WO2019179017A1 - 控制超高频近场rfid系统的标签识别范围的方法 - Google Patents

控制超高频近场rfid系统的标签识别范围的方法 Download PDF

Info

Publication number
WO2019179017A1
WO2019179017A1 PCT/CN2018/101577 CN2018101577W WO2019179017A1 WO 2019179017 A1 WO2019179017 A1 WO 2019179017A1 CN 2018101577 W CN2018101577 W CN 2018101577W WO 2019179017 A1 WO2019179017 A1 WO 2019179017A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
conductor
high frequency
ultra
rfid system
Prior art date
Application number
PCT/CN2018/101577
Other languages
English (en)
French (fr)
Inventor
刘慧君
Original Assignee
南京思追特电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京思追特电子科技有限公司 filed Critical 南京思追特电子科技有限公司
Publication of WO2019179017A1 publication Critical patent/WO2019179017A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements

Definitions

  • the present invention relates to a method of controlling the tag identification range of an ultra high frequency near field RFID system.
  • UHF RFID Radio Frequency Identification
  • the UHF RFID single product label is either missed or misread, and it is always difficult to obtain a satisfactory recognition rate.
  • UHF RFID technology is based on the principle of radiation from electromagnetic fields. The surrounding environment will repeatedly reflect and refract the electromagnetic field, and the influence of liquid and metal on the matching performance of the tag antenna.
  • the electromagnetic field strong region inside and outside the entire reading area is The randomness, uncertainty, and susceptibility of blind areas lead to missed reading and misreading.
  • the basic structural unit is excited by the feed source to form an effective recognition range of the UHF RFID system around the half-wavelength conductor, and the effective recognition range is used to identify the super High frequency near field RFID tags.
  • the step of exciting the infrastructure unit with the feed to form an effective identification range of the UHF RFID system around the half-wavelength conductor comprises: proximity to the non-near field
  • the antenna sets the half-wavelength conductor such that a linear polarization direction of the non-near-field antenna is parallel to a length direction of the half-wavelength conductor, thereby forming the effective identification range around the half-wavelength conductor.
  • the step of arranging the half-wavelength conductor adjacent to the non-near-field antenna further comprises the steps of: determining and providing the half-wavelength conductor according to a result of simulating a half-wavelength conductor, such that The equivalent electrical length of the half-wave length conductor is equal to the half wavelength.
  • the step of determining and providing the half-wavelength conductor according to a result of simulating a half-wavelength conductor comprises: scaling up or down the half-wavelength conductor and simultaneously detecting an induced current of the half-wavelength conductor And determining a maximum value of the induced current value and obtaining a corresponding half-wavelength conductor size.
  • the step of proportionally expanding or reducing the half-wavelength conductor comprises: splicing a plurality of half-wavelength conductor units to form the half-wavelength conductor, and proportionally expanding or reducing the plurality of half-wavelength conductors
  • the size of the unit such that the half-wavelength conductor unit at the center has a maximum value of the induced current value such that the actual size of each half-wavelength conductor unit changes, and by mutual coupling between the respective half-wavelength conductor units,
  • the equivalent electrical length of the half-wavelength conductor is still half wavelength.
  • the half-wavelength conductor is a half-wavelength straight conductor, and a length direction of the half-wavelength straight conductor is parallel to a linear polarization direction of the non-near-field antenna.
  • the half-wavelength conductor comprises a half-wavelength squall conductor.
  • the half-wavelength squall conductor constitutes a square region, and a length direction of the half-wavelength conductor is a diagonal direction of the square region.
  • the half-wavelength conductor is formed by splicing a plurality of the half-wavelength squall conductors.
  • the half-wavelength conductor is a square conductor formed by splicing a plurality of the half-wavelength squall conductors, and the length directions of the plurality of half-wavelength squall conductors are parallel to each other. After the half-wavelength ⁇ line conductor is rotated by 90 degrees, it is disposed symmetrically symmetrically with any of the adjacent half-wavelength ⁇ line conductors.
  • the present invention directly uses a non-near-field antenna as a feed source. Since the space dominates the absolute dominant position in the electromagnetic far field, the UHF cannot be identified at other positions except for a small area of several millimeters near the non-near-field antenna. Near field RFID tag, then, the present invention constructs the effective recognition range of the required UHF RFID system with a half-wavelength conductor, thereby achieving precise control of the near field tag identification range, avoiding dead zones and tag miss reading within the recognition range, and Break the purpose of limiting the reading range of near-field antennas.
  • FIGS. 1A and 1B are schematic plan views of a conventional near field electronic tag.
  • Figure 2 is a graph of current versus wavelength in a half-wavelength linear conductor.
  • 3A is a schematic plan view of a dipole antenna of an embodiment.
  • Figures 3B through 3D show the effective identification ranges of the three half-wavelength conductors, respectively.
  • FIG. 4 is a plan view of a combined half-wavelength conductor of an embodiment.
  • Figure 5 is a graphical representation of the results of an electromagnetic simulation of an effective range of identification for an embodiment.
  • an RFID tag requires a specially designed reader near field antenna to aid identification.
  • the general principle of the near-field antenna of the reader is to change the phase of the multiple current radiating elements, so that a relatively uniform magnetic field exists in a certain range around the reader antenna to achieve the purpose of coupling with the near-field electronic tags.
  • the near-field electronic tag appears to be a small ring. Therefore, the near field electronic tag acts on the reader antenna through magnetic field coupling.
  • this method still has limitations, mainly in: 1) the area of the reliable reading range is small, roughly a circular area with a diameter of half a wavelength to 0.75 wavelengths; 2) outside the reliable reading range, it is still possible There is a strong magnetic field, causing misinterpretation of near-field electronic tags; 3) high implementation costs.
  • the present invention provides a method for accurately controlling the recognition range of UHF RFID technology. This approach first requires the use of UHF near-field RFID tags as electronic tags for managing items.
  • the half-wavelength dipole antenna has the best radiation characteristics, and the current amplitude at the center position is the largest, as shown in FIG.
  • a half-wavelength linear conductor should have the largest central position current under the excitation of the antenna with the same polarization direction, and the current at both ends of the conductor is approximately zero, and the current direction on the entire conductor is uniform.
  • a magnetic field distribution having near-field characteristics can be formed in the vicinity of the half-wavelength conductor.
  • a magnetic field near a location near the center of the current is sufficient to activate the UHF RFID near-field tag and provide enough energy for the tag to transmit data.
  • a method for controlling a tag identification range of an ultra-high frequency near field RFID system includes the following steps: using a combination of non-near-field antennas or non-near-field antennas to connect ultra-high a frequency RFID reader as a feed; a half-wavelength conductor as a basic structural unit, and the base unit is excited by the feed source to form an effective recognition range of the UHF RFID system around the half-wavelength conductor, The effective recognition range is used to identify UHF near field RFID tags.
  • the present invention directly uses a non-near-field antenna as a feed source. Since the space dominates the absolute dominant position in the electromagnetic far field, the UHF cannot be identified at other positions except for a small area of several millimeters near the non-near-field antenna.
  • Near field RFID tag then, the present invention constructs the effective recognition range of the required UHF RFID system with a half-wavelength conductor, thereby achieving precise control of the near field tag identification range, avoiding dead zones and tag miss reading within the recognition range, and Break the purpose of limiting the reading range of near-field antennas.
  • the non-near-field antenna is a dipole antenna.
  • the equivalent electrical length of the half-wavelength conductor is equal to a half wavelength, and the linear polarization direction of the dipole antenna is disposed in parallel with the longitudinal direction of the half-wavelength conductor.
  • the half wavelength is The magnitude of the induced current at the center of the conductor is the largest, and the magnetic field generated by the electrical field of the half-wavelength conductor exhibits a distinct strong magnetic near-field characteristic without a dead zone.
  • 3A through 3D illustrate how different half-wavelength conductor structures exhibit different near-field tag identification ranges under excitation of a dipole antenna.
  • the shaded portion enclosed by the dashed line is the effective recognition range formed by the single half-wavelength conductor structure. It can be seen that the area enclosed by the portion of the half-wavelength conductor near the center can be approximated as the effective recognition range constructed by the conductor.
  • the non-near field antenna is a half wavelength dipole antenna.
  • the half-wavelength conductor is a half-wavelength straight conductor, and a length direction of the half-wavelength straight conductor is parallel to a linear polarization direction of the non-near-field antenna.
  • the method for controlling the tag identification range of the UHF near field RFID system by using the non-near-field antenna as a half-wavelength dipole antenna can use a common half-wavelength dipole antenna or an antenna combination as a feed source, thereby Reduce its cost and facilitate manufacturing.
  • the half-wavelength conductor includes a half-wavelength squall conductor.
  • the half-wavelength squall conductor constitutes a square region, and a length direction of the half-wavelength conductor is a diagonal direction of the square region.
  • the half-wavelength conductor is formed by splicing a plurality of the half-wavelength squall conductors.
  • the half-wavelength conductor is a square conductor formed by splicing a plurality of the half-wavelength squall conductors.
  • the longitudinal directions of the plurality of half-wavelength squall conductors are parallel to each other, and each of the half-wavelength squall conductors is rotated by 90 degrees and disposed symmetrically with respect to any one of the adjacent half-wavelength squall conductors.
  • the square conductor has a side length of 82 mm.
  • the combination of a plurality of half-wavelength squall conductors allows the effective identification range of the half-wavelength conductor to form a rectangle.
  • the effective recognition range is a rectangular area.
  • a wide variety of effective recognition ranges can be formed by the combination of the arrangement of the half-wavelength conductor structures.
  • Figure 4 forms an approximately square effective identification range by the combination of four half-wavelength conductor elements.
  • the step of exciting the infrastructure unit with the feed to form an effective identification range of the UHF RFID system around the half-wavelength conductor includes: setting the half adjacent to the non-near-field antenna a wavelength conductor such that a linear polarization direction of the non-near-field antenna is parallel to a length direction of the half-wavelength conductor to form the effective identification range around the half-wavelength conductor.
  • the step of arranging the half-wavelength conductor adjacent to the non-near-field antenna further includes the step of determining and providing the half-wavelength conductor according to a result of simulating a half-wavelength conductor such that the half-wave length conductor The equivalent electrical length is equal to the half wavelength.
  • the step of determining and providing the half-wavelength conductor according to a result of simulating a half-wavelength conductor comprises: scaling up or down the half-wavelength conductor and simultaneously detecting an induced current value of the half-wavelength conductor; and determining the The maximum value of the induced current value is obtained, and the corresponding half-wavelength conductor size is obtained.
  • the step of proportionally expanding or reducing the half-wavelength conductor includes the step of proportionally expanding or reducing the half-wavelength conductor comprising: splicing a plurality of half-wavelength conductor units to form the half-wavelength conductor, etc.
  • the mutual coupling between the wavelength conductor elements, the equivalent electrical length of the half-wavelength conductor is still half wavelength.
  • a standard dipole antenna is used as a feed, and the input power of the antenna is 2 watts.
  • This configuration conforms to the national specification restrictions on the use of RFID.
  • the UHF near-field label uses the J41 near-field label from Impinj (English), which is identified as requiring a magnetic field strength of approximately -23 dB A/m (decibel * A/m).
  • Figure 6 is the result of an electromagnetic simulation depicting the magnetic field distribution at 2 mm around the plane consisting of 157 half-wavelength squall conductors excited by a dipole antenna.
  • the rectangular black area in the middle of the figure indicates that the magnetic field strength perpendicular to the plane meets the requirements for effective identification of near-field labels. It can be seen that the effective identification range of the entire near-field label is clear, there is no obvious identification dead zone in the range, and the length of 104 cm is about 3 wavelengths, which greatly breaks the limitation of the recognition range of the current near-field antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种控制超高频近场RFID系统的标签识别范围的方法。所述控制超高频近场RFID系统的标签识别范围的方法,包括以下步骤:采用非近场天线或非近场天线的组合连接超高频RFID阅读器作为馈源;以半波长导体为基础结构单元,利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围,所述有效识别范围用于识别超高频近场RFID标签。采用所述控制超高频近场RFID系统的标签识别范围的方法能够较为精准地控制电子标签的识别范围。

Description

控制超高频近场RFID系统的标签识别范围的方法 技术领域
本发明涉及一种控制超高频近场RFID系统的标签识别范围的方法。
背景技术
物联网的发展日新月异,而作为物联网万物互联基石的超高频RFID(Radio Frequency Identification,射频识别)技术正在从物品的大包装电子标签、托盘电子标签向着单品级电子标签迈进。然而,在实际使用中,超高频RFID单品标签要么漏读、要么误读,总是难以获得令人满意的识别率。这是因为超高频RFID技术基于电磁场的辐射原理导致的。周围环境会对电磁场的反复进行反射和折射,以及液体和金属对标签天线匹配性能的影响,另外由于电磁场辐射远场中场的衰落规律等因素综合起来造成了整个识读区域内外电磁场强区和盲区的随机性、不确定性、和易扰动性,从而导致漏读和误读问题。
发明内容
基于此,有必要提供一种能够较为精准地控制电子标签的识别范围的控制超高频近场RFID系统的标签识别范围的方法。
一种控制超高频近场RFID系统的标签识别范围的方法,包括以下步骤:
采用非近场天线或非近场天线的组合连接超高频RFID阅读器作为馈源;
以半波长导体为基础结构单元,利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围,所述有效识别范围用于识别超高频近场RFID标签。
在其中一个实施方式中,所述利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围的步骤包括:邻近所述非近场天线设置所述半波长导体,以使所述非近场天线的线极化方向与所述半波长导体的长度方向平行,从而于所述半波长导体周围形成所述有效识别范围。
在其中一个实施方式中,所述邻近所述非近场天线设置所述半波长导体的步骤之前还包括以下步骤:根据仿真模拟半波长导体的结果确定并提供所述半波长导体,以使得所述半波长度导体的等效电长度与半波长相等。
在其中一个实施方式中,所述根据仿真模拟半波长导体的结果确定并提供所述半波长导体的步骤包括:等比例扩大或者缩小所述半波长导体并同时检测所述半波长导体的感应电流值;以及确定所述感应电流值的最大值,并获取对应的半波长导体尺寸。
在其中一个实施方式中,所述等比例扩大或者缩小所述半波长导体的步骤包括:拼接多个半波长导体单元以形成所述半波长导体,等比例扩大或者缩小所述多个半波长导体单元的尺寸,以使处于中心位置的半波长导体单元具有感应电流值的最大值,使得每个半波长导体单元的实际尺寸发生变化,而通过各个半波长导体单元之间的互耦作用,所述半波长导体的等效电长度仍为半波长。
在其中一个实施方式中,所述半波长导体为半波长直导体,所述半波长直导体的长度方向与所述非近场天线的线极化方向平行。
在其中一个实施方式中,所述半波长导体包括半波长蜿蜒线导体。
在其中一个实施方式中,所述半波长蜿蜒线导体构成正方形区域,所述半波长导体的长度方向为所述正方形区域的对角线方向。
在其中一个实施方式中,所述半波长导体由多个所述半波长蜿蜒线导体拼接而成。
在其中一个实施方式中,所述半波长导体为多个所述半波长蜿蜒线导体拼接而成的正方形导体,所述多个半波长蜿蜒线导体的长度方向均互相平行,每个所述半波长蜿蜒线导体旋转90度后与邻接的任一个所述半波长蜿蜒线导体均镜像对称设置。
本发明直接使用非近场天线作为馈源,由于空间中占绝对主导位置的是电磁远场,所以除了在非近场天线附近几个毫米的极小区域外,其它位置均无法识别超高频近场RFID标签,然后,本发明以半波长导体来构建所需的超高频RFID系统的有效识别范围,从而达到精确控制近场标签识别范围、在识别范围内避免盲区和标签漏读、以及突破近场天线的识读范围限制的目的。
附图说明
图1A及图1B为普通的近场电子标签的平面示意图。
图2为半波长直线导体中的电流与波长的曲线图。
图3A为一实施例的偶极子天线的平面示意图。
图3B至图3D分别显示三种半波长导体的有效识别范围。
图4为一实施例的组合式半波长导体的平面示意图。
图5为一实施例的有效识别范围的电磁仿真的结果示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1A及图1B,一种RFID标签,需要使用专门设计的读写器近场天线来辅助识别。读写器近场天线的一般原理是通过改变多个电流辐射单元的相位,令读写器天线周围的一定范围内存在较为均匀分布的磁场,达到与近场电子标签彼此耦合的目的。述近场电子标签看起来就是一个小环。因此近场电子标签是通过磁场耦合与读写器天线发生作用的。然而,这种方法仍然存在局限 性,主要表现在:1)可靠识读范围的面积较小,大致为直径半波长到0.75个波长的圆形区域;2)在可靠识读范围以外,仍然可能存在磁场强区,造成近场电子标签的误读;3)实现成本较高。
本发明提供了一种精确控制超高频RFID技术识别范围的方法。这种方法首先要求使用超高频近场RFID标签作为管理物品的电子标签。
根据基本天线设计理论,可以知道半波长长度的偶极子天线具有最佳的辐射特性,其中心位置的电流幅度最大,如图2所示。根据天线互易原理,一个半波长直线导体,在与其相同极化方向的天线激励下应当具有最大的中心位置电流,且导体两端电流近似为零,整段导体上电流方向一致。就这样在半波长导体附近可以形成具有近场特性的磁场分布。而在靠近中心电流较强的位置附近的磁场,足以激活超高频RFID近场标签,并提供足够标签发送数据的能量。上述结论可以推广到任意等效电尺寸为半波长的导体结构。
请参阅图3A至图3D,在一实施例中,一种控制超高频近场RFID系统的标签识别范围的方法,包括以下步骤:采用非近场天线或非近场天线的组合连接超高频RFID阅读器作为馈源;以半波长导体为基础结构单元,利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围,所述有效识别范围用于识别超高频近场RFID标签。
本发明直接使用非近场天线作为馈源,由于空间中占绝对主导位置的是电磁远场,所以除了在非近场天线附近几个毫米的极小区域外,其它位置均无法识别超高频近场RFID标签,然后,本发明以半波长导体来构建所需的超高频RFID系统的有效识别范围,从而达到精确控制近场标签识别范围、在识别范围内避免盲区和标签漏读、以及突破近场天线的识读范围限制的目的。例如,所述非近场天线即为偶极子天线。例如,所述半波长导体的等效电长度与半波长相等,且所述偶极子天线的线极化方向与所述半波长导体的长度方向平行设置。
上述的半波长导体中,由于所述半波长导体的等效电长度与半波长相等,且所述偶极子天线的线极化方向与所述半波长导体的长度方向平行设置,使得半波长导体的中心处的感应电流幅度最大,且所述半波长导体的电场所产生的磁场表现出明显的无盲区的强磁近场特性。
图3A至图3D示出了在偶极子天线的激励下,不同的半波长导体结构如何呈现出不同的近场标签识别范围。虚线围成的阴影部分就是单个半波长导体结构所形成的有效识别范围。可以从中看出,半波长导体靠近中心的那部分所围成的区域即可近似认为是该导体所构建出的有效识别范围。
例如,为了便于制造所述控制超高频近场RFID系统的标签识别范围的方法,所述非近场天线为半波长偶极子天线。所述半波长导体为半波长直导体,所述半波长直导体的长度方向与所述非近场天线的线极化方向平行。通过将所述非近场天线为半波长偶极子天线使得所述控制超高频近场RFID系统的标签识别范围的方法可以采用普通的半波长偶极子天线或者天线组合作为馈源,从而降低其成本,便于制造。
例如,请参阅图4,为了便于形成预设的有效识别范围,所述半波长导体包括半波长蜿蜒线导体。所述半波长蜿蜒线导体构成正方形区域,所述半波长导体的长度方向为所述正方形区域的对角线方向。所述半波长导体由多个所述半波长蜿蜒线导体拼接而成。所述半波长导体为多个所述半波长蜿蜒线导体拼接而成的正方形导体。所述多个半波长蜿蜒线导体的长度方向均互相平行,每个所述半波长蜿蜒线导体旋转90度后与邻接的任一个所述半波长蜿蜒线导体均镜像对称设置。所述正方形导体的边长为82毫米。通过多个半波长蜿蜒线导体的组合,从而使得所述半波长导体的有效识别范围形成矩形。例如,所述有效识别范围为矩形区域。通过半波长导体结构的排列组合就能形成多种多样的有效识别范围。图4通过4个半波长导体单元的组合形成了近似正方形的有效识别范围。
例如,所述利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围的步骤包括:邻近所述非近场天线设置所述半波长导体,以使所述非近场天线的线极化方向与所述半波长导体的长度方向平行,从而于所述半波长导体周围形成所述有效识别范围。例如,所述邻近所述非近场天线设置所述半波长导体的步骤之前还包括以下步骤:根据仿真模拟半波长导体的结果确定并提供所述半波长导体,以使得所述半波长度导体的等效电长度与半波长相等。例如,所述根据仿真模拟半波长导体的结果确 定并提供所述半波长导体的步骤包括:等比例扩大或者缩小所述半波长导体并同时检测所述半波长导体的感应电流值;以及确定所述感应电流值的最大值,并获取对应的半波长导体尺寸。例如,所述等比例扩大或者缩小所述半波长导体的步骤包括:所述等比例扩大或者缩小所述半波长导体的步骤包括:拼接多个半波长导体单元以形成所述半波长导体,等比例扩大或者缩小所述多个半波长导体单元的尺寸,以使处于中心位置的半波长导体单元具有感应电流值的最大值,使得每个半波长导体单元的实际尺寸发生变化,而通过各个半波长导体单元之间的互耦作用,所述半波长导体的等效电长度仍为半波长。
请参阅图5,在一实施例中,使用标准偶极子天线作为馈源,天线的输入功率为2瓦,这种配置方式符合国家关于RFID使用的规范限制。超高频近场标签选用Impinj公司(英频捷公司)的J41型近场标签,其被识别需要的磁场强度约为-23dB A/m(分贝*安/米)。我们采用157个半波长蜿蜒线导体单元构成了104厘米长、29厘米宽的整齐的长方形的近场标签有效识别范围。图6是电磁仿真的结果,图中描绘了偶极子天线激励下,157个半波长蜿蜒线导体单元组成的平面周围2毫米处的磁场分布。图中中部的矩形黑色区域表示垂直于平面的磁场强度达到了有效识别近场标签的要求。可以看出整个近场标签有效识别范围界限清楚,范围内不存在明显的识别盲区,且长度104厘米约为3个波长,极大突破了目前近场天线的识别范围限制。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种控制超高频近场RFID系统的标签识别范围的方法,其特征在于,包括以下步骤:
    采用非近场天线或非近场天线的组合连接超高频RFID阅读器作为馈源;
    以半波长导体为基础结构单元,利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围,所述有效识别范围用于识别超高频近场RFID标签。
  2. 如权利要求1所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述利用所述馈源激发所述基础结构单元,以于所述半波长导体的周围形成超高频RFID系统的有效识别范围的步骤包括:邻近所述非近场天线设置所述半波长导体,以使所述非近场天线的线极化方向与所述半波长导体的长度方向平行,从而于所述半波长导体周围形成所述有效识别范围。
  3. 如权利要求2所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述邻近所述非近场天线设置所述半波长导体的步骤之前还包括以下步骤:根据仿真模拟半波长导体的结果确定并提供所述半波长导体,以使得所述半波长度导体的等效电长度与半波长相等。
  4. 如权利要求3所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述根据仿真模拟半波长导体的结果确定并提供所述半波长导体的步骤包括:等比例扩大或者缩小所述半波长导体并同时检测所述半波长导体的感应电流值;以及确定所述感应电流值的最大值,并获取对应的半波长导体尺寸。
  5. 如权利要求4所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述等比例扩大或者缩小所述半波长导体的步骤包括:拼接多个半波长导体单元以形成所述半波长导体,等比例扩大或者缩小所述多个半波长导体单元的尺寸,以使处于中心位置的半波长导体单元具有感应电流值的最大值,使得每个半波长导体单元的实际尺寸发生变化,而通过各个半波长导体单元之间的互耦作用,所述半波长导体的等效电长度仍为半波长。
  6. 如权利要求1所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述半波长导体为半波长直导体,所述半波长直导体的长度方向 与所述非近场天线的线极化方向平行。
  7. 如权利要求1所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述半波长导体包括半波长蜿蜒线导体。
  8. 如权利要求7所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述半波长蜿蜒线导体构成正方形区域,所述半波长导体的长度方向为所述正方形区域的对角线方向。
  9. 如权利要求7所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述半波长导体由多个所述半波长蜿蜒线导体拼接而成。
  10. 如权利要求7所述的控制超高频近场RFID系统的标签识别范围的方法,其特征在于,所述半波长导体为多个所述半波长蜿蜒线导体拼接而成的正方形导体,所述多个半波长蜿蜒线导体的长度方向均互相平行,每个所述半波长蜿蜒线导体旋转90度后与邻接的任一个所述半波长蜿蜒线导体均镜像对称设置。
PCT/CN2018/101577 2018-03-19 2018-08-21 控制超高频近场rfid系统的标签识别范围的方法 WO2019179017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810225468.9A CN108399347B (zh) 2018-03-19 2018-03-19 控制超高频近场rfid系统的标签识别范围的方法
CN201810225468.9 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019179017A1 true WO2019179017A1 (zh) 2019-09-26

Family

ID=63092954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101577 WO2019179017A1 (zh) 2018-03-19 2018-08-21 控制超高频近场rfid系统的标签识别范围的方法

Country Status (2)

Country Link
CN (1) CN108399347B (zh)
WO (1) WO2019179017A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399347B (zh) * 2018-03-19 2024-03-12 南京思追特电子科技有限公司 控制超高频近场rfid系统的标签识别范围的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814157A (zh) * 2009-02-23 2010-08-25 株式会社日立情报系统 Rfid标签、其通信方法以及rfid标签检测器具
CN102217135A (zh) * 2008-11-19 2011-10-12 韩国泰科诺赛美材料株式会社 无线射频识别标签用天线及无线射频识别标签
CN202217292U (zh) * 2011-06-24 2012-05-09 深圳光启高等理工研究院 读写器、电子标签和射频识别系统
US20130306725A1 (en) * 2012-05-17 2013-11-21 Auden Techno Corp. Near field magnetic coupling antenna and rfid reader having the same
CN103606735A (zh) * 2013-12-09 2014-02-26 南京逐月电子科技有限公司 一种用于uhf频段的近场rfid阅读器天线
CN103810465A (zh) * 2012-11-02 2014-05-21 索尼公司 追踪系统和追踪方法
CN108399347A (zh) * 2018-03-19 2018-08-14 南京思追特电子科技有限公司 控制超高频近场rfid系统的标签识别范围的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103165B (zh) * 2004-11-02 2012-09-05 传感电子公司 用于具有分离器的组合eas/rfid标签的天线
JP4571555B2 (ja) * 2005-08-25 2010-10-27 株式会社日立製作所 アンテナ装置及びリーダライタ
JP5018884B2 (ja) * 2007-07-18 2012-09-05 富士通株式会社 無線タグ及び無線タグの製造方法
CN208225058U (zh) * 2018-03-19 2018-12-11 南京思追特电子科技有限公司 控制超高频近场rfid系统的标签识别范围的结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217135A (zh) * 2008-11-19 2011-10-12 韩国泰科诺赛美材料株式会社 无线射频识别标签用天线及无线射频识别标签
CN101814157A (zh) * 2009-02-23 2010-08-25 株式会社日立情报系统 Rfid标签、其通信方法以及rfid标签检测器具
CN202217292U (zh) * 2011-06-24 2012-05-09 深圳光启高等理工研究院 读写器、电子标签和射频识别系统
US20130306725A1 (en) * 2012-05-17 2013-11-21 Auden Techno Corp. Near field magnetic coupling antenna and rfid reader having the same
CN103810465A (zh) * 2012-11-02 2014-05-21 索尼公司 追踪系统和追踪方法
CN103606735A (zh) * 2013-12-09 2014-02-26 南京逐月电子科技有限公司 一种用于uhf频段的近场rfid阅读器天线
CN108399347A (zh) * 2018-03-19 2018-08-14 南京思追特电子科技有限公司 控制超高频近场rfid系统的标签识别范围的方法

Also Published As

Publication number Publication date
CN108399347A (zh) 2018-08-14
CN108399347B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US7843347B2 (en) Near-field and far-field antenna-assembly and devices having same
Qing et al. A broadband UHF near-field RFID antenna
Qing et al. UHF near-field RFID reader antenna with capacitive couplers
Ren et al. A robust UHF near-field RFID reader antenna
JP2007318323A (ja) 無線タグ及び無線タグ用アンテナ
CN102956967A (zh) 一种圆极化rfid标签天线
Forouzannezhad et al. Multiband compact antenna for near‐field and far‐field RFID and wireless portable applications
WO2019179017A1 (zh) 控制超高频近场rfid系统的标签识别范围的方法
JP2006180043A (ja) 電子タグシステム
JP6264052B2 (ja) アンテナ装置
CN104636693B (zh) 用于销售点终端应用的uhf‑rfid天线
Sharma et al. Dual purpose near-and far-field UHF RFID coil antenna with non-uniformly distributed-turns
Ding et al. A novel magnetic coupling UHF near field RFID reader antenna based on multilayer-printed-dipoles array
CN102820536B (zh) 超高频uhf的射频识别rfid读写器天线
Lau et al. Review on UHF RFID antennas
Bhaskar et al. Miniaturized circularly polarized vicsekcross-shaped slot antenna for UHF-RFID reader handset applications
CN208225058U (zh) 控制超高频近场rfid系统的标签识别范围的结构
Lu et al. Planar circularly polarized tag antenna with compact operation for UHF RFID application
Li et al. Microstrip‐based segmented coupling reader antenna for near‐field UHF RFID applications
Mei et al. Influence of UHF tags in the different material surface to RFID system
US10938087B2 (en) Antenna structure for a radio frequency identification (RFID) reader, method of manufacturing thereof, RFID reader and RFID system
CN206301360U (zh) 无源超高频rfid环形电子标签
Chen et al. Bandwidth enhancement in compact dual open‐loop antenna for UHF near‐field RFID reader
Vijitsulakkana et al. UHF RFID reader using slanted slot patch metasurface on microstrip patch antenna
Wongsiritorn et al. Modified UTD-based UHF RFID tag antenna with two-pronged fork slot for coated metallic cylindrical surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910246

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18910246

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18910246

Country of ref document: EP

Kind code of ref document: A1