嵌在所述第一开口内的透光窗。
结合第一方面的第三种可能的实施方式,本发明实施例提供了第一方面的第六种可能的实施方式,其中,所述光源准直透镜、所述光源聚焦透镜、所述第三入射光纤的纤芯和所述混光准直透镜均为远紫外类JGS1石英玻璃材质。
结合第一方面的第三种可能的实施方式,本发明实施例提供了第一方面的第七种可能的实施方式,其中,在所述积分球和所述中空载物板之间还设置有参比编码盘,所述参比编码盘包括多 块不同透光率或不同反光率的参比区域;穿过所述第一开口的所述混合平行入射光照射在所述参比区域上。
结合第一方面的第七种可能的实施方式,本发明实施例提供了第一方面的第八种可能的实施方式,其中,所述参比区域包括光学白板、光学黑板和透光区。
结合第一方面的第七种可能的实施方式,本发明实施例提供了第一方面的第九种可能的实施方式,其中,所述光谱检测仪还包括码盘驱动电机;所述参比编码盘的中心设置有圆孔,所述参比编码盘通过所述圆孔固定在所述码盘驱动电机的转轴末端;
所述码盘驱动电机用于带动所述参比编码盘转动,以使各块所述参比区域分别旋转至所述第一开口与所述载样玻璃片之间。
结合第一方面的第七种可能的实施方式,本发明实施例提供了第一方面的第十种可能的实施方式,其中,所述参比编码盘上还设置有与所述参比区域一一对应的多个同步触发孔;所述光谱检测仪还包括光纤光谱仪以及与所述同步触发孔一一对应的多个光开关,各个所述光开关分别与所述光纤光谱仪连接;所述光开关用于当检测到对应的同步触发孔时,向所述光纤光谱仪发送同步触发信号。
结合第一方面的第十种可能的实施方式,本发明实施例提供了第一方面的第十一种可能的实施方式,其中,各个所述同步触发孔分布在所述参比编码盘的不同半径所在的圆周上;所述光开关包括光电对管。
本发明实施例带来了以下有益效果:
本发明实施例中,光谱检测仪包括可见光源和可见光调整组件;可见光调整组件包括第一凹面反射镜、插入有第一入射光纤的第一光纤接头、第一滤光片、第二凹面反射镜以及插入有第二入射光纤的第二光纤接头;可见光源位于第一凹面反射镜和第二凹面反射镜之间以及第一光纤接头和第二光纤接头之间,第一凹面反射镜用于将可见光源成像在第一光纤接头的端面中心上,第二凹面反射镜用于将可见光源成像在第二光纤接头的端面中心上;第一滤光片位于可见光源与第二凹面反射镜之间;第一滤光片的通带部分在可见光源的弱光波段,第一滤光片的阻带部分在可见光源的强光波段;可见光源发出的第一可见光经由第一凹面反射镜反射收集后,汇聚进入插在第一光纤接头端面中心的第一入射光纤内;可见光源发出的第二可见光穿过第一滤光片照射到第二凹面反射镜上,经镜面反射后再次穿过第一滤光片汇聚进入插在第二光纤接头端面中心的第二入射光纤内;可见光调整组件通过第一入射光纤和第二入射光纤输出强度均匀化调整后的调整可见光。本发明实施例提供的光谱检测仪,对可见光源发出的两个方向的光分别加以成像收集,通过第一滤光片对一个方向的光进行强光滤光处理,使得最终得到的混合光在不同波段光强相对均匀,即提高了光源光谱能量分布的均匀性,从而提高了检测灵敏度和检测准确性。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别 指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种光谱检测仪的结构示意图;
图2为本发明实施例提供的一种混光准直透镜的结构示意图;
图3为本发明实施例提供的一种混光准直光路的结构示意图;
图4为本发明实施例提供的一种参比编码盘的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前现有的前表光谱检测时所采用的光源具有光谱能量分布不均匀,不同波段光强相差较大的问题,光源弱光波段的检测灵敏度和检测准确性极易受影响。基于此,本发明实施例提供的一种光谱检测仪,可以提高光源光谱能量分布的均匀性,从而提高检测灵敏度和检测准确性。
图1为本发明实施例提供的一种光谱检测仪的结构示意图,如图1所示,该光谱检测仪包括可见光源1和可见光调整组件;可见光调整组件包括第一凹面反射镜2、插入有第一入射光纤4的第一光纤接头3、第一滤光片5、第二凹面反射镜6以及插入有第二入射光纤8的第二光纤接头7。
如图1所示,可见光源1位于第一凹面反射镜2和第二凹面反射镜6之间以及第一光纤接头3和第二光纤接头7之间,其中,可见光源1可以但不限于为卤钨灯。第一凹面反射镜2用于将可见光源1成像在第一光纤接头3的端面中心上,第二凹面反射镜6用于将可见光源1成像在第二光纤接头7的端面中心上。在一些可能的实施例中,可见光源1和第一光纤接头3均位于第一凹面反射镜2的二倍焦距面上;可见光源1和第二光纤接头7均位于第二凹面反射镜6的二倍焦距面上。
如图1所示,第一滤光片5位于可见光源1与第二凹面反射镜6之间。第一滤光片5可以为材料吸收型宽带带通滤光片,第一滤光片5的通带部分在可见光源1的弱光波段(如卤钨灯400-550nm波段),第一滤光片5的阻带部分在可见光源1的强光波段(如卤钨灯550-1000nm波段), 从通带向阻带的过渡较为平缓,第一滤光片5可以过滤(大幅减弱)强光波段、保留弱光波段。
以可见光源1为中心,定义第一凹面反射镜2位于可见光源1的后方(图1中右上方向),第二凹面反射镜6位于可见光源1的前方(图1中左下方向),第一光纤接头3位于可见光源1的左侧(图1中左上方向),第二光纤接头7位于可见光源1的右侧(图1中右下方向),上述光谱检测仪进行可见光调整的原理如下:可见光源1发出的光朝前后方向辐射;对于朝后方向辐射的第一可见光,由于第一凹面反射镜2可以将可见光源1的后侧发光中心成像在第一光纤接头3的端面中心点上,因此可见光源1朝后方发出的第一可见光经第一凹面反射镜2反射收集之后,汇聚进入插在第一光纤接头3端面中心的第一入射光纤4内;对于朝前方向辐射的第二可见光,由于第二凹面反射镜6可以将可见光源1的前侧发光中心成像在第二光纤接头7的端面中心点上,因此可见光源1朝前方发出的第二可见光首次穿过第一滤光片5后,照射到第二凹面反射镜6的镜面上,经镜面反射之后再次穿过第一滤光片5,汇聚进入到插在第二光纤接头7端面中心的第二入射光纤8内。
进入到第一入射光纤4中的后向光为全谱可见光,进入到第二入射光纤8中的前向光为滤光后的可见光弱光波段,第一入射光纤4和第二入射光纤8输出的光混合在一起后所得的全谱可见光中弱光波段得以补充加强。微调第一凹面反射镜2的位置可以适当调整第一光纤接头3端面中心成像光斑的大小,进而可调节进入到第一入射光纤4中的全谱可见光的强度,光斑面积越大进入到第一入射光纤4中的全谱可见光强度衰减越多。因此通过微调第一凹面反射镜2,可以将最终混合光(调整可见光)中可见光源的强光波段和弱光波段的光强大小调节到接近一致。即可见光调整组件通过第一入射光纤4和第二入射光纤8输出强度均匀化调整后的调整可见光。
本发明实施例提供的光谱检测仪,对可见光源1(如卤素钨灯)发出的前后两个方向的光分别加以成像收集,对其中一个方向的光再加以强光滤光处理,所得的混合光(调整可见光)在不同波段光强相对均匀,即提高了光源光谱能量分布的均匀性,因此可以有效消除光源不同波段光强相差巨大影响后续检测灵敏度和检测准确性的问题。与传统的光谱检测仪中只利用光源一个方向的发射光相比,这种对光源前后两个方向的光同时加以利用的方式相当于使用了两个同样的光源,光能利用更加高效,同时还避免了两个光源时间漂移、温度漂移不一致的问题。另外,可见光源1的前向光(第二可见光)两次穿过第一滤光片5,相当于使用了两片滤光片串联,滤光效果更好。
对于还包括紫外光源的光谱检测仪,考虑到光源强度变化剧烈的地方(如氘灯的485.8nm、581.4nm、656.1nm谱线)容易出现假信号峰导致误检,如图1所示,上述光谱检测仪还包括紫外光源9和紫外光调整组件;沿着光的传播方向,该紫外光调整组件依次包括均与紫外光源9同轴设置的光源准直透镜10、第二滤光片11、光源聚焦透镜12以及插入有第三入射光纤14的第三光纤接头13。紫外光源9发出的紫外光先后经由光源准直透镜10准直、第二滤光片11滤光、光源聚焦透镜12聚焦后,进入插在第三光纤接头13端面中心的第三入射光纤14内;紫外光调整组件通过第三入射光纤14输出滤光后的调整紫外光。
在一些可能的实施例中,如图1所示,紫外光源9(如氘灯)、光源准直透镜10、第二滤光片11、光源聚焦透镜12、第三光纤接头13可以从左至右位于同一水平轴线上。
滤除紫外光源9中尖锐谱线的原理如下:如图1所示,紫外光源9发出的紫外光经光源准直透镜10准直之后变成平行光,平行光穿过第二滤光片11以后照射到光源聚焦透镜12上,经光源聚焦透镜12聚焦之后汇聚成点光斑投射到第三光纤接头13端面中心位置,被收集进入插在第三光纤接头13端面中心的第三入射光纤14内。光源准直透镜10和光源聚焦透镜12均可以为远紫外类JGS1石英玻璃材质,光源准直透镜10和光源聚焦透镜12均能透过可见光和短波紫外以及部分远紫外光。第三入射光纤14的纤芯也可以为JGS1石英玻璃材质,能高效透过185nm以上的紫外光及全谱可见光。第二滤光片11可以为低通型紫外滤光片或其他低通型紫外滤光装置,可以滤除480nm以上可见波段的光,保留210-450nm紫外波段的光,经过第二滤光片11滤光之后紫外光源9发出的光谱中尖锐强烈的谱线(如氘灯485.8nm、581.4nm、656.1nm谱线)被滤除掉,因此可以有效避免因光源强度变化剧烈致使后续光谱检测过程中出现假信号峰,进而导致误检的问题。
考虑到现有技术中对出射光线的方向要求高,易受样品表面不规则形状的影响,本实施例采用积分球来收集返回的出射光。另外考虑到采用积分球时,入射光经积分球散射混光(积分球方式)照射到样品上的光强衰减比较大,对光源光功率要求高,大量入射光未经过样品直接在积分球内多次反射之后进入检测仪器,这样抬高了基线光谱,进而影响了仪器的灵敏度和动态检测范围。基于此,如图1所示,上述光谱检测仪还包括从下到上依次同轴设置的集总光纤接头15、混光准直透镜16、积分球17、中空载物板19和载样玻璃片20。混光准直透镜16和载样玻璃片20均可以为JGS1石英玻璃材质,从而对短波紫外光的吸收甚少。
具体地,集总光纤接头15设置有第一通孔,第一通孔用于容纳固定第一入射光纤的第一出射端、第二入射光纤的第二出射端和第三入射光纤的第三出射端;第一出射端的出射端面、第二出射端的出射端面和第三出射端的出射端面均位于混光准直透镜16的近轴焦平面上。积分球17的上下两端分别开设有第一开口和第二开口;载样玻璃片20镶嵌在中空载物板19的中空部分,载样玻璃片20上用于放置被测样品21。第一出射端和第二出射端输出的上述调整可见光以及第三出射端输出的上述调整紫外光,经由混光准直透镜16准直后变为混合平行入射光;混合平行入射光从第二开口进入积分球17,穿过积分球17内部和第一开口,照射到载样玻璃片20上的被测样品21上。由于混合平行入射光是准直后的平行光,因而只是从积分球17内部穿过,不会照射到积分球17内壁的漫反射材料上,从而可以避免未经样品转化的入射光在积分球17内多次反射之后进入检测仪器,导致抬高了基线光谱进而影响仪器的灵敏度和动态检测范围的问题;同时也大幅降低了入射光在积分球17内部的漫射损耗,提高了入射光的利用效率。
图2为本发明实施例提供的一种混光准直透镜的结构示意图,为了便于从被测样品返回的出射光的输出,如图2所示,混光准直透镜16的中心主光轴上开设有第二通孔16-1。如图1所示, 上述光谱检测仪还包括出射光纤22和光纤光谱仪23;出射光纤22的出射端连接光纤光谱仪23,出射光纤22的入射端先后穿过第一通孔和第二通孔16-1,且出射光纤22的入射端面与积分球17的内壁最低点齐平。
图3为本发明实施例提供的一种混光准直光路的结构示意图。在一些可能的实施例中,如图3所示,集总光纤接头15的第一通孔15-2可以容纳4根裸光纤,出射光纤22的入射端从集总光纤接头15的中心轴线上(第一通孔15-2内)穿过,并伸入到混光准直透镜16的上方,其入射端面22-1高出准直透镜16的上凸面16-2的中心最高点。
具体地,如图3所示,第一入射光纤4、第二入射光纤8、第三入射光纤14的出射端均伸入到集总光纤接头15的第一通孔15-2中汇总到一起,三根入射光纤紧贴出射光纤22,并围绕在出射光纤22的周围呈120°等角度分布,出射端面4-1、8-1、14-1与集总光纤接头15的上端面15-1平齐。混光准直透镜16位于集总光纤接头15的上方,其焦点落在集总光纤接头15的上端面15-1的中心,即第一入射光纤4、第二入射光纤8、第三入射光纤14的出射端面4-1、8-1、14-1均位于混光准直透镜16的近轴焦平面上,三根入射光纤从光源处收集来的入射光分别从出射端面4-1、8-1、14-1射出之后,经由混光准直透镜16准直后变成混合在一起的混合平行入射光。
考虑到积分球受潮后会对检测结果造成影响,如图1所示,上述混光准直透镜16镶嵌在积分球17的第二开口内,该光谱检测仪还包括镶嵌在积分球17的第一开口内的透光窗18。透光窗18可以为JGS1石英材质,对短波紫外光的吸收甚少。这样通过混光准直透镜16和透光窗18将积分球17封闭起来,可以防止积分球17受潮。
在一些可能的实施例中,如图1所示,积分球17上下两端开有和混光准直透镜16直径相同的圆形开口(第一开口和第二开口),中空载物板19的中间位置亦开有相同大小圆孔(中空部分),混合平行入射光从第二开口和积分球17的内部穿过,透过积分球17的第一开口处的透光窗18和镶嵌在中空载物板19上的载样玻璃片20照射被测样品21上。
如图1所示,从被测样品21上返回来的出射光呈散射状态(光线方向各不相同),反穿过载样玻璃片20和透光窗18进入积分球17内部,这些不同方向的出射光经积分球17内壁材料的多次漫反射之后,光能接近均匀地分布于积分球17。如图3所示,出射光纤22的入射端穿过混光准直透镜16的第二通孔16-1伸入到混光准直透镜16的上凸面16-2以上;如图1所示,混光准直透镜16镶嵌在积分球17的第二开口之中,出射光纤22的入射端面22-1高出混光准直透镜16的上凸面16-2、与积分球17的内壁最低点平齐;从被测样品21上返回来的出射光经积分球17混匀后,部分出射光经由入射端面22-1进入到出射光纤22中,最终被送往光纤光谱仪23进行检测分析。由于采用了积分球17来收集返回的出射光,可以消除不规则、不均匀样品对出射光的影响,提高对样品前表光谱采集的重复性和准确度。
考虑到光源的发光强度随时间和环境温度的漂移易导致检测光谱产生基线漂移,对于组合光 源(如氘卤钨灯组合),不同的光源光强漂移变化不一致易导致检测光谱曲线形状畸变出现假信号,如图1所示,在积分球17和中空载物板19之间还设置有参比编码盘24,参比编码盘24包括多块不同透光率或不同反光率的参比区域;穿过积分球17的第一开口的混合平行入射光照射在参比区域上。考虑到同一光源的发光强度短时间内不会出现明显变化,因此在进行样品检测时,可以通过采用不同透光率或不同反光率的参比区域进行参比校准,从而降低光源光强的时间漂移和温度漂移对检测结果的影响,缓解不同的光源光强漂移变化不一致易导致检测光谱曲线形状畸变出现假信号的问题。
上述参比区域包括光学白板、光学黑板和透光区。图4为本发明实施例提供的一种参比编码盘的结构示意图,如图4所示,参比编码盘24主要由圆盘24-1、扇形光学白板24-2、扇形光学黑板24-3以及扇形样品透光区24-4组成,在对被测样品进行检测的过程中光学白板24-2和光学黑板24-3用作参比。其中,扇形光学白板24-2、扇形光学黑板24-3和扇形样品透光区24-4在圆盘24-1上呈120°等角度分布;扇形光学白板24-2在紫外和可见波段均有着良好的反射率,白板板体嵌入在圆盘24-1中,其漫反射面与盘面平齐;扇形光学黑板24-3由黑色吸光材料制作而成,黑板板体亦嵌入在圆盘24-1中,其黑色吸光面与盘面平齐;扇形样品透光区24-4为圆盘24-1上开凿出来镂空区域,照射到被测样品上的入射光和从样品返回的出射光可以从该区域自由穿过。
参比校准的原理如下:当扇形光学黑板24-3转到透光窗18和载样玻璃片20之间的采样光通道上时,经混光准直透镜16准直后的混合平行入射光穿过透光窗18后照射到光学黑板24-3上被吸收掉,此时几乎没有出射光进入到积分球17,可以测量一帧光谱强度数据作为暗信号基线光谱;当扇形光学白板24-2转到采样光通道上时,混合平行入射光穿过透光窗18后照射到光学白板24-2上,经光学白板24-2散射后的反射光返回到积分球17的内部,此时可以测量一帧光谱强度数据,用该光谱强度数据减去暗信号基线光谱得到的入射光光谱强度可以作为参比光谱;当扇形样品透光区24-4转到采样光通道上时,混合平行入射光可以从该空位直接通过并照射到被测样品上,从被测样品上返回的出射光通过该扇形样品透光区24-4,经由透光窗18进入到积分球17内部,此时可以测量样品的出射光强度,测量所得的光谱强度数据减去暗信号基线光谱可得样品出射光的净强度。样品出射光的净强度光谱数据可以直接用于后续的光谱分析,也可以与参比光谱相比较得到更为准确的样品光相对光谱强度。
为了实现参比编码盘24的自动旋转,如图1所示,上述光谱检测仪还包括码盘驱动电机25,码盘驱动电机25用于带动参比编码盘24旋转。在一些可能的实施例中,如图4所示,参比编码盘24的圆盘24-1的中心设有一圆孔24-5,圆孔24-5用于连接码盘驱动电机25的转轴,参比编码盘24通过圆孔24-5固定在码盘驱动电机25的转轴末端。当码盘驱动电机25带动参比编码盘24转动时,可以将扇形光学白板24-2、扇形光学黑板24-3以及扇形样品透光区24-4依次旋转到透光窗18和载样玻璃片20之间的采样光通道上。
为了实现同步自动测量,参比编码盘24上还设置有与参比区域一一对应的多个同步触发孔;该光谱检测仪还包括图1所示的光纤光谱仪23以及与同步触发孔一一对应的多个光开关,各个光开关分别与光纤光谱仪连接。光开关包括光电对管,用于当检测到对应的同步触发孔时,向光纤光谱仪发送同步触发信号。光纤光谱仪可以通过接收同步触发信号,确定处于采样光通道上的参比区域,从而实现相应光强的自动测量。
在一些可能的实施例中,如图4所示,参比编码盘24的圆盘24-1的圆盘外周还设有白板同步触发孔24-6、黑板同步触发孔24-7和样品同步触发孔24-8三个同步触发孔位,三个孔位分布在不同半径所在的圆周上。在仪器整机(光谱检测仪)中与这三个圆周对应的位置分别设有光开关(如光电对管),当相应的同步触发孔旋转到对应光开关的位置时光开关会产生一个突变信号触发该光谱检测仪进行相应光强的检测与分析。
通过上述参比编码盘24,本实施例提供的光谱检测仪可以在检测样品的过程中实现同步自动测量参比光强、同步自动扣除暗信号基线光谱、同步自动完成与参比光的比对,即通过参比编码盘24进行实时在线校准,有效地避免了光源的发光强度随时间和环境温度的漂移影响检测结果的准确性,在检测的过程中无需人工反复测量参比校准仪器,检测速度更快,检测结果更为准确。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (12)

  1. 一种光谱检测仪,其特征在于,包括可见光源和可见光调整组件;所述可见光调整组件包括第一凹面反射镜、插入有第一入射光纤的第一光纤接头、第一滤光片、第二凹面反射镜以及插入有第二入射光纤的第二光纤接头;
    所述可见光源位于所述第一凹面反射镜和所述第二凹面反射镜之间以及所述第一光纤接头和所述第二光纤接头之间,所述第一凹面反射镜用于将所述可见光源成像在所述第一光纤接头的端面中心上,所述第二凹面反射镜用于将所述可见光源成像在所述第二光纤接头的端面中心上;所述第一滤光片位于所述可见光源与所述第二凹面反射镜之间;所述第一滤光片的通带部分在所述可见光源的弱光波段,所述第一滤光片的阻带部分在所述可见光源的强光波段;
    所述可见光源发出的第一可见光经由所述第一凹面反射镜反射收集后,汇聚进入插在所述第一光纤接头端面中心的所述第一入射光纤内;所述可见光源发出的第二可见光穿过所述第一滤光片照射到所述第二凹面反射镜上,经镜面反射后再次穿过所述第一滤光片汇聚进入插在所述第二光纤接头端面中心的所述第二入射光纤内;所述可见光调整组件通过所述第一入射光纤和所述第二入射光纤输出强度均匀化调整后的调整可见光。
  2. 根据权利要求1所述的光谱检测仪,其特征在于,所述可见光源和所述第一光纤接头均位于所述第一凹面反射镜的二倍焦距面上;所述可见光源和所述第二光纤接头均位于所述第二凹面反射镜的二倍焦距面上。
  3. 根据权利要求1所述的光谱检测仪,其特征在于,所述光谱检测仪还包括紫外光源和紫外光调整组件;沿着光的传播方向,所述紫外光调整组件依次包括均与所述紫外光源同轴设置的光源准直透镜、第二滤光片、光源聚焦透镜以及插入有第三入射光纤的第三光纤接头;其中,所述第二滤光片为低通型紫外滤光片;
    所述紫外光源发出的紫外光先后经由所述光源准直透镜准直、所述第二滤光片滤光、所述光源聚焦透镜聚焦后,进入插在所述第三光纤接头端面中心的所述第三入射光纤内;所述紫外光调整组件通过所述第三入射光纤输出 滤光后的调整紫外光。
  4. 根据权利要求3所述的光谱检测仪,其特征在于,所述光谱检测仪还包括从下到上依次同轴设置的集总光纤接头、混光准直透镜、积分球、中空载物板和载样玻璃片;
    所述集总光纤接头设置有第一通孔,所述第一通孔用于容纳固定所述第一入射光纤的第一出射端、所述第二入射光纤的第二出射端和所述第三入射光纤的第三出射端;所述第一出射端的出射端面、所述第二出射端的出射端面和所述第三出射端的出射端面均位于所述混光准直透镜的近轴焦平面上;
    所述积分球的上下两端分别开设有第一开口和第二开口;所述载样玻璃片镶嵌在所述中空载物板的中空部分,所述载样玻璃片上用于放置被测样品;
    所述第一出射端和所述第二出射端输出的调整可见光以及所述第三出射端输出的调整紫外光,经由所述混光准直透镜准直后变为混合平行入射光;所述混合平行入射光从所述第二开口进入所述积分球,穿过所述积分球内部和所述第一开口,照射到所述载样玻璃片上的被测样品上。
  5. 根据权利要求4所述的光谱检测仪,其特征在于,所述混光准直透镜的中心主光轴上开设有第二通孔;
    所述光谱检测仪还包括出射光纤和光纤光谱仪;所述出射光纤的出射端连接所述光纤光谱仪,所述出射光纤的入射端先后穿过所述第一通孔和所述第二通孔,且所述出射光纤的入射端面与所述积分球的内壁最低点齐平。
  6. 根据权利要求4所述的光谱检测仪,其特征在于,所述混光准直透镜镶嵌在所述第二开口内,所述光谱检测仪还包括镶嵌在所述第一开口内的透光窗。
  7. 根据权利要求4所述的光谱检测仪,其特征在于,所述光源准直透镜、所述光源聚焦透镜、所述第三入射光纤的纤芯和所述混光准直透镜均为远紫外类JGS1石英玻璃材质。
  8. 根据权利要求4所述的光谱检测仪,其特征在于,在所述积分球和所述中空载物板之间还设置有参比编码盘,所述参比编码盘包括多块不同透光率或不同反光率的参比区域;穿过所述第一开口的所述混合平行入射光照射 在所述参比区域上。
  9. 根据权利要求8所述的光谱检测仪,其特征在于,所述参比区域包括光学白板、光学黑板和透光区。
  10. 根据权利要求8所述的光谱检测仪,其特征在于,所述光谱检测仪还包括码盘驱动电机;所述参比编码盘的中心设置有圆孔,所述参比编码盘通过所述圆孔固定在所述码盘驱动电机的转轴末端;
    所述码盘驱动电机用于带动所述参比编码盘转动,以使各块所述参比区域分别旋转至所述第一开口与所述载样玻璃片之间。
  11. 根据权利要求8所述的光谱检测仪,其特征在于,所述参比编码盘上还设置有与所述参比区域一一对应的多个同步触发孔;所述光谱检测仪还包括光纤光谱仪以及与所述同步触发孔一一对应的多个光开关,各个所述光开关分别与所述光纤光谱仪连接;所述光开关用于当检测到对应的同步触发孔时,向所述光纤光谱仪发送同步触发信号。
  12. 根据权利要求11所述的光谱检测仪,其特征在于,各个所述同步触发孔分布在所述参比编码盘的不同半径所在的圆周上;所述光开关包括光电对管。
PCT/CN2018/118283 2018-03-20 2018-11-29 光谱检测仪 WO2019179163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810227688.5A CN108169135B (zh) 2018-03-20 光谱检测仪
CN201810227688.5 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019179163A1 true WO2019179163A1 (zh) 2019-09-26

Family

ID=62511137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118283 WO2019179163A1 (zh) 2018-03-20 2018-11-29 光谱检测仪

Country Status (1)

Country Link
WO (1) WO2019179163A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2303293Y (zh) * 1997-06-04 1999-01-06 侯蓝田 气体浓度检测装置
US6120166A (en) * 1998-03-09 2000-09-19 Janos Technology Inc. Light source apparatus for a spectral analyzer
CN1703654A (zh) * 2002-10-09 2005-11-30 松下电器产业株式会社 照明装置以及使用该照明装置的投影图像显示器
CN103698005A (zh) * 2013-12-11 2014-04-02 中国科学院长春光学精密机械与物理研究所 自校准光源光谱调谐器
CN104155274A (zh) * 2014-08-07 2014-11-19 华中科技大学 一种双光束光片照明显微扫描成像方法及显微镜
CN108169135A (zh) * 2018-03-20 2018-06-15 谱诉光电科技(苏州)有限公司 光谱检测仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2303293Y (zh) * 1997-06-04 1999-01-06 侯蓝田 气体浓度检测装置
US6120166A (en) * 1998-03-09 2000-09-19 Janos Technology Inc. Light source apparatus for a spectral analyzer
CN1703654A (zh) * 2002-10-09 2005-11-30 松下电器产业株式会社 照明装置以及使用该照明装置的投影图像显示器
CN103698005A (zh) * 2013-12-11 2014-04-02 中国科学院长春光学精密机械与物理研究所 自校准光源光谱调谐器
CN104155274A (zh) * 2014-08-07 2014-11-19 华中科技大学 一种双光束光片照明显微扫描成像方法及显微镜
CN108169135A (zh) * 2018-03-20 2018-06-15 谱诉光电科技(苏州)有限公司 光谱检测仪

Also Published As

Publication number Publication date
CN108169135A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
US4022534A (en) Reflectometer optical system
CA1103074A (en) Holographic diffraction grating system for rapid scan spectral analysis
US9448161B2 (en) Optical device, particularly a polarimeter, for detecting inhomogeneities in a sample
WO2012121323A1 (ja) 光学特性測定装置
JP3674504B2 (ja) 分光反射率測定装置および分光反射率測定方法
JPH07509315A (ja) レンゾメータ用の分光計
WO2019179163A1 (zh) 光谱检测仪
WO2024032154A1 (zh) 一种可视瞄准光谱测量装置和光学检测设备
CN111707370A (zh) 一种大口径分光测色仪及测色方法
CN108169135B (zh) 光谱检测仪
US4929084A (en) Measuring head
CN208537399U (zh) 一种先分光的光谱仪
CN105951415B (zh) 一种浅色或透明异性纤维检测系统
EP3830553B1 (en) Diffuse reflectance apparatus
CN209132155U (zh) 光谱仪及水质检测装置
CN207923697U (zh) 光谱检测仪
JP3871415B2 (ja) 分光透過率測定装置
FR2635595A1 (fr) Installation perfectionnee pour le tirage d'epreuves photographiques
JP2000304694A (ja) 茶葉の格付け方法及びその装置
CN112179863B (zh) 透射采样装置及方法
CN215727657U (zh) 一种纤维白度测量仪
CN212620599U (zh) 一种用于玻璃量测的色散式共焦传感器
CN218512298U (zh) 一种果蔬检测设备及其光均匀化装置
JP3019875B2 (ja) 透過光測定用フローセル
CN108226071B (zh) 一种基于抛物面结构的气体光谱测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911246

Country of ref document: EP

Kind code of ref document: A1