WO2019177147A1 - Thermoelectric conversion element - Google Patents
Thermoelectric conversion element Download PDFInfo
- Publication number
- WO2019177147A1 WO2019177147A1 PCT/JP2019/010818 JP2019010818W WO2019177147A1 WO 2019177147 A1 WO2019177147 A1 WO 2019177147A1 JP 2019010818 W JP2019010818 W JP 2019010818W WO 2019177147 A1 WO2019177147 A1 WO 2019177147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- thermoelectric conversion
- silicide
- conversion element
- element body
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 83
- JUZTWRXHHZRLED-UHFFFAOYSA-N [Si].[Cu].[Cu].[Cu].[Cu].[Cu] Chemical compound [Si].[Cu].[Cu].[Cu].[Cu].[Cu] JUZTWRXHHZRLED-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910021360 copper silicide Inorganic materials 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 33
- 239000010949 copper Substances 0.000 claims description 37
- 229910021332 silicide Inorganic materials 0.000 claims description 33
- -1 silicide compound Chemical class 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 5
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical group [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract description 12
- 238000005245 sintering Methods 0.000 description 36
- 239000000843 powder Substances 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 21
- 239000007791 liquid phase Substances 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- YTHCQFKNFVSQBC-UHFFFAOYSA-N magnesium silicide Chemical compound [Mg]=[Si]=[Mg] YTHCQFKNFVSQBC-UHFFFAOYSA-N 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- 229910021338 magnesium silicide Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000005219 brazing Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 6
- 229910021334 nickel silicide Inorganic materials 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
- H10N10/817—Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
Definitions
- thermoelectric conversion element including an element main body made of a thermoelectric conversion material of a silicide compound and electrodes formed on one surface of the element main body and the other surface facing each other.
- thermoelectric conversion elements made of thermoelectric conversion materials are electronic elements that can convert heat and electricity to each other using phenomena such as the Seebeck effect and Peltier effect.
- the Seebeck effect is an effect of converting thermal energy into electric energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of the thermoelectric conversion material. Such electromotive force is determined by the characteristics of the thermoelectric conversion material. In recent years, thermoelectric power generation utilizing this effect has been actively developed.
- thermoelectric conversion material As an index representing the characteristics of such a thermoelectric conversion element (thermoelectric conversion material), for example, the power factor (PF) expressed by the following formula (1) or the dimensionless figure of merit expressed by the following formula (2) (ZT) is used.
- PF S 2 ⁇ (1)
- ZT S 2 ⁇ T / ⁇ (2)
- T absolute temperature (K)
- thermoelectric conversion material constituting the element body include silicide-based compounds such as magnesium silicide.
- thermoelectric conversion element described above has a structure in which electrodes are formed on one end side and the other end side of a thermoelectric conversion material.
- Nickel is used as an electrode formed on the element body made of a thermoelectric conversion material of a silicide-based compound such as magnesium silicide. This is because the thermal expansion coefficient of magnesium silicide (Mg 2 Si) at room temperature (15.5 ⁇ 10 ⁇ 6 (/ ° C.)) and the thermal expansion coefficient of nickel at room temperature (15.2 ⁇ 10 ⁇ 6 (/ ° C)) is approximate.
- thermoelectric conversion element when used in an intermediate temperature range (300 ° C. or more and 600 ° C. or less), Si of the silicide compound of the element body diffuses to the electrode side, and nickel of the electrode becomes nickel silicide. Since this nickel silicide has a thermal expansion coefficient at room temperature of 12.0 ⁇ 10 ⁇ 6 (/ ° C.), the difference in thermal expansion coefficient from the element body made of a thermoelectric conversion material of a silicide compound increases. There was a risk of cracks occurring in the element body. Further, the composition in the vicinity of the interface region with the electrode of the element body changes, and there is a risk that the electrical resistance increases or the strength decreases.
- Patent Document 1 proposes a thermoelectric conversion element in which an intermediate layer made of a refractory metal silicide is formed between an element body made of a thermoelectric conversion material and an electrode. In this thermoelectric conversion element, diffusion of elements between the element body and the electrode is suppressed by an intermediate layer made of refractory metal silicide.
- Patent Document 2 proposes a thermoelectric conversion element using a mixture of nickel silicide and metallic nickel as an electrode.
- the intermediate layer made of refractory metal silicide is formed by vapor deposition, sputtering, or CVD, and the intermediate layer cannot be formed efficiently. Also, it has been difficult to form a thick intermediate layer. For this reason, there is a possibility that the electrode element cannot be sufficiently prevented from diffusing into the element body by the intermediate layer.
- nickel silicide is used as an electrode.
- nickel silicide has a large difference in thermal expansion coefficient from the element main body made of magnesium silicide or the like, and heat during manufacture is low. There was a possibility that the element main body and the electrode were cracked by the thermal stress resulting from the history.
- metallic nickel is in direct contact with the element body made of magnesium silicide or the like, Si in the element body diffuses to the metallic nickel side, the composition in the vicinity of the interface region of the element body changes, and the electrical resistance is high. Or the strength may be reduced.
- the present invention has been made in view of the above-described circumstances, and the element body made of a thermoelectric conversion material of a silicide compound and the electrode are reliably bonded, the electric resistance at the bonding interface is sufficiently low, and the element It aims at providing the thermoelectric conversion element which can suppress that a main body and an electrode generate
- thermoelectric conversion element of the present invention includes an element body made of a thermoelectric conversion material of a silicide compound, and electrodes formed on one surface of the element body and the other surface facing each other.
- the electrode is made of a sintered body of copper silicide, and the electrode and the element body are directly joined.
- thermoelectric conversion element since the electrode is composed of a sintered body of copper silicide, the difference in thermal expansion coefficient from the element main body made of a thermoelectric conversion material of a silicide compound can be reduced. Since copper silicide has a relatively low melting point, a liquid phase is generated in at least a part of copper silicide when a sintered body to be an electrode is formed, and thermal strain can be released. Therefore, it can suppress that a crack arises in an element main part and an electrode at the time of manufacture. When forming a sintered body to be an electrode, the entire copper silicide may be in a liquid phase.
- the electrode and the element main body are directly joined, and as described above, a liquid phase is generated in at least a part of the copper silicide when the sintered body to be the electrode is formed.
- the element main body can be sufficiently bonded, and the electrical resistance at the interface can be suppressed sufficiently low.
- thermoelectric conversion element of the present invention a metal layer may be formed on the surface of the electrode opposite to the element body.
- the metal layer formed on the surface opposite to the element body can improve the bondability with the terminal.
- the thickness of the electrode is preferably in the range of 10 ⁇ m or more and 300 ⁇ m or less.
- the rigidity of the electrode does not become higher than necessary, and the occurrence of cracks in the element body during manufacturing can be suppressed.
- the electrical conductivity in an electrode is securable by making the thickness of the said electrode 10 micrometers or more.
- the electrode is composed of a sintered body of copper silicide, and the atomic ratio Si / Cu of Si / Cu in the copper silicide is in the range of 0.12 to 0.4. It is preferable to be inside. In this case, since the Si / Cu atomic ratio Si / Cu in the copper silicide constituting the electrode is in the range of 0.12 or more and 0.4 or less, it is possible to ensure high electrical conductivity in the electrode and to manufacture the electrode. Occurrence of cracks in the element body at the time can be suppressed.
- thermoelectric conversion element of this invention it is preferable that the said electrode is comprised with the sintered compact of the copper silicide, and the porosity in the said copper silicide is 60% or less. In this case, since the porosity of the copper silicide constituting the electrode is 60% or less, it is possible to suppress an increase in electrical resistance.
- the element body made of the thermoelectric conversion material of the silicide compound and the electrode are reliably bonded, the electrical resistance at the interface is sufficiently low, and the occurrence of cracks in the element body and the electrode can be suppressed.
- thermoelectric conversion element which is 1st embodiment of this invention, and the thermoelectric conversion module using this thermoelectric conversion element. It is a flowchart which shows an example of the manufacturing method of the thermoelectric conversion element which is one Embodiment of this invention. It is sectional drawing which shows an example of the sintering apparatus used with the manufacturing method of the thermoelectric conversion element shown in FIG. It is explanatory drawing which shows the measurement means of the electrical resistance in the Example of this invention.
- thermoelectric conversion element according to an embodiment of the present invention will be described with reference to the accompanying drawings.
- the following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.
- drawings used in the following description in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience. Not necessarily.
- FIG. 1 shows a thermoelectric conversion element 10 according to a first embodiment of the present invention, and a thermoelectric conversion module 1 using the thermoelectric conversion element 10.
- a thermoelectric conversion module 1 shown in FIG. 1 includes a thermoelectric conversion element 10 and terminals 3 and 3 disposed on one surface and the other surface of the thermoelectric conversion element 10.
- the thermoelectric conversion element 10 includes an element main body 11 made of a thermoelectric conversion material, and electrodes 15 and 15 formed on one surface and the other surface of the element main body 11, respectively. As shown in FIG. 1, the element body 11 is formed in a columnar shape, and electrodes 15 and 15 are disposed on both end surfaces of the columnar shape.
- the shape of the element body 11 is not limited, but may be a rectangular parallelepiped shape, a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like. Both surfaces of the element body 11 to which the electrodes 15 and 15 are bonded may be parallel to each other or may be slightly inclined.
- thermoelectric conversion material constituting the element body 11 is made of, for example, a silicide compound, and in the present embodiment, the thermoelectric conversion material is preferably made of a sintered body of magnesium silicide (Mg 2 Si).
- silicide compounds that can be used in addition to magnesium silicide include silicon germanium (Si—Ge) total solid solution, manganese silicon (Mn—Si), and iron silicon (Fe—Si).
- the thermoelectric conversion material constituting the element body 11 includes at least one of Li, Na, K, B, Al, Ga, In, N, P, As, Sb, Bi, Ag, Cu, and Y as a dopant. May be included. When the dopant is included, the total content in the element body 11 is preferably 0.1% by mass or more and 3.0% by mass or less, but is not limited to this range.
- the electrode 15 is composed of a sintered body of copper silicide, and the electrode 15 and the element body 11 are directly joined.
- the electrode 15 in this example has the same planar shape as the end face of the element body 11.
- a metal layer 16 is formed on the surface of the electrode 15 on the side opposite to the element body 11. That is, the metal layer 16 is disposed between the electrode 15 and the terminal 3.
- the metal layer 16 in this example has the same planar shape as the electrode 15.
- the thickness of the electrode 15 made of a copper silicide sintered body is preferably in the range of 10 ⁇ m to 300 ⁇ m. If the thickness of the electrode 15 composed of a sintered body of copper silicide is 10 ⁇ m or more, the electrical conductivity in the electrode 15 can be ensured. If the thickness of the electrode 15 composed of a sintered body of copper silicide is 300 ⁇ m or less, the rigidity of the electrode 15 is not increased more than necessary, and the occurrence of cracks in the element body 11 during manufacturing can be suppressed.
- the lower limit of the thickness of the electrode 15 made of a sintered copper silicide is more preferably 50 ⁇ m or more.
- the upper limit of the thickness of the electrode 15 made of a copper silicide sintered body is more preferably 150 ⁇ m or less.
- the Si / Cu atomic ratio Si / Cu is preferably in the range of 0.12 to 0.4.
- the copper silicide constituting the electrode 15 is fired by mixing copper silicide powders having a plurality of compositions (Si / Cu), and the average value thereof is adjusted to be within the above-described range.
- specific examples of copper silicide include Cu 3 Si (atomic ratio 1/3) and Cu 7 Si (atomic ratio 1/7), which can be mixed and used as a sintering raw material.
- the atomic ratio Si / Cu of the copper silicide constituting the electrode 15 is 0.4 or less, single-phase sintering material is Cu 3 Si, or a Cu 3 Si, copper silicide consisting of minor amounts of other composition It is a copper silicide powder formed from a mixture. By melting the whole or a part of the sintering raw material, electrical conduction in the electrode 15 can be secured, and cracking of the element body 11 at the time of manufacture can be suppressed.
- the lower limit of the number ratio Si / Cu of the copper silicide constituting the electrode 15 is more preferably 0.13 or more.
- the upper limit of the atomic ratio Si / Cu of the copper silicide constituting the electrode 15 is more preferably 0.35 or less.
- a copper silicide powder having a plurality of compositions Si / Cu
- a part of the electrode 15 has a liquid phase solidification part formed by solidification of the liquid phase.
- This liquid phase solidification part has fewer voids and a locally higher density than the region where no liquid phase is formed.
- the porosity of the electrode 15 as a whole is not limited in the present invention, but is preferably 0% by volume or more and 60% by volume or less, more preferably 0% by volume or more and 50% by volume or less.
- the distribution of the liquid phase solidified portion in the electrode 15 is not limited, it is preferable from the viewpoint of stress relaxation that the liquid phase solidified portion is concentrated and distributed in a layered manner on the element body 11 side.
- the liquid phase solidified portions may be distributed substantially uniformly over the entire area of the electrode 15, or may be concentrated and distributed in a layered manner on the metal layer 16 side.
- the porosity of the electrode 15 was determined by the following method. First, the weight of the silicide sintered body before forming the copper silicide electrode is measured. Next, after forming the electrodes, the thicknesses of the electrodes on both sides are measured at five locations with an optical microscope or a scanning electron microscope, and the average is obtained. Next, the size (vertical width, horizontal width, radius, etc.) of the electrode surfaces on both surfaces is measured with a caliper or a micrometer, and the surface areas of the electrode surfaces on both surfaces are obtained. From this surface area and the thickness of each electrode on both sides, the volume of the electrode part on each side is obtained.
- the weight of the state in which the silicide sintered body and the electrode are integrated is weighed, and the weight of the electrode is obtained by subtracting the weight of the silicide sintered body.
- the density of the electrode parts is determined from the weight and volume of the electrode parts on both sides. The density thus obtained is taken as the measured density.
- the true density was estimated and calculated from the average composition obtained by analyzing the electrode layer with EPMA, and the porosity was determined from the equation (100 ⁇ (measured density / true density ⁇ 100) (%)).
- the metal layer 16 is made of, for example, a metal having excellent conductivity, such as nickel, aluminum, or copper. In the present embodiment, the metal layer 16 is preferably made of aluminum.
- the metal layer 16 is formed by bonding a metal foil or the like to the electrode 15 by, for example, brazing.
- the thickness of the metal layer 16 is not limited, but is preferably in the range of 0.1 mm to 2.0 mm.
- the terminal 3 is formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In the present embodiment, it is preferable to use an aluminum rolled plate.
- the metal layer 16 formed on the electrode 15 and the terminal 3 can be joined by, for example, Ag brazing, Ag plating, or the like.
- the pair of terminals 3 of this embodiment extend to opposite sides as viewed from the element body 11 and are arranged in parallel to each other, but the present invention is not limited to this arrangement.
- thermoelectric conversion element 10 described above will be described with reference to FIGS.
- silicide compound powder preparation step S01 First, a silicide compound powder (magnesium silicide powder) serving as a parent phase of a thermoelectric conversion material constituting the element body is prepared.
- a silicide compound ingot (magnesium silicide) is manufactured, and this is pulverized and sieved to manufacture a silicide compound powder (magnesium silicide powder) having a predetermined particle size.
- Commercially available magnesium compound powder (magnesium silicide powder) may be used.
- the average particle diameter of the silicide compound powder (magnesium silicide powder) is preferably in the range of 0.5 ⁇ m to 100 ⁇ m.
- the sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 includes, for example, a pressure-resistant housing 101, a vacuum pump 102 that depressurizes the inside of the pressure-resistant housing 101, and a hollow cylinder disposed in the pressure-resistant housing 101.
- a carbon plate 107 and a carbon sheet 108 are disposed between the electrode portions 105a and 105b and the sintering raw material powder Q, respectively.
- a thermometer, a displacement meter, etc. are provided.
- a heater 109 is disposed on the outer peripheral side of the carbon mold 103.
- the heater 109 is disposed on four side surfaces so as to cover the entire outer peripheral side of the carbon mold 103.
- a carbon heater a nichrome wire heater, a molybdenum heater, a Kanthal wire heater, a high frequency heater, or the like can be used.
- the raw material powder Q is filled into the carbon mold 103 of the electric current sintering apparatus 100 shown in FIG.
- the carbon mold 103 is covered with a graphite sheet or a carbon sheet.
- a direct current is passed between the pair of electrode portions 105a and 105b, and a current is passed through the sintered raw material powder Q to raise the temperature by self-heating (electric heating).
- the movable electrode portion 105a is moved toward the sintering raw material powder Q, and the sintering raw material powder Q is pressurized at a predetermined pressure with the fixed electrode portion 105b.
- the heater 109 is heated.
- the sintered raw material powder Q is sintered by self-heating of the sintered raw material powder Q, heat from the heater 109, and pressurization.
- the sintering conditions in the element body sintering step S02 are such that the heating temperature of the sintering raw material powder Q is in the range of 650 ° C. or more and 1030 ° C. or less, and the holding time at this heating temperature is 0 minute or more (for example, 1 second or longer) and 3 minutes or shorter.
- the pressure load is 15 MPa or more and 60 MPa or less.
- the atmosphere in the pressure-resistant housing 101 is preferably an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In a vacuum atmosphere, the pressure is preferably 5 Pa or less.
- the element body sintering step S02 it is preferable to change the polarities of the one electrode portion 105a and the other electrode portion 105b at a predetermined time interval when a direct current is passed through the sintered raw material powder Q. That is, the state where one electrode portion 105a is energized with the anode and the other electrode portion 105b as the cathode and the state where one electrode portion 105a is energized with the cathode and the other electrode portion 105b as the anode are alternately performed.
- the element body 11 (thermoelectric conversion material) is manufactured through the above steps. By alternately switching the direction of the current, there is an advantage that the uniformity of the element body 11 is improved.
- the carbon mold 103 of the electric current sintering apparatus 100 is filled with copper silicide powder and a sintered body of a silicide compound.
- the carbon sheets on both end faces and side faces of the sintered body of the silicide compound are removed, and both end faces of the sintered body are polished with abrasive paper.
- a carbon plate 107 and a carbon sheet 108 are inserted into the carbon mold 103 and filled with a predetermined amount of copper silicide powder, then a sintered body of a silicide compound is inserted, and a predetermined amount of copper silicide powder is further filled thereon. Then, the carbon plate 107 and the carbon sheet 108 are disposed thereon.
- the copper silicide powder it is preferable to use a powder having an average particle size of 0.5 ⁇ m or more and 50 ⁇ m or less.
- a mixture of copper silicide powders having a plurality of compositions (mass ratio Si / Cu) is used as the copper silicide powder.
- Electrode sintering step S04 Using the power source device 106 of the electric current sintering apparatus 100, the temperature is raised by self-heating by applying a direct current between the pair of electrode portions 105a and 105b (electric current heating). Pressurization is performed at a predetermined pressure using the pair of electrode portions 105a and 105b. Further, the heater 109 is heated. Thus, the copper silicide powder is sintered to form the electrode 15 and the electrode 15 and the element body 11 are directly joined.
- the sintering condition in the electrode sintering step S04 is that the heating temperature is in the range of 650 ° C. or higher and 850 ° C. or lower, and the holding time at this heating temperature is 0 minute or longer (for example, 1 second or longer), 3 minutes. It is preferable to be within the following range.
- the pressure load is preferably in the range of 2 MPa to 40 MPa.
- the atmosphere in the pressure-resistant housing 101 is preferably an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In a vacuum atmosphere, the pressure is preferably 5 Pa or less.
- the copper silicide powder since a mixture of copper silicide powders having a plurality of compositions (atomic ratio Si / Cu) is used, a liquid phase is partially generated in the electrode sintering step S04, A liquid phase solidified portion formed by solidifying the liquid phase is formed on a part of the electrode 15.
- the bondability between the element body 11 and the electrode 15 is improved.
- the metal layer 16 is formed on the surface of the electrode 15 opposite to the element body 11.
- the metal layer 16 can be formed by joining a metal foil material having excellent conductivity such as nickel, aluminum, copper, etc. to the electrode 15 using, for example, a brazing material.
- a brazing material Ag brazing such as Ag—Cu—Zn—Cd, Ag—Cu—Sn, or the like can be used.
- a 0.5 mm thick aluminum rolled plate is cut to the same size as the cross section of the thermoelectric element, and the metal layer 16 is formed on the electrode 15 using Ag brazing (BAg-1A (JIS)). did.
- thermoelectric conversion element 10 in which the element body 11 made of a silicide-based thermoelectric conversion material and the electrode 15 made of a copper silicide sintered body are directly bonded is manufactured by the above-described steps.
- thermoelectric conversion element 10 since the electrode 15 is composed of a sintered body of copper silicide, the thermal expansion coefficient of the element main body 11 made of a thermoelectric conversion material of a silicide compound (magnesium silicide) is reduced. The difference can be reduced, and the occurrence of cracks due to the thermal history during manufacture and use can be suppressed.
- the copper silicide since the copper silicide has a relatively low melting point, a liquid phase is generated in part when the sintered body is formed, and thermal strain can be released, and the element main body 11 and the electrode 15 are cracked during manufacturing. It can be suppressed.
- the electrode 15 and the element body 11 are directly bonded, and a liquid phase is generated in part when forming the sintered body, the bondability between the electrode 15 and the element body 11 is improved. The electrical resistance at the interface can be kept sufficiently low.
- the terminal 3 and the electrode 15 can be joined relatively easily, and the terminal 3 and the electrode 15 can be joined. 15 can be improved.
- the thickness of the electrode 15 is in the range of 10 ⁇ m or more and 300 ⁇ m or less, the rigidity of the electrode 15 is not unnecessarily high, and the element main body 11 is not cracked during manufacturing. While being able to suppress, the electrical conductivity in the electrode 15 is securable.
- the Si / Cu atomic ratio Si / Cu in the copper silicide constituting the electrode 15 is in the range of 0.12 to 0.4, the electrical conductivity in the electrode 15 is Can be ensured, and the occurrence of cracks in the element body 11 during manufacturing can be suppressed.
- thermoelectric conversion element As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
- thermoelectric conversion element Although it demonstrated as what comprises the thermoelectric conversion element and thermoelectric conversion module of a structure as shown in FIG. 1, it is not limited to this, The thermoelectric conversion element of this invention may be used.
- the structure and arrangement of the terminals are not particularly limited.
- the silicide compound constituting the element body is described as magnesium silicide (Mg 2 Si).
- Mg 2 Si magnesium silicide
- the present invention is not limited to this, and any other composition may be used as long as it has thermoelectric properties. It may be a silicide compound.
- the copper silicide powder of a several composition (atomic ratio Si / Cu) was used as a copper silicide powder
- the copper silicide powder of a single composition is used. be able to.
- the entire electrode can be easily made into a liquid phase and bonded to the element body.
- the entire electrode since the entire electrode is in a liquid phase, it is difficult for the electrode to be peeled from the element body, and conductivity can be ensured.
- a cylindrical element body (size: diameter 20 mm ⁇ thickness 10 mm) made of a sintered body of magnesium silicide (Mg 2 Si) (porosity 2 vol%) was prepared.
- both sides of the element body are filled with powder of the material shown in Table 1 and subjected to current sintering by the method described above.
- a constant thickness electrode was formed.
- the porosity of the electrode is shown in Table 1. Except for Example 5, a plurality of copper silicide powders having different Si / Cu ratios were mixed to obtain the ratio shown in Table 1, and in Example 5, a single composition having the Si / Cu ratio shown in Table 1 Copper silicide powder was used.
- thermoelectric conversion elements of Examples and Comparative Examples the electrical resistance value, the presence or absence of cracks during production, and the Si / Cu ratio of the electrodes were evaluated as follows.
- thermoelectric conversion element A 10 mm ⁇ 10 mm ⁇ 10 mm cubic sample 10 was cut out from the obtained thermoelectric conversion element and used for evaluation.
- the circuit shown in FIG. 4 is assembled using a DC power source and a multimeter, and a constant current of 50 mA is passed between both electrodes 15, and one electrode 15 is digitally moved from 1 mm to 9 mm at 1 mm intervals. Each voltage was measured by bringing the electrode E of the multimeter into contact with the side surface of the element body 11. Next, the resistance value was obtained from the relationship between the voltage and the current, linearly approximated from the graph of the distance from the electrode end and the resistance value, and the intercept was defined as the electric resistance.
- thermoelectric conversion element The presence or absence of cracks during production was determined by visually observing the thermoelectric conversion element when it was taken out from the electric sintering apparatus after it was subjected to current sintering to form an electrode, or after being cut into a thermoelectric conversion element size. It was confirmed.
- Si / Cu ratio of electrode Regarding the Si / Cu ratio of the electrode, the Cu amount and the Si amount on the surface of the thermoelectric conversion element (surface on which the electrode is formed) are measured with EPMA (JXA-8800RL manufactured by JEOL Ltd.), and the Si / Cu ratio is determined. Asked. Specifically, the electrode surface of the cubic sample was polished, and the Cu value and the Si amount were measured with EPMA at any five locations on the electrode surface to obtain an average value. In the case where the measurement point is a cavity or the end of the particle, the center of the particle closest to the measurement point was measured.
- EPMA JXA-8800RL manufactured by JEOL Ltd.
- Comparative Example 1 in which the electrode was made of nickel silicide, cracking occurred during manufacture. For this reason, the electrical resistance value and the porosity of the electrode were not evaluated.
- Comparative Example 2 in which the electrode was made of nickel, cracks occurred during production. For this reason, the electrical resistance value and the porosity of the electrode were not evaluated.
- Comparative Example 3 in which the electrode was made of aluminum, cracks did not occur during manufacture, but the electrical resistance value was as high as 0.19 ⁇ .
- Example 1 to 11 in which the electrodes were made of copper silicide, cracks did not occur during manufacture, and the electrical resistance value was low. From the above, according to Examples 1 to 11, the element body made of the thermoelectric conversion material of the silicide-based compound and the electrode are securely bonded, the electric resistance at the interface is sufficiently low, and the element body and the electrode are connected to each other. It was confirmed that a thermoelectric conversion element capable of suppressing the occurrence of cracking can be provided. In Example 11 in which the porosity exceeded 60%, although lower than that in Comparative Example 3, the electrical resistance value was slightly higher than those in Examples 1 to 10.
- thermoelectric conversion element of the present invention the element body made of the thermoelectric conversion material of the silicide compound and the electrode are reliably bonded, the electrical resistance at the interface is sufficiently low, and the element body and the electrode are cracked. Therefore, industrial use is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Silicon Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
Provided is a thermoelectric conversion element comprising: an element body (11) that comprises a thermoelectric conversion material that is silicide compounds; and electrodes (15) respectively formed on one surface of the element body (11) and the other surface that is on the backside of the one surface. The electrodes (15) are formed of a sintered body of copper silicide, and the electrodes (15) and the element body (11) are directly joined.
Description
この発明は、シリサイド系化合物の熱電変換材料からなる素子本体と、この素子本体の一方の面および対向する他方の面にそれぞれ形成された電極とを備えた熱電変換素子に関する。
本願は、2018年3月16日に日本に出願された特願2018-049874号、および、2019年3月6日に日本に出願された特願2019-040845号に基づき優先権を主張し、それらの内容をここに援用する。 The present invention relates to a thermoelectric conversion element including an element main body made of a thermoelectric conversion material of a silicide compound and electrodes formed on one surface of the element main body and the other surface facing each other.
This application claims priority based on Japanese Patent Application No. 2018-049874 filed in Japan on March 16, 2018 and Japanese Patent Application No. 2019-040845 filed in Japan on March 6, 2019. The contents thereof are incorporated herein.
本願は、2018年3月16日に日本に出願された特願2018-049874号、および、2019年3月6日に日本に出願された特願2019-040845号に基づき優先権を主張し、それらの内容をここに援用する。 The present invention relates to a thermoelectric conversion element including an element main body made of a thermoelectric conversion material of a silicide compound and electrodes formed on one surface of the element main body and the other surface facing each other.
This application claims priority based on Japanese Patent Application No. 2018-049874 filed in Japan on March 16, 2018 and Japanese Patent Application No. 2019-040845 filed in Japan on March 6, 2019. The contents thereof are incorporated herein.
熱電変換材料からなる熱電変換素子は、ゼーベック効果、ペルティエ効果といった現象を利用し、熱と電気とを相互に変換可能な電子素子である。ゼーベック効果は熱エネルギーを電気エネルギーに変換する効果であり、熱電変換材料の両端に温度差を生じさせると起電力が発生する現象である。こうした起電力は熱電変換材料の特性によって決まる。近年ではこの効果を利用した熱電発電の開発が盛んである。
Thermoelectric conversion elements made of thermoelectric conversion materials are electronic elements that can convert heat and electricity to each other using phenomena such as the Seebeck effect and Peltier effect. The Seebeck effect is an effect of converting thermal energy into electric energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of the thermoelectric conversion material. Such electromotive force is determined by the characteristics of the thermoelectric conversion material. In recent years, thermoelectric power generation utilizing this effect has been actively developed.
このような熱電変換素子(熱電変換材料)の特性を表す指標として、例えば以下の(1)式で表されるパワーファクター(PF)や、以下の(2)式で表される無次元性能指数(ZT)が用いられている。熱電変換材料においては、一面と他面側とで温度差を維持する必要があるため、熱伝導性が低いことが好ましい。
PF=S2σ・・・(1)
但し、S:ゼーベック係数(V/K)、σ:電気伝導率(S/m)
ZT=S2σT/κ・・・(2)
但し、T=絶対温度(K)、κ=熱伝導率(W/(m×K))
素子本体を構成する熱電変換材料としては、マグネシウムシリサイド等のシリサイド系化合物が挙げられる。 As an index representing the characteristics of such a thermoelectric conversion element (thermoelectric conversion material), for example, the power factor (PF) expressed by the following formula (1) or the dimensionless figure of merit expressed by the following formula (2) (ZT) is used. In the thermoelectric conversion material, since it is necessary to maintain a temperature difference between one side and the other side, it is preferable that the thermal conductivity is low.
PF = S 2 σ (1)
Where S: Seebeck coefficient (V / K), σ: electrical conductivity (S / m)
ZT = S 2 σT / κ (2)
Where T = absolute temperature (K), κ = thermal conductivity (W / (m × K))
Examples of the thermoelectric conversion material constituting the element body include silicide-based compounds such as magnesium silicide.
PF=S2σ・・・(1)
但し、S:ゼーベック係数(V/K)、σ:電気伝導率(S/m)
ZT=S2σT/κ・・・(2)
但し、T=絶対温度(K)、κ=熱伝導率(W/(m×K))
素子本体を構成する熱電変換材料としては、マグネシウムシリサイド等のシリサイド系化合物が挙げられる。 As an index representing the characteristics of such a thermoelectric conversion element (thermoelectric conversion material), for example, the power factor (PF) expressed by the following formula (1) or the dimensionless figure of merit expressed by the following formula (2) (ZT) is used. In the thermoelectric conversion material, since it is necessary to maintain a temperature difference between one side and the other side, it is preferable that the thermal conductivity is low.
PF = S 2 σ (1)
Where S: Seebeck coefficient (V / K), σ: electrical conductivity (S / m)
ZT = S 2 σT / κ (2)
Where T = absolute temperature (K), κ = thermal conductivity (W / (m × K))
Examples of the thermoelectric conversion material constituting the element body include silicide-based compounds such as magnesium silicide.
上述の熱電変換素子は、熱電変換材料の一端側及び他端側にそれぞれ電極が形成された構造とされている。マグネシウムシリサイド等のシリサイド系化合物の熱電変換材料からなる素子本体に形成される電極としては、ニッケルが用いられている。これは、マグネシウムシリサイド(Mg2Si)の室温での熱膨張係数(15.5×10-6(/℃))と、ニッケルの室温での熱膨張係数(15.2×10-6(/℃))とが近似しているためである。
The thermoelectric conversion element described above has a structure in which electrodes are formed on one end side and the other end side of a thermoelectric conversion material. Nickel is used as an electrode formed on the element body made of a thermoelectric conversion material of a silicide-based compound such as magnesium silicide. This is because the thermal expansion coefficient of magnesium silicide (Mg 2 Si) at room temperature (15.5 × 10 −6 (/ ° C.)) and the thermal expansion coefficient of nickel at room temperature (15.2 × 10 −6 (/ ° C)) is approximate.
しかしながら、上述の熱電変換素子を中温域(300℃以上600℃以下)で使用していると、素子本体のシリサイド系化合物のSiが電極側に拡散し、電極のニッケルがニッケルシリサイドとなる。このニッケルシリサイドは、室温での熱膨張係数が12.0×10-6(/℃)であることから、シリサイド系化合物の熱電変換材料からなる素子本体との熱膨張係数の差が大きくなり、素子本体にクラックが発生するおそれがあった。また、素子本体の電極との界面領域近傍の組成が変化してしまい、電気抵抗が高くなったり、強度が低下してしまったりするおそれがあった。
However, when the above-described thermoelectric conversion element is used in an intermediate temperature range (300 ° C. or more and 600 ° C. or less), Si of the silicide compound of the element body diffuses to the electrode side, and nickel of the electrode becomes nickel silicide. Since this nickel silicide has a thermal expansion coefficient at room temperature of 12.0 × 10 −6 (/ ° C.), the difference in thermal expansion coefficient from the element body made of a thermoelectric conversion material of a silicide compound increases. There was a risk of cracks occurring in the element body. Further, the composition in the vicinity of the interface region with the electrode of the element body changes, and there is a risk that the electrical resistance increases or the strength decreases.
そこで、例えば、特許文献1では、熱電変換材料からなる素子本体と電極との間に、高融点金属シリサイドからなる中間層を形成した熱電変換素子が提案されている。この熱電変換素子においては、高融点金属シリサイドからなる中間層によって、素子本体と電極の間の元素の拡散を抑制している。
また、特許文献2には、電極として、ニッケルシリサイドと金属ニッケルとの混合体を用いた熱電変換素子が提案されている。 Thus, for example, Patent Document 1 proposes a thermoelectric conversion element in which an intermediate layer made of a refractory metal silicide is formed between an element body made of a thermoelectric conversion material and an electrode. In this thermoelectric conversion element, diffusion of elements between the element body and the electrode is suppressed by an intermediate layer made of refractory metal silicide.
Patent Document 2 proposes a thermoelectric conversion element using a mixture of nickel silicide and metallic nickel as an electrode.
また、特許文献2には、電極として、ニッケルシリサイドと金属ニッケルとの混合体を用いた熱電変換素子が提案されている。 Thus, for example, Patent Document 1 proposes a thermoelectric conversion element in which an intermediate layer made of a refractory metal silicide is formed between an element body made of a thermoelectric conversion material and an electrode. In this thermoelectric conversion element, diffusion of elements between the element body and the electrode is suppressed by an intermediate layer made of refractory metal silicide.
Patent Document 2 proposes a thermoelectric conversion element using a mixture of nickel silicide and metallic nickel as an electrode.
ところで、特許文献1の熱電変換素子においては、高融点金属シリサイドからなる中間層を、蒸着法、スパッタ法、CVD法で成膜しており、中間層を効率良く形成できなかった。また、中間層を厚く形成することが困難だった。このため、中間層により素子本体へ電極の元素が拡散することを十分に抑制できないおそれがあった。
Incidentally, in the thermoelectric conversion element of Patent Document 1, the intermediate layer made of refractory metal silicide is formed by vapor deposition, sputtering, or CVD, and the intermediate layer cannot be formed efficiently. Also, it has been difficult to form a thick intermediate layer. For this reason, there is a possibility that the electrode element cannot be sufficiently prevented from diffusing into the element body by the intermediate layer.
特許文献2の熱電変換素子においては、電極としてニッケルシリサイドを用いているが、ニッケルシリサイドは、上述のように、マグネシウムシリサイド等からなる素子本体との熱膨張係数の差が大きく、製造時の熱履歴に起因した熱応力によって、素子本体や電極に割れが生じてしまうおそれがあった。さらに、金属ニッケルがマグネシウムシリサイド等からなる素子本体に直接接触した場合には、素子本体のSiが金属ニッケル側に拡散してしまい、素子本体の界面領域近傍の組成が変化し、電気抵抗が高くなったり、強度が低下するおそれがあった。
In the thermoelectric conversion element of Patent Document 2, nickel silicide is used as an electrode. However, as described above, nickel silicide has a large difference in thermal expansion coefficient from the element main body made of magnesium silicide or the like, and heat during manufacture is low. There was a possibility that the element main body and the electrode were cracked by the thermal stress resulting from the history. Furthermore, when metallic nickel is in direct contact with the element body made of magnesium silicide or the like, Si in the element body diffuses to the metallic nickel side, the composition in the vicinity of the interface region of the element body changes, and the electrical resistance is high. Or the strength may be reduced.
本発明は、前述した事情に鑑みてなされたものであって、シリサイド系化合物の熱電変換材料からなる素子本体と電極とが確実に接合され、接合界面における電気抵抗が十分に低く、かつ、素子本体や電極に割れが生じることを抑制できる熱電変換素子を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and the element body made of a thermoelectric conversion material of a silicide compound and the electrode are reliably bonded, the electric resistance at the bonding interface is sufficiently low, and the element It aims at providing the thermoelectric conversion element which can suppress that a main body and an electrode generate | occur | produce a crack.
上記課題を解決するために、本発明の熱電変換素子は、シリサイド系化合物の熱電変換材料からなる素子本体と、この素子本体の一方の面および対向する他方の面にそれぞれ形成された電極とを備え、前記電極は、銅シリサイドの焼結体で構成されており、前記電極と前記素子本体とが直接接合されている。
In order to solve the above problems, a thermoelectric conversion element of the present invention includes an element body made of a thermoelectric conversion material of a silicide compound, and electrodes formed on one surface of the element body and the other surface facing each other. The electrode is made of a sintered body of copper silicide, and the electrode and the element body are directly joined.
この熱電変換素子によれば、電極が銅シリサイドの焼結体で構成されているので、シリサイド系化合物の熱電変換材料からなる素子本体との熱膨張係数の差を小さくできる。銅シリサイドは比較的融点が低いので、電極となる焼結体を形成する際に銅シリサイドの少なくとも一部に液相が生じ、熱歪を解放できる。よって、製造時に、素子本体及び電極に割れが生じることを抑制できる。電極となる焼結体を形成する際には、銅シリサイドの全体を液相にしてもよい。
また、前記電極と前記素子本体とが直接接合されており、さらに、上述のように、電極となる焼結体を形成する際に銅シリサイドの少なくとも一部に液相が生じるから、前記電極と前記素子本体とを十分に接合することができ、界面における電気抵抗を十分に低く抑えることができる。 According to this thermoelectric conversion element, since the electrode is composed of a sintered body of copper silicide, the difference in thermal expansion coefficient from the element main body made of a thermoelectric conversion material of a silicide compound can be reduced. Since copper silicide has a relatively low melting point, a liquid phase is generated in at least a part of copper silicide when a sintered body to be an electrode is formed, and thermal strain can be released. Therefore, it can suppress that a crack arises in an element main part and an electrode at the time of manufacture. When forming a sintered body to be an electrode, the entire copper silicide may be in a liquid phase.
Further, since the electrode and the element main body are directly joined, and as described above, a liquid phase is generated in at least a part of the copper silicide when the sintered body to be the electrode is formed. The element main body can be sufficiently bonded, and the electrical resistance at the interface can be suppressed sufficiently low.
また、前記電極と前記素子本体とが直接接合されており、さらに、上述のように、電極となる焼結体を形成する際に銅シリサイドの少なくとも一部に液相が生じるから、前記電極と前記素子本体とを十分に接合することができ、界面における電気抵抗を十分に低く抑えることができる。 According to this thermoelectric conversion element, since the electrode is composed of a sintered body of copper silicide, the difference in thermal expansion coefficient from the element main body made of a thermoelectric conversion material of a silicide compound can be reduced. Since copper silicide has a relatively low melting point, a liquid phase is generated in at least a part of copper silicide when a sintered body to be an electrode is formed, and thermal strain can be released. Therefore, it can suppress that a crack arises in an element main part and an electrode at the time of manufacture. When forming a sintered body to be an electrode, the entire copper silicide may be in a liquid phase.
Further, since the electrode and the element main body are directly joined, and as described above, a liquid phase is generated in at least a part of the copper silicide when the sintered body to be the electrode is formed. The element main body can be sufficiently bonded, and the electrical resistance at the interface can be suppressed sufficiently low.
本発明の熱電変換素子においては、前記電極の前記素子本体とは反対側の面に金属層が形成されていてもよい。この場合、前記素子本体とは反対側の面に形成された金属層により、端子との接合性を向上させることが可能となる。
In the thermoelectric conversion element of the present invention, a metal layer may be formed on the surface of the electrode opposite to the element body. In this case, the metal layer formed on the surface opposite to the element body can improve the bondability with the terminal.
本発明の熱電変換素子においては、前記電極の厚さが10μm以上300μm以下の範囲内であることが好ましい。この場合、前記電極の厚さを300μm以下とすることにより、電極の剛性が必要以上に高くならず、製造時における素子本体の割れの発生を抑制できる。一方、前記電極の厚さを10μm以上とすることにより、電極における電気伝導度を確保できる。
In the thermoelectric conversion element of the present invention, the thickness of the electrode is preferably in the range of 10 μm or more and 300 μm or less. In this case, by setting the thickness of the electrode to 300 μm or less, the rigidity of the electrode does not become higher than necessary, and the occurrence of cracks in the element body during manufacturing can be suppressed. On the other hand, the electrical conductivity in an electrode is securable by making the thickness of the said electrode 10 micrometers or more.
本発明の熱電変換素子においては、前記電極は、銅シリサイドの焼結体で構成されており、前記銅シリサイドにおけるSiとCuの原子数比Si/Cuが0.12以上0.4以下の範囲内とされていることが好ましい。この場合、電極を構成する銅シリサイドにおけるSiとCuの原子数比Si/Cuが0.12以上0.4以下の範囲内とされているので、電極における電気伝導度を高く確保できるとともに、製造時における素子本体の割れの発生を抑制できる。
In the thermoelectric conversion element of the present invention, the electrode is composed of a sintered body of copper silicide, and the atomic ratio Si / Cu of Si / Cu in the copper silicide is in the range of 0.12 to 0.4. It is preferable to be inside. In this case, since the Si / Cu atomic ratio Si / Cu in the copper silicide constituting the electrode is in the range of 0.12 or more and 0.4 or less, it is possible to ensure high electrical conductivity in the electrode and to manufacture the electrode. Occurrence of cracks in the element body at the time can be suppressed.
さらに、本発明の熱電変換素子においては、前記電極が銅シリサイドの焼結体で構成されており、前記銅シリサイドにおける気孔率が60%以下であることが好ましい。この場合、電極を構成する銅シリサイドにおける気孔率が60%以下とされているので、電気抵抗が高くなることを抑制できる。
Furthermore, in the thermoelectric conversion element of this invention, it is preferable that the said electrode is comprised with the sintered compact of the copper silicide, and the porosity in the said copper silicide is 60% or less. In this case, since the porosity of the copper silicide constituting the electrode is 60% or less, it is possible to suppress an increase in electrical resistance.
本発明によれば、シリサイド系化合物の熱電変換材料からなる素子本体と電極とが確実に接合され、界面における電気抵抗が十分に低く、かつ、素子本体や電極に割れが生じることを抑制できる。
According to the present invention, the element body made of the thermoelectric conversion material of the silicide compound and the electrode are reliably bonded, the electrical resistance at the interface is sufficiently low, and the occurrence of cracks in the element body and the electrode can be suppressed.
以下に、本発明の一実施形態である熱電変換素子について、添付した図面を参照して説明する。以下の各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, a thermoelectric conversion element according to an embodiment of the present invention will be described with reference to the accompanying drawings. The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified. In the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience. Not necessarily.
本発明の実施形態である熱電変換素子10について、図1から図3を参照して説明する。図1は、本発明の第一の実施形態である熱電変換素子10、及び、この熱電変換素子10を用いた熱電変換モジュール1を示す。図1に示す熱電変換モジュール1は、熱電変換素子10と、この熱電変換素子10の一方の面および他方の面に配設された端子3,3とを備えている。
A thermoelectric conversion element 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 shows a thermoelectric conversion element 10 according to a first embodiment of the present invention, and a thermoelectric conversion module 1 using the thermoelectric conversion element 10. A thermoelectric conversion module 1 shown in FIG. 1 includes a thermoelectric conversion element 10 and terminals 3 and 3 disposed on one surface and the other surface of the thermoelectric conversion element 10.
熱電変換素子10は、熱電変換材料からなる素子本体11と、この素子本体11の一方の面及び他方の面にそれぞれ形成された電極15,15とを備えている。素子本体11は、図1に示すように、柱状に形成されており、柱形状の両端面に、それぞれ電極15,15が配設されている。素子本体11の形状は限定されないが、直方体状、円柱状、多角柱状、楕円柱状などであってもよい。素子本体11の電極15,15が接合された両面は、互いに平行であってもよいし、多少傾斜していてもよい。
The thermoelectric conversion element 10 includes an element main body 11 made of a thermoelectric conversion material, and electrodes 15 and 15 formed on one surface and the other surface of the element main body 11, respectively. As shown in FIG. 1, the element body 11 is formed in a columnar shape, and electrodes 15 and 15 are disposed on both end surfaces of the columnar shape. The shape of the element body 11 is not limited, but may be a rectangular parallelepiped shape, a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like. Both surfaces of the element body 11 to which the electrodes 15 and 15 are bonded may be parallel to each other or may be slightly inclined.
素子本体11を構成する熱電変換材料は、例えば、シリサイド系化合物からなり、本実施形態では、マグネシウムシリサイド(Mg2Si)の焼結体で構成されていることが好ましい。マグネシウムシリサイド以外に使用可能なシリサイド系化合物としては、シリコンゲルマニウム(Si-Ge)全率固溶体、マンガンシリコン(Mn-Si)、鉄シリコン(Fe-Si)などが挙げられる。
The thermoelectric conversion material constituting the element body 11 is made of, for example, a silicide compound, and in the present embodiment, the thermoelectric conversion material is preferably made of a sintered body of magnesium silicide (Mg 2 Si). Examples of silicide compounds that can be used in addition to magnesium silicide include silicon germanium (Si—Ge) total solid solution, manganese silicon (Mn—Si), and iron silicon (Fe—Si).
素子本体11を構成する熱電変換材料には、Li,Na,K,B,Al,Ga,In,N,P,As,Sb,Bi,Ag,Cu,Yのうち、少なくとも1種以上をドーパントとして含んでいてもよい。ドーパントを含む場合、素子本体11中の合計の含有量は0.1質量%以上かつ3.0質量%以下であることが好ましいが、この範囲に限定はされない。
The thermoelectric conversion material constituting the element body 11 includes at least one of Li, Na, K, B, Al, Ga, In, N, P, As, Sb, Bi, Ag, Cu, and Y as a dopant. May be included. When the dopant is included, the total content in the element body 11 is preferably 0.1% by mass or more and 3.0% by mass or less, but is not limited to this range.
熱電変換素子10においては、電極15が銅シリサイドの焼結体で構成されており、電極15と素子本体11とが直接接合されている。この例の電極15は、素子本体11の端面と同一の平面形状を有している。
また、本実施形態においては、図1に示すように、電極15のうち素子本体11とは反対側の面には金属層16が形成されている。すなわち、電極15と端子3との間に金属層16が配設されている。この例の金属層16は、電極15と同一の平面形状を有している。 In thethermoelectric conversion element 10, the electrode 15 is composed of a sintered body of copper silicide, and the electrode 15 and the element body 11 are directly joined. The electrode 15 in this example has the same planar shape as the end face of the element body 11.
In the present embodiment, as shown in FIG. 1, ametal layer 16 is formed on the surface of the electrode 15 on the side opposite to the element body 11. That is, the metal layer 16 is disposed between the electrode 15 and the terminal 3. The metal layer 16 in this example has the same planar shape as the electrode 15.
また、本実施形態においては、図1に示すように、電極15のうち素子本体11とは反対側の面には金属層16が形成されている。すなわち、電極15と端子3との間に金属層16が配設されている。この例の金属層16は、電極15と同一の平面形状を有している。 In the
In the present embodiment, as shown in FIG. 1, a
銅シリサイドの焼結体で構成された電極15の厚さは、10μm以上300μm以下の範囲内とされていることが好ましい。銅シリサイドの焼結体で構成された電極15の厚さが10μm以上であれば、電極15における電気伝導度を確保できる。銅シリサイドの焼結体で構成された電極15の厚さが300μm以下であれば、電極15の剛性が必要以上に高くならず、製造時における素子本体11の割れの発生を抑制できる。
銅シリサイドの焼結体で構成された電極15の厚さの下限は、50μm以上であることがより好ましい。銅シリサイドの焼結体で構成された電極15の厚さの上限は、150μm以下であることがより好ましい。 The thickness of theelectrode 15 made of a copper silicide sintered body is preferably in the range of 10 μm to 300 μm. If the thickness of the electrode 15 composed of a sintered body of copper silicide is 10 μm or more, the electrical conductivity in the electrode 15 can be ensured. If the thickness of the electrode 15 composed of a sintered body of copper silicide is 300 μm or less, the rigidity of the electrode 15 is not increased more than necessary, and the occurrence of cracks in the element body 11 during manufacturing can be suppressed.
The lower limit of the thickness of theelectrode 15 made of a sintered copper silicide is more preferably 50 μm or more. The upper limit of the thickness of the electrode 15 made of a copper silicide sintered body is more preferably 150 μm or less.
銅シリサイドの焼結体で構成された電極15の厚さの下限は、50μm以上であることがより好ましい。銅シリサイドの焼結体で構成された電極15の厚さの上限は、150μm以下であることがより好ましい。 The thickness of the
The lower limit of the thickness of the
電極15を構成する銅シリサイドにおいては、SiとCuの原子数比Si/Cuが0.12以上0.4以下の範囲内であることが好ましい。
電極15を構成する銅シリサイドは、複数の組成(Si/Cu)の銅シリサイド紛を混合して焼成されたものとされており、その平均値が上述の範囲内となるように調整されている。例えば、銅シリサイドの具体例としては、Cu3Si(原子数比1/3)やCu7Si(原子数比1/7)があり、これらを混合して焼結原料として用いることができる。 In the copper silicide constituting theelectrode 15, the Si / Cu atomic ratio Si / Cu is preferably in the range of 0.12 to 0.4.
The copper silicide constituting theelectrode 15 is fired by mixing copper silicide powders having a plurality of compositions (Si / Cu), and the average value thereof is adjusted to be within the above-described range. . For example, specific examples of copper silicide include Cu 3 Si (atomic ratio 1/3) and Cu 7 Si (atomic ratio 1/7), which can be mixed and used as a sintering raw material.
電極15を構成する銅シリサイドは、複数の組成(Si/Cu)の銅シリサイド紛を混合して焼成されたものとされており、その平均値が上述の範囲内となるように調整されている。例えば、銅シリサイドの具体例としては、Cu3Si(原子数比1/3)やCu7Si(原子数比1/7)があり、これらを混合して焼結原料として用いることができる。 In the copper silicide constituting the
The copper silicide constituting the
電極15を構成する銅シリサイドの原子数比Si/Cuが0.12以上である場合、焼結原料は、Cu7Siの単相、あるいはCu7Siと、少量の他の組成からなる銅シリサイドとの混合物から形成された銅シリサイド粉である。焼結原料の全体または一部を溶融させることにより、電極15における電気伝導を確保でき、素子本体11の割れも抑制できる。
If the atomic ratio Si / Cu of the copper silicide constituting the electrode 15 is 0.12 or more, the sintering raw material, single-phase Cu 7 Si, or a Cu 7 Si, copper silicide consisting of minor amounts of other composition Copper silicide powder formed from a mixture of By melting the whole or part of the sintering raw material, electrical conduction in the electrode 15 can be ensured, and cracking of the element body 11 can also be suppressed.
電極15を構成する銅シリサイドの原子数比Si/Cuが0.4以下である場合、焼結原料はCu3Siの単相、あるいはCu3Siと、少量の他の組成からなる銅シリサイドの混合物から形成された銅シリサイド粉である。焼結原料の全体または一部を溶融させることにより、電極15における電気伝導を確保でき、製造時における素子本体11の割れも抑制できる。
電極15を構成する銅シリサイドの原子数比Si/Cuの下限は、0.13以上であることがより好ましい。電極15を構成する銅シリサイドの原子数比Si/Cuの上限は、0.35以下であることがより好ましい。 If the atomic ratio Si / Cu of the copper silicide constituting theelectrode 15 is 0.4 or less, single-phase sintering material is Cu 3 Si, or a Cu 3 Si, copper silicide consisting of minor amounts of other composition It is a copper silicide powder formed from a mixture. By melting the whole or a part of the sintering raw material, electrical conduction in the electrode 15 can be secured, and cracking of the element body 11 at the time of manufacture can be suppressed.
The lower limit of the number ratio Si / Cu of the copper silicide constituting theelectrode 15 is more preferably 0.13 or more. The upper limit of the atomic ratio Si / Cu of the copper silicide constituting the electrode 15 is more preferably 0.35 or less.
電極15を構成する銅シリサイドの原子数比Si/Cuの下限は、0.13以上であることがより好ましい。電極15を構成する銅シリサイドの原子数比Si/Cuの上限は、0.35以下であることがより好ましい。 If the atomic ratio Si / Cu of the copper silicide constituting the
The lower limit of the number ratio Si / Cu of the copper silicide constituting the
本実施形態の電極15においては、上述のように、複数の組成(Si/Cu)の銅シリサイド紛を混合して焼成しているので、焼結時において少なくとも一部に液相が形成されており、電極15の一部に液相が凝固して形成された液相凝固部を有している。この液相凝固部は、液相が形成されなかった領域と比較して空孔が少なく、密度が局所的に高くなっている。
In the electrode 15 of the present embodiment, as described above, a copper silicide powder having a plurality of compositions (Si / Cu) is mixed and fired, so that a liquid phase is formed at least partially during sintering. In addition, a part of the electrode 15 has a liquid phase solidification part formed by solidification of the liquid phase. This liquid phase solidification part has fewer voids and a locally higher density than the region where no liquid phase is formed.
電極15の全体としての気孔率は、本発明では限定されないが、0体積%以上かつ60体積%以下であることが好ましく、より好ましくは0体積%以上かつ50体積%以下である。電極15内における液相凝固部の分布は限定されないが、液相凝固部は、素子本体11側に集中して層状に分布していることが応力緩和の観点から好ましい。ただし、本発明では、液相凝固部が電極15内の全域に亘ってほぼ均一に分布していてもよいし、金属層16側に集中して層状に分布していてもよい。
The porosity of the electrode 15 as a whole is not limited in the present invention, but is preferably 0% by volume or more and 60% by volume or less, more preferably 0% by volume or more and 50% by volume or less. Although the distribution of the liquid phase solidified portion in the electrode 15 is not limited, it is preferable from the viewpoint of stress relaxation that the liquid phase solidified portion is concentrated and distributed in a layered manner on the element body 11 side. However, in the present invention, the liquid phase solidified portions may be distributed substantially uniformly over the entire area of the electrode 15, or may be concentrated and distributed in a layered manner on the metal layer 16 side.
電極15の気孔率は、下記の方法により求めた。
まず、銅シリサイド電極を形成する前のシリサイド焼結体の重量を測定する。次に、電極を形成後、両面それぞれの電極の厚さを光学顕微鏡又は走査型電子顕微鏡で5か所測定し、その平均を求める。次に、両面それぞれの電極面のサイズ(縦幅、横幅や半径等)をノギス又はマイクロメータで測定し、両面それぞれの電極面の表面積を求める。この表面積と、両面それぞれの電極の厚さとから、両面それぞれの電極部分の体積を求める。次に、シリサイド焼結体と電極が一体となった状態の重さを量り、シリサイド焼結体の重さを引くことで、電極部分の重さを求める。両面の電極部分の重さと体積から電極部分の密度を求める。このように求められた密度を測定密度とする。一方、電極層をEPMAで分析した平均組成から真密度を推定算出し、(100-(測定密度/真密度×100)(%))の式からを気孔率を求めた。 The porosity of theelectrode 15 was determined by the following method.
First, the weight of the silicide sintered body before forming the copper silicide electrode is measured. Next, after forming the electrodes, the thicknesses of the electrodes on both sides are measured at five locations with an optical microscope or a scanning electron microscope, and the average is obtained. Next, the size (vertical width, horizontal width, radius, etc.) of the electrode surfaces on both surfaces is measured with a caliper or a micrometer, and the surface areas of the electrode surfaces on both surfaces are obtained. From this surface area and the thickness of each electrode on both sides, the volume of the electrode part on each side is obtained. Next, the weight of the state in which the silicide sintered body and the electrode are integrated is weighed, and the weight of the electrode is obtained by subtracting the weight of the silicide sintered body. The density of the electrode parts is determined from the weight and volume of the electrode parts on both sides. The density thus obtained is taken as the measured density. On the other hand, the true density was estimated and calculated from the average composition obtained by analyzing the electrode layer with EPMA, and the porosity was determined from the equation (100− (measured density / true density × 100) (%)).
まず、銅シリサイド電極を形成する前のシリサイド焼結体の重量を測定する。次に、電極を形成後、両面それぞれの電極の厚さを光学顕微鏡又は走査型電子顕微鏡で5か所測定し、その平均を求める。次に、両面それぞれの電極面のサイズ(縦幅、横幅や半径等)をノギス又はマイクロメータで測定し、両面それぞれの電極面の表面積を求める。この表面積と、両面それぞれの電極の厚さとから、両面それぞれの電極部分の体積を求める。次に、シリサイド焼結体と電極が一体となった状態の重さを量り、シリサイド焼結体の重さを引くことで、電極部分の重さを求める。両面の電極部分の重さと体積から電極部分の密度を求める。このように求められた密度を測定密度とする。一方、電極層をEPMAで分析した平均組成から真密度を推定算出し、(100-(測定密度/真密度×100)(%))の式からを気孔率を求めた。 The porosity of the
First, the weight of the silicide sintered body before forming the copper silicide electrode is measured. Next, after forming the electrodes, the thicknesses of the electrodes on both sides are measured at five locations with an optical microscope or a scanning electron microscope, and the average is obtained. Next, the size (vertical width, horizontal width, radius, etc.) of the electrode surfaces on both surfaces is measured with a caliper or a micrometer, and the surface areas of the electrode surfaces on both surfaces are obtained. From this surface area and the thickness of each electrode on both sides, the volume of the electrode part on each side is obtained. Next, the weight of the state in which the silicide sintered body and the electrode are integrated is weighed, and the weight of the electrode is obtained by subtracting the weight of the silicide sintered body. The density of the electrode parts is determined from the weight and volume of the electrode parts on both sides. The density thus obtained is taken as the measured density. On the other hand, the true density was estimated and calculated from the average composition obtained by analyzing the electrode layer with EPMA, and the porosity was determined from the equation (100− (measured density / true density × 100) (%)).
金属層16は、例えば、ニッケル,アルミニウム,銅等の導電性に優れた金属で構成されており、本実施形態においては、アルミニウムで構成されていることが好ましい。この金属層16は、電極15に対して金属箔等を例えばろう付け等によって接合することによって形成されている。金属層16の厚さは限定はされないが、0.1mm以上2.0mm以下の範囲内とされていることが好ましい。
The metal layer 16 is made of, for example, a metal having excellent conductivity, such as nickel, aluminum, or copper. In the present embodiment, the metal layer 16 is preferably made of aluminum. The metal layer 16 is formed by bonding a metal foil or the like to the electrode 15 by, for example, brazing. The thickness of the metal layer 16 is not limited, but is preferably in the range of 0.1 mm to 2.0 mm.
端子3は、導電性に優れた金属材料、例えば、銅やアルミニウムなどの板材から形成されている。本実施形態では、アルミニウムの圧延板を用いることが好ましい。電極15に形成された金属層16と端子3とは、例えば、Agろう、Agめっき等によって接合できる。この実施形態の一対の端子3は、素子本体11から見て互いに反対側へ延び、かつ、互いに平行に配置されているが、本発明はこの配置に限定されない。
The terminal 3 is formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In the present embodiment, it is preferable to use an aluminum rolled plate. The metal layer 16 formed on the electrode 15 and the terminal 3 can be joined by, for example, Ag brazing, Ag plating, or the like. The pair of terminals 3 of this embodiment extend to opposite sides as viewed from the element body 11 and are arranged in parallel to each other, but the present invention is not limited to this arrangement.
次に、上述した熱電変換素子10の製造方法の一例を図2及び図3を参照して説明する。
Next, an example of a method for manufacturing the thermoelectric conversion element 10 described above will be described with reference to FIGS.
(シリサイド化合物粉末準備工程S01)
まず、素子本体を構成する熱電変換材料の母相となるシリサイド化合物粉末(マグネシウムシリサイド粉末)を準備する。このシリサイド化合物粉末準備工程S01においては、シリサイド化合物インゴット(マグネシウムシリサイド)を製造し、これを粉砕して篩分けすることにより、所定の粒径のシリサイド化合物粉末(マグネシウムシリサイド粉末)を製造する。市販のマグネシウム系化合物粉(マグネシウムシリサイド粉)を用いてもよい。シリサイド化合物粉末(マグネシウムシリサイド粉末)の平均粒径は、0.5μm以上100μm以下の範囲内とすることが好ましい。 (Silicide compound powder preparation step S01)
First, a silicide compound powder (magnesium silicide powder) serving as a parent phase of a thermoelectric conversion material constituting the element body is prepared. In this silicide compound powder preparation step S01, a silicide compound ingot (magnesium silicide) is manufactured, and this is pulverized and sieved to manufacture a silicide compound powder (magnesium silicide powder) having a predetermined particle size. Commercially available magnesium compound powder (magnesium silicide powder) may be used. The average particle diameter of the silicide compound powder (magnesium silicide powder) is preferably in the range of 0.5 μm to 100 μm.
まず、素子本体を構成する熱電変換材料の母相となるシリサイド化合物粉末(マグネシウムシリサイド粉末)を準備する。このシリサイド化合物粉末準備工程S01においては、シリサイド化合物インゴット(マグネシウムシリサイド)を製造し、これを粉砕して篩分けすることにより、所定の粒径のシリサイド化合物粉末(マグネシウムシリサイド粉末)を製造する。市販のマグネシウム系化合物粉(マグネシウムシリサイド粉)を用いてもよい。シリサイド化合物粉末(マグネシウムシリサイド粉末)の平均粒径は、0.5μm以上100μm以下の範囲内とすることが好ましい。 (Silicide compound powder preparation step S01)
First, a silicide compound powder (magnesium silicide powder) serving as a parent phase of a thermoelectric conversion material constituting the element body is prepared. In this silicide compound powder preparation step S01, a silicide compound ingot (magnesium silicide) is manufactured, and this is pulverized and sieved to manufacture a silicide compound powder (magnesium silicide powder) having a predetermined particle size. Commercially available magnesium compound powder (magnesium silicide powder) may be used. The average particle diameter of the silicide compound powder (magnesium silicide powder) is preferably in the range of 0.5 μm to 100 μm.
(素子本体焼結工程S02)
次に、上述のようにして得られたシリサイド化合物粉末を、加圧しながら加熱して焼結体を得る。本実施形態では、素子本体焼結工程S02において、図3に示す焼結装置(通電焼結装置100)を用いる。 (Element body sintering step S02)
Next, the silicide compound powder obtained as described above is heated under pressure to obtain a sintered body. In the present embodiment, a sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 is used in the element body sintering step S02.
次に、上述のようにして得られたシリサイド化合物粉末を、加圧しながら加熱して焼結体を得る。本実施形態では、素子本体焼結工程S02において、図3に示す焼結装置(通電焼結装置100)を用いる。 (Element body sintering step S02)
Next, the silicide compound powder obtained as described above is heated under pressure to obtain a sintered body. In the present embodiment, a sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 is used in the element body sintering step S02.
図3に示す焼結装置(通電焼結装置100)は、例えば、耐圧筐体101と、この耐圧筐体101の内部を減圧する真空ポンプ102と、耐圧筐体101内に配された中空筒形のカーボンモールド103と、カーボンモールド103内に充填された焼結原料粉Qを加圧しつつ電流を印加する一対の電極部105a,105bと、電極部105a,105b間に電圧を印加する電源装置106とを備えている。電極部105a,105bと焼結原料粉Qとの間には、カーボン板107、カーボンシート108がそれぞれ配される。これ以外にも、図示しない温度計、変位計などを有している。
The sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 includes, for example, a pressure-resistant housing 101, a vacuum pump 102 that depressurizes the inside of the pressure-resistant housing 101, and a hollow cylinder disposed in the pressure-resistant housing 101. -Shaped carbon mold 103, a pair of electrode portions 105a and 105b for applying a current while pressurizing sintering raw material powder Q filled in carbon mold 103, and a power supply device for applying a voltage between electrode portions 105a and 105b 106. A carbon plate 107 and a carbon sheet 108 are disposed between the electrode portions 105a and 105b and the sintering raw material powder Q, respectively. In addition to this, a thermometer, a displacement meter, etc. (not shown) are provided.
本実施形態においては、カーボンモールド103の外周側にヒーター109が配設されている。ヒーター109は、カーボンモールド103の外周側の全面を覆うように四つの側面に配置されている。ヒーター109としては、カーボンヒーターやニクロム線ヒーター、モリブデンヒーター、カンタル線ヒーター、高周波ヒーター等が利用できる。
In the present embodiment, a heater 109 is disposed on the outer peripheral side of the carbon mold 103. The heater 109 is disposed on four side surfaces so as to cover the entire outer peripheral side of the carbon mold 103. As the heater 109, a carbon heater, a nichrome wire heater, a molybdenum heater, a Kanthal wire heater, a high frequency heater, or the like can be used.
素子本体焼結工程S02においては、まず、図3に示す通電焼結装置100のカーボンモールド103内に、焼結原料粉Qを充填する。カーボンモールド103は、例えば、内部がグラファイトシートやカーボンシートで覆われている。電源装置106を用いて、一対の電極部105a,105b間に直流電流を流して、焼結原料粉Qに電流を流すことによって自己発熱により昇温する(通電加熱)。一対の電極部105a,105bのうち、可動側の電極部105aを焼結原料粉Qに向けて移動させ、固定側の電極部105bとの間で焼結原料粉Qを所定の圧力で加圧するとともにヒーター109を加熱させる。これにより、焼結原料粉末Qの自己発熱及びヒーター109からの熱と、加圧により、焼結原料粉Qを焼結させる。
In the element body sintering step S02, first, the raw material powder Q is filled into the carbon mold 103 of the electric current sintering apparatus 100 shown in FIG. For example, the carbon mold 103 is covered with a graphite sheet or a carbon sheet. Using the power supply device 106, a direct current is passed between the pair of electrode portions 105a and 105b, and a current is passed through the sintered raw material powder Q to raise the temperature by self-heating (electric heating). Of the pair of electrode portions 105a and 105b, the movable electrode portion 105a is moved toward the sintering raw material powder Q, and the sintering raw material powder Q is pressurized at a predetermined pressure with the fixed electrode portion 105b. At the same time, the heater 109 is heated. As a result, the sintered raw material powder Q is sintered by self-heating of the sintered raw material powder Q, heat from the heater 109, and pressurization.
本実施形態においては、素子本体焼結工程S02における焼結条件は、焼結原料粉Qの加熱温度が650℃以上1030℃以下の範囲内、この加熱温度での保持時間が0分以上(例えば1秒以上)、3分以下とされている。加圧荷重が15MPa以上60MPa以下とされている。耐圧筐体101内の雰囲気は、アルゴン雰囲気などの不活性雰囲気や真空雰囲気とすることが好ましい。真空雰囲気とする場合は、圧力5Pa以下にすることが好ましい。
In the present embodiment, the sintering conditions in the element body sintering step S02 are such that the heating temperature of the sintering raw material powder Q is in the range of 650 ° C. or more and 1030 ° C. or less, and the holding time at this heating temperature is 0 minute or more (for example, 1 second or longer) and 3 minutes or shorter. The pressure load is 15 MPa or more and 60 MPa or less. The atmosphere in the pressure-resistant housing 101 is preferably an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In a vacuum atmosphere, the pressure is preferably 5 Pa or less.
素子本体焼結工程S02では、焼結原料粉Qに直流電流を流す際に、一方の電極部105aと他方の電極部105bの極性を所定の時間間隔で変更することが好ましい。すなわち、一方の電極部105aを陽極及び他方の電極部105bを陰極として通電する状態と、一方の電極部105aを陰極及び他方の電極部105bを陽極として通電する状態とを交互に行う。本実施形態では、所定の時間間隔を10秒以上300秒以下の範囲内に設定することが好ましい。以上の工程により、素子本体11(熱電変換材料)が製造される。交互に電流の向きを切り替えることにより、素子本体11の均質性が高められる利点が得られる。
In the element body sintering step S02, it is preferable to change the polarities of the one electrode portion 105a and the other electrode portion 105b at a predetermined time interval when a direct current is passed through the sintered raw material powder Q. That is, the state where one electrode portion 105a is energized with the anode and the other electrode portion 105b as the cathode and the state where one electrode portion 105a is energized with the cathode and the other electrode portion 105b as the anode are alternately performed. In the present embodiment, it is preferable to set the predetermined time interval within a range of 10 seconds to 300 seconds. The element body 11 (thermoelectric conversion material) is manufactured through the above steps. By alternately switching the direction of the current, there is an advantage that the uniformity of the element body 11 is improved.
(銅シリサイド粉末充填工程S03)
次に、通電焼結装置100のカーボンモールド103内に、銅シリサイド粉末と、シリサイド化合物の焼結体とを充填する。シリサイド化合物の焼結体の両端面及び側面のカーボンシートを除去し、焼結体の両端面を研磨紙で研磨する。カーボンモールド103に、カーボン板107、カーボンシート108を挿入し、所定量の銅シリサイド粉末を充填し、その後、シリサイド化合物の焼結体を挿入し、その上にさらに所定量の銅シリサイド粉末を充填し、その上にカーボン板107、カーボンシート108を配置する。 (Copper silicide powder filling step S03)
Next, thecarbon mold 103 of the electric current sintering apparatus 100 is filled with copper silicide powder and a sintered body of a silicide compound. The carbon sheets on both end faces and side faces of the sintered body of the silicide compound are removed, and both end faces of the sintered body are polished with abrasive paper. A carbon plate 107 and a carbon sheet 108 are inserted into the carbon mold 103 and filled with a predetermined amount of copper silicide powder, then a sintered body of a silicide compound is inserted, and a predetermined amount of copper silicide powder is further filled thereon. Then, the carbon plate 107 and the carbon sheet 108 are disposed thereon.
次に、通電焼結装置100のカーボンモールド103内に、銅シリサイド粉末と、シリサイド化合物の焼結体とを充填する。シリサイド化合物の焼結体の両端面及び側面のカーボンシートを除去し、焼結体の両端面を研磨紙で研磨する。カーボンモールド103に、カーボン板107、カーボンシート108を挿入し、所定量の銅シリサイド粉末を充填し、その後、シリサイド化合物の焼結体を挿入し、その上にさらに所定量の銅シリサイド粉末を充填し、その上にカーボン板107、カーボンシート108を配置する。 (Copper silicide powder filling step S03)
Next, the
銅シリサイド粉末としては、平均粒径を0.5μm以上50μm以下のものを用いることが好ましい。本実施形態においては、銅シリサイド粉末として、複数の組成(質量比Si/Cu)の銅シリサイド紛を混合したものを用いている。
As the copper silicide powder, it is preferable to use a powder having an average particle size of 0.5 μm or more and 50 μm or less. In the present embodiment, a mixture of copper silicide powders having a plurality of compositions (mass ratio Si / Cu) is used as the copper silicide powder.
(電極焼結工程S04)
通電焼結装置100の電源装置106を用いて、一対の電極部105a,105b間に直流電流を流すことによって自己発熱により昇温する(通電加熱)。一対の電極部105a,105bを用いて所定の圧力で加圧する。また、ヒーター109を加熱させる。これにより、銅シリサイド粉末を焼結して電極15を形成するとともに、電極15と素子本体11とを直接接合する。 (Electrode sintering step S04)
Using thepower source device 106 of the electric current sintering apparatus 100, the temperature is raised by self-heating by applying a direct current between the pair of electrode portions 105a and 105b (electric current heating). Pressurization is performed at a predetermined pressure using the pair of electrode portions 105a and 105b. Further, the heater 109 is heated. Thus, the copper silicide powder is sintered to form the electrode 15 and the electrode 15 and the element body 11 are directly joined.
通電焼結装置100の電源装置106を用いて、一対の電極部105a,105b間に直流電流を流すことによって自己発熱により昇温する(通電加熱)。一対の電極部105a,105bを用いて所定の圧力で加圧する。また、ヒーター109を加熱させる。これにより、銅シリサイド粉末を焼結して電極15を形成するとともに、電極15と素子本体11とを直接接合する。 (Electrode sintering step S04)
Using the
本実施形態においては、電極焼結工程S04における焼結条件は、加熱温度が650℃以上850℃以下の範囲内、この加熱温度での保持時間が0分以上(例えば1秒以上)、3分以下の範囲内とされることが好ましい。加圧荷重は2MPa以上40MPa以下の範囲内とされることが好ましい。耐圧筐体101内の雰囲気はアルゴン雰囲気などの不活性雰囲気や真空雰囲気とすることが好ましい。真空雰囲気とする場合は、圧力5Pa以下とすることが好ましい。
In the present embodiment, the sintering condition in the electrode sintering step S04 is that the heating temperature is in the range of 650 ° C. or higher and 850 ° C. or lower, and the holding time at this heating temperature is 0 minute or longer (for example, 1 second or longer), 3 minutes. It is preferable to be within the following range. The pressure load is preferably in the range of 2 MPa to 40 MPa. The atmosphere in the pressure-resistant housing 101 is preferably an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In a vacuum atmosphere, the pressure is preferably 5 Pa or less.
本実施形態においては、銅シリサイド粉末として、複数の組成(原子数比Si/Cu)の銅シリサイド紛を混合したものを用いているので、電極焼結工程S04において一部に液相が生じ、電極15の一部に液相が凝固して形成された液相凝固部が形成される。電極焼結工程S04において液相が生じることによって、素子本体11と電極15との接合性が向上することになる。
In the present embodiment, as the copper silicide powder, since a mixture of copper silicide powders having a plurality of compositions (atomic ratio Si / Cu) is used, a liquid phase is partially generated in the electrode sintering step S04, A liquid phase solidified portion formed by solidifying the liquid phase is formed on a part of the electrode 15. When the liquid phase is generated in the electrode sintering step S04, the bondability between the element body 11 and the electrode 15 is improved.
(金属層形成工程S05)
次に、電極15の素子本体11とは反対側の面に金属層16を形成する。金属層16は、ニッケル,アルミニウム,銅等の導電性に優れた金属の箔材を電極15に、例えば、ろう材を用いて接合することで形成できる。ろう材としては、Ag-Cu-Zn-Cd、Ag-Cu-SnなどのAgろう等を用いることができる。
本実施形態においては、厚さ0.5mmのアルミニウムの圧延板を熱電素子の断面と同じサイズに切断し、Agろう(BAg-1A(JIS))を用いて、電極15に金属層16を形成した。 (Metal layer forming step S05)
Next, themetal layer 16 is formed on the surface of the electrode 15 opposite to the element body 11. The metal layer 16 can be formed by joining a metal foil material having excellent conductivity such as nickel, aluminum, copper, etc. to the electrode 15 using, for example, a brazing material. As the brazing material, Ag brazing such as Ag—Cu—Zn—Cd, Ag—Cu—Sn, or the like can be used.
In this embodiment, a 0.5 mm thick aluminum rolled plate is cut to the same size as the cross section of the thermoelectric element, and themetal layer 16 is formed on the electrode 15 using Ag brazing (BAg-1A (JIS)). did.
次に、電極15の素子本体11とは反対側の面に金属層16を形成する。金属層16は、ニッケル,アルミニウム,銅等の導電性に優れた金属の箔材を電極15に、例えば、ろう材を用いて接合することで形成できる。ろう材としては、Ag-Cu-Zn-Cd、Ag-Cu-SnなどのAgろう等を用いることができる。
本実施形態においては、厚さ0.5mmのアルミニウムの圧延板を熱電素子の断面と同じサイズに切断し、Agろう(BAg-1A(JIS))を用いて、電極15に金属層16を形成した。 (Metal layer forming step S05)
Next, the
In this embodiment, a 0.5 mm thick aluminum rolled plate is cut to the same size as the cross section of the thermoelectric element, and the
上述の工程により、シリサイド系化合物の熱電変換材料からなる素子本体11と、銅シリサイドの焼結体からなる電極15と、が直接接合された熱電変換素子10が製造される。
The thermoelectric conversion element 10 in which the element body 11 made of a silicide-based thermoelectric conversion material and the electrode 15 made of a copper silicide sintered body are directly bonded is manufactured by the above-described steps.
以上のような熱電変換素子10によれば、電極15が銅シリサイドの焼結体で構成されているので、シリサイド系化合物(マグネシウムシリサイド)の熱電変換材料からなる素子本体11との熱膨張係数の差を小さくすることが可能となり、製造時や使用時の熱履歴による割れの発生を抑制できる。
また、銅シリサイドは比較的融点が低いので、焼結体を形成する際に一部に液相が生じ、熱歪を解放することができ、製造時において、素子本体11及び電極15に割れが生じることを抑制できる。
さらに、電極15と素子本体11とが直接接合されており、焼結体を形成する際に一部に液相が生じることで、電極15と素子本体11との接合性が向上しているので、界面における電気抵抗を十分に低く抑えることができる。 According to thethermoelectric conversion element 10 as described above, since the electrode 15 is composed of a sintered body of copper silicide, the thermal expansion coefficient of the element main body 11 made of a thermoelectric conversion material of a silicide compound (magnesium silicide) is reduced. The difference can be reduced, and the occurrence of cracks due to the thermal history during manufacture and use can be suppressed.
In addition, since the copper silicide has a relatively low melting point, a liquid phase is generated in part when the sintered body is formed, and thermal strain can be released, and the elementmain body 11 and the electrode 15 are cracked during manufacturing. It can be suppressed.
Furthermore, since theelectrode 15 and the element body 11 are directly bonded, and a liquid phase is generated in part when forming the sintered body, the bondability between the electrode 15 and the element body 11 is improved. The electrical resistance at the interface can be kept sufficiently low.
また、銅シリサイドは比較的融点が低いので、焼結体を形成する際に一部に液相が生じ、熱歪を解放することができ、製造時において、素子本体11及び電極15に割れが生じることを抑制できる。
さらに、電極15と素子本体11とが直接接合されており、焼結体を形成する際に一部に液相が生じることで、電極15と素子本体11との接合性が向上しているので、界面における電気抵抗を十分に低く抑えることができる。 According to the
In addition, since the copper silicide has a relatively low melting point, a liquid phase is generated in part when the sintered body is formed, and thermal strain can be released, and the element
Furthermore, since the
また、本実施形態においては、電極15の素子本体11とは反対側の面に金属層16が形成されているので、端子3と電極15とを比較的容易に接合できるとともに、端子3と電極15との接合性を向上させることが可能となる。
In the present embodiment, since the metal layer 16 is formed on the surface of the electrode 15 opposite to the element body 11, the terminal 3 and the electrode 15 can be joined relatively easily, and the terminal 3 and the electrode 15 can be joined. 15 can be improved.
また、本実施形態においては、電極15の厚さが10μm以上300μm以下の範囲内とされているので、電極15の剛性が必要以上に高くならず、製造時における素子本体11の割れの発生を抑制できるとともに、電極15における電気伝導度を確保できる。
Further, in the present embodiment, since the thickness of the electrode 15 is in the range of 10 μm or more and 300 μm or less, the rigidity of the electrode 15 is not unnecessarily high, and the element main body 11 is not cracked during manufacturing. While being able to suppress, the electrical conductivity in the electrode 15 is securable.
さらに、本実施形態においては、電極15を構成する銅シリサイドにおけるSiとCuの原子数比Si/Cuが0.12以上0.4以下の範囲内とされているので、電極15における電気伝導度を確保できるとともに、製造時における素子本体11の割れの発生を抑制できる。
Furthermore, in this embodiment, since the Si / Cu atomic ratio Si / Cu in the copper silicide constituting the electrode 15 is in the range of 0.12 to 0.4, the electrical conductivity in the electrode 15 is Can be ensured, and the occurrence of cracks in the element body 11 during manufacturing can be suppressed.
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、図1に示すような構造の熱電変換素子及び熱電変換モジュールを構成するものとして説明したが、これに限定されることはなく、本発明の熱電変換素子を用いていれば、端子の構造及び配置等に特に制限はない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention. For example, in this embodiment, although it demonstrated as what comprises the thermoelectric conversion element and thermoelectric conversion module of a structure as shown in FIG. 1, it is not limited to this, The thermoelectric conversion element of this invention may be used. For example, the structure and arrangement of the terminals are not particularly limited.
また、本実施形態では、素子本体を構成するシリサイド系化合物をマグネシウムシリサイド(Mg2Si)として説明したが、これに限定されることはなく、熱電特性を有するものであれば、その他の組成のシリサイド系化合物であってもよい。
In the present embodiment, the silicide compound constituting the element body is described as magnesium silicide (Mg 2 Si). However, the present invention is not limited to this, and any other composition may be used as long as it has thermoelectric properties. It may be a silicide compound.
また、上記実施形態では、銅シリサイド粉末として、複数の組成(原子数比Si/Cu)の銅シリサイド紛を混合したものを用いたが、これに限らず、単一組成の銅シリサイド粉末を用いることができる。この場合、電極焼結工程における焼結温度を制御することにより、容易に電極の全体を液相にして素子本体と接合させることもできる。この場合、電極の全体が液相になるので、素子本体から電極が剥離しにくくなるとともに、導電性も確保できる。
Moreover, in the said embodiment, what mixed the copper silicide powder of a several composition (atomic ratio Si / Cu) was used as a copper silicide powder, However, it is not restricted to this, The copper silicide powder of a single composition is used. be able to. In this case, by controlling the sintering temperature in the electrode sintering step, the entire electrode can be easily made into a liquid phase and bonded to the element body. In this case, since the entire electrode is in a liquid phase, it is difficult for the electrode to be peeled from the element body, and conductivity can be ensured.
以下、本発明の効果を確認すべく実施した実験結果を説明する。
Hereinafter, the results of experiments conducted to confirm the effects of the present invention will be described.
マグネシウムシリサイド(Mg2Si)の焼結体(気孔率2体積%)からなる円柱状の素子本体(サイズ:直径20mm×厚さ10mm)を準備した。上述の実施形態で説明した図3に示す通電焼結装置を用いて、素子本体の両面に、表1に示す材質の粉末を充填して上述した方法で通電焼結し、素子本体の両端に一定厚さの電極を形成した。これにより、実施例1~11及び比較例1~3の熱電変換素子を製造した。電極の気孔率は表1に記載した。実施例5を除いては、Si/Cu比の異なる複数の銅シリサイド粉を混合して用いて表1記載の比率とし、実施例5では、表1記載のSi/Cu比を有する単一組成の銅シリサイド粉を用いた。
A cylindrical element body (size: diameter 20 mm × thickness 10 mm) made of a sintered body of magnesium silicide (Mg 2 Si) (porosity 2 vol%) was prepared. Using the current sintering apparatus shown in FIG. 3 described in the above embodiment, both sides of the element body are filled with powder of the material shown in Table 1 and subjected to current sintering by the method described above. A constant thickness electrode was formed. Thus, the thermoelectric conversion elements of Examples 1 to 11 and Comparative Examples 1 to 3 were manufactured. The porosity of the electrode is shown in Table 1. Except for Example 5, a plurality of copper silicide powders having different Si / Cu ratios were mixed to obtain the ratio shown in Table 1, and in Example 5, a single composition having the Si / Cu ratio shown in Table 1 Copper silicide powder was used.
得られた実施例及び比較例の熱電変換素子について、電気抵抗値、製造時の割れの有無、電極のSi/Cu比を以下のようにして評価した。
For the obtained thermoelectric conversion elements of Examples and Comparative Examples, the electrical resistance value, the presence or absence of cracks during production, and the Si / Cu ratio of the electrodes were evaluated as follows.
(電気抵抗)
得られた熱電変換素子から10mm×10mm×10mmの立方体のサンプル10を切り出して評価に用いた。電気抵抗値の測定には、直流電源とマルチメータを用いて図4の回路を組み、両電極15間に50mAの一定電流を流し、一方の電極15より1mmの位置から1mm間隔で9mmまでデジタルマルチメータの電極Eを素子本体11の側面に当接させて各電圧を測定した。次に、電圧と電流の関係から抵抗値を求め、電極端からの距離と抵抗値のグラフから直線近似して、その切片を電気抵抗とした。 (Electrical resistance)
A 10 mm × 10 mm × 10 mmcubic sample 10 was cut out from the obtained thermoelectric conversion element and used for evaluation. To measure the electrical resistance value, the circuit shown in FIG. 4 is assembled using a DC power source and a multimeter, and a constant current of 50 mA is passed between both electrodes 15, and one electrode 15 is digitally moved from 1 mm to 9 mm at 1 mm intervals. Each voltage was measured by bringing the electrode E of the multimeter into contact with the side surface of the element body 11. Next, the resistance value was obtained from the relationship between the voltage and the current, linearly approximated from the graph of the distance from the electrode end and the resistance value, and the intercept was defined as the electric resistance.
得られた熱電変換素子から10mm×10mm×10mmの立方体のサンプル10を切り出して評価に用いた。電気抵抗値の測定には、直流電源とマルチメータを用いて図4の回路を組み、両電極15間に50mAの一定電流を流し、一方の電極15より1mmの位置から1mm間隔で9mmまでデジタルマルチメータの電極Eを素子本体11の側面に当接させて各電圧を測定した。次に、電圧と電流の関係から抵抗値を求め、電極端からの距離と抵抗値のグラフから直線近似して、その切片を電気抵抗とした。 (Electrical resistance)
A 10 mm × 10 mm × 10 mm
(製造時の割れ)
製造時の割れの有無は、通電焼結し電極を形成したのち、通電焼結装置から取り出した際に、あるいは、熱電変換素子サイズに切断後に、熱電変換素子を目視で観察し、割れの有無を確認した。 (Cracking during manufacturing)
The presence or absence of cracks during production was determined by visually observing the thermoelectric conversion element when it was taken out from the electric sintering apparatus after it was subjected to current sintering to form an electrode, or after being cut into a thermoelectric conversion element size. It was confirmed.
製造時の割れの有無は、通電焼結し電極を形成したのち、通電焼結装置から取り出した際に、あるいは、熱電変換素子サイズに切断後に、熱電変換素子を目視で観察し、割れの有無を確認した。 (Cracking during manufacturing)
The presence or absence of cracks during production was determined by visually observing the thermoelectric conversion element when it was taken out from the electric sintering apparatus after it was subjected to current sintering to form an electrode, or after being cut into a thermoelectric conversion element size. It was confirmed.
(電極のSi/Cu比)
電極のSi/Cu比については、熱電変換素子の表面(電極が形成されている面)のCu量及びSi量をEPMA(日本電子株式会社製JXA-8800RL)で測定し、Si/Cu比を求めた。
具体的には、前記立方体サンプルの電極面を研磨して、電極面の任意の5か所をEPMAにてCu量及びSi量を測定して平均値を求めた。なお、測定点が空洞の場合や、粒子の端の場合は、測定点にもっとも近い粒子の中心部を測定した。 (Si / Cu ratio of electrode)
Regarding the Si / Cu ratio of the electrode, the Cu amount and the Si amount on the surface of the thermoelectric conversion element (surface on which the electrode is formed) are measured with EPMA (JXA-8800RL manufactured by JEOL Ltd.), and the Si / Cu ratio is determined. Asked.
Specifically, the electrode surface of the cubic sample was polished, and the Cu value and the Si amount were measured with EPMA at any five locations on the electrode surface to obtain an average value. In the case where the measurement point is a cavity or the end of the particle, the center of the particle closest to the measurement point was measured.
電極のSi/Cu比については、熱電変換素子の表面(電極が形成されている面)のCu量及びSi量をEPMA(日本電子株式会社製JXA-8800RL)で測定し、Si/Cu比を求めた。
具体的には、前記立方体サンプルの電極面を研磨して、電極面の任意の5か所をEPMAにてCu量及びSi量を測定して平均値を求めた。なお、測定点が空洞の場合や、粒子の端の場合は、測定点にもっとも近い粒子の中心部を測定した。 (Si / Cu ratio of electrode)
Regarding the Si / Cu ratio of the electrode, the Cu amount and the Si amount on the surface of the thermoelectric conversion element (surface on which the electrode is formed) are measured with EPMA (JXA-8800RL manufactured by JEOL Ltd.), and the Si / Cu ratio is determined. Asked.
Specifically, the electrode surface of the cubic sample was polished, and the Cu value and the Si amount were measured with EPMA at any five locations on the electrode surface to obtain an average value. In the case where the measurement point is a cavity or the end of the particle, the center of the particle closest to the measurement point was measured.
電極をニッケルシリサイドで構成した比較例1においては、製造時に割れが生じた。このため、電気抵抗値と電極の気孔率については評価しなかった。電極をニッケルで構成した比較例2においては、製造時に割れが生じた。このため、電気抵抗値と電極の気孔率については評価しなかった。電極をアルミニウムで構成した比較例3においては、製造時に割れが生じなかったが、電気抵抗値が0.19Ωと非常に高くなった。
In Comparative Example 1 in which the electrode was made of nickel silicide, cracking occurred during manufacture. For this reason, the electrical resistance value and the porosity of the electrode were not evaluated. In Comparative Example 2 in which the electrode was made of nickel, cracks occurred during production. For this reason, the electrical resistance value and the porosity of the electrode were not evaluated. In Comparative Example 3 in which the electrode was made of aluminum, cracks did not occur during manufacture, but the electrical resistance value was as high as 0.19Ω.
これに対して、電極を銅シリサイドで構成した実施例1~11においては、製造時に割れが生じず、電気抵抗値も低くなった。
以上のことから、実施例1~11によれば、シリサイド系化合物の熱電変換材料からなる素子本体と電極とが確実に接合され、界面における電気抵抗が十分に低く、かつ、素子本体や電極に割れが生じることを抑制できる熱電変換素子を提供できることが確認された。なお、気孔率が60%を超えた実施例11においては、比較例3よりも低いものの、実施例1~10と比べると、電気抵抗値がやや高くなった。 On the other hand, in Examples 1 to 11 in which the electrodes were made of copper silicide, cracks did not occur during manufacture, and the electrical resistance value was low.
From the above, according to Examples 1 to 11, the element body made of the thermoelectric conversion material of the silicide-based compound and the electrode are securely bonded, the electric resistance at the interface is sufficiently low, and the element body and the electrode are connected to each other. It was confirmed that a thermoelectric conversion element capable of suppressing the occurrence of cracking can be provided. In Example 11 in which the porosity exceeded 60%, although lower than that in Comparative Example 3, the electrical resistance value was slightly higher than those in Examples 1 to 10.
以上のことから、実施例1~11によれば、シリサイド系化合物の熱電変換材料からなる素子本体と電極とが確実に接合され、界面における電気抵抗が十分に低く、かつ、素子本体や電極に割れが生じることを抑制できる熱電変換素子を提供できることが確認された。なお、気孔率が60%を超えた実施例11においては、比較例3よりも低いものの、実施例1~10と比べると、電気抵抗値がやや高くなった。 On the other hand, in Examples 1 to 11 in which the electrodes were made of copper silicide, cracks did not occur during manufacture, and the electrical resistance value was low.
From the above, according to Examples 1 to 11, the element body made of the thermoelectric conversion material of the silicide-based compound and the electrode are securely bonded, the electric resistance at the interface is sufficiently low, and the element body and the electrode are connected to each other. It was confirmed that a thermoelectric conversion element capable of suppressing the occurrence of cracking can be provided. In Example 11 in which the porosity exceeded 60%, although lower than that in Comparative Example 3, the electrical resistance value was slightly higher than those in Examples 1 to 10.
本発明の熱電変換素子によれば、シリサイド系化合物の熱電変換材料からなる素子本体と電極とが確実に接合され、界面における電気抵抗が十分に低く、かつ、素子本体や電極に割れが生じることを抑制できるから、産業上の利用が可能である。
According to the thermoelectric conversion element of the present invention, the element body made of the thermoelectric conversion material of the silicide compound and the electrode are reliably bonded, the electrical resistance at the interface is sufficiently low, and the element body and the electrode are cracked. Therefore, industrial use is possible.
1 熱電変換モジュール
3 端子
10 熱電変換素子
11 素子本体
15 電極
16 金属層 DESCRIPTION OF SYMBOLS 1Thermoelectric conversion module 3 Terminal 10 Thermoelectric conversion element 11 Element main body 15 Electrode 16 Metal layer
3 端子
10 熱電変換素子
11 素子本体
15 電極
16 金属層 DESCRIPTION OF SYMBOLS 1
Claims (5)
- シリサイド系化合物の熱電変換材料からなる素子本体と、この素子本体の一方の面および対向する他方の面にそれぞれ形成された電極とを備えた熱電変換素子であって、
前記電極は、銅シリサイドの焼結体で構成されており、前記電極と前記素子本体とが直接接合されていることを特徴とする熱電変換素子。 A thermoelectric conversion element comprising an element body made of a thermoelectric conversion material of a silicide compound and electrodes formed on one surface of the element body and the other surface facing each other,
The said electrode is comprised with the sintered compact of copper silicide, and the said electrode and the said element main body are directly joined, The thermoelectric conversion element characterized by the above-mentioned. - 前記電極の前記素子本体とは反対側の面に金属層が形成されていることを特徴とする請求項1に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein a metal layer is formed on a surface of the electrode opposite to the element body.
- 前記電極の厚さが10μm以上300μm以下であることを特徴とする請求項1又は請求項2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein a thickness of the electrode is 10 μm or more and 300 μm or less.
- 前記銅シリサイドにおけるSiとCuの原子数比Si/Cuが0.12以上0.4以下であることを特徴とする請求項1から請求項3のいずれか一項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 3, wherein an atomic number ratio Si / Cu of Si and Cu in the copper silicide is 0.12 or more and 0.4 or less.
- 前記銅シリサイドにおける気孔率が60%以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 4, wherein a porosity of the copper silicide is 60% or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/957,968 US11152554B2 (en) | 2018-03-16 | 2019-03-15 | Thermoelectric conversion element |
EP19768346.9A EP3767689A4 (en) | 2018-03-16 | 2019-03-15 | Thermoelectric conversion element |
CN201980007644.4A CN111630672A (en) | 2018-03-16 | 2019-03-15 | Thermoelectric conversion element |
KR1020207019226A KR20200130806A (en) | 2018-03-16 | 2019-03-15 | Thermoelectric conversion element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018049874 | 2018-03-16 | ||
JP2018-049874 | 2018-03-16 | ||
JP2019-040845 | 2019-03-06 | ||
JP2019040845A JP7242999B2 (en) | 2018-03-16 | 2019-03-06 | Thermoelectric conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019177147A1 true WO2019177147A1 (en) | 2019-09-19 |
Family
ID=67907801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010818 WO2019177147A1 (en) | 2018-03-16 | 2019-03-15 | Thermoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019177147A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202274A (en) | 1993-12-28 | 1995-08-04 | Nissan Motor Co Ltd | Thermoelectric device and its manufacture |
JP2003234516A (en) * | 2002-02-12 | 2003-08-22 | Komatsu Ltd | Thermoelectric module |
JP2006339283A (en) * | 2005-05-31 | 2006-12-14 | Toyota Motor Corp | Thermoelectric module |
WO2012073946A1 (en) | 2010-11-30 | 2012-06-07 | 学校法人東京理科大学 | Thermoelectric conversion element and thermoelectric conversion module |
JP2013201382A (en) * | 2012-03-26 | 2013-10-03 | Nagoya Univ | Thermoelectric conversion module and method for manufacturing the same |
JP2018049874A (en) | 2016-09-20 | 2018-03-29 | 富士通株式会社 | Semiconductor device and method of manufacturing the same |
JP2019040845A (en) | 2017-08-29 | 2019-03-14 | Toyo Tire株式会社 | State prediction method of secondary battery, charge control method, system and program |
-
2019
- 2019-03-15 WO PCT/JP2019/010818 patent/WO2019177147A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202274A (en) | 1993-12-28 | 1995-08-04 | Nissan Motor Co Ltd | Thermoelectric device and its manufacture |
JP2003234516A (en) * | 2002-02-12 | 2003-08-22 | Komatsu Ltd | Thermoelectric module |
JP2006339283A (en) * | 2005-05-31 | 2006-12-14 | Toyota Motor Corp | Thermoelectric module |
WO2012073946A1 (en) | 2010-11-30 | 2012-06-07 | 学校法人東京理科大学 | Thermoelectric conversion element and thermoelectric conversion module |
JP2013201382A (en) * | 2012-03-26 | 2013-10-03 | Nagoya Univ | Thermoelectric conversion module and method for manufacturing the same |
JP2018049874A (en) | 2016-09-20 | 2018-03-29 | 富士通株式会社 | Semiconductor device and method of manufacturing the same |
JP2019040845A (en) | 2017-08-29 | 2019-03-14 | Toyo Tire株式会社 | State prediction method of secondary battery, charge control method, system and program |
Non-Patent Citations (1)
Title |
---|
See also references of EP3767689A4 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7121230B2 (en) | Method for producing magnesium-based thermoelectric conversion material | |
US11647674B2 (en) | Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material | |
JP7242999B2 (en) | Thermoelectric conversion element | |
EP3432371B1 (en) | Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material | |
JP6317123B2 (en) | Thermoelectric element, thermoelectric module, and method of manufacturing thermoelectric element | |
WO2019177147A1 (en) | Thermoelectric conversion element | |
KR102409289B1 (en) | Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and manufacturing method of magnesium-based thermoelectric conversion material | |
WO2019163807A1 (en) | Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module | |
JP7159854B2 (en) | Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module | |
WO2024122326A1 (en) | Thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, electric power generation method, and method for producing thermoelectric conversion element | |
JP7248157B2 (en) | Thermoelectric conversion material and method for producing thermoelectric conversion material | |
WO2022059593A1 (en) | Thermoelectric conversion material, thermoelectric conversion element, peltier element, thermoelectric conversion module, and peltier module | |
WO2021132255A1 (en) | Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module | |
JP2018157130A (en) | Manufacturing method of thermoelectric conversion material | |
JP6549442B2 (en) | Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element | |
JP2022049670A (en) | Thermoelectric conversion material, thermoelectric conversion element, peltier element, thermoelectric conversion module, and peltier module | |
JP2021103763A (en) | Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module | |
JP2020150040A (en) | Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module | |
KR20190058221A (en) | Fabrication Method of a Curved thermoelectric Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19768346 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019768346 Country of ref document: EP |