WO2019178922A1 - 盘车液压驱动系统及驱动方法 - Google Patents

盘车液压驱动系统及驱动方法 Download PDF

Info

Publication number
WO2019178922A1
WO2019178922A1 PCT/CN2018/085343 CN2018085343W WO2019178922A1 WO 2019178922 A1 WO2019178922 A1 WO 2019178922A1 CN 2018085343 W CN2018085343 W CN 2018085343W WO 2019178922 A1 WO2019178922 A1 WO 2019178922A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic cylinder
oil
valve
oil passage
Prior art date
Application number
PCT/CN2018/085343
Other languages
English (en)
French (fr)
Inventor
陈金评
沈星星
张金钟
Original Assignee
江苏金风科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金风科技有限公司 filed Critical 江苏金风科技有限公司
Priority to US16/470,862 priority Critical patent/US11149706B2/en
Priority to EP18887212.1A priority patent/EP3569872B1/en
Priority to AU2018386354A priority patent/AU2018386354B2/en
Publication of WO2019178922A1 publication Critical patent/WO2019178922A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/01Locking-valves or other detent i.e. load-holding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/025Pressure reducing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/027Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/26Locking mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/332Maximum loads or fatigue criteria
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the field of installation of a wind power generator set, in particular to a hydraulic drive system and a driving method for a power wheel.
  • a wind turbine is a device that converts wind energy into electrical energy, which mainly includes structures such as a nacelle, a generator, and an impeller.
  • the impeller consists of a hub and blades.
  • a wind turbine is installed by first installing a hub to the nacelle and then mounting the blades one by one to the hub. Specifically, it is necessary to rotate the hub along the axis to the corresponding position, install a blade, and then rotate the hub to the next mounting position to install the next blade.
  • the doubly-fed generator can drive the hub through its own gearbox, while the hub of the direct-drive generator is directly connected to the rotor of the generator. There is no gearbox inside, which cannot be realized during the installation phase. Controlled rotation of the rotor.
  • the diameter of a large megawatt direct-drive wind turbine is much larger than the diameter of a doubly-fed generator, and its diameter is usually 3m to 6m.
  • the gravity of the single blade and the resistance torque exerted by the blade wind load on the rotor of the generator may be large, so that the required rotational torque of the rotor for driving the generator is also large.
  • the required motor power and the required reducer volume are relatively large, and there is not enough space on the direct drive generator.
  • the generator diameter of the large megawatt direct drive unit is as high as 3m or more, even up to 6m.
  • the gear transmission method If the gear transmission method is adopted, the driving torque needs to be applied to the generator rotor, which makes it easy to make the generator (especially the outer rotor generator). Large deformation occurs, which affects the electromagnetic air gap of the generator and causes damage to the generator.
  • the gear transmission has higher requirements on the generator side gear, and it is necessary to adopt a special structure to ensure its rigidity, which is difficult to achieve.
  • the rotor cannot be controlled to rotate during direct-drive wind turbine maintenance.
  • a hydraulic drive system for a crankshaft for a wind turbine generator, the hydraulic drive system comprising: three or more main drive hydraulic cylinders, which are divided into two groups to provide a pulling and pushing force to the driven impeller, the main
  • the driving hydraulic cylinder includes a piston rod and a cylinder body, and the piston rod is disposed in the cylinder body to divide the cylinder body into a rod cavity and a rodless cavity, wherein the rod cavity oil path and the rodless cavity oil route of each main driving hydraulic cylinder a control valve module control; a control device that controls the control valve module according to the wind and/or load signal to have a rod cavity oil path and a rodless cavity oil path for at least one of the two or more main drive hydraulic cylinders The direction of hydraulic oil flow is simultaneously converted.
  • control valve module of the at least one main drive hydraulic cylinder includes a reversing valve connected to the rod chamber oil passage and the rodless chamber oil passage, and the control device simultaneously converts the rod chamber oil passage and the control by controlling the reversing valve The direction of hydraulic oil flow in the shaft oil passage.
  • control valve module of each main drive hydraulic cylinder includes a pressure reducing valve disposed on the rodless chamber oil passage, and the pressure reducing valve can reduce the hydraulic oil when entering the hydraulic oil on the rodless chamber side of each main drive hydraulic cylinder pressure.
  • the pressure reducing valve is a fixed pressure reducing valve or a proportional pressure reducing valve.
  • the control valve module of each of the main drive hydraulic cylinders includes load balancing valves respectively disposed on the rodless chamber oil passage and the rod chamber oil passage, and the load balancing valve in the rod chamber oil passage is set to The high pressure oil in the rodless oil passage is opened, and the load balancing valve in the rodless oil passage is set to be opened by the high pressure oil in the oil passage having the rod chamber.
  • the load-balancing valve is provided on the rodless chamber side and the rod chamber side of each of the main drive hydraulic cylinders, and the load balancing valve in the rod chamber oil passage is set to be in the rodless chamber oil passage
  • the high pressure oil is turned on, and the load balancing valve in the rodless oil passage is set to be opened by the high pressure oil in the rod chamber oil passage.
  • a hydraulic station for providing high pressure oil is further included, and a high pressure oil outlet of the hydraulic station is further provided with a load balancing valve.
  • the hydraulic station includes two flow pumps, two flow pumps for simultaneously providing hydraulic oil to the system, or one of the two flow pumps for providing hydraulic oil to the system.
  • the two flow pumps are load-sensitive variable pumps.
  • At least one of the two or more main drive hydraulic cylinders is provided with a displacement sensor for detecting displacement of the piston rod.
  • the number of three or more main drive hydraulic cylinders is five, and the five main drive hydraulic cylinders are sequentially distributed as a thrust hydraulic cylinder, a tension hydraulic cylinder, a thrust hydraulic cylinder, a thrust hydraulic cylinder, and a tension hydraulic cylinder.
  • the driving directions of the thrust hydraulic cylinder and the tension hydraulic cylinder are the same.
  • the main drive hydraulic cylinder drives the carriage through the piston rod such that the locking pin is aligned with the locking hole.
  • a disk drive driving method for driving a wind turbine impeller rotation and maintaining a stationary position at a predetermined position by the above-described hydraulic drive system for driving, the driving method comprising: setting according to a direction of rotation of the generator rotor The flow direction of the hydraulic oil in the rod chamber oil passage and the rodless chamber oil passage of the three or more main drive hydraulic cylinders; the control valve module is controlled according to the wind and/or load signal to at least one of the three or more main drive hydraulic cylinders The flow direction of the hydraulic oil in the rod-chamber oil passage and the rod-free oil passage of the main drive hydraulic cylinder is simultaneously converted.
  • the method further comprises: obtaining a relative displacement amount of the main drive hydraulic cylinder, and controlling the main drive hydraulic cylinder to stop operating when the relative displacement amount reaches a predetermined threshold.
  • obtaining the relative displacement amount of the main driving hydraulic cylinder includes: monitoring the current displacement amount of the piston rod of the main driving hydraulic cylinder; comparing the current displacement amount with the displacement amount of the initial driving hydraulic cylinder initial state to obtain the main driving hydraulic pressure The relative displacement of the cylinder.
  • a disc driving method comprising: an initial centering step; a determining a rotation direction and a rotation angle step; a main driving hydraulic cylinder driving the generator rotor to rotate a small angle step; a holding position step; a retracting driving The hydraulic cylinder is prepared for the next cycle step; when the drive does not reach the preset angle, the cycle drive main drive hydraulic cylinder drives the generator rotor step, and when the drive reaches the preset angle, the stop and hold position step is performed.
  • the hydraulic drive system and the driving method of the embodiment of the present invention can change the direction of the force of at least one hydraulic cylinder through the reversing valve, thereby being able to controllably change the power provided by the hydraulic drive system, thereby coping with the actual working condition.
  • the sudden change of load reduces the vibration shock of the system and makes the driving process smoother and safer.
  • FIG. 1 is a schematic view showing the overall structure of a hydraulic drive system for a hydraulic cylinder according to an embodiment of the present invention
  • FIG 2 is a schematic view showing the control principle of the hydraulic drive system of the cranking of Figure 1;
  • Figure 3 is a schematic diagram of the thrust hydraulic cylinder of Figure 2 and its control unit
  • Figure 4 is a schematic view showing the connection of the load balancing valve and the reversing valve of Figure 3;
  • Figure 5 is a schematic view of the tension hydraulic cylinder of Figure 2 and its control unit
  • Figure 6 is a schematic structural view of the hydraulic station of Figure 2;
  • FIG. 7 is a flowchart of a driving method according to an embodiment of the present invention.
  • Figure 8 is a flow chart showing a specific example of the driving method of the cart shown in Figure 7;
  • Figure 9 is a block diagram showing the rotation control of the hydraulic drive system of the cranking of Figure 1.
  • 10-impeller 20-flow compensation valve; 50-return pipe check valve; 52- shuttle valve; 55-pressure setting valve block; 60-pump side valve block;
  • 501-displacement sensor 502-pressure sensor; 503-load balancing valve; 504-check valve; 505-pressure reducing valve; 507-reversing valve;
  • 521-pressure sensor 523-load balancing valve; 524-reversing valve; 525-safety valve; 526-reversing valve; 527-safety valve; 528-reversing valve;
  • 601-first cylinder side valve block 602-second cylinder side valve block;
  • 901-Tube inlet port quick-connect plug 904-Tube inlet port quick-connect plug.
  • the hydraulic driving system and the driving method of the disc drive provided by the invention can be applied to the impeller rotational driving of the direct drive type wind power generator to realize reliable and controllable driving of the impeller. The details will be described below in conjunction with the embodiments shown in FIGS. 1 to 6.
  • FIG. 1 is a schematic view showing the overall structure of a hydraulic drive system for a hydraulic cylinder of the present invention
  • FIG. 2 is a schematic view showing a control principle of the hydraulic drive system for a hydraulic brake of FIG.
  • the generator rotor 801 is rotatably disposed on the base 800.
  • the end surface of the generator rotor 801 is further provided with a locking hole 802.
  • the hydraulic drive system of the crankshaft (hereinafter referred to as a hydraulic drive system) can drive power generation by applying a force to the locking hole 802.
  • the rotor 801 is rotated.
  • the hydraulic drive system includes more than two main drive hydraulic cylinders, which are divided into two groups to provide a pulling and pushing force to the driven impeller.
  • the main drive hydraulic cylinder includes a piston rod and a cylinder, and the piston rod is disposed in the cylinder to divide the cylinder into a rod cavity and a rodless cavity, wherein each main drive hydraulic cylinder has a rod cavity oil
  • the road and the rodless oil are routed by a control valve module; the control device controls the control valve module according to the wind load signal to have a rod cavity oil for at least one of the two or more main drive hydraulic cylinders
  • the flow direction of the hydraulic oil in the road and the rodless oil passage is simultaneously converted.
  • the hydraulic drive system of the present invention can change the direction of the force of at least one hydraulic cylinder through the reversing valve, thereby being able to controllably abruptly change the power provided by the hydraulic drive system, thereby coping with the sudden change of load in the actual working condition and reducing the vibration shock of the system. To make the driving process smoother and safer.
  • the main structure of the hydraulic drive system includes three thrust hydraulic cylinders, two tension hydraulic cylinders, and a reversing valve.
  • the thrust hydraulic cylinder 401, the thrust hydraulic cylinder 403, and the thrust hydraulic cylinder 404 each include a retractable first piston rod, a rod chamber, and a rodless chamber.
  • Both the tension hydraulic cylinder 402 and the tension hydraulic cylinder 405 include a second piston rod that is telescopic, a rod chamber, and a rodless chamber. The torque provided by the second piston rod of the tension cylinder is retracted in the same direction as the torque provided when the first piston rod of the thrust cylinder is extended.
  • the reversing valve is disposed in the rodless cavity oil passage of the thrust hydraulic cylinder and the oil passage having the rod cavity, and the rodless chamber oil passage and the rod chamber oil passage of the thrust hydraulic cylinder can simultaneously switch the hydraulic oil flow through the action of the reversing valve direction.
  • the number of the reversing valves is one, and is provided only in the oil passage of the thrust hydraulic cylinder 401.
  • the thrust hydraulic cylinder 401 Before the reversing valve is actuated, the thrust hydraulic cylinder 401 has no rod cavity communicating with the oil inlet pipe, and the rod cavity communicates with the oil return pipe; when the reversing valve is actuated, the thrust hydraulic cylinder 401 has no rod cavity communicating with the return oil pipe, and the rod cavity communicates with the oil inlet pipe.
  • the road causes the first piston rod of the thrust cylinder 401 to retract (or tend to retract), thereby changing the direction of the hydraulic cylinder output force, ultimately causing the torque direction it provides to change.
  • the above functions can make the torque provided by the hydraulic drive system produce a controlled sudden change, so that the load can be changed to make the whole system run safer and more stable.
  • the hydraulic drive system further includes a cabling main structure 700, four mounts, five carriages, and five lock cylinders.
  • the main structure 700 of the turning device is a mounting base, which can integrate other components of the hydraulic driving system into one body, and is convenient for lifting installation.
  • the main structure 700 of the turning device is an annular structure, and the outer edge of the ring is provided with a plurality of spaced tracks.
  • the cabling device main structure 700 can be fixed to the base 800 and disposed coaxially with the generator rotor 801.
  • the four supports are respectively a first support 701, a second support 704, a third support 706 and a fourth support 709.
  • the four supports are sequentially distributed on the outer edge of the ring of the main structure 700 of the turning device, and the supports are supported.
  • the top end of the seat projects radially along the ring.
  • the five sliders are a first slider 702, a second slider 703, a third slider 705, a fourth slider 707, and a fifth slider 708, respectively.
  • Five slides are slidably disposed on the track of the main structure 700 of the turning device, and the top ends of the five slides each protrude in the radial direction of the main structure 700 of the turning device.
  • the first slider 702 is located on the clockwise side of the first mount 701.
  • the thrust hydraulic cylinder 401 is disposed between the first bearing 701 and the first sliding seat 702, the cylinder is hinged to the top end of the first bearing 701, and the first piston rod is hinged to the top end of the first sliding seat 702, so the first piston When the rod is extended, the first slider 702 can be driven to slide along the guide rail of the main structure 700 of the cab.
  • the second sliding seat 703 is disposed on the counterclockwise side of the second seat 704.
  • the cylinder of the tension hydraulic cylinder 402 is hinged to the second seat 704, the second piston rod is hinged to the second sliding seat 703, and the second piston rod is contracted.
  • the second slide 703 can be driven to slide along the guide rail of the main structure 700 of the turning device when returning.
  • the third carriage 705 is disposed on the clockwise side of the second abutment 704 with the thrust hydraulic cylinder 403 coupled therebetween.
  • the fourth slider 707 is disposed on the clockwise side of the third mount 706, and the thrust hydraulic cylinder 404 is coupled therebetween.
  • the fifth slider 708 is disposed on the counterclockwise side of the fourth mount 709, and the tension hydraulic cylinder 405 is coupled therebetween.
  • the five lock cylinders are a lock cylinder 406, a lock cylinder 407, a lock cylinder 408, a lock cylinder 409, and a lock cylinder 410.
  • Five locking hydraulic cylinders are sequentially connected to the tops of the first slider 702, the second slider 703, the third slider 705, the fourth slider 707, and the fifth slider 708.
  • the expansion and contraction directions of the five lock cylinders are along the axial direction of the generator rotor 801, and the piston rod of the lock cylinder can drive the lock pin into and out of the lock hole 802 on the end face of the generator rotor 801.
  • the hydraulic cylinder that drives the rotation of the generator rotor 801 in this embodiment is a servo hydraulic cylinder.
  • the first cylinder side valve block 601, the second cylinder side valve block 602, and the third cylinder side valve block are disposed in this order on the thrust hydraulic cylinder 401, the tension hydraulic cylinder 402, the thrust hydraulic cylinder 403, the thrust hydraulic cylinder 404, and the tension hydraulic cylinder 405.
  • the fourth cylinder side valve block and the fifth cylinder side valve block are used for installing valves such as a reversing valve, a pressure relief valve and a balancing valve, and respectively constitute a control unit of each hydraulic cylinder, that is, the first control unit 100, the second control unit 200 shown in FIG. 2,
  • the third control unit 300, the fourth control unit 400, and the fifth control unit 500 are used to supply hydraulic oil to the respective control units.
  • the reversing valve is disposed in the first control unit 100 for controlling the expansion and contraction of the thrust cylinder 401 and the expansion and contraction of the lock cylinder 406.
  • FIG. 3 is a schematic diagram of the thrust hydraulic cylinder 401 and its control unit of FIG. 2
  • FIG. 4 is a connection diagram of the load balancing valve 523, the load balancing valve 503 and the reversing valve 513 of FIG. 3
  • FIG. 5 is a tensile hydraulic pressure of FIG.
  • Fig. 6 is a schematic structural view of the hydraulic station 900 of Fig. 2.
  • the thrust hydraulic cylinder 401 is used to drive the impeller 10 to rotate
  • the first cylinder side valve block 601 is a hydraulic cylinder 401 and a hydraulic control valve block that locks the hydraulic cylinder 406.
  • a plurality of valves are disposed in the first control unit 100.
  • the load balancing valve 552, the switching valve 507, the switching valve 513, the pressure reducing valve 505, and the load balancing valve 503 are sequentially connected to form an oil passage on the rodless chamber side of the thrust hydraulic cylinder 401.
  • a check valve 504 is also connected in parallel with the pressure reducing valve 505 (open when there is no rod cavity oil).
  • the inlet and outlet of the thrust hydraulic cylinder 401 are respectively provided with pressure sensors 502 and 521, and the cylinder body is provided with a displacement sensor 501 for detecting the displacement of the piston rod.
  • the reversing valve 507 and the reversing valve 513 are two-position four-way electromagnetic reversing valves.
  • the pressure reducing valve 505 is a fixed pressure reducing valve.
  • the pressure reducing valve 505 can also be a fixed ratio pressure reducing valve, and the pressure reducing valve 505 can also be a constant value reducing valve.
  • the load balancing valve 523, the switching valve 513, the switching valve 524, and the load balancing valve 551 are sequentially connected to form an oil passage on the rod chamber side of the thrust cylinder 401.
  • the reversing valve 524 is a two-position four-way electromagnetic reversing valve.
  • the above arrangement is such that the oil passage of the rodless chamber of the thrust hydraulic cylinder 401 and the oil passage having the rod chamber are provided with a load balancing valve, and the load balancing valve in the oil passage of the rod chamber can be used in the oil passage without the rod chamber
  • the high pressure oil is turned on, and the load balancing valve in the rodless oil passage can be opened by the high pressure oil in the oil passage having the rod chamber.
  • the fourth reversing valve 526, the fifth reversing valve 528, the relief valve 525, the relief valve 527, the load balancing valve 551, and the load balancing valve 552 are coupled to form a control oil passage that locks the hydraulic cylinder 406.
  • the safety valve 525 and the safety valve 527 are both relief valves. When the rod chamber or the rodless chamber pressure of the locking cylinder 406 is too high, overflow can be achieved through one of the two relief valves, and the overflow fluid can be overflowed. It can be returned to the tank through the return line D.
  • the above valve is mounted and connected by the first cylinder side valve block 601.
  • the first cylinder side valve block 601 is connected to the hydraulic station 900 through the oil supply line A, the oil supply line B and a return oil line D, and the pipeline connection portion is connected to the oil inlet port through the oil inlet port of the oil pipe.
  • the quick connect plug 904 is connected. The use of the tubing inlet port quick-connect plug 901 and the tubing inlet port quick-connect plug 904 facilitates quick installation and disassembly at the site, improves work efficiency, and reduces oil leakage during installation and disassembly, resulting in environmental pollution.
  • the second control unit 200 of the tension hydraulic cylinder 402 is substantially the same as the first control unit 100, except that the load balancing valve 551 and the load balancing valve in the first cylinder side valve block 601 are not mounted on the second cylinder side valve block 602. 552 and the reversing valve 513.
  • the oil inlet line of the second control unit 200 is connected in series with the load balancing valve 551 and the load balancing valve 552, so that the two balancing valves can also ensure the safety of the system of the second control unit 200.
  • the rodless chamber side and the rod chamber side of the tension hydraulic cylinder 402 are respectively provided with a load balancing valve 503 and a load balancing valve 523, and the load balancing valve 523 in the oil passage having the rod chamber can be
  • the high pressure oil in the oil passage of the rodless chamber is opened, and the load balancing valve 503 in the oil passage of the rodless chamber can be opened by the high pressure oil in the oil passage having the rod chamber.
  • the third control unit 300, the fourth control unit 400, and the fifth control unit 500 that respectively control the thrust hydraulic cylinder 403, the thrust hydraulic cylinder 404, and the tension hydraulic cylinder 405 have the same structure as the second control unit 200, that is, the second cylinder side
  • the valve block 602, the third cylinder side valve block, the fourth cylinder side valve block, and the fifth cylinder side valve block have the same structure.
  • the control of the lock cylinder 407, the lock cylinder 408, the lock cylinder 409, and the lock cylinder 410 is similar to the control of the lock cylinder 406.
  • the hydraulic station 900 is used to supply high pressure oil to each hydraulic cylinder.
  • the hydraulic station 900 includes two load-sensitive variable pumps 1 and 11, a pump side valve block 60, a flow compensating valve 20, a shuttle valve 52, a pressure setting valve block 55, a return pipe check valve 50, and a fuel tank.
  • the flow compensating valve 20 feeds back the output flow required by the pump side valve block 60 (i.e., the required flow rate of the load) to the control modules of the load sensitive variable pumps 1 and 11, so that the load sensitive variable pumps 1 and 11 can be required according to the load.
  • the flow rate adjusts the displacement of the pump so that the output flow of the pump matches the flow required by the system to reduce system power consumption, heat generation and efficiency.
  • the pump side valve block 60 can set the maximum operating pressure of the system through the shuttle valve 52 and two different overflow circuits within the pressure setting valve block 55.
  • the two load-sensitive variable pumps 1 and 11 are small flow pumps, both of which provide the required flow for the system to function properly.
  • the load-sensitive variable pumps 1 and 11 are identical in structure and can be used alternately. That is, when one of the pumps fails, the other pump can provide half of the flow required for the normal operation of the system, and by reducing the rotational speed of the generator rotor, the system can continue to work, thereby improving the reliability of the system and ensuring direct drive.
  • the wind turbine generator unit adopts the turning mode to ensure the safety of single blade lifting.
  • the high pressure oil outlet of the hydraulic station 900 is connected to the first cylinder side valve block 601, and is provided with a load balancing valve 551 and a load balancing valve 552 corresponding to the high pressure oil outlet.
  • the oil pipe connected between the first cylinder side valve block 601 and the hydraulic station 900 is broken, the pressure in the oil inlet pipe is lowered, and when it is lower than the minimum opening pressure of the load balancing valve 551 and the load balancing valve 552, the two are closed.
  • the oil passage in the hydraulic circuit on the cylinder side does not instantaneously lose pressure, thereby improving the safety of the system.
  • the reversing valve 513 can be disposed on the oil passage of the rodless chamber of the tension hydraulic cylinder and the oil passage having the rod cavity, and the rodless chamber oil passage and the rod chamber oil passage of the tension hydraulic cylinder can pass through the reversing valve 513 The action simultaneously shifts the direction of hydraulic oil flow.
  • the number of the reversing valves 513 may also be three, that is, the reversing valves are disposed in the oil passages of the three thrust hydraulic cylinders.
  • the piston rod elongation control hydraulic circuit of the thrust hydraulic cylinder 401 is as follows: the hydraulic station 900 supplies oil to the oil supply line A, and the high pressure oil of the oil supply line A enters the first cylinder side valve block through the one-way valve of the load balancing valve 552. Inside the 601, the high pressure oil triggers the load balancing valve 551 to operate, causing the load balancing valve 551 to switch. At this time, the coil of the switching valve 507 is energized, the high-pressure oil passes, passes through the switching valve 513, passes through the pressure reducing valve 505, and is decompressed. The decompressed oil enters the rodless cavity of the thrust hydraulic cylinder 401 through the load balancing valve 503, and drives the piston rod to elongate.
  • the high pressure oil depressurized by the pressure reducing valve 505 triggers the load balancing valve 523 to operate to allow the thrust cylinder 401 to have the oil return of the rod cavity.
  • the oil return passes through the load balancing valve 523, the reversing valve 513, and the reversing valve 524, and finally returns to the fuel tank via the return line D.
  • the piston rod retracting control hydraulic circuit of the thrust hydraulic cylinder 401 is as follows: the hydraulic station 900 supplies oil to the oil supply line B, and the high pressure oil of the oil supply line B enters the first cylinder side valve block 601 through the one-way valve of the load balancing valve 551. Internally, the high pressure oil triggers the load balancing valve 552 to operate, causing the load balancing valve 552 to switch. At this time, the coil of the switching valve 524 is energized, and the high-pressure oil passes. The high pressure oil then passes through the reversing valve 513, the load balancing valve 523, and the rod cavity of the thrust cylinder 401 to push the piston rod to contract.
  • the high pressure oil passing through the reversing valve 513 triggers the action of the load balancing valve 503 to allow the oil of the thrust cylinder 401 without the rod chamber to pass through the oil.
  • the oil return flows back to the tank through the load balancing valve 503, the check valve 504, and the return line D.
  • the reversing valve 513 is used for load abrupt switching control.
  • the two oil passages passing through the spool thereof are interchanged, that is, the high-pressure oil that has not entered the rod chamber of the thrust hydraulic cylinder 401 enters the rod cavity, and the oil without the rod chamber reflows, thereby changing
  • the direction of application of the thrust hydraulic cylinder 401 ultimately changes the direction of the torque applied thereto.
  • This function can be applied to the case of sudden load change. For example, when the impeller blade rotates through the vertical position, the blade gravity changes to the torque direction of the impeller. At this time, the torque direction applied by the thrust hydraulic cylinder 401 also changes to the reverse direction, which is equivalent to the advance.
  • a resistance is applied to increase the system's ability to resist sudden changes in load, making the system more stable in sudden load overload.
  • the pressure reducing valve 505 provided on the rodless chamber side of the thrust hydraulic cylinder 401 can reduce the hydraulic oil pressure when the rodless chamber enters the hydraulic oil, so that the thrust provided can be provided with the tension hydraulic cylinder 402 and the tension hydraulic cylinder 405.
  • the pull is the same.
  • the force generated by the rodless cavity of the thrust hydraulic cylinder 401 is the same as the force generated by the tension cylinder 40 and the tension cylinder 405, thereby ensuring that the five cylinders are in a push state or a pull state.
  • the same force can be generated to prevent the deformation of the generator end cover from being inconsistent due to the difference in the force acting on the rotor of the generator.
  • the displacement sensor 501 is for detecting the displacement of the piston rod of the thrust cylinder 401.
  • the reversing valve 507 and the reversing valve 524 are provided with displacement sensors for detecting the position of the spool.
  • a load balancing valve 503 and a load balancing valve 523 are provided, and when the oil passage leaks and the system pressure is lower than the opening pressures of the load balancing valve 503 and the load balancing valve 523, The two will enter the closed state, so that the hydraulic oil in the hydraulic cylinder can not be eliminated, so as to keep the rotor position of the generator unchanged, avoid major accidents such as blade breakage, win time for troubleshooting, and improve system safety.
  • the first cylinder side valve block 601 is provided with a load balancing valve 551 and a load balancing valve 552.
  • the pressure in the oil inlet pipe is lowered.
  • the load balancing valve 551 and the load balancing valve 552 the two are in a closed state, so that the oil passage in the hydraulic circuit on the cylinder side does not instantaneously lose pressure, thereby improving the safety of the system.
  • the locking operation of the locking hydraulic cylinder 406 controls the hydraulic circuit as follows: switching the proportional reversing valve in the pump side valve block 60 to cause the high pressure oil to enter the oil supply line A, and then energizing the electromagnetic coil of the fifth reversing valve 528 for supply
  • the high pressure oil in the oil line A enters the rodless chamber of the lock cylinder 406 through the fifth reversing valve 528, thereby driving the piston rod to elongate and inserting into the locking hole 802 on the end face of the generator rotor 801.
  • the oil having the rod cavity can be returned to the tank through the fourth return valve 526 via the return line D.
  • the pull-out operation control hydraulic circuit of the lock hydraulic cylinder 406 is as follows: the high-pressure oil is supplied into the oil supply pipe B, and after the electromagnetic coil of the fourth reversing valve 526 is electrified, the high-pressure oil enters from the fourth reversing valve 526 again.
  • the rod cavity shrinks the piston rod and pulls out the locking pin.
  • the rodless chamber oil returns to the tank through the fifth reversing valve 528 and the return line D.
  • the safety valves 527 and 525 are pressure relief valves that ensure the safety of the locking pin hydraulic circuit, that is, when the oil pressure on the rodless side or the rod side is too high, hydraulic oil can pass through the two relief valves. An overflow is returned to the tank via the return line D.
  • the present invention also provides a driving method capable of driving the impeller to rotate.
  • the driving method can be implemented by any one of the hydraulic driving systems of the foregoing embodiments.
  • an embodiment of the hydraulic driving system shown in FIGS. 1 to 6 will be described as an example.
  • the driving method can drive the impeller of the wind turbine to rotate or remain stationary at a predetermined position (such as an impeller mounting position), which can be implemented during the impeller mounting of the blade.
  • a predetermined position such as an impeller mounting position
  • the three blades are to be installed in sequence.
  • the hub or the hub with the blades already installed is required.
  • the present invention can drive the reversing valve 513 to change the direction of the torque provided by the thrust cylinder 401, thereby counteracting the sudden change in the torque of the blade against the hub, making the rotation smoother.
  • the driving method provided by the present invention includes: Step S10, setting the flow direction of the hydraulic oil in the rod chamber oil passage and the rodless chamber oil passage of two or more main drive hydraulic cylinders according to the direction of the generator rotor to be rotated. Step S20, controlling the control valve module according to the wind load signal to simultaneously convert the flow direction of the hydraulic oil in the rod chamber oil passage and the rodless chamber oil path of at least one of the two or more main drive hydraulic cylinders .
  • the driving method further includes acquiring the relative displacement amount of the main driving hydraulic cylinder, and when the relative displacement amount reaches a predetermined threshold, controlling the main driving hydraulic cylinder to stop running.
  • Obtaining the relative displacement amount of the main driving hydraulic cylinder includes: monitoring the current displacement amount of the piston rod of the main driving hydraulic cylinder; comparing the current displacement amount with the displacement amount of the initial driving hydraulic cylinder initial state to obtain the relative displacement amount of the main driving hydraulic cylinder .
  • FIGS 8 and 9 are flow diagrams of a driving method for driving the impeller to rotate in a specific example.
  • the driving method can be controlled by a control device such as a PLC or a single chip microcomputer, which includes the following steps.
  • the locking pin of the locking hydraulic cylinder is not aligned with the locking hole 802, and the thrust hydraulic cylinder 403 in the intermediate position should be manually operated to expand and contract to drive the third sliding seat 705 to drive the locking hydraulic cylinder 408 along the main structure 700 of the turning device.
  • the guide rail slides so that the locking pin of the lock cylinder 408 is aligned with the locking hole.
  • the drive lock cylinder 408 inserts the locking pin into the locking hole, and the control device records the displacement of the piston rod of the thrust cylinder 403 during this process.
  • the control device calculates the elongation or contraction amount of the remaining thrust hydraulic cylinder or the tension hydraulic cylinder, and inserts the remaining locking pins into the locking holes on the generator rotor 801.
  • the hydraulic drive system has a clockwise mode and a counterclockwise mode, depending on the situation.
  • the generator rotor 801 When the generator rotor 801 is turned from the side of the base 800 to the generator rotor 801, the generator rotor 801 is required to use a clockwise mode, and the thrust hydraulic cylinder 401, the thrust hydraulic cylinder 403, and the thrust hydraulic cylinder 404 are extended by the piston rod, the tension hydraulic cylinder 402 and the tension hydraulic cylinder 405.
  • the piston rod is retracted; in the counterclockwise mode, the above five hydraulic cylinders are exchanged in the direction of oil inlet and outlet, and the direction of the driving force is thus changed.
  • the thrust hydraulic cylinder 401, the thrust hydraulic cylinder 403, the thrust hydraulic cylinder 404, the tension hydraulic cylinder 402, and the tension hydraulic cylinder 405 are interchanged.
  • the control device can calculate the rotation angle of the generator rotor 801 according to the angular position that the generator rotor 801 is to reach and the initial angular position of the generator rotor fed back by the angular displacement sensor.
  • the hydraulic cylinder drives the rotating generator rotor to rotate a small angle.
  • the hydraulic cylinder has a limited stroke, so the hydraulic drive system cannot rotate the generator rotor 801 in place at one time, but by multiple rotation drives, each drive can only rotate the generator rotor by a small angle.
  • the control device can also calculate the number of cycles n required for the generator rotor 801 to be rotated to a predetermined angular position in conjunction with the angle at which each cycle of the hydraulic drive system can be rotated.
  • the control device can obtain the position information and the position information of the initial state from the displacement sensor 501 mounted on the cylinder block, and compare the two to obtain the relative displacement. .
  • the control device compares the relative displacement amount with a preset relative displacement amount. If the preset relative displacement amount is reached, the control device closes the proportional directional control valve and the third cylinder side valve block in the pump side valve block 60.
  • the reversing valve 507 and the reversing valve 524 stop the hydraulic cylinder from being driven.
  • the load balancing valve 523 and the load balancing valve 503 are installed at the rod chamber and the rodless chamber outlet of the thrust hydraulic cylinder 403, the two are in a closed state, so that the hydraulic oil can be enclosed in the hydraulic cylinder, thereby being able to resist the blades of the impeller. Gravity, generator gravity, and torque loads from wind.
  • each of the thrust hydraulic cylinders or the tension hydraulic cylinders are sequentially retracted, and the retracted position can be determined by the initial position recorded in the control device. It is only necessary to open the control valve block of the retracting hydraulic cylinder for each retraction, and the control valve block of the other hydraulic cylinders is closed. In this process, at least four locking pins are always locked to the generator rotor, so that the generator rotor is more balanced and the deformation degree is small.
  • the control device compares the signal of the angular displacement sensor mounted on the generator with the given angular position signal to determine whether the preset angle is reached, and when the determination is “No”, The next drive operation is started; when the determination is YES, the control device sends a signal to close the pump side valve block 60 and the control valve block of the thrust hydraulic cylinder and the tension hydraulic cylinder, so that the entire hydraulic control system enters the position maintaining mode. At the same time, the control device records the displacement amount L3 of the thrust hydraulic cylinder 403 at this time for judging the position change.
  • the blades will pass through the vertical position, and the direction of torque applied by the blade gravity to the generator rotor will change. Therefore, the load on the generator rotor 801 is abruptly changed during the transition from (90°- ⁇ ) to (90°+ ⁇ ) or from (90°+ ⁇ ) to (90°- ⁇ ).
  • the generator cranking device is impacted, causing large deformation of the generator, affecting the electromagnetic air gap of the generator, and causing the blade to vibrate.
  • the control device When the control device detects that the blade is between 90°- ⁇ 90° or 90° ⁇ 90°+ ⁇ ( ⁇ 5°), and the blade rotates to the 90° position, the control device moves to the thrust hydraulic cylinder 401
  • the switching valve 513 in the one-cylinder side valve block 601 sends a signal to switch the oil passage to change the biasing direction of the thrust hydraulic cylinder 401. That is, the direction of the force applied by the thrust cylinder 401 is opposite to the direction of the torque applied to the rotor of the generator after the blade has passed 90°, which is equivalent to applying a resistance in advance, thereby improving the ability of the system to resist sudden changes in load, and causing the system to be overloaded in a sudden change in load. It is relatively stable.
  • the driving method provided by the embodiment of the invention can monitor the displacement amount of the impeller due to leakage of the hydraulic system when the impeller is kept at a predetermined position, and when the displacement exceeds a predetermined threshold, the driving thrust hydraulic cylinder and/or the tension hydraulic cylinder are restored to the original state. position.
  • the control device compares the signal fed back by the displacement sensor 501 on the thrust cylinder 403 with the previously recorded displacement amount L3, and if the difference exceeds the set value, the oil is supplied to the thrust cylinder 403 to reduce Small difference, maintaining the rotor rotor angular position.
  • the difference is less than the set value, the replenishment action is stopped and the corresponding control valve signal is turned off.
  • the displacement amount of the impeller is obtained, which is more accurate than detecting the angular displacement sensor signal installed on the generator, and can also reduce the required angular displacement sensor. Precision, which reduces costs.
  • control device can send commands to the pressure setting valve block 55 to set the system maximum operating pressure and calculate the speed at which the hydraulic cylinder is extended or contracted based on the designed rotational speed.
  • the pump side valve block 60 is pre-stored in the control device to proportionally open the valve opening size, and a corresponding control signal is sent to the pump side valve block 60 to set the outlet flow rate of the hydraulic station 900.
  • the flow compensating valve 20 compares the flow rate of the proportional valve outlet of the pump side valve block 60 with the pump outlet flow rate, and sends the compared signal to the pump side control modules of the load sensitive variable pumps 1 and 11. When the flow required by the load is less than the pump outlet flow, the displacement of the load-sensitive variable pumps 1 and 11 can be adjusted by the flow compensating valve 20 to adapt to the load demand, thereby reducing the system power consumption;
  • the speed control of the generator rotor 801 can be realized by controlling the piston rod speed of the thrust hydraulic cylinder and the tension hydraulic cylinder.
  • the displacement sensor 501 on the thrust hydraulic cylinder 403 will be described as an example.
  • the control device can micro-divide the displacement signal into a speed and a piston rod movement speed to calculate a difference, and then calculate a proportional reversing valve opening size adjustment amount of the pump side valve block 60 according to the difference and issue an adjustment signal, and adjust the signal.
  • the proportional reversing valve is sent to the pump side valve block 60 to adjust the valve opening size, thereby controlling the hydraulic system flow, keeping the difference between the hydraulic cylinder speed and the set value within a certain range, reducing system power consumption and Heat, improve system temperature and temperature adaptability.
  • the hydraulic drive system and the driving method of the embodiment of the present invention change the direction of the force of the at least one hydraulic cylinder through the reversing valve, so that the power provided by the hydraulic drive system can be controllably changed, thereby coping with the actual working condition.
  • the sudden change of load reduces the vibration shock of the system and makes the driving process smoother and safer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Actuator (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种盘车液压驱动系统,包括三个以上主驱动液压缸,分成两组向被驱动的叶轮(10)提供拉和推的作用力,主驱动液压缸包括活塞杆和缸体,活塞杆置于缸体内将缸体分割为有杆腔和无杆腔,其中,每个主驱动液压缸的有杆腔油路和无杆腔油路由一个控制阀模块控制;控制装置,根据风力和/或载荷信号控制控制阀模块,以对两个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。还包括一种盘车液压驱动方法。该液压驱动系统及驱动方法能够缓冲叶轮转动时的突变载荷。

Description

盘车液压驱动系统及驱动方法 技术领域
本发明涉及风力发电机组的安装领域,尤其涉及一种盘车液压驱动系统及驱动方法。
背景技术
风力发电机是一种将风能转化为电能的装置,其主要包括机舱、发电机和叶轮等结构。叶轮由轮毂和叶片组成。一种风力发电机的安装方式是先安装轮毂至机舱、再将叶片逐个安装至轮毂。具体地,需要将轮毂沿着轴线转动到相应位置,再安装一支叶片,然后转动轮毂到下一个安装位置,安装下一只叶片。
风力发电机的发电机有多种,双馈型发电机可以通过自身的齿轮箱驱动轮毂转动,而直驱型发电机的轮毂与发电机转子直接连接,内部没有齿轮箱,在安装阶段不能实现转子的受控转动。
大兆瓦直驱型风力发电机的直径远大于双馈型发电机的直径,其直径通常在3m至6m。当轮毂上仅安装一支叶片时,单支叶片的重力以及叶片风载施加在在发电机转子上的阻力扭矩会很大,因此所需的驱动发电机转子转动扭矩也会很大。若采用电动机驱动,则所需的电动机功率以及所需的减速器体积比较大,直驱型发电机上没有足够的空间。另外,大兆瓦直驱机组的发电机直径高达3m以上,甚至可达6m,若采用齿轮传动方式,需将驱动力矩施加在发电机转子上,容易使发电机(尤其是外转子发电机)产生较大的变形,影响发电机电磁气隙,造成发电机损坏。同时,齿轮传动对发电机侧的齿轮要求比较高,需要采用特殊的结构来保证其刚度,实现较为困难。
此外,在直驱型风力发电机维修时,也不能使转子进行受控转动。
发明内容
根据本发明的实施例,提供了一种盘车液压驱动系统及驱动方法,能够缓冲叶轮转动时的突变载荷。
根据第一方面,提供一种盘车液压驱动系统,用于风力发电机组,液压驱动系统包括:三个以上主驱动液压缸,分成两组向被驱动的叶轮提供拉和推的作用力,主驱动液压缸,包括活塞杆和缸体,活塞杆置于缸体将缸体分割为有杆腔和无杆腔,其中,每个主驱动液压缸的有杆腔油路和无杆腔油路由一个控制阀模块控制;控制装置,根据风力和/或载荷信号控制控制阀模块,以对两个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。
根据第一方面,至少一个主驱动液压缸的控制阀模块包括连接于有杆腔油路和无杆腔油路的换向阀,控制装置通过控制换向阀同时转换有杆腔油路和无杆腔油路中的液压油流动方向。
根据第一方面,每个主驱动液压缸的控制阀模块包括减压阀设置于无杆腔油路上,减压阀能够在每个主驱动液压缸的无杆腔侧进入液压油时降低液压油压力。
根据第一方面,减压阀为定差减压阀或定比减压阀。
根据第一方面,每个主驱动液压缸的控制阀模块包括负载平衡阀,分别设置于无杆腔油路和有杆腔油路上,并且,有杆腔油路中的负载平衡阀被设置为由无杆腔油路中的高压油开启,无杆腔油路中的负载平衡阀被设置为由有杆腔的油路中的高压油开启。
根据第一方面,每个主驱动液压缸的无杆腔侧和有杆腔侧均设置有负载平衡阀,并且,有杆腔油路中的负载平衡阀被设置为由无杆腔油路中的高压油开启,无杆腔油路中的负载平衡阀被设置为由有杆腔油路中的高压油开启。
根据第一方面,还包括用于提供高压油的液压站,液压站的高压油出口后还设置有负载平衡阀。
根据第一方面,液压站包括两台流量泵,两台流量泵用于同时为系统提供液压油,或者,两台流量泵中的一台用于为系统提供液压油。
根据第一方面,两台流量泵为负载敏感型变量泵。
根据第一方面,两个以上主驱动液压缸中的至少一个主驱动液压缸上设置有位移传感器,位移传感器用于检测活塞杆的位移。
根据第一方面,三个以上主驱动液压缸的个数为五个,五个主驱动液压缸按序分布为推力液压缸、拉力液压缸、推力液压缸、推力液压缸以及拉力液压缸。
根据第一方面,推力液压缸和拉力液压缸的驱动方向相同。
根据第一方面,主驱动液压缸通过活塞杆驱动滑座使得锁定销对准锁定孔。
根据第二方面,还提供一种盘车驱动方法,通过上述的盘车液压驱动系统驱动风力发电机组叶轮的转动及在预定位置保持静止,驱动方法包括:根据发电机转子的待旋转方向,设置三个以上主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向;根据风力和/或载荷信号控制控制阀模块,以对三个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。
根据第二方面,方法进一步包括:获取主驱动液压缸的相对位移量,当相对位移量达到预定阈值时,控制主驱动液压缸停止运行。
根据第二方面,获取主驱动液压缸的相对位移量包括:通过监测主驱动液压缸的活塞杆的当前位移量;将当前位移量与主驱动液压缸初始状态的位移量进行比较获得主驱动液压缸的相对位移量。
根据第三方面,进一步提供一种盘车驱动方法,包括:初始化对中步骤;确定旋转方向和旋转角度步骤;主驱动液压缸驱动发电机转子转动一个小角度步骤;保持位置步骤;回退驱动液压缸,准备下一次循环步骤;当驱动未达到预设角度时,循环驱动主驱动液压缸驱动发电机转子步骤,当驱动达到预设角度时,执行停止并保持位置步骤。
综上,本发明实施例的液压驱动系统及驱动方法,能够通过换向阀改变至少一个液压缸的作用力方向,因此能够可控地使液压驱动系统提供的动力突变,从而应对实际工况中的载荷突变,减轻系统的振动冲击,使驱动过程更平稳安全。
附图说明
从下面结合附图对本发明的具体实施方式的描述中可以更好地理解本发明,其中:
通过阅读以下参照附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是示出本发明一个实施例的盘车液压驱动系统的整体结构示意图;
图2是图1中的盘车液压驱动系统的控制原理的示意图;
图3是图2中推力液压缸及其控制单元的原理图;
图4是图3中负载平衡阀及换向阀的连接示意图;
图5是图2中拉力液压缸及其控制单元的原理图;
图6是图2中液压站的结构示意图;
图7是本发明一个实施例提供的驱动方法流程图;
图8是图7所示盘车驱动方法的一个具体例子的流程图;
图9是图1所示盘车液压驱动系统的转动控制方框图。
其中:
1-敏感型变量泵;11-敏感型变量泵;
10-叶轮;20-流量补偿阀;50-回油管单向阀;52-梭阀;55-压力设定阀块;60-泵侧阀块;
100-第一控制单元;200-第二控制单元;300-第三控制单元;400-第四控制单元;500-第五控制单元;900-液压站;
401-推力液压缸;402-拉力液压缸;403-推力液压缸;404-推力液压缸;405-拉力液压缸;406-锁定液压缸;407-锁定液压缸;408-锁定液压缸;409-锁定液压缸;410-锁定液压缸;
501-位移传感器;502-压力传感器;503-负载平衡阀;504-单向阀;505-减压阀;507-换向阀;
513-换向阀;
521-压力传感器;523-负载平衡阀;524-换向阀;525-安全阀;526-换向阀;527-安全阀;528-换向阀;
551-负载平衡阀;552-负载平衡阀;
601-第一缸侧阀块;602-第二缸侧阀块;
700-盘车装置主结构;
701-第一支座;702-第一滑座;703-第二滑座;704-第二支座;705-第三滑座;706-第三支座;707-第四滑座;708-第五滑座;709-第四支座;
800-底座;801-发电机转子;802-锁定孔;
901-油管进油口快接插头;904-油管进油口快接插头。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说很明显的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本发明造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
本发明提供的盘车液压驱动系统和驱动方法能够应用于直驱型风力发电机的叶轮转动驱动,实现对叶轮的可靠可控驱动。以下将结合图1至图6中示出的实施例进行详细说明。
参考图1和图2,图1是示出本发明的盘车液压驱动系统的整体结构示意图,图2是图1中的盘车液压驱动系统的控制原理的示意图。发电机转子801可转动地设置在底座800上,发电机转子801的端面还设置有锁定孔802,盘车液压驱动系统(以下简称液压驱动系统)能够通过向锁定孔802施加作用力而推动发电机转子801转动。
液压驱动系统包括两个以上主驱动液压缸,分成两组向被驱动的叶轮提供拉和推的作用力。所述主驱动液压缸,包括活塞杆和缸体,所述活塞杆置于所述缸体将缸体分割为有杆腔和无杆腔,其中,每个主驱动液压缸的有杆腔油路和无杆腔油路由一个控制阀模块控制;控制装置,根据风力载荷信号控制所述控制阀模块,以对所述两个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。本发明的液压驱动系统能够通过换向阀改变至少一个液压缸的作用力方向,因此能够可控地使液压驱动系统提供的动力突变,从而应对实际工况中的载荷突变,减轻系统的振动冲击,使驱动过程更平稳安全。
具体地,液压驱动系统的主要结构包括三个推力液压缸、两个拉力液压缸和换向阀。推力液压缸401、推力液压缸403和推力液压缸404均包括可伸缩的第一活塞杆、有杆腔和无杆腔。拉力液压缸402和拉力液压缸405均包括可伸缩的第二活塞杆、有杆腔和无杆腔。拉力液压缸的第二活塞杆缩回时提供的转矩与推力液压缸的第一活塞杆伸出时提供的转矩同向。换向阀设置于推力液压缸的无杆腔的油路和有杆腔的油路,推力液压缸的无杆腔油路和有杆腔油路能够通过换向阀的动作同时转换液压油流动方向。优选地,换向阀的数量为一个,仅设置在推力液压缸401的油路中。换向阀动作前,推力液压缸401无杆腔连通进油管路,有杆腔连通回油管路;换向阀动作时,推力液压缸401无杆腔连通回油管路,有杆腔连通进油管路,使得推力液压缸401的第一活塞杆缩回(或趋向缩回),从而改变液压缸输出力的方向,最终使其提供的转矩方向改变。上述功能能够使液压驱动系统提供的转矩产生受控突变,从而可以配合载荷突变的工况,使整个系统运行更安全平稳。
进一步的地,液压驱动系统还包括盘车装置主结构700、四个支座、五个滑座和五个锁定液压缸。
盘车装置主结构700为安装基体,能够将液压驱动系统的其他零部件集成为一体,便于吊装安装。盘车装置主结构700为环状结构,环外缘设置有多段间隔的轨道。盘车装置主结构700可以固定于底座800上,并与发电机转子801同轴设置。
四个支座分别为第一支座701、第二支座704、第三支座706和第四支座709,四个支座顺序分布于盘车装置主结构700的环外缘,且支座顶端沿环径向凸出。
五个滑座分别为第一滑座702、第二滑座703、第三滑座705、第四滑座707和第五滑座708。五个滑座可滑动地设置于盘车装置主结构700的轨道上,且五个滑座的顶端各自沿盘车装置主结构700的径向凸出。
第一滑座702位于第一支座701的顺时针一侧。推力液压缸401设置于第一支座701和第一滑座702之间,其缸体铰接于第一支座701顶端、第一活塞杆铰接于第一滑座702的顶端,因此第一活塞杆伸出时能够驱动第一滑座702沿盘车装置主结构700的导轨滑动。
第二滑座703设置在第二支座704的逆时针一侧,拉力液压缸402的缸体铰接于第二支座704、第二活塞杆铰接于第二滑座703,第二活塞杆缩回时能够驱动第二滑座703沿盘车装置主结构700的导轨滑动。
第三滑座705设置在第二支座704的顺时针一侧,推力液压缸403连接在二者之间。第四滑座707设置于第三支座706的顺时针一侧,推力液压缸404连接在二者之间。第五滑座708设置于第四支座709的逆时针一侧,拉力液压缸405连接在二者之间。推力液压缸403、推力液压缸404和拉力液压缸405的具体连接方式可参考前述推力液压缸401或拉力液压缸402的连接说明。
五个锁定液压缸为锁定液压缸406、锁定液压缸407、锁定液压缸408、锁定液压缸409和锁定液压缸410。五个锁定液压缸顺序连接在第一滑座702、第二滑座703、第三滑座705、第四滑座707和第五滑座708顶端。五个锁定液压缸的伸缩方向沿发电机转子801的轴向,锁定液压缸的活塞杆能够驱动锁定销进出发电机转子801端面上的锁定孔802。当锁定销进入发电机转子801端面上的锁定孔802时,推力液压缸和拉力液压缸能够驱动五个滑座沿盘车装置主结构700的导轨滑动,同时通过锁定销带动发电机转子801转动。本实施例中驱动发电机转子801转动的液压缸为伺服液压缸。
推力液压缸401、拉力液压缸402、推力液压缸403、推力液压缸404和拉力液压缸405上依次配置有第一缸侧阀块601、第二缸侧阀块602、第三缸侧阀块、第四缸侧阀块和第五缸侧阀块。上述五个阀块用于安装连接换向阀、泄压阀和平衡阀等阀门,分别组成各个液压缸的控制单元,即图2中所示的第一控制单元100、第二控制单元200、第三控制单元300、第四控制单元400和第五控制单元500,液压站900用于向各个控制单元提供液压油。
换向阀设置于第一控制单元100中,用于控制推力液压缸401的伸缩及锁定液压缸406的伸缩。
以下将结合图3至图6对液压驱动系统的控制原理进行说明。
图3是图2中推力液压缸401及其控制单元的原理图,图4是图3中负载平衡阀523、负载平衡阀503及换向阀513的连接示意图,图5是图2中拉力液压缸402及其控制单元(第二控制单元200)的原理图,图6是图2中液压站900的结构示意图。
推力液压缸401用于驱动叶轮10转动,第一缸侧阀块601为推力液压缸401及锁定液压缸406的液压控制阀块。第一控制单元100中设置有多个阀门。
负载平衡阀552、换向阀507、换向阀513、减压阀505和负载平衡阀503依次连接形成推力液压缸401无杆腔侧的油路。减压阀505处还并联有单向阀504(无杆腔进油时开)。另外,推力液压缸401的进出口分别设置有压力传感器502和521,缸体上带有位移传感器501,位移传感器501用于检测活塞杆的位移。换向阀507和换向阀513为两位四通电磁换向阀。本实施例中减压阀505为定差减压阀,可选地,减压阀505还可以为定比减压阀,减压阀505还可以为定值减压阀。负载平衡阀523、换向阀513、换向阀524和负载平衡阀551依次连接形成推力液压缸401有杆腔侧的油路。换向阀524为两位四通电磁换向阀。
上述设置使得推力液压缸401的无杆腔的油路和有杆腔的油路均设置有负载平衡阀,并且,有杆腔的油路中的负载平衡阀能由无杆腔的油路中 的高压油开启,无杆腔的油路中的负载平衡阀能由有杆腔的油路中的高压油开启。
第四换向阀526、第五换向阀528、安全阀525、安全阀527、负载平衡阀551和负载平衡阀552连接形成锁定液压缸406的控制油路。安全阀525和安全阀527均为溢流阀,当锁定液压缸406的有杆腔或无杆腔压力过高时,可通过这两个溢流阀的其中一个实现溢流,溢流油液可通过回油管路D回流至油箱。
上述阀门通过第一缸侧阀块601安装连接。第一缸侧阀块601通过供油管路A、供油管路B和一条回油管路D与液压站900连接,且管路连接处通过油管进油口快接插头901、油管进油口快接插头904连接。使用油管进油口快接插头901、油管进油口快接插头904有利于现场的快速安装拆卸,提高工作效率,同时减少安装拆卸时油液的泄漏,造成环境污染。
拉力液压缸402的第二控制单元200与第一控制单元100基本相同,不同之处在于,第二缸侧阀块602上不安装第一缸侧阀块601中负载平衡阀551、负载平衡阀552及换向阀513。第二控制单元200的进油管路是串联于负载平衡阀551和负载平衡阀552之后的,因此这两个平衡阀也能保证第二控制单元200的系统安全。
另外,第二控制单元200中,拉力液压缸402的无杆腔侧和有杆腔侧分别设置有负载平衡阀503和负载平衡阀523,有杆腔的油路中的负载平衡阀523能由无杆腔的油路中的高压油开启,无杆腔的油路中的负载平衡阀503能由有杆腔的油路中的高压油开启。
分别控制推力液压缸403、推力液压缸404、拉力液压缸405的第三控制单元300、第四控制单元400和第五控制单元500的结构与第二控制单元200相同,即,第二缸侧阀块602、第三缸侧阀块、第四缸侧阀块、和第五缸侧阀块结构相同。
锁定液压缸407、锁定液压缸408、锁定液压缸409及锁定液压缸410的控制与锁定液压缸406的控制相类似。
液压站900用于向各个液压缸提供高压油。液压站900包括两个负载敏感型变量泵1和11、泵侧阀块60、流量补偿阀20、梭阀52、压力设定 阀块55、回油管单向阀50及油箱。泵侧阀块60中有比例伺服换向阀,用于调整泵站输出流量。流量补偿阀20将泵侧阀块60所需的输出流量(即负载所需流量)反馈给负载敏感型变量泵1和11的控制模块,使负载敏感型变量泵1和11能够根据负载所需的流量调整泵的排量,从而使泵的输出流量与系统所需的流量相匹配,以降低系统功耗、减少发热量和提高效率。
泵侧阀块60可通过梭阀52以及压力设定阀块55内部的两个不同溢流回路设定系统的最高工作压力。两个负载敏感型变量泵1和11为小流量泵,两个泵同时为系统正常工作提供所需的流量。负载敏感型变量泵1和11结构相同,可互为备用。即,当其中一个泵出故障时,另外一个泵能够提供系统正常工作所需的一半流量,通过降低发电机转子转动速度的方式,确保系统能继续工作,从而提高系统的可靠性,保证直驱风力发电机机组采用盘车方式进行单叶片吊装时的安全性。
液压站900的高压油出口连接于第一缸侧阀块601,相当于高压油出口后设置有负载平衡阀551和负载平衡阀552。第一缸侧阀块601与液压站900之间连接的油管破损时,进油管内的压力降低,当低于负载平衡阀551和负载平衡阀552的最小开启压力时,二者会处于关闭状态,使液压缸侧的液压回路内的油路不会瞬时丢失压力,从而提高系统的安全性。
可选地,换向阀513可设置于拉力液压缸的无杆腔的油路和有杆腔的油路,拉力液压缸的无杆腔油路和有杆腔油路能够通过换向阀513的动作同时转换液压油流动方向。
此外,换向阀513的数量还可以为三个,即,三个推力液压缸的油路中均设置有换向阀。
以下以推力液压缸401和锁定液压缸406的工作过程为例进一步说明本实施例及其有益效果。
推力液压缸401的活塞杆伸长控制液压回路如下:液压站900向供油管路A供油,供油管路A的高压油通过负载平衡阀552的单向阀进入第一缸侧阀块601内部,同时高压油触发负载平衡阀551动作,使负载平衡阀551切换。此时,使换向阀507的线圈得电,高压油通过,再经过换向阀 513,再经过减压阀505并被减压。经过减压后的油液,通过负载平衡阀503进入推力液压缸401的无杆腔,驱动活塞杆伸长。同时,经过减压阀505减压后的高压油液触发负载平衡阀523动作,以允许推力液压缸401有杆腔的回油通过。具体地,回油通过负载平衡阀523、换向阀513以及换向阀524,最终经回油管路D回到油箱。
推力液压缸401的活塞杆收缩控制液压回路如下:液压站900向供油管路B供油,供油管路B的高压油通过负载平衡阀551的单向阀进入第一缸侧阀块601内部,同时高压油触发负载平衡阀552动作,使负载平衡阀552切换。此时,使换向阀524的线圈得电,高压油通过。然后高压油经过换向阀513、负载平衡阀523以及推力液压缸401的有杆腔,推动活塞杆收缩。同时,经过换向阀513后的高压油会触发负载平衡阀503动作,以允许推力液压缸401无杆腔的油液通过回油。具体地,回油经过负载平衡阀503、单向阀504和回油管路D流回油箱。
其中,换向阀513用于载荷突变切换控制。换向阀513动作时,经过其阀芯的两个油路方向会互换,即原进入推力液压缸401无杆腔的高压油进入其有杆腔,无杆腔的油液回流,从而改变推力液压缸401的施力方向,最终改变其施加的扭矩的方向。此功能可以应用于载荷突变的工况,如叶轮叶片转过竖直位置时叶片重力对叶轮的扭矩方向发生突变,此时推力液压缸401施加的扭矩方向也会突变至反向,相当于提前施加一个阻力,从而提高系统抗载荷突变的能力,使系统在载荷突变过载中比较平稳。
并且,推力液压缸401的无杆腔侧设置的减压阀505,能够在无杆腔进入液压油时降低液压油压力,从而使得其提供的推力能够与拉力液压缸402和拉力液压缸405提供的拉力相同。这样,推力液压缸401的无杆腔所产生的力与拉力液压缸402和拉力液压缸405有杆腔所产生的力相同,从而保证五组液压缸不管处于推的状态还是拉的状态,均能产生相同的力,防止因作用在发电机转子上的力大小不同导致发电机端盖的变形不一致。
另外,当推力液压缸401的有杆腔或者无杆腔压力过高时,会通过负载平衡阀503或负载平衡阀523内部的旁通溢流阀溢流回油箱,保证系统安全。位移传感器501用于检测推力液压缸401的活塞杆的位移。换向阀507和换向阀524上带有位移传感器,可以检测阀芯所处的位置。
此外,在驱动推力液压缸401的两条油路上,设置有负载平衡阀503和负载平衡阀523,当油路出现泄漏导致系统压力低于负载平衡阀503和负载平衡阀523的开启压力后,二者会进入关闭状态,使液压缸内的液压油无法排除,从而保持发电机转子位置不变,避免出现叶片折断等重大事故,为排除故障赢得时间,提高系统的安全性。
同理,第一缸侧阀块601中设置有负载平衡阀551和负载平衡阀552,第一缸侧阀块601与液压站900之间连接的油管破损时,进油管内的压力降低,当低于负载平衡阀551和负载平衡阀552的最小开启压力时,二者会处于关闭状态,使液压缸侧的液压回路内的油路不会瞬时丢失压力,从而提高系统的安全性。
锁定液压缸406的锁定操作控制液压回路如下:切换泵侧阀块60中的比例换向阀以使高压油进入供油管路A,再使第五换向阀528的电磁线圈得电,供油管路A中的高压油通过第五换向阀528进入锁定液压缸406的无杆腔,从而驱动活塞杆伸长,插入发电机转子801端面上的锁定孔802。同时,有杆腔的油液可通过第四换向阀526经由通过回油管路D回到油箱。
锁定液压缸406的拔出操作控制液压回路如下:供油管路B中通入高压油,使第四换向阀526的电磁线圈得电后,高压油再从第四换向阀526进入有杆腔,使活塞杆收缩,将锁定销拔出。无杆腔的油液经过第五换向阀528以及回油管路D回到油箱。安全阀527和525为泄压阀,能保证锁定销液压回路的安全,即,当无杆腔侧或有杆腔侧的油路压力过高时,液压油可通过这两个溢流阀中的一个溢流,并经回油管路D回到油箱。
本发明还提供了可驱动叶轮转动的驱动方法,驱动方法能够通过前述实施例中的任意一个液压驱动系统实施,此处以图1至图6所示的液压驱动系统的实施例为例进行说明。
驱动方法能够驱动风力发电机的叶轮转动或在预定位置(如叶轮安装位置)保持静止,可以在叶轮安装叶片的过程中实施。叶轮的轮毂安装就位后,三个叶片要依次安装,安装过程中则需要转动轮毂或已经安装有叶片的轮毂,当叶轮转动经过竖直方向时,叶片重力对轮毂的扭矩方向会发生改变。本发明可通过驱动换向阀513以使推力液压缸401提供的转矩方向改变,从而抵消叶片重力对轮毂的扭矩突变,使转动更平稳。
参考图7,本发明提供的驱动方法包括:步骤S10,根据发电机转子的待旋转方向,设置两个以上主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向;步骤S20,根据风力载荷信号控制控制阀模块,以对两个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。
可以理解的是驱动方法还包括获取所述主驱动液压缸的相对位移量,当相对位移量达到预定阈值时,控制主驱动液压缸停止运行。
获取主驱动液压缸的相对位移量包括:通过监测主驱动液压缸的活塞杆的当前位移量;将当前位移量与主驱动液压缸初始状态的位移量进行比较获得主驱动液压缸的相对位移量。
参考图8和图9,图8和图9为一个具体例子中驱动叶轮转动的驱动方法流程,驱动方法可由例如PLC或单片机的控制装置控制,其包括如下步骤。
S10、初始化对中。
a)此时锁定液压缸的锁定销未与锁定孔802对齐,应手动操作处于中间位置的推力液压缸403伸缩,以驱动第三滑座705带动锁定液压缸408沿盘车装置主结构700的导轨滑动,从而使锁定液压缸408的锁定销对准锁定孔。当锁定销与锁定孔对准时,驱动锁定液压缸408将锁定销插入锁定孔中,控制装置记录此过程中推力液压缸403的活塞杆的位移。
b)参考推力液压缸403的位移量,控制装置计算其余推力液压缸或拉力液压缸的伸长量或收缩量,并将其余锁定销插入发电机转子801上的锁定孔中。
S20、确定旋转方向和旋转角度。
液压驱动系统具有顺时针模式和逆时针模式,可根据情况选择。从底座800侧面向发电机转子801时,需要发电机转子801应使用顺时针模式,推力液压缸401、推力液压缸403及推力液压缸404活塞杆外伸,拉力液压缸402和拉力液压缸405活塞杆缩回;逆时针模式下则上述五个液压缸进油出油方向调换,驱动力的方向因此改变。换句话说推力液压缸401、推力液压缸403、推力液压缸404及拉力液压缸402、拉力液压缸405功能互换。
控制装置可根据发电机转子801所要达到的角位置及角位移传感器反馈的发电机转子初始角位置,计算出所发电机转子801的旋转角度。
S30、液压缸驱动旋转发电机转子转动一小角度。
液压缸行程有限,因此液压驱动系统无法一次性将发电机转子801旋转到位,而是通过多次旋转驱动实现,每次驱动只能使发电机转子转动一小角度。并且,控制装置还可以结合液压驱动系统每一个循环所能转动的角度,计算发电机转子801要转动到预定角位置时所需的循环次数n。
以处于中间位置的推力液压缸403为例,控制装置可从液压缸缸体上安装的位移传感器501获取此时的位置信息及初始状态的位置信息,将二者进行比较可得出相对位移量。控制装置再将该相对位移量与预设的相对位移量进行比较,若达到预设的相对位移量,则控制装置关闭泵侧阀块60中的比例换向阀及第三缸侧阀块中的换向阀507和换向阀524,使液压缸停止驱动。
S40、保持位置。
发电机转子801转过一个小角度时,应保持位置不变,便于液压驱动系统准备下一次驱动。
由于推力液压缸403的有杆腔和无杆腔出口处安装有负载平衡阀523和负载平衡阀503,二者处于关闭状态,能使液压油被封闭在液压缸内,因此能够抵抗叶轮的叶片重力、发电机重力以及风力所带来的扭矩载荷。
S50、回退驱动液压缸,准备下一次循环。
发电机转子801转过一个小角度后,液压驱动系统停止驱动,控制装置中循环次数记录器加1。锁定液压缸406将锁定销拔出,推力液压缸 401将其拉回初始位置,重新锁定。按照上述方式,各个推力液压缸或拉力液压缸依次回退,回退的位置可通过控制装置中记录的初始位置确定。每次回退只需打开回退液压缸的控制阀块,其他液压缸的控制阀块处于关闭状态。这个过程中始终有至少四个锁定销锁定发电机转子,使发电机转子受力更均衡,变形程度小。
推力液压缸和拉力液压缸均回退到位时,控制装置将安装在发电机上的角位移传感器的信号与给定的角位置信号进行对比,判断是否达到预设角度,判断为“否”时,开始下一次驱动操作;判断为“是”时,控制装置发出信号关闭泵侧阀块60及推力液压缸和拉力液压缸的控制阀块,使整个液压控制系统进入位置保持模式。同时控制装置记录此时推力液压缸403的位移量L3,用于判断位置改变。
在上述操作过程中,叶片会经过竖直位置,叶片重力施加给发电机转子的扭矩方向会发生改变。因此,叶片在从(90°-Δ)转到(90°+Δ)或者从(90°+Δ)转到(90°-Δ)的过程中,发电机转子801受到的载荷会发生突变。该载荷突变会时发电机盘车装置受到冲击,使发电机产生较大的变形,影响发电机的电磁气隙,也会使叶片产生振动。本发明实施例通过以下方式解决此问题。当控制装置检测到叶片处于90°-Δ~90°或者90°~90°+Δ(Δ≤5°)之间,且叶片正向90°位置旋转时,控制装置向推力液压缸401的第一缸侧阀块601中的换向阀513发送信号,使油路切换,改变推力液压缸401的施力方向。即,推力液压缸401的施力方向与叶片越过90°后所施加在发电机转子上的扭矩方向相反,相当于提前施加一个阻力,从而提高系统抗载荷突变的能力,使系统在载荷突变过载中比较平稳。
液压阀门存在着微小的泄漏,液压缸内的活塞也存在着微小的内泄现象,在叶片的重力和风力产生的扭矩载荷下,活塞杆的伸出长度会发生变化,导致发电机转子角位置发生改变。本发明实施例提供的驱动方法,可以在叶轮于预定位置保持静止时监测叶轮因液压系统泄露产生的位移量,当位移量超过预定阈值时,驱动推力液压缸和/或拉力液压缸恢复至原位置。即,每隔若干秒控制装置将推力液压缸403上的位移传感器501反馈 的信号与之前记录的位移量L3进行对比,若差值超过设定值,则向推力液压缸403补油,以减小差值,维持发电机转子角位置。当差值小于设定值时,则停止补油动作,关闭相应的控制阀信号。并且,通过监测推力液压缸和/或拉力液压缸的活塞杆的位移量获得叶轮的位移量,这样比检测安装在发电机上的角位移传感器信号变化更精准,也可降低角位移传感器所需的精度,从而降低成本。
另外,控制装置可以向压力设定阀块55发送指令以设置系统最高工作压力,并根据设计的旋转速度,计算液压缸伸长或收缩的速度。具体地,在控制装置中预存泵侧阀块60比例换向阀开口大小,给泵侧阀块60发送相应控制信号以设定液压站900的出口流量。流量补偿阀20将泵侧阀块60比例阀出口的流量与泵出口流量进行比较,并将比较后的信号送到负载敏感型变量泵1和11的泵侧控制模块。当负载所需的流量小于泵出口流量时,可通过流量补偿阀20将负载敏感型变量泵1和11的排量调小使其适应负载的需求,降低系统功耗;反之则调大。
此外,可以通过控制推力液压缸和拉力液压缸的活塞杆速度实现发电机转子801的速度控制,以下以推力液压缸403上的位移传感器501为例说明。控制装置可将位移信号进行微分成速度与活塞杆运动速度对比并计算差值,再根据该差值计算泵侧阀块60的比例换向阀开口大小调整量并发出调整信号,并将调整信号发送到泵侧阀块60的比例换向阀,以调整阀开口大小,从而控制液压系统流量,使液压缸的速度与给定值的差值保持在一定范围之内,降低系统功耗和发热量,提高系统环境温度适应性。
综上,本发明实施例的液压驱动系统和驱动方法,通过换向阀改变至少一个液压缸的作用力方向,因此能够可控地使液压驱动系统提供的动力突变,从而应对实际工况中的载荷突变,减轻系统的振动冲击,使驱动过程更平稳安全。
本发明可以以其他的具体形式实现,而不脱离其精神和本质特征。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本发明的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本发明的范围之中。并且,在 不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。

Claims (17)

  1. 一种盘车液压驱动系统,用于风力发电机组,其特征在于,包括:
    三个以上主驱动液压缸,分成两组向被驱动的叶轮提供拉和推的作用力,所述主驱动液压缸包括活塞杆和缸体,所述活塞杆置于所述缸体内将缸体分割为有杆腔和无杆腔,其中,每个主驱动液压缸的有杆腔油路和无杆腔油路由同一个控制阀模块控制;和
    控制装置,根据风力和/或载荷信号控制所述控制阀模块,以对所述三个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。
  2. 根据权利要求1所述的盘车液压驱动系统,其特征在于,至少一个所述主驱动液压缸的所述控制阀模块包括连接于有杆腔油路和无杆腔油路的换向阀(513),所述控制装置通过控制所述换向阀(513)同时转换有杆腔油路和无杆腔油路中的液压油流动方向。
  3. 根据权利要求1所述的盘车液压驱动系统,其特征在于,所述每个主驱动液压缸的所述控制阀模块包括减压阀(505),设置于无杆腔油路上,所述减压阀(505)在无杆腔侧进入液压油时降低液压油压力。
  4. 根据权利要求3所述的盘车液压驱动系统,其特征在于,所述减压阀(505)为定差减压阀或定比减压阀。
  5. 根据权利要求1所述的盘车液压驱动系统,其特征在于,所述每个主驱动液压缸的所述控制阀模块包括负载平衡阀(503、523),分别设置于所述无杆腔油路和有杆腔油路上,并且,所述有杆腔油路中的负载平衡阀(523)被设置为由所述无杆腔油路中的高压油开启,所述无杆腔油路中的负载平衡阀(503)被设置为由所述有杆腔油路中的高压油开启。
  6. 根据权利要求1所述的盘车液压驱动系统,其特征在于,所述每个主驱动液压缸的无杆腔侧和有杆腔侧均设置有负载平衡阀(503、523),并且,所述有杆腔侧的负载平衡阀(523)被设置为由所述无杆腔油路中的高压油开启,所述无杆腔侧的负载平衡阀(503)被设置为由所 述有杆腔油路中的高压油开启。
  7. 根据权利要求1所述的盘车液压驱动系统,其特征在于,还包括用于提供高压油的液压站(900),所述液压站(900)的高压油出口后还设置有负载平衡阀(551、552)。
  8. 根据权利要求7所述的盘车液压驱动系统,其特征在于,所述液压站(900)包括两台流量泵,所述两台流量泵用于同时为系统提供液压油,或者,所述两台流量泵中的一台用于为系统提供液压油。
  9. 根据权利要求8所述的盘车液压驱动系统,其特征在于,所述两台流量泵为负载敏感型变量泵(1、11)。
  10. 根据权利要求1或2所述的盘车液压驱动系统,其特征在于,所述三个以上主驱动液压缸中的至少一个主驱动液压缸上设置有位移传感器(501),所述位移传感器用于检测活塞杆的位移。
  11. 根据权利要求1所述的盘车液压驱动系统,其特征在于,所述三个以上主驱动液压缸的个数为五个,所述五个主驱动液压缸按序分布为推力液压缸(401)、拉力液压缸(402)、推力液压缸(403)、推力液压缸(404)以及拉力液压缸(405)。
  12. 根据权利要求11所述的盘车液压驱动系统,其特征在于,所述推力液压缸(401、403、404)和所述拉力液压缸(402、405)的驱动方向相同。
  13. 根据权利要求11所述的盘车液压驱动系统,其特征在于,所述主驱动液压缸通过活塞杆驱动滑座使得锁定销对准锁定孔(802)。
  14. 一种盘车驱动方法,通过权利要求1-13中任一项所述的盘车液压驱动系统驱动风力发电机组叶轮的转动及在预定位置保持静止,其特征在于,所述驱动方法包括:
    根据发电机转子的待旋转方向,设置所述三个以上主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向;
    根据风力和/或载荷信号控制所述控制阀模块,以对所述三个以上主驱动液压缸中至少一个主驱动液压缸的有杆腔油路和无杆腔油路中的液压油流动方向同时进行转换。
  15. 根据权利要求14所述的盘车驱动方法,其特征在于,所述方法进一步包括:
    获取所述主驱动液压缸的相对位移量,当所述相对位移量达到预定阈值时,控制所述主驱动液压缸停止运行。
  16. 根据权利要求15所述的盘车驱动方法,其特征在于,所述获取所述主驱动液压缸的相对位移量包括:
    通过监测所述主驱动液压缸的活塞杆的当前位移量;
    将所述当前位移量与所述主驱动液压缸初始状态的位移量进行比较获得所述主驱动液压缸的相对位移量。
  17. 一种盘车驱动方法,通过权利要求1-13中任一项所述的盘车液压驱动系统驱动风力发电机组叶轮的转动及在预定位置保持静止,其特征在于,所述驱动方法包括:
    初始化对中步骤;
    确定旋转方向和旋转角度步骤;
    主驱动液压缸驱动发电机转子转动一个小角度步骤;
    保持位置步骤;
    回退驱动液压缸,准备下一次循环步骤;
    当驱动未达到预设角度时,循环驱动主驱动液压缸驱动发电机转子步骤,当驱动达到预设角度时,执行停止并保持位置步骤。
PCT/CN2018/085343 2018-03-23 2018-05-02 盘车液压驱动系统及驱动方法 WO2019178922A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/470,862 US11149706B2 (en) 2018-03-23 2018-05-02 Hydraulic driving system and driving method for barring
EP18887212.1A EP3569872B1 (en) 2018-03-23 2018-05-02 Barring device hydraulic driving system and driving method
AU2018386354A AU2018386354B2 (en) 2018-03-23 2018-05-02 Hydraulic driving system and driving method for barring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810247172.7 2018-03-23
CN201810247172.7A CN110296112B (zh) 2018-03-23 2018-03-23 盘车液压驱动系统及驱动方法

Publications (1)

Publication Number Publication Date
WO2019178922A1 true WO2019178922A1 (zh) 2019-09-26

Family

ID=67986712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085343 WO2019178922A1 (zh) 2018-03-23 2018-05-02 盘车液压驱动系统及驱动方法

Country Status (5)

Country Link
US (1) US11149706B2 (zh)
EP (1) EP3569872B1 (zh)
CN (1) CN110296112B (zh)
AU (1) AU2018386354B2 (zh)
WO (1) WO2019178922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323950A (zh) * 2021-05-21 2021-08-31 杭州诺祥科技有限公司 一种数字式电液直驱变桨系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027677B (zh) * 2019-12-25 2023-02-28 新疆金风科技股份有限公司 风力发电机组的液压变桨控制方法和装置
US11795913B2 (en) 2020-03-23 2023-10-24 Vestas Wind Systems A/S Turner gear assembly for wind turbines and method of using same
CN114321093B (zh) * 2020-09-29 2024-02-23 北京金风科创风电设备有限公司 多销锁定液压控制系统及风力发电机组
CN113464505A (zh) * 2021-07-09 2021-10-01 中国电建集团华东勘测设计研究院有限公司 长时间浸水工况下可应急操作的人字闸门液压启闭机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196288A1 (en) * 2004-11-18 2006-09-07 Rainer Aust Turning device
DE102013008047A1 (de) * 2013-05-13 2014-11-13 Robert Bosch Gmbh Drehzahlvariabler Antrieb mit zwei Pumpen und einem Differenzialzylinder
CN104541066A (zh) * 2012-06-20 2015-04-22 罗伯特·博世有限公司 液压的调整装置
CN105402175A (zh) * 2014-08-27 2016-03-16 西门子公司 液压系统
CN105473848A (zh) * 2013-08-01 2016-04-06 海卓泰克工业风力有限公司 用于风力涡轮机的利用先导式加压储存器的液压变桨距系统
KR20160129391A (ko) * 2015-04-30 2016-11-09 주식회사 동신이엔텍 해상풍력발전기의 피치 또는 요 베어링 시험기용 서보 하이브리드 액츄에이터 시스템

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214997A (en) * 1990-04-27 1993-06-01 Bendix Europe Services Techniques Control circuit for a double-acting hydraulic jack and slide distributor for such a circuit
GB2303423A (en) * 1995-07-19 1997-02-19 Rolls Royce Power Eng Drive Mechanism
DE19817256C1 (de) * 1998-04-19 1999-07-22 Aerodyn Eng Gmbh Windenergieanlage mit Windnachführung
DE10219718B4 (de) * 2002-05-02 2007-06-06 Sauer-Danfoss Aps Hydraulische Ventilanordnung
DE102004062329A1 (de) 2004-12-20 2006-06-22 Schenck Rotec Gmbh Reifenfüllstation und Verfahren zur Reifenfüllung
CN100418652C (zh) * 2005-07-28 2008-09-17 西安重型机械研究所 翻坯机复合控制液压系统
US20120045328A1 (en) * 2010-08-17 2012-02-23 Cleveland State University Power transmission system
CN102536660B (zh) 2010-11-26 2014-10-29 维斯塔斯风力系统有限公司 具有液压叶片变桨系统的风轮机
US8922039B2 (en) 2011-01-24 2014-12-30 Vestas Wind Systems A/S Wind turbine and a method for powering one or more hydraulic pitch actuators
DE102011017801B8 (de) * 2011-04-29 2013-05-08 Wobben Properties Gmbh Windenergieanlage mit einer Mehrzahl von Verschiebeeinheiten zur Montage oder Demontage von Rotorblättern und Verfahren hierzu
DE102011077651A1 (de) * 2011-06-16 2012-12-20 Aloys Wobben Verfahren zum Steuern einer Windenergieanlage
AU2011310935A1 (en) * 2011-09-22 2013-04-04 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of attaching and detaching blade
CN102380239B (zh) 2011-10-13 2016-01-20 核工业烟台同兴实业有限公司 立式压滤机液压系统
DE102012222637A1 (de) * 2012-12-10 2014-06-12 Senvion Se Turnantrieb für eine Windenergieanlage und Verfahren zum Drehen der Rotorwelle einer Windenergieanlage
EP2767708B1 (en) * 2013-02-13 2015-06-17 Siemens Aktiengesellschaft Turning device to rotate the rotatable part of a wind turbine
BE1021684B1 (nl) * 2013-05-24 2016-01-08 Joval Nv Een rotorgeheel voor een windturbine met een kabelpaar
DE102014207712A1 (de) * 2013-06-24 2014-12-24 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Drehen eines Rotors einer Windkraftanlage
GB201320191D0 (en) * 2013-11-15 2014-01-01 Ricardo Uk Ltd Wind turbine
DE102014208468A1 (de) * 2014-05-06 2015-11-12 Wobben Properties Gmbh Azimutverstellung einer Windenergieanlage
DK2949921T3 (en) * 2014-05-28 2019-04-23 Siemens Ag Rotor hub for a wind turbine
CN107787122B (zh) 2016-08-24 2020-05-26 深圳市嘉立创科技发展有限公司 电路板线路补偿方法和装置
CN107781122B (zh) 2016-08-29 2019-11-29 江苏金风科技有限公司 用于转动风力发电机转子的装置、方法及风力发电机
CN107795437B (zh) * 2016-08-29 2019-05-10 江苏金风科技有限公司 用于转子转动装置的控制方法、控制装置及转子转动系统
CN107725496B (zh) * 2017-08-28 2019-11-01 上海诺倬力机电科技有限公司 液压站及控制系统与方法
CN109973304B (zh) * 2017-12-28 2020-04-28 江苏金风科技有限公司 风力发电机组的转子转动控制系统和控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196288A1 (en) * 2004-11-18 2006-09-07 Rainer Aust Turning device
CN104541066A (zh) * 2012-06-20 2015-04-22 罗伯特·博世有限公司 液压的调整装置
DE102013008047A1 (de) * 2013-05-13 2014-11-13 Robert Bosch Gmbh Drehzahlvariabler Antrieb mit zwei Pumpen und einem Differenzialzylinder
CN105473848A (zh) * 2013-08-01 2016-04-06 海卓泰克工业风力有限公司 用于风力涡轮机的利用先导式加压储存器的液压变桨距系统
CN105402175A (zh) * 2014-08-27 2016-03-16 西门子公司 液压系统
KR20160129391A (ko) * 2015-04-30 2016-11-09 주식회사 동신이엔텍 해상풍력발전기의 피치 또는 요 베어링 시험기용 서보 하이브리드 액츄에이터 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569872A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323950A (zh) * 2021-05-21 2021-08-31 杭州诺祥科技有限公司 一种数字式电液直驱变桨系统

Also Published As

Publication number Publication date
EP3569872B1 (en) 2022-03-16
US20210033067A1 (en) 2021-02-04
AU2018386354B2 (en) 2020-10-01
CN110296112A (zh) 2019-10-01
US11149706B2 (en) 2021-10-19
EP3569872A4 (en) 2020-03-04
EP3569872A1 (en) 2019-11-20
AU2018386354A1 (en) 2019-10-10
CN110296112B (zh) 2020-06-02
EP3569872A8 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2019178922A1 (zh) 盘车液压驱动系统及驱动方法
EP2587055B1 (en) Regenerated-energy power generation device and rotary wing attachment/detachment method therefor
AU2007360945B2 (en) Electro-hydraulic actuator for controlling the pitch of a blade of a wind turbine
US20100056315A1 (en) Fluidic system, a drive train for a wind turbine and a method for actuating a mechanical component
US20110142596A1 (en) Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine
DK2872776T3 (en) Wind energy system with a pitch setting system
CN102165190A (zh) 涡轮机速度稳定控制系统
KR20100126766A (ko) 풍력 발전 장치
US20110206515A1 (en) Hydraulic yaw drive system for a wind turbine and method of operating the same
KR101206665B1 (ko) 블레이드 피치 제어 장치, 풍력 발전 장치, 및 블레이드 피치 제어 방법
CN110864019A (zh) 一种高空作业车工作平台的数字液压调平系统
CN211231059U (zh) 一种高空作业车工作平台的数字液压调平系统
CN111379675B (zh) 风力发电机组盘车装置的液压驱动系统及控制方法
CN114233705A (zh) 一种叶片安装盘车的液压系统
CN109611293A (zh) 散热器控制系统、散热器组件及控制方法和风力发电机组
RU212155U1 (ru) Гидродинамический привод-генератор
CN117469217B (zh) 一种用于风力发电机的并联数字阀控液压变桨系统及方法
CN108443062B (zh) 一种采用液压缓冲制动和锁紧的风力发电机组
CN114109927A (zh) 风力发电机比例伺服控制的液压变桨系统
CN114112393A (zh) 一种全浮动推力轴承试验台控制系统
JP2006029230A (ja) 水力機械のランナべーン操作装置及び水力機械

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018887212

Country of ref document: EP

Effective date: 20190619

ENP Entry into the national phase

Ref document number: 2018887212

Country of ref document: EP

Effective date: 20190619

ENP Entry into the national phase

Ref document number: 2018887212

Country of ref document: EP

Effective date: 20190619

ENP Entry into the national phase

Ref document number: 2018386354

Country of ref document: AU

Date of ref document: 20180502

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE