WO2019177077A1 - Magnetic wiring circuit board and method for manufacturing same - Google Patents

Magnetic wiring circuit board and method for manufacturing same Download PDF

Info

Publication number
WO2019177077A1
WO2019177077A1 PCT/JP2019/010447 JP2019010447W WO2019177077A1 WO 2019177077 A1 WO2019177077 A1 WO 2019177077A1 JP 2019010447 W JP2019010447 W JP 2019010447W WO 2019177077 A1 WO2019177077 A1 WO 2019177077A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
wiring
sheet
thickness
Prior art date
Application number
PCT/JP2019/010447
Other languages
French (fr)
Japanese (ja)
Inventor
佳宏 古川
圭佑 奥村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019044770A external-priority patent/JP7352363B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980017405.7A priority Critical patent/CN111837208B/en
Publication of WO2019177077A1 publication Critical patent/WO2019177077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a magnetic wiring circuit board and a manufacturing method thereof.
  • a magnetic sheet such as an inductor including an air-core coil and a magnetic layer in which the air-core coil is embedded is known.
  • a magnetic sheet comprising an air-core coil, an anisotropic composite magnetic part filled inside the air-core coil, and an anisotropic composite magnetic sheet laminated on the upper surface of the air-core coil has been proposed (for example, see Patent Document 1.)
  • an air-core coil is prepared, and thereafter, an anisotropic composite magnetic part is filled inside the core of the air-core coil, and then the anisotropic composite magnetic sheet. Is laminated on the upper surface of the air-core coil.
  • the magnetic sheet is required to have even better inductance.
  • the present invention provides a method for manufacturing a magnetic wiring circuit board, which can easily form a magnetic layer at a time, and a magnetic wiring circuit board having high inductance.
  • the present invention (1) includes two press plates, an insulating layer, a plurality of wiring portions arranged at predetermined intervals on one surface in the thickness direction of the insulating layer, a first magnetic sheet, A sandwiching step of sandwiching a release cushion sheet in that order; and a first pressing of the insulating layer, the plurality of wiring portions, the first magnetic sheet, and the release cushion sheet with the press plate.
  • 1 press step, and in the first press step, the first magnetic sheet is filled with the first magnetic sheet so as to fill a space between the plurality of wiring portions and to cover one surface in the thickness direction of the wiring portion.
  • the release cushion sheet includes a first layer and a second layer disposed on one side in the thickness direction of the first layer, and the tensile storage modulus of the second layer at 110 ° C.
  • E ′ is 1 of the first layer Lower than the tensile storage modulus E 'at 0 ° C., including the method of manufacturing a magnetic printed circuit board.
  • a magnetic layer is formed by a first pressing step in which an insulating layer, a plurality of wiring portions, a first magnetic sheet, and a release cushion sheet are hot pressed with a press plate. It can be easily formed at a time.
  • the first pressing step is performed at the above temperature.
  • the second layer is more flexible than the first layer, so that the second layer is easier to flow than the first layer, and the first magnetic sheet is routed to the plurality of wires via the first layer. Can be pushed out between the parts. Therefore, in the first pressing step, it is possible to reliably form a magnetic layer that fills a space between the plurality of wiring portions and covers the facing surfaces of the wiring portions.
  • the present invention (2) includes the method for producing a magnetic wiring circuit board according to (1), wherein the tensile storage modulus E ′ at 110 ° C. of the second layer is 20 MPa or less.
  • the tensile storage modulus E ′ at 110 ° C. of the second layer is as low as 20 MPa or less. Therefore, in the first pressing step, the second layer Can flow reliably. Therefore, the second layer can push the first magnetic sheet between the plurality of wiring portions. As a result, the magnetic layer can be surely filled between the plurality of wiring portions, and a magnetic wired circuit board having high inductance can be obtained.
  • the ratio of the thickness T2 of the second layer to the thickness T1 of the wiring part is 0.5 or more, and the method for manufacturing a magnetic wired circuit board according to (1) or (2) including.
  • the ratio of the thickness T2 of the second layer to the thickness T1 of the wiring portion is as high as 0.5 or more. Therefore, in the first pressing step, the thick second layer The first magnetic sheet on the one surface in the thickness direction can be hot-pressed flexibly, so that the thickness of the magnetic layer corresponding to the portion can be sufficiently secured. As a result, the magnetic layer can reliably cover one surface in the thickness direction of the wiring portion.
  • the release cushion sheet further includes a third layer disposed on one side in the thickness direction of the second layer, and the tensile storage elastic modulus E ′ of the second layer at 110 ° C.
  • the release cushion sheet further includes a third layer having a tensile storage elastic modulus E ′ higher than the tensile storage elastic modulus E ′ at 110 ° C. of the second layer.
  • the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring part is 0.5 or more, and the magnetic property according to any one of (1) to (4) A method for manufacturing a printed circuit board is included.
  • the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring portion is as high as 0.5 or more. Can be formed. As a result, the effective magnetic permeability between the wiring portions can be improved, and a magnetic wired circuit board having high inductance can be obtained.
  • the present invention (6) includes the press plate, the insulating layer, the plurality of wiring portions, the first magnetic layer formed by the first step, a second magnetic sheet, and the release cushion sheet.
  • this magnetic wiring circuit board manufacturing method further includes the second pressing step, a thick magnetic layer can be formed. Therefore, the effective magnetic permeability between the wiring portions can be improved, and a magnetic wired circuit board having high inductance can be obtained.
  • the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring portion is less than 0.5, and the thickness T3 of the first magnetic layer and the thickness of the second magnetic layer.
  • the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring part is as low as less than 0.5, the magnetic layer becomes thin, so that it becomes difficult to fill a plurality of wiring parts with the magnetic layer. easy.
  • the ratio of the total thickness T3 of the first magnetic layer and the thickness T4 of the second magnetic layer to the thickness T1 of the wiring portion is as high as 0.5 or more.
  • the magnetic layer including the first magnetic layer and the second magnetic layer is thick, so that the thick magnetic layer can surely fill between the plurality of wiring portions. As a result, a magnetic wiring circuit board having high inductance can be obtained.
  • the first magnetic sheet and the second magnetic sheet contain magnetic particles, and the content ratio of the magnetic particles in the first magnetic sheet is the content ratio of the magnetic particles in the second magnetic sheet.
  • the manufacturing method of the magnetic wiring circuit board as described in (6) or (7) is included.
  • the content ratio of the magnetic particles in the first magnetic sheet is lower than the content ratio of the magnetic particles in the second magnetic sheet. Therefore, the first magnetic sheet that is more flexible than the second magnetic sheet is surely disposed between the plurality of wiring portions, and subsequently, even if the second magnetic sheet is more rigid than the first magnetic sheet, By arranging it in the first magnetic layer already arranged between the plurality of wiring portions, the space between the plurality of wiring portions can be filled with the magnetic layer including the first magnetic layer and the second magnetic layer. .
  • the inductance of the magnetic wiring circuit board can be improved by the second magnetic layer formed from the second magnetic sheet containing the magnetic particles at a higher content ratio than the content ratio of the magnetic particles in the first magnetic sheet.
  • the present invention (9) is filled with an insulating layer, a plurality of wiring portions arranged at a distance from each other in a predetermined direction on one surface in the thickness direction of the insulating layer, and filled between the plurality of wiring portions, and A magnetic layer that covers a facing surface that is disposed to be opposed to the one surface in the thickness direction of the wiring portion with a space therebetween, and the magnetic layer is disposed on the facing surface of the plurality of wiring portions, and the thickness direction
  • a plurality of convex portions protruding toward one side, and a concave portion located between the plurality of convex portions and recessed toward the other side in the thickness direction with respect to the adjacent convex portions;
  • Has only one apex located on the one side in the thickness direction, and the recess has a shape that sinks into a substantially curved shape toward the other side in the thickness direction.
  • One side in the thickness direction with respect to a virtual surface passing through the facing surface Has a bottom portion located, including magnetic printed circuit board
  • the convex portion has only one top portion
  • the concave portion has a shape that is recessed in a substantially curved shape toward the other side in the thickness direction
  • the opposing surface of the adjacent wiring portion is provided. It has a bottom portion located on one side in the thickness direction with respect to the passing virtual surface. Therefore, the magnetic permeability around the wiring portion can be improved by the magnetic path that smoothly passes through the convex portion and the concave portion.
  • this magnetic wiring circuit board has high inductance.
  • a magnetic layer can be easily formed at a time, and a magnetic wired circuit board having high inductance can be obtained.
  • the magnetic wiring circuit board of the present invention has a high inductance because the magnetic permeability around the wiring portion can be improved by the magnetic path smoothly passing through the convex portion and the concave portion.
  • FIG. 1A to 1C are manufacturing process diagrams of a first embodiment of a method of manufacturing a magnetic wiring circuit board according to the present invention.
  • FIG. 1A is a sandwiching process
  • FIG. 1B is a first pressing process
  • FIG. 1C is a magnetic process.
  • the process of obtaining a printed circuit board is shown.
  • 2A to 2B are process diagrams detailing the first pressing process shown in FIG. 1B.
  • FIG. 2A is a mode in which the first magnetic sheet is in contact with the wiring portion at the start of the hot pressing.
  • FIG. 2B shows a mode in which the hot pressing proceeds following FIG. 2A, and the first magnetic sheet is filled between the wiring parts while being pressed by the deformed release cushion sheet.
  • FIG. 1A is a sandwiching process
  • FIG. 1B is a first pressing process
  • FIG. 1C is a magnetic process.
  • the process of obtaining a printed circuit board is shown.
  • 2A to 2B are process diagrams detailing the first pressing process shown in
  • FIG. 3 is a cross-sectional view of the magnetic wiring circuit board obtained in FIGS. 1A to 1C, showing a cross-sectional view depicting magnetic particles in the magnetic layer.
  • 4A to 4B are manufacturing process diagrams of the second embodiment of the method for manufacturing a magnetic wiring circuit board according to the present invention.
  • FIG. 4A shows a sandwiching process
  • FIG. 4B shows a first pressing process.
  • 5C to 5E are manufacturing process diagrams of the second embodiment of the manufacturing method of the magnetic wiring circuit board of the present invention, following FIG. 4B
  • FIG. 5C is a process of further arranging the second magnetic sheet
  • FIG. FIG. 5E shows a step of obtaining a magnetic wiring circuit board.
  • FIGS. 6A to 6C are manufacturing process diagrams of modified examples.
  • FIG. 6A shows a sandwiching process
  • FIG. 6B shows a first pressing process
  • FIG. 6C shows a process for obtaining a magnetic wiring circuit board.
  • FIG. 7 is a cross-sectional view of the magnetic wiring circuit board shown in FIG. 6C in which the hatching of the wiring portion is removed and the magnetic particles are clarified.
  • FIG. 8 shows an image processing diagram of the SEM photograph of Example 1.
  • FIG. 9 shows an image processing diagram of the SEM photograph of Example 2.
  • FIG. 10 shows an image processing diagram of the SEM photograph of Example 3.
  • FIG. 11 is an image processing diagram of the SEM photograph of Example 4.
  • FIG. 12 shows an image processing diagram of the SEM photograph of Comparative Example 1.
  • FIG. 13 is an image processing diagram of the SEM photograph of Comparative Example 2.
  • FIG. 14 is an image processing diagram of the SEM photograph of Comparative Example 3.
  • FIG. 15 shows an image processing diagram of the SEM photograph of Comparative Example 4.
  • the second layer 32 (described later) is omitted from the hatching in order to clearly indicate the flow pressure causing the deformation with an arrow.
  • the magnetic wiring circuit board 1 is manufactured by two press plates 20, an insulating layer 2, a plurality of wiring portions 4, a first magnetic sheet 5, and a release cushion sheet. 6 in that order (see FIG. 1A), and the two press plates 20 heat the insulating layer 2, the plurality of wiring portions 4, the first magnetic sheet 5, and the release cushion sheet 6.
  • a first pressing step for pressing is provided. In the method for manufacturing the magnetic wiring circuit board 1, the above-described steps are sequentially performed.
  • an insulating layer 2 As shown in FIG. 1A, in the sandwiching step, first, an insulating layer 2, a plurality of wiring portions 4, a first magnetic sheet 5, and a release cushion sheet 6 are prepared.
  • the insulating layer 2 has a sheet shape extending in a direction orthogonal to the thickness direction (surface direction), and has a first insulating surface 3 that is one surface in the thickness direction and a second insulating surface 9 that is the other surface.
  • the insulating layer 2 is a support material that supports a plurality of wiring portions 4 to be described below, and by extension, is also a support layer that supports the magnetic wiring circuit board 1.
  • the insulating layer 2 has toughness. Examples of the material of the insulating layer 2 include insulating materials such as polyimide resin, polyester resin, and acrylic resin.
  • the insulating layer 2 may be either a single layer or a multilayer.
  • the insulating layer 2 is a multi-layer, as shown by phantom lines, for example, a first support layer 12 made of a polyester resin (polyethylene terephthalate or the like), a pressure-sensitive adhesive layer 13 made of an acrylic resin, for example,
  • the second support layer 14 made of polyimide resin is provided in order toward one side in the thickness direction.
  • the second support layer 14 is pressure-sensitive bonded (supported) to the support layer 12 via the pressure-sensitive adhesive layer 13.
  • the second support layer 14 forms the first insulating surface 3.
  • the support layer 12 forms the second insulating surface 9.
  • the plurality of wiring portions 4 are spaced apart from each other in the surface direction (an example of a predetermined direction) (specifically, the first direction corresponding to the left-right direction in FIG. 1A) on the first insulating surface 3 of the insulating layer 2.
  • the shape in plan view (when viewed in the thickness direction) of the plurality of wiring portions 4 is not particularly limited, and examples thereof include a substantially coil shape, a substantially loop shape, and a substantially S shape.
  • the cross-sectional view (specifically, the cross-sectional view when cut along the thickness direction and the first direction) of each of the plurality of wiring parts 4 is not particularly limited, and examples thereof include a substantially rectangular shape and a substantially trapezoidal shape. At least a quadrilateral shape in which a pair of surfaces opposed in the thickness direction are parallel to each other can be used.
  • the plurality of wiring portions 4 are disposed on the first insulating surface 3 of the insulating layer 2.
  • the plurality of wiring parts 4 contact the second support layer 14 to form the insulating layer 2. It is supported.
  • Each of the plurality of wiring parts 4 is in contact with the first insulating surface 3 of the insulating layer 2 and the opposing surface 15 that is arranged to face the first insulating surface 3 of the insulating layer 2 at an interval on one side in the thickness direction.
  • a side surface (specifically, both side surfaces connecting both end edges in the first direction) 17 connecting the opposing surface 15 and the peripheral edge of the supported surface 16.
  • the facing surface 15 is a flat surface along the first direction.
  • the supported surface 16 is a flat surface parallel to the facing surface 15.
  • the side surface 17 extends along the thickness direction. Two side surfaces 17 are provided in one wiring part 4. The two side surfaces 17 are opposed to each other with a gap in the first direction. If the wiring part 4 has a substantially trapezoidal shape, the two side surfaces 17 have shapes that are inclined so as to approach each other as they proceed to one side in the thickness direction. That is, the side surface 17 is a tapered surface whose opposing length becomes shorter toward the one side in the thickness direction.
  • Examples of the material of the plurality of wiring parts 4 include metals (conductors) such as copper.
  • the dimensions of the plurality of wiring portions 4 are appropriately set according to the use and purpose of the magnetic wiring circuit board 1, and for example, the thickness T1 (the opposing length of the opposing surface 15 and the supported surface 16) is, for example, 20 ⁇ m or more. Preferably, it is 50 ⁇ m or more, for example, 300 ⁇ m or less, preferably 150 ⁇ m or less.
  • the width of the wiring portion 4 is, for example, 1900 ⁇ m or less and 20 ⁇ m or more as the first direction length of the facing surface 15, and the first direction length of the supported surface 16 is, for example, 2000 ⁇ m or less and 30 ⁇ m or more.
  • the spacing between the plurality of wiring portions 4 is, for example, 2100 ⁇ m or less and 60 ⁇ m or more as the spacing in the first direction of the side surface 17 in the adjacent wiring portion 4, and the first direction of the supported surface 16 in the adjacent wiring portion 4.
  • the interval is 2000 ⁇ m or less and 30 ⁇ m or more.
  • the ratio (T1 / width) of the thickness T1 of the wiring portion 4 to the width of the wiring portion 4 (the length in the first direction of the facing surface 15 or the supported surface 16) is, for example, 0.01 or more, preferably 0. For example, it is 10 or less, preferably 5 or less.
  • the ratio (T1 / interval) of the thickness T1 of the wiring portion 4 to the spacing between the wiring portions 4 (the spacing in the first direction of the facing surface 15 or the supported surface 16) is, for example, 0.01 or more, preferably 0. 0.025 or more, and for example, 10 or less, preferably 5 or less.
  • the insulating layer 2 and the plurality of wiring parts 4 are prepared as, for example, a printed circuit board 40 that includes them in advance.
  • the printed circuit board 40 includes the insulating layer 2 and a plurality of wiring portions 4 disposed on the first insulating surface 3 of the insulating layer 2.
  • the printed circuit board 40 preferably includes only the insulating layer 2 and the plurality of wiring portions 4.
  • the first magnetic sheet 5 has a sheet shape extending in the surface direction.
  • the first magnetic sheet 5 is a magnetic sheet for forming the magnetic layer 21 (see FIG. 1C) in the magnetic wiring circuit board 1.
  • the first magnetic sheet 5 has a first magnetic surface 18 that is one surface in the thickness direction and a second magnetic surface 19 that is the other surface.
  • the first magnetic surface 18 is a flat surface along the surface direction.
  • the second magnetic surface 19 is a flat surface that is disposed opposite to the first magnetic surface 18 with a gap on the other side in the thickness direction and is parallel to the first magnetic surface 18.
  • the 1st magnetic sheet 5 deform
  • Examples of the material of the first magnetic sheet 5 include a magnetic composition containing the magnetic particles 48 and a resin.
  • Examples of the magnetic material constituting the magnetic particles 48 include a soft magnetic material and a hard magnetic material.
  • a soft magnetic material is used from the viewpoint of inductance.
  • the soft magnetic material for example, a single metal body containing one kind of metal element in a pure substance state, for example, one or more kinds of metal elements (first metal element) and one or more kinds of metal elements (second An alloy body which is a eutectic (mixture) with a metal element) and / or a non-metal element (carbon, nitrogen, silicon, phosphorus, etc.) can be used. These can be used alone or in combination.
  • the single metal body for example, a single metal composed of only one kind of metal element (first metal element) can be mentioned.
  • the first metal element is appropriately selected from, for example, iron (Fe), cobalt (Co), nickel (Ni), and other metal elements that can be contained as the first metal element of the soft magnetic material. .
  • a form including a core containing only one kind of metal element and a surface layer containing an inorganic substance and / or an organic substance that modifies part or all of the surface of the core for example, examples include a form in which an organometallic compound or an inorganic metal compound containing the first metal element is decomposed (such as thermal decomposition). More specifically, as the latter form, iron powder obtained by thermally decomposing an organic iron compound (specifically, carbonyl iron) containing iron as the first metal element (sometimes referred to as carbonyl iron powder). Etc.
  • the position of the layer containing an inorganic material and / or an organic material that modifies a portion containing only one type of metal element is not limited to the above surface.
  • limit especially as an organic metal compound and an inorganic metal compound which can obtain a single metal body The well-known thru
  • An alloy body is a eutectic mixture of one or more metal elements (first metal element) and one or more metal elements (second metal element) and / or non-metal elements (carbon, nitrogen, silicon, phosphorus, etc.).
  • the body is not particularly limited as long as it can be used as an alloy body of a soft magnetic body.
  • the first metal element is an essential element in the alloy, and examples thereof include iron (Fe), cobalt (Co), and nickel (Ni). If the first metal element is Fe, the alloy body is an Fe-based alloy, and if the first metal element is Co, the alloy body is a Co-based alloy, and the first metal element is Ni. In this case, the alloy body is a Ni-based alloy.
  • the second metal element is an element (subcomponent) that is secondary contained in the alloy body, and is a metal element that is compatible (eutectic) with the first metal element, for example, iron (Fe) (first 1 metal element other than Fe), cobalt (Co) (when the first metal element is other than Co), nickel (Ni) (when other than the first metal element Ni), chromium (Cr), aluminum (Al), silicon (Si), copper (Cu), silver (Ag), manganese (Mn), calcium (Ca), barium (Ba), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), ruthenium (Ru), rhodium (Rh), zinc (Zn), gallium (Ga), indium (In), germanium (G ), Tin (Sn), lead (Pb), scandium (Sc), yttrium (
  • the nonmetallic element is an element (subcomponent) that is secondary to the alloy body, and is a nonmetallic element that is compatible (eutectic) with the first metal element.
  • alloy based Fe alloy examples include magnetic stainless steel (Fe—Cr—Al—Si alloy) (including electromagnetic stainless steel), sendust (Fe—Si—Al alloy) (including super sendust), permalloy ( Fe-Ni alloy), Fe-Ni-Mo alloy, Fe-Ni-Mo-Cu alloy, Fe-Ni-Co alloy, Fe-Cr alloy, Fe-Cr-Al alloy, Fe-Ni-Cr alloy, Fe- Ni-Cr-Si alloy, silicon copper (Fe-Cu-Si alloy), Fe-Si alloy, Fe-Si-B (-Cu-Nb) alloy, Fe-B-Si-Cr alloy, Fe-Si-Cr -Ni alloy, Fe-Si-Cr alloy, Fe-Si-Al-Ni-Cr alloy, Fe-Ni-Si-Co alloy, Fe-N alloy, Fe-C alloy, Fe-B alloy, Fe-P alloy , Ferrite Soft ferrite such as Mn-Mg
  • Co-based alloy which is an example of an alloy body
  • Co—Ta—Zr cobalt (Co) based amorphous alloy, and the like.
  • Ni-based alloy that is an example of an alloy body
  • Ni—Cr alloy examples include a Ni—Cr alloy.
  • an alloy body more preferably an Fe alloy, more preferably Sendust (Fe—Si—Al alloy), particularly preferably a high magnetic permeability is obtained.
  • Sendust having a Si content of 9 to 15% by mass can be mentioned.
  • the soft magnetic material is preferably a single metal body, more preferably a single metal body containing an iron element in a pure substance state, more preferably an iron simple substance or iron powder (carbonyl iron powder). Can be mentioned.
  • the shape of the magnetic particles 48 is not particularly limited, and may be a substantially flat shape (plate shape), a substantially spherical shape, a substantially needle shape, or an indefinite shape, and preferably a substantially flat shape (plate shape).
  • the first magnetic sheet 5 can further contain non-anisotropic magnetic particles in addition to the anisotropic magnetic particles 48.
  • the non-anisotropic magnetic particles may have a shape such as a spherical shape, a granular shape, a lump shape, or a pellet shape.
  • the average particle diameter of the non-anisotropic magnetic particles is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the average particle diameter (average maximum length) of the anisotropic magnetic particles 48 is, for example, 3.5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 100 ⁇ m or less.
  • the volume ratio of the magnetic particles 48 in the magnetic composition (first magnetic sheet 5) is, for example, 15% by volume or more, preferably 50% by volume or more, and for example, 90% by volume or less, preferably 80% by volume. % Or less.
  • the resin examples include a thermoplastic component and a thermosetting component. These can be used alone or in combination. Preferably, a thermoplastic component and a thermosetting component are used in combination. If the thermoplastic component and the thermosetting component are used in combination, in the first step, the magnetic composition flows sufficiently and can fill between the plurality of wiring portions 4, but is excellent in durability by subsequent complete curing.
  • the magnetic layer 21 can be formed.
  • thermoplastic component examples include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, Thermoplastic polyimide resin, polyamide resin (6-nylon, 6,6-nylon etc.), phenoxy resin, acrylic resin, saturated polyester resin (PET etc.), polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer And other thermoplastic resins. These thermoplastic components can be used alone or in combination of two or more.
  • thermoplastic component an acrylic resin is preferable.
  • acrylic resin for example, a carboxyl group-containing (meta) formed by polymerizing a monomer component containing a (meth) acrylic acid alkyl ester having a linear or branched alkyl group and another monomer (copolymerizable monomer).
  • Acrylic ester copolymer preferably carboxyl group-containing acrylic ester copolymer.
  • alkyl group examples include alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl and the like.
  • Other monomers include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • the ratio (solid content ratio) in the resin of the thermoplastic component is, for example, 25% by mass or more and 80% by mass or less.
  • the thermosetting component includes, for example, a main agent, a curing agent, and a curing accelerator.
  • the main agent examples include epoxy resin, phenol resin, melamine resin, vinyl ester resin, cyano ester resin, maleimide resin, and silicone resin.
  • the main agent is preferably an epoxy resin from the viewpoint of heat resistance and the like. If the main agent is an epoxy resin, the thermosetting component constitutes an epoxy thermosetting component together with a curing agent (epoxy curing agent) and a curing accelerator (epoxy curing accelerator) described later.
  • the epoxy resin examples include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol A type epoxy resin, modified bisphenol F type epoxy resin, and biphenyl type epoxy resin, for example, phenol novolac type epoxy.
  • bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol A type epoxy resin, modified bisphenol F type epoxy resin, and biphenyl type epoxy resin, for example, phenol novolac type epoxy.
  • polyfunctional epoxy resins having three or more functions such as resin, cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin, and dicyclopentadiene type epoxy resin. These epoxy resins can be used alone or in combination of two or more.
  • cresol novolac type epoxy resin and a trishydroxyphenylmethane type epoxy resin are used.
  • cresol novolac type epoxy resin examples include compounds represented by the following general formula (1), and specific examples of the trishydroxyphenylmethane type epoxy resin are represented by the following general formula (2). Compound etc. are mentioned.
  • n shows the polymerization degree of a monomer each independently.
  • the epoxy equivalent of the epoxy resin is, for example, 10 g / eq. Or more, preferably 100 g / eq. In addition, for example, 300 g / eq. Hereinafter, preferably, 250 g / eq. It is as follows.
  • the ratio of the main agent (preferably epoxy resin) in the resin is, for example, 5% by mass or more, for example, 50% by mass or less.
  • the curing agent is a component (preferably an epoxy resin curing agent) that cures the above-described main agent by heating.
  • phenol resins such as a phenol novolak resin, are mentioned, for example.
  • the total number of hydroxyl groups in the phenol resin is, for example, 0.7 equivalents or more with respect to 1 equivalent of the epoxy group in the epoxy resin. , Preferably, it is adjusted to 0.9 equivalent or more, for example, 1.5 equivalent or less, preferably 1.2 equivalent or less.
  • the number of blending parts of the curing agent is, for example, 70 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the main agent.
  • the curing accelerator is a catalyst (thermal curing catalyst) (preferably an epoxy resin curing accelerator) that accelerates the curing of the main agent by heating, and is, for example, an organic phosphorus compound such as 2-phenyl-4-methyl. And imidazole compounds such as -5-hydroxymethylimidazole (2P4MHZ). Preferably, an imidazole compound is used.
  • the number of blending parts of the curing accelerator is, for example, 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the main agent.
  • the volume ratio of the resin in the magnetic composition is the balance of the volume ratio of the magnetic particles 48 described above, specifically, for example, 10% by volume or more, preferably 20% by volume or more. For example, 80 volume% or less, preferably 50 volume% or less.
  • blend can mix
  • a well-known additive for example, a dispersing agent, a rheology control agent, etc.
  • the first magnetic sheet 5 is prepared by blending magnetic particles 48 and a resin and mixing them uniformly to prepare a magnetic composition.
  • the varnish of a magnetic composition is prepared using a solvent (organic solvent) as needed. Then, a varnish is apply
  • the thickness of the first magnetic sheet 5 is appropriately set such that a thickness T3 of a magnetic layer 21 described later is secured.
  • the release cushion sheet 6 is a hot press while suppressing adhesion (pressure-sensitive adhesion) between the second press plate 11 and the first magnetic sheet 5 in the first press step described below. After that, the release sheet can release the magnetic layer 21 from the second press plate 11. Further, the release cushion sheet 6 acts on the first magnetic sheet 5 by dispersing the pressure of the second press plate 11 corresponding to the shapes of the plurality of wiring portions 4 during the hot pressing in the first pressing step. It is also a cushion sheet for causing the first magnetic sheet 5 to deform and causing the first magnetic sheet 5 to follow the shape of the plurality of wiring portions 4.
  • the release cushion sheet 6 has a sheet shape extending in the surface direction, and includes a first release surface 22 that is one surface in the thickness direction and a second release surface 23 that is the other surface.
  • the first release surface 22 can come into surface contact with the second press plate 11 (described later).
  • the first release surface 22 is a flat surface along the surface direction.
  • the second release surface 23 can come into surface contact with the first magnetic surface 18 of the first magnetic sheet 5.
  • the second release surface 23 is disposed opposite to the first release surface 22 with a gap on the other side in the thickness direction.
  • the second release surface 23 is parallel to the first release surface 22 and is a flat surface along the surface direction.
  • the release cushion sheet 6 includes a first layer 31, a second layer 32, and a third layer 33 in order on one side in the thickness direction.
  • the release cushion sheet 6 includes only the first layer 31, the second layer 32, and the third layer 33.
  • the first layer 31 is located on the other side in the thickness direction of the release cushion sheet 6. Thereby, the first layer 31 forms the second release surface 23. That is, the first layer 31 is a release layer (first release layer) for the first magnetic sheet 5 (specifically, the magnetic layer 21 after hot pressing).
  • the first layer 31 is a thin film (skin film) having a shape extending along the surface direction.
  • the first layer 31 is a coating layer (outer shell layer) that covers the second layer 32 described below from the other side in the thickness direction.
  • the other surface in the thickness direction of the first layer 31 (the surface corresponding to the second release surface 23) may be subjected to an appropriate peeling treatment.
  • the first layer 31 can follow and contact the first magnetic surface 18 of the first magnetic sheet 5 in the subsequent hot pressing in the first pressing step, while its thickness substantially changes before and after the hot pressing. Has no physical properties.
  • the first layer 31 is a layer that can be extended in the surface direction (specifically, in the first direction) in the above-described hot pressing.
  • the 1st layer 31 is hard compared with the 2nd layer 32 demonstrated below in the temperature (for example, 110 degreeC) of the hot press in a 1st press process.
  • the tensile storage elastic modulus E ′ of the first layer 31 at 110 ° C. is, for example, 50 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, and for example, 300 MPa or less.
  • the tensile storage elastic modulus E ′ is obtained by measuring dynamic viscoelasticity under conditions of a frequency of 1 Hz and a temperature rising rate of 10 ° C./min.
  • the tensile storage elastic modulus E ′ of the second layer 32 and the release cushion sheet 6 to be described later is obtained in the same manner.
  • the temperature 110 ° C. that specifies the tensile storage modulus E ′ of the first layer 31 is a temperature that assumes the temperature of the hot press of the first magnetic sheet 5 in the first pressing step or a temperature close thereto.
  • the temperature 110 ° C. that specifies the tensile storage modulus E ′ of the second layer 32 and the third layer 33 is the same as that described above for the first layer 31.
  • the melting point of the first layer 31 is high, for example, a temperature exceeding the temperature of hot pressing (for example, 110 ° C.), specifically 200 ° C. or higher, preferably 210 ° C. or higher, more preferably It is 220 ° C. or higher and 250 ° C. or lower.
  • the melting point of the first layer 31 is measured with a differential scanning calorimeter. Note that the melting points of the second layer 32 and the third layer 33 described later are also measured by the same method as described above.
  • Examples of the material of the first layer 31 include a non-thermofluid material that does not flow at least in the first direction by hot pressing in a first pressing step described later.
  • the non-thermofluid material contains, for example, aromatic polyester, polyolefin and the like as main components.
  • aromatic polyester examples include polyalkylene terephthalates such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), and preferably PBT.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • Polyolefins include homopolymers and / or copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene, 2-butene, 2-methylpropene, 4-methyl-1-pentene, preferably poly (4 -Methyl-1-pentene).
  • non-thermofluid material include aromatic polyester.
  • the thickness of the first layer 31 is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less, and for example, 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the second layer 32 is disposed on one surface in the thickness direction of the first layer 31 and is an intermediate layer sandwiched between the first layer 31 and the third layer 33 in the release cushion sheet 6.
  • the second layer 32 is a fluidized bed that flows in the first direction and the thickness direction during the hot pressing in the first step, and causes the first layer 31 to follow the first magnetic surface 18 of the first magnetic sheet 5.
  • the second layer 32 is a softer layer than the first layer 31, and can be specifically deformed during hot pressing in the first pressing step.
  • the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is lower than the tensile storage elastic modulus E ′ at 110 ° C. of the first layer 31.
  • the tensile storage modulus E ′ at 110 ° C. of the second layer 32 is, for example, 50 MPa or less, preferably 40 MPa or less, more preferably 30 MPa or less, and further preferably 20 MPa or less. For example, it is 5 MPa or more.
  • the tensile storage elastic modulus E ′ of the first layer 31 is obtained by measuring the dynamic viscoelasticity of the insulating layer under conditions of a frequency of 1 Hz and a temperature increase rate of 10 ° C./min.
  • the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is not more than the above upper limit, it can be flexibly deformed at the time of hot pressing in the first pressing step, and specifically follows a plurality of wiring portions 4. Can be transformed.
  • the ratio of the tensile storage elastic modulus E ′ of the second layer 32 at 110 ° C. to the tensile storage elastic modulus E ′ of the first layer 31 at 110 ° C. is, for example, less than 1, preferably 0.5 or less, more preferably 0.1 or less, and for example, 0.005 or more. is there.
  • the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is lower or the same as, for example, the tensile storage elastic modulus E ′ at 110 ° C. of the first magnetic sheet 5.
  • the melting point of the second layer 32 is lower than the melting point of the first layer 31, for example, a temperature not higher than the temperature of the hot press (for example, 110 ° C.), specifically, less than 105 ° C., preferably , Less than 100 ° C., and for example, 50 ° C. or more.
  • Examples of the material of the second layer 32 include a heat-fluid material that flows in the first direction and the thickness direction by hot pressing in a first pressing step described later.
  • the heat-fluid material contains, for example, an olefin- (meth) acrylate copolymer, an olefin-vinyl acetate copolymer as a main component.
  • olefin- (meth) acrylate copolymer examples include ethylene such as ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene-propyl (meth) acrylate copolymer, and ethylene-butyl (meth) acrylate copolymer.
  • ethylene such as ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene-propyl (meth) acrylate copolymer, and ethylene-butyl (meth) acrylate copolymer.
  • -Al (meth) acrylate copolymers for example propylene-alkyl (meth) acrylate copolymers such as propylene-methyl (meth) acrylate copolymers.
  • Examples of the olefin-vinyl acetate copolymer include an ethylene-vinyl acetate copolymer.
  • the heat fluid material preferably includes olefin- (meth) acrylate copolymers, preferably ethylene-alkyl (meth) acrylate copolymers, more preferably ethylene-methyl (meth) acrylate copolymers, more preferably Mention may be made of ethylene-methyl methacrylate copolymers.
  • the thickness T2 of the second layer 32 is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less. .
  • the ratio of the thickness T2 of the second layer 32 to the thickness T1 of the wiring portion 4 is 0.3 or more, preferably 0.5 or more. For example, it is 3.0 or less, preferably 2.0 or less.
  • the magnetic layer 21 having a desired shape is formed in the first step. Can do.
  • the ratio of the thickness T2 of the second layer 32 to the thickness of the first layer 31 is, for example, 2 or more, preferably 5 or more, more preferably 7 or more, and for example 15 or less.
  • the third layer 33 is disposed on one surface in the thickness direction of the second layer 32 and is located on the most thickness side in the release cushion sheet 6. Thereby, the third layer 33 forms the first release surface 22.
  • the third layer 33 is a release layer (second release layer) for the second press plate 11.
  • the shape, physical properties, material, and thickness of the third layer 33 are the same as those in the first layer 31.
  • the ratio of the thickness T2 of the second layer 32 to the total thickness of the first layer 31 and the third layer 33 is, for example, 1.5 or more, preferably 3 or more, more preferably 4 or more, For example, it is 8 or less.
  • the thickness of the release cushion sheet 6 is the sum of the thickness of the first layer 31, the thickness T2 of the second layer 32, and the thickness of the third layer 33, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more. For example, it is 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • release cushion sheet 6 a commercially available product can be used.
  • a release film OT series manufactured by Sekisui Chemical Co., Ltd.
  • a release film OT-A and a release film OT-E is used. It is done.
  • the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 are sandwiched between the two press plates 20 in that order.
  • the two press plates 20 include a first press plate 10 and a second press plate 11 that are spaced apart from each other in the thickness direction.
  • Each of the first press plate 10 and the second press plate 11 has a shape extending along the surface direction.
  • the first press plate 10 and / or the second press plate 11 includes a heat source (not shown) so that the first magnetic sheet 5 and the release cushion sheet 6 can be heated.
  • the first press plate 10 and the second press plate 11 are relatively moved so that the insulating layer 2, the plurality of wiring portions 4, the first magnetic sheet 5, and the release cushion sheet 6 can be pressed in the thickness direction. It is configured.
  • the first press plate 10 has a first press surface 7 extending along the surface direction.
  • the first press surface 7 is a flat surface along the surface direction.
  • the first press plate 10 is fixed to a fixing member (not shown) so as not to move in the thickness direction.
  • the second press plate 11 has a second press surface 8 parallel to the first press surface 7.
  • the second press plate 11 is connected to a power unit (not shown) and is movable in the thickness direction.
  • the printed circuit board 40 and the release cushion sheet 6 are sandwiched between the two press plates 20. 5 and the release cushion sheet 6 are arranged (inserted). At this time, for example, the second insulating surface 9 is in contact with the first press surface 7.
  • the first pressing step is performed.
  • the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 are hot-pressed by the two press plates 20.
  • the second press plate 11 is moved (lowered) so as to approach the first press plate 10, and the second press plate 11 is pressed against the first magnetic sheet 5 via the release cushion sheet 6 ( Press).
  • the first magnetic sheet 5 and the release cushion sheet 6 are heated by a heat source.
  • the press pressure is, for example, 0.1 MPa or more, preferably 0.3 MPa or more, and for example, 10 MPa or less, preferably 5 MPa or less.
  • the heating temperature is, for example, equal to or higher than the melting point of the second layer 32 and lower than the melting point of the first layer 31.
  • the heating temperature is specifically 100 ° C. or higher, preferably 105 ° C. or higher, for example, 190 ° C. or lower, preferably 150 ° C. or lower.
  • the press time is, for example, 10 seconds or longer, preferably 20 seconds or longer, and for example, 1000 seconds or shorter, preferably 100 seconds or shorter.
  • the first pressing step as shown in the arrow of FIG. 1 and FIG. 2A, when the movement of the second press plate 11 relative to the first press plate 10 starts, the first release surface 22 and the second press surface 8 are moved.
  • the second release surface 23 and the first magnetic surface 18 are in contact with each other, and the second magnetic surface 19 and the facing surface 15 are in contact with each other. That is, in the first press plate 10, the insulating layer 2, the wiring portion 4, the first magnetic sheet 5, the release cushion sheet 6, and the second press plate 11, members adjacent in the thickness direction are in contact with each other (adherence, Then, the movement of the second press plate 11 further proceeds (hot pressing starts).
  • the overlapping portion 34 that overlaps the facing surface 15 in the release cushion sheet 6 is formed by the facing surface 15 and the second press surface 8 as shown by the horizontal arrow in FIG. It is pressed (narrow pressure) while being narrowed in the thickness direction.
  • the non-overlapping portion 35 that does not overlap the facing surface 15 in the release cushion sheet 6 when projected in the thickness direction is such that the second magnetic surface 19 does not contact the facing surface 15 and the first insulating surface 3 Since it is spaced apart from the exposed surface 36 exposed from the plurality of wiring parts 4, it does not receive the above-described narrow pressure.
  • the heat fluid material in the overlapping portion 34 of the second layer 32 flows (extrudes) (deforms) (specifically, plastically deforms) toward the non-overlapping portion 35.
  • the non-overlapping portion 35 is increased in fluid pressure based on the flow (extrusion) of the heat fluid material from the overlapping portion 34 described above.
  • the flow pressure in the non-overlapping portion 35 acts on both sides in the thickness direction.
  • the fluid pressure acting on the other side in the thickness direction out of the fluid pressure pushes (presses down) the first layer 31 in the non-overlapping portion 35 to the other side in the thickness direction.
  • the extruded portion 38 that opposes the non-overlapping portion 35 in the thickness direction in the first magnetic sheet 5 is pushed out (pressed down) in the other thickness direction.
  • the fluid pressure (arrow shown with a broken line) which acts on the thickness direction one side acts on the 3rd layer 33 facing the non-overlapping part 35, as above-mentioned, the 3rd layer 33 is the 2nd press board 11. Therefore, the third layer 33 is not deformed.
  • the second magnetic surface 19 of the extruded portion 38 comes into contact with the side surface 17 and the exposed surface 36, thereby forming (molding) a magnetic layer 21 that fills the space between the plurality of wiring portions 4 as shown in FIG. 1C. )
  • the overlapping portion 34 becomes thinner than before the hot pressing, and the non-overlapping portion 35 becomes thicker than before the hot pressing.
  • the overlapping portion 34 and the non-overlapping portion 35 are not substantially changed before and after the hot pressing.
  • the first layer 31 extends in the first direction as the second layer 32 is deformed.
  • the second release surface 23 of the release cushion sheet 6 has a shape corresponding to the magnetic layer 21 (the first magnetic sheet 5 after forming).
  • the magnetic layer 21 (first magnetic sheet 5) after the hot pressing is, for example, a B stage.
  • the thickness T3 of the magnetic layer 21 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the thickness T3 of the magnetic layer 21 is defined as the length in the thickness direction between the facing surface 15 of the wiring portion 4 and the top portion 28 (described later) of the magnetic layer 21.
  • the ratio of the thickness T3 of the magnetic layer 21 to the thickness T1 of the wiring portion 4 is, for example, 0.3 or more, preferably 0.4 or more. More preferably, it is 0.5 or more, for example, 5.0 or less. If the ratio is equal to or greater than the above lower limit, in the first pressing step, the magnetic layer 21 can be reliably filled between the adjacent wiring portions 4.
  • the magnetic layer 21 formed (molded) in a predetermined shape is obtained from the first magnetic sheet 5.
  • the magnetic wiring circuit board 1 provided with the wiring circuit board 40 and the magnetic layer 21 is obtained.
  • the magnetic layer 21 is formed so as to fill a space between the plurality of wiring parts 4 and cover the facing surface 15 of the wiring part 4.
  • the magnetic layer 21 has a convex portion 25 and a concave portion 26.
  • a plurality of convex portions 25 are formed corresponding to the plurality of wiring portions 4.
  • the plurality of convex portions 25 are arranged on the facing surfaces 15 of the plurality of wiring portions 4.
  • the some convex part 25 is arrange
  • Each of the plurality of convex portions 25 has a shape that protrudes toward one side in the thickness direction.
  • the convex portion 25 has a convex surface 27 that is spaced on one side in the thickness direction with respect to the facing surface 15 of the wiring portion 4.
  • the convex surface 27 overlaps the facing surface 15 when projected in the thickness direction, and is spaced from the facing surface 15 on one side in the thickness direction.
  • the convex surface 27 has only one top portion 28.
  • the top portion 28 is located on the convex surface 27 on the one side in the thickness direction, that is, the portion farthest from the facing surface 15.
  • the convex surface 27 has a curved shape that gradually falls (sinks) to the other side in the thickness direction as it goes from the top 28 to both sides in the first direction.
  • the degree of dropping (sinking) of the convex surface 27 toward the other side in the thickness direction increases as the distance from the top portion 28 increases to both sides in the second direction.
  • the concave portion 26 is located between the plurality of convex portions 25 corresponding to the plurality of wiring portions 4 and has a shape that sinks toward the other side in the thickness direction with respect to the adjacent convex portions 25.
  • the remaining portion of the concave portion 26, specifically, the one side portion in the thickness direction does not overlap with the wiring portion 4 when projected in the first direction.
  • the projection surface of the remaining portion of the concave portion 26 is the wiring portion. 4 is disposed on one side in the thickness direction of the projection surface.
  • the concave portion 26 has a concave surface 29 that is spaced on one side in the thickness direction with respect to the exposed surface 36 of the first insulating surface 3.
  • the concave surface 29 is continuous with the edge in the first direction of the convex surface 27.
  • the concave surface 29 faces at least the exposed surface 36, and preferably faces both the exposed surface 36 and the side surface 17.
  • the concave surface 29 has a shape that sinks (recesses) into a substantially curved shape toward the other side in the thickness direction.
  • the concave surface 29 has a bottom portion 30.
  • the bottom portion 30 is located on one side in the thickness direction of the concave surface 29 with respect to the virtual surface S passing through the facing surface 15 of the adjacent wiring portion 4. That is, the bottom portion 30 is spaced from the above-described virtual surface S on one side in the thickness direction. Further, the bottom portion 30 is located on the concave surface 29 at a portion closest to the exposed surface 36. That is, the bottom portion 30 is the bottommost portion (a portion located on the other side in the thickness direction) of the concave surface 29.
  • the magnetic layer 21 is C-staged (completely cured) by, for example, heating. Specifically, further heating or the above-described press is released, and the magnetic wiring circuit board 1 is put into a heating furnace.
  • the magnetic wiring circuit board 1 is used for, for example, wireless power transmission (wireless power feeding and / or wireless power receiving), wireless communication, sensors, passive components, and the like.
  • this magnetic wiring circuit board 1 As shown to FIG. 1B, with two press plates 20, the insulating layer 2, the some wiring part 4, the 1st magnetic sheet 5, and a mold release
  • the magnetic layer 21 can be easily formed at a time by the first pressing step of hot pressing the cushion sheet 6.
  • the first layer 31 at the above-described temperature since the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 in the release cushion sheet 6 is lower than the tensile storage elastic modulus E ′ at 110 ° C. of the first layer 31, the first layer 31 at the above-described temperature.
  • the second layer 32 becomes softer than the first layer 31, so that the second layer 32 flows more easily than the first layer 31, via the first layer 31,
  • the first magnetic sheet 5 can be pushed out between the plurality of wiring parts 4. Therefore, in the first pressing step, it is possible to reliably form the magnetic layer 21 that fills the space between the plurality of wiring parts 4 and covers the facing surface 15 of the wiring part 4.
  • the first pressing step is performed when the hot pressing is performed at the above-described temperature.
  • the two layers 32 can flow reliably. Therefore, the second layer 32 can push out the first magnetic sheet 5 between the plurality of wiring parts 4.
  • the space between the plurality of wiring portions 4 can be reliably filled with the magnetic layer 21, and the magnetic wiring circuit board 1 having high inductance can be obtained.
  • the thickness T3 of the magnetic layer 21 in the first pressing step can be set to a thickness of half or more of the thickness T1 of the wiring portion 4. Therefore, the second magnetic layer 32 having a thickness T2 that is more than half the thickness T1 of the wiring portion 4 can flexibly heat press the first magnetic sheet 5 on the facing surface 15 of the wiring portion 4, and therefore, in this portion A sufficient thickness of the corresponding magnetic layer 21 can be ensured. As a result, the facing surface 15 of the wiring part 4 can be reliably covered with the magnetic layer 21.
  • the release cushion sheet 6 further includes the third layer 33 having a tensile storage elastic modulus E ′ higher than the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32.
  • the hard third layer 33 can suppress deformation of the release cushion sheet 6 in the thickness direction on one side. Therefore, the first pressing process can be performed reliably.
  • the ratio of the thickness T 3 of the magnetic layer 21 to the thickness T 1 of the wiring portion 4 is as high as 0.5 or more, that is, the thickness T 3 of the magnetic layer 21 is
  • the thickness can be set to half or more of the thickness T1. Therefore, it is possible to form the relatively thick magnetic layer 21 with respect to the wiring portion 4 while reliably filling the space between the plurality of wiring portions 4. As a result, the effective magnetic permeability between the wiring portions 4 can be improved, and the magnetic wired circuit board 1 having high inductance can be obtained.
  • the convex part 25 has only one top part 28, and the recessed part 26 has a shape dented in a curved shape toward the thickness direction other side, and adjacent wiring Since it has the bottom part 30 located in the thickness direction one side with respect to the virtual surface S which passes the opposing surface 15 of the part 4, the above-mentioned convex part 25 and the magnetic path which passes smoothly through the concave part 26 of the wiring part 4 are provided.
  • the surrounding effective magnetic permeability can be improved.
  • the magnetic particles 48 are oriented in the first direction or along the direction in which the convex portions 25 gently curve so as to fall from the top 28 toward the other side in the thickness direction.
  • the bottom portion 30 of the concave portion 26 is oriented along the first direction or a direction that gently curves so as to run toward one side in the thickness direction toward the two adjacent convex portions 25, and the concave portion 26, the two wiring parts 4 are oriented along the peripheral surface 17 between the peripheral side surfaces 17 and along the exposed surface 36 (first direction) in the portion covering the exposed surface 36. Therefore, in this magnetic layer 21, a smooth magnetic path along the convex portion 25 and the concave portion 26 is formed.
  • the magnetic wiring circuit board 1 has high inductance.
  • the release cushion sheet 6 includes the third layer 33.
  • the release cushion sheet 6 does not include the third layer 33, and includes the first layer 31 and the second layer. There can only be 32. In this case, preferably, the release cushion sheet 6 includes only the first layer 31 and the second layer 32.
  • the first embodiment is preferable.
  • the release cushion sheet 6 includes the third layer 33. Therefore, as shown in FIG. 1B, when the first pressing step is performed at 110 ° C., the hard third By the layer 33, the deformation
  • the release cushion sheet 6 adjacent layers among the first layer 31, the second layer 32, and the third layer 33 are in contact with each other.
  • the layers adjacent to each other in the thickness direction are spaced apart from each other and may be prepared separately.
  • another release sheet may be interposed between the second press plate 11 and the release cushion sheet 6.
  • the release sheet (not shown) is harder than the second layer 32 in the release cushion sheet 6, for example.
  • a plurality of release cushion sheets 6 can be stacked in the thickness direction.
  • the magnetic wired circuit board 1 can also include a third magnetic layer 37 disposed on the other surface of the insulating layer 2 in the thickness direction.
  • the insulating layer 2 may be a magnetic insulating layer containing magnetic particles.
  • the magnetic layer 21 is a single layer, but although not shown, it may be a multilayer.
  • the plurality of first magnetic sheets 5 are sandwiched between the plurality of wiring portions 4 and the release cushion sheet 6, and the plurality of first magnetic sheets 5 are hot-pressed in a single first pressing step so as to be magnetic.
  • Layer 21 is formed.
  • the total thickness T3 of the plurality of first magnetic sheets 5 in the sandwiching step is the same as the thickness T3 of the single magnetic layer 21 in the first embodiment.
  • the ratio of the magnetic particles 48 in the magnetic layer 21 may be uniform in the magnetic layer 21, and may increase or decrease as the distance from each wiring portion 4 increases.
  • Second Embodiment In the following second embodiment, the same members and steps as those of the first embodiment and the modifications thereof are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second embodiment can be appropriately combined with the first embodiment and its modifications. Further, the second embodiment can achieve the same effects as those of the first embodiment and its modifications, unless otherwise specified.
  • the magnetic layer 21 is formed from the first magnetic sheet 5 in one first pressing step.
  • a second press step of hot pressing the second magnetic sheet 45 is provided in addition to the first press step of hot pressing the first magnetic sheet 5. That is, in the second embodiment, the magnetic layer 21 is formed by two pressing processes.
  • the thickness T3 of the first magnetic layer 41 is allowed to be thinner than the thickness T1 of the wiring part 4, and specifically, for example, 100 ⁇ m or less, further 80 ⁇ m or less, , 60 ⁇ m or less, and for example, 5 ⁇ m or more.
  • the ratio of the thickness T3 of the first magnetic layer 41 to the thickness T1 of the wiring portion 4 is, for example, less than 0.5, further 0.3 or less, and for example, 0.05 or more.
  • the content ratio of the magnetic particles 48 in the first magnetic sheet 5 can be set lower than that in the first embodiment, for example, less than 60% by volume, preferably Is less than 55% by volume, more preferably 50% by volume or less, and for example, 15% by volume or more. If the content ratio of the magnetic particles 48 in the first magnetic sheet 5 is lower than the upper limit described above, the flexible first magnetic sheet 5 is easily deformed by the hot pressing in the first pressing step, and the side surface 17 and the exposed surface 36. Can be reliably contacted.
  • the resin content is the balance of the magnetic particles 48 described above.
  • the first magnetic layer 41 having the above-described shape is formed (molded) from the first magnetic sheet 5.
  • the first magnetic layer 41 is preferably still a B stage.
  • the first magnetic wiring circuit board 51 including the wiring circuit board 40 (the insulating layer 2 and the wiring portion 4) and the first magnetic layer 41 is provided.
  • the first magnetic wiring circuit board 51 is, for example, in the case where the bottom 30 is located at the same position as the virtual plane S or on the other side in the thickness direction (described later). It is an intermediate part for manufacturing a second magnetic wiring circuit board 52 (described later) (product) (see FIG. 5E) obtained in the form, and includes a first magnetic layer 41 while a second magnetic layer 42 (described later). ) (See FIG. 5E).
  • the first magnetic layer 41 fills only the other side portion in the thickness direction of the gap between the adjacent wiring portions 4 ( In other words, the bottom portion 30 is allowed to be located at the same position as the virtual plane S or at the other side in the thickness direction.
  • the second pressing step is performed after the first pressing step.
  • the heat press in the first pressing step is released (opened), and then the second press plate 11 is separated from the release cushion sheet 6. That is, the release cushion sheet 6 is released from the magnetic layer 21. In other words, the release cushion sheet 6 is pulled away from one surface of the first magnetic layer 41. Thereafter, the release cushion sheet 6 is taken out (pulled out) between the first magnetic layer 41 and the second press plate 11.
  • a release cushion sheet 6 (as described above, a release cushion sheet 6 different from the removed (pulled out) release cushion sheet 6) is prepared.
  • a second magnetic sheet 45 is prepared.
  • the material and physical properties of the second magnetic sheet 45 are the same as those of the first magnetic sheet 5.
  • the content ratio of the magnetic particles 48 in the second magnetic layer 42 can be set higher than the content ratio of the magnetic particles 48 in the first magnetic sheet 5, for example.
  • the ratio of the content ratio of the magnetic particles 48 in the second magnetic layer 42 to the content ratio of the magnetic particles 48 in the first magnetic sheet 5 is, for example, more than 1, preferably 1.1 or more, preferably 1.15 or more. Also, for example, 2 or less, preferably 1.5 or less.
  • the content ratio of the magnetic particles 48 in the second magnetic sheet 45 is, for example, more than 50% by volume, preferably 55% by volume or more, more preferably 60% by volume or more, for example, 90% by volume. It is as follows. If the content ratio of the magnetic particles 48 in the second magnetic sheet 45 exceeds the lower limit, the inductance of the magnetic wiring circuit board 1 can be improved by the second magnetic layer 42 containing the magnetic particles 48 at a high content ratio. .
  • the first magnetic wiring circuit board 51, the second magnetic sheet 45, and the release cushion sheet 6 are hot-pressed by the two press plates 20.
  • the second magnetic sheet 45 and the release cushion sheet 6 are sequentially arranged on one surface of the first magnetic layer 41 in the first magnetic wiring circuit board 51. Specifically, the second magnetic sheet 45 and the release cushion sheet 6 are disposed (inserted) between the first magnetic layer 41 and the second press plate 11.
  • the conditions for the second pressing step are the same as the conditions for the first pressing step.
  • the second magnetic layer 42 is formed (molded) from the second magnetic sheet 45 on one surface in the thickness direction of the first magnetic layer 41 in the first magnetic wiring circuit board 51.
  • the second magnetic layer 42 is, for example, a B stage.
  • the magnetic layer 21 provided with the first magnetic layer 41 and the second magnetic layer 42 sequentially toward one side in the thickness direction is obtained.
  • the magnetic layer 21 is preferably formed only from the first magnetic layer 41 and the second magnetic layer 42.
  • the ratio of the total (T3 + T4) of the thickness T3 of the first magnetic layer 41 and the thickness T4 of the second magnetic layer 42 to the thickness T1 of the wiring part 4 is 0.5 or more. Preferably, it is set to 0.6 or more, and for example, 5.0 or less, preferably 3.0 or less.
  • the ratio (T4 / T3) of the thickness T4 of the second magnetic layer 42 to the thickness T3 of the first magnetic layer 41 is, for example, 1.5 or more, preferably 2.0 or more, and, for example, 40 or less. , Preferably, it is 30 or less.
  • the thickness T4 of the second magnetic layer 42 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and, for example, 450 ⁇ m or less, preferably 250 ⁇ m or less.
  • the second magnetic wiring circuit board 52 including the wiring circuit board 40 and the magnetic layer 21 is obtained.
  • the second magnetic wiring circuit board 52 includes a first magnetic wiring circuit board 51 and a second magnetic layer 42.
  • first magnetic layer 41 and the second magnetic layer 42 are the B stage, the first magnetic layer 41 and the second magnetic layer 42 are C-staged (completely cured).
  • the manufacturing method of the second magnetic wiring circuit board 52 further includes the second pressing step, and therefore includes the first magnetic layer 41 and the second magnetic layer 42. ),
  • the thick magnetic layer 21 can be reliably formed. Therefore, the magnetic permeability between the wiring portions 4 can be improved, and the second magnetic wiring circuit board 52 having high inductance can be obtained.
  • the ratio of the thickness T3 of the first magnetic layer 41 to the thickness T1 of the wiring portion 4 is as low as less than 0.5, the first magnetic layer 41 is likely to be thin as shown in FIG. It is difficult to fill the space between the wiring portions 4 with the first magnetic layer 41.
  • the ratio of the total thickness T3 of the first magnetic layer 41 and the thickness T4 of the second magnetic layer to the thickness T1 of the wiring portion 4 is 0.5 or more. If it is high, the space between the plurality of wiring portions 4 can be reliably filled with the thick magnetic layer 21 including the first magnetic layer 21 and the second magnetic layer 21. As a result, the second magnetic wiring circuit board 52 having high inductance can be obtained.
  • the second magnetic wiring circuit board 52 According to the method of manufacturing the second magnetic wiring circuit board 52, if the content ratio of the magnetic particles 48 in the first magnetic sheet 5 is lower than the content ratio of the magnetic particles 48 in the second magnetic sheet 45, The first magnetic sheet 5 that is more flexible than the second magnetic sheet 45 is surely disposed between the plurality of wiring parts 4, and then the second magnetic sheet 45 is more rigid than the first magnetic sheet 5. However, the magnetic layer including the first magnetic layer 41 and the second magnetic layer 42 is disposed between the plurality of wiring portions 4 by arranging the first magnetic layer 41 between the plurality of wiring portions 4. 21 can be filled.
  • the second magnetic wiring circuit board 52 is formed by the second magnetic layer 21 formed from the second magnetic sheet containing the magnetic particles 48 at a higher content ratio than the content ratio of the magnetic particles 48 in the first magnetic sheet 5. Inductance can be improved.
  • the mold release cushion sheet 6 used in the first press process was taken out, and another mold release cushion sheet 6 was arranged and used for the hot press in the second press process.
  • the common release cushion sheet 6 can be used in the first press process and the second press process. That is, the release cushion sheet 6 used in the first pressing process can be reused in the second pressing process.
  • the second magnetic sheet 45 is a single layer, but in a modification, it may be a multilayer. Preferably, it is 3 layers or more and 10 layers or less.
  • the second pressing process can be performed multiple times.
  • the magnetic layer 21 is formed by a total of three pressing processes.
  • the first magnetic layer 41 is formed by a first pressing process (first pressing process) in which the first magnetic sheet 5 is hot-pressed, and then the second magnetic sheet 45 is bonded to the first magnetic layer 41.
  • the first magnetic layer 41 and the second magnetic layer 42 are formed by a second pressing step (second pressing step) in which hot pressing is performed.
  • a second pressing step (third pressing step) is performed on the second magnetic layer 42 by hot pressing.
  • This step is the second time in the second press step, and the second magnetic sheet 45 is the second magnetic sheet 45 in the present invention together with the second magnetic sheet 45 in the first second press step.
  • the second magnetic layer 42 is formed from another second magnetic sheet 45.
  • the second magnetic layer 42 formed in the second second pressing step and the second magnetic layer 42 formed in the first second pressing step are both included in the “second magnetic layer” in the present invention. It is.
  • the thickness T4 of the second magnetic layer 42 is the total thickness of all the second magnetic layers 42. Specifically, in the above example, the total thickness of the second magnetic layer 42 formed in the first second pressing step and the second magnetic layer 42 formed in the second second pressing step. Is the thickness T4 of the second magnetic layer 42.
  • the wiring portion 4 has a quadrilateral shape in cross section, but in this modification, as shown in FIGS. 6C and 7, it has a substantially circular shape in cross section.
  • the wiring unit 4 includes a conductive wire 43 and a second insulating layer 44 that covers the conductive wire 43.
  • the conducting wire 43 has a substantially circular shape in cross-sectional view sharing the central axis with the wiring portion 4.
  • the second insulating layer 44 is an insulating layer different from the insulating layer 2.
  • the second insulating layer 44 covers the entire outer peripheral surface (circumferential surface) of the conducting wire 43 and has a substantially annular shape in cross-sectional view sharing the central axis (center) with the wiring portion 4.
  • the material of the second insulating layer 44 is the same as the material of the insulating layer 2.
  • the second insulating layer 44 may be composed of a single layer or may be composed of a plurality of layers.
  • the diameter D of the wiring part 4 corresponds to the above-described thickness T1.
  • the ratio of the thickness of the second insulating layer 44 to the diameter D of the wiring part 4 is, for example, 0.005 or more and 0.1 or less.
  • a plurality of wiring portions 4 are arranged on the first insulating surface 3 of the insulating layer 2. Specifically, the other end in the thickness direction of the wiring portion 4 is brought into contact with the first insulating surface 3.
  • the second magnetic surface 19 of the first magnetic sheet 5 includes the first semicircular arc 46 of the wiring portion 4 (the other end edge in the thickness direction of the wiring portion 4). A semicircular arc located on the other side of the direction). However, the second magnetic surface 19 does not contact the other edge in the thickness direction that contacts the first insulating surface 3 in the wiring portion 4.
  • the recess 26 that fills the space between the plurality of wiring parts 4 and the second semicircular arc 47 of the wiring part 4 (continuous on one side in the thickness direction of the first semicircular arc 46, A magnetic layer 21 is formed (molded) having a convex portion 25 that includes the other edge in the thickness direction of the wiring portion 4 and follows a semicircular arc located on one side in the thickness direction.
  • the magnetic particles 48 are oriented along the circumferential direction of the wiring portion 4 in the peripheral region (near region) of the wiring portion 4. A substantially annular magnetic path along the circumferential direction is formed.
  • the wiring portion 4 is arranged in the insulating layer 2, and thereafter, as shown in FIGS. 6C and 7, the magnetic wired circuit board 1 including the insulating layer 2 is obtained.
  • the wiring part 4 is disposed on the second release film as an example of the insulating layer 2, and then the first magnetic sheet 5 is coated so as to cover the wiring part 4. It arrange
  • the second release film has, for example, a sheet shape extending in the surface direction, and specifically has one surface and the other surface facing in the thickness direction. It does not specifically limit as a material of a 2nd mold release film, For example, resin, such as PET, is mentioned. One surface of the second release film may be subjected to a known peeling treatment.
  • the thickness of the second release film is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the magnetic wiring circuit board 1 obtained in this modification includes a plurality of wiring portions 4 and a magnetic layer 21 (first magnetic sheet 5), and does not include a second release film.
  • the wiring portion 4 and the conductive wire 43 have a substantially circular shape in cross section, but are not limited thereto, and are not illustrated, but may be, for example, a substantially rectangular shape, a substantially trapezoidal shape, or the like. It is done.
  • the second insulating layer 44 covers the entire outer peripheral surface of the wiring portion 4.
  • the above-described magnetic wired circuit board 1 can include the third magnetic layer 37 provided on the other surface of the magnetic layer 21 so as to cover the other end of the wiring portion 4 in the thickness direction.
  • the entire circumferential surface (outer peripheral surface) of the wiring portion 4 is covered with the first magnetic sheet 5 including the first magnetic sheet 5 and the third magnetic layer 37.
  • first embodiment the second embodiment, and each modification can be combined as appropriate.
  • Example 1 (Pinching process) A printed circuit board 40 including the insulating layer 2 and a plurality of wiring portions 4 arranged on the first insulating surface 3 was prepared.
  • the insulating layer 2 includes a first support layer 12 made of polyethylene terephthalate, a pressure-sensitive adhesive layer 13 made of acrylic resin, and a second support layer 14 made of polyimide resin on one side in the thickness direction. Prepare in order.
  • the plurality of wiring portions 4 are made of copper and have a thickness T1 of 100 ⁇ m.
  • the length of the facing surface 15 in the first direction is 245 ⁇ m, and the distance in the first direction between the facing surfaces 15 in the adjacent wiring portions 4 is 190 ⁇ m.
  • the length of the supported surface 16 in the first direction is 336 ⁇ m, and the distance in the first direction between the supported surfaces 16 of the adjacent wiring portions 4 is 100 ⁇ m.
  • a first magnetic sheet 5 and a release cushion sheet 6 were prepared.
  • First magnetic sheet 5 was prepared as a B-stage sheet by first preparing a first magnetic composition according to the prescription in Table 1 and forming it into a sheet shape.
  • a release film OT-A160 (manufactured by Sekisui Chemical Co., Ltd.) was prepared as it was.
  • the thickness of the release cushion sheet 6 is 160 ⁇ m, and includes a first layer 31 having a thickness of 20 ⁇ m, a second layer 32 having a thickness T2 of 120 ⁇ m, and a third layer 33 having a thickness of 20 ⁇ m.
  • the first layer 31 and the third layer 33 have a melting point of 223 ° C., a tensile storage elastic modulus E ′ at 110 ° C. of 190 MPa, and the material contains polybutylene terephthalate as a main component.
  • the second layer 32 has a melting point of 80 ° C., a tensile storage modulus E ′ at 110 ° C. of 5.6 MPa, and the material contains an ethylene-methyl methacrylate copolymer as a main component.
  • the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 were sandwiched between the two press plates 20.
  • First pressing step manufacture of the first magnetic wiring circuit board 51
  • the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 are heated using the two press plates 20 at a press pressure of 2 MPa (corresponding to 2 kN) and a press condition of 110 ° C. for 60 seconds. Pressed.
  • the first magnetic layer 41 was formed (molded) from the first magnetic sheet 5.
  • the thickness T3 of the first magnetic layer 41 was 10 ⁇ m.
  • the 1st magnetic wiring circuit board 51 provided with the wiring circuit board 40 and the 1st magnetic layer 41 was manufactured.
  • release cushion sheet 6 release OT-A160 similar to that prepared in the first press step
  • the second magnetic sheet 45 was prepared as a B stage sheet by preparing a second magnetic composition according to the prescription in Table 1 and forming it into a sheet shape.
  • the four second magnetic sheets 45 and the newly prepared release cushion sheet 6 were inserted between the first magnetic layer 41 and the second press plate 11 in the first magnetic wiring circuit board 51. .
  • the first magnetic wiring circuit board 51, the second magnetic sheet 45, and the release cushion sheet 6 are formed with two press plates 20 at a press pressure of 2 MPa (corresponding to 2 kN) at 110 ° C. for 60 seconds. Hot pressed.
  • the second magnetic layer 42 was formed (molded) on the one surface in the thickness direction of the first magnetic layer 41 in the first magnetic wiring circuit board 51 from the second magnetic sheet 45.
  • the magnetic layer 21 composed of the first magnetic layer 41 and the second magnetic layer 42 was formed.
  • the thickness T4 of the second magnetic layer 42 was 100 ⁇ m.
  • the second magnetic wiring circuit board 52 including the first magnetic layer 41 and the second magnetic layer 42 was manufactured.
  • the second magnetic wired circuit board 52 includes the wired circuit board 40 and the magnetic layer 21.
  • Example 2 to Comparative Example 4 A second magnetic wiring circuit board 52 was manufactured in the same manner as in Example 1 except that the type and thickness of the release cushion sheet 6 were changed according to Table 2.
  • TPX release cushion sheet 6 in Comparative Example 1 and Comparative Example 2 is a release sheet (manufactured by Mitsui Chemicals) made of methylpentene resin (melting point 235 ° C.).
  • the MRA (release cushion sheet 6) in Comparative Example 3 and Comparative Example 4 is a release sheet (manufactured by Mitsubishi Chemical Corporation) made of polyethylene terephthalate resin (melting point 260 ° C.).
  • the release cushion sheet 6 does not include the second layer 32.
  • each of the first magnetic sheet 5 and the second magnetic sheet 45 cannot be uniformly pressed in each of the first press process and the second press process.
  • the contraction force in the direction acts, and two top portions 28 are formed on the convex surface 27 of the convex portion 25.
  • the bottom 30 is pointed toward the other side in the thickness direction.
  • the release cushion sheet 6 includes the second layer 32, and the tensile storage elastic modulus E ′ of the second layer at 110 ° C. is the tensile storage elasticity of the third layer at 110 ° C. Low compared to rate E '. Therefore, the convex surface 27 has only one top portion 28. Further, the concave surface 29 has a shape that is recessed in a curved shape toward the other side in the thickness direction, and has a bottom portion 30 that is located on one side in the thickness direction with respect to the virtual surface S. As a result, each example has a higher inductance than each comparative example.
  • Magnetic wiring circuit boards are used for various magnetic applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A method for manufacturing a magnetic wiring circuit board, the method being provided with: a sandwiching step for sandwiching, between two press plates, an insulation layer, a plurality of wiring parts disposed at a distance from each other in a prescribed direction on one thickness-direction surface of the insulation layer, a first magnetic sheet, and a release cushion sheet in the stated order; and a first pressing step for heat-pressing the insulation layer, the plurality of wiring parts, the first magnetic sheet, and the release cushion sheet using the press plates. In the first pressing step, a first magnetic layer is formed so as to fill the gaps between the plurality of wiring parts and cover one thickness-direction surface of the wiring parts from the first magnetic sheet. The release cushion sheet is provided with a first layer and a second layer disposed on one thickness-direction side of the first layer. The tensile storage elasticity modulus E' of the second layer at 110°C is lower than the tensile storage elasticity modulus E' of the first layer at 110°C.

Description

磁性配線回路基板およびその製造方法Magnetic wiring circuit board and manufacturing method thereof
 本発明は、磁性配線回路基板およびその製造方法に関する。 The present invention relates to a magnetic wiring circuit board and a manufacturing method thereof.
 従来、空芯コイルと、それを埋設する磁性層とを備えるインダクタなどの磁性シートが知られている。 Conventionally, a magnetic sheet such as an inductor including an air-core coil and a magnetic layer in which the air-core coil is embedded is known.
 例えば、空芯コイルと、空芯コイルの内側に充填される異方性複合磁性部と、空芯コイルの上面に積層される異方性複合磁性シートとを備える磁性シートが提案されている(例えば、特許文献1参照。)。 For example, a magnetic sheet comprising an air-core coil, an anisotropic composite magnetic part filled inside the air-core coil, and an anisotropic composite magnetic sheet laminated on the upper surface of the air-core coil has been proposed ( For example, see Patent Document 1.)
 特許文献1の磁性シートの製造方法では、まず、空芯コイルを準備し、その後、異方性複合磁性部を、空芯コイルの中芯の内側に充填し、その後、異方性複合磁性シートを、空芯コイルの上面に積層している。 In the magnetic sheet manufacturing method of Patent Document 1, first, an air-core coil is prepared, and thereafter, an anisotropic composite magnetic part is filled inside the core of the air-core coil, and then the anisotropic composite magnetic sheet. Is laminated on the upper surface of the air-core coil.
 そして、特許文献1のインダクタでは、空芯コイルの内側における透磁率が、異方性複合磁性部によって上昇し、そのため、インダクタンスに優れる。 And in the inductor of patent document 1, the magnetic permeability inside an air-core coil rises by an anisotropic composite magnetic part, Therefore, it is excellent in an inductance.
特開2009-9985号公報JP 2009-9985 A
 しかし、特許文献1に記載の方法では、異方性複合磁性部および異方性複合磁性シートを、磁性シートに対して別々の工程で形成している。そのため、製造工程数が多く、その結果、磁性シートを簡便に製造することができないという不具合がある。 However, in the method described in Patent Document 1, the anisotropic composite magnetic part and the anisotropic composite magnetic sheet are formed in separate steps with respect to the magnetic sheet. Therefore, there are many manufacturing processes, and as a result, there is a problem that the magnetic sheet cannot be easily manufactured.
 また、磁性シートには、より一層優れたインダクタンスが求められる。 Further, the magnetic sheet is required to have even better inductance.
 本発明は、磁性層を一度に簡便に形成することができる磁性配線回路基板の製造方法、および、高いインダクタスを有する磁性配線回路基板を提供する。 The present invention provides a method for manufacturing a magnetic wiring circuit board, which can easily form a magnetic layer at a time, and a magnetic wiring circuit board having high inductance.
 本発明(1)は、2つのプレス板で、絶縁層と、前記絶縁層の厚み方向一方面において、所定方向において互いに間隔を隔てて配置される複数の配線部と、第1磁性シートと、離型クッションシートとをその順で挟み込む挟み込み工程、および、前記プレス板で、前記絶縁層と、前記複数の配線部と、前記第1磁性シートと、前記離型クッションシートとを熱プレスする第1プレス工程を備え、前記第1プレス工程では、前記第1磁性シートから、前記複数の配線部間を充填し、かつ、前記配線部の前記厚み方向一方面を被覆するように、第1磁性層を形成し、前記離型クッションシートは、第1層と、前記第1層の前記厚み方向一方側に配置される第2層とを備え、前記第2層の110℃における引張貯蔵弾性率E’が、前記第1層の110℃における引張貯蔵弾性率E’に比べて低い、磁性配線回路基板の製造方法を含む。 The present invention (1) includes two press plates, an insulating layer, a plurality of wiring portions arranged at predetermined intervals on one surface in the thickness direction of the insulating layer, a first magnetic sheet, A sandwiching step of sandwiching a release cushion sheet in that order; and a first pressing of the insulating layer, the plurality of wiring portions, the first magnetic sheet, and the release cushion sheet with the press plate. 1 press step, and in the first press step, the first magnetic sheet is filled with the first magnetic sheet so as to fill a space between the plurality of wiring portions and to cover one surface in the thickness direction of the wiring portion. Forming a layer, and the release cushion sheet includes a first layer and a second layer disposed on one side in the thickness direction of the first layer, and the tensile storage modulus of the second layer at 110 ° C. E ′ is 1 of the first layer Lower than the tensile storage modulus E 'at 0 ° C., including the method of manufacturing a magnetic printed circuit board.
 この磁性配線回路基板の製造方法によれば、プレス板で、絶縁層と、複数の配線部と、第1磁性シートと、離型クッションシートとを熱プレスする第1プレス工程によって、磁性層を一度に簡便に形成することができる。 According to this method of manufacturing a magnetic wired circuit board, a magnetic layer is formed by a first pressing step in which an insulating layer, a plurality of wiring portions, a first magnetic sheet, and a release cushion sheet are hot pressed with a press plate. It can be easily formed at a time.
 しかも、離型クッションシートにおける第2層の110℃における引張貯蔵弾性率E’が、第1層の110℃における引張貯蔵弾性率E’に比べて低いので、上記した温度で第1プレス工程を実施するときに、第2層が、第1層に比べて、柔軟となり、そのため、第2層が第1層に比べて流れ易く、第1層を介して、第1磁性シートを複数の配線部間に押し出すことができる。そのため、第1プレス工程において、複数の配線部間を充填し、かつ、配線部の対向面を被覆する磁性層を確実に形成することができる。 Moreover, since the tensile storage elastic modulus E ′ at 110 ° C. of the second layer in the release cushion sheet is lower than the tensile storage elastic modulus E ′ at 110 ° C. of the first layer, the first pressing step is performed at the above temperature. When implemented, the second layer is more flexible than the first layer, so that the second layer is easier to flow than the first layer, and the first magnetic sheet is routed to the plurality of wires via the first layer. Can be pushed out between the parts. Therefore, in the first pressing step, it is possible to reliably form a magnetic layer that fills a space between the plurality of wiring portions and covers the facing surfaces of the wiring portions.
 その結果、高いインダクタスを有する磁性配線回路基板を得ることができる。 As a result, a magnetic wiring circuit board having high inductance can be obtained.
 本発明(2)は、前記第2層の110℃における引張貯蔵弾性率E’が、20MPa以下である、(1)に記載の磁性配線回路基板の製造方法を含む。 The present invention (2) includes the method for producing a magnetic wiring circuit board according to (1), wherein the tensile storage modulus E ′ at 110 ° C. of the second layer is 20 MPa or less.
 この磁性配線回路基板の製造方法では、第2層の110℃における引張貯蔵弾性率E’が、20MPa以下と低いので、第1プレス工程において、上記した温度で熱プレスするときに、第2層が確実に流動することができる。そのため、第2層が、第1磁性シートを、複数の配線部間に押し出すことができる。その結果、磁性層で、複数の配線部間を確実に充填することができ、高いインダクタスを有する磁性配線回路基板を得ることができる。 In this method of manufacturing a magnetic wiring circuit board, the tensile storage modulus E ′ at 110 ° C. of the second layer is as low as 20 MPa or less. Therefore, in the first pressing step, the second layer Can flow reliably. Therefore, the second layer can push the first magnetic sheet between the plurality of wiring portions. As a result, the magnetic layer can be surely filled between the plurality of wiring portions, and a magnetic wired circuit board having high inductance can be obtained.
 本発明(3)は、前記第2層の厚みT2の、前記配線部の厚みT1に対する比が、0.5以上である、(1)または(2)に記載の磁性配線回路基板の製造方法を含む。 In the present invention (3), the ratio of the thickness T2 of the second layer to the thickness T1 of the wiring part is 0.5 or more, and the method for manufacturing a magnetic wired circuit board according to (1) or (2) including.
 この磁性配線回路基板の製造方法では、第2層の厚みT2の、配線部の厚みT1に対する比が、0.5以上と高いので、第1プレス工程において、厚い第2層によって、配線部の厚み方向一方面における第1磁性シートを柔軟に熱プレスすることができ、そのため、かかる部分に対応する磁性層の厚みを十分に確保することができる。その結果、磁性層により、配線部の厚み方向一方面を確実に被覆することができる。 In this method of manufacturing a magnetic wired circuit board, the ratio of the thickness T2 of the second layer to the thickness T1 of the wiring portion is as high as 0.5 or more. Therefore, in the first pressing step, the thick second layer The first magnetic sheet on the one surface in the thickness direction can be hot-pressed flexibly, so that the thickness of the magnetic layer corresponding to the portion can be sufficiently secured. As a result, the magnetic layer can reliably cover one surface in the thickness direction of the wiring portion.
 本発明(4)は、前記離型クッションシートが、前記第2層の前記厚み方向一方側に配置される第3層をさらに備え、前記第2層の110℃における引張貯蔵弾性率E’が、前記第3層の110℃における引張貯蔵弾性率E’に比べて低い、(1)~(3)のいずれか一項に記載の磁性配線回路基板の製造方法を含む。 In the present invention (4), the release cushion sheet further includes a third layer disposed on one side in the thickness direction of the second layer, and the tensile storage elastic modulus E ′ of the second layer at 110 ° C. The method of manufacturing a magnetic wiring circuit board according to any one of (1) to (3), which is lower than a tensile storage elastic modulus E ′ at 110 ° C. of the third layer.
 この磁性配線回路基板の製造方法では、離型クッションシートは、第2層の110℃における引張貯蔵弾性率E’より高い引張貯蔵弾性率E’を有する第3層をさらに備えるので、上記した温度で第1プレス工程を実施するときに、第2層に比べて硬い第3層によって、離型クッションシートの厚み方向一方側への変形を抑制することができる。そのため、第1プレス工程を確実に実施することができる。 In this method for manufacturing a magnetic wiring circuit board, the release cushion sheet further includes a third layer having a tensile storage elastic modulus E ′ higher than the tensile storage elastic modulus E ′ at 110 ° C. of the second layer. When the first pressing step is performed, deformation of the release cushion sheet toward one side in the thickness direction can be suppressed by the third layer that is harder than the second layer. Therefore, the first pressing process can be performed reliably.
 本発明(5)は、前記第1磁性層の厚みT3の、前記配線部の厚みT1に対する比が、0.5以上である、(1)~(4)のいずれか一項に記載の磁性配線回路基板の製造方法を含む。 According to the present invention (5), the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring part is 0.5 or more, and the magnetic property according to any one of (1) to (4) A method for manufacturing a printed circuit board is included.
 この磁性配線回路基板の製造方法では、第1磁性層の厚みT3の、配線部の厚みT1に対する比が、0.5以上と高いため、複数の配線部間を確実に充填しながら、磁性層を形成することができる。その結果、配線部間の実効透磁率を向上させることができ、高いインダクタスを有する磁性配線回路基板を得ることができる。 In this method for manufacturing a magnetic wired circuit board, the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring portion is as high as 0.5 or more. Can be formed. As a result, the effective magnetic permeability between the wiring portions can be improved, and a magnetic wired circuit board having high inductance can be obtained.
 本発明(6)は、前記プレス板で、前記絶縁層と、前記複数の配線部と、前記第1工程により形成された第1磁性層と、第2磁性シートと、前記離型クッションシートとを熱プレスする第2プレス工程をさらに備え、前記第2プレス工程では、前記第2磁性シートから第2磁性層を形成し、これにより、前記第1磁性層および前記第2磁性層を備える磁性層を形成する、(1)~(4)のいずれか一項に記載の磁性配線回路基板の製造方法を含む。 The present invention (6) includes the press plate, the insulating layer, the plurality of wiring portions, the first magnetic layer formed by the first step, a second magnetic sheet, and the release cushion sheet. A second press step of heat-pressing the second magnetic layer, and in the second press step, a second magnetic layer is formed from the second magnetic sheet, whereby the magnetic layer including the first magnetic layer and the second magnetic layer is formed. The method for manufacturing a magnetic wired circuit board according to any one of (1) to (4), wherein the layer is formed.
 この磁性配線回路基板の製造方法は、第2プレス工程をさらに備えるので、厚い磁性層を形成することができる。そのため、配線部間の実効透磁率を向上させることができ、高いインダクタスを有する磁性配線回路基板を得ることができる。 Since this magnetic wiring circuit board manufacturing method further includes the second pressing step, a thick magnetic layer can be formed. Therefore, the effective magnetic permeability between the wiring portions can be improved, and a magnetic wired circuit board having high inductance can be obtained.
 本発明(7)は、前記第1磁性層の厚みT3の、前記配線部の厚みT1に対する比が、0.5未満であり、前記第1磁性層の厚みT3および前記第2磁性層の厚みT4の合計の、前記配線部の厚みT1に対する比が、0.5以上である、(6)に記載の磁性配線回路基板の製造方法を含む。 In the present invention (7), the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring portion is less than 0.5, and the thickness T3 of the first magnetic layer and the thickness of the second magnetic layer The method of manufacturing a magnetic wired circuit board according to (6), wherein the ratio of the total of T4 to the thickness T1 of the wiring portion is 0.5 or more.
 第1磁性層の厚みT3の、配線部の厚みT1に対する比が、0.5未満と低いと、磁性層が薄くなり、そのため、複数の配線部間を磁性層で充填することが困難になり易い。 If the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring part is as low as less than 0.5, the magnetic layer becomes thin, so that it becomes difficult to fill a plurality of wiring parts with the magnetic layer. easy.
 しかし、この磁性配線回路基板の製造方法によれば、第1磁性層の厚みT3および第2磁性層の厚みT4の合計の、配線部の厚みT1に対する比が、0.5以上と高いので、第1磁性層および第2磁性層を備える磁性層が厚く、そのため、厚い磁性層が複数の配線部間を確実に充填することができる。その結果、高いインダクタスを有する磁性配線回路基板を得ることができる。 However, according to this method of manufacturing a magnetic wired circuit board, the ratio of the total thickness T3 of the first magnetic layer and the thickness T4 of the second magnetic layer to the thickness T1 of the wiring portion is as high as 0.5 or more. The magnetic layer including the first magnetic layer and the second magnetic layer is thick, so that the thick magnetic layer can surely fill between the plurality of wiring portions. As a result, a magnetic wiring circuit board having high inductance can be obtained.
 本発明(8)は、前記第1磁性シートおよび前記第2磁性シートは、磁性粒子を含有し、前記第1磁性シートにおける磁性粒子の含有割合が、前記第2磁性シートにおける磁性粒子の含有割合に比べて、低い、(6)または(7)に記載の磁性配線回路基板の製造方法を含む。 In the present invention (8), the first magnetic sheet and the second magnetic sheet contain magnetic particles, and the content ratio of the magnetic particles in the first magnetic sheet is the content ratio of the magnetic particles in the second magnetic sheet. The manufacturing method of the magnetic wiring circuit board as described in (6) or (7) is included.
 この磁性配線回路基板の製造方法によれば、第1磁性シートにおける磁性粒子の含有割合が、第2磁性シートにおける磁性粒子の含有割合に比べて、低い。従って、第2磁性シートに比べて柔軟な第1磁性シートを、確実に、複数の配線部間に配置し、続いて、第1磁性シートに比べて剛直な第2磁性シートであっても、それを、すでに複数の配線部間に配置された第1磁性層に配置することによって、複数の配線部間を、第1磁性層および第2磁性層を備える磁性層によって、充填することができる。 According to this method for manufacturing a magnetic circuit board, the content ratio of the magnetic particles in the first magnetic sheet is lower than the content ratio of the magnetic particles in the second magnetic sheet. Therefore, the first magnetic sheet that is more flexible than the second magnetic sheet is surely disposed between the plurality of wiring portions, and subsequently, even if the second magnetic sheet is more rigid than the first magnetic sheet, By arranging it in the first magnetic layer already arranged between the plurality of wiring portions, the space between the plurality of wiring portions can be filled with the magnetic layer including the first magnetic layer and the second magnetic layer. .
 さらに、第1磁性シートにおける磁性粒子の含有割合に比べて高い含有割合で磁性粒子を含有する第2磁性シートから形成される第2磁性層によって、磁性配線回路基板のインダクタンスを向上させることができる。 Furthermore, the inductance of the magnetic wiring circuit board can be improved by the second magnetic layer formed from the second magnetic sheet containing the magnetic particles at a higher content ratio than the content ratio of the magnetic particles in the first magnetic sheet. .
 本発明(9)は、絶縁層と、前記絶縁層の厚み方向一方面において、所定方向において互いに間隔を隔てて配置される複数の配線部と、前記複数の配線部間に充填され、かつ、前記配線部の前記厚み方向一方面と間隔を隔てて対向配置される対向面を被覆する磁性層とを備え、前記磁性層は、前記複数の配線部の前記対向面に配置され、前記厚み方向一方側に向かって隆起する複数の凸部と、複数の前記凸部の間に位置し、隣り合う前記凸部に対して前記厚み方向他方側に向かって凹む凹部とを有し、前記凸部は、前記厚み方向最一方側に位置する頂部を1つのみ有し、前記凹部は、前記厚み方向他方側に向かって略湾曲形状に沈下する形状を有しており、隣り合う前記配線部の前記対向面を通過する仮想面に対して、前記厚み方向一方側に位置する底部を有する、磁性配線回路基板を含む。 The present invention (9) is filled with an insulating layer, a plurality of wiring portions arranged at a distance from each other in a predetermined direction on one surface in the thickness direction of the insulating layer, and filled between the plurality of wiring portions, and A magnetic layer that covers a facing surface that is disposed to be opposed to the one surface in the thickness direction of the wiring portion with a space therebetween, and the magnetic layer is disposed on the facing surface of the plurality of wiring portions, and the thickness direction A plurality of convex portions protruding toward one side, and a concave portion located between the plurality of convex portions and recessed toward the other side in the thickness direction with respect to the adjacent convex portions; Has only one apex located on the one side in the thickness direction, and the recess has a shape that sinks into a substantially curved shape toward the other side in the thickness direction. One side in the thickness direction with respect to a virtual surface passing through the facing surface Has a bottom portion located, including magnetic printed circuit board.
 この磁性配線回路基板では、凸部が頂部を1つのみ有し、かつ、凹部が、厚み方向他方側に向かって略湾曲形状に凹む形状を有し、かつ、隣り合う配線部の対向面を通過する仮想面に対して、厚み方向一方側に位置する底部を有する。そのため、上記した凸部および凹部を滑らかに通過する磁路によって、配線部の周囲の透磁率を向上させることができる。 In this magnetic wired circuit board, the convex portion has only one top portion, the concave portion has a shape that is recessed in a substantially curved shape toward the other side in the thickness direction, and the opposing surface of the adjacent wiring portion is provided. It has a bottom portion located on one side in the thickness direction with respect to the passing virtual surface. Therefore, the magnetic permeability around the wiring portion can be improved by the magnetic path that smoothly passes through the convex portion and the concave portion.
 その結果、この磁性配線回路基板は、高いインダクタスを有する。 As a result, this magnetic wiring circuit board has high inductance.
 本発明の磁性配線回路基板の製造方法によれば、磁性層を一度に簡便に形成することができ、高いインダクタスを有する磁性配線回路基板を得ることができる。 According to the method for manufacturing a magnetic wired circuit board of the present invention, a magnetic layer can be easily formed at a time, and a magnetic wired circuit board having high inductance can be obtained.
 本発明の磁性配線回路基板は、凸部および凹部を滑らかに通過する磁路によって、配線部の周囲の透磁率を向上させることができので、高いインダクタスを有する。 The magnetic wiring circuit board of the present invention has a high inductance because the magnetic permeability around the wiring portion can be improved by the magnetic path smoothly passing through the convex portion and the concave portion.
図1A~図1Cは、本発明の磁性配線回路基板の製造方法の第1実施形態の製造工程図であり、図1Aが、挟み込み工程、図1Bが、第1プレス工程、図1Cが、磁性配線回路基板を得る工程を示す。1A to 1C are manufacturing process diagrams of a first embodiment of a method of manufacturing a magnetic wiring circuit board according to the present invention. FIG. 1A is a sandwiching process, FIG. 1B is a first pressing process, and FIG. 1C is a magnetic process. The process of obtaining a printed circuit board is shown. 図2A~図2Bは、図1Bに示す第1プレス工程を詳述する工程図であり、図2Aが、熱プレスの開始時であって、第1磁性シートが配線部に対して接触する態様、図2Bが、図2Aに引き続き、熱プレスが進行して、第1磁性シートが、変形する離型クッションシートに押圧されながら、配線部に沿ってそれらの間を充填する態様を示す。2A to 2B are process diagrams detailing the first pressing process shown in FIG. 1B. FIG. 2A is a mode in which the first magnetic sheet is in contact with the wiring portion at the start of the hot pressing. FIG. 2B shows a mode in which the hot pressing proceeds following FIG. 2A, and the first magnetic sheet is filled between the wiring parts while being pressed by the deformed release cushion sheet. 図3は、図1A~図1Cで得られる磁性配線回路基板の断面図であって、磁性層における磁性粒子を描画した断面図を示すFIG. 3 is a cross-sectional view of the magnetic wiring circuit board obtained in FIGS. 1A to 1C, showing a cross-sectional view depicting magnetic particles in the magnetic layer. 図4A~図4Bは、本発明の磁性配線回路基板の製造方法の第2実施形態の製造工程図であり、図4Aが、挟み込み工程、図4Bが、第1プレス工程を示す。4A to 4B are manufacturing process diagrams of the second embodiment of the method for manufacturing a magnetic wiring circuit board according to the present invention. FIG. 4A shows a sandwiching process, and FIG. 4B shows a first pressing process. 図5C~図5Eは、図4Bに引き続き、本発明の磁性配線回路基板の製造方法の第2実施形態の製造工程図であり、図5Cが、第2磁性シートをさらに配置する工程、図5Dが、第2プレス工程、図5Eが、磁性配線回路基板を得る工程を示す。5C to 5E are manufacturing process diagrams of the second embodiment of the manufacturing method of the magnetic wiring circuit board of the present invention, following FIG. 4B, and FIG. 5C is a process of further arranging the second magnetic sheet, FIG. FIG. 5E shows a step of obtaining a magnetic wiring circuit board. 図6A~図6Cは、変形例の製造工程図であり、図6Aが、挟み込み工程、図6Bが、第1プレス工程、図6Cが、磁性配線回路基板を得る工程を示す。FIGS. 6A to 6C are manufacturing process diagrams of modified examples. FIG. 6A shows a sandwiching process, FIG. 6B shows a first pressing process, and FIG. 6C shows a process for obtaining a magnetic wiring circuit board. 図7は、図6Cに示され、配線部のハッチングを削除し、磁性粒子を明瞭した磁性配線回路基板の断面図を示す。FIG. 7 is a cross-sectional view of the magnetic wiring circuit board shown in FIG. 6C in which the hatching of the wiring portion is removed and the magnetic particles are clarified. 図8は、実施例1のSEM写真の画像処理図を示す。FIG. 8 shows an image processing diagram of the SEM photograph of Example 1. 図9は、実施例2のSEM写真の画像処理図を示す。FIG. 9 shows an image processing diagram of the SEM photograph of Example 2. 図10は、実施例3のSEM写真の画像処理図を示す。FIG. 10 shows an image processing diagram of the SEM photograph of Example 3. 図11は、実施例4のSEM写真の画像処理図を示す。FIG. 11 is an image processing diagram of the SEM photograph of Example 4. 図12は、比較例1のSEM写真の画像処理図を示す。FIG. 12 shows an image processing diagram of the SEM photograph of Comparative Example 1. 図13は、比較例2のSEM写真の画像処理図を示す。FIG. 13 is an image processing diagram of the SEM photograph of Comparative Example 2. 図14は、比較例3のSEM写真の画像処理図を示す。FIG. 14 is an image processing diagram of the SEM photograph of Comparative Example 3. 図15は、比較例4のSEM写真の画像処理図を示す。FIG. 15 shows an image processing diagram of the SEM photograph of Comparative Example 4.
<第1実施形態>
 本発明の磁性配線回路基板およびその製造方法の第1実施形態を、図1A~図2Bを参照して説明する。
<First Embodiment>
A magnetic wiring circuit board and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIGS. 1A to 2B.
 なお、図2A~図2Bにおいて、第2層32(後述)は、変形を引き起こす流動圧を矢印で明瞭に示すために、そのハッチングを省略している。 In FIG. 2A to FIG. 2B, the second layer 32 (described later) is omitted from the hatching in order to clearly indicate the flow pressure causing the deformation with an arrow.
 図1A~図2Bに示すように、磁性配線回路基板1の製造方法は、2つのプレス板20で、絶縁層2と、複数の配線部4と、第1磁性シート5と、離型クッションシート6とをその順で挟み込む工程(図1A参照)、および、2つのプレス板20で、絶縁層2と、複数の配線部4と、第1磁性シート5と、離型クッションシート6とを熱プレスする第1プレス工程(図1B参照)を備える。磁性配線回路基板1の製造方法では、上記した工程が、順に実施される。 As shown in FIGS. 1A to 2B, the magnetic wiring circuit board 1 is manufactured by two press plates 20, an insulating layer 2, a plurality of wiring portions 4, a first magnetic sheet 5, and a release cushion sheet. 6 in that order (see FIG. 1A), and the two press plates 20 heat the insulating layer 2, the plurality of wiring portions 4, the first magnetic sheet 5, and the release cushion sheet 6. A first pressing step for pressing (see FIG. 1B) is provided. In the method for manufacturing the magnetic wiring circuit board 1, the above-described steps are sequentially performed.
 図1Aに示すように、挟み込み工程では、まず、絶縁層2と、複数の配線部4と、第1磁性シート5と、離型クッションシート6とのそれぞれを準備する。 As shown in FIG. 1A, in the sandwiching step, first, an insulating layer 2, a plurality of wiring portions 4, a first magnetic sheet 5, and a release cushion sheet 6 are prepared.
 絶縁層2は、厚み方向に対する直交方向(面方向)に延びるシート形状を有しており、厚み方向一方面である第1絶縁面3および他方面である第2絶縁面9を有する。絶縁層2は、次に説明する複数の配線部4を支持する支持材であり、ひいては、磁性配線回路基板1を支持する支持層でもある。また、絶縁層2は、靱性を有する。絶縁層2の材料としては、例えば、ポリイミド樹脂、ポリエステル樹脂、アクリル樹脂などの絶縁材料が挙げられる。また、絶縁層2は、単層および複層のいずれであってもよい。絶縁層2が複層である場合には、仮想線で示すように、例えば、ポリエステル樹脂(ポリエチレンテレフタレートなど)からなる第1支持層12と、例えば、アクリル樹脂からなる感圧接着層13と、例えば、ポリイミド樹脂からなる第2支持層14とを、厚み方向一方側に向かって順に備える。この場合には、第2支持層14は、感圧接着層13を介して支持層12に感圧接着(支持)されている。第2支持層14は、第1絶縁面3を形成する。支持層12は、第2絶縁面9を形成する。 The insulating layer 2 has a sheet shape extending in a direction orthogonal to the thickness direction (surface direction), and has a first insulating surface 3 that is one surface in the thickness direction and a second insulating surface 9 that is the other surface. The insulating layer 2 is a support material that supports a plurality of wiring portions 4 to be described below, and by extension, is also a support layer that supports the magnetic wiring circuit board 1. The insulating layer 2 has toughness. Examples of the material of the insulating layer 2 include insulating materials such as polyimide resin, polyester resin, and acrylic resin. The insulating layer 2 may be either a single layer or a multilayer. When the insulating layer 2 is a multi-layer, as shown by phantom lines, for example, a first support layer 12 made of a polyester resin (polyethylene terephthalate or the like), a pressure-sensitive adhesive layer 13 made of an acrylic resin, for example, For example, the second support layer 14 made of polyimide resin is provided in order toward one side in the thickness direction. In this case, the second support layer 14 is pressure-sensitive bonded (supported) to the support layer 12 via the pressure-sensitive adhesive layer 13. The second support layer 14 forms the first insulating surface 3. The support layer 12 forms the second insulating surface 9.
 複数の配線部4は、絶縁層2の第1絶縁面3において、面方向(所定方向の一例)(具体的には、図1Aにおける左右方向に相当する第1方向)に互いに間隔を隔てて配置されている。複数の配線部4の平面視(厚み方向に見たときの)形状としては、特に限定されず、例えば、略コイル形状、略ループ形状、略S形状などが挙げられる。 The plurality of wiring portions 4 are spaced apart from each other in the surface direction (an example of a predetermined direction) (specifically, the first direction corresponding to the left-right direction in FIG. 1A) on the first insulating surface 3 of the insulating layer 2. Has been placed. The shape in plan view (when viewed in the thickness direction) of the plurality of wiring portions 4 is not particularly limited, and examples thereof include a substantially coil shape, a substantially loop shape, and a substantially S shape.
 複数の配線部4のそれぞれの断面視(詳しくは、厚み方向および第1方向に沿って切断したときの断面視)形状としては、特に限定されず、例えば、略矩形状、略台形状など、少なくとも、厚み方向に対向する一組の面が平行するな四辺形状などが挙げられる。 The cross-sectional view (specifically, the cross-sectional view when cut along the thickness direction and the first direction) of each of the plurality of wiring parts 4 is not particularly limited, and examples thereof include a substantially rectangular shape and a substantially trapezoidal shape. At least a quadrilateral shape in which a pair of surfaces opposed in the thickness direction are parallel to each other can be used.
 また、複数の配線部4は、絶縁層2の第1絶縁面3に配置されている。好ましくは、複数の配線部4は、絶縁層2が支持層12、感圧接着層13および第2支持層14を有する場合には、第2支持層14に接触することによって、絶縁層2に支持されている。 Further, the plurality of wiring portions 4 are disposed on the first insulating surface 3 of the insulating layer 2. Preferably, when the insulating layer 2 has the support layer 12, the pressure-sensitive adhesive layer 13, and the second support layer 14, the plurality of wiring parts 4 contact the second support layer 14 to form the insulating layer 2. It is supported.
 複数の配線部4のそれぞれは、絶縁層2の第1絶縁面3に対して厚み方向一方側に間隔を隔てて対向配置される対向面15と、絶縁層2の第1絶縁面3に接触する被支持面16と、対向面15および被支持面16の周端縁を連結する側面(詳しくは、第1方向における両端縁を連結する両側面)17とを一体的に備える。 Each of the plurality of wiring parts 4 is in contact with the first insulating surface 3 of the insulating layer 2 and the opposing surface 15 that is arranged to face the first insulating surface 3 of the insulating layer 2 at an interval on one side in the thickness direction. And a side surface (specifically, both side surfaces connecting both end edges in the first direction) 17 connecting the opposing surface 15 and the peripheral edge of the supported surface 16.
 対向面15は、第1方向に沿う平坦面である。 The facing surface 15 is a flat surface along the first direction.
 被支持面16は、対向面15に平行する平坦面である。 The supported surface 16 is a flat surface parallel to the facing surface 15.
 側面17は、厚み方向に沿って延びる。側面17は、1つの配線部4に2つ備えられる。2つの側面17は、第1方向に間隔を隔てて対向配置される。2つの側面17は、配線部4が略台形形状であれば、厚み方向一方側に進むに従って、互いに近づくように傾斜する形状を有する。つまり、側面17は、厚み方向に一方側に向かうに従って対向長さが短くなるテーパ面である。 The side surface 17 extends along the thickness direction. Two side surfaces 17 are provided in one wiring part 4. The two side surfaces 17 are opposed to each other with a gap in the first direction. If the wiring part 4 has a substantially trapezoidal shape, the two side surfaces 17 have shapes that are inclined so as to approach each other as they proceed to one side in the thickness direction. That is, the side surface 17 is a tapered surface whose opposing length becomes shorter toward the one side in the thickness direction.
 複数の配線部4の材料としては、例えば、銅などの金属(導体)が挙げられる。 Examples of the material of the plurality of wiring parts 4 include metals (conductors) such as copper.
 複数の配線部4の寸法は、磁性配線回路基板1の用途および目的に応じて適宜設定され、例えば、厚みT1(対向面15および被支持面16の対向長さ)が、例えば、20μm以上、好ましくは、50μm以上であり、また、例えば、300μm以下、好ましくは、150μm以下である。配線部4の幅は、対向面15の第1方向長さとして、例えば、1900μm以下、20μm以上であり、被支持面16の第1方向長さとして、例えば、2000μm以下、30μm以上である。複数の配線部4間の間隔は、隣り合う配線部4における側面17の第1方向における間隔として、例えば、2100μm以下、60μm以上であり、隣り合う配線部4における被支持面16の第1方向における間隔として、例えば、2000μm以下、30μm以上である。 The dimensions of the plurality of wiring portions 4 are appropriately set according to the use and purpose of the magnetic wiring circuit board 1, and for example, the thickness T1 (the opposing length of the opposing surface 15 and the supported surface 16) is, for example, 20 μm or more. Preferably, it is 50 μm or more, for example, 300 μm or less, preferably 150 μm or less. The width of the wiring portion 4 is, for example, 1900 μm or less and 20 μm or more as the first direction length of the facing surface 15, and the first direction length of the supported surface 16 is, for example, 2000 μm or less and 30 μm or more. The spacing between the plurality of wiring portions 4 is, for example, 2100 μm or less and 60 μm or more as the spacing in the first direction of the side surface 17 in the adjacent wiring portion 4, and the first direction of the supported surface 16 in the adjacent wiring portion 4. For example, the interval is 2000 μm or less and 30 μm or more.
 配線部4の厚みT1の、配線部4の幅(対向面15または被支持面16の第1方向長さ)に対する比(T1/幅)が、例えば、0.01以上、好ましくは、0.025以上であり、また、例えば、10以下、好ましくは、5以下である。配線部4の厚みT1の、配線部4間の間隔(対向面15または被支持面16の第1方向における間隔)に対する比(T1/間隔)が、例えば、0.01以上、好ましくは、0.025以上であり、また、例えば、10以下、好ましくは、5以下である。 The ratio (T1 / width) of the thickness T1 of the wiring portion 4 to the width of the wiring portion 4 (the length in the first direction of the facing surface 15 or the supported surface 16) is, for example, 0.01 or more, preferably 0. For example, it is 10 or less, preferably 5 or less. The ratio (T1 / interval) of the thickness T1 of the wiring portion 4 to the spacing between the wiring portions 4 (the spacing in the first direction of the facing surface 15 or the supported surface 16) is, for example, 0.01 or more, preferably 0. 0.025 or more, and for example, 10 or less, preferably 5 or less.
 絶縁層2および複数の配線部4は、例えば、それらを予め備える配線回路基板40として準備される。具体的には、配線回路基板40は、絶縁層2と、絶縁層2の第1絶縁面3に配置される複数の配線部4とを備える。配線回路基板40は、好ましくは、絶縁層2および複数の配線部4のみからなる。 The insulating layer 2 and the plurality of wiring parts 4 are prepared as, for example, a printed circuit board 40 that includes them in advance. Specifically, the printed circuit board 40 includes the insulating layer 2 and a plurality of wiring portions 4 disposed on the first insulating surface 3 of the insulating layer 2. The printed circuit board 40 preferably includes only the insulating layer 2 and the plurality of wiring portions 4.
 第1磁性シート5は、面方向に延びるシート形状を有する。第1磁性シート5は、磁性配線回路基板1における磁性層21(図1C参照)を形成するための磁性シートである。
第1磁性シート5は、厚み方向一方面である第1磁性面18および他方面である第2磁性面19を有する。
The first magnetic sheet 5 has a sheet shape extending in the surface direction. The first magnetic sheet 5 is a magnetic sheet for forming the magnetic layer 21 (see FIG. 1C) in the magnetic wiring circuit board 1.
The first magnetic sheet 5 has a first magnetic surface 18 that is one surface in the thickness direction and a second magnetic surface 19 that is the other surface.
 第1磁性面18は、面方向に沿う平坦面である。 The first magnetic surface 18 is a flat surface along the surface direction.
 第2磁性面19は、第1磁性面18と厚み方向他方側に間隔を隔てて対向配置されており、第1磁性面18に平行する平坦面である。 The second magnetic surface 19 is a flat surface that is disposed opposite to the first magnetic surface 18 with a gap on the other side in the thickness direction and is parallel to the first magnetic surface 18.
 なお、第1磁性シート5は、第1プレス工程における熱プレスによって、変形(流動)して、複数の配線部4の対向面15および側面17に沿って配置される。 In addition, the 1st magnetic sheet 5 deform | transforms (flows) by the hot press in a 1st press process, and is arrange | positioned along the opposing surface 15 and the side surface 17 of the some wiring part 4. FIG.
 第1磁性シート5の材料として、例えば、磁性粒子48および樹脂を含有する磁性組成物などが挙げられる。 Examples of the material of the first magnetic sheet 5 include a magnetic composition containing the magnetic particles 48 and a resin.
 磁性粒子48を構成する磁性材料としては、例えば、軟磁性体、硬磁性体が挙げられる。好ましくは、インダクタンスの観点から、軟磁性体が挙げられる。 Examples of the magnetic material constituting the magnetic particles 48 include a soft magnetic material and a hard magnetic material. Preferably, a soft magnetic material is used from the viewpoint of inductance.
 軟磁性体としては、例えば、1種類の金属元素を純物質の状態で含む単一金属体、例えば、1種類以上の金属元素(第1金属元素)と、1種類以上の金属元素(第2金属元素)および/または非金属元素(炭素、窒素、ケイ素、リンなど)との共融体(混合物)である合金体が挙げられる。これらは、単独または併用することができる。 As the soft magnetic material, for example, a single metal body containing one kind of metal element in a pure substance state, for example, one or more kinds of metal elements (first metal element) and one or more kinds of metal elements (second An alloy body which is a eutectic (mixture) with a metal element) and / or a non-metal element (carbon, nitrogen, silicon, phosphorus, etc.) can be used. These can be used alone or in combination.
 単一金属体としては、例えば、1種類の金属元素(第1金属元素)のみからなる金属単体が挙げられる。第1金属元素としては、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、その他、軟磁性体の第1金属元素として含有することが可能な金属元素の中から適宜選択される。 As the single metal body, for example, a single metal composed of only one kind of metal element (first metal element) can be mentioned. The first metal element is appropriately selected from, for example, iron (Fe), cobalt (Co), nickel (Ni), and other metal elements that can be contained as the first metal element of the soft magnetic material. .
 また、単一金属体としては、例えば、1種類の金属元素のみを含むコアと、そのコアの表面の一部または全部を修飾する無機物および/または有機物を含む表面層とを含む形態、例えば、第1金属元素を含む有機金属化合物や無機金属化合物が分解(熱分解など)された形態などが挙げられる。後者の形態として、より具体的には、第1金属元素として鉄を含む有機鉄化合物(具体的には、カルボニル鉄)が熱分解された鉄粉(カルボニル鉄粉と称される場合がある)などが挙げられる。なお、1種類の金属元素のみを含む部分を修飾する無機物および/または有機物を含む層の位置は、上記のような表面に限定されない。なお、単一金属体を得ることができる有機金属化合物や無機金属化合物としては、特に制限されず、軟磁性体の単一金属体を得ることができる公知乃至慣用の有機金属化合物や無機金属化合物から適宜選択することができる。 In addition, as a single metal body, for example, a form including a core containing only one kind of metal element and a surface layer containing an inorganic substance and / or an organic substance that modifies part or all of the surface of the core, for example, Examples include a form in which an organometallic compound or an inorganic metal compound containing the first metal element is decomposed (such as thermal decomposition). More specifically, as the latter form, iron powder obtained by thermally decomposing an organic iron compound (specifically, carbonyl iron) containing iron as the first metal element (sometimes referred to as carbonyl iron powder). Etc. Note that the position of the layer containing an inorganic material and / or an organic material that modifies a portion containing only one type of metal element is not limited to the above surface. In addition, it does not restrict | limit especially as an organic metal compound and an inorganic metal compound which can obtain a single metal body, The well-known thru | or usual organic metal compound and inorganic metal compound which can obtain the single metal body of a soft magnetic body Can be appropriately selected.
 合金体は、1種類以上の金属元素(第1金属元素)と、1種類以上の金属元素(第2金属元素)および/または非金属元素(炭素、窒素、ケイ素、リンなど)との共融体であり、軟磁性体の合金体として利用することができるものであれば特に制限されない。 An alloy body is a eutectic mixture of one or more metal elements (first metal element) and one or more metal elements (second metal element) and / or non-metal elements (carbon, nitrogen, silicon, phosphorus, etc.). The body is not particularly limited as long as it can be used as an alloy body of a soft magnetic body.
 第1金属元素は、合金体における必須元素であり、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)などが挙げられる。なお、第1金属元素がFeであれば、合金体は、Fe系合金とされ、第1金属元素がCoであれば、合金体は、Co系合金とされ、第1金属元素がNiであれば、合金体は、Ni系合金とされる。 The first metal element is an essential element in the alloy, and examples thereof include iron (Fe), cobalt (Co), and nickel (Ni). If the first metal element is Fe, the alloy body is an Fe-based alloy, and if the first metal element is Co, the alloy body is a Co-based alloy, and the first metal element is Ni. In this case, the alloy body is a Ni-based alloy.
 第2金属元素は、合金体に副次的に含有される元素(副成分)であり、第1金属元素に相溶(共融)する金属元素であって、例えば、鉄(Fe)(第1金属元素がFe以外である場合)、コバルト(Co)(第1金属元素がCo以外である場合)、ニッケル(Ni)(第1金属元素Ni以外である場合)、クロム(Cr)、アルミニウム(Al)、ケイ素(Si)、銅(Cu)、銀(Ag)、マンガン(Mn)、カルシウム(Ca)、バリウム(Ba)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、ルテニウム(Ru)、ロジウム(Rh)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、スカンジウム(Sc)、イットリウム(Y)、ストロンチウム(Sr)、各種希土類元素などが挙げられる。これらは、単独使用または2種以上併用することができる。 The second metal element is an element (subcomponent) that is secondary contained in the alloy body, and is a metal element that is compatible (eutectic) with the first metal element, for example, iron (Fe) (first 1 metal element other than Fe), cobalt (Co) (when the first metal element is other than Co), nickel (Ni) (when other than the first metal element Ni), chromium (Cr), aluminum (Al), silicon (Si), copper (Cu), silver (Ag), manganese (Mn), calcium (Ca), barium (Ba), titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), tungsten (W), ruthenium (Ru), rhodium (Rh), zinc (Zn), gallium (Ga), indium (In), germanium (G ), Tin (Sn), lead (Pb), scandium (Sc), yttrium (Y), strontium (Sr), and various rare earth elements and the like. These can be used alone or in combination of two or more.
 非金属元素は、合金体に副次的に含有される元素(副成分)であり、第1金属元素に相溶(共融)する非金属元素であって、例えば、ホウ素(B)、炭素(C)、窒素(N)、ケイ素(Si)、リン(P)、硫黄(S)などが挙げられる。これらは、単独使用または2種以上併用することができる。 The nonmetallic element is an element (subcomponent) that is secondary to the alloy body, and is a nonmetallic element that is compatible (eutectic) with the first metal element. For example, boron (B), carbon (C), nitrogen (N), silicon (Si), phosphorus (P), sulfur (S) and the like. These can be used alone or in combination of two or more.
 合金体の一例であるFe系合金として、例えば、磁性ステンレス(Fe-Cr-Al-Si合金)(電磁ステンレスを含む)、センダスト(Fe-Si-Al合金)(スーパーセンダストを含む)、パーマロイ(Fe-Ni合金)、Fe-Ni-Mo合金、Fe-Ni-Mo-Cu合金、Fe-Ni-Co合金、Fe-Cr合金、Fe-Cr-Al合金、Fe-Ni-Cr合金、Fe-Ni-Cr-Si合金、ケイ素銅(Fe-Cu-Si合金)、Fe-Si合金、Fe-Si―B(-Cu-Nb)合金、Fe-B-Si-Cr合金、Fe-Si-Cr-Ni合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金、Fe-Ni-Si-Co合金、Fe-N合金、Fe-C合金、Fe-B合金、Fe-P合金、フェライト(ステンレス系フェライト、さらには、Mn-Mg系フェライト、Mn-Zn系フェライト、Ni-Zn系フェライト、Ni-Zn-Cu系フェライト、Cu-Zn系フェライト、Cu-Mg-Zn系フェライトなどのソフトフェライトを含む)、パーメンジュール(Fe-Co合金)、Fe-Co-V合金、Fe基アモルファス合金などが挙げられる。 Examples of the alloy based Fe alloy include magnetic stainless steel (Fe—Cr—Al—Si alloy) (including electromagnetic stainless steel), sendust (Fe—Si—Al alloy) (including super sendust), permalloy ( Fe-Ni alloy), Fe-Ni-Mo alloy, Fe-Ni-Mo-Cu alloy, Fe-Ni-Co alloy, Fe-Cr alloy, Fe-Cr-Al alloy, Fe-Ni-Cr alloy, Fe- Ni-Cr-Si alloy, silicon copper (Fe-Cu-Si alloy), Fe-Si alloy, Fe-Si-B (-Cu-Nb) alloy, Fe-B-Si-Cr alloy, Fe-Si-Cr -Ni alloy, Fe-Si-Cr alloy, Fe-Si-Al-Ni-Cr alloy, Fe-Ni-Si-Co alloy, Fe-N alloy, Fe-C alloy, Fe-B alloy, Fe-P alloy , Ferrite Soft ferrite such as Mn-Mg ferrite, Mn-Zn ferrite, Ni-Zn ferrite, Ni-Zn-Cu ferrite, Cu-Zn ferrite, Cu-Mg-Zn ferrite ), Permendur (Fe—Co alloy), Fe—Co—V alloy, Fe-based amorphous alloy, and the like.
 合金体の一例であるCo系合金としては、例えば、Co-Ta-Zr、コバルト(Co)基アモルファス合金などが挙げられる。 Examples of the Co-based alloy which is an example of an alloy body include Co—Ta—Zr, cobalt (Co) based amorphous alloy, and the like.
 合金体の一例であるNi系合金としては、例えば、Ni-Cr合金などが挙げられる。 Examples of the Ni-based alloy that is an example of an alloy body include a Ni—Cr alloy.
 これら軟磁性体の中でも、磁気特性の点から、好ましくは、合金体、より好ましくは、Fe系合金、さらに好ましくは、センダスト(Fe-Si-Al合金)、とりわけ好ましくは、高い透磁率を得る観点から、Si含有割合が9~15質量%であるセンダストが挙げられる。また、軟磁性体として、好ましくは、単一金属体、より好ましくは、鉄元素を純物質の状態で含む単一金属体、さらに好ましくは、鉄単体、あるいは、鉄粉(カルボニル鉄粉)が挙げられる。 Among these soft magnetic materials, from the viewpoint of magnetic properties, an alloy body, more preferably an Fe alloy, more preferably Sendust (Fe—Si—Al alloy), particularly preferably a high magnetic permeability is obtained. From the viewpoint, Sendust having a Si content of 9 to 15% by mass can be mentioned. The soft magnetic material is preferably a single metal body, more preferably a single metal body containing an iron element in a pure substance state, more preferably an iron simple substance or iron powder (carbonyl iron powder). Can be mentioned.
 磁性粒子48の形状は、特に限定されず、略扁平状(板状)、略球形状、略針形状、不定形状が挙げられ、好ましくは、略扁平状(板状)が挙げられる。なお、第1磁性シート5は、異方性の磁性粒子48に加え、非異方性の磁性粒子をさらに含有することもできる。非異方性の磁性粒子は、例えば、球状、顆粒状、塊状、ペレット状などの形状を有していてもよい。非異方性の磁性粒子の平均粒子径は、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。 The shape of the magnetic particles 48 is not particularly limited, and may be a substantially flat shape (plate shape), a substantially spherical shape, a substantially needle shape, or an indefinite shape, and preferably a substantially flat shape (plate shape). The first magnetic sheet 5 can further contain non-anisotropic magnetic particles in addition to the anisotropic magnetic particles 48. The non-anisotropic magnetic particles may have a shape such as a spherical shape, a granular shape, a lump shape, or a pellet shape. The average particle diameter of the non-anisotropic magnetic particles is, for example, 0.1 μm or more, preferably 0.5 μm or more, and for example, 200 μm or less, preferably 150 μm or less.
 異方性の磁性粒子48の平均粒子径(平均最大長さ)は、例えば、3.5μm以上、好ましくは、10μm以上であり、また、例えば、100μm以下でもある。 The average particle diameter (average maximum length) of the anisotropic magnetic particles 48 is, for example, 3.5 μm or more, preferably 10 μm or more, and for example, 100 μm or less.
 磁性粒子48の磁性組成物(第1磁性シート5)における容積割合は、例えば、15容積%以上、好ましくは、50容積%以上であり、また、例えば、90容積%以下、好ましくは、80容積%以下である。 The volume ratio of the magnetic particles 48 in the magnetic composition (first magnetic sheet 5) is, for example, 15% by volume or more, preferably 50% by volume or more, and for example, 90% by volume or less, preferably 80% by volume. % Or less.
 樹脂としては、例えば、熱可塑性成分、熱硬化性成分が挙げられる。これらは、単独使用または併用することができ、好ましくは、熱可塑性成分および熱硬化性成分の併用が挙げられる。熱可塑性成分および熱硬化性成分の併用であれば、第1工程において、磁性組成物が十分に流動して、複数の配線部4間を充填できつつ、その後の完全硬化によって、耐久性に優れる磁性層21を形成することができる。 Examples of the resin include a thermoplastic component and a thermosetting component. These can be used alone or in combination. Preferably, a thermoplastic component and a thermosetting component are used in combination. If the thermoplastic component and the thermosetting component are used in combination, in the first step, the magnetic composition flows sufficiently and can fill between the plurality of wiring portions 4, but is excellent in durability by subsequent complete curing. The magnetic layer 21 can be formed.
 熱可塑性成分としては、例えば、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、ポリアミド樹脂(6-ナイロンや6,6-ナイロンなど)、フェノキシ樹脂、アクリル樹脂、飽和ポリエステル樹脂(PETなど)、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体などの熱可塑性樹脂が挙げられる。これら熱可塑性成分は、単独使用または2種以上併用することができる。 Examples of the thermoplastic component include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, Thermoplastic polyimide resin, polyamide resin (6-nylon, 6,6-nylon etc.), phenoxy resin, acrylic resin, saturated polyester resin (PET etc.), polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer And other thermoplastic resins. These thermoplastic components can be used alone or in combination of two or more.
 熱可塑性成分として、好ましくは、アクリル樹脂が挙げられる。 As the thermoplastic component, an acrylic resin is preferable.
 アクリル樹脂としては、例えば、直鎖または分岐のアルキル基を有する(メタ)アクリル酸アルキルエステルと、その他のモノマー(共重合性モノマー)とを含むモノマー成分を重合してなる、カルボキシル基含有(メタ)アクリル酸エステルコポリマー(好ましくは、カルボキシル基含有アクリル酸エステルコポリマー)などが挙げられる。 As the acrylic resin, for example, a carboxyl group-containing (meta) formed by polymerizing a monomer component containing a (meth) acrylic acid alkyl ester having a linear or branched alkyl group and another monomer (copolymerizable monomer). ) Acrylic ester copolymer (preferably carboxyl group-containing acrylic ester copolymer).
 アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、t-ブチル、イソブチル、ペンチル、ヘキシルなどの炭素数1~6のアルキル基などが挙げられる。 Examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl and the like.
 その他のモノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸、クロトン酸などのカルボキシル基含有モノマーなどが挙げられる。 Other monomers include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
 熱可塑性成分の樹脂における割合(固形分割合)は、例えば、25質量%以上、80質量%以下である。 The ratio (solid content ratio) in the resin of the thermoplastic component is, for example, 25% by mass or more and 80% by mass or less.
 熱硬化性成分は、例えば、主剤、硬化剤および硬化促進剤を含む。 The thermosetting component includes, for example, a main agent, a curing agent, and a curing accelerator.
 主剤としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ビニルエステル樹脂、シアノエステル樹脂、マレイミド樹脂、シリコーン樹脂などが挙げられる。主剤としては、耐熱性などの観点から、好ましくは、エポキシ樹脂が挙げられる。主剤がエポキシ樹脂であれば、熱硬化性成分は、後述する硬化剤(エポキシ系硬化剤)および硬化促進剤(エポキシ系硬化促進剤)とともに、エポキシ系熱硬化性成分を構成する。 Examples of the main agent include epoxy resin, phenol resin, melamine resin, vinyl ester resin, cyano ester resin, maleimide resin, and silicone resin. The main agent is preferably an epoxy resin from the viewpoint of heat resistance and the like. If the main agent is an epoxy resin, the thermosetting component constitutes an epoxy thermosetting component together with a curing agent (epoxy curing agent) and a curing accelerator (epoxy curing accelerator) described later.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂などの2官能エポキシ樹脂、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などの3官能以上の多官能エポキシ樹脂などが挙げられる。これらエポキシ樹脂は、単独で使用または2種以上を併用することができる。 Examples of the epoxy resin include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol A type epoxy resin, modified bisphenol F type epoxy resin, and biphenyl type epoxy resin, for example, phenol novolac type epoxy. Examples thereof include polyfunctional epoxy resins having three or more functions such as resin, cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin, and dicyclopentadiene type epoxy resin. These epoxy resins can be used alone or in combination of two or more.
 好ましくは、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂が挙げられる。 Preferably, a cresol novolac type epoxy resin and a trishydroxyphenylmethane type epoxy resin are used.
 クレゾールノボラック型エポキシ樹脂の具体例としては、下記一般式(1)で表される化合物などが挙げられ、トリスヒドロキシフェニルメタン型エポキシ樹脂の具体例としては、下記一般式(2)で表される化合物などが挙げられる。 Specific examples of the cresol novolac type epoxy resin include compounds represented by the following general formula (1), and specific examples of the trishydroxyphenylmethane type epoxy resin are represented by the following general formula (2). Compound etc. are mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 なお、nは、それぞれ独立にモノマーの重合度を示す。 In addition, n shows the polymerization degree of a monomer each independently.
 エポキシ樹脂のエポキシ当量は、例えば、10g/eq.以上、好ましくは、100g/eq.以上であり、また、例えば、300g/eq.以下、好ましくは、250g/eq.以下である。 The epoxy equivalent of the epoxy resin is, for example, 10 g / eq. Or more, preferably 100 g / eq. In addition, for example, 300 g / eq. Hereinafter, preferably, 250 g / eq. It is as follows.
 主剤(好ましくは、エポキシ樹脂)の樹脂における割合は、例えば、5質量%以上、例えば、50質量%以下である。 The ratio of the main agent (preferably epoxy resin) in the resin is, for example, 5% by mass or more, for example, 50% by mass or less.
 硬化剤は、加熱によって、上記した主剤を硬化させる成分(好ましくは、エポキシ樹脂硬化剤)である。硬化剤としては、例えば、フェノールノボラック樹脂などのフェノール樹脂が挙げられる。 The curing agent is a component (preferably an epoxy resin curing agent) that cures the above-described main agent by heating. As a hardening | curing agent, phenol resins, such as a phenol novolak resin, are mentioned, for example.
 硬化剤の割合は、主剤がエポキシ樹脂であり、硬化剤がフェノール樹脂であれば、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が、例えば、0.7当量以上、好ましくは、0.9当量以上、例えば、1.5当量以下、好ましくは、1.2当量以下となるように、調整される。具体的には、硬化剤の配合部数は、主剤100質量部に対して、例えば、70質量部以上、150質量部以下である。 When the main agent is an epoxy resin and the curing agent is a phenol resin, the total number of hydroxyl groups in the phenol resin is, for example, 0.7 equivalents or more with respect to 1 equivalent of the epoxy group in the epoxy resin. , Preferably, it is adjusted to 0.9 equivalent or more, for example, 1.5 equivalent or less, preferably 1.2 equivalent or less. Specifically, the number of blending parts of the curing agent is, for example, 70 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the main agent.
 硬化促進剤は、加熱によって、主剤の硬化を促進する触媒(熱硬化触媒)(好ましくは、エポキシ樹脂硬化促進剤)であって、例えば、有機リン系化合物、例えば、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)などのイミダゾール化合物などが挙げられる。好ましくは、イミダゾール化合物が挙げられる。硬化促進剤の配合部数は、主剤100質量部に対して、例えば、0.05質量部以上、5質量部以下である。 The curing accelerator is a catalyst (thermal curing catalyst) (preferably an epoxy resin curing accelerator) that accelerates the curing of the main agent by heating, and is, for example, an organic phosphorus compound such as 2-phenyl-4-methyl. And imidazole compounds such as -5-hydroxymethylimidazole (2P4MHZ). Preferably, an imidazole compound is used. The number of blending parts of the curing accelerator is, for example, 0.05 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the main agent.
 樹脂の磁性組成物(第1磁性シート5)における容積割合は、上記した磁性粒子48の容積割合の残部であり、具体的には、例えば、10容積%以上、好ましくは、20容積%以上であり、また、例えば、80容積%以下、好ましくは、50容積%以下である。 The volume ratio of the resin in the magnetic composition (first magnetic sheet 5) is the balance of the volume ratio of the magnetic particles 48 described above, specifically, for example, 10% by volume or more, preferably 20% by volume or more. For example, 80 volume% or less, preferably 50 volume% or less.
 なお、磁性組成物には、公知の添加剤(例えば、分散剤、レオロジーコントロール剤など)などの適宜の割合で配合することができる。 In addition, it can mix | blend with magnetic compositions at appropriate ratios, such as a well-known additive (For example, a dispersing agent, a rheology control agent, etc.).
 第1磁性シート5は、磁性粒子48および樹脂を配合して、これらを均一に混合して磁性組成物を調製する。この際、必要により、溶媒(有機溶媒)を用いて、磁性組成物のワニスを調製する。その後、ワニスを、図示しない剥離フィルムに塗布し、乾燥して、第1磁性シート5を調製(作製)する。 The first magnetic sheet 5 is prepared by blending magnetic particles 48 and a resin and mixing them uniformly to prepare a magnetic composition. Under the present circumstances, the varnish of a magnetic composition is prepared using a solvent (organic solvent) as needed. Then, a varnish is apply | coated to the peeling film which is not shown in figure, it dries, and the 1st magnetic sheet 5 is prepared (production).
 第1磁性シート5の厚みは、後述する磁性層21の厚みT3が確保されるように、適宜設定される。 The thickness of the first magnetic sheet 5 is appropriately set such that a thickness T3 of a magnetic layer 21 described later is secured.
 離型クッションシート6は、次に説明する第1プレス工程において、第2プレス板11と第1磁性シート5との間において、それらが粘着(感圧接着)することを抑制しながら、熱プレス後には、磁性層21を第2プレス板11から離型することができる離型シートである。また、離型クッションシート6は、第1プレス工程における熱プレス時に、第2プレス板11の圧力を複数の配線部4の形状に対応して分散して第1磁性シート5に作用させ、第1磁性シート5に変形を生じさせ、第1磁性シート5を複数の配線部4の形状に追従させるためのクッションシートでもある。 The release cushion sheet 6 is a hot press while suppressing adhesion (pressure-sensitive adhesion) between the second press plate 11 and the first magnetic sheet 5 in the first press step described below. After that, the release sheet can release the magnetic layer 21 from the second press plate 11. Further, the release cushion sheet 6 acts on the first magnetic sheet 5 by dispersing the pressure of the second press plate 11 corresponding to the shapes of the plurality of wiring portions 4 during the hot pressing in the first pressing step. It is also a cushion sheet for causing the first magnetic sheet 5 to deform and causing the first magnetic sheet 5 to follow the shape of the plurality of wiring portions 4.
 離型クッションシート6は、面方向に延びるシート形状を有しており、厚み方向一方面である第1離型面22および他方面である第2離型面23を有する。 The release cushion sheet 6 has a sheet shape extending in the surface direction, and includes a first release surface 22 that is one surface in the thickness direction and a second release surface 23 that is the other surface.
 第1離型面22は、第2プレス板11(後述)に面状に接触することができる。第1離型面22は、面方向に沿う平坦面である。 The first release surface 22 can come into surface contact with the second press plate 11 (described later). The first release surface 22 is a flat surface along the surface direction.
 第2離型面23は、第1磁性シート5の第1磁性面18に面状に接触することができる。第2離型面23は、第1離型面22と厚み方向他方側に間隔を隔てて対向配置されている。第2離型面23は、第1離型面22に対して平行しており、面方向に沿う平坦面である。 The second release surface 23 can come into surface contact with the first magnetic surface 18 of the first magnetic sheet 5. The second release surface 23 is disposed opposite to the first release surface 22 with a gap on the other side in the thickness direction. The second release surface 23 is parallel to the first release surface 22 and is a flat surface along the surface direction.
 離型クッションシート6は、第1層31と、第2層32と、第3層33とを厚み方向一方側に順に備える。好ましくは、離型クッションシート6は、第1層31と、第2層32と、第3層33とのみからなる。 The release cushion sheet 6 includes a first layer 31, a second layer 32, and a third layer 33 in order on one side in the thickness direction. Preferably, the release cushion sheet 6 includes only the first layer 31, the second layer 32, and the third layer 33.
 第1層31は、離型クッションシート6における厚み方向最他方側に位置する。これにより、第1層31は、第2離型面23を形成する。つまり、第1層31は、第1磁性シート5(具体的には、熱プレス後の磁性層21)に対する離型層(第1離型層)である。第1層31は、面方向に沿って延びる形状を有する薄膜(スキン膜)である。また、第1層31は、次に説明する第2層32を厚み方向他方側から被覆する被覆層(外殻層)である。第1層31の厚み方向他方面(第2離型面23に相当する表面)には、適宜の剥離処理が施されていてもよい。 The first layer 31 is located on the other side in the thickness direction of the release cushion sheet 6. Thereby, the first layer 31 forms the second release surface 23. That is, the first layer 31 is a release layer (first release layer) for the first magnetic sheet 5 (specifically, the magnetic layer 21 after hot pressing). The first layer 31 is a thin film (skin film) having a shape extending along the surface direction. The first layer 31 is a coating layer (outer shell layer) that covers the second layer 32 described below from the other side in the thickness direction. The other surface in the thickness direction of the first layer 31 (the surface corresponding to the second release surface 23) may be subjected to an appropriate peeling treatment.
 第1層31は、次の第1プレス工程における熱プレスにおいて、第1磁性シート5の第1磁性面18に対して追従して接触できる一方、その厚みが熱プレスの前後で実質的に変化しない物性を有する。また、第1層31は、上記した熱プレスにおいて、面方向(具体的には、第1方向に)に伸長できる層である。なお、第1層31は、第1プレス工程における熱プレスの温度(例えば、110℃)において、次に説明する第2層32に比べて、硬い。 The first layer 31 can follow and contact the first magnetic surface 18 of the first magnetic sheet 5 in the subsequent hot pressing in the first pressing step, while its thickness substantially changes before and after the hot pressing. Has no physical properties. The first layer 31 is a layer that can be extended in the surface direction (specifically, in the first direction) in the above-described hot pressing. In addition, the 1st layer 31 is hard compared with the 2nd layer 32 demonstrated below in the temperature (for example, 110 degreeC) of the hot press in a 1st press process.
 具体的には、第1層31の110℃における引張貯蔵弾性率E’は、例えば、50MPa以上、好ましくは、100MPa以上、より好ましくは、150MPa以上であり、また、例えば、300MPa以下である。引張貯蔵弾性率E’は、周波数1Hzおよび昇温速度10℃/分の条件で動的粘弾性測定して求められる。後述する第2層32および離型クッションシート6の引張貯蔵弾性率E’も同様にして求められる。 Specifically, the tensile storage elastic modulus E ′ of the first layer 31 at 110 ° C. is, for example, 50 MPa or more, preferably 100 MPa or more, more preferably 150 MPa or more, and for example, 300 MPa or less. The tensile storage elastic modulus E ′ is obtained by measuring dynamic viscoelasticity under conditions of a frequency of 1 Hz and a temperature rising rate of 10 ° C./min. The tensile storage elastic modulus E ′ of the second layer 32 and the release cushion sheet 6 to be described later is obtained in the same manner.
 なお、第1層31の引張貯蔵弾性率E’を特定する温度110℃は、第1プレス工程における第1磁性シート5の熱プレスの温度またはそれに近似する温度を想定した温度である。第2層32および第3層33の引張貯蔵弾性率E’を特定する温度110℃も、第1層31における上記したそれと同様である。 Note that the temperature 110 ° C. that specifies the tensile storage modulus E ′ of the first layer 31 is a temperature that assumes the temperature of the hot press of the first magnetic sheet 5 in the first pressing step or a temperature close thereto. The temperature 110 ° C. that specifies the tensile storage modulus E ′ of the second layer 32 and the third layer 33 is the same as that described above for the first layer 31.
 また、第1層31の融点は、高く、例えば、熱プレスの温度(例えば、110℃)を超える温度であり、具体的には、200℃以上、好ましくは、210℃以上、より好ましくは、220℃以上であり、また、250℃以下である。第1層31の融点は、示差走査熱量計で測定される。なお、後述する第2層32および第3層33の融点も、上記と同様の方法で測定される。 In addition, the melting point of the first layer 31 is high, for example, a temperature exceeding the temperature of hot pressing (for example, 110 ° C.), specifically 200 ° C. or higher, preferably 210 ° C. or higher, more preferably It is 220 ° C. or higher and 250 ° C. or lower. The melting point of the first layer 31 is measured with a differential scanning calorimeter. Note that the melting points of the second layer 32 and the third layer 33 described later are also measured by the same method as described above.
 第1層31の材料としては、後述する第1プレス工程における熱プレスによって少なくとも第1方向に流動しない非熱流動材料が挙げられる。 Examples of the material of the first layer 31 include a non-thermofluid material that does not flow at least in the first direction by hot pressing in a first pressing step described later.
 非熱流動材料は、例えば、芳香族ポリエステル、ポリオレフィンなどを主成分として含有する。 The non-thermofluid material contains, for example, aromatic polyester, polyolefin and the like as main components.
 芳香族ポリエステルとしては、例えば、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)などポリアルキレンテレフタレートが挙げられ、好ましくは、PBTが挙げられる。 Examples of the aromatic polyester include polyalkylene terephthalates such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), and preferably PBT.
 ポリオレフィンとしては、エチレン、プロピレン、1-ブテン、2-ブテン、2-メチルプロペン、4-メチル-1-ペンテンなどのα-オレフィンのホモポリマーおよび/またはコポリマーが挙げられ、好ましくは、ポリ(4-メチル-1-ペンテン)が挙げられる。 Polyolefins include homopolymers and / or copolymers of α-olefins such as ethylene, propylene, 1-butene, 2-butene, 2-methylpropene, 4-methyl-1-pentene, preferably poly (4 -Methyl-1-pentene).
 非熱流動材料として、好ましくは、芳香族ポリエステルが挙げられる。 Favorable examples of the non-thermofluid material include aromatic polyester.
 第1層31の厚みは、例えば、50μm以下、好ましくは、25μm以下であり、また、例えば、5μm以上、好ましくは、10μm以上である。 The thickness of the first layer 31 is, for example, 50 μm or less, preferably 25 μm or less, and for example, 5 μm or more, preferably 10 μm or more.
 第2層32は、第1層31の厚み方向一方面に配置されており、離型クッションシート6において、第1層31および第3層33に挟まれる中間層である。第2層32は、第1工程における熱プレス時に、第1方向および厚み方向に流動して、第1層31を第1磁性シート5の第1磁性面18に追従させる流動層である。 The second layer 32 is disposed on one surface in the thickness direction of the first layer 31 and is an intermediate layer sandwiched between the first layer 31 and the third layer 33 in the release cushion sheet 6. The second layer 32 is a fluidized bed that flows in the first direction and the thickness direction during the hot pressing in the first step, and causes the first layer 31 to follow the first magnetic surface 18 of the first magnetic sheet 5.
 第2層32は、第1層31に比べて柔らかい柔軟層であり、具体的には、第1プレス工程における熱プレス時において、変形することができる。具体的には、第2層32の110℃における引張貯蔵弾性率E’は、第1層31の110℃における引張貯蔵弾性率E’に比べて低い。より具体的には、第2層32の110℃における引張貯蔵弾性率E’は、例えば、50MPa以下、好ましくは、40MPa以下、より好ましくは、30MPa以下、さらに好ましくは、20MPa以下であり、また、例えば、5MPa以上である。第1層31の引張貯蔵弾性率E’は、周波数1Hzおよび昇温速度10℃/分の条件で絶縁層を動的粘弾性測定して求められる。 The second layer 32 is a softer layer than the first layer 31, and can be specifically deformed during hot pressing in the first pressing step. Specifically, the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is lower than the tensile storage elastic modulus E ′ at 110 ° C. of the first layer 31. More specifically, the tensile storage modulus E ′ at 110 ° C. of the second layer 32 is, for example, 50 MPa or less, preferably 40 MPa or less, more preferably 30 MPa or less, and further preferably 20 MPa or less. For example, it is 5 MPa or more. The tensile storage elastic modulus E ′ of the first layer 31 is obtained by measuring the dynamic viscoelasticity of the insulating layer under conditions of a frequency of 1 Hz and a temperature increase rate of 10 ° C./min.
 第2層32の110℃における引張貯蔵弾性率E’が上記した上限以下であれば、第1プレス工程における熱プレス時において、柔軟に変形でき、具体的には、複数の配線部4に追従するように、変形できる。 If the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is not more than the above upper limit, it can be flexibly deformed at the time of hot pressing in the first pressing step, and specifically follows a plurality of wiring portions 4. Can be transformed.
 また、第2層32の110℃における引張貯蔵弾性率E’の、第1層31の110℃における引張貯蔵弾性率E’に対する比(第2層32の110℃における引張貯蔵弾性率E’/第1層31の110℃における引張貯蔵弾性率E’)は、例えば、1未満、好ましくは、0.5以下、より好ましくは、0.1以下であり、また、例えば、0.005以上である。 Further, the ratio of the tensile storage elastic modulus E ′ of the second layer 32 at 110 ° C. to the tensile storage elastic modulus E ′ of the first layer 31 at 110 ° C. (the tensile storage elastic modulus E ′ / of the second layer 32 at 110 ° C. / The tensile storage elastic modulus E ′) at 110 ° C. of the first layer 31 is, for example, less than 1, preferably 0.5 or less, more preferably 0.1 or less, and for example, 0.005 or more. is there.
 なお、第2層32の110℃における引張貯蔵弾性率E’は、例えば、第1磁性シート5の110℃における引張貯蔵弾性率E’と比べて、低くあるいは同一である。 The tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is lower or the same as, for example, the tensile storage elastic modulus E ′ at 110 ° C. of the first magnetic sheet 5.
 また、第2層32の融点は、第1層31の融点に比べて低く、例えば、熱プレスの温度(例えば、110℃)以下の温度であり、具体的には、105℃未満、好ましくは、100℃未満であり、また、例えば、50℃以上である。 Further, the melting point of the second layer 32 is lower than the melting point of the first layer 31, for example, a temperature not higher than the temperature of the hot press (for example, 110 ° C.), specifically, less than 105 ° C., preferably , Less than 100 ° C., and for example, 50 ° C. or more.
 第2層32の材料としては、後述する第1プレス工程における熱プレスによって第1方向および厚み方向に流動する熱流動材料が挙げられる。熱流動材料は、例えば、オレフィン-(メタ)アクリレートコポリマー、オレフィン-酢酸ビニルコポリマーなどを主成分として含む。 Examples of the material of the second layer 32 include a heat-fluid material that flows in the first direction and the thickness direction by hot pressing in a first pressing step described later. The heat-fluid material contains, for example, an olefin- (meth) acrylate copolymer, an olefin-vinyl acetate copolymer as a main component.
 オレフィン-(メタ)アクリレートコポリマーとしては、例えば、エチレン-メチル(メタ)アクリレートコポリマー、エチレン-エチル(メタ)アクリレートコポリマー、エチレン-プロピル(メタ)アクリレートコポリマー、エチレン-ブチル(メタ)アクリレートコポリマーなどのエチレン-アルキル(メタ)アクリレートコポリマー、例えば、プロピレン-メチル(メタ)アクリレートコポリマーなどのプロピレン-アルキル(メタ)アクリレートコポリマーなどが挙げられる。 Examples of the olefin- (meth) acrylate copolymer include ethylene such as ethylene-methyl (meth) acrylate copolymer, ethylene-ethyl (meth) acrylate copolymer, ethylene-propyl (meth) acrylate copolymer, and ethylene-butyl (meth) acrylate copolymer. -Alkyl (meth) acrylate copolymers, for example propylene-alkyl (meth) acrylate copolymers such as propylene-methyl (meth) acrylate copolymers.
 オレフィン-酢酸ビニルコポリマーとしては、例えば、エチレン-酢酸ビニルコポリマーが挙げられる。 Examples of the olefin-vinyl acetate copolymer include an ethylene-vinyl acetate copolymer.
 熱流動材料として、として、好ましくは、オレフィン-(メタ)アクリレートコポリマーが挙げられ、好ましくは、エチレン-アルキル(メタ)アクリレートコポリマー、より好ましくは、エチレン-メチル(メタ)アクリレートコポリマー、さらに好ましくは、エチレン-メチルメタクリレートコポリマーが挙げられる。 The heat fluid material preferably includes olefin- (meth) acrylate copolymers, preferably ethylene-alkyl (meth) acrylate copolymers, more preferably ethylene-methyl (meth) acrylate copolymers, more preferably Mention may be made of ethylene-methyl methacrylate copolymers.
 第2層32の厚みT2は、例えば、30μm以上、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、150μm以下である。 The thickness T2 of the second layer 32 is, for example, 30 μm or more, preferably 50 μm or more, more preferably 100 μm or more, and, for example, 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less. .
 第2層32の厚みT2の、配線部4の厚みT1に対する比(第2層32の厚みT2/配線部4の厚みT1)は、0.3以上、好ましくは、0.5以上であり、また、例えば、3.0以下、好ましくは、2.0以下である。 The ratio of the thickness T2 of the second layer 32 to the thickness T1 of the wiring portion 4 (thickness T2 of the second layer 32 / thickness T1 of the wiring portion 4) is 0.3 or more, preferably 0.5 or more. For example, it is 3.0 or less, preferably 2.0 or less.
 第2層32の厚みT2の配線部4の厚みT1に対する比(T2/T1)が上記した下限以上であれば、第1工程において、所望の形状(後述)を有する磁性層21を形成することができる。 If the ratio (T2 / T1) of the thickness T2 of the second layer 32 to the thickness T1 of the wiring portion 4 is equal to or greater than the above lower limit, the magnetic layer 21 having a desired shape (described later) is formed in the first step. Can do.
 また、第2層32の厚みT2の、第1層31の厚みに対する比は、例えば、2以上、好ましくは、5以上、より好ましくは、7以上であり、また、例えば、15以下である。 The ratio of the thickness T2 of the second layer 32 to the thickness of the first layer 31 is, for example, 2 or more, preferably 5 or more, more preferably 7 or more, and for example 15 or less.
 第3層33は、第2層32の厚み方向一方面に配置されており、離型クッションシート6における厚み方向最一方側に位置する。これにより、第3層33は、第1離型面22を形成する。また、第3層33は、第2プレス板11に対する離型層(第2離型層)である。第3層33の形状、物性、材料および厚みは、第1層31におけるそれらと同一である。 The third layer 33 is disposed on one surface in the thickness direction of the second layer 32 and is located on the most thickness side in the release cushion sheet 6. Thereby, the third layer 33 forms the first release surface 22. The third layer 33 is a release layer (second release layer) for the second press plate 11. The shape, physical properties, material, and thickness of the third layer 33 are the same as those in the first layer 31.
 第2層32の厚みT2の、第1層31の厚みおよび第3層33の厚みの合計に対する比は、例えば、1.5以上、好ましくは、3以上、より好ましくは、4以上であり、また、例えば、8以下である。 The ratio of the thickness T2 of the second layer 32 to the total thickness of the first layer 31 and the third layer 33 is, for example, 1.5 or more, preferably 3 or more, more preferably 4 or more, For example, it is 8 or less.
 離型クッションシート6の厚みは、第1層31の厚み、第2層32の厚みT2および第3層33の厚みの合計であり、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。 The thickness of the release cushion sheet 6 is the sum of the thickness of the first layer 31, the thickness T2 of the second layer 32, and the thickness of the third layer 33, for example, 50 μm or more, preferably 100 μm or more. For example, it is 500 μm or less, preferably 200 μm or less.
 なお、離型クッションシート6は、市販品を用いることができ、例えば、離型フィルムOT-A、離型フィルムOT-Eなどの、離型フィルムOTシリーズ(積水化学工業社製)などが用いられる。 As the release cushion sheet 6, a commercially available product can be used. For example, a release film OT series (manufactured by Sekisui Chemical Co., Ltd.) such as a release film OT-A and a release film OT-E is used. It is done.
 その後、2つのプレス板20により、配線回路基板40と、第1磁性シート5と、離型クッションシート6とを、それらの順に挟む。 Thereafter, the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 are sandwiched between the two press plates 20 in that order.
 2つのプレス板20は、厚み方向に互いに間隔が隔てられる第1プレス板10および第2プレス板11からなる。第1プレス板10および第2プレス板11のそれぞれは、面方向に沿って延びる形状を有する。 The two press plates 20 include a first press plate 10 and a second press plate 11 that are spaced apart from each other in the thickness direction. Each of the first press plate 10 and the second press plate 11 has a shape extending along the surface direction.
 第1プレス板10および/または第2プレス板11は、第1磁性シート5と離型クッションシート6とを加熱できるように、図示しない熱源を備える。 The first press plate 10 and / or the second press plate 11 includes a heat source (not shown) so that the first magnetic sheet 5 and the release cushion sheet 6 can be heated.
 第1プレス板10および第2プレス板11は、相対移動して、上記した絶縁層2と複数の配線部4と第1磁性シート5と離型クッションシート6とを厚み方向にプレスできるように構成されている。 The first press plate 10 and the second press plate 11 are relatively moved so that the insulating layer 2, the plurality of wiring portions 4, the first magnetic sheet 5, and the release cushion sheet 6 can be pressed in the thickness direction. It is configured.
 第1プレス板10は、面方向に沿って延びる第1プレス面7を有する。第1プレス面7は、面方向に沿う平坦面である。例えば、第1プレス板10は、厚み方向に移動しないように、図示しない固定部材に固定されている。 The first press plate 10 has a first press surface 7 extending along the surface direction. The first press surface 7 is a flat surface along the surface direction. For example, the first press plate 10 is fixed to a fixing member (not shown) so as not to move in the thickness direction.
 第2プレス板11は、第1プレス面7に平行する第2プレス面8を有する。第2プレス板11は、動力装置(図示せず)に接続され、厚み方向に移動可能である。 The second press plate 11 has a second press surface 8 parallel to the first press surface 7. The second press plate 11 is connected to a power unit (not shown) and is movable in the thickness direction.
 2つのプレス板20により、配線回路基板40と、第1磁性シート5と、離型クッションシート6とを挟み込むには、2つのプレス板20の間に、配線回路基板40と、第1磁性シート5と、離型クッションシート6とを配置(挿入)する。この際、例えば、第2絶縁面9は、第1プレス面7と接触する。 In order to sandwich the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 between the two press plates 20, the printed circuit board 40 and the first magnetic sheet are sandwiched between the two press plates 20. 5 and the release cushion sheet 6 are arranged (inserted). At this time, for example, the second insulating surface 9 is in contact with the first press surface 7.
 これにより、挟み込み工程を実施する。 This will implement the sandwiching process.
 その後、図2Bに示すように、第1プレス工程を実施する。第1プレス工程では、2つのプレス板20で、配線回路基板40と、第1磁性シート5と、離型クッションシート6とを熱プレスする。 Thereafter, as shown in FIG. 2B, the first pressing step is performed. In the first pressing step, the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 are hot-pressed by the two press plates 20.
 例えば、第2プレス板11を、第1プレス板10に対して近接するように移動(下降)させて、第2プレス板11を離型クッションシート6を介して第1磁性シート5に押し付ける(プレスする)。 For example, the second press plate 11 is moved (lowered) so as to approach the first press plate 10, and the second press plate 11 is pressed against the first magnetic sheet 5 via the release cushion sheet 6 ( Press).
 同時に、熱源により、第1磁性シート5と離型クッションシート6とを加熱する。 At the same time, the first magnetic sheet 5 and the release cushion sheet 6 are heated by a heat source.
 プレス圧は、例えば、0.1MPa以上、好ましくは、0.3MPa以上であり、また、例えば、10MPa以下、好ましくは、5MPa以下である。 The press pressure is, for example, 0.1 MPa or more, preferably 0.3 MPa or more, and for example, 10 MPa or less, preferably 5 MPa or less.
 加熱温度は、例えば、第2層32の融点以上であり、かつ、第1層31の融点未満である。また、加熱温度は、具体的には、例えば、100℃以上、好ましくは、105℃以上であり、また、例えば、190℃以下、好ましくは、150℃以下である。 The heating temperature is, for example, equal to or higher than the melting point of the second layer 32 and lower than the melting point of the first layer 31. The heating temperature is specifically 100 ° C. or higher, preferably 105 ° C. or higher, for example, 190 ° C. or lower, preferably 150 ° C. or lower.
 プレス時間は、例えば、10秒間以上、好ましくは、20秒間以上であり、また、例えば、1000秒間以下、好ましくは、100秒間以下である。 The press time is, for example, 10 seconds or longer, preferably 20 seconds or longer, and for example, 1000 seconds or shorter, preferably 100 seconds or shorter.
 この第1プレス工程において、図1の矢印および図2Aに示すように、第2プレス板11の第1プレス板10に対する移動が開始すると、第1離型面22と第2プレス面8とが接触し、また、第2離型面23と第1磁性面18とが接触し、第2磁性面19と対向面15とが接触する。つまり、第1プレス板10、絶縁層2、配線部4、第1磁性シート5、離型クッションシート6、および、第2プレス板11は、厚み方向に隣接する部材同士が互いに接触(密着、密接)し、続いて、さらに、第2プレス板11の移動がさらに進行する(熱プレスが開始する)。 In the first pressing step, as shown in the arrow of FIG. 1 and FIG. 2A, when the movement of the second press plate 11 relative to the first press plate 10 starts, the first release surface 22 and the second press surface 8 are moved. In addition, the second release surface 23 and the first magnetic surface 18 are in contact with each other, and the second magnetic surface 19 and the facing surface 15 are in contact with each other. That is, in the first press plate 10, the insulating layer 2, the wiring portion 4, the first magnetic sheet 5, the release cushion sheet 6, and the second press plate 11, members adjacent in the thickness direction are in contact with each other (adherence, Then, the movement of the second press plate 11 further proceeds (hot pressing starts).
 すると、厚み方向に投影したときに、離型クッションシート6において対向面15と重複する重複部分34は、図2Aの横向き矢印で示すように、対向面15と、第2プレス面8とによって、厚み方向に狭まれながら押圧(狭圧)される。 Then, when projected in the thickness direction, the overlapping portion 34 that overlaps the facing surface 15 in the release cushion sheet 6 is formed by the facing surface 15 and the second press surface 8 as shown by the horizontal arrow in FIG. It is pressed (narrow pressure) while being narrowed in the thickness direction.
 なお、厚み方向に投影したときに、離型クッションシート6において対向面15と重複しない非重複部分35は、第2磁性面19が対向面15と接触せず、かつ、第1絶縁面3において複数の配線部4から露出する露出面36と間隔が隔てられていることから、上記した狭圧を受けない。 The non-overlapping portion 35 that does not overlap the facing surface 15 in the release cushion sheet 6 when projected in the thickness direction is such that the second magnetic surface 19 does not contact the facing surface 15 and the first insulating surface 3 Since it is spaced apart from the exposed surface 36 exposed from the plurality of wiring parts 4, it does not receive the above-described narrow pressure.
 すると、第2層32の重複部分34における熱流動材料は、非重複部分35に向かって流動する(押し出される)(変形する)(詳しくは、塑性変形する)。すると、図2Aの縦向き矢印で示すように、非重複部分35には、上記した重複部分34からの熱流動材料の流動(押出し)に基づく流動圧が増大する。非重複部分35における流動圧は、厚み方向両方側に作用する。 Then, the heat fluid material in the overlapping portion 34 of the second layer 32 flows (extrudes) (deforms) (specifically, plastically deforms) toward the non-overlapping portion 35. Then, as indicated by the vertical arrows in FIG. 2A, the non-overlapping portion 35 is increased in fluid pressure based on the flow (extrusion) of the heat fluid material from the overlapping portion 34 described above. The flow pressure in the non-overlapping portion 35 acts on both sides in the thickness direction.
 図2Aおよび図2Bに示すように、流動圧のうち、厚み方向他方側に作用する流動圧は、非重複部分35における第1層31を、厚み方向他方側に押し出す(押し下げる)とともに、かかる第1層31を介して、第1磁性シート5において非重複部分35と厚み方向に対向する被押出部分38を厚み方向他方側に押し出す(押し下げる)。なお、厚み方向一方側に作用する流動圧(破線で示す矢印)は、非重複部分35と対向する第3層33に作用するが、上記したように、第3層33が第2プレス板11に強固に支持されていることから、第3層33の変形を生じない。 2A and 2B, the fluid pressure acting on the other side in the thickness direction out of the fluid pressure pushes (presses down) the first layer 31 in the non-overlapping portion 35 to the other side in the thickness direction. Through the first layer 31, the extruded portion 38 that opposes the non-overlapping portion 35 in the thickness direction in the first magnetic sheet 5 is pushed out (pressed down) in the other thickness direction. In addition, although the fluid pressure (arrow shown with a broken line) which acts on the thickness direction one side acts on the 3rd layer 33 facing the non-overlapping part 35, as above-mentioned, the 3rd layer 33 is the 2nd press board 11. Therefore, the third layer 33 is not deformed.
 その後、上記した流動圧に基づく被押出部分38の押し出し(押し下げ)は、被押出部分38の第2磁性面19が、側面17と、露出面36とに接触するまで続く。 Thereafter, the extrusion (pressing down) of the extruded portion 38 based on the fluid pressure described above continues until the second magnetic surface 19 of the extruded portion 38 comes into contact with the side surface 17 and the exposed surface 36.
 そして、被押出部分38の第2磁性面19が、側面17と露出面36とに接触することにより、図1Cに示すように、複数の配線部4間を充填する磁性層21が形成(成型)される。 Then, the second magnetic surface 19 of the extruded portion 38 comes into contact with the side surface 17 and the exposed surface 36, thereby forming (molding) a magnetic layer 21 that fills the space between the plurality of wiring portions 4 as shown in FIG. 1C. )
 なお、この熱プレスによって、第2層32では、重複部分34は、熱プレス前に比べて薄くなり、非重複部分35は、熱プレス前に比べて厚くなる。 Note that, by this heat pressing, in the second layer 32, the overlapping portion 34 becomes thinner than before the hot pressing, and the non-overlapping portion 35 becomes thicker than before the hot pressing.
 一方、第1層31および第3層33では、重複部分34および非重複部分35のいずれにおいても、熱プレスの前後において、実質的に変動しない。他方、第1層31は、第2層32の変形に伴って、第1方向に伸長する。 On the other hand, in the first layer 31 and the third layer 33, the overlapping portion 34 and the non-overlapping portion 35 are not substantially changed before and after the hot pressing. On the other hand, the first layer 31 extends in the first direction as the second layer 32 is deformed.
 要するに、熱プレス後において、離型クッションシート6の第2離型面23は、磁性層21(成形後の第1磁性シート5)に対応する形状を有する。 In short, after hot pressing, the second release surface 23 of the release cushion sheet 6 has a shape corresponding to the magnetic layer 21 (the first magnetic sheet 5 after forming).
 なお、熱プレス後における磁性層21(第1磁性シート5)は、例えば、Bステージである。 The magnetic layer 21 (first magnetic sheet 5) after the hot pressing is, for example, a B stage.
 磁性層21の厚みT3は、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下である。なお、磁性層21の厚みT3は、配線部4の対向面15と、磁性層21の頂部28(後述)との厚み方向長さと定義される。 The thickness T3 of the magnetic layer 21 is, for example, 10 μm or more, preferably 30 μm or more, and, for example, 500 μm or less, preferably 300 μm or less. The thickness T3 of the magnetic layer 21 is defined as the length in the thickness direction between the facing surface 15 of the wiring portion 4 and the top portion 28 (described later) of the magnetic layer 21.
 また、磁性層21の厚みT3の、配線部4の厚みT1に対する比(第1磁性層の厚みT3/配線部4の厚みT1)は、例えば、0.3以上、好ましくは、0.4以上、より好ましくは、0.5以上であり、また、例えば、5.0以下である。比が上記した下限以上であれば、第1プレス工程において、磁性層21が隣り合う配線部4間を確実に充填することができる。 The ratio of the thickness T3 of the magnetic layer 21 to the thickness T1 of the wiring portion 4 (the thickness T3 of the first magnetic layer / the thickness T1 of the wiring portion 4) is, for example, 0.3 or more, preferably 0.4 or more. More preferably, it is 0.5 or more, for example, 5.0 or less. If the ratio is equal to or greater than the above lower limit, in the first pressing step, the magnetic layer 21 can be reliably filled between the adjacent wiring portions 4.
 これにより、第1磁性シート5から、所定形状に形成(成型)された磁性層21が得られる。これにより、配線回路基板40および磁性層21を備える磁性配線回路基板1が得られる。 Thereby, the magnetic layer 21 formed (molded) in a predetermined shape is obtained from the first magnetic sheet 5. Thereby, the magnetic wiring circuit board 1 provided with the wiring circuit board 40 and the magnetic layer 21 is obtained.
 磁性層21は、複数の配線部4間を充填し、かつ、配線部4の対向面15を被覆するように形成されている。 The magnetic layer 21 is formed so as to fill a space between the plurality of wiring parts 4 and cover the facing surface 15 of the wiring part 4.
 具体的には、磁性層21は、凸部25と、凹部26とを有する。 Specifically, the magnetic layer 21 has a convex portion 25 and a concave portion 26.
 凸部25は、複数の配線部4に対応して、複数形成されている。複数の凸部25は、複数の配線部4の対向面15に配置されている。また、複数の凸部25は、第1方向において間隔を隔てて隣り合って配置されている。複数の凸部25のそれぞれは、厚み方向一方側に向かって隆起する形状を有する。凸部25は、配線部4の対向面15に対して厚み方向一方側に間隔が隔てられる凸面27を有する。 A plurality of convex portions 25 are formed corresponding to the plurality of wiring portions 4. The plurality of convex portions 25 are arranged on the facing surfaces 15 of the plurality of wiring portions 4. Moreover, the some convex part 25 is arrange | positioned adjacently at intervals in the 1st direction. Each of the plurality of convex portions 25 has a shape that protrudes toward one side in the thickness direction. The convex portion 25 has a convex surface 27 that is spaced on one side in the thickness direction with respect to the facing surface 15 of the wiring portion 4.
 凸面27は、厚み方向に投影したときに、対向面15と重複しており、対向面15に対して厚み方向一方側に間隔が隔てられている。凸面27は、頂部28を1つのみ有する。
頂部28は、凸面27において、厚み方向最一方側に位置しており、つまり、対向面15から最も遠い部分に位置している。
The convex surface 27 overlaps the facing surface 15 when projected in the thickness direction, and is spaced from the facing surface 15 on one side in the thickness direction. The convex surface 27 has only one top portion 28.
The top portion 28 is located on the convex surface 27 on the one side in the thickness direction, that is, the portion farthest from the facing surface 15.
 凸面27は、頂部28から第1方向両側のそれぞれに向かうに従って、厚み方向他方側に緩やかに落ち(沈み)込む湾曲形状を有する。凸面27における厚み方向他方側への落ち(沈み)込みの程度は、頂部28から第2方向両側に離れるに従って、大きくなる。 The convex surface 27 has a curved shape that gradually falls (sinks) to the other side in the thickness direction as it goes from the top 28 to both sides in the first direction. The degree of dropping (sinking) of the convex surface 27 toward the other side in the thickness direction increases as the distance from the top portion 28 increases to both sides in the second direction.
 凹部26は、複数の配線部4に対応する複数の凸部25の間に位置しており、隣り合う凸部25に対して厚み方向他方側に向かって沈下する形状を有する。 The concave portion 26 is located between the plurality of convex portions 25 corresponding to the plurality of wiring portions 4 and has a shape that sinks toward the other side in the thickness direction with respect to the adjacent convex portions 25.
 凹部26の一部、具体的には、厚み方向他方側部分は、隣り合う配線部4間の隙間を充填している。すなわち、上記した凹部26の一部は、第1方向に投影したときに、配線部4と重複している。 A part of the concave portion 26, specifically, the other side portion in the thickness direction, fills a gap between the adjacent wiring portions 4. That is, a part of the recess 26 described above overlaps the wiring part 4 when projected in the first direction.
 一方、凹部26の残部、具体的には、厚み方向一方側部分は、第1方向に投影したときに、配線部4と重複せず、詳しくは、凹部26の残部の投影面は、配線部4の投影面の厚み方向一方側に配置されている。 On the other hand, the remaining portion of the concave portion 26, specifically, the one side portion in the thickness direction does not overlap with the wiring portion 4 when projected in the first direction. Specifically, the projection surface of the remaining portion of the concave portion 26 is the wiring portion. 4 is disposed on one side in the thickness direction of the projection surface.
 凹部26は、第1絶縁面3の露出面36に対して厚み方向一方側に間隔が隔てられる凹面29を有する。 The concave portion 26 has a concave surface 29 that is spaced on one side in the thickness direction with respect to the exposed surface 36 of the first insulating surface 3.
 凹面29は、凸面27の第1方向端縁に連続している。凹面29は、少なくとも露出面36と対向しており、好ましくは、露出面36および側面17の両面に対向する。凹面29は、厚み方向他方側に向かって略湾曲形状に沈下する(凹む)形状を有する。凹面29は、底部30を有する。 The concave surface 29 is continuous with the edge in the first direction of the convex surface 27. The concave surface 29 faces at least the exposed surface 36, and preferably faces both the exposed surface 36 and the side surface 17. The concave surface 29 has a shape that sinks (recesses) into a substantially curved shape toward the other side in the thickness direction. The concave surface 29 has a bottom portion 30.
 底部30は、凹面29において、隣り合う配線部4の対向面15を通過する仮想面Sに対して、厚み方向一方側に位置する。つまり、底部30は、上記した仮想面Sに対して、厚み方向一方側に間隔が隔てられている。また、底部30は、凹面29において、露出面36に対して最も近い部分に位置している。つまり、底部30は、凹面29における最底部(厚み方向最他方側に位置する部分)である。 The bottom portion 30 is located on one side in the thickness direction of the concave surface 29 with respect to the virtual surface S passing through the facing surface 15 of the adjacent wiring portion 4. That is, the bottom portion 30 is spaced from the above-described virtual surface S on one side in the thickness direction. Further, the bottom portion 30 is located on the concave surface 29 at a portion closest to the exposed surface 36. That is, the bottom portion 30 is the bottommost portion (a portion located on the other side in the thickness direction) of the concave surface 29.
 その後、必要により、磁性層21を、例えば、加熱により、Cステージ化(完全硬化)させる。具体的には、さらなる加熱、あるいは、上記したプレスを解放して、磁性配線回路基板1を加熱炉に投入する。 Thereafter, if necessary, the magnetic layer 21 is C-staged (completely cured) by, for example, heating. Specifically, further heating or the above-described press is released, and the magnetic wiring circuit board 1 is put into a heating furnace.
 これにより、Cステージ化(完全硬化)した磁性層21を調製する。 Thereby, a magnetic layer 21 having a C stage (completely cured) is prepared.
 この磁性配線回路基板1は、例えば、無線電力伝送(無線給電および/または無線受電)、無線通信、センサ、受動部品などに用いられる。 The magnetic wiring circuit board 1 is used for, for example, wireless power transmission (wireless power feeding and / or wireless power receiving), wireless communication, sensors, passive components, and the like.
 そして、この磁性配線回路基板1の製造方法によれば、図1Bに示すように、2つのプレス板20で、絶縁層2と、複数の配線部4と、第1磁性シート5と、離型クッションシート6とを熱プレスする第1プレス工程によって、磁性層21を一度に簡便に形成することができる。 And according to the manufacturing method of this magnetic wiring circuit board 1, as shown to FIG. 1B, with two press plates 20, the insulating layer 2, the some wiring part 4, the 1st magnetic sheet 5, and a mold release The magnetic layer 21 can be easily formed at a time by the first pressing step of hot pressing the cushion sheet 6.
 しかも、離型クッションシート6における第2層32の110℃における引張貯蔵弾性率E’が、第1層31の110℃における引張貯蔵弾性率E’に比べて低いので、上記した温度で第1プレス工程を実施するときに、第2層32が、第1層31に比べて、柔軟となり、そのため、第2層32が第1層31に比べて流れ易く、第1層31を介して、第1磁性シート5を複数の配線部4間に押し出すことができる。そのため、第1プレス工程において、複数の配線部4間を充填し、かつ、配線部4の対向面15を被覆する磁性層21を確実に形成することができる。 Moreover, since the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 in the release cushion sheet 6 is lower than the tensile storage elastic modulus E ′ at 110 ° C. of the first layer 31, the first layer 31 at the above-described temperature. When performing the pressing step, the second layer 32 becomes softer than the first layer 31, so that the second layer 32 flows more easily than the first layer 31, via the first layer 31, The first magnetic sheet 5 can be pushed out between the plurality of wiring parts 4. Therefore, in the first pressing step, it is possible to reliably form the magnetic layer 21 that fills the space between the plurality of wiring parts 4 and covers the facing surface 15 of the wiring part 4.
 この磁性配線回路基板1の製造方法では、第2層32の110℃における引張貯蔵弾性率E’が、20MPa以下と低ければ、第1プレス工程において、上記した温度で熱プレスするときに、第2層32が確実に流動することができる。そのため、第2層32が、第1磁性シート5を、複数の配線部4間に押し出すことができる。その結果、磁性層21で、複数の配線部4間を確実に充填することができ、高いインダクタスを有する磁性配線回路基板1を得ることができる。 In the method of manufacturing the magnetic wiring circuit board 1, if the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32 is as low as 20 MPa or less, the first pressing step is performed when the hot pressing is performed at the above-described temperature. The two layers 32 can flow reliably. Therefore, the second layer 32 can push out the first magnetic sheet 5 between the plurality of wiring parts 4. As a result, the space between the plurality of wiring portions 4 can be reliably filled with the magnetic layer 21, and the magnetic wiring circuit board 1 having high inductance can be obtained.
 この磁性配線回路基板1の製造方法では、第2層32の厚みT2の、配線部4の厚みT1に対する比が、0.5以上と高ければ、第1プレス工程において、磁性層21の厚みT3を、配線部4の厚みT1の半分以上の厚みに設定することができる。そのため、配線部4の厚みT1の半分を超える厚みT2を有する第2層32によって、配線部4の対向面15における第1磁性シート5を柔軟に熱プレスすることができ、そのため、かかる部分に対応する磁性層21の厚みを十分に確保することができる。その結果、磁性層21により、配線部4の対向面15を確実に被覆することができる。 In this method of manufacturing the magnetic wired circuit board 1, if the ratio of the thickness T2 of the second layer 32 to the thickness T1 of the wiring part 4 is as high as 0.5 or more, the thickness T3 of the magnetic layer 21 in the first pressing step. Can be set to a thickness of half or more of the thickness T1 of the wiring portion 4. Therefore, the second magnetic layer 32 having a thickness T2 that is more than half the thickness T1 of the wiring portion 4 can flexibly heat press the first magnetic sheet 5 on the facing surface 15 of the wiring portion 4, and therefore, in this portion A sufficient thickness of the corresponding magnetic layer 21 can be ensured. As a result, the facing surface 15 of the wiring part 4 can be reliably covered with the magnetic layer 21.
 この磁性配線回路基板1の製造方法では、離型クッションシート6は、第2層32の110℃における引張貯蔵弾性率E’より高い引張貯蔵弾性率E’を有する第3層33をさらに備えるので、上記した温度で第1プレス工程を実施するときに、硬い第3層33によって、離型クッションシート6の厚み方向一方側への変形を抑制することができる。そのため、第1プレス工程を確実に実施することができる。 In the method for manufacturing the magnetic wiring circuit board 1, the release cushion sheet 6 further includes the third layer 33 having a tensile storage elastic modulus E ′ higher than the tensile storage elastic modulus E ′ at 110 ° C. of the second layer 32. When the first pressing step is performed at the above-described temperature, the hard third layer 33 can suppress deformation of the release cushion sheet 6 in the thickness direction on one side. Therefore, the first pressing process can be performed reliably.
 この磁性配線回路基板1の製造方法では、磁性層21の厚みT3の、配線部4の厚みT1に対する比が、0.5以上と高く、つまり、磁性層21の厚みT3を、配線部4の厚みT1の半分以上の厚みに設定することができる。そのため、配線部4に対して比較的厚い磁性層21を、複数の配線部4間を確実に充填しながら、形成することができる。その結果、配線部4間の実効透磁率を向上させることができ、高いインダクタスを有する磁性配線回路基板1を得ることができる。 In this method of manufacturing the magnetic wired circuit board 1, the ratio of the thickness T 3 of the magnetic layer 21 to the thickness T 1 of the wiring portion 4 is as high as 0.5 or more, that is, the thickness T 3 of the magnetic layer 21 is The thickness can be set to half or more of the thickness T1. Therefore, it is possible to form the relatively thick magnetic layer 21 with respect to the wiring portion 4 while reliably filling the space between the plurality of wiring portions 4. As a result, the effective magnetic permeability between the wiring portions 4 can be improved, and the magnetic wired circuit board 1 having high inductance can be obtained.
 また、この磁性配線回路基板1では、凸部25が頂部28を1つのみ有し、かつ、凹部26が、厚み方向他方側に向かって湾曲形状に凹む形状を有し、かつ、隣り合う配線部4の対向面15を通過する仮想面Sに対して、厚み方向一方側に位置する底部30を有するので、上記した凸部25および凹部26を滑らかに通過する磁路によって、配線部4の周囲の実効透磁率を向上させることができる。 Moreover, in this magnetic wiring circuit board 1, the convex part 25 has only one top part 28, and the recessed part 26 has a shape dented in a curved shape toward the thickness direction other side, and adjacent wiring Since it has the bottom part 30 located in the thickness direction one side with respect to the virtual surface S which passes the opposing surface 15 of the part 4, the above-mentioned convex part 25 and the magnetic path which passes smoothly through the concave part 26 of the wiring part 4 are provided. The surrounding effective magnetic permeability can be improved.
 具体的には、図3に示すように、磁性粒子48は、凸部25では、第1方向、あるいは、頂部28から厚み方向他方側に向かって落ちるように緩やかに湾曲する方向に沿って配向され、凹部26における底部30では、第1方向、あるいは、隣接する2つの凸部25に向かって厚み方向一方側に向かって駆け上がるように緩やかに湾曲する方向に沿って配向され、また、凹部26において、2つの配線部4の周側面17間では、周側面17に沿い、また、露出面36を被覆する部分では、露出面36(第1方向)に沿って配向されている。従って、この磁性層21では、凸部25および凹部26に沿う滑らかな磁路が形成される。 Specifically, as shown in FIG. 3, the magnetic particles 48 are oriented in the first direction or along the direction in which the convex portions 25 gently curve so as to fall from the top 28 toward the other side in the thickness direction. The bottom portion 30 of the concave portion 26 is oriented along the first direction or a direction that gently curves so as to run toward one side in the thickness direction toward the two adjacent convex portions 25, and the concave portion 26, the two wiring parts 4 are oriented along the peripheral surface 17 between the peripheral side surfaces 17 and along the exposed surface 36 (first direction) in the portion covering the exposed surface 36. Therefore, in this magnetic layer 21, a smooth magnetic path along the convex portion 25 and the concave portion 26 is formed.
 その結果、この磁性配線回路基板1は、高いインダクタスを有する。 As a result, the magnetic wiring circuit board 1 has high inductance.
 <変形例>
 以下の各変形例において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、第1実施形態と同様の作用効果を奏することができる。
<Modification>
In the following modified examples, the same members and steps as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. Moreover, each modification can have the same effects as those of the first embodiment, unless otherwise specified.
 図1Aに示すように、第1実施形態では、離型クッションシート6は、第3層33を備えるが、例えば、図示しないが、第3層33を備えず、第1層31および第2層32のみなることができる。この場合には、好ましくは、離型クッションシート6は、第1層31および第2層32のみからなる。 As shown in FIG. 1A, in the first embodiment, the release cushion sheet 6 includes the third layer 33. For example, although not illustrated, the release cushion sheet 6 does not include the third layer 33, and includes the first layer 31 and the second layer. There can only be 32. In this case, preferably, the release cushion sheet 6 includes only the first layer 31 and the second layer 32.
 第1実施形態および上記した変形例のうち、第1実施形態が好適である。第1実施形態では、図1Aに示すように、離型クッションシート6が第3層33を備えるので、図1Bに示すように、110℃で第1プレス工程を実施するときに、硬い第3層33によって、離型クッションシート6の厚み方向一方側への変形を抑制することができる。そのため、第1プレス工程を確実に実施することができる。 Of the first embodiment and the above-described modifications, the first embodiment is preferable. In the first embodiment, as shown in FIG. 1A, the release cushion sheet 6 includes the third layer 33. Therefore, as shown in FIG. 1B, when the first pressing step is performed at 110 ° C., the hard third By the layer 33, the deformation | transformation to the thickness direction one side of the release cushion sheet 6 can be suppressed. Therefore, the first pressing process can be performed reliably.
 図1Aに示すように、第1実施形態では、離型クッションシート6では、第1層31、第2層32および第3層33のうち、互いに隣接する層が接触している。しかし、変形例では、図示しないが、これらのうち、厚み方向に隣接する層は、互いに間隔が隔てられ、別々に準備されていてもよい。 As shown in FIG. 1A, in the first embodiment, in the release cushion sheet 6, adjacent layers among the first layer 31, the second layer 32, and the third layer 33 are in contact with each other. However, in the modified example, although not shown in the drawings, the layers adjacent to each other in the thickness direction are spaced apart from each other and may be prepared separately.
 例えば、図示しないが、第2プレス板11および離型クッションシート6の間に、別の離型シートを介在させることもできる。離型シート(図示せず)は、例えば、離型クッションシート6における第2層32より硬い。 For example, although not shown, another release sheet may be interposed between the second press plate 11 and the release cushion sheet 6. The release sheet (not shown) is harder than the second layer 32 in the release cushion sheet 6, for example.
 離型クッションシート6は、厚み方向に複数積層して用いることもできる。 A plurality of release cushion sheets 6 can be stacked in the thickness direction.
 図1Cの仮想線で示すように、なお、磁性配線回路基板1は、絶縁層2の厚み方向他方面に配置される第3磁性層37を備えることもできる。 1C, the magnetic wired circuit board 1 can also include a third magnetic layer 37 disposed on the other surface of the insulating layer 2 in the thickness direction.
 さらに、絶縁層2は、磁性粒子を含有する磁性絶縁層であってもよい。 Furthermore, the insulating layer 2 may be a magnetic insulating layer containing magnetic particles.
 また、第1実施形態では、磁性層21は、単層であるが、図示しないが、複層であってもよい。この場合には、複数の第1磁性シート5を、複数の配線部4および離型クッションシート6で挟み込み、一度の第1プレス工程で、複数の第1磁性シート5を熱プレスして、磁性層21を形成する。この変形例において、挟み込み工程における複数の第1磁性シート5の厚みの合計T3は、第1実施形態における単層の磁性層21の厚みT3と同一である。 Further, in the first embodiment, the magnetic layer 21 is a single layer, but although not shown, it may be a multilayer. In this case, the plurality of first magnetic sheets 5 are sandwiched between the plurality of wiring portions 4 and the release cushion sheet 6, and the plurality of first magnetic sheets 5 are hot-pressed in a single first pressing step so as to be magnetic. Layer 21 is formed. In this modification, the total thickness T3 of the plurality of first magnetic sheets 5 in the sandwiching step is the same as the thickness T3 of the single magnetic layer 21 in the first embodiment.
 また、磁性層21における磁性粒子48の割合は、磁性層21において一様でもよく、また、各配線部4から離れるに従って、高くなってもよく、あるいは、低くなってもよい。 Further, the ratio of the magnetic particles 48 in the magnetic layer 21 may be uniform in the magnetic layer 21, and may increase or decrease as the distance from each wiring portion 4 increases.
 <第2実施形態>
 以下の第2実施形態において、上記した第1実施形態およびその変形例と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第2実施形態を、第1実施形態およびその変形例とを適宜組み合わせることができる。さらに、第2実施形態は、特記する以外、第1実施形態およびその変形例と同様の作用効果を奏することができる。
Second Embodiment
In the following second embodiment, the same members and steps as those of the first embodiment and the modifications thereof are denoted by the same reference numerals, and detailed description thereof is omitted. In addition, the second embodiment can be appropriately combined with the first embodiment and its modifications. Further, the second embodiment can achieve the same effects as those of the first embodiment and its modifications, unless otherwise specified.
 第1実施形態では、図1A~図1Bに示すように、1度の第1プレス工程で、第1磁性シート5から磁性層21を形成している。 In the first embodiment, as shown in FIGS. 1A to 1B, the magnetic layer 21 is formed from the first magnetic sheet 5 in one first pressing step.
 第2実施形態では、図4A~図5Eに示すように、第1磁性シート5を熱プレスする第1プレス工程に加え、第2磁性シート45を熱プレスする第2プレス工程を備える。つまり、第2実施形態では、2度のプレス工程で、磁性層21を形成する。 In the second embodiment, as shown in FIG. 4A to FIG. 5E, in addition to the first press step of hot pressing the first magnetic sheet 5, a second press step of hot pressing the second magnetic sheet 45 is provided. That is, in the second embodiment, the magnetic layer 21 is formed by two pressing processes.
 図5Cに示すように、第1磁性層41の厚みT3は、配線部4の厚みT1に比べて薄いことが許容され、具体的には、例えば、100μm以下、さらには、80μm以下、さらには、60μm以下であり、また、例えば、5μm以上である。第1磁性層41の厚みT3の、配線部4の厚みT1に対する比が、例えば、0.5未満、さらには、0.3以下であり、また、例えば、0.05以上である。 As shown in FIG. 5C, the thickness T3 of the first magnetic layer 41 is allowed to be thinner than the thickness T1 of the wiring part 4, and specifically, for example, 100 μm or less, further 80 μm or less, , 60 μm or less, and for example, 5 μm or more. The ratio of the thickness T3 of the first magnetic layer 41 to the thickness T1 of the wiring portion 4 is, for example, less than 0.5, further 0.3 or less, and for example, 0.05 or more.
 また、第1プレス工程において、第1磁性シート5(磁性組成物)における磁性粒子48の含有割合は、第1実施形態のそれに比べて低く設定することができ、例えば、60容積%未満、好ましくは、55容積%未満、より好ましくは、50容積%以下であり、また、例えば、15容積%以上である。第1磁性シート5における磁性粒子48の含有割合が上記した上限を下回れば、柔軟な第1磁性シート5が、第1プレス工程における熱プレスによって、容易に変形して、側面17および露出面36に確実に接触することができる。
なお、樹脂の含有割合は、上記した磁性粒子48の含有割合の残部である。
In the first pressing step, the content ratio of the magnetic particles 48 in the first magnetic sheet 5 (magnetic composition) can be set lower than that in the first embodiment, for example, less than 60% by volume, preferably Is less than 55% by volume, more preferably 50% by volume or less, and for example, 15% by volume or more. If the content ratio of the magnetic particles 48 in the first magnetic sheet 5 is lower than the upper limit described above, the flexible first magnetic sheet 5 is easily deformed by the hot pressing in the first pressing step, and the side surface 17 and the exposed surface 36. Can be reliably contacted.
The resin content is the balance of the magnetic particles 48 described above.
 第1プレス工程では、図4A~図5Aに示すように、第1磁性シート5から、上記した形状を有する第1磁性層41を形成(成型)する。なお、この第1磁性層41は、好ましくは、まだBステージである。 In the first pressing step, as shown in FIGS. 4A to 5A, the first magnetic layer 41 having the above-described shape is formed (molded) from the first magnetic sheet 5. The first magnetic layer 41 is preferably still a B stage.
 なお、図4Bおよび図5Cに示すように、第1プレス工程では、配線回路基板40(絶縁層2および配線部4)と、第1磁性層41とを備える第1の磁性配線回路基板51が製造される。この第2実施形態では、第1の磁性配線回路基板51は、例えば、底部30が仮想面Sと同一位置またはそれより厚み方向他方側に位置する場合(後述)する場合には、第2実施形態で得られる第2の磁性配線回路基板52(後述)(製品)(図5E参照)を製造するための中間部品であって、第1磁性層41を備える一方、第2磁性層42(後述)(図5E参照)をまだ備えない。 As shown in FIGS. 4B and 5C, in the first pressing step, the first magnetic wiring circuit board 51 including the wiring circuit board 40 (the insulating layer 2 and the wiring portion 4) and the first magnetic layer 41 is provided. Manufactured. In the second embodiment, the first magnetic wiring circuit board 51 is, for example, in the case where the bottom 30 is located at the same position as the virtual plane S or on the other side in the thickness direction (described later). It is an intermediate part for manufacturing a second magnetic wiring circuit board 52 (described later) (product) (see FIG. 5E) obtained in the form, and includes a first magnetic layer 41 while a second magnetic layer 42 (described later). ) (See FIG. 5E).
 図5Cに示すように、なお、第1磁性シート5が上記したように薄ければ、この第1磁性層41は、隣り合う配線部4間の隙間の厚み方向他方側部分のみを充填し(つまり、厚み方向一方側部分を充填せず)、また、底部30が仮想面Sと同一位置またはそれより厚み方向他方側に位置することが許容される。 As shown in FIG. 5C, if the first magnetic sheet 5 is thin as described above, the first magnetic layer 41 fills only the other side portion in the thickness direction of the gap between the adjacent wiring portions 4 ( In other words, the bottom portion 30 is allowed to be located at the same position as the virtual plane S or at the other side in the thickness direction.
 図5Dに示すように、第2プレス工程を、第1プレス工程の後に実施する。 As shown in FIG. 5D, the second pressing step is performed after the first pressing step.
 具体的には、まず、第1プレス工程における熱プレスを解除(開放)し、続いて、第2プレス板11を、離型クッションシート6から離間させる。すなわち、離型クッションシート6を磁性層21から離型する。換言すれば、離型クッションシート6を第1磁性層41の一方面から引き離す。その後、この離型クッションシート6をは、第1磁性層41および第2プレス板11の間から取り出す(引き抜く)。 Specifically, first, the heat press in the first pressing step is released (opened), and then the second press plate 11 is separated from the release cushion sheet 6. That is, the release cushion sheet 6 is released from the magnetic layer 21. In other words, the release cushion sheet 6 is pulled away from one surface of the first magnetic layer 41. Thereafter, the release cushion sheet 6 is taken out (pulled out) between the first magnetic layer 41 and the second press plate 11.
 別途、離型クッションシート6(上記したように、取り出された(引き抜かれた)離型クッションシート6とは異なる離型クッションシート6)を準備する。 Separately, a release cushion sheet 6 (as described above, a release cushion sheet 6 different from the removed (pulled out) release cushion sheet 6) is prepared.
 併せて、第2磁性シート45を準備する。 In addition, a second magnetic sheet 45 is prepared.
 第2磁性シート45の材料および物性は、第1磁性シート5のそれらと同様である。 The material and physical properties of the second magnetic sheet 45 are the same as those of the first magnetic sheet 5.
 とりわけ、第2磁性層42における磁性粒子48の含有割合は、第1磁性シート5における磁性粒子48の含有割合に比べて、例えば、高く設定することができる。第2磁性層42における磁性粒子48の含有割合の、第1磁性シート5における磁性粒子48の含有割合に対する比は、例えば、1超過、好ましくは、1.1以上、好ましくは、1.15以上であり、また、例えば、2以下、好ましくは、1.5以下である。 In particular, the content ratio of the magnetic particles 48 in the second magnetic layer 42 can be set higher than the content ratio of the magnetic particles 48 in the first magnetic sheet 5, for example. The ratio of the content ratio of the magnetic particles 48 in the second magnetic layer 42 to the content ratio of the magnetic particles 48 in the first magnetic sheet 5 is, for example, more than 1, preferably 1.1 or more, preferably 1.15 or more. Also, for example, 2 or less, preferably 1.5 or less.
 具体的には、第2磁性シート45における磁性粒子48の含有割合は、例えば、50容積%超過、好ましくは、55容積%以上、より好ましくは、60容積%以上であり、例えば、90容積%以下である。第2磁性シート45における磁性粒子48の含有割合が上記した下限を上回れば、高い含有割合で磁性粒子48を含有する第2磁性層42によって、磁性配線回路基板1のインダクタンスを向上させることができる。 Specifically, the content ratio of the magnetic particles 48 in the second magnetic sheet 45 is, for example, more than 50% by volume, preferably 55% by volume or more, more preferably 60% by volume or more, for example, 90% by volume. It is as follows. If the content ratio of the magnetic particles 48 in the second magnetic sheet 45 exceeds the lower limit, the inductance of the magnetic wiring circuit board 1 can be improved by the second magnetic layer 42 containing the magnetic particles 48 at a high content ratio. .
 続いて、第2プレス工程では、2つのプレス板20で、第1の磁性配線回路基板51と、第2磁性シート45と、離型クッションシート6とを熱プレスする。 Subsequently, in the second pressing step, the first magnetic wiring circuit board 51, the second magnetic sheet 45, and the release cushion sheet 6 are hot-pressed by the two press plates 20.
 まず、第2磁性シート45および離型クッションシート6を、順に、第1の磁性配線回路基板51における第1磁性層41の一方面に配置する。具体的には、第2磁性シート45および離型クッションシート6を、第1磁性層41と第2プレス板11との間に配置(挿入)する。 First, the second magnetic sheet 45 and the release cushion sheet 6 are sequentially arranged on one surface of the first magnetic layer 41 in the first magnetic wiring circuit board 51. Specifically, the second magnetic sheet 45 and the release cushion sheet 6 are disposed (inserted) between the first magnetic layer 41 and the second press plate 11.
 その後、2つのプレス板20で、第1の磁性配線回路基板51と、第2磁性シート45と、離型クッションシート6とを熱プレスする。第2プレス工程の条件は、第1プレス工程の条件と同様である。 Thereafter, the first magnetic wiring circuit board 51, the second magnetic sheet 45, and the release cushion sheet 6 are hot-pressed by the two press plates 20. The conditions for the second pressing step are the same as the conditions for the first pressing step.
 これにより、第2磁性層42を、第1の磁性配線回路基板51における第1磁性層41の厚み方向一方面に、第2磁性シート45から形成(成型)する。この第2磁性層42は、例えば、Bステージである。これにより、第1磁性層41および第2磁性層42を厚み方向一方側に順に向かって備える磁性層21を得る。磁性層21は、好ましくは、第1磁性層41および第2磁性層42のみから形成される。 Thereby, the second magnetic layer 42 is formed (molded) from the second magnetic sheet 45 on one surface in the thickness direction of the first magnetic layer 41 in the first magnetic wiring circuit board 51. The second magnetic layer 42 is, for example, a B stage. Thereby, the magnetic layer 21 provided with the first magnetic layer 41 and the second magnetic layer 42 sequentially toward one side in the thickness direction is obtained. The magnetic layer 21 is preferably formed only from the first magnetic layer 41 and the second magnetic layer 42.
 第2磁性層42の厚みT4は、例えば、第1磁性層41の厚みT3および第2磁性層42の厚みT4の合計(T3+T4)の、配線部4の厚みT1に対する比が、0.5以上、好ましくは、0.6以上、また、例えば、5.0以下、好ましくは、3.0以下となるように、設定される。第2磁性層42の厚みT4の、第1磁性層41の厚みT3に対する比(T4/T3)は、例えば、1.5以上、好ましくは、2.0以上であり、また、例えば、40以下、好ましくは、30以下である。具体的には、第2磁性層42の厚みT4は、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、450μm以下、好ましくは、250μm以下である。 Regarding the thickness T4 of the second magnetic layer 42, for example, the ratio of the total (T3 + T4) of the thickness T3 of the first magnetic layer 41 and the thickness T4 of the second magnetic layer 42 to the thickness T1 of the wiring part 4 is 0.5 or more. Preferably, it is set to 0.6 or more, and for example, 5.0 or less, preferably 3.0 or less. The ratio (T4 / T3) of the thickness T4 of the second magnetic layer 42 to the thickness T3 of the first magnetic layer 41 is, for example, 1.5 or more, preferably 2.0 or more, and, for example, 40 or less. , Preferably, it is 30 or less. Specifically, the thickness T4 of the second magnetic layer 42 is, for example, 10 μm or more, preferably 20 μm or more, and, for example, 450 μm or less, preferably 250 μm or less.
 これにより、配線回路基板40と、磁性層21とを備える第2の磁性配線回路基板52を得る。なお、第2の磁性配線回路基板52は、第1の磁性配線回路基板51と、第2磁性層42とを備える。 Thereby, the second magnetic wiring circuit board 52 including the wiring circuit board 40 and the magnetic layer 21 is obtained. The second magnetic wiring circuit board 52 includes a first magnetic wiring circuit board 51 and a second magnetic layer 42.
 その後、必要により、第1磁性層41および第2磁性層42がBステージであれば、第1磁性層41および第2磁性層42をCステージ化(完全硬化)させる。 Then, if necessary, if the first magnetic layer 41 and the second magnetic layer 42 are the B stage, the first magnetic layer 41 and the second magnetic layer 42 are C-staged (completely cured).
 そして、この第2の磁性配線回路基板52の製造方法は、図5Dに示すように、第2プレス工程をさらに備えるので、第1磁性層41および第2磁性層42を備える(から形成される)、厚い磁性層21を確実に形成することができる。そのため、配線部4間の透磁率を向上させることができ、高いインダクタスを有する第2の磁性配線回路基板52を得ることができる。 Then, as shown in FIG. 5D, the manufacturing method of the second magnetic wiring circuit board 52 further includes the second pressing step, and therefore includes the first magnetic layer 41 and the second magnetic layer 42. ), The thick magnetic layer 21 can be reliably formed. Therefore, the magnetic permeability between the wiring portions 4 can be improved, and the second magnetic wiring circuit board 52 having high inductance can be obtained.
 また、第1磁性層41の厚みT3の、配線部4の厚みT1に対する比が、0.5未満と低ければ、図5Cに示すように、第1磁性層41が薄くなり易く、そのため、複数の配線部4間を第1磁性層41で充填することが困難になり易い。 If the ratio of the thickness T3 of the first magnetic layer 41 to the thickness T1 of the wiring portion 4 is as low as less than 0.5, the first magnetic layer 41 is likely to be thin as shown in FIG. It is difficult to fill the space between the wiring portions 4 with the first magnetic layer 41.
 しかし、この第2の磁性配線回路基板52の製造方法において、第1磁性層41の厚みT3および第2磁性層の厚みT4の合計の、配線部4の厚みT1に対する比が、0.5以上と高ければ、第1磁性層21および第2磁性層21を備える厚い磁性層21で、複数の配線部4間を確実に充填することができる。その結果、高いインダクタスを有する第2の磁性配線回路基板52を得ることができる。 However, in the method for manufacturing the second magnetic wiring circuit board 52, the ratio of the total thickness T3 of the first magnetic layer 41 and the thickness T4 of the second magnetic layer to the thickness T1 of the wiring portion 4 is 0.5 or more. If it is high, the space between the plurality of wiring portions 4 can be reliably filled with the thick magnetic layer 21 including the first magnetic layer 21 and the second magnetic layer 21. As a result, the second magnetic wiring circuit board 52 having high inductance can be obtained.
 この第2の磁性配線回路基板52の製造方法によれば、第1磁性シート5における磁性粒子48の含有割合が、第2磁性シート45における磁性粒子48の含有割合に比べて、低ければ、第2磁性シート45に比べて柔軟な第1磁性シート5を、確実に、複数の配線部4間に配置し、続いて、第1磁性シート5に比べて剛直な第2磁性シート45であっても、それを、すでに複数の配線部4間に配置された第1磁性層41に配置することによって、複数の配線部4間を、第1磁性層41および第2磁性層42を備える磁性層21によって、充填することができる。 According to the method of manufacturing the second magnetic wiring circuit board 52, if the content ratio of the magnetic particles 48 in the first magnetic sheet 5 is lower than the content ratio of the magnetic particles 48 in the second magnetic sheet 45, The first magnetic sheet 5 that is more flexible than the second magnetic sheet 45 is surely disposed between the plurality of wiring parts 4, and then the second magnetic sheet 45 is more rigid than the first magnetic sheet 5. However, the magnetic layer including the first magnetic layer 41 and the second magnetic layer 42 is disposed between the plurality of wiring portions 4 by arranging the first magnetic layer 41 between the plurality of wiring portions 4. 21 can be filled.
 さらに、第1磁性シート5における磁性粒子48の含有割合に比べて高い含有割合で磁性粒子48を含有する第2磁性シートから形成される第2磁性層21によって、第2の磁性配線回路基板52のインダクタンスを向上させることができる。 Furthermore, the second magnetic wiring circuit board 52 is formed by the second magnetic layer 21 formed from the second magnetic sheet containing the magnetic particles 48 at a higher content ratio than the content ratio of the magnetic particles 48 in the first magnetic sheet 5. Inductance can be improved.
 <変形例>
 以下の各変形例において、上記した第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例を適宜組み合わせることができる。さらに、各変形例は、特記する以外、第2実施形態と同様の作用効果を奏することができる。
<Modification>
In the following modifications, members and processes similar to those of the second embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. Moreover, each modification can be combined suitably. Furthermore, each modification can have the same effects as those of the second embodiment, unless otherwise specified.
 第1プレス工程で用いた離型クッションシート6を取り出し、別の離型クッションシート6を配置して第2プレス工程の熱プレスに供した。しかし、共通の離型クッションシート6で、第1プレス工程および第2プレス工程で用いることもできる。つまり、第1プレス工程で用いた離型クッションシート6を第2プレス工程で再利用することができる。 The mold release cushion sheet 6 used in the first press process was taken out, and another mold release cushion sheet 6 was arranged and used for the hot press in the second press process. However, the common release cushion sheet 6 can be used in the first press process and the second press process. That is, the release cushion sheet 6 used in the first pressing process can be reused in the second pressing process.
 さらに、第2実施形態では、第2磁性シート45は、単層であるが、変形例では、複層であってもよい。好ましくは、3層以上であり、また、10層以下である。 Furthermore, in the second embodiment, the second magnetic sheet 45 is a single layer, but in a modification, it may be a multilayer. Preferably, it is 3 layers or more and 10 layers or less.
 また、第2プレス工程を複数回実施することもできる。例えば、図示しないが、第2プレス工程を2回実施する場合には、合計3回のプレス工程によって、磁性層21を形成する。この場合には、第1磁性シート5を熱プレスする第1プレス工程(1回目のプレス工程)によって、第1磁性層41を形成し、続いて、第2磁性シート45を第1磁性層41に対して熱プレスする第2プレス工程(2回目のプレス工程)によって、第1磁性層41および第2磁性層42を形成する。 Also, the second pressing process can be performed multiple times. For example, although not shown, when the second pressing process is performed twice, the magnetic layer 21 is formed by a total of three pressing processes. In this case, the first magnetic layer 41 is formed by a first pressing process (first pressing process) in which the first magnetic sheet 5 is hot-pressed, and then the second magnetic sheet 45 is bonded to the first magnetic layer 41. The first magnetic layer 41 and the second magnetic layer 42 are formed by a second pressing step (second pressing step) in which hot pressing is performed.
 その後、別の第2磁性シート45を準備し、これを、第2磁性層42に対して熱プレスする第2プレス工程(3回目のプレス工程)を実施する。この工程は、2回の第2プレス工程における2回目であって、別の第2磁性シート45は、1回目の第2プレス工程における第2磁性シート45とともに、本発明における「第2磁性シート」に含まれる。 Thereafter, another second magnetic sheet 45 is prepared, and a second pressing step (third pressing step) is performed on the second magnetic layer 42 by hot pressing. This step is the second time in the second press step, and the second magnetic sheet 45 is the second magnetic sheet 45 in the present invention together with the second magnetic sheet 45 in the first second press step. "include.
 また、2回目の第2プレス工程では、第2磁性層42は、別の第2磁性シート45から形成される。2回目の第2プレス工程で形成される第2磁性層42と、1回目の第2プレス工程で形成される第2磁性層42とは、ともに、本発明における「第2磁性層」に含まれる。なお、第2磁性層42の厚みT4は、すべての第2磁性層42の厚みの合計である。具体的には、上記の例では、1回目の第2プレス工程で形成される第2磁性層42の厚みと、2回目の第2プレス工程で形成される第2磁性層42との合計厚みが、第2磁性層42の厚みT4である。 Further, in the second second pressing step, the second magnetic layer 42 is formed from another second magnetic sheet 45. The second magnetic layer 42 formed in the second second pressing step and the second magnetic layer 42 formed in the first second pressing step are both included in the “second magnetic layer” in the present invention. It is. The thickness T4 of the second magnetic layer 42 is the total thickness of all the second magnetic layers 42. Specifically, in the above example, the total thickness of the second magnetic layer 42 formed in the first second pressing step and the second magnetic layer 42 formed in the second second pressing step. Is the thickness T4 of the second magnetic layer 42.
 第1実施形態および第2実施形態では、配線部4は、断面視四辺形状を有するが、この変形例では、図6Cおよび図7に示すように、断面視略円形状を有する。 In the first embodiment and the second embodiment, the wiring portion 4 has a quadrilateral shape in cross section, but in this modification, as shown in FIGS. 6C and 7, it has a substantially circular shape in cross section.
 配線部4は、導線43と、それを被覆する第2絶縁層44とを備える。 The wiring unit 4 includes a conductive wire 43 and a second insulating layer 44 that covers the conductive wire 43.
 導線43は、配線部4と中心軸線を共有する断面視略円形状を有する。 The conducting wire 43 has a substantially circular shape in cross-sectional view sharing the central axis with the wiring portion 4.
 第2絶縁層44は、絶縁層2とは別の絶縁層である。第2絶縁層44は、導線43の外周面(円周面)全面を被覆しており、配線部4と中心軸線(中心)を共有する断面視略円環形状を有する。 The second insulating layer 44 is an insulating layer different from the insulating layer 2. The second insulating layer 44 covers the entire outer peripheral surface (circumferential surface) of the conducting wire 43 and has a substantially annular shape in cross-sectional view sharing the central axis (center) with the wiring portion 4.
 第2絶縁層44の材料は、絶縁層2の材料と同様である。第2絶縁層44は、単層から構成されていてもよく、複数の層から構成されていてもよい。 The material of the second insulating layer 44 is the same as the material of the insulating layer 2. The second insulating layer 44 may be composed of a single layer or may be composed of a plurality of layers.
 配線部4の直径Dは、上記した厚みT1に相当する。なお、第2絶縁層44の厚みの、配線部4の直径Dに対する比は、例えば、0.005以上、0.1以下である。 The diameter D of the wiring part 4 corresponds to the above-described thickness T1. The ratio of the thickness of the second insulating layer 44 to the diameter D of the wiring part 4 is, for example, 0.005 or more and 0.1 or less.
 この変形例の製造方法において、図6Aに示すように、挟み込み工程では、まず、複数の配線部4を、絶縁層2の第1絶縁面3に配置する。具体的には、配線部4の厚み方向他端縁を第1絶縁面3に接触させる。 In the manufacturing method of this modified example, as shown in FIG. 6A, in the sandwiching step, first, a plurality of wiring portions 4 are arranged on the first insulating surface 3 of the insulating layer 2. Specifically, the other end in the thickness direction of the wiring portion 4 is brought into contact with the first insulating surface 3.
 第1プレス工程では、図6Bに示すように、第1磁性シート5の第2磁性面19が、配線部4の第1半円弧46(配線部4の厚み方向他端縁を包含し、厚み方向他方側に位置する半円弧)に接触する。但し、第2磁性面19は、配線部4において第1絶縁面3に接触する厚み方向他端縁には接触しない。 In the first pressing step, as shown in FIG. 6B, the second magnetic surface 19 of the first magnetic sheet 5 includes the first semicircular arc 46 of the wiring portion 4 (the other end edge in the thickness direction of the wiring portion 4). A semicircular arc located on the other side of the direction). However, the second magnetic surface 19 does not contact the other edge in the thickness direction that contacts the first insulating surface 3 in the wiring portion 4.
 また、第1プレス工程を実施すれば、複数の配線部4間を充填する凹部26と、配線部4の第2半円弧47(第1半円弧46の厚み方向一方側に連続しており、配線部4の厚み方向他端縁を包含し、厚み方向一方側に位置する半円弧)に追従する凸部25とを有する磁性層21が形成(成型)される。 Further, if the first pressing step is performed, the recess 26 that fills the space between the plurality of wiring parts 4 and the second semicircular arc 47 of the wiring part 4 (continuous on one side in the thickness direction of the first semicircular arc 46, A magnetic layer 21 is formed (molded) having a convex portion 25 that includes the other edge in the thickness direction of the wiring portion 4 and follows a semicircular arc located on one side in the thickness direction.
 図7に示すように、磁性粒子48は、配線部4の周辺領域(近傍領域)では、磁性粒子48が配線部4の円周方向に沿って配向されており、これにより、配線部4の円周方向に沿う略円環状の磁路が形成される。 As shown in FIG. 7, in the magnetic particles 48, the magnetic particles 48 are oriented along the circumferential direction of the wiring portion 4 in the peripheral region (near region) of the wiring portion 4. A substantially annular magnetic path along the circumferential direction is formed.
 また、上記した変形例では、図6Aに示すように、配線部4を絶縁層2に配置し、その後、図6Cおよび図7に示すように、絶縁層2を備える磁性配線回路基板1を得ているが、例えば、図示しないが、配線部4を、絶縁層2の一例として第2離型フィルムに配置し、続いて、第1磁性シート5を、配線部4を被覆するように、第2離型フィルムの厚み方向一方面に配置し、その後、第2離型フィルムを、第1磁性シート5および配線部4から剥離することができる。 Further, in the above-described modification example, as shown in FIG. 6A, the wiring portion 4 is arranged in the insulating layer 2, and thereafter, as shown in FIGS. 6C and 7, the magnetic wired circuit board 1 including the insulating layer 2 is obtained. However, although not shown, for example, the wiring part 4 is disposed on the second release film as an example of the insulating layer 2, and then the first magnetic sheet 5 is coated so as to cover the wiring part 4. It arrange | positions to the thickness direction one surface of 2 mold release films, and can peel a 2nd mold release film from the 1st magnetic sheet 5 and the wiring part 4 after that.
 第2離型フィルムは、例えば、面方向に延びるシート形状を有しており、具体的には、厚み方向に対向する一方面および他方面を有する。第2離型フィルムの材料としては、特に限定されず、例えば、PETなどの樹脂が挙げられる。第2離型フィルムの一方面は、公知の剥離処理が施されていてもよい。第2離型フィルムの厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2000μm以下、好ましくは、500μm以下である。 The second release film has, for example, a sheet shape extending in the surface direction, and specifically has one surface and the other surface facing in the thickness direction. It does not specifically limit as a material of a 2nd mold release film, For example, resin, such as PET, is mentioned. One surface of the second release film may be subjected to a known peeling treatment. The thickness of the second release film is, for example, 1 μm or more, preferably 10 μm or more, and for example, 2000 μm or less, preferably 500 μm or less.
 この変形例で得られる磁性配線回路基板1は、複数の配線部4と、磁性層21(第1磁性シート5)と備え、第2離型フィルムを備えない。 The magnetic wiring circuit board 1 obtained in this modification includes a plurality of wiring portions 4 and a magnetic layer 21 (first magnetic sheet 5), and does not include a second release film.
 図6A~図7に示す変形例では、配線部4および導線43は、断面視略円形状を有するが、これに限定されず、図示しないが、例えば、略矩形状、略台形状なども挙げられる。
この変形例において、図示しないが、第2絶縁層44は、配線部4の外周面全面を被覆する。
In the modification shown in FIGS. 6A to 7, the wiring portion 4 and the conductive wire 43 have a substantially circular shape in cross section, but are not limited thereto, and are not illustrated, but may be, for example, a substantially rectangular shape, a substantially trapezoidal shape, or the like. It is done.
In this modification, although not shown, the second insulating layer 44 covers the entire outer peripheral surface of the wiring portion 4.
 さらには、上記した磁性配線回路基板1は、配線部4の厚み方向他端縁を被覆するように、磁性層21の他方面に備えられる第3磁性層37を備えることができる。この磁性配線回路基板1では、配線部4は、第1磁性シート5および第3磁性層37からなる第1磁性シート5によって、円周面(外周面)全面が被覆される。 Furthermore, the above-described magnetic wired circuit board 1 can include the third magnetic layer 37 provided on the other surface of the magnetic layer 21 so as to cover the other end of the wiring portion 4 in the thickness direction. In the magnetic wired circuit board 1, the entire circumferential surface (outer peripheral surface) of the wiring portion 4 is covered with the first magnetic sheet 5 including the first magnetic sheet 5 and the third magnetic layer 37.
 また、第1実施形態、第2実施形態および各変形例は、適宜組み合わせることができる。 Further, the first embodiment, the second embodiment, and each modification can be combined as appropriate.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to an Example and a comparative example at all. In addition, specific numerical values such as a blending ratio (ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and a blending ratio (ratio corresponding to them). ), Physical property values, parameters, etc., can be replaced with the upper limit (numerical values defined as “below” or “less than”) or lower limit (numerical values defined as “greater than” or “exceeded”).
  実施例1
 (挟み込み工程)
 絶縁層2と、その第1絶縁面3に配置される複数の配線部4とを備える配線回路基板40を準備した。
Example 1
(Pinching process)
A printed circuit board 40 including the insulating layer 2 and a plurality of wiring portions 4 arranged on the first insulating surface 3 was prepared.
 配線回路基板40において、絶縁層2は、ポリエチレンテレフタレートからなる第1支持層12と、アクリル樹脂からなる感圧接着層13と、ポリイミド樹脂からなる第2支持層14とを、厚み方向一方側に向かって順に備える。 In the printed circuit board 40, the insulating layer 2 includes a first support layer 12 made of polyethylene terephthalate, a pressure-sensitive adhesive layer 13 made of acrylic resin, and a second support layer 14 made of polyimide resin on one side in the thickness direction. Prepare in order.
 配線回路基板40において、複数の配線部4は、銅からなり、厚みT1が100μmである。対向面15の第1方向長さが245μm、隣り合う配線部4における対向面15間の第1方向における間隔が190μmである。被支持面16の第1方向長さが336μm、隣り合う配線部4における被支持面16間の第1方向における間隔が100μmである。 In the printed circuit board 40, the plurality of wiring portions 4 are made of copper and have a thickness T1 of 100 μm. The length of the facing surface 15 in the first direction is 245 μm, and the distance in the first direction between the facing surfaces 15 in the adjacent wiring portions 4 is 190 μm. The length of the supported surface 16 in the first direction is 336 μm, and the distance in the first direction between the supported surfaces 16 of the adjacent wiring portions 4 is 100 μm.
 別途、第1磁性シート5および離型クッションシート6を準備した。 Separately, a first magnetic sheet 5 and a release cushion sheet 6 were prepared.
 第1磁性シート5は、まず、第1磁性組成物を表1の処方に従って調製し、これをシート形状に形成して、Bステージシートとして準備した。 First magnetic sheet 5 was prepared as a B-stage sheet by first preparing a first magnetic composition according to the prescription in Table 1 and forming it into a sheet shape.
 離型クッションシート6は、離型フィルムOT-A160(積水化学工業社製)をそのまま準備した。 For the release cushion sheet 6, a release film OT-A160 (manufactured by Sekisui Chemical Co., Ltd.) was prepared as it was.
 離型クッションシート6の厚みは、160μmであって、厚みが20μmの第1層31と、厚みT2が120μmの第2層32と、厚みが20μmの第3層33とを備える。 The thickness of the release cushion sheet 6 is 160 μm, and includes a first layer 31 having a thickness of 20 μm, a second layer 32 having a thickness T2 of 120 μm, and a third layer 33 having a thickness of 20 μm.
 第1層31および第3層33は、融点が223℃であり、110℃における引張貯蔵弾性率E’が190MPaであって、その材料が、ポリブチレンテレフタレートを主成分として含有する。 The first layer 31 and the third layer 33 have a melting point of 223 ° C., a tensile storage elastic modulus E ′ at 110 ° C. of 190 MPa, and the material contains polybutylene terephthalate as a main component.
 第2層32は、融点が80℃であり、110℃における引張貯蔵弾性率E’が5.6MPaであって、その材料が、エチレン-メチルメタクリレートコポリマーを主成分として含有する。 The second layer 32 has a melting point of 80 ° C., a tensile storage modulus E ′ at 110 ° C. of 5.6 MPa, and the material contains an ethylene-methyl methacrylate copolymer as a main component.
 続いて、2つのプレス板20により、配線回路基板40と、第1磁性シート5と、離型クッションシート6とを挟み込んだ。 Subsequently, the printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 were sandwiched between the two press plates 20.
 (第1プレス工程:第1の磁性配線回路基板51の製造)
 プレス圧2MPa(2kNに相当)、110℃で、60秒間のプレス条件で、2つのプレス板20を用いて、配線回路基板40と、第1磁性シート5と、離型クッションシート6とを熱プレスした。
(First pressing step: manufacture of the first magnetic wiring circuit board 51)
The printed circuit board 40, the first magnetic sheet 5, and the release cushion sheet 6 are heated using the two press plates 20 at a press pressure of 2 MPa (corresponding to 2 kN) and a press condition of 110 ° C. for 60 seconds. Pressed.
 これにより、第1磁性シート5から第1磁性層41を形成(成型)した。第1磁性層41の厚みT3は、10μmであった。これにより、配線回路基板40と、第1磁性層41とを備える第1の磁性配線回路基板51を製造した。 Thereby, the first magnetic layer 41 was formed (molded) from the first magnetic sheet 5. The thickness T3 of the first magnetic layer 41 was 10 μm. Thereby, the 1st magnetic wiring circuit board 51 provided with the wiring circuit board 40 and the 1st magnetic layer 41 was manufactured.
 (第2プレス工程:第2の磁性配線回路基板52の製造)
 まず、第1プレス工程で用いた離型クッションシート6を取り出した。
(Second press step: manufacture of second magnetic wiring circuit board 52)
First, the release cushion sheet 6 used in the first pressing step was taken out.
 別途、新たに離型クッションシート6(第1プレス工程で準備したものと同様の離型OT-A160)を準備した。 Separately, a release cushion sheet 6 (release OT-A160 similar to that prepared in the first press step) was prepared.
 第2磁性シート45は、まず、第2磁性組成物を表1の処方に従って調製し、これをシート形状に形成して、Bステージシートとして準備した。 First, the second magnetic sheet 45 was prepared as a B stage sheet by preparing a second magnetic composition according to the prescription in Table 1 and forming it into a sheet shape.
 次いで、4枚の第2磁性シート45、および、新たに準備した離型クッションシート6を、第1の磁性配線回路基板51における第1磁性層41と第2プレス板11との間に挿入した。 Next, the four second magnetic sheets 45 and the newly prepared release cushion sheet 6 were inserted between the first magnetic layer 41 and the second press plate 11 in the first magnetic wiring circuit board 51. .
 プレス圧2MPa(2kNに相当)、110℃で、60秒間の条件で、2つのプレス板20で、第1の磁性配線回路基板51と、第2磁性シート45と、離型クッションシート6とを熱プレスした。 The first magnetic wiring circuit board 51, the second magnetic sheet 45, and the release cushion sheet 6 are formed with two press plates 20 at a press pressure of 2 MPa (corresponding to 2 kN) at 110 ° C. for 60 seconds. Hot pressed.
 これにより、第2磁性シート45から第2磁性層42を、第1の磁性配線回路基板51における第1磁性層41の厚み方向一方面に形成(成型)した。第1磁性層41および第2磁性層42からなる磁性層21を形成した。第2磁性層42の厚みT4は、100μmであった。 Thereby, the second magnetic layer 42 was formed (molded) on the one surface in the thickness direction of the first magnetic layer 41 in the first magnetic wiring circuit board 51 from the second magnetic sheet 45. The magnetic layer 21 composed of the first magnetic layer 41 and the second magnetic layer 42 was formed. The thickness T4 of the second magnetic layer 42 was 100 μm.
 これにより、第1磁性層41および第2磁性層42を備える第2の磁性配線回路基板52を製造した。なお、第2の磁性配線回路基板52は、配線回路基板40と、磁性層21とを備える。 Thereby, the second magnetic wiring circuit board 52 including the first magnetic layer 41 and the second magnetic layer 42 was manufactured. The second magnetic wired circuit board 52 includes the wired circuit board 40 and the magnetic layer 21.
  実施例2~比較例4
 離型クッションシート6の種類、厚み等を表2に従って変更した以外は、実施例1と同様に処理して、第2の磁性配線回路基板52を製造した。
Example 2 to Comparative Example 4
A second magnetic wiring circuit board 52 was manufactured in the same manner as in Example 1 except that the type and thickness of the release cushion sheet 6 were changed according to Table 2.
 なお、比較例1および比較例2におけるTPX(離型クッションシート6)は、メチルペンテン樹脂(融点235℃)からなる離型シート(三井化学社製)である。 Incidentally, TPX (release cushion sheet 6) in Comparative Example 1 and Comparative Example 2 is a release sheet (manufactured by Mitsui Chemicals) made of methylpentene resin (melting point 235 ° C.).
 また、比較例3および比較例4におけるMRA(離型クッションシート6)は、ポリエチレンテレフタラート樹脂(融点260℃)からなる離型シート(三菱ケミカル社製)である。 Further, the MRA (release cushion sheet 6) in Comparative Example 3 and Comparative Example 4 is a release sheet (manufactured by Mitsubishi Chemical Corporation) made of polyethylene terephthalate resin (melting point 260 ° C.).
 (評価)
 [インダクタンス]
 第2の磁性配線回路基板52における配線部4のインダクタンスを測定した。
[SEM観察]
 第2の磁性配線回路基板52の厚み方向および第1方向に沿う断面を、SEM観察した。その画像処理図を、図8~図15に示す。
(Evaluation)
[Inductance]
The inductance of the wiring part 4 in the second magnetic wiring circuit board 52 was measured.
[SEM observation]
The cross section along the thickness direction and the first direction of the second magnetic wiring circuit board 52 was observed with an SEM. The image processing diagrams are shown in FIGS.
 (考察)
 比較例1~比較例4では、いずれにおいても、離型クッションシート6が第2層32を備えない。
(Discussion)
In any of Comparative Examples 1 to 4, the release cushion sheet 6 does not include the second layer 32.
 比較例1~比較例3では、第1プレス工程および第2プレス工程のそれぞれにおいて、第1磁性シート5および第2磁性シート45のそれぞれを均一にプレスできず、離型クッションシート6において第1方向における収縮力が作用して、凸部25における凸面27に頂部28が2つ形成されている。 In Comparative Examples 1 to 3, each of the first magnetic sheet 5 and the second magnetic sheet 45 cannot be uniformly pressed in each of the first press process and the second press process. The contraction force in the direction acts, and two top portions 28 are formed on the convex surface 27 of the convex portion 25.
 とくに、比較例2では、底部30が、厚み方向他方側に向かって尖っている。 In particular, in Comparative Example 2, the bottom 30 is pointed toward the other side in the thickness direction.
 さらに、比較例4では、離型クッションシート6の110℃における引張貯蔵弾性率E’が過度に高い。そのため、非重複部分35に対応する第1磁性シート5および第2磁性シート45に大きな応力がかかり、その結果、底部30が、仮想面Sに対して、厚み方向他方側に位置する。 Furthermore, in Comparative Example 4, the tensile storage elastic modulus E ′ at 110 ° C. of the release cushion sheet 6 is excessively high. Therefore, a large stress is applied to the first magnetic sheet 5 and the second magnetic sheet 45 corresponding to the non-overlapping portion 35, and as a result, the bottom 30 is located on the other side in the thickness direction with respect to the virtual surface S.
 これら比較例に対して、各実施例では、離型クッションシート6が第2層32を備え、第2層の110℃における引張貯蔵弾性率E’が、第3層の110℃における引張貯蔵弾性率E’に比べて低い。そのため、凸面27は、頂部28を1つのみ有する。また、凹面29は、厚み方向他方側に向かって湾曲形状に凹む形状を有し、仮想面Sに対して、厚み方向一方側に位置する底部30を有する。その結果、各実施例は、各比較例に比べて、高いインダクタスを有する。 In contrast to these comparative examples, in each Example, the release cushion sheet 6 includes the second layer 32, and the tensile storage elastic modulus E ′ of the second layer at 110 ° C. is the tensile storage elasticity of the third layer at 110 ° C. Low compared to rate E '. Therefore, the convex surface 27 has only one top portion 28. Further, the concave surface 29 has a shape that is recessed in a curved shape toward the other side in the thickness direction, and has a bottom portion 30 that is located on one side in the thickness direction with respect to the virtual surface S. As a result, each example has a higher inductance than each comparative example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 磁性配線回路基板は、各種磁性用途に用いられる。 Magnetic wiring circuit boards are used for various magnetic applications.
1 磁性配線回路基板
2 絶縁層
3 第1絶縁面
4 配線部
5 第1磁性シート
6 離型クッションシート
15 対向面
20 2つのプレス板
21 磁性層
25 凸部
26 凹部
27 凸面
28 頂部
29 凹面
30 底部
31 第1層
32 第2層
33 第3層
41 第1磁性層
42 第2磁性層
45 第2磁性シート
48 磁性粒子
52 第2の磁性配線回路基板
T1 配線部の厚み
T2 第2層の厚み
T3 第1磁性層の厚み
T4 第2磁性層の厚み
DESCRIPTION OF SYMBOLS 1 Magnetic wiring circuit board 2 Insulating layer 3 1st insulating surface 4 Wiring part 5 1st magnetic sheet 6 Release cushion sheet 15 Opposite surface 20 Two press plates 21 Magnetic layer 25 Convex part 26 Concave part 27 Convex part 28 Top part 29 Concave part 30 Bottom part 31 1st layer 32 2nd layer 33 3rd layer 41 1st magnetic layer 42 2nd magnetic layer 45 2nd magnetic sheet 48 Magnetic particle 52 2nd magnetic wiring circuit board T1 Wiring part thickness T2 2nd layer thickness T3 First magnetic layer thickness T4 Second magnetic layer thickness

Claims (9)

  1.  2つのプレス板で、絶縁層と、前記絶縁層の厚み方向一方面において、所定方向において互いに間隔を隔てて配置される複数の配線部と、第1磁性シートと、離型クッションシートとをその順で挟み込む挟み込み工程、および、
     前記プレス板で、前記絶縁層と、前記複数の配線部と、前記第1磁性シートと、前記離型クッションシートとを熱プレスする第1プレス工程を備え、
     前記第1プレス工程では、前記第1磁性シートから、前記複数の配線部間を充填し、かつ、前記配線部の前記厚み方向一方面を被覆するように、第1磁性層を形成し、
     前記離型クッションシートは、
      第1層と、
      前記第1層の前記厚み方向一方側に配置される第2層とを備え、
     前記第2層の110℃における引張貯蔵弾性率E’が、前記第1層の110℃における引張貯蔵弾性率E’に比べて低いことを特徴とする、磁性配線回路基板の製造方法。
    The two press plates include an insulating layer, a plurality of wiring portions that are spaced apart from each other in a predetermined direction on one surface in the thickness direction of the insulating layer, a first magnetic sheet, and a release cushion sheet. The sandwiching step of sandwiching in order, and
    A first pressing step of heat-pressing the insulating layer, the plurality of wiring portions, the first magnetic sheet, and the release cushion sheet with the press plate;
    In the first pressing step, a first magnetic layer is formed from the first magnetic sheet so as to fill a space between the plurality of wiring portions and cover the one surface in the thickness direction of the wiring portions,
    The release cushion sheet is:
    The first layer;
    A second layer disposed on one side in the thickness direction of the first layer,
    A method for manufacturing a magnetic wiring circuit board, wherein the tensile storage elastic modulus E ′ at 110 ° C. of the second layer is lower than the tensile storage elastic modulus E ′ at 110 ° C. of the first layer.
  2.  前記第2層の110℃における引張貯蔵弾性率E’が、20MPa以下であることを特徴とする、請求項1に記載の磁性配線回路基板の製造方法。 2. The method of manufacturing a magnetic wiring circuit board according to claim 1, wherein the second layer has a tensile storage elastic modulus E ′ at 110 ° C. of 20 MPa or less.
  3.  前記第2層の厚みT2の、前記配線部の厚みT1に対する比が、0.5以上であることを特徴とする、請求項1に記載の磁性配線回路基板の製造方法。 The method of manufacturing a magnetic wired circuit board according to claim 1, wherein a ratio of the thickness T2 of the second layer to the thickness T1 of the wiring portion is 0.5 or more.
  4.  前記離型クッションシートが、前記第2層の前記厚み方向一方側に配置される第3層をさらに備え、
     前記第2層の110℃における引張貯蔵弾性率E’が、前記第3層の110℃における引張貯蔵弾性率E’に比べて低いことを特徴とする、請求項1に記載の磁性配線回路基板の製造方法。
    The release cushion sheet further includes a third layer disposed on one side in the thickness direction of the second layer,
    2. The magnetic wired circuit board according to claim 1, wherein a tensile storage elastic modulus E ′ at 110 ° C. of the second layer is lower than a tensile storage elastic modulus E ′ at 110 ° C. of the third layer. Manufacturing method.
  5.  前記第1磁性層の厚みT3の、前記配線部の厚みT1に対する比が、0.5以上であることを特徴とする、請求項1に記載の磁性配線回路基板の製造方法。 The method for manufacturing a magnetic wired circuit board according to claim 1, wherein the ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring portion is 0.5 or more.
  6.  前記プレス板で、前記絶縁層と、前記複数の配線部と、前記第1工程により形成された第1磁性層と、第2磁性シートと、前記離型クッションシートとを熱プレスする第2プレス工程をさらに備え、
     前記第2プレス工程では、前記第2磁性シートから第2磁性層を形成することを特徴とする、請求項1に記載の磁性配線回路基板の製造方法。
    A second press that heat-presses the insulating layer, the plurality of wiring portions, the first magnetic layer formed by the first step, the second magnetic sheet, and the release cushion sheet with the press plate. A further process,
    2. The method of manufacturing a magnetic wiring circuit board according to claim 1, wherein in the second pressing step, a second magnetic layer is formed from the second magnetic sheet.
  7.  前記第1磁性層の厚みT3の、前記配線部の厚みT1に対する比が、0.5未満であり、
     前記第1磁性層の厚みT3および前記第2磁性層の厚みT4の合計の、前記配線部の厚みT1に対する比が、0.5以上であることを特徴とする、請求項6に記載の磁性配線回路基板の製造方法。
    The ratio of the thickness T3 of the first magnetic layer to the thickness T1 of the wiring part is less than 0.5,
    7. The magnetism according to claim 6, wherein a ratio of the total thickness T <b> 3 of the first magnetic layer and the thickness T <b> 4 of the second magnetic layer to the thickness T <b> 1 of the wiring part is 0.5 or more. A method for manufacturing a printed circuit board.
  8.  前記第1磁性シートおよび前記第2磁性シートは、磁性粒子を含有し、
     前記第1磁性シートにおける磁性粒子の含有割合が、前記第2磁性シートにおける磁性粒子の含有割合に比べて、低いことを特徴とする、請求項6に記載の磁性配線回路基板の製造方法。
    The first magnetic sheet and the second magnetic sheet contain magnetic particles,
    The method for manufacturing a magnetic wired circuit board according to claim 6, wherein a content ratio of the magnetic particles in the first magnetic sheet is lower than a content ratio of the magnetic particles in the second magnetic sheet.
  9.  絶縁層と、
     前記絶縁層の厚み方向一方面において、所定方向において互いに間隔を隔てて配置される複数の配線部と、
     前記複数の配線部間に充填され、かつ、前記配線部の前記厚み方向一方面と間隔を隔てて対向配置される対向面を被覆する磁性層とを備え、
     前記磁性層は、
      前記複数の配線部の前記対向面に配置され、前記厚み方向一方側に向かって隆起する複数の凸部と、
      複数の前記凸部の間に位置し、隣り合う前記凸部に対して前記厚み方向他方側に向かって凹む凹部とを有し、
     前記凸部は、前記厚み方向最一方側に位置する頂部を1つのみ有し、
     前記凹部は、前記厚み方向他方側に向かって略湾曲形状に沈下する形状を有しており、隣り合う前記配線部の前記対向面を通過する仮想面に対して、前記厚み方向一方側に位置する底部を有することを特徴とする、磁性配線回路基板。
    An insulating layer;
    A plurality of wiring portions disposed on the one side in the thickness direction of the insulating layer at intervals in a predetermined direction;
    A magnetic layer covering a facing surface that is filled between the plurality of wiring portions and is disposed to face the one surface in the thickness direction of the wiring portion with a space therebetween;
    The magnetic layer is
    A plurality of convex portions disposed on the facing surfaces of the plurality of wiring portions and projecting toward one side in the thickness direction;
    A concave portion located between the plurality of convex portions and recessed toward the other side in the thickness direction with respect to the adjacent convex portions;
    The convex portion has only one apex located on the one side in the thickness direction,
    The concave portion has a shape that sinks into a substantially curved shape toward the other side in the thickness direction, and is positioned on one side in the thickness direction with respect to a virtual plane that passes through the facing surface of the adjacent wiring portion. A magnetic wiring circuit board characterized by having a bottom portion to be processed.
PCT/JP2019/010447 2018-03-16 2019-03-14 Magnetic wiring circuit board and method for manufacturing same WO2019177077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980017405.7A CN111837208B (en) 2018-03-16 2019-03-14 Magnetic wiring circuit board and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-049147 2018-03-16
JP2018049147 2018-03-16
JP2019044770A JP7352363B2 (en) 2018-03-16 2019-03-12 Magnetic wiring circuit board and its manufacturing method
JP2019-044770 2019-03-12

Publications (1)

Publication Number Publication Date
WO2019177077A1 true WO2019177077A1 (en) 2019-09-19

Family

ID=67908380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010447 WO2019177077A1 (en) 2018-03-16 2019-03-14 Magnetic wiring circuit board and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2019177077A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074626A (en) * 1996-06-27 1998-03-17 Kiyoto Yamazawa Thin magnetic element, its manufacture, and transformer
JPH1154327A (en) * 1997-08-04 1999-02-26 Murata Mfg Co Ltd Coil parts
WO2014192427A1 (en) * 2013-05-27 2014-12-04 日東電工株式会社 Soft-magnetic resin composition, soft-magnetic adhesive film, circuit board with soft-magnetic film laminated thereto, and position detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074626A (en) * 1996-06-27 1998-03-17 Kiyoto Yamazawa Thin magnetic element, its manufacture, and transformer
JPH1154327A (en) * 1997-08-04 1999-02-26 Murata Mfg Co Ltd Coil parts
WO2014192427A1 (en) * 2013-05-27 2014-12-04 日東電工株式会社 Soft-magnetic resin composition, soft-magnetic adhesive film, circuit board with soft-magnetic film laminated thereto, and position detection device

Similar Documents

Publication Publication Date Title
JP7352363B2 (en) Magnetic wiring circuit board and its manufacturing method
TWI840369B (en) Inductors
TWI781124B (en) Manufacturing method of module
JP2024056104A (en) Inductor
TW202040601A (en) Inductor
WO2019177077A1 (en) Magnetic wiring circuit board and method for manufacturing same
WO2020183992A1 (en) Inductor
WO2020183994A1 (en) Inductor
TWI828865B (en) Manufacturing method of inductor
TW202101487A (en) Inductor
TWI830930B (en) Manufacturing method of inductor
JP7294833B2 (en) inductor
JP7493933B2 (en) Manufacturing method of magnetic sheet
TWI826648B (en) Inductor
TW202036615A (en) Inductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767085

Country of ref document: EP

Kind code of ref document: A1