WO2019178776A1 - 传输信息的方法和设备 - Google Patents

传输信息的方法和设备 Download PDF

Info

Publication number
WO2019178776A1
WO2019178776A1 PCT/CN2018/079875 CN2018079875W WO2019178776A1 WO 2019178776 A1 WO2019178776 A1 WO 2019178776A1 CN 2018079875 W CN2018079875 W CN 2018079875W WO 2019178776 A1 WO2019178776 A1 WO 2019178776A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmit power
domain resource
gain
time domain
Prior art date
Application number
PCT/CN2018/079875
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/079875 priority Critical patent/WO2019178776A1/zh
Priority to KR1020207029016A priority patent/KR20200135389A/ko
Priority to EP18910805.3A priority patent/EP3771247B1/en
Priority to JP2020550796A priority patent/JP2021520088A/ja
Priority to CN201880090945.3A priority patent/CN111886886A/zh
Priority to AU2018414355A priority patent/AU2018414355A1/en
Publication of WO2019178776A1 publication Critical patent/WO2019178776A1/zh
Priority to US17/024,867 priority patent/US11350455B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • Embodiments of the present application relate to the field of communications and, more particularly, to methods and apparatus for transmitting information.
  • the carrier on the licensed spectrum is used as the primary carrier, so as to avoid the carrier on the licensed spectrum as the secondary carrier.
  • the device provides services.
  • the communication device follows the "Listen Before Talk (LBT)" principle, that is, the communication device needs to perform channel detection before transmitting signals on the channel of the unlicensed spectrum.
  • LBT Listen Before Talk
  • the communication device can only perform signal transmission when the channel detection result is that the channel is idle; if the channel detection result of the communication device on the channel of the unlicensed spectrum is that the channel is busy, the communication device cannot perform signal transmission.
  • the embodiment of the present application provides a method and a device for transmitting information, which can implement data transmission on an unlicensed carrier.
  • a first aspect provides a method for transmitting information, including: a first device performing channel detection on a first channel on an unlicensed carrier using a first beam and a first energy detection threshold to determine that the first device is used for Whether the first time domain resource that sends the first information is available; if the first time domain resource is available, the first device sends the first information by using the first time domain resource.
  • the first device may perform channel detection by using the first beam and the first energy detection threshold to determine whether time domain resources for data transmission are available. Further, the first device may be at the time When the domain resource is available, data transmission is performed through the time domain resource, so that data transmission on the unlicensed carrier can be realized.
  • the first energy detection threshold is determined according to the first transmit power, and the first device sends the first information by using the first time domain resource, including:
  • the first device sends the first information by using the second transmit power by using the first time domain resource, where a size of the second transmit power and a size of the first transmit power are different.
  • the first device by controlling the second transmit power for signal transmission and the first transmit power for channel detection, the first device can make the channel detection range greater than or equal to the data transmission range, thereby facilitating avoidance.
  • the interference of data transmission to other communication links can also ensure the effective transmission of data.
  • the sending, by the first device, the first information by using the first time domain resource includes: the first device sending, by using the second beam, the first time domain resource The first information is different, wherein the second beam is different from the first beam, and a direction corresponding to the second beam and a direction corresponding to the first beam at least partially overlap.
  • the spatial domain coverage corresponding to one beam may be jointly determined by the corresponding direction, the coverage angle, and the signal amplitude (or beam gain) of the beam. If the spatial domain coverage corresponding to the first beam used by the received signal is the same as the spatial coverage of the second beam used by the transmitted signal, the first beam and the second beam may be considered to be the same; otherwise, the first beam and the first beam The two beams are different.
  • the coverage of the spatial domain corresponding to the first beam and the coverage of the spatial domain corresponding to the second beam may be the same, and the corresponding direction and coverage angle of the first beam and the second beam may be assumed under the same signal amplitude.
  • the corresponding direction and coverage angle are the same.
  • the first beam is a beam in a first beam set
  • the second beam is a beam in a second beam set.
  • the direction corresponding to the first beam includes a direction corresponding to the second beam, and a coverage angle of the first beam is greater than a coverage angle of the second beam.
  • a beam gain of the first beam is smaller than a beam gain of the second beam, and a size of the second transmit power is smaller than a size of the first transmit power.
  • the size of the second transmit power is equal to a size of the first transmit power minus an adjustment amount, where the adjustment amount is according to a beam gain size of the second beam The difference in beam gain magnitude of the first beam is determined.
  • a beam gain of the first beam is greater than a beam gain of the second beam, and a size of the second transmit power is greater than a size of the first transmit power.
  • the size of the second transmit power is equal to a size of the first transmit power plus an adjustment amount, where the adjustment amount is according to a beam gain size of the second beam The difference in beam gain magnitude of the first beam is determined.
  • the adjustment amount X may be a difference between a beam gain of the first beam and a beam gain of the second beam, for example, the X may be a beam gain of the first beam and the second beam a power difference of the beam gain, or the X may be an energy difference between a beam gain of the first beam and a beam gain of the second beam, or the X may be a beam gain of the first beam and the The signal to noise ratio difference of the beam gain of the second beam.
  • a beam gain of the first beam is greater than a beam gain of the second beam, and a size of the second transmit power is equal to a size of the first transmit power.
  • the method further includes: receiving, by the first device, first indication information that is sent by the second device, where the first indication information is used to indicate information about the second beam;
  • the first device determines information of the first beam according to information of the second beam.
  • the method further includes: receiving, by the first device, second indication information that is sent by the second device, where the second indication information is used to indicate information about the first beam.
  • the method further includes: receiving, by the first device, third indication information that is sent by the second device, where the third indication information is used to determine information about the second transmit power; The first device determines the first transmit power according to the information of the second transmit power.
  • the first device is a network device or a terminal device.
  • a second aspect provides a method for transmitting information, including: a first device performing channel detection on a first channel on an unlicensed carrier using a first beam and a first energy detection threshold to determine that the first device is used for Whether the first time domain resource that sends the first information is available; if the first time domain resource is available, if the coverage angle of the first beam is smaller than the coverage angle of the second beam used for data transmission, the first The device does not send the first information by using the first time domain resource, where a direction corresponding to the second beam and a direction corresponding to the first beam at least partially overlap.
  • the first beam is a beam in a first beam set
  • the second beam is a beam in a second beam set.
  • the method further includes: receiving, by the first device, first indication information that is sent by the second device, where the first indication information is used to indicate information about the second beam; The first device determines information of the first beam according to the information of the second beam.
  • the method further includes: receiving, by the first device, second indication information that is sent by the second device, where the second indication information is used to indicate information about the first beam.
  • the first device is a network device or a terminal device.
  • an apparatus for transmitting information for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an apparatus for transmitting information comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • an apparatus for transmitting information for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect described above.
  • an apparatus for transmitting information comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the possible implementations of the second aspect or the second aspect above.
  • a computer storage medium for storing computer software instructions for performing the method of any of the above first aspect or any of the possible implementations of the first aspect, comprising program.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the above-described first aspect or any of the alternative implementations of the first aspect.
  • a ninth aspect a computer storage medium for storing computer software instructions for performing the method of any of the above second aspect or any of the possible implementations of the second aspect, comprising program.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the alternative aspects of the second aspect or the second aspect.
  • FIG. 1 is a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for transmitting information according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an apparatus for transmitting information according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting information according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting information according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for transmitting information according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Wideband Code Division Multiple Access
  • Division Multiple Access WCDMA
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR system evolution system LTE-based access to unlicensed spectrum
  • NR-U Universal Mobile Telecommunication System
  • UMTS Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • next-generation communication systems or other communication systems.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • the communication system in the embodiment of the present application may be applied to a Carrier Aggregation (CA) scenario, or may be applied to a Dual Connectivity (DC) scenario, and may also be applied to a Standalone (SA) fabric. Net scene.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA Standalone
  • the embodiment of the present application does not limit the spectrum of the application.
  • the embodiment of the present application can be applied to an authorized spectrum, and can also be applied to an unlicensed spectrum.
  • the embodiments of the present application describe various embodiments in combination with a network device and a terminal device, where the terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote location.
  • UE User Equipment
  • Station remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • a handheld device with wireless communication capabilities a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a next-generation communication system, such as a terminal device in an NR network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, and the network device may be an Access Point (AP) in the WLAN, a Base Transceiver Station (BTS) in GSM or CDMA, or may be in WCDMA.
  • the base station (NodeB, NB) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device (gNB) in the NR network. Or a network device or the like in a future evolved PLMN network.
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • the cell may be a network device (for example, The corresponding cell of the base station, the cell may belong to the macro base station, or may belong to the base station corresponding to the small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. Cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the downlink physical channel in the embodiment of the present application may include a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a Physical Downlink Shared Channel (Physical Downlink Shared). Channel, PDSCH), Physical Hybrid ARQ Indicator Channel (PHICH), Physical Multicast Channel (PMCH), Physical Broadcast Channel (PBCH), and the like.
  • the downlink reference signal may include a downlink synchronization signal (Synchronization Signal), a phase tracking reference signal (Phase Tracking Reference Signal (PT-RS), a downlink demodulation reference signal (DMRS), and a channel state information reference signal (Channel State Information).
  • the downlink synchronization signal can be used for communication equipment access network and radio resource management measurement
  • the downlink DMRS can be used for downlink channel demodulation
  • the CSI-RS can be used for downlink channel measurement and downlink time
  • PT-RS can also be used for downlink channel measurement, downlink time-frequency synchronization or phase tracking.
  • the downlink physical channel or the downlink reference signal with the same name and different functions may be included in the embodiment of the present application, and may also include a downlink physical channel or a downlink reference signal that is different from the above name and has the same function. Not limited.
  • the uplink physical channel in the embodiment of the present application may include a physical random access channel (PRACH), a physical uplink control channel (PUCCH), and a physical uplink shared channel (PUSCH, Physical Uplink). Shared CHannel) and so on.
  • the uplink reference signal may include an Up Modulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), a Phase Tracking Reference Signal (PT-RS), and the like.
  • DMRS Up Modulation Reference Signal
  • SRS Sounding Reference Signal
  • PT-RS Phase Tracking Reference Signal
  • the uplink DMRS can be used for demodulation of the uplink channel
  • the SRS can be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking
  • the PT-RS can also be used for uplink channel measurement, uplink time-frequency synchronization or phase tracking.
  • the uplink physical channel or the uplink reference signal with the same name and different functions may be included in the embodiment of the present application, and may also include an uplink physical channel or an uplink reference signal that is different from the above name and has the same function. Not limited.
  • FIG. 1 to FIG. 5 are schematic flowcharts of a method for transmitting information according to an embodiment of the present application, showing details of the method.
  • the communication steps or operations, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the various operations in FIGS. 1 through 5.
  • FIGS. 1 through 5 may be performed in a different order than that presented in FIGS. 1 through 5, respectively, and it is possible that not all of the operations in FIGS. 1 through 5 are to be performed.
  • FIG. 1 is a schematic flowchart of a method 100 for transmitting information according to an embodiment of the present application. As shown in FIG. 1, the method 100 may include the following content:
  • the first device performs channel detection on the first channel on the unlicensed carrier by using the first beam and the first energy detection threshold to determine whether the first time domain resource used by the first device to send the first information is available.
  • the first device sends the first information by using the first time domain resource.
  • the first device may be a network device or a terminal device. Therefore, the embodiment of the present application may be applied to a channel access process of a network device or a terminal device on an unlicensed spectrum.
  • the channel access process of the network device or the terminal device may include: determining whether the channel is available by detecting whether the channel is in an idle state.
  • the network device and/or the terminal device can detect whether a frequency domain resource having a certain bandwidth (eg, 20 MHz) is currently in an idle state, or whether the frequency domain resource is used by another device.
  • a frequency domain resource having a certain bandwidth eg, 20 MHz
  • the network device and/or the terminal device may use the frequency domain resource for communication, for example, performing uplink transmission or Downlink transmission, etc.
  • the network device and/or the terminal device cannot use the frequency domain resource.
  • the first device may perform channel detection on the first channel on the unlicensed carrier by using the first beam and the first energy detection threshold, where the first energy detection threshold is an energy detection threshold corresponding to the first transmit power
  • the channel detection may be that the first device may collect signal energy on the first channel for a period of time, and compare the energy value with the first energy detection threshold, if the energy value is greater than or equal to the first energy. If the threshold is detected, the channel may be considered to be occupied, so that the first time domain resource for transmitting the first information may be determined to be unavailable, or if the signal energy value is less than the first energy detection threshold, the channel may be considered as idle. Determining that the first time domain resource is available. Further, the first information may be sent on the first time domain resource.
  • the size of the first energy detection threshold may be determined according to the size of the transmit power used by the first device for signal transmission. For example, if the transmit power is smaller, the corresponding energy detection threshold may be larger, and the transmit power is larger. The corresponding energy detection threshold is smaller.
  • a beam (or a receive beam) used for receiving a signal may be understood as a spatial domain reception filter used to receive a signal; accordingly, one is sent.
  • the beam (or transmit beam) used by the signal can be understood as the spatial domain transmission filter used to transmit a signal.
  • the two signals can be said to be Quasi-Co-Located (QCL) with respect to the spatial receive parameters.
  • the first beam used for channel detection ie, one or more of the receiving beams
  • the second beam used for signal transmission ie, one or more of the transmitting beams
  • the embodiment of the present application is not limited to the same beam, or may be a different beam. It should be understood that when the first beam for channel detection is a different beam than the second beam for signal transmission, the spatial domain coverage of the first beam at least partially overlaps the spatial domain coverage of the second beam.
  • the direction corresponding to the first beam may be omnidirectional, that is, the first device may perform omnidirectional channel detection, and then perform directional data transmission.
  • the beam may include a precoding process of the data domain, or may also include a precoding process of the analog domain, or may also include a precoding process of the data domain and the analog domain. This is not limited.
  • the communication device may use the receive precoding in a coarser direction, but when the signal is transmitted, the communication device may use Transmitting precoding in a finer direction to improve beamforming gain of data transmission.
  • a communication device may perform channel detection using an omnidirectional reception method, but uses a beam gain method for signal transmission, etc., which may result in The case where the transmit and receive beams are not completely matched.
  • the gNB1 may use the energy detection threshold corresponding to the transmission power P, and use the beam direction 1 to interfere with the direction of the UE1.
  • Channel detection if the channel is found to be idle, gNB1 can use the transmit power P and beam direction 2 to transmit data to UE1. If the beamforming gain of the beam direction 2 is greater than the beamforming gain of the beam direction 1, the data transmission range of the gNB1 is beyond the channel detection range of the gNB1, and the data transmission of the gNB1 to the UE1 affects the communication chain around the UE1.
  • Road for example, a communication link between gNB2 and UE2.
  • S120 may specifically include:
  • the channel detection range is smaller than the data transmission range, the data transmission may interfere with other communication links, and since the data transmission range exceeds the channel detection range, there may be resources on some channels that are unavailable. Data transmission on this resource may cause data transmission failure and affect the reliability of data transmission.
  • the first device by controlling the second transmit power for signal transmission and the first transmit power for channel detection, the first device can make the channel detection range greater than or equal to the data transmission range, thereby facilitating avoidance.
  • the interference of data transmission to other communication links can also ensure the effective transmission of data.
  • the first device uses the second transmit power to send the first information, and the second beam used by the first information, and the energy detection threshold corresponding to the first transmit power, are used for channel detection.
  • a beam may be the same, or may be different.
  • the embodiment of the present application does not limit this.
  • the channel detection range may be greater than or equal to the data transmission range.
  • the spatial domain coverage corresponding to one beam may be jointly determined by the corresponding direction, the coverage angle, and the signal amplitude (ie, beam gain) of the beam. If the spatial domain coverage corresponding to the first beam used by the received signal is the same as the spatial coverage of the second beam used by the transmitted signal, the first beam and the second beam may be considered to be the same; otherwise, the first The beam is different from the second beam.
  • the coverage of the spatial domain corresponding to the first beam and the coverage of the spatial domain corresponding to the second beam may be the same as the corresponding direction, coverage angle, and beam gain of the first beam and the corresponding direction and coverage of the second beam.
  • the angle and beam gain are the same.
  • the coverage angle of one beam is smaller, the beam gain corresponding to the beam is larger. Conversely, the larger the coverage angle of one beam, the smaller the beam gain corresponding to the beam.
  • S120 may specifically include:
  • the first device sends the first information by using the second beam by using the first time domain resource, where the second beam is different from the first beam.
  • the second beam and the first beam may be different in that the coverage angle and the signal amplitude of the first beam and the second beam are different, and the direction corresponding to the first beam and the corresponding direction of the second beam at least partially overlap.
  • the first device performs data transmission using a second beam different from the first beam for performing channel detection, so that the first device may control spatial coverage of the first beam and the second beam (eg, by controlling energy)
  • the detection threshold, the signal transmission power, or the selection of the first beam and the second beam, etc. so that the channel detection range covers at least the data transmission range, thereby preventing interference of data transmission to other communication links.
  • the second transmit power used by the first device to send the first information may be equal to the first transmit power corresponding to the energy detection threshold used by the first device for channel detection, or The first device may control the spatial domain coverage of the first beam and the spatial coverage of the second beam by using the first device in this embodiment. So that the channel detection range is greater than or equal to the data transmission range.
  • the first beam may be a beam in a first beam set
  • the second beam may be a beam in a second beam set
  • the first beam set may be used for channel detection (or A set of beams for signal reception
  • the second set of beams may be a set of beams for signal transmission, the first set of beams being different from at least one of the second set of beams.
  • the number of beams included in the first beam set and the second beam set is different, and the first beam set includes N beams, N is a positive integer, and the N beams correspond to different directions, and the second beam set includes M beams, M is a positive integer, and the M beams also correspond to different directions.
  • the first device may also combine the information of the beam and the transmit power, and the control channel detection range covers at least the data transmission range.
  • the first device may control the first transmit power and The magnitude of the second transmit power controls the channel detection range and the size of the data transmission range.
  • the data transmission in the embodiment of the present invention may be the transmission of a physical channel or the transmission of a reference signal, where the physical channel includes an uplink physical channel or a downlink physical channel, and the reference signal includes an uplink reference signal or a downlink reference signal. Not limited.
  • the first device may determine, by the first device, the first transmit power, the second transmit power, information about the first beam, and information about the second beam, for example, The first device may determine the first transmit power first, and then determine the second transmit power according to the first transmit power. Alternatively, the first device may also determine the second transmit power first, and then determine the first transmit power according to the second transmit power. Alternatively, the first device may also determine the first transmit power and the second transmit power simultaneously.
  • the first device may determine the fourth parameter by using any three of the parameters, the present application There is no limit to this.
  • the first device may first determine the first beam, the second beam, and the first transmit power, and then determine a second transmit power for data transmission based on the three parameters.
  • the first device may first determine the first beam, the second beam, and the second transmit power, and then determine the first transmit power according to the three parameters, thereby determining energy detection corresponding to the first transmit power for channel detection. Threshold.
  • Case 1 the corresponding direction and the coverage angle of the first beam are greater than the corresponding direction and the coverage angle of the second beam, and the signal amplitude of the first beam is smaller than the signal amplitude of the second beam, or The beam gain of one beam is smaller than the beam gain of the second beam, for example, the scenario shown in FIG.
  • the first device may perform channel detection by using the first beam and the first energy detection threshold corresponding to the first transmit power, and after the channel detection is successful (ie, the channel detection result is idle), using the second transmit power. Data transmission, wherein the second transmit power is less than the first transmit power.
  • the first device may control that a difference between the first transmit power P1 and the second transmit power P2 is greater than or equal to a specific adjustment amount X, so that the data transmission range can fall within a channel detection range, that is, channel detection.
  • the range covers at least the data transmission range, wherein the adjustment amount X is determined according to a difference between a beam gain size of the second beam and a beam gain size of the first beam.
  • X may be a difference between a beam gain of the first beam and a beam gain of the second beam, for example, the X may be a beam gain of the first beam and a beam gain of the second beam The power difference, or the X may be the energy difference between the beam gain of the first beam and the beam gain of the second beam, or the X may be the beam gain of the first beam and the second The difference in signal-to-noise ratio of the beam gain of the beam.
  • the beam gain of the first beam may also be understood as a first precoding gain obtained based on a first precoding corresponding to the first beam
  • a beam gain of the second beam is also It can be understood as a second precoding gain obtained based on the second precoding corresponding to the second beam.
  • the X may be a power difference between the first precoding gain and the second precoding gain, or the X may be an energy difference between the first precoding gain and the second precoding gain, or The X may be a signal to noise ratio difference of the first precoding gain and the second precoding gain.
  • the first device may perform channel detection by using a larger first transmit power, or the first device may perform data transmission by using a smaller second transmit power, so that the data transmission range is less than or equal to the channel detection range, which can further reduce
  • the transmit and receive beams do not match the interference problems caused by other communication links.
  • Case 2 a corresponding direction and a coverage angle of the first beam are greater than a corresponding direction and a coverage angle of the second beam, and a signal amplitude of the first beam is greater than a signal amplitude of the second beam, or
  • the beam gain of one beam is greater than the beam gain of the second beam, for example, the scenario shown in FIG.
  • the first beam may include multiple beams, for example, the first beam in FIG. 3 includes 3 beams, and the second beam includes 1 beam.
  • the first device may perform channel detection by using the first beam and the first energy detection threshold corresponding to the first transmit power, and after the channel detection succeeds (that is, the channel detection result is idle), The second transmit power is used for data transmission, wherein the second transmit power is equal to the first transmit power.
  • the first device may perform channel detection by using a first beam and a first energy detection threshold corresponding to the first transmit power, and after the channel detection succeeds (that is, the channel detection result is idle), using the second transmit power. Data transmission, wherein the second transmit power is greater than the first transmit power.
  • the first device may control that a difference between the second transmit power P2 and the first transmit power P1 is less than or equal to a specific adjustment amount X, so that the data transmission range falls within a channel detection range, that is, channel detection.
  • the range covers at least a data transmission range, wherein the adjustment amount X is determined according to a difference between a beam gain size of the first beam and a beam gain size of the second beam.
  • X may be a difference between a beam gain of the first beam and a beam gain of the second beam, for example, the X may be a beam gain of the first beam and a beam gain of the second beam The power difference, or the X may be the energy difference between the beam gain of the first beam and the beam gain of the second beam, or the X may be the beam gain of the first beam and the second The difference in signal-to-noise ratio of the beam gain of the beam.
  • the beam gain of the first beam may also be understood as a first precoding gain obtained based on a first precoding corresponding to the first beam
  • a beam gain of the second beam is also It can be understood as a second precoding gain obtained based on the second precoding corresponding to the second beam.
  • the X may be a power difference between the first precoding gain and the second precoding gain, or the X may be an energy difference between the first precoding gain and the second precoding gain, or The X may be a signal to noise ratio difference of the first precoding gain and the second precoding gain.
  • the first device plans to use the second beam and the second transmit power for data transmission, and plans to use the first beam for channel detection, wherein the first beam includes 2 beams, and the first beam includes two beams jointly corresponding to The direction and coverage angle include (or cover) the direction and coverage angle of the second beam, the beam gain of each of the two beams included in the first beam is 6 dB, and the beam gain of the second beam is 3 dB,
  • the second transmit power P2 is 20 dBm
  • the first device may perform channel detection by using a smaller first transmit power, or the first device may perform data transmission by using a larger second transmit power, so that the data transmission range is less than or equal to the channel detection range, and the When the transmit beam and the receive beam do not match the interference caused by other communication links, the transmit power of the data transmission is improved, and the reliability of the data transmission is ensured.
  • the method 100 may further include:
  • the first device determines information of the first beam according to information of the second beam.
  • the first device is a terminal device
  • the second device may be a network device, or may be another terminal device, which is not limited in this embodiment of the present application. That is, when the first device is a terminal device, the information of the second beam for signaling may be indicated by the second device (eg, a network device).
  • the first device is a network device
  • the second device is a terminal device. That is, when the first device is a network device, the information of the second beam used for signal transmission may be measured and reported by the terminal device.
  • the information of the second beam may be a beam identifier of the second beam, or a second pre-coded information corresponding to the second beam, or a quasi-co-location between the second beam and the second beam a signal index of the reference signal of the QCL relationship
  • the first device may determine information of the first beam used for channel detection according to the information of the second beam, for example, the first device determines the first
  • the spatial domain coverage of the beam includes the spatial domain coverage of the second beam, and the like.
  • the method 100 may further include:
  • the first device receives second indication information that is sent by the second device, where the second indication information is used to indicate information about the first beam.
  • the first device is a terminal device
  • the second device may be a network device, or may be another terminal device, which is not limited in this embodiment of the present application. That is, the second device (eg, a network device) can indicate information of the first beam for channel detection to the first device (eg, the terminal device).
  • the first device is a network device
  • the second device is a terminal device. That is, when the first device is a network device, the information of the first beam used for channel detection may be measured and reported by the terminal device.
  • the information of the first beam may be a beam identifier of the first beam, or a first pre-coded information corresponding to the first beam, or a quasi-co-location between the first beam and the first beam The signal index of the reference signal of the QCL relationship.
  • the information of the second beam may be indicated by the second device, and the information of the first beam may be indicated by the second device, or may be determined by the first device according to the information of the second beam.
  • the method 100 when the first device is a terminal device, the method 100 further includes:
  • the first device determines the first transmit power according to the information of the second transmit power.
  • the second device may be a network device, or may be another terminal device, which is not limited in this embodiment of the present application.
  • the second device may indicate information of the second transmit power used by the first device for signaling, and further, the first device may determine, according to the information of the second transmit power, the first transmit for channel detection. Power information.
  • the first device may determine, according to the information about the second transmit power, the information about the second beam or the information of the first beam to determine a first transmit power for channel detection. For example, the first device may determine, according to a difference between a beam gain of the first beam and the second beam, a result obtained by adding the second transmit power, to a size of the first transmit power, for a specific process, reference may be made to related descriptions in the foregoing embodiments, and details are not described herein again.
  • the first indication information, the second indication information, and the third indication information may be the same indication information, or may be different indication information. Not limited.
  • the first indication information, the second indication information, or the third indication information may be carried in an existing message or signaling, for example, physical layer signaling or high layer signaling, or The foregoing indication information may be added by using a message or a signaling, which is not limited in this embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method 400 for transmitting information according to another embodiment of the present application. As shown in FIG. 4, the method 400 includes the following content:
  • the first device performs channel detection on the first channel on the unlicensed carrier by using the first beam and the first energy detection threshold to determine whether the first time domain resource used by the first device to send the first information is available.
  • the coverage angle of the first beam used for channel detection is smaller than the coverage angle of the second beam used for signal transmission, that is, the channel detection range is smaller than the data transmission range, or the channel detection range does not completely cover the data transmission.
  • Range for example, the scenario shown in FIG. 5, in this case, even if the first time domain resource is available, the first device may not use the first time domain resource for data transmission, thereby avoiding the unlicensed spectrum Interference on other communication links.
  • the first device may first determine a coverage angle of the first beam and a coverage angle of the second beam, and determine whether the first time domain is in the first time domain according to the size relationship of the coverage angle. Data transmission is performed on the resource. For example, when the coverage angle of the first beam is smaller than the coverage angle of the second beam, the first device may directly determine that data transmission is not performed on the first channel, and does not need to perform channel. Detecting, thereby avoiding waste of communication resources, or when the coverage angle of the first beam is greater than the coverage angle of the second beam, the first device may perform channel detection on the first channel to determine whether For subsequent data transmission, the specific implementation process may refer to the related description of the foregoing embodiment.
  • the first beam is a beam in a first beam set
  • the second beam is a beam in a second beam set.
  • the method 400 further includes:
  • the first device determines information of the first beam according to information of the second beam.
  • the method 400 further includes:
  • the first device receives second indication information that is sent by the second device, where the second indication information is used to indicate information about the first beam.
  • the first device is a network device.
  • the first device is a terminal device.
  • the embodiment of the method of the present application is described in detail below with reference to FIG. 1 to FIG. 5 .
  • the device embodiment of the present application is described in detail below with reference to FIG. 6 to FIG. 9 . It should be understood that the device embodiment and the method embodiment correspond to each other. The description of the method can be referred to the method embodiment.
  • FIG. 6 shows a schematic block diagram of an apparatus 500 for transmitting information in accordance with an embodiment of the present application.
  • the device 500 includes:
  • the determining module 510 is configured to perform channel detection on the first channel on the unlicensed carrier by using the first beam and the first energy detection threshold to determine whether the first time domain resource used for sending the first information is available;
  • the communication module 520 is configured to send the first information by using the first time domain resource if the first time domain resource is available.
  • the first energy detection threshold is determined according to a first transmit power
  • the communications module is specifically configured to:
  • the communication module 520 is further configured to:
  • the first beam is a beam in a first beam set
  • the second beam is a beam in a second beam set.
  • the direction corresponding to the first beam includes a direction corresponding to the second beam, and a coverage angle of the first beam is greater than a coverage angle of the second beam.
  • a beam gain of the first beam is smaller than a beam gain of the second beam, and the second transmit power is smaller than the first transmit power.
  • the size of the second transmit power is equal to a size of the first transmit power minus an adjustment amount, where the adjustment amount is based on a beam gain size of the second beam The difference in beam gain magnitude of the first beam is determined.
  • a beam gain of the first beam is greater than a beam gain of the second beam, and the second transmit power is equal to the first transmit power.
  • a beam gain of the first beam is greater than a beam gain of the second beam, and the second transmit power is greater than the first transmit power.
  • the size of the second transmit power is equal to a size of the first transmit power plus an adjustment amount, where the adjustment amount is based on a beam gain size of the second beam The difference in beam gain magnitude of the first beam is determined.
  • the communication module 520 is further configured to:
  • the determining module 510 is further configured to: determine information about the first beam according to information about the second beam.
  • the communication module 520 is further configured to:
  • the communication module 520 is further configured to:
  • the determining module 510 is further configured to: determine the first transmit power according to the information about the second transmit power.
  • the device 500 is a network device.
  • the device 500 is a terminal device.
  • the device 500 for transmitting information may correspond to the first device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the device 500 are respectively implemented in FIG.
  • the corresponding flow of the first device in the method 100 is omitted for brevity.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting information according to an embodiment of the present application.
  • the device 600 of Figure 7 includes:
  • the determining module 610 is configured to perform channel detection on the first channel on the unlicensed carrier by using the first beam and the first energy detection threshold to determine whether the first time domain resource used for sending the first information is available;
  • the communication module 620 is configured to: if the first time domain resource is available, if the coverage angle of the first beam is smaller than the coverage angle of the second beam used for data transmission, not sending the first time domain resource
  • the first information is that the direction corresponding to the second beam and the direction corresponding to the first beam at least partially overlap.
  • the first beam is a beam in a first beam set
  • the second beam is a beam in a second beam set.
  • the communication module 620 is further configured to:
  • the determining module 610 is further configured to: determine information about the first beam according to information about the second beam.
  • the communication module 620 is further configured to:
  • the device 600 is a network device.
  • the device 600 is a terminal device.
  • the device 600 may correspond to (for example, may be configured or be itself) the first device described in the foregoing method 400, and each module or unit in the device 600 is used to perform the first method in the foregoing method 400, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the embodiment of the present application further provides a device 700 for transmitting information, which may be the device 500 in FIG. 6 , which can be used to execute a first device corresponding to the method 100 in FIG. 1 .
  • the device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740, and the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute a program, an instruction or a code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the determining module 510 included in the device 500 of FIG. 6 may be implemented by the processor 730 of FIG. 8.
  • the communication module 520 included in the device 500 of FIG. 6 may be configured by using the input interface 710 of FIG.
  • the output interface 720 is implemented.
  • the embodiment of the present application further provides a device 800 for transmitting information, which may be the device 600 in FIG. 7 , which can be used to execute a first device corresponding to the method 400 in FIG. 4 .
  • the device 800 includes an input interface 810, an output interface 820, a processor 830, and a memory 840, and the input interface 810, the output interface 820, the processor 830, and the memory 840 can be connected by a bus system.
  • the memory 840 is configured to store programs, instructions or code.
  • the processor 830 is configured to execute a program, an instruction or a code in the memory 840 to control the input interface 810 to receive a signal, control the output interface 820 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 830 may be a central processing unit (“CPU"), and the processor 830 may also be other general-purpose processors, digital signal processors ( DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 840 can include read only memory and random access memory and provides instructions and data to the processor 830. A portion of the memory 840 may also include a non-volatile random access memory. For example, the memory 840 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 830 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 840, and the processor 830 reads the information in the memory 840 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the determining module 610 included in the device 600 of FIG. 7 can be implemented by the processor 830 of FIG. 9.
  • the communication module 620 included in the device 600 of FIG. 7 can be implemented by using the input interface 810 of FIG.
  • the output interface 820 is implemented.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs including instructions, when the portable electronic device is included in a plurality of applications When executed, the portable electronic device can be caused to perform the method of the embodiment shown in Figures 1 through 5.
  • the embodiment of the present application also proposes a computer program comprising instructions which, when executed by a computer, enable the computer to perform the corresponding flow of the method of the embodiment shown in Figures 1 to 5.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输信息的方法和设备,该方法包括:第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;在所述第一时域资源可用的情况下,所述第一设备通过所述第一时域资源发送所述第一信息。

Description

传输信息的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及传输信息的方法和设备。
背景技术
基于长期演进(Long Term Evolution,LTE)的授权辅助接入(Licensed-Assisted Access)(LAA-LTE)系统中,以授权频谱上的载波为主载波,以免授权频谱上的载波为辅载波为终端设备提供服务,其中,在免授权频谱上,通信设备遵循“先听后说(Listen Before Talk,LBT)”原则,即通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道检测,只有当信道检测结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在免授权频谱的信道上的信道检测结果为信道忙,该通信设备不能进行信号发送。
将新无线(New Radio,NR)技术应用于免授权载波上时,引入了波束赋形(beamforming)技术,以提升小区的空间复用传输能力,此情况下,如何进行信道检测以进行数据传输是一项值得研究的问题。
发明内容
本申请实施例提供了一种传输信息的方法和设备,能够实现免授权载波上的数据传输。
第一方面,提供了一种传输信息的方法,包括:第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;在所述第一时域资源可用的情况下,所述第一设备通过所述第一时域资源发送所述第一信息。
因此,在本申请实施例中,第一设备可以使用第一波束和第一能量检测门限进行信道检测,以确定用于数据传输的时域资源是否可用,进一步地,第一设备可以在该时域资源可用的情况下,通过该时域资源进行数据传输,从而能够实现免授权载波上的数据传输。
在一种可能的实现方式中,所述第一能量检测门限是根据第一发射功率确定的,所述第一设备通过所述第一时域资源发送所述第一信息,包括:
所述第一设备使用第二发射功率通过所述第一时域资源发送所述第一信息,其中,所述第二发射功率的大小和所述第一发射功率的大小不同。
因此,在本申请实施例中,第一设备通过控制用于信号发送的第二发射功率和用于信道检测的第一发射功率,能够使得信道检测范围大于或等于数据传输范围,从而有利于避免数据传输对其他通信链路的干扰,同时也能够保证数据的有效传输。
在一种可能的实现方式中,所述第一设备通过所述第一时域资源发送所述第一信息,包括:所述第一设备使用第二波束通过所述第一时域资源发送所述第一信息,其中,所述第二波束和所述第一波束不同,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
需要说明的是,在本申请实施例中,一个波束对应的空间域覆盖范围可以由该波束的对应方向、覆盖角度和信号幅度(或波束增益)联合决定。若接收信号使用的第一波束对应的空间域覆盖范围和发送信号使用的第二波束对应的空间域覆盖范围完全相同,可以认为该第一波束和第二波束相同;否则,第一波束和第二波束不同。其中,第一波束对应的空间域覆盖范围和第二波束对应的空间域覆盖范围完全相同可以指假设相同的信号幅度下,所述第一波束的对应方向和覆盖角度与所述第二波束的对应方向和覆盖角度都相同。
在一种可能的实现方式中,所述第一波束为第一波束集合中的波束,所述第二波束 为第二波束集合中的波束。
在一种可能的实现方式中,所述第一波束对应的方向包括所述第二波束对应的方向,所述第一波束的覆盖角度大于所述第二波束的覆盖角度。
在一种可能的实现方式中,所述第一波束的波束增益小于所述第二波束的波束增益,所述第二发射功率的大小小于所述第一发射功率的大小。
在一种可能的实现方式中,所述第二发射功率的大小等于所述第一发射功率的大小减去调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
在一种可能的实现方式中,所述第一波束的波束增益大于所述第二波束的波束增益,所述第二发射功率的大小大于所述第一发射功率的大小。
在一种可能的实现方式中,所述第二发射功率的大小等于所述第一发射功率的大小加上调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
可选地,调整量X可以为所述第一波束的波束增益和所述第二波束的波束增益的差值,例如,所述X可以为第一波束的波束增益和所述第二波束的波束增益的功率差值,或,所述X可以为第一波束的波束增益和所述第二波束的波束增益的能量差值,或者,所述X可以为第一波束的波束增益和所述第二波束的波束增益的信噪比差值。
在一种可能的实现方式中,所述第一波束的波束增益大于所述第二波束的波束增益,所述第二发射功率的大小等于所述第一发射功率的大小。
在一种可能的实现方式中,所述方法还包括:所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
所述第一设备根据所述第二波束的信息确定所述第一波束的信息。
在一种可能的实现方式中,所述方法还包括:所述第一设备接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
在一种可能的实现方式中,所述方法还包括:所述第一设备接收第二设备发送的第三指示信息,所述第三指示信息用于确定所述第二发射功率的信息;所述第一设备根据所述第二发射功率的信息确定所述第一发射功率。
在一种可能的实现方式中,所述第一设备为网络设备或终端设备。
第二方面,提供了一种传输信息的方法,包括:第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;在所述第一时域资源可用的情况下,若第一波束的覆盖角度小于用于数据发送的第二波束的覆盖角度,所述第一设备不通过所述第一时域资源发送所述第一信息,其中,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
在一种可能的实现方式中,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
在一种可能的实现方式中,所述方法还包括:所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;所述第一设备根据所述第二波束的信息确定所述第一波束的信息。
在一种可能的实现方式中,所述方法还包括:所述第一设备接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
在一种可能的实现方式中,所述第一设备为网络设备或终端设备。
第三方面,提供了一种传输信息的设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种传输信息的设备,该设备包括:存储器、处理器、输入接口 和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。
第五方面,提供了一种传输信息的设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第六方面,提供了一种传输信息的设备,该设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
第九方面,提供了一种计算机存储介质,用于储存为执行上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一可选的实现方式中的方法。
附图说明
图1示出了本申请实施例的传输信息的方法的示意性流程图。
图2示出了本申请实施例一个应用场景的示意图。
图3示出了本申请实施例另一个应用场景的示意图。
图4示出了本申请另一实施例的传输信息的方法的示意性流程图。
图5示出了本申请实施例一个应用场景的示意图。
图6示出了本申请一实施例的传输信息的设备的示意性框图。
图7示出了本申请另一实施例的传输信息的设备的示意性框图。
图8示出了本申请实施例的传输信息的设备的示意性框图。
图9示出了本申请另一实施例的传输信息的设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to  Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
可选地,本申请实施例的下行物理信道可以包括物理下行控制信道(Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理HARQ指示信道(Physical Hybrid ARQ Indicator Channel,PHICH),物理多播信道(Physical Multicast Channel,PMCH),物理广播信道(Physical Broadcast Channel,PBCH),等等。下行参考信号可以包括下行同步信号(Synchronization Signal),相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS),下行解调参考信号(DeModulation Reference Signal,DMRS),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等,其中,下行同步信号可用于通信设备接入网络和无线资源管理测量,下行DMRS可用于下行信道的解调,CSI-RS可用于下行信道的测量、下行时频同步或相 位跟踪,PT-RS也可用于下行信道的测量、下行时频同步或相位跟踪。应理解,本申请实施例中可以包括和上述名称相同、功能不同的下行物理信道或下行参考信号,也可以包括和上述名称不同、功能相同的下行物理信道或下行参考信号,本申请对此并不限定。
可选地,本申请实施例的上行物理信道可以包括物理随机接入信道(PRACH,Physical Random Access CHannel)、物理上行控制信道(PUCCH,Physical Uplink Control CHannel)、物理上行共享信道(PUSCH,Physical Uplink Shared CHannel)等。上行参考信号可以包括上行解调参考信号(DeModulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)、相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)等。其中,上行DMRS可用于上行信道的解调,SRS可用于上行信道的测量、上行时频同步或相位跟踪,PT-RS也可用于上行信道的测量、上行时频同步或相位跟踪。应理解,本申请实施例中可以包括和上述名称相同、功能不同的上行物理信道或上行参考信号,也可以包括和上述名称不同、功能相同的上行物理信道或上行参考信号,本申请对此并不限定。
下面结合图1至图5对本申请实施例的传输信息的方法进行说明,应理解,图1至图5是本申请实施例的传输信息的方法的示意性流程图,示出了该方法的详细的通信步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图1至图5中的各种操作的变形。
此外,图1至图5中的各个步骤可以分别按照与图1至图5所呈现的不同的顺序来执行,并且有可能并非要执行图1至图5中的全部操作。
图1是根据本申请实施例的传输信息的方法100的示意性流程图,如图1所示,该方法100可以包括如下内容:
S110,第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;
S120,在所述第一时域资源可用的情况下,所述第一设备通过所述第一时域资源发送所述第一信息。
可选地,该第一设备可以为网络设备或者终端设备,因此,本申请实施例可以应用于免授权频谱上的网络设备或终端设备的信道接入过程。
在本申请实施例中,网络设备或终端设备的信道接入过程可以包括:通过检测信道是否处于空闲状态来判断该信道是否可用。
例如,网络设备和/或终端设备可以检测具有某一带宽(如,20MHz)的频域资源当前是否处于空闲状态,或者说,该频域资源是否被其他设备使用。
若该频域资源处于空闲状态,或者说,该频域资源未被其他设备使用(即信道空闲),则网络设备和/或终端设备可以使用该频域资源进行通信,例如,进行上行传输或下行传输等。
若该频域资源不处于空闲状态,或者说,该频域资源已被其他设备使用(即信道被占用),则网络设备和/或终端设备无法使用该频域资源。
具体而言,第一设备可以使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,其中,所述第一能量检测门限为第一发射功率对应的能量检测门限,可选地,信道检测可以指第一设备可以收集一段时间内该第一信道上的信号能量,将能量值与该第一能量检测门限作比较,若该能量值大于或等于该第一能量检测门限,则可以认为信道被占用,从而可以确定用于发送第一信息的第一时域资源不可用,或者若该信号能量值小于该第一能量检测门限,则可以认为信道空闲,从而可以确定该第一时域资源可用,进一步地,可以在该第一时域资源上发送该第一信息。
可选地,该第一能量检测门限的大小可以根据该第一设备用于信号传输的发射功率的大小确定,例如,若发射功率越小,对应的能量检测门限可以越大,发射功率越大,对应的能量检测门限越小。
应理解,本申请实施例中,接收一个信号所使用的波束(或称接收波束),可以理解为,接收一个信号所使用的空间域接收滤波器(Spatial domain reception filter);相应地,发送一个信号所使用的波束(或称发送波束),可以理解为,发送一个信号所使用的空间域传输滤波器(Spatial domain transmission filter)。对于采用相同的空间域发送滤波器发送的两个信号,可以称这两个信号相对于空间接收参数是准同址(Quasi-Co-Located,QCL)的。
可选地,在本申请实施例中,用于信道检测的第一波束(即接收波束中的一个或多个)和用于信号发送的第二波束(即发送波束中的一个或多个)可以为同一波束,或者也可以为不同的波束,本申请实施例对此不作限定。应理解,当用于信道检测的第一波束与用于信号发送的第二波束为不同的波束时,该第一波束的空间域覆盖范围与该第二波束的空间域覆盖范围至少部分重叠。
可选地,在本申请实施例中,所述第一波束对应的方向可以为全向,即第一设备可以进行全向的信道检测,然后可以进行方向性的数据传输。
应理解,在本申请实施例中,波束可以包括数据域的预编码处理,或者也可以包括模拟域的预编码处理,或者也可以包括数据域和模拟域的预编码处理,本申请实施例对此不作限定。
现有的通信系统中,可能会出现收发波束(beam)不完全匹配的情况,例如,在进行信道检测时,通信设备可以使用较粗方向的接收预编码,但发送信号时,通信设备可以使用较细方向的发送预编码来提高数据传输的波束增益(beamforming gain),又例如,通信设备可以使用全向接收的方式进行信道检测,但使用带波束增益的方式进行信号发送等,从而可能导致收发波束不完全匹配的情况。
以网络设备和终端设备之间的下行传输为例,如图2所示,gNB1在为UE1提供服务前,可以基于发射功率P对应的能量检测门限,使用波束方向1对UE1所在方向的干扰进行信道检测,若发现信道空闲,则gNB1可以使用发射功率P和波束方向2对UE1进行数据传输。若波束方向2的beamforming gain(即波束增益)大于波束方向1的beamforming gain,会使得gNB1的数据传输范围超出了gNB1的信道检测范围,从而导致gNB1对UE1的数据传输会影响UE1周围的通信链路,例如,gNB2和UE2之间的通信链路。
基于上述技术问题,可选地,作为一个实施例,S120可以具体包括:
所述第一设备使用第二发射功率通过所述第一时域资源发送所述第一信息,其中,所述第二发射功率的大小和所述第一发射功率的大小不同,所述第一发射功率用于确定所述第一能量检测门限。
由上文描述可知,若信道检测范围小于数据传输范围,可能造成数据传输对其他通信链路的干扰,同时由于数据传输范围超出信道检测范围,可能存在有些信道上的资源是不可用的,因此,在该资源上进行数据传输,可能导致数据传输失败,影响数据传输的可靠性。
因此,在本申请实施例中,第一设备通过控制用于信号发送的第二发射功率和用于信道检测的第一发射功率,能够使得信道检测范围大于或等于数据传输范围,从而有利于避免数据传输对其他通信链路的干扰,同时也能够保证数据的有效传输。
应理解,在该实施例中,第一设备使用所述第二发射功率发送所述第一信息所使用的第二波束与使用所述第一发射功率对应的能量检测门限进行信道检测使用的第一波束可以相同,或者也可以不同,本申请实施例对此不作限定,只要通过控制第二发射功率和所述第一发射功率的关系,能够使得信道检测范围大于或等于数据传输范围即可。
需要说明的是,在本申请实施例中,一个波束对应的空间域覆盖范围可以由该波束的对应方向、覆盖角度和信号幅度(即波束增益)联合决定。若接收信号使用的第一波束对应的空间域覆盖范围和发送信号使用的第二波束对应的空间域覆盖范围完全相同, 可以认为该第一波束和第二波束相同;否则,可以认为该第一波束和该第二波束不同。其中,第一波束对应的空间域覆盖范围和第二波束对应的空间域覆盖范围完全相同可以指所述第一波束的对应方向、覆盖角度和波束增益与所述第二波束的对应方向、覆盖角度和波束增益都相同。可选地,若一个波束的覆盖角度越小,该波束对应的波束增益越大;反之,一个波束的覆盖角度越大,该波束对应的波束增益越小。
基于图2所示的技术问题,作为另一个实施例,S120可以具体包括:
所述第一设备使用第二波束通过所述第一时域资源发送所述第一信息,其中,所述第二波束和所述第一波束不同。
这里,第二波束和第一波束不同可以指第一波束和第二波束的覆盖角度和信号幅度中的至少一项不同,第一波束对应的方向和第二波束的对应方向至少部分重叠。第一设备使用与进行信道检测的第一波束不同的第二波束进行数据传输,从而所述第一设备可以通过控制所述第一波束和第二波束的空间域覆盖范围(例如,通过控制能量检测门限、信号发射功率、或第一波束和第二波束的选取等)使得信道检测范围至少覆盖数据传输范围,从而能够避免数据传输对其他通信链路的干扰。
应理解,在该实施例中,第一设备发送所述第一信息所使用的第二发射功率与所述第一设备进行信道检测所使用的能量检测门限对应的第一发射功率可以相等,或者也可以不等,本申请实施例对此不作限定,即在该实施例中,所述第一设备可以通过控制所述第一波束的空间域覆盖范围和所述第二波束的空间域覆盖范围以使信道检测范围大于或等于数据传输范围即可。
可选地,所述第一波束可以为第一波束集合中的波束,所述第二波束可以为第二波束集合中的波束,其中,所述第一波束集合可以为用于信道检测(或者信号接收)的波束的集合,所述第二波束集合可以为用于信号发送的波束的集合,所述第一波束集合和所述第二波束集合中至少一个波束不同。例如,第一波束集合和第二波束集合中包括的波束的个数不同,第一波束集合中包括N个波束,N为正整数,该N个波束对应不同的方向,第二波束集合中包括M个波束,M为正整数,该M个波束也对应不同的方向,第一波束集合中的N个波束与第二波束集合中的M个波束对应相同的方向和覆盖角度。假设M=2*N,那么第一波束集合中的一个波束对应的方向和覆盖角度与第二波束集合中的两个波束联合对应的方向和覆盖角度相同,在这种情况下,可选地,第一波束集合中一个波束的波束增益小于第二波束集合中一个波束的波束增益。
可选地,在一些实施例中,所述第一设备也可以结合波束的信息和发射功率,控制信道检测范围至少覆盖数据传输范围。
例如,在所述第一波束和所述第二波束的信息(例如,对应方向,覆盖角度,信号幅度或称波束增益)确定的情况下,第一设备可以通过控制所述第一发射功率和所述第二发射功率的大小来控制信道检测范围和数据传输范围的大小。
应理解,本发明实施例中的数据发送可以是物理信道的发送或参考信号的发送,其中物理信道包括上行物理信道或下行物理信道,参考信号包括上行参考信号或下行参考信号,本申请对此并不限定。
可选地,在本申请实施例中,所述第一设备可以自行确定所述第一发射功率、所述第二发射功率、所述第一波束的信息和所述第二波束的信息,例如,所述第一设备可以先确定所述第一发射功率,然后再根据所述第一发射功率确定所述第二发射功率。或者,所述第一设备也可以先确定所述第二发射功率,然后再根据所述第二发射功率确定所述第一发射功率。或者,所述第一设备也可以同时确定所述第一发射功率和所述第二发射功率。
可选地,在本发明实施例中,对于第一波束、第二波束、第一发射功率和第二发射功率,第一设备可以通过其中的任意三个参数来确定第四个参数,本申请对此并不限制。例如,第一设备可以先确定第一波束、第二波束和第一发射功率,然后根据这三个参数 来确定用于数据传输的第二发射功率。又例如,第一设备可以先确定第一波束、第二波束和第二发射功率,然后根据这三个参数来确定第一发射功率,从而确定用于信道检测的第一发射功率对应的能量检测门限。
情况1:所述第一波束的对应方向和覆盖角度大于所述第二波束的对应方向和覆盖角度,且所述第一波束的信号幅度小于所述第二波束的信号幅度,或者说,第一波束的波束增益小于第二波束的波束增益,例如,图2所示的场景。
此情况下,所述第一设备可以使用第一波束和第一发射功率对应的第一能量检测门限进行信道检测,在信道检测成功(即信道检测结果为空闲)后,使用第二发射功率进行数据发送,其中,第二发射功率小于第一发射功率。
可选地,所述第一设备可以控制第一发射功率P1和第二发射功率P2的差值大于或等于特定的调整量X,从而能够使得数据传输范围落入信道检测范围内,即信道检测范围至少覆盖数据传输范围,其中,所述调整量X根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
可选地,X可以为所述第一波束的波束增益和所述第二波束的波束增益的差值,例如,所述X可以为第一波束的波束增益和所述第二波束的波束增益的功率差值,或,所述X可以为第一波束的波束增益和所述第二波束的波束增益的能量差值,或者,所述X可以为第一波束的波束增益和所述第二波束的波束增益的信噪比差值。
可选地,在本申请实施例中,所述第一波束的波束增益也可以理解为基于第一波束对应的第一预编码获得的第一预编码增益,所述第二波束的波束增益也可以理解为基于第二波束对应的第二预编码获得的第二预编码增益。
相应地,所述X可以为第一预编码增益和第二预编码增益的功率差值,或,所述X可以为第一预编码增益和所述第二预编码增益的能量差值,或者,所述X可以为第一预编码增益和所述第二预编码增益的信噪比差值。
例如,假设第一设备计划使用第二波束和第二发射功率进行数据发送,以及计划使用第一波束进行信道检测,其中,第一波束对应的方向和覆盖角度包括(或者说,覆盖)第二波束对应的方向和覆盖角度,第一波束的波束增益为3dB,第二波束的波束增益为6dB,第二发射功率P2为17dBm,那么,第一设备确定第一波束的波束增益与第二波束的波束增益的差值X=6dB-3dB=3dB,相应地,第一发射功率P1应大于或等于第二发射功率P2与X的和,即P1应大于或等于17+3=20dBm,即第一设备应根据不小于20dBm的第一发射功率来确定第一能量检测门限。
因此,在用于信道检测的第一波束的对应方向和覆盖角度大于用于数据传输的第二波束的对应方向和覆盖角度的情况下,如果第一波束的波束增益小于第二波束的波束增益,第一设备可以通过更大的第一发射功率进行信道检测,或第一设备可以通过更小的第二发射功率进行数据传输,从而使得数据传输范围小于或等于信道检测范围,进一步能够降低由于发送波束和接收波束不匹配对其他通信链路导致的干扰问题。
情况2:所述第一波束的对应方向和覆盖角度大于所述第二波束的对应方向和覆盖角度,且所述第一波束的信号幅度大于所述第二波束的信号幅度,或者说,第一波束的波束增益大于第二波束的波束增益,例如,图3所示的场景。
应理解,此情况下,第一波束可以包括多个波束,例如图3中第一波束包括3个波束,第二波束包括1个波束。
此情况下,可选地,所述第一设备可以使用第一波束和第一发射功率对应的第一能量检测门限进行信道检测,在信道检测成功(即信道检测结果为空闲)后,使用第二发射功率进行数据发送,其中,第二发射功率等于第一发射功率。
可选地,所述第一设备可以使用第一波束和第一发射功率对应的第一能量检测门限进行信道检测,在信道检测成功(即信道检测结果为空闲)后,使用第二发射功率进行数据发送,其中,第二发射功率大于第一发射功率。
可选地,所述第一设备可以控制第二发射功率P2和第一发射功率P1的差值小于或等于特定的调整量X,从而能够使得数据传输范围落入信道检测范围内,即信道检测范围至少覆盖数据传输范围,其中,所述调整量X根据所述第一波束的波束增益大小与所述第二波束的波束增益大小的差值确定。
可选地,X可以为所述第一波束的波束增益和所述第二波束的波束增益的差值,例如,所述X可以为第一波束的波束增益和所述第二波束的波束增益的功率差值,或,所述X可以为第一波束的波束增益和所述第二波束的波束增益的能量差值,或者,所述X可以为第一波束的波束增益和所述第二波束的波束增益的信噪比差值。
可选地,在本申请实施例中,所述第一波束的波束增益也可以理解为基于第一波束对应的第一预编码获得的第一预编码增益,所述第二波束的波束增益也可以理解为基于第二波束对应的第二预编码获得的第二预编码增益。
相应地,所述X可以为第一预编码增益和第二预编码增益的功率差值,或,所述X可以为第一预编码增益和所述第二预编码增益的能量差值,或者,所述X可以为第一预编码增益和所述第二预编码增益的信噪比差值。
例如,假设第一设备计划使用第二波束和第二发射功率进行数据发送,以及计划使用第一波束进行信道检测,其中,第一波束包括2个波束,第一波束包括的两个波束联合对应的方向和覆盖角度包括(或者说,覆盖)第二波束对应的方向和覆盖角度,第一波束包括的2个波束中每个波束的波束增益为6dB,第二波束的波束增益为3dB,第二发射功率P2为20dBm,那么,第一设备确定第一波束的波束增益与第二波束的波束增益的差值X=6dB-3dB=3dB,相应地,第一发射功率P1应大于或等于第二发射功率P2与X的差,即P1应大于或等于20-3=17dBm,即第一设备应根据不小于17dBm的第一发射功率来确定第一能量检测门限。
因此,在用于信道检测的第一波束的对应方向和覆盖角度大于用于数据传输的第二波束的对应方向和覆盖角度的情况下,如果第一波束的波束增益大于第二波束的波束增益,第一设备可以通过更小的第一发射功率进行信道检测,或第一设备可以通过更大的第二发射功率进行数据传输,从而使得数据传输范围小于或等于信道检测范围,在能够降低由于发送波束和接收波束不匹配对其他通信链路导致的干扰的情况下提升数据传输的发射功率,保证数据传输的可靠性。
可选地,在一些实施例中,所述方法100还可以包括:
所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
所述第一设备根据所述第二波束的信息确定所述第一波束的信息。
可选地,所述第一设备为终端设备,所述第二设备可以为网络设备,或者也可以为其他终端设备,本申请实施例对此不作限定。即,当第一设备为终端设备时,用于信号发送的第二波束的信息可以是由第二设备(例如网络设备)指示的。
可选地,所述第一设备为网络设备,所述第二设备为终端设备。即,当第一设备为网络设备时,用于信号发送的第二波束的信息可以是由终端设备测量和上报的。
可选地,所述第二波束的信息可以为所述第二波束的波束标识,或者所述第二波束对应的第二预编码的信息,或者与所述第二波束之间满足准共址QCL关系的参考信号的信号索引,进一步地,所述第一设备可以根据所述第二波束的信息确定用于信道检测的第一波束的信息,例如,所述第一设备确定所述第一波束的空间域覆盖范围包括所述第二波束的空间域覆盖范围等。
可选地,在一些实施例中,所述方法100还可以包括:
所述第一设备接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
可选地,所述第一设备为终端设备,所述第二设备可以为网络设备,或者也可以为 其他终端设备,本申请实施例对此不作限定。即,第二设备(例如网络设备)可以给第一设备(例如终端设备)指示用于信道检测的第一波束的信息。
可选地,所述第一设备为网络设备,所述第二设备为终端设备。即,当第一设备为网络设备时,用于信道检测的第一波束的信息可以是由终端设备测量和上报的。
可选地,所述第一波束的信息可以为所述第一波束的波束标识,或者所述第一波束对应的第一预编码的信息,或者与所述第一波束之间满足准共址QCL关系的参考信号的信号索引。
综上,所述第二波束的信息可以是由第二设备指示的,所述第一波束的信息可以是第二设备指示的,或者也可以是第一设备根据第二波束的信息确定的。
可选地,在一些实施例中,当所述第一设备为终端设备时,所述方法100还包括:
所述第一设备接收第二设备发送的第三指示信息,所述第三指示信息用于确定所述第二发射功率的信息;
所述第一设备根据所述第二发射功率的信息确定所述第一发射功率。
可选地,所述第二设备可以为网络设备,或者也可以为其他终端设备,本申请实施例对此不作限定。
即,第二设备可以指示第一设备用于信号发送的第二发射功率的信息,进一步地,所述第一设备可以根据所述第二发射功率的信息,确定用于信道检测的第一发射功率的信息。
可选地,所述第一设备可以根据所述第二发射功率的信息,结合所述第二波束的信息或所述第一波束的信息,确定用于信道检测的第一发射功率。例如,所述第一设备可以将所述第一波束和所述第二波束的波束增益的差值加上所述第二发射功率后得到的结果,确定为所述第一发射功率的大小,具体过程可以参考前述实施例中的相关描述,这里不再赘述。
应理解,在本申请实施例中,所述第一指示信息、所述第二指示信息和所述第三指示信息可以为同一指示信息,也可以为不同的指示信息,本申请实施例对此不作限定。
可选地,所述第一指示信息、所述第二指示信息或所述第三指示信息可以承载于现有的消息或信令中,例如,物理层信令或高层信令等,或者也可以新增消息或信令来承载上述指示信息,本申请实施例对此不作限定。
图4是根据本申请另一实施例的传输信息的方法400的示意性流程图,如图4所示,该方法400包括如下内容:
S410,第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;
S420,在所述第一时域资源可用的情况下,若第一波束的覆盖角度小于用于信号发送的第二波束的覆盖角度,所述第一设备不通过所述第一时域资源发送所述第一信息,其中,所述第一波束对应的方向与所述第二波束对应的方向部分重叠。
在该实施例中,用于信道检测的第一波束的覆盖角度小于用于信号发送的第二波束的覆盖角度,即信道检测范围小于数据传输范围,或者说,信道检测范围未完全覆盖数据传输范围,例如,如图5所示的场景,此情况下,即使第一时域资源可用,所述第一设备也可以不使用该第一时域资源进行数据传输,从而能够避免对免授权频谱上的其他通信链路的干扰。
可选地,在该实施例中,所述第一设备也可以先判断第一波束的覆盖角度和第二波束的覆盖角度的大小,根据覆盖角度的大小关系,确定是否在该第一时域资源上进行数据传输,例如,在第一波束的覆盖角度小于所述第二波束的覆盖角度时,所述第一设备可以直接确定不在所述第一信道上进行数据传输,而不需要进行信道检测,从而避免对通信资源的浪费,或者在所述第一波束的覆盖角度大于所述第二波束的覆盖角度时,所述第一设备可以对所述第一信道进行信道检测,以确定是否进行后续的数据传输,具体 实现过程可以参考前述实施例的相关描述。
可选地,在一些实施例中,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
可选地,在一些实施例中,所述方法400还包括:
所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
所述第一设备根据所述第二波束的信息确定所述第一波束的信息。
可选地,在一些实施例中,所述方法400还包括:
所述第一设备接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
可选地,在一些实施例中,所述第一设备为网络设备。
可选地,在一些实施例中,所述第一设备为终端设备。
上文结合图1至图5,详细描述了本申请的方法实施例,下文结合图6至图9,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的传输信息的设备500的示意性框图。如图6所示,该设备500包括:
确定模块510,用于使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定用于发送第一信息的第一时域资源是否可用;
通信模块520,用于在所述第一时域资源可用的情况下,通过所述第一时域资源发送所述第一信息。
可选地,在一些实施例中,所述第一能量检测门限是根据第一发射功率确定的,所述通信模块具体用于:
使用第二发射功率通过所述第一时域资源发送所述第一信息,其中,所述第二发射功率的大小与所述第一发射功率的大小不同。
可选地,在一些实施例中,所述通信模块520还用于:
使用第二波束通过所述第一时域资源发送所述第一信息,其中,所述第二波束和所述第一波束不同,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
可选地,在一些实施例中,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
可选地,在一些实施例中,所述第一波束对应的方向包括所述第二波束对应的方向,所述第一波束的覆盖角度大于所述第二波束的覆盖角度。
可选地,在一些实施例中,所述第一波束的波束增益小于所述第二波束的波束增益,所述第二发射功率小于所述第一发射功率。
可选地,在一些实施例中,所述第二发射功率的大小等于所述第一发射功率的大小减去调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
可选地,在一些实施例中,所述第一波束的波束增益大于所述第二波束的波束增益,所述第二发射功率等于所述第一发射功率。
可选地,在一些实施例中,所述第一波束的波束增益大于所述第二波束的波束增益,所述第二发射功率大于所述第一发射功率。
可选地,在一些实施例中,所述第二发射功率的大小等于所述第一发射功率的大小加上调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
可选地,在一些实施例中,所述通信模块520还用于:
接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信 息;
所述确定模块510还用于:根据所述第二波束的信息确定所述第一波束的信息。
可选地,在一些实施例中,所述通信模块520还用于:
接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
可选地,在一些实施例中,所述通信模块520还用于:
接收第二设备发送的第三指示信息,所述第三指示信息用于确定所述第二发射功率的信息;
所述确定模块510还用于:根据所述第二发射功率的信息确定所述第一发射功率。
可选地,在一些实施例中,所述设备500为网络设备。
可选地,在一些实施例中,所述设备500为终端设备。
应理解,根据本申请实施例的传输信息的设备500可对应于本申请方法实施例中的第一设备,并且设备500中的各个单元的上述和其它操作和/或功能分别为了实现图1所示方法100中第一设备的相应流程,为了简洁,在此不再赘述。
图7是根据本申请实施例的传输信息的设备的示意性框图。图7的设备600包括:
确定模块610,用于使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定用于发送第一信息的第一时域资源是否可用;
通信模块620,用于在所述第一时域资源可用的情况下,若第一波束的覆盖角度小于用于数据发送的第二波束的覆盖角度,不通过所述第一时域资源发送所述第一信息,其中,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
可选地,在一些实施例中,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
可选地,在一些实施例中,所述通信模块620还用于:
接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
所述确定模块610还用于:根据所述第二波束的信息确定所述第一波束的信息。
可选地,在一些实施例中,所述通信模块620还用于:
接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
可选地,在一些实施例中,所述设备600为网络设备。
可选地,在一些实施例中,所述设备600为终端设备。
具体地,该设备600可以对应(例如,可以配置于或本身即为)上述方法400中描述的第一设备,并且,该设备600中的各模块或单元分别用于执行上述方法400中第一设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
如图8所示,本申请实施例还提供了一种传输信息的设备700,所述设备700可以为图6中的设备500,其能够用于执行与图1中方法100对应的第一设备的内容。所述设备700包括:输入接口710、输出接口720、处理器730以及存储器740,所述输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。所述存储器740用于存储包括程序、指令或代码。所述处理器730,用于执行所述存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图6中设备500包括的确定模块510可以用图8的处理器730实现,图6中设备500包括的通信模块520可以用图8的所述输入接口710和所述输出接口720实现。
如图9所示,本申请实施例还提供了一种传输信息的设备800,所述设备800可以为图7中的设备600,其能够用于执行与图4中方法400对应的第一设备的内容。所述设备800包括:输入接口810、输出接口820、处理器830以及存储器840,所述输入接口810、输出接口820、处理器830和存储器840可以通过总线系统相连。所述存储器840用于存储包括程序、指令或代码。所述处理器830,用于执行所述存储器840中的程序、指令或代码,以控制输入接口810接收信号、控制输出接口820发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,所述处理器830可以是中央处理单元(Central Processing Unit,简称为“CPU”),所述处理器830还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器也可以是任何常规的处理器等。
所述存储器840可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器840的一部分还可以包括非易失性随机存取存储器。例如,存储器840还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器830中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。所述存储介质位于存储器840,处理器830读取存储器840中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图7中设备600包括的确定模块610可以用图9的处理器830实现,图7中设备600包括的通信模块620可以用图9的所述输入接口810和所述输出接口820实现。
本申请实施例还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图1至图5所示实施例的方法。
本申请实施例还提出了一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行图1至图5所示实施例的方法的相应流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种传输信息的方法,其特征在于,所述方法包括:
    第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;
    在所述第一时域资源可用的情况下,所述第一设备通过所述第一时域资源发送所述第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一能量检测门限是根据第一发射功率确定的,所述第一设备通过所述第一时域资源发送所述第一信息,包括:
    所述第一设备使用第二发射功率通过所述第一时域资源发送所述第一信息,其中,所述第二发射功率的大小和所述第一发射功率的大小不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一设备通过所述第一时域资源发送所述第一信息,包括:
    所述第一设备使用第二波束通过所述第一时域资源发送所述第一信息,其中,所述第二波束和所述第一波束不同,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
  4. 根据权利要求3所述的方法,其特征在于,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一波束对应的方向包括所述第二波束对应的方向,所述第一波束的覆盖角度大于所述第二波束的覆盖角度。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述第一波束的波束增益小于所述第二波束的波束增益,所述第二发射功率小于所述第一发射功率。
  7. 根据权利要求6所述的方法,所述第二发射功率的大小等于所述第一发射功率的大小减去调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
  8. 根据权利要求3至5中任一项所述的方法,其特征在于,所述第一波束的波束增益大于所述第二波束的波束增益,所述第二发射功率大于或等于所述第一发射功率。
  9. 根据权利要求8所述的方法,所述第二发射功率的大小等于所述第一发射功率的大小加上调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
  10. 根据权利要求3至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
    所述第一设备根据所述第二波束的信息确定所述第一波束的信息。
  11. 根据权利要求3至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
  12. 根据权利要求3至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第二设备发送的第三指示信息,所述第三指示信息用于确定所述第二发射功率的信息;
    所述第一设备根据所述第二发射功率的信息确定所述第一发射功率。
  13. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一设备为网络设备。
  14. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一设备为终端设备。
  15. 一种传输信息的方法,其特征在于,所述方法包括:
    第一设备使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定所述第一设备用于发送第一信息的第一时域资源是否可用;
    在所述第一时域资源可用的情况下,若第一波束的覆盖角度小于用于数据发送的第二波束的覆盖角度,所述第一设备不通过所述第一时域资源发送所述第一信息,其中,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
  16. 根据权利要求15所述的方法,其特征在于,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
    所述第一设备根据所述第二波束的信息确定所述第一波束的信息。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述第一设备为网络设备。
  20. 根据权利要求15至18中任一项所述的方法,其特征在于,所述第一设备为终端设备。
  21. 一种传输信息的设备,其特征在于,包括:
    确定模块,用于使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定用于发送第一信息的第一时域资源是否可用;
    通信模块,用于在所述第一时域资源可用的情况下,通过所述第一时域资源发送所述第一信息。
  22. 根据权利要求21所述的设备,其特征在于,所述第一能量检测门限是根据第一发射功率确定的,所述通信模块具体用于:
    使用第二发射功率通过所述第一时域资源发送所述第一信息,其中,所述第二发射功率的大小和所述第一发射功率的大小不同。
  23. 根据权利要求21或22所述的设备,其特征在于,所述通信模块还用于:
    使用第二波束通过所述第一时域资源发送所述第一信息,其中,所述第二波束和所述第一波束不同,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
  24. 根据权利要求23所述的设备,其特征在于,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
  25. 根据权利要求23或24所述的设备,其特征在于,所述第一波束对应的方向包括所述第二波束对应的方向,所述第一波束的覆盖角度大于所述第二波束的覆盖角度。
  26. 根据权利要求23至25中任一项所述的设备,所述第一波束的波束增益小于所述第二波束的波束增益,所述第二发射功率小于所述第一发射功率。
  27. 根据权利要求26所述的设备,所述第二发射功率的大小等于所述第一发射功率的大小减去调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
  28. 根据权利要求23至25中任一项所述的设备,所述第一波束的波束增益大于所述第二波束的波束增益,所述第二发射功率大于或等于所述第一发射功率。
  29. 根据权利要求28所述的设备,所述第二发射功率的大小等于所述第一发射功率的大小加上调整量,其中,所述调整量根据所述第二波束的波束增益大小与所述第一波束的波束增益大小的差值确定。
  30. 根据权利要求23至29中任一项所述的设备,其特征在于,所述通信模块还用于:
    接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
    所述确定模块还用于:根据所述第二波束的信息确定所述第一波束的信息。
  31. 根据权利要求23至30中任一项所述的设备,其特征在于,所述通信模块还用于:
    接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
  32. 根据权利要求23至31中任一项所述的设备,其特征在于,所述通信模块还用于:
    接收第二设备发送的第三指示信息,所述第三指示信息用于确定所述第二发射功率的信息;
    所述确定模块还用于:根据所述第二发射功率的信息确定所述第一发射功率。
  33. 根据权利要求21至31中任一项所述的设备,其特征在于,所述设备为网络设备。
  34. 根据权利要求21至32中任一项所述的设备,其特征在于,所述设备为终端设备。
  35. 一种传输信息的设备,其特征在于,所述方法包括:
    确定模块,用于使用第一波束和第一能量检测门限对免授权载波上的第一信道进行信道检测,以确定用于发送第一信息的第一时域资源是否可用;
    通信模块,用于在所述第一时域资源可用的情况下,若第一波束的覆盖角度小于用于数据发送的第二波束的覆盖角度,不通过所述第一时域资源发送所述第一信息,其中,所述第二波束对应的方向和所述第一波束对应的方向至少部分重叠。
  36. 根据权利要求35所述的设备,其特征在于,所述第一波束为第一波束集合中的波束,所述第二波束为第二波束集合中的波束。
  37. 根据权利要求35或36所述的设备,其特征在于,所述通信模块还用于:
    接收第二设备发送的第一指示信息,所述第一指示信息用于指示所述第二波束的信息;
    根据所述第二波束的信息确定所述第一波束的信息。
  38. 根据权利要求35至37中任一项所述的设备,其特征在于,所述通信模块还用于:
    接收第二设备发送的第二指示信息,所述第二指示信息用于指示所述第一波束的信息。
  39. 根据权利要求35至38中任一项所述的设备,其特征在于,所述设备为网络设备。
  40. 根据权利要求35至38中任一项所述的设备,其特征在于,所述设备为终端设备。
PCT/CN2018/079875 2018-03-21 2018-03-21 传输信息的方法和设备 WO2019178776A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2018/079875 WO2019178776A1 (zh) 2018-03-21 2018-03-21 传输信息的方法和设备
KR1020207029016A KR20200135389A (ko) 2018-03-21 2018-03-21 정보를 전송하는 방법 및 디바이스
EP18910805.3A EP3771247B1 (en) 2018-03-21 2018-03-21 Method and device for transmitting information
JP2020550796A JP2021520088A (ja) 2018-03-21 2018-03-21 情報を伝送する方法及びデバイス
CN201880090945.3A CN111886886A (zh) 2018-03-21 2018-03-21 传输信息的方法和设备
AU2018414355A AU2018414355A1 (en) 2018-03-21 2018-03-21 Method and device for transmitting information
US17/024,867 US11350455B2 (en) 2018-03-21 2020-09-18 Method and device for performing channel detection on unlicensed carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079875 WO2019178776A1 (zh) 2018-03-21 2018-03-21 传输信息的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/024,867 Continuation US11350455B2 (en) 2018-03-21 2020-09-18 Method and device for performing channel detection on unlicensed carrier

Publications (1)

Publication Number Publication Date
WO2019178776A1 true WO2019178776A1 (zh) 2019-09-26

Family

ID=67988051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079875 WO2019178776A1 (zh) 2018-03-21 2018-03-21 传输信息的方法和设备

Country Status (7)

Country Link
US (1) US11350455B2 (zh)
EP (1) EP3771247B1 (zh)
JP (1) JP2021520088A (zh)
KR (1) KR20200135389A (zh)
CN (1) CN111886886A (zh)
AU (1) AU2018414355A1 (zh)
WO (1) WO2019178776A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275411B2 (en) * 2018-06-20 2022-03-15 Kabushiki Kaisha Toshiba Electronic apparatus, system and power supply method
CN115699849A (zh) * 2020-08-07 2023-02-03 Oppo广东移动通信有限公司 无线通信方法和设备
WO2023050346A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 能量检测门限的确定方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210307063A1 (en) * 2020-03-27 2021-09-30 Qualcomm Incorporated Hierarchical sensing in a wireless communications system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027123A (zh) * 2016-02-02 2017-08-08 索尼公司 用于无线通信系统的装置和方法、频谱管理装置
CN107820259A (zh) * 2017-11-09 2018-03-20 宇龙计算机通信科技(深圳)有限公司 一种基于波束的信道空闲的确定方法和设备
CN107820684A (zh) * 2017-09-27 2018-03-20 北京小米移动软件有限公司 信道检测、信息发送方法、装置及通信设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9743363B2 (en) * 2014-06-24 2017-08-22 Qualcomm Incorporated CCA clearance in unlicensed spectrum
WO2016064169A2 (ko) * 2014-10-20 2016-04-28 엘지전자(주) 무선 통신 시스템에서 무선 신호 송수신 방법 및 이를 위한 장치
CN106160966B (zh) 2015-03-30 2021-01-26 中兴通讯股份有限公司 数据发送方法、占用信号的发送方法及装置
US10568136B2 (en) * 2016-05-23 2020-02-18 FG Innovation Company Limited Method and apparatus for control plane and user plane transmissions in a customized C-RAN
US10541741B2 (en) * 2016-05-26 2020-01-21 Qualcomm Incorporated System and method for beam switching and reporting
CN107734560B (zh) * 2016-08-12 2023-09-15 中兴通讯股份有限公司 信号传输方法、通信设备及通信系统
US11395154B2 (en) * 2019-04-18 2022-07-19 Qualcomm Incorporated Methods and apparatuses for determining sensing beam for an LBT procure
US11864127B2 (en) * 2019-06-04 2024-01-02 Qualcomm Incorporated Methods and apparatus to facilitate automatic association of pathloss reference and spatial relations for fast uplink beam switching
US20210307063A1 (en) * 2020-03-27 2021-09-30 Qualcomm Incorporated Hierarchical sensing in a wireless communications system
US11206620B2 (en) * 2020-04-17 2021-12-21 Qualcomm Incorporated Beam gain signaling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027123A (zh) * 2016-02-02 2017-08-08 索尼公司 用于无线通信系统的装置和方法、频谱管理装置
CN107820684A (zh) * 2017-09-27 2018-03-20 北京小米移动软件有限公司 信道检测、信息发送方法、装置及通信设备
CN107820259A (zh) * 2017-11-09 2018-03-20 宇龙计算机通信科技(深圳)有限公司 一种基于波束的信道空闲的确定方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3771247A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275411B2 (en) * 2018-06-20 2022-03-15 Kabushiki Kaisha Toshiba Electronic apparatus, system and power supply method
CN115699849A (zh) * 2020-08-07 2023-02-03 Oppo广东移动通信有限公司 无线通信方法和设备
WO2023050346A1 (zh) * 2021-09-30 2023-04-06 Oppo广东移动通信有限公司 能量检测门限的确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US11350455B2 (en) 2022-05-31
EP3771247A1 (en) 2021-01-27
EP3771247B1 (en) 2023-05-10
KR20200135389A (ko) 2020-12-02
EP3771247A4 (en) 2021-03-10
CN111886886A (zh) 2020-11-03
AU2018414355A1 (en) 2020-11-12
JP2021520088A (ja) 2021-08-12
US20210007141A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US11622383B2 (en) Method and device for channel sensing and signal transmission
US11510159B2 (en) Signal transmission method, network device, and terminal device
US12089224B2 (en) Wireless communication method, terminal device and network device
US11350455B2 (en) Method and device for performing channel detection on unlicensed carrier
US12040854B2 (en) Wireless communication method, terminal device and network device
CN112640347B (zh) 无线通信的方法、终端设备和网络设备
WO2021138866A1 (zh) 信息确定方法、信息指示方法、终端设备和网络设备
US11792831B2 (en) Method and device for signal transmission
US20200344806A1 (en) Method and device for transmitting information
CN114451005B (zh) 链路失败检测的方法和装置
WO2021120009A1 (zh) 信号检测方法、信号传输方法、终端设备和网络设备
CN116686340A (zh) 一种通信方法和装置
WO2019126964A1 (zh) 传输信息的方法、网络设备和终端设备
US11758495B2 (en) Signal transmission method and apparatus and computer storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207029016

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018910805

Country of ref document: EP

Effective date: 20201021

ENP Entry into the national phase

Ref document number: 2018414355

Country of ref document: AU

Date of ref document: 20180321

Kind code of ref document: A