WO2019179015A1 - 半波导体阵列及其构建方法 - Google Patents

半波导体阵列及其构建方法 Download PDF

Info

Publication number
WO2019179015A1
WO2019179015A1 PCT/CN2018/101485 CN2018101485W WO2019179015A1 WO 2019179015 A1 WO2019179015 A1 WO 2019179015A1 CN 2018101485 W CN2018101485 W CN 2018101485W WO 2019179015 A1 WO2019179015 A1 WO 2019179015A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide array
waveguide
basic units
basic unit
basic
Prior art date
Application number
PCT/CN2018/101485
Other languages
English (en)
French (fr)
Inventor
刘慧君
Original Assignee
南京思追特电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京思追特电子科技有限公司 filed Critical 南京思追特电子科技有限公司
Publication of WO2019179015A1 publication Critical patent/WO2019179015A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0093Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices having a fractal shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/12Refracting or diffracting devices, e.g. lens, prism functioning also as polarisation filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the present invention relates to a half waveguide array and a method of constructing the same.
  • An electromagnetic field is a physical field produced by a charged object.
  • a charged object in an electromagnetic field will feel the force of an electromagnetic field.
  • the interaction between an electromagnetic field and a charged object (charge or current) can be described by Maxwell's equation and Lorentz's law of force.
  • the Maxwell equation of electromagnetic radiation shows that not only the change of the magnetic field is to generate an electric field, but also the change of the electric field also generates a magnetic field.
  • the time-varying field produces electromagnetic radiation, which is electromagnetic waves.
  • This kind of electromagnetic wave propagates from the field source to the surrounding speed at the speed of light, and there is a corresponding time lag phenomenon in the space according to the distance from the field source.
  • An important feature of electromagnetic waves is that they have a component in the field vector that is inversely proportional to the distance from the field source to the observation point. The attenuation of these components in spatial propagation is much smaller than the constant field.
  • electromagnetic waves carry energy in propagation and can serve as a carrier of information. This has broadened the way for radiocommunication, broadcasting, television, remote sensing and other technologies.
  • half-waveguide arrays are often used to generate electromagnetic fields.
  • the half-waveguide array does not convert the weak electromagnetic far field in the planar range into a strong magnetic near field without a dead zone.
  • a half waveguide array comprising a plurality of basic units spliced together such that a ratio of an equivalent electrical length to a half wavelength of the half waveguide array is 0.8-1.2, the half waveguide
  • the length direction of the body array is disposed in parallel with the linear polarization direction of the antenna so that the induced current generated on the half-waveguide array can form a circulating current.
  • the equivalent electrical length of the half-waveguide array is equal to a half wavelength.
  • the planar area in which the basic unit is located is a square area, and the length direction of the basic unit is a diagonal direction of the square area.
  • the length directions of the plurality of basic units are all parallel to each other, and the basic unit is rotated by 90 degrees and disposed symmetrically symmetrically with any of the adjacent basic units.
  • each adjacent two basic units are perpendicular to each other, and each adjacent two basic units in the first direction are mirror-symmetrically disposed to each other, and each adjacent two in the second direction The positions of the basic units are all rotated by 90 degrees, and the first direction and the second direction are perpendicular to each other.
  • the coverage area of the half-waveguide array is rectangular.
  • the linear polarization direction of the antenna is coincident with the longitudinal direction of the half-waveguide array.
  • a method for constructing a half-waveguide array includes the following steps:
  • the half-waveguide array is disposed corresponding to the antenna such that the longitudinal direction of the half-waveguide array is parallel to the linear polarization direction of the antenna.
  • the half-waveguide array includes a plurality of basic units spliced together, and the step of determining and providing the half-waveguide array according to the result of simulating the half-waveguide array comprises:
  • the planar area in which the basic unit is located is a square area, and the length direction of the basic unit is a diagonal direction of the square area.
  • the center of the basic unit is The magnitude of the induced current is the largest, and the magnetic field generated by the electrical location of the basic unit exhibits a distinct strong magnetic near-field characteristic without a dead zone.
  • Figure 1 is a plan view showing the basic unit of a half-waveguide array of an embodiment.
  • FIG. 2 is a schematic view showing the direction of induced current on the basic unit shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing the amplitude distribution of the induced current on the basic unit shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing the amplitude distribution of the induced current on the basic unit shown in FIG. 1.
  • FIG. 4 is a schematic view showing the distribution of magnetic field strength at a distance of 5 mm in the plane normal direction of the basic unit shown in FIG. 1.
  • 5A to 5C are schematic plan views showing directions of induced currents of three types of half-waveguide arrays.
  • Fig. 6 is a view showing the distribution of the magnetic field intensity at a distance of 5 mm in the plane normal direction of the half-waveguide array shown in Fig. 5B.
  • Figure 7 is a plan view of a half waveguide array of an embodiment.
  • the present invention provides a half waveguide array.
  • the half-waveguide array includes a plurality of basic units that are spliced together such that an equivalent electrical length of the half-waveguide array is equal or similar to a half wavelength, such as within 0.8-1.2,
  • the length direction of the half-waveguide array is disposed in parallel with the linear polarization direction of the antenna so that the induced current generated on the half-waveguide array can form a circulating current.
  • the equivalent electrical length of the half-waveguide array is equal to a half wavelength.
  • the planar area in which the base unit is located is a square area.
  • the length direction of the basic unit is the diagonal direction of the square area.
  • the longitudinal directions of the plurality of basic units are all parallel to each other, and the basic unit is rotated by 90 degrees and disposed symmetrically with respect to any one of the adjacent basic units.
  • the length direction of each adjacent two basic units is perpendicular to each other, and each adjacent two of the basic units in the first direction are mirror-symmetrically disposed to each other, and the position of each of the two adjacent basic units in the second direction Both are relatively rotated by 90 degrees, and the first direction and the second direction are perpendicular to each other.
  • the coverage area of the half-waveguide array is rectangular.
  • the linear polarization direction of the antenna is arranged in parallel with the longitudinal direction of the half-waveguide array, for example, overlapping.
  • the present invention also provides a method for constructing a half-waveguide array, the method comprising the steps of: determining and providing a half-waveguide array according to a result of simulating a half-waveguide array, such that the half-waveguide, etc.
  • the power-effect length and the half-wavelength are within 0.8-1.2; and the half-waveguide array is disposed corresponding to the antenna such that the length direction of the half-waveguide array is parallel to the linear polarization direction of the antenna.
  • the equivalent electrical length of the half-waveguide array is equal to a half wavelength.
  • the half-waveguide array includes a plurality of basic units spliced together
  • the step of determining and providing the half-waveguide array according to the result of simulating the half-waveguide array includes: exciting the half-waveguide array with an antenna to Generating an induced current on the half-waveguide array; proportionally expanding or reducing the plurality of basic units and simultaneously detecting an induced current value on the half-waveguide array such that a basic unit at a central position has an induced current value
  • the maximum value is such that the actual size of each basic unit changes, and the equivalent electrical length of the half-waveguide is still half a wavelength by mutual coupling between the respective basic units.
  • the planar area in which the basic unit is located is a square area
  • the length direction of the basic unit is a diagonal direction of the square area.
  • the center of the basic unit is The magnitude of the induced current is the largest, and the magnetic field generated by the electrical location of the basic unit exhibits a distinct strong magnetic near-field characteristic without a dead zone.
  • a basic unit 100 is disposed adjacent to a dipole antenna corresponding to the basic unit, and an equivalent electrical length of the basic unit 100 is equal to a half wavelength.
  • the linear polarization direction of the dipole antenna is disposed in parallel with the longitudinal direction of the base unit 100 to enable an induced current generated on the base unit 100 to form a circulating current.
  • the induced currents are substantially equal in the basic unit 100 and are evenly distributed. The magnetic field generated by the above induced current is more evenly distributed in the space where the unit is located.
  • FIG. 4 shows the magnetic field intensity along the normal direction of the plane and the magnetic field intensity in the central black area in the plane generated by the basic unit 100.
  • the planar area in which the basic unit 100 is located is a square area.
  • the length direction of the base unit 100 is the diagonal direction of the square area.
  • the square area has a side length of 40 mm. Since the plane of the basic unit 100 covers a square area, that is, the peripheral contour of the basic unit 100 is square, the basic unit 100 can be designed with a common structure, which reduces the manufacturing cost and is convenient and easy.
  • the method for constructing the basic unit includes the steps of: arranging the basic unit 100 of the half-waveguide array corresponding to the dipole antenna such that the length direction of the basic unit 100 and the line pole of the dipole antenna Parallel; the base unit 100 is excited by the dipole antenna to generate an induced current on the base unit 100; the base unit 100 is scaled up or down and the sensing on the base unit 100 is simultaneously detected a current value; and determining a maximum value of the induced current value, and acquiring a corresponding basic unit 100.
  • a half-waveguide array comprising a plurality of basic elements of a half-waveguide array as described above, the plurality of base cells 100 being spliced together to form a vortex of a main current on the half-waveguide array.
  • FIG. 5A is a schematic plan view of a conventional half-waveguide array in which the four main unit 100s are excited by a dipole antenna to form a main induced current in the same direction, which causes a center position thereof.
  • the magnetic fields cancel each other out, creating a dead zone.
  • the planar area in which the basic unit 100 is located is a square area, and the length direction of the basic unit 100 is the diagonal direction of the square area.
  • the longitudinal directions of the plurality of basic units 100 are all parallel to each other. After the basic unit 100 is rotated by 90 degrees, it is disposed symmetrically symmetrically with any of the adjacent basic units 100.
  • Figure 6 is a graph showing the magnetic field strength in the plane normal to the plane of the half-waveguide array of 5 mm from the induced current of the half-waveguide array shown in Figure 5B.
  • the induced magnetic field generated in the figure exhibits a strong magnetic near-field characteristic with an overall coverage of almost no dead zone.
  • each adjacent two basic units 100 are perpendicular to each other, and each adjacent two basic units in the first direction.
  • the positions of each of the two adjacent base units 100 in the second direction are relatively rotated by 90 degrees, and the first direction and the second direction are perpendicular to each other.
  • the basic unit of the planar structure of the half-waveguide array distribution proposed by the present invention is a half-waveguide structure. It must meet the following conditions:
  • the equivalent electrical length is approximately half wavelength
  • the magnetic field generated by the above induced current is more evenly distributed in the space where the unit is located.
  • Condition (1) can also be described in another way that is easier to guide the design, that is, to scale up or down the conductor structure, and the linear polarization direction is excited by the standard dipole antenna in the longitudinal direction of the conductor structure.
  • the center of the conductor structure has the largest magnitude of induced current, its equivalent electrical length is equal to half a wavelength.
  • Figure 1 shows a half-waveguide basic unit covering a square area of length a.
  • the direction of the arrow is its length direction.
  • the linear polarization direction is consistent with the length direction of the conductor structure under the illumination of the standard dipole antenna.
  • a is equal to 40 mm.
  • the current direction is as shown by the hollow arrow in Fig. 2, and the current amplitude distribution on the entire half-waveguide structure is shown in Fig. 3.
  • Figure 4 depicts the magnetic field strength produced by the half-waveguide induced current, 5 mm from the plane of the half-waveguide unit, and along the normal to the plane.
  • the magnetic field in the black area in the middle of the figure shows a distinct strong magnetic near-field characteristic.
  • the main induction currents formed by the four elements of the array of Fig. 5A under the excitation of the dipole antenna are in the same direction, which causes the magnetic fields at their central positions to cancel each other, resulting in a dead zone.
  • the four cells of the array of Fig. 5B adjust the conductor routing so that the main induced current forms a plurality of small eddy currents in the array range.
  • the four cells of the array of Fig. 5C are capable of forming a large eddy current of the main induced current under the excitation of two dipole antennas whose polarization directions are perpendicular to each other.
  • the latter two array layout methods can form eddy currents, which can be selected in actual use.
  • the half-waveguide array formed by the principle of forming eddy currents as much as possible for the main current should be protected by this patent.
  • Figure 6 depicts the magnetic field strength produced by the induced current of the half-waveguide array shown in Figure 5B on a plane 5 mm from the array and along the normal to the plane.
  • the induced magnetic field in the figure shows the strong magnetic near-field characteristics of the overall coverage with almost no dead zone.
  • the half-waveguide basic unit and array arrangement method we can transform the shape of the strong magnetic near-field region as needed to form the half-waveguide array plane.
  • the half-waveguide array plane as shown in FIG. 7 can convert a weak electromagnetic far field within a circular dashed line into a strong magnetic near field without a dead zone. Any number, any overall shape of the half-waveguide array plane should be protected by this patent.
  • the half-waveguides in the array are produced in a variety of ways. It can be cut directly from the metal foil; it can be etched away from the entire metal film without unnecessary parts; it can also be directly formed by printing.
  • the half-waveguide array plane produced in any way is within the scope of this patent.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种半波导体阵列。所述半波导体阵列包括多个基本单元,所述多个基本单元拼接于一起,以使所述半波导体阵列的等效电长度与半波长的比例为0.8-1.2,所述半波导体阵列的长度方向与天线的线极化方向平行设置,以使所述半波导体阵列上产生的感应电流能够形成环流。所述半波导体阵列可以将平面范围内的弱电磁远场转化成为强磁近场。本发明还提供一种半波导体阵列的构建方法。

Description

半波导体阵列及其构建方法 技术领域
本发明涉及一种半波导体阵列及其构建方法。
背景技术
电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。处于电磁场的带电物体会感受到电磁场的作用力。电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。电磁辐射麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些分量在空间传播时的衰减远较恒定场为小。
按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。目前,常采用半波导体阵列来产生电磁场。然而,所述半波导体阵列并不能将平面范围内的弱电磁远场转化成为没有盲区的强磁近场。
发明内容
基于此,有必要提供一种可以将平面范围内的弱电磁远场转化成为强磁近场的半波导体阵列及其构建方法。
一种半波导体阵列,包括多个基本单元,所述多个基本单元拼接于一起,以使所述半波导体阵列的等效电长度与半波长的比例为0.8-1.2,所述半波导体阵列的长度方向与天线的线极化方向平行设置,以使所述半波导体阵列上产生的感应电流能够形成环流。
在其中一个实施方式中,所述半波导体阵列的等效电长度与半波长相等。
在其中一个实施方式中,所述基本单元所在的平面区域为正方形区域,所 述基本单元的长度方向为所述正方形区域的对角线方向。
在其中一个实施方式中,所述多个基本单元的长度方向均互相平行,所述基本单元旋转90度后与邻接的任一个所述基本单元均镜像对称设置。
在其中一个实施方式中,每相邻两个基本单元的长度方向均互相垂直,沿第一方向上每相邻两个所述基本单元均相互镜像对称设置,沿第二方向上每相邻两个所述基本单元的位置均相对旋转90度,所述第一方向与所述第二方向相互垂直。
在其中一个实施方式中,所述半波导体阵列的覆盖区域为矩形。
在其中一个实施方式中,所述天线的线极化方向与所述半波导体阵列的长度方向重合设置。
一种半波导体阵列的建构方法包括以下步骤:
根据仿真模拟半波导体阵列的结果确定并提供半波导体阵列,以使所述半波导体阵列的等效电长度与半波长的比例为0.8-1.2;以及
将所述半波导体阵列与天线对应设置,使所述半波导体阵列的长度方向与所述天线的线极化方向平行。
在其中一个实施方式中,所述半波导体阵列包括多个拼接于一起的基本单元,所述根据仿真模拟半波导体阵列的结果确定并提供半波导体阵列的步骤包括:
利用天线激励所述半波导体阵列以使所述半波导体阵列上产生感应电流;
等比例扩大或者缩小所述多个基本单元并同时检测所述半波导体阵列上的感应电流值,以使处于中心位置的基本单元具有感应电流值的最大值,使得每个基本单元的实际尺寸发生变化,而通过各个基本单元之间的互耦作用,所述半波导体的等效电长度仍为半波长。
在其中一个实施方式中,所述基本单元所在的平面区域为正方形区域,所述基本单元的长度方向为所述正方形区域的对角线方向。
在上述的半波导体阵列中,由于所述基本单元的等效电长度与半波长相等,且所述天线的线极化方向与所述基本单元的长度方向平行设置,使得基本单元的中心处的感应电流幅度最大,且所述基本单元的电场所产生的磁场表现出明 显的无盲区的强磁近场特性。
附图说明
图1为一实施例的半波导体阵列的基本单元的平面示意图。
图2为图1所示基本单元上的感应电流的方向示意图。
图3为图1所示基本单元上的感应电流的幅度分布示意图。
图4为图1所示基本单元的平面法线方向上5毫米处的磁场强度的分布示意图。
图5A至图5C为三种半波导体阵列的感应电流方向的平面示意图。
图6为图5B所示半波导体阵列的平面法线方向上5毫米处的磁场强度的分布示意图。
图7为一实施例的半波导体阵列的平面示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
例如,本发明提供一种半波导体阵列。所述半波导体阵列包括多个基本单 元,所述多个基本单元拼接于一起,以使所述半波导体阵列的等效电长度与半波长相等或近似,例如在0.8-1.2之内,所述半波导体阵列的长度方向与天线的线极化方向平行设置,以使所述半波导体阵列上产生的感应电流能够形成环流。较佳地,所述半波导体阵列的等效电长度与半波长相等。
例如,在具体的实施例中,所述基本单元所在的平面区域为正方形区域。所述基本单元的长度方向为所述正方形区域的对角线方向。所述多个基本单元的长度方向均互相平行,所述基本单元旋转90度后与邻接的任一个所述基本单元均镜像对称设置。每相邻两个基本单元的长度方向均互相垂直,沿第一方向上每相邻两个所述基本单元均相互镜像对称设置,沿第二方向上每相邻两个所述基本单元的位置均相对旋转90度,所述第一方向与所述第二方向相互垂直。所述半波导体阵列的覆盖区域为矩形。所述天线的线极化方向与所述半波导体阵列的长度方向平行设置,例如重合设置。
例如,本发明还提供一种半波导体阵列的建构方法,所述构建方法包括以下步骤:根据仿真模拟半波导体阵列的结果确定并提供半波导体阵列,以使得所述半波导体的等效电长度与半波长在0.8-1.2之内;以及将所述半波导体阵列与天线对应设置,使所述半波导体阵列的长度方向与所述天线的线极化方向平行。较佳地,所述半波导体阵列的等效电长度与半波长相等。
例如,所述半波导体阵列包括多个拼接于一起的基本单元,所述根据仿真模拟半波导体阵列的结果确定并提供半波导体阵列的步骤包括:利用天线激励所述半波导体阵列以使所述半波导体阵列上产生感应电流;等比例扩大或者缩小所述多个基本单元并同时检测所述半波导体阵列上的感应电流值,以使处于中心位置的基本单元具有感应电流值的最大值,使得每个基本单元的实际尺寸发生变化,而通过各个基本单元之间的互耦作用,所述半波导体的等效电长度仍为半波长。例如,所述基本单元所在的平面区域为正方形区域,所述基本单元的长度方向为所述正方形区域的对角线方向。
在上述的半波导体阵列中,由于所述基本单元的等效电长度与半波长相等,且所述天线的线极化方向与所述基本单元的长度方向平行设置,使得基本单元的中心处的感应电流幅度最大,且所述基本单元的电场所产生的磁场表现出明 显的无盲区的强磁近场特性。
请参阅图1及图2,在所述半波导体阵列中,基本单元100与对应所述基本单元的偶极子天线相邻设置,所述基本单元100的等效电长度与半波长相等,所述偶极子天线的线极化方向与所述基本单元100的长度方向平行设置,以使所述基本单元100上产生的感应电流能够形成环流。上述感应电流在所述基本单元100上基本上处处相等,分布较为均匀。上述感应电流产生的磁场在单元所在空间中分布较为均匀。
在上述的半波导体阵列中,由于所述基本单元100的等效电长度与半波长相等,且所述偶极子天线的线极化方向与所述基本单元100的长度方向平行设置,使得基本单元100的中心处的感应电流幅度最大,请参阅图3,其中空心箭头所示方向为电流方向。请参阅图4,图4显示了由所述基本单元100感应电流所产生的距离所述基本单元5毫米处的平面上,且沿平面法线方向的磁场强度,图中中部黑色区域的磁场表现出明显的无盲区的强磁近场特性。
例如,为了便于设置所述基本单元100,所述基本单元100所在的平面区域为正方形区域。所述基本单元100的长度方向为所述正方形区域的对角线方向。所述正方形区域的边长为40毫米。由于所述基本单元100的平面覆盖正方形区域,即所述基本单元100的外围轮廓为正方形,使得所述基本单元100可以采用常见的结构来进行设计,降低了其制造成本,方便易行。
例如,所述基本单元的建构方法,包括以下步骤:将半波导体阵列的基本单元100与偶极子天线对应设置,使所述基本单元100的长度方向与所述偶极子天线的线极化方向平行;利用所述偶极子天线激励所述基本单元100以使所述基本单元100上产生感应电流;等比例扩大或者缩小所述基本单元100并同时检测所述基本单元100上的感应电流值;以及确定所述感应电流值的最大值,并获取对应的基本单元100。通过等比例扩大或者缩小所述基本单元100并同时检测所述基本单元100上的感应电流值,从而能够简单易行地获取具有与半波长相等的等效电长度的基本单元100,使得所述基本单元100的制造较为容易,且可以较为精确地确定所述基本单元100的尺寸。例如,一种半波导体阵列,包括多个如上所述的半波导体阵列的基本单元,所述多个基本单元100拼接于 一起以使所述半波导体阵列上的主电流形成涡流。
图5A所示的常见的半波导体阵列的平面示意图中,其中阵列四个所述基本单元100在偶极子天线的激励下形成的主感应电流在同一方向上,这就会造成其中心位置磁场彼此抵消,产生盲区。而在如图5B及与7所示的图中,所述基本单元100所在的平面区域为正方形区域,所述基本单元100的长度方向为所述正方形区域的对角线方向。所述多个基本单元100的长度方向均互相平行,所述基本单元100旋转90度后与邻接的任一个所述基本单元100均镜像对称设置。图6为图5B所示半波导体阵列的感应电流所产生,距离所述半波导体阵列5毫米的平面上,且沿平面法线方向的磁场强度。图中所产生的感应磁场表现出整体覆盖几乎没有盲区的强磁近场特性。
又如,如图5C所示,另一种半波导体阵列的平面示意图中,每相邻两个基本单元100的长度方向均互相垂直,沿第一方向上每相邻两个所述基本单元100均相互镜像对称设置,沿第二方向上每相邻两个所述基本单元100的位置均相对旋转90度,所述第一方向与所述第二方向相互垂直。
又如,在一实施方式中,本发明提出的半波导体阵列分布的平面结构的基本单元是一种半波导体结构。其必须符合以下条件:
(1)等效电长度近似半波长;
(2)在线极化方向与半波导体结构长度方向一致的标准偶极子天线激励下,产生的感应电流在单元所在平面上分布较为均匀,且能形成环流;
上述感应电流产生的磁场在单元所在空间中分布较为均匀。
其中条件(1)也可以用另一种更容易指导设计的方式描述,即:等比例扩大或缩小该导体结构,在线极化方向与导体结构长度方向一致的标准偶极子天线激励下,该导体结构的中心感应电流幅度最大时,其等效电长度等于半波长。
图1为一个半波导体基本单元,其覆盖了一个边长为a的正方形区域。箭头方向为其长度方向。通过仿真计算,可以得到在线极化方向与导体结构长度方向一致的标准偶极子天线照射下,该导体结构的中心感应电流幅度最大时,a约等于40毫米。此时电流方向如图2中空心箭头所示,整个半波导体结构上的电流幅度分布见图3。
从图上可以看出,产生的感应电流在单元所在平面上分布较为均匀,且形成了两处较大的环流。图4描绘了由半波导体感应电流所产生,距离半波导体单元5毫米的平面上,且沿平面法线方向的磁场强度。图中中部黑色区域的磁场表现出明显的强磁近场特性。
将半波导体基本单元排列成阵列时需要遵循尽可能令主电流形成涡流的原则。图5A阵列四个单元在偶极子天线的激励下形成的主感应电流在同一方向上,这就会造成其中心位置磁场彼此抵消,产生盲区。图5B阵列四个单元通过调整导体走线方式,令主感应电流在阵列范围形成多个小涡流。图5C阵列四个单元,则能在极化方向相互垂直的两个偶极子天线激励下能够形成主感应电流的大涡流。后面两种阵列布局方式都能形成涡流,实际使用中均能选择。只要是遵循尽可能令主电流形成涡流的原则形成的半波导体阵列都应受本专利保护。
图6描绘了由图5B所示半波导体阵列感应电流所产生,距离阵列5毫米的平面上,且沿平面法线方向的磁场强度。图中感应磁场表现出整体覆盖几乎没有盲区的强磁近场特性。
有了半波导体基本单元和阵列排布方法,我们就可以根据需要转化强磁近场的区域外形,构成半波导体阵列平面。例如,如图7中所示的半波导体阵列平面就能将圆形虚线范围内的弱电磁远场无盲区地转化成为强磁近场。任意数目、任意整体外形的半波导体阵列平面都应受本专利保护。
最后,阵列中半波导体的制作方式多种多样。可以直接从金属薄片切割而成;可以来自于整片金属薄膜上蚀刻掉不需要的部分;也可以通过印刷方式直接成形。不管何种方式制作的半波导体阵列平面,都在本专利保护范围之内。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变 形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种半波导体阵列,其特征在于,包括多个基本单元,所述多个基本单元拼接于一起,以使所述半波导体阵列的等效电长度与半波长的比例为0.8-1.2,所述半波导体阵列的长度方向与天线的线极化方向平行设置,以使所述半波导体阵列上产生的感应电流能够形成环流。
  2. 如权利要求1所述半波导体阵列,其特征在于,所述半波导体阵列的等效电长度与半波长相等。
  3. 如权利要求1所述半波导体阵列,其特征在于,所述基本单元所在的平面区域为正方形区域,所述基本单元的长度方向为所述正方形区域的对角线方向。
  4. 如权利要求1所述的半波导体阵列,其特征在于,所述多个基本单元的长度方向均互相平行,所述基本单元旋转90度后与邻接的任一个所述基本单元均镜像对称设置。
  5. 如权利要求1所述的半波导体阵列,其特征在于,每相邻两个基本单元的长度方向均互相垂直,沿第一方向上每相邻两个所述基本单元均相互镜像对称设置,沿第二方向上每相邻两个所述基本单元的位置均相对旋转90度,所述第一方向与所述第二方向相互垂直。
  6. 如权利要求1所述半波导体阵列,其特征在于,所述半波导体阵列的覆盖区域为矩形。
  7. 如权利要求1所述半波导体阵列,其特征在于,所述天线的线极化方向与所述半波导体阵列的长度方向重合设置。
  8. 一种半波导体阵列的建构方法,其特征在于,包括以下步骤:
    根据仿真模拟半波导体阵列的结果确定并提供半波导体阵列,以使所述半波导体阵列的等效电长度与半波长的比例为0.8-1.2;以及
    将所述半波导体阵列与天线对应设置,使所述半波导体阵列的长度方向与所述天线的线极化方向平行。
  9. 如权利要求8所述半波导体阵列的建构方法,其特征在于,所述半波导体阵列包括多个拼接于一起的基本单元,所述根据仿真模拟半波导体阵列的结果确定并提供半波导体阵列的步骤包括:
    利用天线激励所述半波导体阵列以使所述半波导体阵列上产生感应电流;
    等比例扩大或者缩小所述多个基本单元并同时检测所述半波导体阵列上的感应电流值,以使处于中心位置的基本单元具有感应电流值的最大值,使得每个基本单元的实际尺寸发生变化,而通过各个基本单元之间的互耦作用,所述半波导体的等效电长度仍为半波长。
  10. 如权利要求9所述的半波导体阵列的建构方法,其特征在于,所述基本单元所在的平面区域为正方形区域,所述基本单元的长度方向为所述正方形区域的对角线方向。
PCT/CN2018/101485 2018-03-19 2018-08-21 半波导体阵列及其构建方法 WO2019179015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810224794.8 2018-03-19
CN201810224794.8A CN108470987B (zh) 2018-03-19 2018-03-19 半波导体阵列及其构建方法

Publications (1)

Publication Number Publication Date
WO2019179015A1 true WO2019179015A1 (zh) 2019-09-26

Family

ID=63264492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101485 WO2019179015A1 (zh) 2018-03-19 2018-08-21 半波导体阵列及其构建方法

Country Status (2)

Country Link
CN (1) CN108470987B (zh)
WO (1) WO2019179015A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305048A (zh) * 2015-10-27 2016-02-03 南京航空航天大学 一种宽角度圆极化超表面天线
CN105449374A (zh) * 2014-08-12 2016-03-30 启碁科技股份有限公司 天线及天线模块
EP2747195B1 (en) * 2012-12-21 2017-02-08 Stichting IMEC Nederland Antenna arrangement for wireless powering

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330827A (ja) * 1995-05-29 1996-12-13 Mitsubishi Electric Corp アンテナ装置
JPH1168446A (ja) * 1997-08-19 1999-03-09 Nippon Dengiyou Kosaku Kk 半波長ダイポールアンテナ、水平偏波用アンテナおよびアレイアンテナ
JP3634256B2 (ja) * 2000-09-28 2005-03-30 株式会社東芝 アンテナ装置
CA2347596C (en) * 2001-05-17 2004-01-27 James Stanley Podger The double-lemniscate antenna element
US6677913B2 (en) * 2001-06-19 2004-01-13 The Regents Of The University Of California Log-periodic antenna
US7098861B2 (en) * 2004-12-28 2006-08-29 Cisco Technology, Inc. Hooked stub collinear array antenna
CN2850009Y (zh) * 2005-09-16 2006-12-20 上海正旭数码科技有限公司 极化兼容全向微型天线
JP4863804B2 (ja) * 2006-07-28 2012-01-25 富士通株式会社 平面アンテナ
CN102522628B (zh) * 2011-12-09 2014-05-14 清华大学 应用于矿井、巷道的高增益双向端射天线阵
US10224637B2 (en) * 2012-07-09 2019-03-05 Jasmin ROY Reciprocal circular polarization selective surfaces and elements thereof
CN104993237A (zh) * 2015-05-11 2015-10-21 南京邮电大学 一种提高接收天线吸收效率的实现方法
CN208299050U (zh) * 2018-03-19 2018-12-28 南京思追特电子科技有限公司 半波导体阵列

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747195B1 (en) * 2012-12-21 2017-02-08 Stichting IMEC Nederland Antenna arrangement for wireless powering
CN105449374A (zh) * 2014-08-12 2016-03-30 启碁科技股份有限公司 天线及天线模块
CN105305048A (zh) * 2015-10-27 2016-02-03 南京航空航天大学 一种宽角度圆极化超表面天线

Also Published As

Publication number Publication date
CN108470987A (zh) 2018-08-31
CN108470987B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
Cheng et al. Spatial power combination for omnidirectional radiation via anisotropic metamaterials
Clemente et al. Design of a super directive four-element compact antenna array using spherical wave expansion
KR102155829B1 (ko) 컴팩트 3d 방향 탐지기
Araghi et al. Oriented design of an antenna for MIMO applications using theory of characteristic modes
Lu et al. Design of TE-polarized Bessel antenna in microwave range using leaky-wave modes
Choi et al. Synthesized magnetic field focusing using a current-controlled coil array
Gao et al. Far-field super-resolution imaging with compact and multifrequency planar resonant lens based on time reversal
Cicchetti et al. A wideband high-gain dielectric horn-lens antenna for wireless communications and UWB applications
Shamonina et al. On wireless power transfer between coils in the presence of radiation
WO2019179015A1 (zh) 半波导体阵列及其构建方法
CN208299050U (zh) 半波导体阵列
Karlsson On the efficiency and gain of antennas
Chang et al. Radiation $ Q $ bounds for small electric dipoles over a conducting ground plane
Fujita et al. Theoretical limit of the radiation efficiency for electrically small self-resonant spherical surface antennas
Ludwig et al. Focusing and steering for medical applications with magnetic near-field arrays and metasurfaces
Belmkaddem et al. Small antenna radiation properties analysis using spherical wave expansion
Tyo et al. Effect of aperture feed and reflector configuration on the time-and frequency domain radiation patterns of reflector impulse radiating antennas
Kraček Wireless Power Transmission
Voytovich et al. Slot turnstyle antenna
RU2530223C1 (ru) Способ преобразования в открытом пространстве двух направленных в одну сторону линейно поляризованных моногармоничных потоков электромагнитных волн в направленный поток волн де бройля
Vilner et al. Power balance analysis of an infinite equispaced linear array composed of two alternating types of elements
Hodge Two different types of magnetic field
Araghi et al. On the use of characteristic modes theory to optimize the radiation of a slotted waveguide array antenna
Volski et al. Efficient physical optics approximation for the calculation of radiation patterns of planar antennas located on a finite ground plane
Yashiro Scattering from a finite array of axially magnetized ferrite cylinders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910603

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18910603

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18910603

Country of ref document: EP

Kind code of ref document: A1