WO2019177053A1 - Prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus, and prophylactic or therapeutic agent for connective tissue diseases - Google Patents

Prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus, and prophylactic or therapeutic agent for connective tissue diseases Download PDF

Info

Publication number
WO2019177053A1
WO2019177053A1 PCT/JP2019/010363 JP2019010363W WO2019177053A1 WO 2019177053 A1 WO2019177053 A1 WO 2019177053A1 JP 2019010363 W JP2019010363 W JP 2019010363W WO 2019177053 A1 WO2019177053 A1 WO 2019177053A1
Authority
WO
WIPO (PCT)
Prior art keywords
hla
amino acid
protein
acid sequence
multimer
Prior art date
Application number
PCT/JP2019/010363
Other languages
French (fr)
Japanese (ja)
Inventor
勝実 前仲
喜美子 黒木
直良 前田
千聖 山田
愛実 ▲高▼橋
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2020506621A priority Critical patent/JPWO2019177053A1/en
Publication of WO2019177053A1 publication Critical patent/WO2019177053A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates to a preventive or therapeutic agent for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and a preventive or therapeutic agent for collagen diseases.
  • HLA-G is one of the non-classical MHCI molecules, which bind to inhibitory receptors such as leukocyte Ig-like receptors (LILRs) to cause myeloid monocytes, T cells and It inhibits the immune response of a wide range of immune cells including NK cells and induces immune tolerance.
  • inhibitory receptors such as leukocyte Ig-like receptors (LILRs) to cause myeloid monocytes, T cells and It inhibits the immune response of a wide range of immune cells including NK cells and induces immune tolerance.
  • LILRs leukocyte Ig-like receptors
  • HLA-G protein exists in various forms in the human body and functions as a natural inhibitory molecule.
  • the HLA-G1 isoform exists as a heterotrimer consisting of a peptide, heavy chain, and ⁇ 2 microglobulin.
  • the domain-deficient HLA-G2 isoform is a homodimer consisting only of a domain-deficient heavy chain.
  • HLA-G2 was known to have an activity that complements the function of HLA-G1, but the detailed function was unknown for a long time.
  • Non-Patent Document 1 discloses that HLA-G2 exists as a homodimer and that a signal is transmitted through the immunosuppressive receptor LILRB2 as a receptor.
  • Non-Patent Document 2 and Patent Document 1 show that HLA-G2 was analyzed in vivo for anti-inflammatory effects, and as a result, it was found to bind tightly to mouse receptor PIR-B. It is disclosed that a long-term immunosuppressive effect was obtained by administration.
  • Systemic lupus erythematosus (systemic lupus erythematosus: SLE) is an autoimmune disease characterized by systemic inflammatory lesions caused by tissue deposition of immune complexes such as DNA-anti-DNA antibodies.
  • SLE systemic lupus erythematosus
  • non-steroidal anti-inflammatory drugs steroids such as prednisolone, etc. are generally used.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel pharmaceutical use for HLA-G or a multimer thereof. More specifically, the present invention provides a novel pharmaceutical use of HLA-G or a multimer thereof as a preventive or therapeutic agent for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and collagen diseases. With the goal.
  • HLA-G or HLA-G multimer is used as an active ingredient.
  • the HLA-G multimer is a protein multimer having an amino acid sequence in which an ⁇ 1 domain of HLA-G and an ⁇ 3 domain of HLA-G are linked.
  • the HLA-G multimer is (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1, Because It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
  • the HLA-G or HLA-G multimer is The modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the HLA-G or HLA-G multimeric protein is PEGylated with polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the HLA-G multimer is Consisting of a multimer of proteins having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked,
  • the modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the protein is PEGylated with polyethylene glycol (PEG).
  • the molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
  • the protein is a protein comprising an amino acid sequence described in (a) or (b) below, (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1, (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
  • the multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. .
  • the preventive or therapeutic agent for collagen disease according to the second aspect of the present invention HLA-G or HLA-G multimer as an active ingredient, used for systemic administration, It is characterized by that.
  • the HLA-G multimer is a protein multimer having an amino acid sequence in which an ⁇ 1 domain of HLA-G and an ⁇ 3 domain of HLA-G are linked.
  • the HLA-G multimer is (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1, Because It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
  • the HLA-G or HLA-G multimer is The modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the HLA-G or HLA-G multimeric protein is PEGylated with polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the HLA-G multimer is Consisting of a multimer of proteins having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked,
  • the modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the protein is PEGylated with polyethylene glycol (PEG).
  • the molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
  • the protein is a protein comprising an amino acid sequence described in (a) or (b) below, (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1, (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
  • the multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. .
  • HLA-G or a multimer thereof can provide a novel medicinal use as a preventive or therapeutic agent for diseases and collagen diseases caused by systemic lupus erythematosus or systemic lupus erythematosus.
  • FIG. (A) is a diagram showing the results of subjecting HLA-G2 to gel filtration chromatography
  • (B) is the result of subjecting the fraction fractionated from the peak (arrow part) of (A) to SDS-PAGE.
  • FIG. (A) is a view showing the binding of HLA-G2 to LILRB2 or BSA (negative control) (solid line: when LILRB2 is immobilized on the sensor chip, dotted line: when BSA is immobilized on the sensor chip),
  • (B) shows the results of surface plasmon resonance experiments evaluating the reaction (binding and dissociation) of HLA-G2 at various concentrations (13.3 nM, 26.6 nM, 53.1 nM) to LILRB2.
  • FIG. (A) is a graph showing the change in body weight of the SLE model mouse after administration of PBS
  • (B) is a graph showing the change in body weight of the SLE model mouse after administration of HLA-G2.
  • FIG. 7 is a graph showing the amount of antinuclear antibody in blood of SLE model mice after HLA-G2 administration
  • (A) is a graph showing the results after 72 days of administration
  • (B) is a mouse with a significantly high body weight.
  • FIG. 1 It is a figure showing the primary structure (left) and molecule
  • (A) is a diagram showing a chromatogram of SEC purification using a HiLoad26 / 60 Superdex75 pg column after unwinding inclusion bodies in the preparation of HLA-G2, and (b) is obtained by adding a reducing agent (TCEP). It is the figure which showed the result of CBB dyeing
  • FIG. 1 It is a schematic diagram showing the principle of biotinylated protein immobilization on a sensor chip CAP, (a) is a schematic diagram showing a state in which single-stranded DNA is immobilized on the sensor chip CAP, and (b) is a streptogram. It is a schematic diagram showing a mode that avidin was fixed on the chip
  • FIG. 4 is a diagram showing sensorgrams obtained by a binding experiment with a LILRB2 receptor, where (a) is HLA-G2, (b) is PEG5-HLA-G2, (c) is PEG10-HLA-G2, (d)
  • FIG. 4 is a view showing the results of PEG20-HLA-G2. It is a figure which shows the outline
  • (A) is the graph which measured the blood anti- dsDNA antibody titer of the SLE model mouse
  • (b) is a graph which shows the result 90 days after administration. It is the graph which measured the urinary albumin index of the SLE model mouse.
  • the preventive or therapeutic agent for systemic lupus erythematosus or systemic lupus erythematosus comprises HLA-G or HLA-G multimer as an active ingredient (HLA: Human Leukocyte Antigen (human leukocyte antigen) ).
  • the HLA-G or HLA-G multimer targeted by this embodiment will be described.
  • the HLA-G targeted by this embodiment is preferably human-derived HLA-G.
  • the HLA-G multimer targeted by this embodiment is, for example, a multimer of a protein having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked, (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1, Because It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
  • HLA-G2 a protein multimer having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked
  • HLA-G2 a protein multimer having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked
  • the above “protein consisting of the amino acid sequence shown in SEQ ID NO: 1” is one of dimers of proteins having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked.
  • the HLA-G molecule is preferably human-derived HLA-G.
  • “1st to 90th amino acid region” corresponds to the amino acid sequence of the ⁇ 1 domain
  • “91st to 180th amino acid region” corresponds to the amino acid sequence of the ⁇ 3 domain.
  • SEQ ID NO: 2 representing the base sequence encoding the amino acid sequence (SEQ ID NO: 1)
  • the “1st to 270th base sequence” region corresponds to the gene region encoding the ⁇ 1 domain
  • the “sequence” region corresponds to the gene region encoding the ⁇ 3 domain.
  • amino acid sequence of a conjugate of ⁇ 1 domain and ⁇ 3 domain ( ⁇ 1-3 conjugate) of HLA-G molecule as the “protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added”.
  • a protein having an amino acid sequence (SEQ ID NO: 3) encoded by intron 4 of the HLA-G molecule is further exemplified on the C-terminal side of No. 1), and this may be referred to as “HLA-G2” in the present specification. .
  • the C1 of the amino acid sequence (SEQ ID NO: 1) of a conjugate of ⁇ 1 domain and ⁇ 3 domain of HLA-G molecule A protein having an amino acid sequence (SEQ ID NO: 4) of the transmembrane domain and intracellular domain of the HLA-G2 molecule on the end side can be exemplified.
  • the function of a multimer of a conjugate of ⁇ 1 domain and ⁇ 3 domain of the above HLA-G molecule (leukocyte Ig-like receptor)
  • the amino acid sequence of the ⁇ 1-3 conjugate (SEQ ID NO: 1) is preferably 90% or more, preferably 95% or more. It is a protein formed by deletion, substitution or addition. More preferably, it is a protein having an amino acid sequence of 96% or more, more preferably 98% or more identical to the amino acid sequence (SEQ ID NO: 1) of the above conjugate.
  • HLA-G multimers (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 or (b) one or several amino acids are missing in the amino acid sequence shown in SEQ ID NO: 1.
  • the HLA-G2 multimer targeted by the present embodiment is not limited to the above-mentioned ligated body of ⁇ 1 domain and ⁇ 3 domain of the HLA-G molecule (hereinafter also simply referred to as “ ⁇ 1-3 ligated product”). Any structure may be used as long as it has a linked structure of ⁇ 1 domain and ⁇ 3 domain of HLA-G molecule and the multimer has binding activity to leukocyte Ig-like receptor B2 (LILRB2). For example, as long as the above conditions are satisfied, one or more amino acids are missing in the amino acid sequence (SEQ ID NO: 1) of the conjugate of ⁇ 1 domain and ⁇ 3 domain ( ⁇ 1-3 conjugate) of the HLA-G molecule.
  • binding activity to leukocyte Ig-like receptor B2 is an activity in which an HLA-G2 multimer directly binds to LILRB2, thereby transmitting a signal via LILRB2 and having an immunoregulatory effect. Means an activity capable of exerting.
  • Whether or not the HLA-G2 multimer has binding activity with leukocyte Ig-like receptor B2 can be confirmed by, for example, a reporter assay using a T cell hybridoma.
  • T cell hybridomas include NFAT-GFP introduced reporter cells (mouse T cell hybridomas) expressing a chimeric molecule in which the extracellular domain of LILRB2 and the transmembrane / intracellular domain of the active receptor PILR ⁇ are fused. Can do.
  • NFAT-GFP introduced reporter cells mouse T cell hybridomas
  • a signal through the intracellular domain of PILR ⁇ is transmitted, and the transcription factor NFAT is activated.
  • the reporter assay is an assay system using the fact that the expression of GFP is induced by the activation of the NFAT. GFP expression indicates that LILRB2 and HLA-G2 multimer are bound, and the appearance of fluorescence due to such GFP expression can be confirmed by flow cytometry.
  • the HLA-G2 multimer is a multimerized product in which the aforementioned HLA-G2s are disulfide bonded or non-covalently bonded without using disulfide bonds.
  • the HLA-G2 multimer in the present embodiment for example, in the case of a naturally formed homodimer, the HLA-G2 multimer is multimerized regardless of the disulfide bond, and the cysteine residue (Cys42) remains free on the molecular surface.
  • cysteine residues (Cys42) present on the surface of the homodimer molecule may be It may be multimerized by an intervening disulfide bond. Furthermore, in the case of a homodimer that spontaneously forms, it multimerizes regardless of disulfide bonds, and in the case of a further dimer (tetramer) having a homodimer as one unit or a further multimer thereof, It may be multimerized by binding via amino acid residues other than cysteine residues present on the surface of the homodimer molecule.
  • the dimerization is preferably performed regardless of the disulfide bond.
  • at least one amino acid residue in the amino acid sequence constituting the protein of the HLA-G2 multimer may be PEGylated with polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the HLA-G2 multimer may be a homomultimer composed of ⁇ 1-3 conjugates or mutants as described above, or a heteromultimer composed of ⁇ 1-3 conjugates and mutants. There is no limitation. Preferably, it is a homomultimer composed of ⁇ 1-3 conjugates.
  • the HLA-G2 multimer has a structure in which the binding site to the leukocyte Ig-like receptor B2 (LILRB2) is exposed on the surface, and the binding to these receptors is not hindered by steric hindrance. Therefore, the HLA-G2 multimer has a structure capable of retaining the same type of function (binding activity to leukocyte Ig-like receptor) as HLA-G2.
  • LILRB2 leukocyte Ig-like receptor B2
  • the HLA-G or HLA-G multimer targeted by this embodiment includes, for example, HLA-G1 (NCBI, NM_002127.5) (extracellular domain: SEQ ID NO: 11), (full length (NCBI, NM_002127. 5, including the signal sequence and the Stokes region and lower): SEQ ID NO: 12) and proteins consisting of amino acid sequences in which one or several amino acids are deleted, substituted or added in HLA-G1.
  • a recombinant vector in which a gene encoding the amino acid sequence of the HLA-G2 multimer (eg, SEQ ID NO: 2) is incorporated into an expression vector or the like is constructed.
  • the transformation can be carried out by expressing the recombinant HLA-G2 multimer and recovering it by introducing the constructed recombinant vector into a host by various transformation methods to obtain a transformant and culturing the transformant.
  • the gene encoding the amino acid sequence of the HLA-G2 multimer includes the gene (SEQ ID NO: 2) encoding the amino acid sequence (SEQ ID NO: 1) of the conjugate of ⁇ 1 domain and ⁇ 3 domain of HLA-G,
  • a gene encoding the amino acid sequence of the aforementioned HLA-G2 (hereinafter sometimes referred to as “mutant HLA-G2” for convenience) obtained by deleting, replacing or adding a part of the amino acid sequence of the conjugate. It can also be used.
  • the first to 18th amino acids of the nucleotide sequence shown in SEQ ID NO: 2 (the 1st to 6th amino acids in the amino acid sequence of HLA-G2 are encoded)
  • a gene obtained by substituting the base sequence of SEQ ID NO: 5 (hereinafter referred to as “modified gene”) (SEQ ID NO: 6) can also be used.
  • the gene encoding the mutant HLA-G2 multimer may be prepared by introducing a mutation into the DNA sequence of the ⁇ 1-3 linked gene.
  • a mutation introduction kit using a site-specific mutagenesis method by a known method such as the Kunkel method or the Gapped duplex method.
  • kits include, for example, QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by Stratagene), GeneTailorTM Site-Directed Mutagenesis System (manufactured by Invitrogen), TaKaRaSite-MustimatedMut-SensitMight-SensitMist-Smut-SensitMist-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Sensor-Mut-SensitMut-Sk (Takara Bio Inc.) and the like are preferred.
  • the host used for the preparation of the transformant is not particularly limited as long as it can express HLA-G2 ( ⁇ 1-3 conjugate, mutant) from the introduced recombinant vector or the like.
  • Known cells that can serve as hosts such as cells derived from various animals such as humans and mice, cells derived from various insects, prokaryotic cells such as E. coli, eukaryotic cells such as yeast, and plant cells can be used.
  • the production of the recombinant HLA-G2 multimer should be carried out by a method including the step of culturing the above-mentioned transformant and the step of collecting the recombinant HLA-G2 multimer from the resulting culture.
  • cultured product means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells.
  • the transformant can be cultured according to a usual method used for host culture. The protein of interest is accumulated in the culture.
  • the recombinant HLA-G2 multimer When the recombinant HLA-G2 multimer is produced extracellularly, use the culture solution as it is, or remove the cells by centrifugation, filtration or the like. Thereafter, the recombinant HLA-G2 multimer is collected from the culture by extraction with ammonium sulfate precipitation, if necessary, and further subjected to dialysis, various chromatography (gel filtration, ion exchange chromatography, affinity chromatography) as necessary. Etc.) can be isolated and purified.
  • various chromatography gel filtration, ion exchange chromatography, affinity chromatography
  • the recombinant HLA-G2 multimer When a recombinant HLA-G2 multimer is produced in a cell, the recombinant HLA-G2 multimer can be collected by disrupting the cell. If the soluble fraction contains an HLA-G2 multimer, the disrupted cell residue (including the cell extract insoluble fraction) is removed as necessary by centrifugation or filtration after disruption. The supernatant after removal of the residue is a cell extract soluble fraction and can be a crude protein solution. On the other hand, when the HLA-G2 multimer is expressed as inclusion bodies in the insoluble fraction, after crushing, the insoluble fraction is isolated by centrifugation, washed with a buffer containing a surfactant, etc., and repeatedly centrifuged. Remove cell debris.
  • the obtained inclusion body is solubilized with a buffer containing a denaturing agent such as guanidine or urea, and then the protein is unwound using a dilution method or a dialysis method.
  • the functionally unwound HLA-G2 multimer can be isolated and purified using various types of chromatography (gel filtration, ion exchange chromatography, affinity chromatography, etc.).
  • Recombinant HLA-G2 multimers can be produced not only using a protein synthesis system using a transformant, but also using a cell-free protein synthesis system that does not use any living cells.
  • the -G2 multimer can be purified by appropriately selecting means such as chromatography.
  • the HLA-G2 multimer may be obtained by any method, and the acquisition method is not particularly limited.
  • the HLA-G or HLA-G multimer is a modification in which at least one amino acid residue in the amino acid sequence constituting the protein of the HLA-G or HLA-G multimer is PEGylated with polyethylene glycol (PEG) It may be a protein or a salt thereof.
  • PEG polyethylene glycol
  • the HLA-G multimer comprises a multimer of a protein having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked, and at least one amino acid in the amino acid sequence constituting the protein It may be a modified protein or a salt thereof whose residue is PEGylated with polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the amino acid residue to be PEGylated is preferably present at a site that does not affect the binding to the receptor in the protein.
  • amino acid residues to be PEGylated include lysine residues and cysteine residues.
  • the cysteine residue may be, for example, the 42nd free cysteine residue of HLA-G2.
  • an amino acid residue present at an arbitrary site may be substituted with a cysteine residue, and the cysteine residue may be modified with PEG.
  • the 86th asparagine which is a sugar chain modification site of HLA-G And may be modified by PEGylation.
  • cysteine residue may be added to an arbitrary site, and the cysteine residue may be modified with PEG.
  • cysteine may be added to the C-terminus of HLA-G and modified with PEG. Any amino acid residue capable of PEGylation modification can be selected without limitation to lysine residues and cysteine residues.
  • the molecular weight of PEG used for PEGylation modification is, for example, 5 kDa to 100 kDa, and preferably 5 kDa to 40 kDa. Details of the PEGylation modification will be described later.
  • the protein is, for example, a protein comprising an amino acid sequence described in the following (a) or (b), (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1, (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
  • the multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. May be. Whether or not the multimer has binding activity with leukocyte Ig-like receptor B2 can be confirmed in the same manner as described above.
  • the method for producing a modified protein according to this embodiment includes, for example, (A) preparing HLA-G or HLA-G multimer; (B) a step of deaerating the protein of HLA-G or HLA-G multimer obtained in step (A), followed by a reduction treatment; (C) PEGylation modification of the protein reduced in step (B); including.
  • HLA-G or HLA-G multimers are as described above.
  • HLA-G or HLA-G multimers can be prepared by any method.
  • Step (B) is a step in which the HLA-G or HLA-G multimeric protein obtained in step (A) is degassed and then reduced.
  • a deaeration process is performed to advance the PEGylation reaction under anaerobic conditions.
  • the deaeration process may be performed for 1 hour using an aspirator, for example.
  • a PEGylation buffer eg, 1 ⁇ Phosphate-Buffer Saline (PBS), 5 mM EDTA). Replacement may be performed.
  • PBS Phosphate-Buffer Saline
  • Other known methods may be used as the deaeration process.
  • step (B) the reducing agent is added to cleave the disulfide bond by reduction treatment to reexpose the thiol group of the residue serving as the PEGylation target and improve the reaction efficiency.
  • the reducing agent any reducing agent having a reducing action can be used, and for example, tris (2-carboxyethyl) phosphine (TCEP) frequently used in the reaction using maleimide and cysteine may be used.
  • TCEP tris (2-carboxyethyl) phosphine
  • TCEP may be added so as to have a final concentration of 0.1 mM or more.
  • Step (C) is a step of PEGylating the protein that has been reduced in step (B).
  • step (C) specifically, the PEGylated modification is carried out by reacting the PEGylation reagent having a reactive functional group such as a maleimide group or a succinimide group at the end of PEG with the protein of this embodiment in a solution. Protein can be obtained.
  • the PEGylation reagent used include linear methyl PEGn (n is the number of PEG repeats) maleimide and branched (methyl-PEGn) n-PEGn maleimide that form a thioether bond with the SH group of cysteine. It is done.
  • the molecular weight of PEG used for PEGylation modification is, for example, 5 kDa to 100 kDa, and preferably 5 kDa to 40 kDa.
  • the PEGylation reagent include ME-400MA (MW: 42,653 Da) (PEG40), ME-200MAOB (MW: MW), which are high-purity linear PEGs that have a maleimide group as a reactive group and recognize and react with a thiol group. 20,841 Da) (PEG20), ME-100MA (MW: 10,303 Da) (PEG10), ME-050MA (MW: 5,393 Da) (PEG5) (all are NOF Corporation), and the like.
  • PEGylation can be modified by adding a PEGylation reagent and reacting at 4 ° C. overnight, for example.
  • at least one amino acid residue for example, cysteine residue
  • the amino acid sequence constituting the protein is PEGylated with PEG.
  • the PEG-modified protein may be purified by, for example, gel filtration chromatography (SEC).
  • SEC gel filtration chromatography
  • a method for producing a modified protein according to another embodiment includes, for example, (A ′) preparing a multimer of a protein having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked; (B ′) a degassing treatment of the protein multimer obtained in step (A), followed by a reduction treatment; (C ′) PEGylation modification of the multimer of the protein reduced in step (B); including.
  • HLA-G2 or HLA-G2 multimer having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked are as described above.
  • the HLA-G2 multimer targeted by the present embodiment is, for example, a protein multimer having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked, as described above.
  • a salt with a physiologically acceptable acid eg, inorganic acid, organic acid
  • a base eg, alkali metal salt
  • a physiologically acceptable acid addition salt e.g., sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium tartaric acid, sodium tartaric acid, sodium tartaric acid, sodium tartaric acid, sodium tartaric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like.
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid.
  • the preventive or therapeutic agent according to this embodiment is used for the prevention or treatment of diseases caused by systemic lupus erythematosus (SLE) or SLE.
  • SLE systemic lupus erythematosus
  • Systemic lupus erythematosus (systemic lupus erythematosus: SLE) is an autoimmune disease characterized by systemic inflammatory lesions caused by tissue deposition of immune complexes such as DNA-anti-DNA antibodies. As diagnostic criteria, there are the following 11 items, and if 4 or more of these items are satisfied, SLE is diagnosed (refer to the intractable disease information center homepage (http://www.nanbyou.or.jp/)).
  • the preventive or therapeutic agent according to the present embodiment has a preventive or therapeutic effect on SLE.
  • the blood antinuclear antibody amount in the subject can be reduced.
  • the prophylactic or therapeutic agent according to the present embodiment is administered to a subject diagnosed with SLE, for example, the amount of urine protein in the subject can be reduced.
  • the prophylactic or therapeutic agent according to the present embodiment has a prophylactic or therapeutic effect on diseases caused by SLE.
  • Diseases caused by SLE are concepts including so-called SLE reserve groups such as proteinuria, nephritis, lymphadenopathy, etc.
  • SLE reserve groups such as proteinuria, nephritis, lymphadenopathy, etc.
  • protein A preventive or therapeutic effect can be obtained by administering the preventive or therapeutic agent according to the present embodiment to a subject exhibiting symptoms such as urine, nephritis, and lymphadenopathy.
  • the administration method of the prophylactic or therapeutic agent according to the present embodiment can be appropriately selected from oral administration, intravenous administration, intraperitoneal administration, intradermal administration, sublingual administration, topical administration, etc. for humans or non-human mammals.
  • the dosage form may be arbitrary, for example, oral solid preparations such as tablets, granules, powders and capsules, oral liquid preparations such as internal liquids and syrups, and parenteral liquid preparations such as injections. Can be appropriately prepared.
  • An appropriate drug delivery system (DDS) may also be used.
  • the dose and administration interval of the prophylactic or therapeutic agent according to this embodiment can be appropriately set depending on the patient's age, body weight, indication symptoms, etc. For example, 3 to 4 administrations or 2 to 3 administrations per week Although there may be, it is not restricted to this.
  • the prophylactic or therapeutic agent according to this embodiment has an effect on SLE or a disease caused by SLE by inducing production of cytokines IL-10 and IL-6 not locally but systemically. It is.
  • the dose of the prophylactic or therapeutic agent according to the present embodiment is preferably 0.35 mg / kg body weight or more, 0.4 mg / kg body weight or more, 0.45 mg / kg body weight or more, It is 0.5 mg / kg body weight or more, 1 mg / kg body weight or more, and the administration interval is preferably at least once a week.
  • the dose and the number of administrations of the preventive or therapeutic agent according to the present embodiment can be reduced by the combined use with existing drugs having different action mechanisms.
  • the administration of the therapeutic agent according to the present embodiment can be any of administration during meals, administration after meals, administration before meals, administration between meals, administration before going to bed, and the like.
  • the preventive or therapeutic agent for diseases caused by SLE or SLE contains HLA-G or HLA-G multimer as an active ingredient.
  • HLA-G or HLA-G multimers may be used in the form of various salts, hydrates, etc., if necessary, and appropriate chemical modification in consideration of storage stability (especially maintaining activity) May be used in a state in which s. Is used, or may be used in a crystallized state or in a dissolved state.
  • the preventive or therapeutic agent for a disease caused by SLE or SLE may contain other components in addition to containing HLA-G or HLA-G multimer as an active ingredient.
  • the other components include various pharmaceutical components (various pharmaceutically acceptable carriers and the like) required depending on the usage (usage form) of the prophylactic or therapeutic agent. These other components can be appropriately contained as long as the preventive or therapeutic effect on the disease caused by SLE or SLE exerted by the active ingredient of the present invention is not impaired.
  • the HLA-G or HLA-G multimer as an active ingredient is purified so as to have a higher purity. Specifically, for example, a purity of 50% or more is preferable, more preferably 80% or more, and still more preferably 90% or more.
  • the preventive or therapeutic agent for collagen disease is characterized in that HLA-G or HLA-G multimer is used as an active ingredient and is used for systemic administration.
  • the HLA-G multimer is a protein multimer having an amino acid sequence in which the ⁇ 1 domain of HLA-G and the ⁇ 3 domain of HLA-G are linked.
  • the HLA-G multimer has (a) a protein comprising the amino acid sequence represented by SEQ ID NO: 1, or (b) one or several amino acids deleted or substituted in the amino acid sequence represented by SEQ ID NO: 1.
  • it is a protein comprising an added amino acid sequence, which is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b). Details of each term are the same as described above.
  • Examples of the preventive or therapeutic agent for collagen disease according to this embodiment include systemic lupus erythematosus, systemic scleroderma, polymyositis / dermatomyositis, Sjogren's syndrome, mixed connective tissue disease, antiphospholipid antibody syndrome, Behcet's disease, Allergic granulomatous vasculitis (Chirge-Strauss syndrome), adult Still's disease, eosinophilic fasciitis, nodular periarteritis (nodular polyarteritis / microscopic polyangiitis), aortitis syndrome (Takayasu) Arteritis), Wegener's granulomatosis, temporal arteritis, malignant rheumatoid arthritis and other collagen diseases including systemic administration.
  • the administration method of the prophylactic or therapeutic agent according to the present embodiment includes oral administration, intravenous administration, intraperitoneal administration, intradermal administration, sublingual administration and the like for use in systemic administration to humans or non-human mammals. Selected.
  • the dosage form, dosage, administration interval, active ingredient and the like are the same as described above.
  • the preventive or therapeutic agent for a disease caused by SLE or SLE includes HLA-G or HLA-G multimer as an active ingredient, and HLA-G or HLA-G multimer. Is mainly mediated by the inhibitory receptor LILRB2 expressed in antigen-presenting cells, so that the effect on effector cell functions is reduced, and a mild and long-term immunosuppressive effect via antigen-presenting cells is expected . Moreover, it can be used as a concomitant drug with other preparations of diseases caused by SLE or SLE. As a preventive or therapeutic agent for diseases caused by SLE or SLE for which no therapeutic method has been established, development as a new preparation having a different mechanism of action from existing biological preparations is expected.
  • the preventive or therapeutic agent for collagen disease is 1L-6, which is a cytokine involved in acquiring self-tolerance in peripheral blood-derived myeloid cells such as monocytes, macrophages and dendritic cells, as described later. And 1L-10 production-inducing action, and systemic administration provides a preventive or therapeutic effect against collagen disease.
  • Example 1 (Preparation of HLA-G2 protein) (1) Expression of ⁇ 1-3 conjugate as inclusion body in E. coli After cutting the pGMT7 vector with restriction enzymes NdeI and HindIII, a conjugate of ⁇ 1 domain and ⁇ 3 domain of HLA-G molecule ( ⁇ 1-3 conjugate) is obtained. A modified gene (SEQ ID NO: 6) encoding the gene was inserted using T4 DNA ligase to construct a modified HLA-G2-pGMT7.
  • the modified HLA-G2-pGMT7 was performed by the following method. First, using the HLA-G2-pGMT7 plasmid as a template, PCR buffer (Promega), deoxyNTP mixture (TOYOBO), 5'-side primer (atgggttagcattagtatgcgtttattttaggtaggactag-cctact cctac cc SEQ ID NO: 10) (final concentration of 0.2 ⁇ M each) and Pfu TurboDNA Polymerase (Promega) were added to carry out PCR. At that time, the reaction was performed for 25 cycles with denaturation 30 seconds (95 ° C.), annealing 1 minute (60 ° C.), and extension 8 minutes (68 ° C.).
  • E. coli BL21 (DE3) pLysS strain was transformed with this modified HLA-G2-pGMT7 plasmid, and 2 ⁇ YT medium (0.5% sodium chloride, 1.6% tryptone containing 100 mg / L ampicillin) was transformed.
  • the cells were cultured at 37 ° C. in 1% dry yeast extract (manufactured by Nacalai Tesque).
  • OD600 0.4 to 0.6
  • IPTG was added to 1 mM, and expression was further induced at 37 ° C. for 4 to 6 hours.
  • FIG. 1 A chromatogram obtained by gel filtration chromatography is shown in FIG.
  • the desired peak fraction (arrow part) was collected and subjected to SDS-PAGE (15% acrylamide gel) under non-reducing conditions.
  • the result is shown in FIG. From the molecular weight of the HLA-G2 dimer (42 kDa), it was confirmed that the peak was an elution fraction of HLA-G2, and the fraction was recovered and concentrated to obtain HLA-G2 (test sample).
  • HLA-G2 Using BIAcore (registered trademark) 3000 (GE healthcare BIAcore), the binding property between HLA-G2 and LILRB2 was evaluated by a surface plasmon resonance experiment.
  • streptavidin was covalently immobilized on a research sensor chip, and biotinylated LILRB2 and negative control BSA were immobilized via the streptavidin.
  • FIG. 2 is a diagram showing the response of HLA-G2 to LILRB2 or BSA which is a negative control.
  • the solid line shows the case where LILRB2 is fixed to the sensor chip, and the dotted line shows the case where BSA is fixed to the sensor chip.
  • FIG. 2 (A) LILRB2 is bound to HLA-G2 compared to BSA.
  • FIG. 2 (B) is a diagram showing apparent Kd values of HLA-G2 dimer and LILRB2.
  • the apparent Kd value is 1.5 nM as a result of analysis using a 1: 1 binding model by BIAevaluation software. From this result, it was confirmed that HLA-G2 binds to LILRB2.
  • PIR-B The extracellular domain of PIR-B was transfected into HEK293T cells and cultured in 1% FCS-DMEM for 72 hours.
  • the amino acid sequence of the extracellular domain of PIR-B and the base sequence of the gene encoding it are shown in SEQ ID NOs: 7 and 8, respectively.
  • the full-length amino acid sequence of PIR-B is published in NM_011095 of NCBI, and the PIR-B extracellular domain is a portion corresponding to domains 1-6.
  • the supernatant was recovered from the culture, the PIR-B extracellular domain was purified by Ni affinity chromatography, and subjected to Western blotting (12.5% acrylamide gel), and the protein obtained by purification from the estimated molecular weight of 75 kDa was converted to PIR. -Confirmed to be B extracellular domain.
  • the purified PIR-B extracellular domain was dissolved and biotinylated in Reaction buffer (50 mM D-biotin, 100 mM ATP, 15 ⁇ M BirA) to 15 ⁇ M.
  • the biotinylated PIR-B extracellular domain was separated from the reaction buffer by gel filtration chromatography (Superdex 200) and purified.
  • HLA-G2 dimer dissolved in HBS-EP (running buffer: HBS-EP (10 mM to pH 7.5, 150 mM sodium chloride, 3.4 mM EDTA, 0.005% Surfactant P20)) was flowed at 5 ⁇ L / min.
  • the binding response at each concentration was calculated by subtracting the response measured in the control flow cell from the response in the sample flow cell.
  • the apparent binding constant (Kd) was obtained by analysis with a BIAevaluation software using a 1: 1 binding model.
  • FIG. 3 is a diagram showing the reaction of PIR-B to each concentration of HLA-G2 (0.095 ⁇ M, 0.19 ⁇ M, 0.38 ⁇ M, 0.76 ⁇ M, 1.52 ⁇ M). From the results of FIG. 3, the apparent dissociation constant (Kd value) by analysis using the 1: 1 binding model was 142 nM. From this result, it was confirmed that HLA-G2 binds to the extracellular domain of mouse PIR-B corresponding to human LILRB2, in the same manner as it binds to human LILRB2 which is an immunosuppressive receptor (see FIG. 2). It was done.
  • Example 2 (SLE model mouse experiment) HLA-G2 was administered to SLE model mice to verify the therapeutic effect of HLA-G2 on SLE.
  • HLA-G2 prepared in Example 1 or PBS was administered to SLE model mice as follows ("HLA-G2 administration group” or "PBS administration group”).
  • MRL / MpJJmsSlc-lpr / lpr mice (Japan SLC Co., Ltd.) were used as SLE model mice, and the test was started from 12 mice in each administration group.
  • HLA-G2 a new lot (newly unwound to re-purified) was administered about every 3 weeks.
  • FIG. 4 shows the weight transition of the mouse. There was no significant change in body weight in both the PBS administration group (FIG. 4A) and the HLA-G2 administration group (FIG. 4B).
  • Anti-dsDNA antibody ELISA The amount of antinuclear antibody in the blood was measured using Levis anti-dsDNA-mouse ELISA KIT, Shibayagi. A mouse plasma specimen diluted with a buffer and a standard solution for preparing a calibration curve were added to an antigen-immobilized microplate. After 2 hours of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 2 hours and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ).
  • TMB color developing solution
  • the absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the anti-dsDNA antibody titer of each plasma sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
  • FIG. 5 shows the amount of antinuclear antibody in the blood of mice 72 days after administration.
  • a decrease in the blood antinuclear antibody amount was confirmed as compared to the PBS administration group (FIG. 5 (A)).
  • FIG. 5B shows the amount of antinuclear antibody level in the HLA-G2 administration group compared to the PBS administration group.
  • Urinary albumin was measured using an ELISA kit (Levis albumin-mouse, Shibayagi). A mouse urine specimen diluted with a buffer solution and a standard solution for preparing a calibration curve were added to an anti-albumin antibody-immobilized microplate. After 1 hour of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 1 hour and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the urine albumin value of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
  • TMB color developing solution
  • Urinary creatinine was measured using an ELISA kit (Urine creatinine measurement ELISA kit, Transgenic). A mouse urine sample diluted with a buffer solution, a standard solution for preparing a calibration curve, and an HRP-labeled anti-creatinine antibody were mixed and incubated for 30 minutes. After incubation, the mixture was added to the antigen-immobilized microplate. After incubating for 2 hours and washing the wells, the mixture was reacted with a color developing solution (orthophenylenediamine solution) for 10 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 490 nm was measured using a spectrophotometer, and the urinary creatinine value of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
  • a color developing solution orthophenylenediamine solution
  • FIG. 6 shows the amount of urine protein (albumin ( ⁇ g) / creatinine (mg)) in mice 76 days and 86 days after administration. At both 76 days and 86 days after administration, a decrease in the amount of urine protein was confirmed in the HLA-G2 administration group compared to the PBS administration group (FIGS. 6 (A) and (B)).
  • FIG. 7 shows a mouse kidney tissue specimen 79 days after administration.
  • HLA-G2 administration group compared to PBS administration group
  • H & E stained specimens reduced mononuclear cell infiltration and vasculitis
  • PAM / PAS stained specimens reduced glomerular cell proliferation and mesangial area expansion.
  • Example 3 Induction of cytokine production
  • IFN-DC which is a human monocyte-derived dendritic cell
  • IFN-DC was cultured based on Nieda M et al. After 2 days from the start of culture, medium (10% FBS RPMI-) at 37 ° C. and 5% CO 2 together with HLA-G2 (2.3 ⁇ L) or PBS as a control. 1640 (with antibiotics + 1000 U / mL GM-CSF and IFN- ⁇ ). Four days after the start of the culture, the medium was changed, and the supernatant was collected and subjected to ELISA. In ELISA, OptEIA ELISA human IL-6 and IL-10 (BD) was used as a kit.
  • HLA-G2 induces the production of cytokines IL-10 and IL-6, suggesting that systemic administration of HLA-G2 has a preventive or therapeutic effect on collagen disease.
  • Example 4 (SLE model mouse experiment with PEGylated HLA-G2) PEGylated HLA-G2 was administered to SLE model mice to verify the therapeutic effect on SLE.
  • HLA-G2 recombinant protein expression plasmid The extracellular region (Gly1-Trp182) of HLA-G2 (WT) in which the signal sequence was removed and a methionine residue as a translation initiation codon was added to the N-terminus was incorporated into the E. coli expression vector pGM7 to further enhance the expression level.
  • LILRB2biaA recombinant protein expression plasmid Two Ig-like domains (Gry1-Pro197) on the N-terminal side of the extracellular region involved in ligand binding of LILRB2 to which the signal sequence was removed and methionine as the start codon was added were incorporated into the pGM7 vector, and 17 at the C-terminus.
  • a plasmid for expression of E. coli (LILRB2birA-pGM7) possessed by the inventors of the present application, to which a biotinylated enzyme recognition sequence consisting of amino acid residues (GSHLHILDaqKMVWWNR (SEQ ID NO: 15)) was added was used (Shiroishi, M., Tsumoto, K).
  • HLA-G2 protein can be obtained by using the above-mentioned plasmids from Escherichia coli ClearColi (registered trademark) BL21 (DE3) competent cell (ClearColi (registered trademark) BL21 (DE3) competitive cell (Lucigen)) by the inventors of the present application.
  • the cells were transformed into cells) and expressed as inclusion bodies. Specifically, after transformation, seeded on an LB agar medium containing 100 ⁇ g / mL ampicillin, and then cultured at 37 ° C. overnight. The obtained colonies were inoculated into 2 ⁇ YT medium (10 mL) containing 100 ⁇ g / mL ampicillin and cultured with shaking at 37 ° C. overnight. 10 mL of the precultured bacterial solution was inoculated in 1 L of 2 ⁇ YT medium containing 100 ⁇ g / mL ampicillin, and cultured with shaking at 37 ° C.
  • Optical Density (OD) 600 0.6 in the early logarithmic growth phase was reached, Isopropyl ⁇ -D-1-thiogalactopyroside (IPTG) was added to a final concentration of 1 mM to induce expression of the recombinant protein. Thereafter, the cells were cultured with shaking in INNOVA (Eppendorf) at 150 rpm and 37 ° C. for 5 hours. The bacterial cells obtained by centrifuging the cultured bacterial solution (5000 rpm, 4 ° C., 10 minutes) are suspended in a suspension buffer (50 mM Tris hydroxylamine [Tris] -HCl pH 8.0, 150 mM NaCl) on ice. Was subjected to ultrasonic crushing.
  • a suspension buffer 50 mM Tris hydroxylamine [Tris] -HCl pH 8.0, 150 mM NaCl
  • the mixture is centrifuged at 8000 rpm and 4 ° C. for 5 minutes, and the resulting precipitate is used as an inclusion body and further suspended in a washing buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5% Triton X-100).
  • a washing buffer 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5% Triton X-100.
  • the washing operation of centrifuging at 8000 rpm and 4 ° C. for 5 minutes was repeated 4 times. Thereafter, in order to remove the surfactant Triton X-100 from the inclusion body, the same operation was repeated four times using a suspension buffer to obtain an inclusion body.
  • the resulting inclusion bodies were overnight in a solubilization buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 6 M guanidine-HCl, 10 mM Ethylenediamine-N, N, N ′, N ′, -tetraacetic acid [EDTA]).
  • a solubilization buffer 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 6 M guanidine-HCl, 10 mM Ethylenediamine-N, N, N ′, N ′, -tetraacetic acid [EDTA]
  • the solution was completely dissolved by standing at 4 ° C.
  • the supernatant obtained by centrifugation at 5000 ⁇ g and 4 ° C. for 5 minutes was stored as inclusion bodies at ⁇ 80 ° C. All centrifugation operations after the induction of protein expression were performed using a universal cooling centrifuge (KUBOTA).
  • HLA-G2 and LILRB2birA recombinant proteins were prepared by unwinding E. coli inclusion bodies by a dilution method. Dithiothreitol (DTT) was added to each solubilized inclusion body of HLA-G2 (8 mg) and LILRB2biaA (4 mg) so that the final concentration at the time of dilution was about 1 to 2 ⁇ M, and the final concentration was 10 mM. Incubated for 1 hour.
  • DTT Dithiothreitol
  • a refolding buffer (0.1 M Tris-HCl pH 8.0, 1 M L-argine-HCl, 2 mM EDTA, 3.73 mM cystein, which contains arginine having an effect of suppressing protein aggregation, in the inclusion body denaturing solution reduced by DTT. 6.73 mM cysteine) was added drop by drop until the guanidine concentration reached 1.5 M (concentration considered to form a secondary structure with disulfide bonds). The diluted solution was further diluted by adding dropwise to 200 mL of refolding buffer and stirred at 4 ° C. for 72 hours.
  • HLA-G2 was concentrated to 15 mL or less with a VIVAFLOW system, filtered, and purified using a Hiload 26/60 Superdex75 pg (GE Healthcare) column.
  • the target peak fraction obtained by SEC was concentrated to 5 mL or less using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), and then replaced with 20 mM Tris-HCl pH 8.0 using a dialysis method. After filtering, it was injected into a Resource Q 1 mL (GE Healthcare) column. IEX was performed under the conditions of 20 mM Tris-HCl pH 8.0, 0-0.5 M NaCl / 20 Column volume (CV).
  • the LILRB2biaA recombinant protein was concentrated to 0.5 mL or less using a VIVAFLOW system and Amicon Ultra, filtered, and purified with a Superdex 75 10/300 GL (GE Healthcare) column.
  • As the running buffer 20 mM Tris-HCl pH 8.0, 200 mM NaCl was used.
  • LILRB2 birA (Preparation of biotinylated LILRB2) LILRB2 birA purified by the SEC method was mixed with LILRB2 birA: 5 ⁇ BiomixA buffer (0.25 M bicine buffer pH 8.3): 5 ⁇ BiomixB buffer (50 mM Adenosine triphosphat) The mixture was mixed at 1: 1, and 1 ⁇ L of BirA enzyme (prepared by the inventors of the present application) was added, and the mixture was incubated at 30 ° C. for 1 hour. Thereafter, in order to remove unreacted biotin, SEC purification was performed on a Superdex 75 10/300 GL (GE Healthcare) column. As a running buffer, 20 mM Tris-HCl pH 8.0, 400 mM NaCl was used.
  • PEGylation reaction specific to Cys42 residue of HLA-G2 PEGylation reaction was performed using the HLA-G2 protein prepared as described above.
  • PEGylation reagents are ME-400MA (MW: 42,653 Da) (PEG40), ME-200MAOB (MW: 20,841 Da) (PEG20), ME-100MA (MW: 10,303 Da), which are high-purity linear PEGs. (PEG10), ME-050MA (MW: 5,393 Da) (PEG5) (both NOF Corporation) were used. These reagents have a maleimide group as a reactive group and react by recognizing a thiol group.
  • the purified HLA-G2 protein was concentrated by ultrafiltration using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), and replaced with PEGylation buffer (1 ⁇ Phosphate-Buffer Saline (PBS), 5 mM EDTA).
  • PBS Phosphate-Buffer Saline
  • TCEP reducing agent tris (2-carboxyethyl) phosphine
  • TCEP tris (2-carboxyethyl) phosphine
  • the progress of the PEGylation reaction was carried out by subjecting the reaction solution to Sodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) (12.5% acrylamide gel, 30 mA / plate, 70 minutes) and Coomassie Brilliant (for 70 minutes). ) Staining and Barium Iodide (BaI 2 ) staining to detect PEG molecules.
  • BaI2 staining was performed by a procedure in which the acrylamide gel after electrophoresis was immersed in a 5% BaI 2 solution (15 minutes), ion-exchanged water (30 minutes), and 0.1 M iodine solution (5 minutes) in this order and shaken.
  • PEGylated HLA-G2 was purified using Superdex 200 10/300 GL (GE Healthcare), Superdex 75 10/300 GL (GE Healthcare), or Superose 6 10/300 GL (GE HealthEC) column.
  • the PEGylation reaction solution was replaced with SEC running buffer (20 mM Tris-HCl pH 8.0, 100 mM NaCl) using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), concentrated to 0.5 mL and loaded onto the column. .
  • SEC an AKTA purifier system (GE Healthcare) was used. The degree of purification was confirmed by developing each fraction sample by SDS-PAGE under non-reducing conditions and detecting it with silver staining (2D-SILVER STAIN REAGENT II, Cosmo Bio Inc.).
  • PEGylated reaction solution was developed by SDS-PAGE, then CBB staining and BaI 2 staining were performed to confirm the progress of the reaction. As a result, all four types of PEGylated proteins were confirmed (FIGS. 11 (a) and (b)). . Also, from the density of the PEGylated protein band, it was revealed that the PEGylation reaction rate was higher for low molecular weight PEG (PEG5, PEG10).
  • SEC was selected as a method for purifying these PEGylated HLA-G2 by using the difference in molecular weight before and after PEGylation.
  • SEC purification was performed on the four types of PEGylation reaction solutions, and the obtained peak fractions were confirmed by SEC using PEG10-HLA-G2 and PEG20-HLA-G2 by SEC after silver-staining after SDS-PAGE.
  • the target PEGylated HLA-G2 was separated from the unreacted HLA-G2 protein and purified (FIGS. 12 (b) and 12 (c)).
  • LILRB2 was prepared as biotinylated LILRB2 by SEC purification after site-specific biotinylation using a purified LILRB2biaA protein with a biotinylated tag added to the C-terminal side.
  • HLA-G2 (0.2-0.7 ⁇ M), PEG5-HLA-G2 (0.4-1.6 ⁇ M), and PEG10-HLA-G2 (0.3-1. 1 ⁇ M) and PEG20-HLA-G2 (0.3 to 1.1 ⁇ M).
  • biotinylated LILRB2 and biotinylated BSA were immobilized at an immobilized amount of 200 RU to 500 RU by utilizing the interaction between streptavidin and biotin (FIG. 13 (c)).
  • HBS-EP buffer (10 mM Na-HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v) was obtained by ultrafiltration using Amicon Ultra (MWCO: 10000, Millipore).
  • Amicon Ultra MWCO: 10000, Millipore.
  • Samples of HLA-G2 and PEGylated HLA-G2 protein solutions substituted with Surfactant P20: GE Healthcare) were diluted two-fold in three steps, starting with the lowest concentration, at a flow rate of 10 ⁇ L / min. Washed away. Kinetics measurements were performed at a measurement temperature of 25 ° C., a binding time and a dissociation time of 120 seconds each. BIAevaluation version: 4.1.1 (GE Healthcare) was used for the analysis.
  • each protein administered to mice was prepared.
  • HLA-G2 and PEG20-HLA-G2 obtained by SEC purification were replaced with PBS buffer by dialysis to obtain a protein solution to be administered.
  • HLA-G2 PEG20-HLA-G2 prepared as described above or PBS as a negative control was administered to SLE model mice as follows ("HLA-G2 administration group", "PEG20-HLA-G2 administration group” or "PBS Administration group ").
  • MRL / MpJJmsSlc-lpr / lpr mice (Japan SLC Co., Ltd.) were used as SLE model mice, and the test was started from 8 mice in each administration group.
  • a new lot newly unwound to repurified was administered about every 3 weeks. The outline of the test is shown in FIG.
  • FIG. 16 shows the weight transition of the mouse.
  • the PEG20-HLA-G2 administration group and the PBS administration group there was no significant difference in body weight transition among the administration groups.
  • Anti-dsDNA antibody ELISA The amount of antinuclear antibody in the blood was measured using Levis anti-dsDNA-mouse ELISA KIT, Shibayagi. A mouse plasma specimen diluted with a buffer and a standard solution for preparing a calibration curve were added to an antigen-immobilized microplate. After 2 hours of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 2 hours and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ).
  • TMB color developing solution
  • the absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the anti-dsDNA antibody titer of each plasma sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
  • FIG. 17 (a) shows the anti-dsDNA antibody titers of each group. A decrease in the anti-dsDNA antibody titer was confirmed in the HLA-G2 administration group and the PEG20-HLA-G2 administration group as compared to the PBS administration group (FIG. 17 (a)).
  • FIG. 17 (b) shows the anti-dsDNA antibody titer of mice 90 days after administration. A significant decrease in the anti-dsDNA antibody titer was confirmed in the HLA-G2 administration group and the PEG20-HLA-G2 administration group as compared to the PBS administration group (FIG. 17 (b)).
  • Urinary albumin was measured using an ELISA kit (Levis albumin-mouse, Shibayagi). A mouse urine specimen diluted with a buffer solution and a standard solution for preparing a calibration curve were added to an anti-albumin antibody-immobilized microplate. After 1 hour of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 1 hour and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ).
  • TMB color developing solution
  • the absorbance at 450 nm was measured using a spectrophotometer, and the urine albumin index of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration. Furthermore, urinary creatinine was measured using an ELISA kit (Urine creatinine measurement ELISA kit, Transgenic).
  • a labeled antibody HRP-labeled anti-creatinine antibody was added to a mouse urine sample diluted with ultrapure water and a standard solution for preparing a calibration curve, incubated for 30 minutes, and added to an antigen-immobilized microplate.
  • the absorbance at 490 nm was measured using a spectrophotometer, and the urinary creatinine concentration of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
  • the urinary albumin index (unit: mg albumin / g creatinine) is obtained by dividing the value of urinary albumin concentration (unit: mg / mL) obtained from the above by the value of urinary creatinine concentration (unit: g / mL). Calculated.
  • FIG. 18 shows the urinary albumin index of each group. Although there was no significant difference in the urinary albumin index between the groups, the PEG20-HLA-G2 administration group had a lowering effect on the urinary albumin index compared to the PBS administration group and the HLA-G2 administration group. There was a tendency to persist (FIG. 18).
  • the blood concentration of soluble B lymphocyte stimulating factor (Blys) was measured. More specifically, the BLys concentration in plasma was measured using a Mouse BAFF / BLyS / TNFSF13B Quantikine ELISA Kit (manufactured by R & D systems) according to the protocol. A mouse plasma specimen diluted with a buffer and a standard solution for preparing a calibration curve were added to a mouse BLys-specific monoclonal antibody-immobilized microplate. After 2 hours of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse BLys polyclonal antibody) was added.
  • a labeled antibody peroxidase-conjugated anti-mouse BLys polyclonal antibody
  • the mixture was reacted with the coloring solution (TMB) for 30 minutes, and the reaction was stopped by adding an acidic solution (dilute hydrochloric acid).
  • TMB coloring solution
  • the absorbance at 450 nm (subwavelength 540 nm) was measured using a spectrophotometer, and the BLys concentration in each plasma was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
  • FIG. 19 shows the Blys blood concentration of each group.
  • PEG20-HLA-G2 administration group a significant decrease in Blys blood concentration was observed compared to the PBS administration group and the HLA-G2 administration group (FIG. 19).
  • mice in the PBS administration group plasma and urine were collected on days 118 and 132 from the first administration, and the plasma anti-dsDNA antibody titer and urinary albumin index were measured in the same manner as described above.
  • Administration was started from day 132 (administration interval: administered twice a week, administered 4 times in total for 2 weeks), and the administration route and dose were the same as described above.
  • Plasma and urine were collected on days 138 and 145, and the plasma anti-dsDNA antibody titer and urinary albumin index were measured as described above.
  • FIG. 20 (a) shows the change in the anti-dsDNA antibody titer.
  • mice treated with PEG20-HLA-G2 a decrease in the anti-dsDNA antibody titer was observed as compared with PBS administration, confirming the therapeutic effect of PEG20-HLA-G2.
  • FIG. 20 (b) shows changes in the urinary albumin index.
  • the urinary albumin index decreased as compared with PBS administration, confirming the therapeutic effect of PEG20-HLA-G2.
  • the present invention is applicable to preventive or therapeutic agents for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and preventive or therapeutic agents for collagen disease.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Dermatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

This prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus contains HLA-G or an HLA-G multimer as an active ingredient.

Description

全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤及び膠原病の予防又は治療剤Preventive or therapeutic agent for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus, and preventive or therapeutic agent for collagen disease
 本発明は、全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤及び膠原病の予防又は治療剤に関する。 The present invention relates to a preventive or therapeutic agent for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and a preventive or therapeutic agent for collagen diseases.
 HLA-Gは、非古典的MHCI分子の1つであり、HLA-G分子は、白血球Ig様受容体(LILR)などの抑制性受容体への結合により、骨髄系単球細胞、T細胞及びNK細胞をはじめとする広範な免疫細胞の免疫応答を阻害し、免疫寛容を誘導する。 HLA-G is one of the non-classical MHCI molecules, which bind to inhibitory receptors such as leukocyte Ig-like receptors (LILRs) to cause myeloid monocytes, T cells and It inhibits the immune response of a wide range of immune cells including NK cells and induces immune tolerance.
 HLA-Gタンパク質は、ヒト生体内で多様な形態で存在し、天然の抑制性分子として機能している。HLA-G1アイソフォームは、ペプチド、重鎖、β2ミクログロブリンからなるヘテロ三量体として存在する。一方、ドメイン欠損型のHLA-G2アイソフォームは、ドメイン欠損重鎖のみからなるホモ二量体である。HLA-G2については、HLA-G1の機能を補完する活性を持つことが知られていたが、詳細な機能については長期間にわたって不明であった。 HLA-G protein exists in various forms in the human body and functions as a natural inhibitory molecule. The HLA-G1 isoform exists as a heterotrimer consisting of a peptide, heavy chain, and β2 microglobulin. On the other hand, the domain-deficient HLA-G2 isoform is a homodimer consisting only of a domain-deficient heavy chain. HLA-G2 was known to have an activity that complements the function of HLA-G1, but the detailed function was unknown for a long time.
 近年、HLA-G2について、種々の報告がなされている。非特許文献1には、HLA-G2がホモ二量体として存在すること、受容体として免疫抑制性受容体LILRB2を介してシグナルを伝達することが開示されている。また、非特許文献2及び特許文献1には、HLA-G2について、in vivoで抗炎症効果を解析した結果、マウス受容体PIR-Bに強固に結合すること、関節リウマチモデルマウスへの単回投与により長期間の免疫抑制効果が得られたことが開示されている。 In recent years, various reports have been made on HLA-G2. Non-Patent Document 1 discloses that HLA-G2 exists as a homodimer and that a signal is transmitted through the immunosuppressive receptor LILRB2 as a receptor. Non-Patent Document 2 and Patent Document 1 show that HLA-G2 was analyzed in vivo for anti-inflammatory effects, and as a result, it was found to bind tightly to mouse receptor PIR-B. It is disclosed that a long-term immunosuppressive effect was obtained by administration.
 全身性エリテマトーデス(全身性紅斑性狼瘡、Systemic Lupus Erythematosus:SLE)は、DNA-抗DNA抗体などの免疫複合体の組織沈着により起こる全身性炎症性病変を特徴とする自己免疫疾患である。全身性エリテマトーデスの薬物治療においては、一般的に、非ステロイド性抗炎症薬、プレドニゾロン等のステロイド剤などが使われている。 Systemic lupus erythematosus (systemic lupus erythematosus: SLE) is an autoimmune disease characterized by systemic inflammatory lesions caused by tissue deposition of immune complexes such as DNA-anti-DNA antibodies. In pharmacological treatment of systemic lupus erythematosus, non-steroidal anti-inflammatory drugs, steroids such as prednisolone, etc. are generally used.
特開2015-140322号公報JP 2015-140322 A
 しかしながら、全身性エリテマトーデスの予防又は治療効果に関与するHLA-G又はその多量体については、今まで報告がなされていなかった。 However, there has been no report on HLA-G or its multimer involved in the prevention or treatment effect of systemic lupus erythematosus.
 本発明は、上記事情に鑑みてなされたものであり、HLA-G又はその多量体について新規の医薬用途を提供することを目的とする。より具体的には、本発明は、HLA-G又はその多量体について、全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患及び膠原病の予防又は治療剤としての新規の医薬用途を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel pharmaceutical use for HLA-G or a multimer thereof. More specifically, the present invention provides a novel pharmaceutical use of HLA-G or a multimer thereof as a preventive or therapeutic agent for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and collagen diseases. With the goal.
 上記目的を達成するため、本発明の第1の観点に係る全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤は、
 HLA-G又はHLA-G多量体を有効成分とする。
In order to achieve the above object, a preventive or therapeutic agent for a disease caused by systemic lupus erythematosus or systemic lupus erythematosus according to the first aspect of the present invention,
HLA-G or HLA-G multimer is used as an active ingredient.
 例えば、前記HLA-G多量体は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体である。 For example, the HLA-G multimer is a protein multimer having an amino acid sequence in which an α1 domain of HLA-G and an α3 domain of HLA-G are linked.
 例えば、前記HLA-G多量体は、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 であって、
 前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。
For example, the HLA-G multimer is
(A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1,
Because
It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
 例えば、前記HLA-G又はHLA-G多量体は、
 前記HLA-G又はHLA-G多量体のタンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である。
For example, the HLA-G or HLA-G multimer is
The modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the HLA-G or HLA-G multimeric protein is PEGylated with polyethylene glycol (PEG).
 例えば、前記HLA-G多量体は、
 HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、
 前記タンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である。
For example, the HLA-G multimer is
Consisting of a multimer of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked,
The modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the protein is PEGylated with polyethylene glycol (PEG).
 例えば、PEG化修飾に用いるPEGの分子量は、5kDa~100kDaである。 For example, the molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
 例えば、前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 前記多量体が、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである。
For example, the protein is a protein comprising an amino acid sequence described in (a) or (b) below,
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1,
(B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. .
 本発明の第2の観点に係る膠原病の予防又は治療剤は、
 HLA-G又はHLA-G多量体を有効成分とし、全身投与に用いられる、
 ことを特徴とする。
The preventive or therapeutic agent for collagen disease according to the second aspect of the present invention,
HLA-G or HLA-G multimer as an active ingredient, used for systemic administration,
It is characterized by that.
 例えば、前記HLA-G多量体は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体である。 For example, the HLA-G multimer is a protein multimer having an amino acid sequence in which an α1 domain of HLA-G and an α3 domain of HLA-G are linked.
 例えば、前記HLA-G多量体は、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 であって、
 前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。
For example, the HLA-G multimer is
(A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1,
Because
It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
 例えば、前記HLA-G又はHLA-G多量体は、
 前記HLA-G又はHLA-G多量体のタンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である。
For example, the HLA-G or HLA-G multimer is
The modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the HLA-G or HLA-G multimeric protein is PEGylated with polyethylene glycol (PEG).
 例えば、前記HLA-G多量体は、
 HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、
 前記タンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である。
For example, the HLA-G multimer is
Consisting of a multimer of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked,
The modified protein or a salt thereof, wherein at least one amino acid residue in the amino acid sequence constituting the protein is PEGylated with polyethylene glycol (PEG).
 例えば、PEG化修飾に用いるPEGの分子量は、5kDa~100kDaである。 For example, the molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
 例えば、前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 前記多量体が、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである。
For example, the protein is a protein comprising an amino acid sequence described in (a) or (b) below,
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1,
(B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. .
 本発明によれば、HLA-G又はその多量体について、全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患及び膠原病の予防又は治療剤としての新規の医薬用途を提供することができる。 According to the present invention, HLA-G or a multimer thereof can provide a novel medicinal use as a preventive or therapeutic agent for diseases and collagen diseases caused by systemic lupus erythematosus or systemic lupus erythematosus.
(A)はHLA-G2をゲルろ過クロマトグラフィーに供した結果を示す図であり、(B)は(A)のピーク(矢印部分)から分取した画分をSDS-PAGEに供した結果を示す図である。(A) is a diagram showing the results of subjecting HLA-G2 to gel filtration chromatography, (B) is the result of subjecting the fraction fractionated from the peak (arrow part) of (A) to SDS-PAGE. FIG. (A)は、LILRB2又はBSA(ネガティブコントロール)に対するHLA-G2の結合を示す図であり(実線:LILRB2をセンサーチップに固定化した場合、点線:BSAをセンサーチップに固定化した場合)、(B)は、LILRB2に対する各種濃度(13.3nM、26.6nM、53.1nM)のHLA-G2の反応(結合及び解離)を、表面プラズモン共鳴実験により評価した結果を示す図である。(A) is a view showing the binding of HLA-G2 to LILRB2 or BSA (negative control) (solid line: when LILRB2 is immobilized on the sensor chip, dotted line: when BSA is immobilized on the sensor chip), (B) shows the results of surface plasmon resonance experiments evaluating the reaction (binding and dissociation) of HLA-G2 at various concentrations (13.3 nM, 26.6 nM, 53.1 nM) to LILRB2. PIR-Bに対する各種濃度(0.095μM、0.19μM、0.38μM、0.76μM、1.52μM)のHLA-G2の反応(結合及び解離)を、表面プラズモン共鳴実験により評価した結果を示す図である。The result of having evaluated the reaction (binding and dissociation) of HLA-G2 at various concentrations (0.095 μM, 0.19 μM, 0.38 μM, 0.76 μM, 1.52 μM) to PIR-B by surface plasmon resonance experiments is shown. FIG. (A)は、PBS投与後のSLEモデルマウスの体重推移を示したグラフ図であり、(B)は、HLA-G2投与後のSLEモデルマウスの体重推移を示したグラフ図である。(A) is a graph showing the change in body weight of the SLE model mouse after administration of PBS, and (B) is a graph showing the change in body weight of the SLE model mouse after administration of HLA-G2. HLA-G2投与後のSLEモデルマウスの血中抗核抗体量を測定したグラフ図であり、(A)は投与72日後の結果を示すグラフ図であり、(B)は体重が顕著に多いマウス1匹を除いた結果を示すグラフ図である。FIG. 7 is a graph showing the amount of antinuclear antibody in blood of SLE model mice after HLA-G2 administration, (A) is a graph showing the results after 72 days of administration, and (B) is a mouse with a significantly high body weight. It is a graph which shows the result except one animal. HLA-G2投与後のSLEモデルマウスの尿蛋白量を測定したグラフ図であり、(A)は投与76日後の結果を示すグラフ図であり、(B)は投与86日後の結果を示すグラフ図である。It is the graph which measured the urine protein amount of the SLE model mouse | mouth after HLA-G2 administration, (A) is a graph figure which shows the result 76 days after administration, (B) is the graph figure which shows the result 86 days after administration. It is. HLA-G2投与後のSLEモデルマウスの腎臓組織を評価した図である。It is the figure which evaluated the kidney tissue of the SLE model mouse after HLA-G2 administration. HLA-G2との2日間のインキュベーション後のIFN-DCにおけるサイトカインについて、ELISAにより解析した結果を示す図であり、(A)はIL-6産生を示すグラフ図であり、(B)はIL-10産生を示すグラフ図である。It is a figure which shows the result analyzed by ELISA about the cytokine in IFN-DC after 2 days incubation with HLA-G2, (A) is a graph figure which shows IL-6 production, (B) is IL- It is a graph which shows 10 production. 各組換えタンパク質の一次構造(左)及び分子模式図(右)を表す図であり、(a)はHLA-G2、(b)はLILRB2を示す模式図である。It is a figure showing the primary structure (left) and molecule | numerator schematic diagram (right) of each recombinant protein, (a) is HLA-G2, (b) is a schematic diagram which shows LILRB2. (a)はHLA-G2の調製において封入体巻き戻し後、HiLoad26/60 Superdex75 pgカラムを用いたSEC精製のクロマトグラムを示した図であり、(b)は還元剤(TCEP)の添加によって得られたPEG化HLA-G2のCBB染色の結果を示した図である。(A) is a diagram showing a chromatogram of SEC purification using a HiLoad26 / 60 Superdex75 pg column after unwinding inclusion bodies in the preparation of HLA-G2, and (b) is obtained by adding a reducing agent (TCEP). It is the figure which showed the result of CBB dyeing | staining of obtained PEGylated HLA-G2. PEG分子量による反応効率の比較を示した図であり、(a)はCBB染色、(b)はBaI2染色の結果を示す図である。It is the figure which showed the comparison of the reaction efficiency by PEG molecular weight, (a) is a figure which shows the result of CBB dyeing | staining, (b) is BaI2 dyeing | staining. 各分子量のPEGによるPEG化反応液のSuperdex 200 10/300 GLを用いたSEC精製、濃縮し、SDS-PAGE後、銀染色した結果を示す図であり、(a)はPEG5-HLA-G2、(b)はPEG10-HLA-G2、(c)はPEG20-HLA-G2、(d)はPEG40-HLA-G2の結果を示す図である。It is a figure which shows the result of carrying out SEC purification using Superdex 200 10/300 GL of each molecular weight PEG using Superdex 200 10/300 GL, concentrating, and silver-staining after SDS-PAGE, (a) is PEG5-HLA-G2, (B) shows the results of PEG10-HLA-G2, (c) shows the results of PEG20-HLA-G2, and (d) shows the results of PEG40-HLA-G2. センサーチップCAP上へのビオチン化タンパク質固定化の原理を表す模式図であり、(a)はセンサーチップCAP上に一本鎖DNAを固定化した様子を表す模式図であり、(b)はストレプトアビジンをチップ上に固定した様子を表す模式図であり、(c)はビオチン化LILRB2及びビオチン化BSAを固定化した様子を表す模式図である。It is a schematic diagram showing the principle of biotinylated protein immobilization on a sensor chip CAP, (a) is a schematic diagram showing a state in which single-stranded DNA is immobilized on the sensor chip CAP, and (b) is a streptogram. It is a schematic diagram showing a mode that avidin was fixed on the chip | tip, (c) is a schematic diagram showing a mode that biotinylated LILRB2 and biotinylated BSA were fix | immobilized. LILRB2受容体との結合実験により得られたセンサグラムを示す図であり、(a)はHLA-G2、(b)はPEG5-HLA-G2、(c)はPEG10-HLA-G2、(d)はPEG20-HLA-G2の結果を示す図である。FIG. 4 is a diagram showing sensorgrams obtained by a binding experiment with a LILRB2 receptor, where (a) is HLA-G2, (b) is PEG5-HLA-G2, (c) is PEG10-HLA-G2, (d) FIG. 4 is a view showing the results of PEG20-HLA-G2. SLEモデルマウスを用いた試験の概要を示す図である。It is a figure which shows the outline | summary of the test using a SLE model mouse. SLEモデルマウスの体重推移を示したグラフ図である。It is the graph which showed the weight transition of the SLE model mouse. (a)はSLEモデルマウスの血中抗dsDNA抗体価を測定したグラフ図であり、(b)は投与90日後の結果を示すグラフ図である。(A) is the graph which measured the blood anti- dsDNA antibody titer of the SLE model mouse, (b) is a graph which shows the result 90 days after administration. SLEモデルマウスの尿中アルブミン指数を測定したグラフ図である。It is the graph which measured the urinary albumin index of the SLE model mouse. SLEモデルマウスのBlys血中濃度を測定したグラフ図である。It is the graph which measured the Blys blood concentration of a SLE model mouse. (a)はSLEモデルマウスの血中抗dsDNA抗体価を測定したグラフ図であり、(b)はSLEモデルマウスの尿中アルブミン指数を測定したグラフ図である。(A) is the graph which measured the blood anti- dsDNA antibody titer of the SLE model mouse, (b) is the graph which measured the urinary albumin index of the SLE model mouse.
 本実施形態による全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤について詳細に説明する。 The agent for preventing or treating a disease caused by systemic lupus erythematosus or systemic lupus erythematosus according to this embodiment will be described in detail.
 本実施形態による全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤は、HLA-G又はHLA-G多量体を有効成分とする(HLA:Human Leukocyte Antigen(ヒト白血球型抗原))。 The preventive or therapeutic agent for systemic lupus erythematosus or systemic lupus erythematosus according to this embodiment comprises HLA-G or HLA-G multimer as an active ingredient (HLA: Human Leukocyte Antigen (human leukocyte antigen) ).
 本実施形態が対象とするHLA-G又はHLA-G多量体について説明する。 The HLA-G or HLA-G multimer targeted by this embodiment will be described.
 本実施形態が対象とするHLA-Gは、好ましくはヒト由来のHLA-Gである。なお、ヒトのHLA-G分子の配列情報は、例えばNCBI等により既に公知である。具体的には、アイソフォームの一つとして、NCBIには、NM_002127.5にヒト由来のHLA-G全長(=HLA-G1)の遺伝子配列が記載されており、このうちHLA-Gのα1ドメイン及びα3ドメインの遺伝子領域に相当する塩基配列が、それぞれ下記に示す配列番号2の「1~270番目の塩基配列」及び「271~540番目の塩基配列」である。なお、HLA-G分子には種々のアイソフォームが存在しており、アイソフォームによってそれらのアミノ酸配列は若干相違する。 The HLA-G targeted by this embodiment is preferably human-derived HLA-G. The sequence information of human HLA-G molecules is already known, for example, by NCBI. Specifically, as one of the isoforms, NCBI describes the human-derived HLA-G full-length gene sequence (= HLA-G1) in NM_002127.5, of which the α1 domain of HLA-G And the base sequence corresponding to the gene region of the α3 domain are “1st to 270th base sequence” and “271st to 540th base sequence” of SEQ ID NO: 2 shown below, respectively. There are various isoforms in the HLA-G molecule, and their amino acid sequences are slightly different depending on the isoform.
 本実施形態が対象とするHLA-G多量体は、例えば、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体であり、好ましくは、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 であって、
 前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。
The HLA-G multimer targeted by this embodiment is, for example, a multimer of a protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked,
(A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1,
Because
It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
 本明細書において、「HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体」を“HLA-G2”又は“HLA-G2多量体”と称する場合がある。 In the present specification, “a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked” may be referred to as “HLA-G2” or “HLA-G2 multimer”. is there.
 上記の「配列番号1に示されるアミノ酸配列からなるタンパク質」は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の二量体のうちの一つである。ここでHLA-G分子は、好ましくはヒト由来のHLA-Gである。当該配列番号1において「1~90番目のアミノ酸領域」がα1ドメインのアミノ酸配列に相当し、「91~180番目のアミノ酸領域」がα3ドメインのアミノ酸配列に相当する。また、当該アミノ酸配列(配列番号1)をコードする塩基配列を表す配列番号2において「1~270番目の塩基配列」領域がα1ドメインをコードする遺伝子領域に相当し、「271~540番目の塩基配列」領域がα3ドメインをコードする遺伝子領域に相当する。 The above “protein consisting of the amino acid sequence shown in SEQ ID NO: 1” is one of dimers of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked. . Here, the HLA-G molecule is preferably human-derived HLA-G. In SEQ ID NO: 1, “1st to 90th amino acid region” corresponds to the amino acid sequence of the α1 domain, and “91st to 180th amino acid region” corresponds to the amino acid sequence of the α3 domain. Further, in SEQ ID NO: 2 representing the base sequence encoding the amino acid sequence (SEQ ID NO: 1), the “1st to 270th base sequence” region corresponds to the gene region encoding the α1 domain, and the “271st to 540th bases” The “sequence” region corresponds to the gene region encoding the α3 domain.
 上記の「1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質」として、HLA-G分子のα1ドメインとα3ドメインとの連結体(α1-3連結体)のアミノ酸配列(配列番号1)のC端側にさらにHLA-G分子のイントロン4によってコードされるアミノ酸配列(配列番号3)を有するタンパク質が例示され、本明細書においてこれを“HLA-G2”と称する場合がある。また、他の「1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質」として、HLA-G分子のα1ドメインとα3ドメインとの連結体のアミノ酸配列(配列番号1)のC端側にさらにHLA-G2分子の膜貫通ドメイン及び細胞内ドメインのアミノ酸配列(配列番号4)を有するタンパク質を例示することができる。 The amino acid sequence (sequence) of a conjugate of α1 domain and α3 domain (α1-3 conjugate) of HLA-G molecule as the “protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added”. A protein having an amino acid sequence (SEQ ID NO: 3) encoded by intron 4 of the HLA-G molecule is further exemplified on the C-terminal side of No. 1), and this may be referred to as “HLA-G2” in the present specification. . As another “protein consisting of an amino acid sequence in which one or more amino acids have been deleted, substituted or added”, the C1 of the amino acid sequence (SEQ ID NO: 1) of a conjugate of α1 domain and α3 domain of HLA-G molecule A protein having an amino acid sequence (SEQ ID NO: 4) of the transmembrane domain and intracellular domain of the HLA-G2 molecule on the end side can be exemplified.
 「1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質」のうち、好ましくは上記HLA-G分子のα1ドメインとα3ドメインとの連結体の多量体の機能(白血球Ig様受容体B2との結合活性)を備え、かつ当該α1-3連結体のアミノ酸配列(配列番号1)と好ましくは90%以上、好ましくは95%以上同一のアミノ酸配列を有することを限度として、アミノ酸が欠失、置換若しくは付加してなるタンパク質である。より好ましくは上記連結体のアミノ酸配列(配列番号1)と96%以上同一、さらに好ましくは98%以上同一のアミノ酸配列を有するタンパク質である。 Of the “protein consisting of an amino acid sequence in which one or more amino acids have been deleted, substituted or added”, the function of a multimer of a conjugate of α1 domain and α3 domain of the above HLA-G molecule (leukocyte Ig-like receptor) And the amino acid sequence of the α1-3 conjugate (SEQ ID NO: 1) is preferably 90% or more, preferably 95% or more. It is a protein formed by deletion, substitution or addition. More preferably, it is a protein having an amino acid sequence of 96% or more, more preferably 98% or more identical to the amino acid sequence (SEQ ID NO: 1) of the above conjugate.
 本明細書において、HLA-G多量体のうち、(a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、であって、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体を、“HLA-G2多量体”と称する場合がある。 In the present specification, among the HLA-G multimers, (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 or (b) one or several amino acids are missing in the amino acid sequence shown in SEQ ID NO: 1. A protein comprising an amino acid sequence deleted, substituted, or added, which is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b), “HLA-G2 Sometimes referred to as "multimer".
 本実施形態が対象とするHLA-G2多量体は、前述するHLA-G分子のα1ドメインとα3ドメインとの連結体そのもの(以下これを単に「α1-3連結体」ともいう)に限定されず、HLA-G分子のα1ドメインとα3ドメインとの連結構造を有し、かつ当該多量体が白血球Ig様受容体B2(LILRB2)に対して結合活性を有するものであればよい。例えば、上記条件を有するものである限り、当該HLA-G分子のα1ドメインとα3ドメインとの連結体(α1-3連結体)のアミノ酸配列(配列番号1)のうち、1以上のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質であってもよい。ここで、「白血球Ig様受容体B2(LILRB2)に対する結合活性」とは、HLA-G2多量体がLILRB2と直接結合する活性であって、これによりLILRB2を介してシグナルを伝達し、免疫制御効果を発揮することができる活性を意味する。 The HLA-G2 multimer targeted by the present embodiment is not limited to the above-mentioned ligated body of α1 domain and α3 domain of the HLA-G molecule (hereinafter also simply referred to as “α1-3 ligated product”). Any structure may be used as long as it has a linked structure of α1 domain and α3 domain of HLA-G molecule and the multimer has binding activity to leukocyte Ig-like receptor B2 (LILRB2). For example, as long as the above conditions are satisfied, one or more amino acids are missing in the amino acid sequence (SEQ ID NO: 1) of the conjugate of α1 domain and α3 domain (α1-3 conjugate) of the HLA-G molecule. It may be a protein consisting of a deleted, substituted or added amino acid sequence. Here, “binding activity to leukocyte Ig-like receptor B2 (LILRB2)” is an activity in which an HLA-G2 multimer directly binds to LILRB2, thereby transmitting a signal via LILRB2 and having an immunoregulatory effect. Means an activity capable of exerting.
 なお、HLA-G2多量体が、白血球Ig様受容体B2(LILRB2)との結合活性を有するか否かの確認は、例えば、T細胞ハイブリドーマを用いたレポーターアッセイなどにより行うことができる。かかるT細胞ハイブリドーマとしては、LILRB2の細胞外ドメインと活性型受容体PILRβの膜貫通・細胞内ドメインを融合させたキメラ分子を発現したNFAT-GFP導入レポーター細胞(マウスT細胞ハイブリドーマ)を例示することができる。この場合、HLA-G2多量体がLILRB2受容体に結合すると、PILRβの細胞内ドメインを介したシグナルが伝達され、転写因子NFATが活性化される。レポーターアッセイは、当該NFATの活性化によりGFPの発現が誘導されることを利用したアッセイ系である。GFP発現は、LILRB2とHLA-G2多量体とが結合したことを示すが、かかるGFP発現による蛍光の出現はフローサイトメトリーで確認することができる。 Whether or not the HLA-G2 multimer has binding activity with leukocyte Ig-like receptor B2 (LILRB2) can be confirmed by, for example, a reporter assay using a T cell hybridoma. Examples of such T cell hybridomas include NFAT-GFP introduced reporter cells (mouse T cell hybridomas) expressing a chimeric molecule in which the extracellular domain of LILRB2 and the transmembrane / intracellular domain of the active receptor PILRβ are fused. Can do. In this case, when the HLA-G2 multimer binds to the LILRB2 receptor, a signal through the intracellular domain of PILRβ is transmitted, and the transcription factor NFAT is activated. The reporter assay is an assay system using the fact that the expression of GFP is induced by the activation of the NFAT. GFP expression indicates that LILRB2 and HLA-G2 multimer are bound, and the appearance of fluorescence due to such GFP expression can be confirmed by flow cytometry.
 HLA-G2多量体は、前述するHLA-G2同士が、ジスルフィド結合するか、またはジスルフィド結合によらないで非共有結合的に結合することにより、多量体化したものである。なお、本実施形態におけるHLA-G2多量体において、例えば、自然形成するホモ二量体の場合、ジスルフィド結合によらず多量体化し、システイン残基(Cys42)は分子表面にフリーのまま存在していてもよく、また、ホモ二量体を1単位とするさらなる二量体(四量体)又はそれらのさらなる多量体の場合、ホモ二量体分子表面に存在するシステイン残基(Cys42)同士を介したジスルフィド結合により多量体化していてもよい。さらに、自然形成するホモ二量体の場合、ジスルフィド結合によらず多量体化し、また、ホモ二量体を1単位とするさらなる二量体(四量体)又はそれらのさらなる多量体の場合、ホモ二量体分子表面に存在するシステイン残基以外のアミノ酸残基同士を介した結合により多量体化していてもよい。本実施形態において、ホモ二量体の場合、好ましくはジスルフィド結合によらずに二量体化する。また、HLA-G2多量体のタンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基は、ポリエチレングリコール(PEG)でPEG化修飾されていてもよい。PEG化修飾されたHLA-G2多量体については、後述する。 The HLA-G2 multimer is a multimerized product in which the aforementioned HLA-G2s are disulfide bonded or non-covalently bonded without using disulfide bonds. In the HLA-G2 multimer in the present embodiment, for example, in the case of a naturally formed homodimer, the HLA-G2 multimer is multimerized regardless of the disulfide bond, and the cysteine residue (Cys42) remains free on the molecular surface. In the case of a further dimer (tetramer) having a homodimer as one unit or a further multimer thereof, cysteine residues (Cys42) present on the surface of the homodimer molecule may be It may be multimerized by an intervening disulfide bond. Furthermore, in the case of a homodimer that spontaneously forms, it multimerizes regardless of disulfide bonds, and in the case of a further dimer (tetramer) having a homodimer as one unit or a further multimer thereof, It may be multimerized by binding via amino acid residues other than cysteine residues present on the surface of the homodimer molecule. In the present embodiment, in the case of a homodimer, the dimerization is preferably performed regardless of the disulfide bond. Further, at least one amino acid residue in the amino acid sequence constituting the protein of the HLA-G2 multimer may be PEGylated with polyethylene glycol (PEG). The PEGylated HLA-G2 multimer will be described later.
 HLA-G2多量体は、前述するα1-3連結体同士又は変異型同士からなるホモ多量体であってもよいし、またはα1-3連結体と変異型からなるヘテロ多量体であってもよく、限定はされない。好ましくはα1-3連結体同士からなるホモ多量体である。 The HLA-G2 multimer may be a homomultimer composed of α1-3 conjugates or mutants as described above, or a heteromultimer composed of α1-3 conjugates and mutants. There is no limitation. Preferably, it is a homomultimer composed of α1-3 conjugates.
 また、HLA-G2多量体は、白血球Ig様受容体B2(LILRB2)との結合部位を表面に露出した構造を有し、これらの受容体との結合が立体障害により妨げられないものである。そのため、HLA-G2多量体は、HLA-G2と同種の機能(白血球Ig様受容体への結合活性)を保持しうる構造を有する。 The HLA-G2 multimer has a structure in which the binding site to the leukocyte Ig-like receptor B2 (LILRB2) is exposed on the surface, and the binding to these receptors is not hindered by steric hindrance. Therefore, the HLA-G2 multimer has a structure capable of retaining the same type of function (binding activity to leukocyte Ig-like receptor) as HLA-G2.
 なお、本実施形態が対象とするHLA-G又はHLA-G多量体には、例えば、HLA-G1(NCBI、NM_002127.5)(細胞外ドメイン:配列番号11)、(全長(NCBI、NM_002127.5、シグナル配列、ストークス領域以下も含む):配列番号12)及びHLA-G1において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質も含まれる。 The HLA-G or HLA-G multimer targeted by this embodiment includes, for example, HLA-G1 (NCBI, NM_002127.5) (extracellular domain: SEQ ID NO: 11), (full length (NCBI, NM_002127. 5, including the signal sequence and the Stokes region and lower): SEQ ID NO: 12) and proteins consisting of amino acid sequences in which one or several amino acids are deleted, substituted or added in HLA-G1.
 HLA-G2多量体の調製方法について例示して説明する。 An example of a method for preparing the HLA-G2 multimer will be described.
 まず、公知の遺伝子組換え技術を用いて、HLA-G2多量体のアミノ酸配列をコードする遺伝子(例えば、配列番号2)を発現ベクター等に組込んだ組換えベクターを構築し、次いで、公知の各種形質転換法により、構築した組換えベクターを宿主に導入して形質転換体を得、これを培養することにより、組換えHLA-G2多量体を発現させ、回収することにより行うことができる。 First, using a known gene recombination technique, a recombinant vector in which a gene encoding the amino acid sequence of the HLA-G2 multimer (eg, SEQ ID NO: 2) is incorporated into an expression vector or the like is constructed. The transformation can be carried out by expressing the recombinant HLA-G2 multimer and recovering it by introducing the constructed recombinant vector into a host by various transformation methods to obtain a transformant and culturing the transformant.
 ここでHLA-G2多量体のアミノ酸配列をコードする遺伝子としては、HLA-Gのα1ドメインとα3ドメインとの連結体のアミノ酸配列(配列番号1)をコードする遺伝子(配列番号2)のほか、当該連結体のアミノ酸配列の一部を欠失、置換または付加してなる前述のHLA-G2(以下、これを便宜上「変異型HLA-G2」という場合がある)のアミノ酸配列をコードする遺伝子を用いることもできる。また、収量増加の観点から、HLA-G2のアミノ酸配列をコードする遺伝子として、例えば配列番号2に示す塩基配列の第1~18番目(HLA-G2のアミノ酸配列において1~6番目のアミノ酸をコードする塩基配列に相当する)の塩基配列を、配列番号5に示す塩基配列で置換して得られる遺伝子(以下、「改変遺伝子」という)(配列番号6)を用いることもできる。 Here, the gene encoding the amino acid sequence of the HLA-G2 multimer includes the gene (SEQ ID NO: 2) encoding the amino acid sequence (SEQ ID NO: 1) of the conjugate of α1 domain and α3 domain of HLA-G, A gene encoding the amino acid sequence of the aforementioned HLA-G2 (hereinafter sometimes referred to as “mutant HLA-G2” for convenience) obtained by deleting, replacing or adding a part of the amino acid sequence of the conjugate. It can also be used. Further, from the viewpoint of increasing the yield, as a gene encoding the amino acid sequence of HLA-G2, for example, the first to 18th amino acids of the nucleotide sequence shown in SEQ ID NO: 2 (the 1st to 6th amino acids in the amino acid sequence of HLA-G2 are encoded) A gene obtained by substituting the base sequence of SEQ ID NO: 5 (hereinafter referred to as “modified gene”) (SEQ ID NO: 6) can also be used.
 変異型HLA-G2多量体をコードする遺伝子は、α1-3連結体の遺伝子のDNA配列に変異を導入して調製すればよく、例えば、Molecular Cloning, A Laboratory Manual 2nd ed.,Cold Spring Harbor Laboratory Press (1989),Current Protocols in Molecular Biology,John Wiley & Sons(1987-1997)等に記載の部位特異的変異導入法に準じて調製することができる。具体的には、Kunkel法やGapped duplex法等の公知手法により、部位特異的突然変異導入法を利用した変異導入用キットを用いて調製することができる。当該キットとしては、例えば、QuickChangeTM Site-Directed Mutagenesis Kit(ストラタジーン社製)、GeneTailorTM Site-Directed Mutagenesis System(インビトロジェン社製)、TaKaRa Site-Directed Mutagenesis System(Mutan-K、Mutan-Super Express Km等:タカラバイオ社製)等が好ましく挙げられる。 The gene encoding the mutant HLA-G2 multimer may be prepared by introducing a mutation into the DNA sequence of the α1-3 linked gene. For example, Molecular Cloning, A Laboratory Manual 2nd ed. , Cold Spring Harbor Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997) and the like. Specifically, it can be prepared using a mutation introduction kit using a site-specific mutagenesis method by a known method such as the Kunkel method or the Gapped duplex method. Such kits include, for example, QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by Stratagene), GeneTailorTM Site-Directed Mutagenesis System (manufactured by Invitrogen), TaKaRaSite-MustimatedMut-SensitMight-SensitMist-Smut-SensitMist-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Strain-Sensor-Mut-SensitMut-Sk (Takara Bio Inc.) and the like are preferred.
 形質転換体の作成に使用される宿主は、導入された組換えベクター等からHLA-G2(α1-3連結体、変異型)を発現し得るものであれば、特に限定はされず、例えば、ヒトやマウス等の各種動物に由来する細胞、各種昆虫に由来する細胞、大腸菌などの原核細胞、酵母などの真核細胞、植物細胞等、宿主となりえる公知の細胞が使用できる。 The host used for the preparation of the transformant is not particularly limited as long as it can express HLA-G2 (α1-3 conjugate, mutant) from the introduced recombinant vector or the like. Known cells that can serve as hosts, such as cells derived from various animals such as humans and mice, cells derived from various insects, prokaryotic cells such as E. coli, eukaryotic cells such as yeast, and plant cells can be used.
 組換えHLA-G2多量体の製造は、具体的には、上述の形質転換体を培養する工程と、得られる培養物から組換えHLA-G2多量体を採取する工程とを含む方法により行うことができる。ここで、「培養物」とは、培養上清、培養細胞、培養菌体、又は細胞若しくは菌体の破砕物のいずれをも意味するものである。上記形質転換体の培養は、宿主の培養に用いられる通常の方法に従って行うことができる。目的のタンパク質は、上記培養物中に蓄積される。 Specifically, the production of the recombinant HLA-G2 multimer should be carried out by a method including the step of culturing the above-mentioned transformant and the step of collecting the recombinant HLA-G2 multimer from the resulting culture. Can do. Here, “cultured product” means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells. The transformant can be cultured according to a usual method used for host culture. The protein of interest is accumulated in the culture.
 組換えHLA-G2多量体が細胞外に生産される場合は、培養液をそのまま使用するか、遠心分離やろ過等により細胞を除去する。その後、必要に応じて硫安沈澱による抽出等により、培養物中から組換えHLA-G2多量体を採取し、さらに必要に応じて透析、各種クロマトグラフィー(ゲルろ過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等)を用いて単離精製することができる。 When the recombinant HLA-G2 multimer is produced extracellularly, use the culture solution as it is, or remove the cells by centrifugation, filtration or the like. Thereafter, the recombinant HLA-G2 multimer is collected from the culture by extraction with ammonium sulfate precipitation, if necessary, and further subjected to dialysis, various chromatography (gel filtration, ion exchange chromatography, affinity chromatography) as necessary. Etc.) can be isolated and purified.
 組換えHLA-G2多量体が細胞内に生産される場合は、細胞を破砕することにより組換えHLA-G2多量体を採取することができる。可溶性画分にHLA-G2多量体が含まれる場合は、破砕後、遠心分離や濾過などにより、必要に応じて細胞の破砕残渣(細胞抽出液不溶性画分を含む)を除く。残渣除去後の上清は、細胞抽出液可溶性画分であり、粗精製したタンパク質溶液とすることができる。一方、不溶性画分に封入体としてHLA-G2多量体が発現する場合は、破砕後、遠心分離により不溶性画分を単離し、界面活性剤等を含んだバッファーで洗浄、遠心を繰り返すことにより、細胞の破砕残渣を取り除く。得られた封入体はグアニジンや尿素などの変性剤を含むバッファーで可溶化した後、希釈法や透析法を利用した蛋白質の巻き戻しを行う。機能的に巻き戻ったHLA-G2多量体の精製は各種クロマトグラフィー(ゲルろ過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等)を用いて単離精製することができる。 When a recombinant HLA-G2 multimer is produced in a cell, the recombinant HLA-G2 multimer can be collected by disrupting the cell. If the soluble fraction contains an HLA-G2 multimer, the disrupted cell residue (including the cell extract insoluble fraction) is removed as necessary by centrifugation or filtration after disruption. The supernatant after removal of the residue is a cell extract soluble fraction and can be a crude protein solution. On the other hand, when the HLA-G2 multimer is expressed as inclusion bodies in the insoluble fraction, after crushing, the insoluble fraction is isolated by centrifugation, washed with a buffer containing a surfactant, etc., and repeatedly centrifuged. Remove cell debris. The obtained inclusion body is solubilized with a buffer containing a denaturing agent such as guanidine or urea, and then the protein is unwound using a dilution method or a dialysis method. The functionally unwound HLA-G2 multimer can be isolated and purified using various types of chromatography (gel filtration, ion exchange chromatography, affinity chromatography, etc.).
 また、組換えHLA-G2多量体の産生は、形質転換体を用いたタンパク質合成系のほか、生細胞を全く使用しない無細胞タンパク質合成系を用いて行うこともでき、産生された組換えHLA-G2多量体は、クロマトグラフィー等の手段を適宜選択して精製することができる。 Recombinant HLA-G2 multimers can be produced not only using a protein synthesis system using a transformant, but also using a cell-free protein synthesis system that does not use any living cells. The -G2 multimer can be purified by appropriately selecting means such as chromatography.
 HLA-G2多量体は、どのような方法で得られるものであってもよく、その取得方法に特に限定はされない。 The HLA-G2 multimer may be obtained by any method, and the acquisition method is not particularly limited.
 HLA-G又はHLA-G多量体は、該HLA-G又はHLA-G多量体のタンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基がポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩であってもよい。 The HLA-G or HLA-G multimer is a modification in which at least one amino acid residue in the amino acid sequence constituting the protein of the HLA-G or HLA-G multimer is PEGylated with polyethylene glycol (PEG) It may be a protein or a salt thereof.
 また、HLA-G多量体は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、該タンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基がポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩であってもよい。 The HLA-G multimer comprises a multimer of a protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, and at least one amino acid in the amino acid sequence constituting the protein It may be a modified protein or a salt thereof whose residue is PEGylated with polyethylene glycol (PEG).
 PEG化修飾されるアミノ酸残基は、該タンパク質において受容体との結合に影響しない部位に存在することが好ましい。PEG化修飾されるアミノ酸残基として、例えば、リジン残基、システイン残基等を挙げることができる。例えば、システイン残基がPEG化修飾される場合、該システイン残基は、例えば、HLA-G2の42番目のフリーのシステイン残基であってもよい。また、任意の部位に存在するアミノ酸残基をシステイン残基に置換し、該システイン残基をPEG化修飾してもよく、例えば、HLA-Gの糖鎖修飾部位である86番目のアスパラギンをシステインに置換し、PEG化修飾してもよい。また、任意の部位にシステイン残基を付加し、該システイン残基をPEG化修飾してもよく、例えば、HLA-GのC末端にシステインを付加し、PEG化修飾してもよい。なお、PEG化修飾が可能なアミノ酸残基であれば、リジン残基、システイン残基に限らず選択することができる。 The amino acid residue to be PEGylated is preferably present at a site that does not affect the binding to the receptor in the protein. Examples of amino acid residues to be PEGylated include lysine residues and cysteine residues. For example, when a cysteine residue is PEGylated, the cysteine residue may be, for example, the 42nd free cysteine residue of HLA-G2. Alternatively, an amino acid residue present at an arbitrary site may be substituted with a cysteine residue, and the cysteine residue may be modified with PEG. For example, the 86th asparagine which is a sugar chain modification site of HLA-G And may be modified by PEGylation. Further, a cysteine residue may be added to an arbitrary site, and the cysteine residue may be modified with PEG. For example, cysteine may be added to the C-terminus of HLA-G and modified with PEG. Any amino acid residue capable of PEGylation modification can be selected without limitation to lysine residues and cysteine residues.
 本実施形態において、PEG化修飾に用いるPEGの分子量は、例えば、5kDa~100kDaであり、好ましくは5kDa~40kDaである。PEG化修飾の詳細については、後述する。 In this embodiment, the molecular weight of PEG used for PEGylation modification is, for example, 5 kDa to 100 kDa, and preferably 5 kDa to 40 kDa. Details of the PEGylation modification will be described later.
 該タンパク質は、例えば、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 上記多量体が、上記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものであってもよい。該多量体が白血球Ig様受容体B2との結合活性を有する否かの確認は、前述同様に行うことができる。
The protein is, for example, a protein comprising an amino acid sequence described in the following (a) or (b),
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1,
(B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. May be. Whether or not the multimer has binding activity with leukocyte Ig-like receptor B2 can be confirmed in the same manner as described above.
 次に、本実施形態による改変タンパク質の製造方法について詳細に説明する。 Next, the modified protein production method according to the present embodiment will be described in detail.
 本実施形態による改変タンパク質の製造方法は、例えば、
 (A)HLA-G又はHLA-G多量体を調製する工程と、
 (B)工程(A)で得られたHLA-G又はHLA-G多量体のタンパク質を脱気処理した後、還元処理する工程と、
 (C)工程(B)で還元処理された前記タンパク質をPEG化修飾する工程と、
 を含む。
The method for producing a modified protein according to this embodiment includes, for example,
(A) preparing HLA-G or HLA-G multimer;
(B) a step of deaerating the protein of HLA-G or HLA-G multimer obtained in step (A), followed by a reduction treatment;
(C) PEGylation modification of the protein reduced in step (B);
including.
 HLA-G又はHLA-G多量体の詳細については、前述の通りである。任意の方法でHLA-G又はHLA-G多量体を調製することができる。 Details of HLA-G or HLA-G multimer are as described above. HLA-G or HLA-G multimers can be prepared by any method.
 工程(B)は、工程(A)で得られたHLA-G又はHLA-G多量体のタンパク質を脱気処理した後、還元処理する工程である。 Step (B) is a step in which the HLA-G or HLA-G multimeric protein obtained in step (A) is degassed and then reduced.
 工程(B)において、嫌気条件下でPEG化反応を進行させるために、脱気処理を行う。脱気処理は、例えば、アスピレーターを用いて1時間行ってもよい。脱気処理の前に、例えば、工程(A)で得られたHLA-G又はHLA-G多量体のタンパク質をPEG化バッファー(例えば、1×Phosphate-Bufferd Saline(PBS),5mM EDTA)への置換を行ってもよい。脱気処理の方法として、他の公知の方法を用いてもよい。 In step (B), a deaeration process is performed to advance the PEGylation reaction under anaerobic conditions. The deaeration process may be performed for 1 hour using an aspirator, for example. Prior to the deaeration treatment, for example, the HLA-G or HLA-G multimeric protein obtained in the step (A) is transferred to a PEGylation buffer (eg, 1 × Phosphate-Buffer Saline (PBS), 5 mM EDTA). Replacement may be performed. Other known methods may be used as the deaeration process.
 工程(B)において、還元剤は、還元処理によってジスルフィド結合を切断し、PEG化ターゲットとなる残基のチオール基を再度露出させ、反応効率を向上させるために、添加される。還元剤は、還元作用を有する任意の還元剤を用いることができ、例えば、マレイミドとシステインを用いた反応時に多用されるtris(2-carboxyethyl)phosphine(TCEP)を用いてもよい。還元剤としてTCEPを用いる場合、例えば、TCEPを終濃度0.1mM以上となるように加えてもよい。 In step (B), the reducing agent is added to cleave the disulfide bond by reduction treatment to reexpose the thiol group of the residue serving as the PEGylation target and improve the reaction efficiency. As the reducing agent, any reducing agent having a reducing action can be used, and for example, tris (2-carboxyethyl) phosphine (TCEP) frequently used in the reaction using maleimide and cysteine may be used. When TCEP is used as the reducing agent, for example, TCEP may be added so as to have a final concentration of 0.1 mM or more.
 工程(C)は、工程(B)で還元処理された該タンパク質をPEG化修飾する工程である。 Step (C) is a step of PEGylating the protein that has been reduced in step (B).
 工程(C)において、具体的には、PEGの末端にマレイミド基、スクシンイミド基などの反応性官能基を有するPEG化試薬と本実施形態のタンパク質を溶液中で反応させることによりPEG化された改変タンパク質を得ることができる。使用されるPEG化試薬としては、例えば、システインのSH基とチオエーテル結合を形成する直鎖型メチルPEGn(nはPEGのリピート数)マレイミド、分岐型(メチル-PEGn)n-PEGnマレイミド等が挙げられる。PEG化修飾に用いるPEGの分子量は、例えば、5kDa~100kDaであり、好ましくは5kDa~40kDaである。PEG化試薬として、例えば、反応基としてマレイミド基を持ち、チオール基を認識して反応する高純度直鎖PEGであるME-400MA(MW:42,653Da)(PEG40)、ME-200MAOB(MW:20,841Da)(PEG20)、ME-100MA(MW:10,303Da)(PEG10)、ME-050MA(MW:5,393Da)(PEG5)(いずれも日油株式会社)等を用いることができる。 In step (C), specifically, the PEGylated modification is carried out by reacting the PEGylation reagent having a reactive functional group such as a maleimide group or a succinimide group at the end of PEG with the protein of this embodiment in a solution. Protein can be obtained. Examples of the PEGylation reagent used include linear methyl PEGn (n is the number of PEG repeats) maleimide and branched (methyl-PEGn) n-PEGn maleimide that form a thioether bond with the SH group of cysteine. It is done. The molecular weight of PEG used for PEGylation modification is, for example, 5 kDa to 100 kDa, and preferably 5 kDa to 40 kDa. Examples of the PEGylation reagent include ME-400MA (MW: 42,653 Da) (PEG40), ME-200MAOB (MW: MW), which are high-purity linear PEGs that have a maleimide group as a reactive group and recognize and react with a thiol group. 20,841 Da) (PEG20), ME-100MA (MW: 10,303 Da) (PEG10), ME-050MA (MW: 5,393 Da) (PEG5) (all are NOF Corporation), and the like.
 工程(C)において、PEGが該タンパク質に対して過剰量となるように、例えば、PEG:タンパク質=5:1、10:1、20:1、30:1(モル比)等でPEG化試薬を混合してもよい。PEG化試薬を加え、例えば、4℃で一晩反応させることでPEG化修飾することができる。前述の通り、該タンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基(例えば、システイン残基)が、PEGでPEG化修飾される。 In step (C), the PEGylation reagent is used, for example, with PEG: protein = 5: 1, 10: 1, 20: 1, 30: 1 (molar ratio) or the like so that the amount of PEG is excessive with respect to the protein May be mixed. PEGylation can be modified by adding a PEGylation reagent and reacting at 4 ° C. overnight, for example. As described above, at least one amino acid residue (for example, cysteine residue) in the amino acid sequence constituting the protein is PEGylated with PEG.
 PEG化修飾されたタンパク質は、例えば、ゲルろ過クロマトグラフィー(Size Exclusion Chromatography:SEC)による精製を行ってもよい。 The PEG-modified protein may be purified by, for example, gel filtration chromatography (SEC).
 他の実施形態による改変タンパク質の製造方法は、例えば、
 (A’)HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体を調製する工程と、
 (B’)工程(A)で得られた前記タンパク質の多量体を脱気処理した後、還元処理する工程と、
 (C’)工程(B)で還元処理された前記タンパク質の多量体をPEG化修飾する工程と、
 を含む。
A method for producing a modified protein according to another embodiment includes, for example,
(A ′) preparing a multimer of a protein having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked;
(B ′) a degassing treatment of the protein multimer obtained in step (A), followed by a reduction treatment;
(C ′) PEGylation modification of the multimer of the protein reduced in step (B);
including.
 HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体(HLA-G2又はHLA-G2多量体)の詳細については、前述の通りである。 Details of the protein multimer (HLA-G2 or HLA-G2 multimer) having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked are as described above.
 本実施形態が対象とするHLA-G2多量体は、前述同様、例えば、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体であり、好ましくは、
 (a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
 (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
 であって、
 前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。
The HLA-G2 multimer targeted by the present embodiment is, for example, a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked, as described above.
(A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1,
Because
It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
 工程(A’)において、HLA-G2多量体の調製方法の詳細については、前述の通りである。 Details of the method for preparing the HLA-G2 multimer in the step (A ′) are as described above.
 改変タンパク質の塩としては、生理学的に許容される酸(例、無機酸、有機酸)や塩基(例、アルカリ金属塩)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。このような塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用いられる。 As a salt of the modified protein, a salt with a physiologically acceptable acid (eg, inorganic acid, organic acid) or a base (eg, alkali metal salt) is used, and particularly a physiologically acceptable acid addition salt. Is preferred. Examples of such salts include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid). Acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like.
 本実施形態による予防又は治療剤は、全身性エリテマトーデス(SLE)又はSLEに起因して生じる疾患の予防又は治療に用いられる。 The preventive or therapeutic agent according to this embodiment is used for the prevention or treatment of diseases caused by systemic lupus erythematosus (SLE) or SLE.
 全身性エリテマトーデス(全身性紅斑性狼瘡、Systemic Lupus Erythematosus:SLE)は、DNA-抗DNA抗体などの免疫複合体の組織沈着により起こる全身性炎症性病変を特徴とする自己免疫疾患である。診断基準としては、以下11項目があり、これらのうち4項目以上を満たす場合、SLEと診断される(難病情報センターホームページ(http://www.nanbyou.or.jp/)参照)。
 (1)顔面紅斑
 (2)円板状皮疹
 (3)光線過敏症
 (4)口腔内潰瘍(無痛性で口腔あるいは鼻咽腔に出現)
 (5)関節炎(2関節以上で非破壊性)
 (6)漿膜炎(胸膜炎あるいは心膜炎)
 (7)腎病変(0.5g/日以上の持続的蛋白尿か細胞性円柱の出現)
 (8)神経学的病変(痙攣発作あるいは精神障害)
 (9)血液学的異常(溶血性貧血、4,000/mm以下の白血球減少、1,500/mm以下のリンパ球減少又は10万/mm以下の血小板減少)
 (10)免疫学的異常(抗2本鎖DNA抗体陽性、抗Sm抗体陽性又は抗リン脂質抗体陽性(抗カルジオリピン抗体、ループスアンチコアグラント、梅毒反応偽陽性))
 (11)抗核抗体陽性
Systemic lupus erythematosus (systemic lupus erythematosus: SLE) is an autoimmune disease characterized by systemic inflammatory lesions caused by tissue deposition of immune complexes such as DNA-anti-DNA antibodies. As diagnostic criteria, there are the following 11 items, and if 4 or more of these items are satisfied, SLE is diagnosed (refer to the intractable disease information center homepage (http://www.nanbyou.or.jp/)).
(1) Facial erythema (2) Discoid eruption (3) Photosensitivity (4) Oral ulcers (painless and appear in the oral cavity or nasopharynx)
(5) Arthritis (Non-destructive with 2 or more joints)
(6) Serositis (pleurisy or pericarditis)
(7) Renal lesions (appearance of continuous proteinuria or cellular casts of 0.5 g / day or more)
(8) Neurological lesions (convulsive seizures or mental disorders)
(9) Hematological abnormalities (hemolytic anemia, leukopenia of 4,000 / mm 3 or less, lymphocyte depletion of 1,500 / mm 3 or less, or thrombocytopenia of 100,000 / mm 3 or less)
(10) Immunological abnormality (anti-double-stranded DNA antibody positive, anti-Sm antibody positive or anti-phospholipid antibody positive (anti-cardiolipin antibody, lupus anticoagulant, syphilis false positive))
(11) Antinuclear antibody positive
 本実施形態による予防又は治療剤は、SLEに対して予防又は治療効果を奏する。本実施形態による予防又は治療剤を、SLEと診断された対象に投与した場合、例えば、該対象の血中抗核抗体量を低減させることができる。また、本実施形態による予防又は治療剤を、SLEと診断された対象に投与した場合、例えば、該対象の尿蛋白量を低減させることができる。 The preventive or therapeutic agent according to the present embodiment has a preventive or therapeutic effect on SLE. When the prophylactic or therapeutic agent according to this embodiment is administered to a subject diagnosed with SLE, for example, the blood antinuclear antibody amount in the subject can be reduced. In addition, when the prophylactic or therapeutic agent according to the present embodiment is administered to a subject diagnosed with SLE, for example, the amount of urine protein in the subject can be reduced.
 本実施形態による予防又は治療剤は、SLEに起因して生じる疾患に対しても予防又は治療効果を奏する。SLEに起因して生じる疾患は、蛋白尿、腎炎、リンパ節腫大等のいわゆるSLE予備群と称される病態も含まれる概念であり、例えば、SLEの確定診断がなされていなくても、蛋白尿、腎炎、リンパ節腫大等の症状を呈する対象に本実施形態による予防又は治療剤を投与することで、予防又は治療効果が得られる。 The prophylactic or therapeutic agent according to the present embodiment has a prophylactic or therapeutic effect on diseases caused by SLE. Diseases caused by SLE are concepts including so-called SLE reserve groups such as proteinuria, nephritis, lymphadenopathy, etc. For example, even if a definitive diagnosis of SLE has not been made, protein A preventive or therapeutic effect can be obtained by administering the preventive or therapeutic agent according to the present embodiment to a subject exhibiting symptoms such as urine, nephritis, and lymphadenopathy.
 本実施形態による予防又は治療剤の投与方法は、ヒト又は非ヒト哺乳動物に対し、経口投与、静脈内投与、腹腔内投与、皮内投与、舌下投与、局所投与等、適宜選択され得る。投与剤型も任意であってよく、例えば、錠剤、顆粒剤、散剤、カプセル剤等の経口用固形製剤、内服液剤、シロップ剤等の経口用液体製剤、注射剤などの非経口用液体製剤等に適宜調製することができる。また、適切なドラッグデリバリーシステム(DDS)を用いてもよい。 The administration method of the prophylactic or therapeutic agent according to the present embodiment can be appropriately selected from oral administration, intravenous administration, intraperitoneal administration, intradermal administration, sublingual administration, topical administration, etc. for humans or non-human mammals. The dosage form may be arbitrary, for example, oral solid preparations such as tablets, granules, powders and capsules, oral liquid preparations such as internal liquids and syrups, and parenteral liquid preparations such as injections. Can be appropriately prepared. An appropriate drug delivery system (DDS) may also be used.
 本実施形態による予防又は治療剤の投与量及び投与間隔は、患者の年齢、体重、適応症状等によって適宜設定することができ、例えば、1週間に3~4回投与又は2~3回投与であってもよいが、これに制限されるものではない。なお、本実施形態による予防又は治療剤は、局所的ではなく全身におけるサイトカインIL-10、IL-6の産生を誘導することで、SLE又はSLEに起因して生じる疾患に対して効果を奏するものである。後述する自己寛容性獲得の観点から、本実施形態による予防又は治療剤の投与量は、好ましくは、0.35mg/体重1kg以上、0.4mg/体重1kg以上、0.45mg/体重1kg以上、0.5mg/体重1kg以上、1mg/体重1kg以上であり、投与間隔については、好ましくは、1週間に少なくとも1回以上である。また、作用機序の異なる既存薬との併用により、本実施形態による予防又は治療剤の投与量及び投与回数を低減できる可能性がある。なお、本実施形態による治療剤の投与は、食事中投与、食後投与、食前投与、食間投与、就寝前投与等のいずれも可能である。 The dose and administration interval of the prophylactic or therapeutic agent according to this embodiment can be appropriately set depending on the patient's age, body weight, indication symptoms, etc. For example, 3 to 4 administrations or 2 to 3 administrations per week Although there may be, it is not restricted to this. The prophylactic or therapeutic agent according to this embodiment has an effect on SLE or a disease caused by SLE by inducing production of cytokines IL-10 and IL-6 not locally but systemically. It is. From the viewpoint of acquiring self-tolerance described later, the dose of the prophylactic or therapeutic agent according to the present embodiment is preferably 0.35 mg / kg body weight or more, 0.4 mg / kg body weight or more, 0.45 mg / kg body weight or more, It is 0.5 mg / kg body weight or more, 1 mg / kg body weight or more, and the administration interval is preferably at least once a week. Moreover, there is a possibility that the dose and the number of administrations of the preventive or therapeutic agent according to the present embodiment can be reduced by the combined use with existing drugs having different action mechanisms. The administration of the therapeutic agent according to the present embodiment can be any of administration during meals, administration after meals, administration before meals, administration between meals, administration before going to bed, and the like.
 本実施形態によるSLE又はSLEに起因して生じる疾患の予防又は治療剤は、HLA-G又はHLA-G多量体を有効成分とする。HLA-G又はHLA-G多量体は、必要に応じて各種塩や水和物等の状態で用いられてもよく、また、保存安定性(特に活性維持)を考慮して適当な化学的修飾がなされた状態で用いられてもよく、さらには、結晶化状態で用いられてもよく、溶解状態で用いられてもよい。 The preventive or therapeutic agent for diseases caused by SLE or SLE according to the present embodiment contains HLA-G or HLA-G multimer as an active ingredient. HLA-G or HLA-G multimers may be used in the form of various salts, hydrates, etc., if necessary, and appropriate chemical modification in consideration of storage stability (especially maintaining activity) May be used in a state in which s. Is used, or may be used in a crystallized state or in a dissolved state.
 本実施形態によるSLE又はSLEに起因して生じる疾患の予防又は治療剤は、有効成分としてHLA-G又はHLA-G多量体を含む以外、他の成分を含むことができる。他の成分としては、当該予防又は治療剤の用法(使用形態)に応じて必要とされる製薬上の各種成分(薬学的に許容し得る各種担体等)が挙げられる。これらの他の成分は、本発明の有効成分により発揮されるSLE又はSLEに起因して生じる疾患に対する予防又は治療効果が損なわれない範囲で適宜含有させることができる。 The preventive or therapeutic agent for a disease caused by SLE or SLE according to the present embodiment may contain other components in addition to containing HLA-G or HLA-G multimer as an active ingredient. Examples of the other components include various pharmaceutical components (various pharmaceutically acceptable carriers and the like) required depending on the usage (usage form) of the prophylactic or therapeutic agent. These other components can be appropriately contained as long as the preventive or therapeutic effect on the disease caused by SLE or SLE exerted by the active ingredient of the present invention is not impaired.
 また、有効成分としてのHLA-G又はHLA-G多量体は、より高純度となるように精製されたものであることが好ましい。具体的には、例えば50%以上の純度が好ましく、より好ましくは80%以上、さらに好ましくは90%以上である。 Further, it is preferable that the HLA-G or HLA-G multimer as an active ingredient is purified so as to have a higher purity. Specifically, for example, a purity of 50% or more is preferable, more preferably 80% or more, and still more preferably 90% or more.
 次に、本実施形態による膠原病の予防又は治療剤について詳細に説明する。 Next, the preventive or therapeutic agent for collagen disease according to this embodiment will be described in detail.
 本実施形態による膠原病の予防又は治療剤は、HLA-G又はHLA-G多量体を有効成分とし、全身投与に用いられる、ことを特徴とする。好ましくは、HLA-G多量体は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体である。好ましくは、HLA-G多量体は、(a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は(b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、であって、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である。各用語の詳細については、前述同様である。 The preventive or therapeutic agent for collagen disease according to the present embodiment is characterized in that HLA-G or HLA-G multimer is used as an active ingredient and is used for systemic administration. Preferably, the HLA-G multimer is a protein multimer having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked. Preferably, the HLA-G multimer has (a) a protein comprising the amino acid sequence represented by SEQ ID NO: 1, or (b) one or several amino acids deleted or substituted in the amino acid sequence represented by SEQ ID NO: 1. Alternatively, it is a protein comprising an added amino acid sequence, which is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b). Details of each term are the same as described above.
 本実施形態による膠原病の予防又は治療剤は、例えば、全身性エリテマトーデス、全身性強皮症、多発性筋炎・皮膚筋炎、シェーグレン症候群、混合性結合組織病、抗リン脂質抗体症候群、ベーチェット病、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群)、成人スティル病、好酸球性筋膜炎、結節性動脈周囲炎(結節性多発動脈炎・顕微鏡的多発血管炎)、大動脈炎症候群(高安動脈炎)、ウェゲナー肉芽腫症、側頭動脈炎、悪性関節リウマチ等を含む膠原病に、全身投与することで用いられる。本実施形態による予防又は治療剤の投与方法は、ヒト又は非ヒト哺乳動物に対する全身投与に用いるために、経口投与、静脈内投与、腹腔内投与、皮内投与、舌下投与等の投与方法が選択される。投与剤型、投与量、投与間隔、有効成分等については、前述同様である。 Examples of the preventive or therapeutic agent for collagen disease according to this embodiment include systemic lupus erythematosus, systemic scleroderma, polymyositis / dermatomyositis, Sjogren's syndrome, mixed connective tissue disease, antiphospholipid antibody syndrome, Behcet's disease, Allergic granulomatous vasculitis (Chirge-Strauss syndrome), adult Still's disease, eosinophilic fasciitis, nodular periarteritis (nodular polyarteritis / microscopic polyangiitis), aortitis syndrome (Takayasu) Arteritis), Wegener's granulomatosis, temporal arteritis, malignant rheumatoid arthritis and other collagen diseases including systemic administration. The administration method of the prophylactic or therapeutic agent according to the present embodiment includes oral administration, intravenous administration, intraperitoneal administration, intradermal administration, sublingual administration and the like for use in systemic administration to humans or non-human mammals. Selected. The dosage form, dosage, administration interval, active ingredient and the like are the same as described above.
 以上説明したように、本実施形態によるSLE又はSLEに起因して生じる疾患の予防又は治療剤は、有効成分としてHLA-G又はHLA-G多量体を含み、HLA-G又はHLA-G多量体の機能は主に抗原提示細胞に発現する抑制性受容体LILRB2を介するものであるため、エフェクター細胞機能への影響が低減され、抗原提示細胞を介するマイルドで長期的な免疫抑制効果が期待される。また、SLE又はSLEに起因して生じる疾患の他の製剤との併用薬として用いることが可能である。治療法が確立していないSLE又はSLEに起因して生じる疾患の予防又は治療剤として、既存生物製剤とは作用機序の異なる新規製剤としての発展が期待される。また、本実施形態による膠原病の予防又は治療剤は、後述するように、単球、マクロファージ、樹状細胞などの末梢血由来ミエロイド系細胞において自己寛容性獲得に関与するサイトカインである1L-6及び1L-10の産生誘導作用を有し、全身投与されることで、膠原病に対して予防又は治療効果を奏する。 As described above, the preventive or therapeutic agent for a disease caused by SLE or SLE according to the present embodiment includes HLA-G or HLA-G multimer as an active ingredient, and HLA-G or HLA-G multimer. Is mainly mediated by the inhibitory receptor LILRB2 expressed in antigen-presenting cells, so that the effect on effector cell functions is reduced, and a mild and long-term immunosuppressive effect via antigen-presenting cells is expected . Moreover, it can be used as a concomitant drug with other preparations of diseases caused by SLE or SLE. As a preventive or therapeutic agent for diseases caused by SLE or SLE for which no therapeutic method has been established, development as a new preparation having a different mechanism of action from existing biological preparations is expected. Further, the preventive or therapeutic agent for collagen disease according to this embodiment is 1L-6, which is a cytokine involved in acquiring self-tolerance in peripheral blood-derived myeloid cells such as monocytes, macrophages and dendritic cells, as described later. And 1L-10 production-inducing action, and systemic administration provides a preventive or therapeutic effect against collagen disease.
 以下、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(HLA-G2タンパク質の調製)
 (1)α1-3連結体を大腸菌で封入体として発現
 pGMT7ベクターを制限酵素NdeIおよびHindIIIで切断した後、HLA-G分子のα1ドメインとα3ドメインとの連結体(α1-3連結体)をコードする遺伝子の改変体(配列番号6)を、T4DNAリガーゼを用いて挿入し、改変型HLA-G2-pGMT7を構築した。
Example 1
(Preparation of HLA-G2 protein)
(1) Expression of α1-3 conjugate as inclusion body in E. coli After cutting the pGMT7 vector with restriction enzymes NdeI and HindIII, a conjugate of α1 domain and α3 domain of HLA-G molecule (α1-3 conjugate) is obtained. A modified gene (SEQ ID NO: 6) encoding the gene was inserted using T4 DNA ligase to construct a modified HLA-G2-pGMT7.
 なお、改変型HLA-G2-pGMT7は、下記の方法で行った。まずHLA-G2-pGMT7プラスミドを鋳型にして、PCR用緩衝液(Promega社製)、deoxyNTP混合液(TOYOBO社製)、5’側プライマー(atgggtagtcatagtatgcgttattttagcgcggccgtgag:配列番号9)、3’側プライマー(ctcacggccgcgctaaaataacgcatactatgactacccat:配列番号10)(それぞれ最終濃度0.2μM)及びPfuTurboDNA Polymerase(Promega社製)を加え、PCRを行った。その際、反応は変性30秒(95℃)、アニール1分(60℃)、エクステンション8分(68℃)にて25サイクル行った。次に、PCR産物にDpnI(NEB社製)を加え、37℃で1時間反応させ、鋳型を除去し、アガロースゲル電気泳動を行い、PCR産物の存在を確認した。そして、DNAシークエンサーで塩基配列を確かめ、改変型HLA-G2-pGMT7プラスミドを得た。 The modified HLA-G2-pGMT7 was performed by the following method. First, using the HLA-G2-pGMT7 plasmid as a template, PCR buffer (Promega), deoxyNTP mixture (TOYOBO), 5'-side primer (atgggttagcattagtatgcgtttattttaggtaggactag-cctact cctac cc SEQ ID NO: 10) (final concentration of 0.2 μM each) and Pfu TurboDNA Polymerase (Promega) were added to carry out PCR. At that time, the reaction was performed for 25 cycles with denaturation 30 seconds (95 ° C.), annealing 1 minute (60 ° C.), and extension 8 minutes (68 ° C.). Next, DpnI (manufactured by NEB) was added to the PCR product, reacted at 37 ° C. for 1 hour, the template was removed, and agarose gel electrophoresis was performed to confirm the presence of the PCR product. Then, the base sequence was confirmed with a DNA sequencer to obtain a modified HLA-G2-pGMT7 plasmid.
 次に、この改変型HLA-G2-pGMT7プラスミドで、大腸菌BL21(DE3)pLysS株を形質転換し、100mg/Lのアンピシリンを含む2×YT培地(0.5%塩化ナトリウム、1.6%トリプトン、1%乾燥酵母エキス(以上、ナカライテスク社製))中で、37℃で培養した。次に、培養懸濁液がOD600=0.4~0.6に達した時点で、1mMとなるようにIPTGを添加し、さらに37℃で4~6時間発現誘導した。 Next, E. coli BL21 (DE3) pLysS strain was transformed with this modified HLA-G2-pGMT7 plasmid, and 2 × YT medium (0.5% sodium chloride, 1.6% tryptone containing 100 mg / L ampicillin) was transformed. The cells were cultured at 37 ° C. in 1% dry yeast extract (manufactured by Nacalai Tesque). Next, when the culture suspension reached OD600 = 0.4 to 0.6, IPTG was added to 1 mM, and expression was further induced at 37 ° C. for 4 to 6 hours.
 (2)大腸菌封入体の巻き戻し
 IPTGを添加して発現誘導した菌体懸濁液を遠心分離機にかけ菌体を集め、Resuspension buffer(50mM トリスpH8.0,100mM 塩化ナトリウム)を加え、懸濁し、超音波破砕で菌体を破砕した後、遠心分離して封入体を得た。この封入体をTriton wash buffer(0.5% TritonX-100、50mM トリスpH8.0、100mM 塩化ナトリウム)及びResuspension buffer(50mM トリスpH8.0、100mM 塩化ナトリウム)で十分洗浄した後に、6.0M Guanidine solution(6.0Mグアニジン、50mM メスpH6.5、10mM MEDTA)で可溶化した。この時点で、HLA-G2溶液を紫外吸光法により測定したところ、A280値が約70であり、HLA-G2の発現量はおよそ100mg/Lであると考えられる。Refolding buffer(0.1M トリスpH8.0、0.4M L-アルギニン、5mM EDTA、3.7mM シスタミン、6.4mM システアミン)を用いて一般的な希釈法で4℃、72時間撹件しながら巻き戻した。そして、これを濃縮した後、下記条件のゲルろ過クロマトグラフィーに供して精製した。
<ゲルろ過クロマトグラフィー条件>
 カラム:HiLoad 26/60、Superdex 75(60cm、id 26mm)
 移動相:20mM Tris-HCl、100mM NaCl buffer(pH8)
 流速:2.5ml/min
(2) Rewinding of E. coli inclusion bodies Cell suspensions that had been induced to express by adding IPTG were centrifuged to collect the bacterial bodies, and a suspension buffer (50 mM Tris pH 8.0, 100 mM sodium chloride) was added and suspended. The bacterial cells were crushed by ultrasonic crushing and then centrifuged to obtain inclusion bodies. The inclusion bodies were thoroughly washed with Triton washes buffer (0.5% Triton X-100, 50 mM Tris pH 8.0, 100 mM sodium chloride) and Resuspension buffer (50 mM Tris pH 8.0, 100 mM sodium chloride), and then 6.0 M Guandine. Solubilized with solution (6.0 M guanidine, 50 mM female pH 6.5, 10 mM EDTA). At this time, when the HLA-G2 solution was measured by ultraviolet absorption, the A280 value was about 70, and the expression level of HLA-G2 is considered to be about 100 mg / L. Winding while stirring for 72 hours at 4 ° C in a general dilution method using a refolding buffer (0.1 M Tris pH 8.0, 0.4 M L-arginine, 5 mM EDTA, 3.7 mM cystamine, 6.4 mM cysteamine) Returned. And after concentrating this, it used for the gel filtration chromatography of the following conditions, and refine | purified.
<Gel filtration chromatography conditions>
Column: HiLoad 26/60, Superdex 75 (60 cm, id 26 mm)
Mobile phase: 20 mM Tris-HCl, 100 mM NaCl buffer (pH 8)
Flow rate: 2.5 ml / min
 ゲルろ過クロマトグラフィーで得られたクロマトグラムを図1(A)に示す。目的のピーク画分(矢印部分)を分取し、非還元条件でSDS-PAGE(15%アクリルアミドゲル)に供した。その結果を図1(B)に示す。HLA-G2二量体の分子量(42kDa)から、当該ピークがHLA-G2の溶出画分であることを確認し、当該画分を回収濃縮してHLA-G2(被験試料)とした。 A chromatogram obtained by gel filtration chromatography is shown in FIG. The desired peak fraction (arrow part) was collected and subjected to SDS-PAGE (15% acrylamide gel) under non-reducing conditions. The result is shown in FIG. From the molecular weight of the HLA-G2 dimer (42 kDa), it was confirmed that the peak was an elution fraction of HLA-G2, and the fraction was recovered and concentrated to obtain HLA-G2 (test sample).
 (3)活性測定
 Reaction buffer(50mM D-biotin、l00mM ATP、15μM BirA)にC末端にビオチン化配列を付加したLILRB2のN末側2ドメイン(D1D2)を溶解し、C末端をビオチン化した。ゲルろ過クロマトグラフィー(Superdex 75)によりreaction bufferからビオチン化LILRB2を分離し精製した。
(3) Activity measurement The N-terminal 2 domain (D1D2) of LILRB2, in which a biotinylated sequence was added to the C terminus in Reaction buffer (50 mM D-biotin, 100 mM ATP, 15 μM BirA), was biotinylated at the C terminus. Biotinylated LILRB2 was separated from the reaction buffer and purified by gel filtration chromatography (Superdex 75).
 BIAcore(登録商標)3000(GE healthcare社のBIAcore)を使用し、HLA-G2とLILRB2との結合性を表面プラズモン共鳴実験により評価した。まず、研究用センサーチップ上に、ストレプトアビジンを共有結合で固定化し、そのストレプトアビジンを介して、ビオチン化LILRB2とネガティブコントロールであるBSAを固定化した。次に、ランニングバッファーであるHBS-EP(10mM へペスpH7.5、150mM 塩化ナトリウム、3.4mM EDTA、0.005% Surfactant P20)に溶解したHLA-G2を10μL/分で流した。各濃度での結合応答は、サンプルフローセルにおける応答から対照フローセルにおいて測定された応答を減算することによって計算した。 Using BIAcore (registered trademark) 3000 (GE healthcare BIAcore), the binding property between HLA-G2 and LILRB2 was evaluated by a surface plasmon resonance experiment. First, streptavidin was covalently immobilized on a research sensor chip, and biotinylated LILRB2 and negative control BSA were immobilized via the streptavidin. Next, HLA-G2 dissolved in HBS-EP (10 mM pes pH 7.5, 150 mM sodium chloride, 3.4 mM EDTA, 0.005% Surfactant P20) as a running buffer was flowed at 10 μL / min. The binding response at each concentration was calculated by subtracting the response measured in the control flow cell from the response in the sample flow cell.
 図2は、LILRB2又はネガティブコントロールであるBSAに対するHLA-G2の反応を示す図である。実線はLILRB2をセンサーチップに固定化した場合を示し、点線はBSAをセンサーチップに固定化した場合を示す。図2(A)によれば、BSAと比較して、LILRB2はHLA-G2に結合している。図2(B)は、HLA-G2二量体とLILRB2の見かけ上のKd値を示す図である。図2(B)によれば、見かけ上のKd値は、BIAevaluationソフトにより、1:1結合モデルを用いて解析した結果、1.5nMである。この結果から、HLA-G2はLILRB2に結合することが確認された。 FIG. 2 is a diagram showing the response of HLA-G2 to LILRB2 or BSA which is a negative control. The solid line shows the case where LILRB2 is fixed to the sensor chip, and the dotted line shows the case where BSA is fixed to the sensor chip. According to FIG. 2 (A), LILRB2 is bound to HLA-G2 compared to BSA. FIG. 2 (B) is a diagram showing apparent Kd values of HLA-G2 dimer and LILRB2. According to FIG. 2 (B), the apparent Kd value is 1.5 nM as a result of analysis using a 1: 1 binding model by BIAevaluation software. From this result, it was confirmed that HLA-G2 binds to LILRB2.
(マウス免疫抑制性レセプターPIR-Bに対する結合性確認)
 ヒト免疫抑制性レセプター(leukocyte immunoglobulin-like receptor B)であるLILRBのマウスホモログであるPIR-B(pried-immunoglobulin-like receptor B)に対するHLA-G2の結合性を、表面プラズモン共鳴(Surface plasmon resonance)を用いて評価した。
(Confirmation of binding to mouse immunosuppressive receptor PIR-B)
The binding of HLA-G2 to PIR-B (primed-immunoglobulin-like receptor B), a mouse homolog of LILRB, which is a human immunosuppressive receptor (leukocyte immunoglobulin-like receptor B), is expressed by surface plasmon resonance sr Was used to evaluate.
 (1)PIR-Bの調製
 PIR-Bの細胞外ドメインをHEK293T細胞にトランスフェクションし、これを1%FCS-DMEMで72時間培養した。PIR-Bの細胞外ドメインのアミノ酸配列及びそれをコードする遺伝子の塩基配列を、それぞれ配列番号7及び8に示す。なお、PIR-Bの全長のアミノ酸配列はNCBIのNM_011095において公表されており、PIR-B細胞外ドメインはこのうちドメイン1~6にあたる部分である。
(1) Preparation of PIR-B The extracellular domain of PIR-B was transfected into HEK293T cells and cultured in 1% FCS-DMEM for 72 hours. The amino acid sequence of the extracellular domain of PIR-B and the base sequence of the gene encoding it are shown in SEQ ID NOs: 7 and 8, respectively. The full-length amino acid sequence of PIR-B is published in NM_011095 of NCBI, and the PIR-B extracellular domain is a portion corresponding to domains 1-6.
 次いで、培養物から上清を回収し、NiアフィニティクロマトグラフィーによりPIR-B細胞外ドメインを精製し、ウエスタンブロッティング(12.5%アクリルアミドゲル)に供して、推定分子量75kDaから精製取得したタンパク質がPIR-B細胞外ドメインであることを確認した。 Next, the supernatant was recovered from the culture, the PIR-B extracellular domain was purified by Ni affinity chromatography, and subjected to Western blotting (12.5% acrylamide gel), and the protein obtained by purification from the estimated molecular weight of 75 kDa was converted to PIR. -Confirmed to be B extracellular domain.
 精製したPIR-B細胞外ドメインを、Reaction buffer(50mM D-biotin、l00mM ATP、15μM BirA)に15μMとなるように溶解し、ビオチン化した。ゲルろ過クロマトグラフィー(Superdex 200)によりreaction bufferからビオチン化PIR-B細胞外ドメインを分離し精製した。 The purified PIR-B extracellular domain was dissolved and biotinylated in Reaction buffer (50 mM D-biotin, 100 mM ATP, 15 μM BirA) to 15 μM. The biotinylated PIR-B extracellular domain was separated from the reaction buffer by gel filtration chromatography (Superdex 200) and purified.
 (2)HLA-G2のPIR-B(細胞外ドメイン)への結合性評価
 BIAcore(登録商標)3000(GE healthcare社のBIAcore)を使用し、HLA-G2と上記で調製したPIR-B細胞外ドメインとの結合性を表面プラズモン共鳴実験により評価した。まず、研究用センサーチップ上に、ストレプトアビジンを共有結合で固定化し、そのストレプトアビジンを介して、ビオチン化PIR-B細胞外ドメインとネガティブコントロールであるBSAを固定化した。次に、ランニングバッファーであるHBS-EP(10mM へペスpH7.5、150mM 塩化ナトリウム、3.4mM EDTA、0.005% Surfactant P20)に溶解したHLA-G2ダイマーを5μL/分で流した。各濃度での結合応答は、サンプルフローセルにおける応答から対照フローセルにおいて測定された応答を減算することによって計算した。みかけの結合定数(Kd)は、BIAevaluationソフトにより、1:1結合モデルを用いて解析して得た。
(2) Evaluation of HLA-G2 binding to PIR-B (extracellular domain) Using BIAcore (registered trademark) 3000 (GE Healthcare BIAcore), HLA-G2 and PIR-B extracellular prepared above The binding property with the domain was evaluated by surface plasmon resonance experiment. First, streptavidin was covalently immobilized on a research sensor chip, and biotinylated PIR-B extracellular domain and BSA as a negative control were immobilized via the streptavidin. Next, HLA-G2 dimer dissolved in HBS-EP (running buffer: HBS-EP (10 mM to pH 7.5, 150 mM sodium chloride, 3.4 mM EDTA, 0.005% Surfactant P20)) was flowed at 5 μL / min. The binding response at each concentration was calculated by subtracting the response measured in the control flow cell from the response in the sample flow cell. The apparent binding constant (Kd) was obtained by analysis with a BIAevaluation software using a 1: 1 binding model.
 図3は、各濃度HLA-G2(0.095μM、0.19μM、0.38μM、0.76μM、1.52μM)に対するPIR-Bの反応を示す図である。図3の結果から、1:1結合モデルを用いた解析によるみかけの解離定数(Kd値)は142nMであった。この結果から、HLA-G2は、免疫抑制性レセプターであるヒトLILRB2に結合するのと同様に(図2参照)、ヒトLILRB2に相当するマウスのPIR-Bの細胞外ドメインに結合することが確認された。 FIG. 3 is a diagram showing the reaction of PIR-B to each concentration of HLA-G2 (0.095 μM, 0.19 μM, 0.38 μM, 0.76 μM, 1.52 μM). From the results of FIG. 3, the apparent dissociation constant (Kd value) by analysis using the 1: 1 binding model was 142 nM. From this result, it was confirmed that HLA-G2 binds to the extracellular domain of mouse PIR-B corresponding to human LILRB2, in the same manner as it binds to human LILRB2 which is an immunosuppressive receptor (see FIG. 2). It was done.
(実施例2)
(SLEモデルマウス実験)
 HLA-G2をSLEモデルマウスに投与して、HLA-G2のSLEに対する治療効果を検証した。
(Example 2)
(SLE model mouse experiment)
HLA-G2 was administered to SLE model mice to verify the therapeutic effect of HLA-G2 on SLE.
 実施例1で調製したHLA-G2又はネガティブコントロールとしてPBSをSLEモデルマウスに下記の通り投与した(“HLA-G2投与群”又は“PBS投与群”)。SLEモデルマウスとして、MRL/MpJJmsSlc-lpr/lprマウス(日本エスエルシー株式会社)を用い、各投与群12匹ずつから試験を開始した。なお、HLA-G2については、約3週間ごとに新しいロット(新たに巻き戻し~精製し直したもの)を投与した。
 ・投与経路:腹腔内投与
 ・投与量:15μg/匹(HLA-G2 0.075mg/mL、200μL投与)
 ・投与間隔:週2回投与
 ・投与期間:計12週
As a negative control, HLA-G2 prepared in Example 1 or PBS was administered to SLE model mice as follows ("HLA-G2 administration group" or "PBS administration group"). MRL / MpJJmsSlc-lpr / lpr mice (Japan SLC Co., Ltd.) were used as SLE model mice, and the test was started from 12 mice in each administration group. As for HLA-G2, a new lot (newly unwound to re-purified) was administered about every 3 weeks.
・ Administration route: intraperitoneal administration ・ Dose: 15 μg / animal (HLA-G2 0.075 mg / mL, 200 μL administration)
・ Dosing interval: twice a week ・ Dosing period: 12 weeks in total
 サンプリングを、4週ごとに4匹ずつ行った。投与20回目まで終了したのは、HLA-G2投与群でn=10、PBS投与群でn=10であった。また、投与28回目まで終了したのは、HLA-G2投与群でn=6、PBS投与群でn=4であり、この時点で投与終了とした。 Sampling was performed 4 animals every 4 weeks. It was n = 10 in the HLA-G2 administration group and n = 10 in the PBS administration group until the 20th administration. In addition, n = 6 in the HLA-G2 administration group and n = 4 in the PBS administration group ended up to the 28th administration, and the administration was terminated at this point.
 副作用発生の指標として、マウスの体重測定を行った。図4に、マウスの体重推移を示す。PBS投与群(図4(A))及びHLA-G2投与群(図4(B))の両群において、体重に顕著な変化は見られなかった。 Measured body weight of mice as an index of occurrence of side effects. FIG. 4 shows the weight transition of the mouse. There was no significant change in body weight in both the PBS administration group (FIG. 4A) and the HLA-G2 administration group (FIG. 4B).
(抗dsDNA抗体ELISA)
 レビス 抗dsDNA-マウスELISA KIT、シバヤギ社を用いて、血中抗核抗体量を測定した。緩衝液を用いて希釈したマウス血漿検体、および検量線作成用の標準溶液を抗原固相化マイクロプレートに添加した。2時間のインキュベートおよびウェル洗浄後、標識抗体(ペルオキシダーゼ結合抗マウスIgG抗体)を添加した。さらに2時間のインキュベート及びウェル洗浄後、発色液(TMB)と20分間反応させ、酸性溶液(1M HSO)を添加することで反応を停止させた。分光光度計を用いて450nm(副波長620nm)の吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各血漿サンプルの抗dsDNA抗体価を算出した。
(Anti-dsDNA antibody ELISA)
The amount of antinuclear antibody in the blood was measured using Levis anti-dsDNA-mouse ELISA KIT, Shibayagi. A mouse plasma specimen diluted with a buffer and a standard solution for preparing a calibration curve were added to an antigen-immobilized microplate. After 2 hours of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 2 hours and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the anti-dsDNA antibody titer of each plasma sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
 図5に、投与72日後のマウスの血中抗核抗体量を示す。PBS投与群に比してHLA-G2投与群では、血中抗核抗体量の低下が確認された(図5(A))。他のマウスに比して体重が顕著に多いマウス1匹を除いて検証した結果、PBS投与群に比してHLA-G2投与群では、血中抗核抗体量の有意な低下が確認された(図5(B))。 FIG. 5 shows the amount of antinuclear antibody in the blood of mice 72 days after administration. In the HLA-G2 administration group, a decrease in the blood antinuclear antibody amount was confirmed as compared to the PBS administration group (FIG. 5 (A)). As a result of verification with the exception of one mouse, which was significantly heavier than other mice, a significant decrease in blood antinuclear antibody level was confirmed in the HLA-G2 administration group compared to the PBS administration group. (FIG. 5B).
(尿蛋白量)
 尿中アルブミンを、ELISAキット(レビス アルブミン-マウス、シバヤギ社)を用いて測定した。緩衝液を用いて希釈したマウス尿検体、および検量線作成用の標準溶液を抗アルブミン抗体固相化マイクロプレートに添加した。1時間のインキュベートおよびウェル洗浄後、標識抗体(ペルオキシダーゼ結合抗マウスIgG抗体)を添加した。さらに1時間のインキュベートおよびウェル洗浄後、発色液(TMB)と20分間反応させ、酸性溶液(1M HSO)を添加することで反応を停止させた。分光光度計を用いて450nm(副波長620nm)の吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各尿サンプルの尿中アルブミン値を算出した。
(Urine protein content)
Urinary albumin was measured using an ELISA kit (Levis albumin-mouse, Shibayagi). A mouse urine specimen diluted with a buffer solution and a standard solution for preparing a calibration curve were added to an anti-albumin antibody-immobilized microplate. After 1 hour of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 1 hour and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the urine albumin value of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
 また、尿中クレアチニンを、ELISAキット(尿中クレアチニン測定用ELISA キット、トランスジェニック社)を用いて測定した。緩衝液を用いて希釈したマウス尿検体、および検量線作成用の標準溶液とHRP標識抗クレアチニン抗体を混合し、30分間インキュベートさせた。インキュベート後、混合液を抗原固相化マイクロプレートに添加した。2時間のインキュベート及びウェル洗浄後、発色液(オルトフェニレンジアミン溶液)と10分間反応させ、酸性溶液(1M HSO)を添加することで反応を停止させた。分光光度計を用いて490nmの吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各尿サンプルの尿中クレアチニン値を算出した。 Urinary creatinine was measured using an ELISA kit (Urine creatinine measurement ELISA kit, Transgenic). A mouse urine sample diluted with a buffer solution, a standard solution for preparing a calibration curve, and an HRP-labeled anti-creatinine antibody were mixed and incubated for 30 minutes. After incubation, the mixture was added to the antigen-immobilized microplate. After incubating for 2 hours and washing the wells, the mixture was reacted with a color developing solution (orthophenylenediamine solution) for 10 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 490 nm was measured using a spectrophotometer, and the urinary creatinine value of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
 図6に、投与76日後及び86日後のマウスの尿蛋白量(アルブミン(μg)/クレアチニン(mg))を示す。投与76日後及び86日後の両方において、PBS投与群に比してHLA-G2投与群では、尿蛋白量の低下が確認された(図6(A)、(B))。 FIG. 6 shows the amount of urine protein (albumin (μg) / creatinine (mg)) in mice 76 days and 86 days after administration. At both 76 days and 86 days after administration, a decrease in the amount of urine protein was confirmed in the HLA-G2 administration group compared to the PBS administration group (FIGS. 6 (A) and (B)).
(免疫組織染色)
 投与79日後のマウスより腎臓を採取しホルマリン固定後、パラフィン包埋、薄切の後、Hematoxylin and eosin stain(H&E)染色、過ヨウ素酸メセナミン銀染色(Periodic acid-methenamine-silver stain; PAM)、過ヨウ素酸シッフ染色(Periodic acid-Schiff stain; PAS)により病理組織標本を作製した。
(Immunohistochemical staining)
After collecting kidneys from mice 79 days after administration and fixing with formalin, embedding in paraffin, slicing, hematoxylin and eosin stain (H & E) staining, mesoamine silver periodate (Periodic acid-methenamine-silver stain; PAM), A histopathological specimen was prepared by Periodic acid-Schiff stain (PAS).
 図7に、投与79日後のマウスの腎臓組織標本を示す。PBS投与群に比してHLA-G2投与群で、H&E染色標本では単核球浸潤及び血管炎の軽減化が、またPAM染色/PAS染色標本では糸球体内の細胞増殖及びメサンギウム領域拡大の軽減化が認められた。 FIG. 7 shows a mouse kidney tissue specimen 79 days after administration. In HLA-G2 administration group compared to PBS administration group, H & E stained specimens reduced mononuclear cell infiltration and vasculitis, and PAM / PAS stained specimens reduced glomerular cell proliferation and mesangial area expansion. Was observed.
 以上より、SLEモデルマウス(MRL/MpJJmsSlc-lpr/lprマウス)において、週2回のHLA-G2の腹腔内投与によって血中抗核抗体量及び尿蛋白質の低下が認められたことから、HLA-G2はSLEに対して治療効果を奏することが明らかとなった。 From the above, in the SLE model mice (MRL / MpJJmsSlc-lpr / lpr mice), the intraperitoneal administration of HLA-G2 twice a week reduced the amount of blood antinuclear antibody and urine protein. It was revealed that G2 has a therapeutic effect on SLE.
(実施例3)
(サイトカイン産生誘導)
 次に、ヒト単球由来の樹状細胞であるIFN-DCを用いて、LILRB2へのHLA-G2結合によってサイトカイン産生誘導が引き起こされるか否か検討した。
(Example 3)
(Induction of cytokine production)
Next, using IFN-DC, which is a human monocyte-derived dendritic cell, it was examined whether cytokine production induction was caused by HLA-G2 binding to LILRB2.
 Exp Dermatol.2015 Jan;24(1):35-41.doi:10.1111/exd.12581.Epub 2014 Dec 8.Nieda M et alに基づきIFN-DCを培養し、培養開始2日後に、HLA-G2(2.3μL)又はコントロールとしてのPBSとともに、37℃、5%COで、培地(10% FBS RPMI-1640(抗生物質添加)+1000U/mL GM-CSF及びIFN-α)中で培養した。培養開始4日後に、培地を交換し、上清を収集し、ELISAを行った。ELISAでは、キットとしてOptEIA ELISA human IL-6 and IL-10(BD)を用いた。 Exp Dermatol. 2015 Jan; 24 (1): 35-41. doi: 10.1111 / exd. 12581. Epub 2014 Dec 8. IFN-DC was cultured based on Nieda M et al. After 2 days from the start of culture, medium (10% FBS RPMI-) at 37 ° C. and 5% CO 2 together with HLA-G2 (2.3 μL) or PBS as a control. 1640 (with antibiotics + 1000 U / mL GM-CSF and IFN-α). Four days after the start of the culture, the medium was changed, and the supernatant was collected and subjected to ELISA. In ELISA, OptEIA ELISA human IL-6 and IL-10 (BD) was used as a kit.
 ELISAの結果を図8に示す。IFN-DCにおいて、HLA-G2との2日間のインキュベーション後、サイトカインIL-10、IL-6の産生誘導が確認された。 The result of ELISA is shown in FIG. In IFN-DC, induction of production of cytokines IL-10 and IL-6 was confirmed after 2 days incubation with HLA-G2.
 以上より、HLA-G2はサイトカインIL-10、IL-6の産生を誘導することから、HLA-G2を全身投与することで、膠原病に対して予防又は治療効果を奏することが示唆された。 From the above, HLA-G2 induces the production of cytokines IL-10 and IL-6, suggesting that systemic administration of HLA-G2 has a preventive or therapeutic effect on collagen disease.
(実施例4)
(PEG化修飾されたHLA-G2によるSLEモデルマウス実験)
 PEG化修飾されたHLA-G2をSLEモデルマウスに投与して、SLEに対する治療効果を検証した。
Example 4
(SLE model mouse experiment with PEGylated HLA-G2)
PEGylated HLA-G2 was administered to SLE model mice to verify the therapeutic effect on SLE.
(各種組換えタンパク質の調製)
 検討に先立ち、以下の通り、各種組換えタンパク質を以下の通り調製及び精製した。
(Preparation of various recombinant proteins)
Prior to examination, various recombinant proteins were prepared and purified as follows.
(HLA-G2組換えタンパク質発現プラスミド)
 シグナル配列を除去し、N末端に翻訳開始コドンであるメチオニン残基を付加したHLA-G2(WT)の細胞外領域(Gly1-Trp182)を大腸菌発現用ベクターpGM7に組み込み、さらに発現量増強のためN末端近傍5残基分の塩基配列を同義置換した、本願の発明者ら保有の発現用プラスミド(HLA-G2-pGMT7)を用いた(図9(a)、塩基配列:配列番号13、アミノ酸配列:配列番号14)。
(HLA-G2 recombinant protein expression plasmid)
The extracellular region (Gly1-Trp182) of HLA-G2 (WT) in which the signal sequence was removed and a methionine residue as a translation initiation codon was added to the N-terminus was incorporated into the E. coli expression vector pGM7 to further enhance the expression level. The expression plasmid (HLA-G2-pGMT7) possessed by the inventors of the present application in which the base sequence of 5 residues near the N-terminal is synonymously substituted was used (FIG. 9 (a), base sequence: SEQ ID NO: 13, amino acid) Sequence: SEQ ID NO: 14).
(LILRB2birA組換えタンパク質発現プラスミド)
 シグナル配列を除去し、開始コドンであるメチオニンを付加したLILRB2のリガンド結合に関与する細胞外領域N末端側の2つのIg-likeドメイン(Gry1-Pro197)をpGM7ベクターに組み込み、さらにC末端に17アミノ酸残基からなるビオチン化酵素認識配列(GSLHHILDAQKMVWNHR(配列番号15))を付加した、本願の発明者ら保有の大腸菌発現用プラスミド(LILRB2birA-pGM7)を使用した(Shiroishi,M.,Tsumoto,K.,Amano,K.,Shirakihara,Y.,Colonna,M.,Braud,V.M.,Allan,D.S.J.,Makadzange,A.,Rowland-Jones,S.,Willcox,B.,Jones,E.Y.,van der Merwe,P.A.,Kumagai,I.,and Maenaka,K.(2003)Human inhibitory receptors Ig-like transcript 2(ILT2)and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G.Proc.Natl.Acad.Sci.U.S.A.100,8856-61)(図9(b)、塩基配列:配列番号16、アミノ酸配列:配列番号17)。
(LILRB2biaA recombinant protein expression plasmid)
Two Ig-like domains (Gry1-Pro197) on the N-terminal side of the extracellular region involved in ligand binding of LILRB2 to which the signal sequence was removed and methionine as the start codon was added were incorporated into the pGM7 vector, and 17 at the C-terminus. A plasmid for expression of E. coli (LILRB2birA-pGM7) possessed by the inventors of the present application, to which a biotinylated enzyme recognition sequence consisting of amino acid residues (GSHLHILDaqKMVWWNR (SEQ ID NO: 15)) was added was used (Shiroishi, M., Tsumoto, K). Amano, K., Shirakihara, Y., Colonna, M., Braud, VM, Allan, D.S.J., Makadzange, A., Rowland-Jones, S., Willcox, B.,. Jo es, EY, van der Merwe, PA, Kumagai, I., and Maenaka, K. (2003) Human inhibitory receptors 2 (ILT2) and ILT4, ILT4, and ILT4. and bind preferred to HLA-G.Proc.Natl.Acad.Sci.U.S.A.100, 8856-61) (FIG. 9 (b), nucleotide sequence: SEQ ID NO: 16, amino acid sequence: SEQ ID NO: 17).
(大腸菌発現系を用いた各種組換えタンパク質の封入体調製)
 本研究で用いた組換えタンパク質はすべて大腸菌を用いて封入体として発現させた。LILRB2birA組換えタンパク質は、前述のプラスミドを用いて、大腸菌BL21(DE3)pLysS株(Novagen)を形質転換することにより封入体として発現させた。また、HLA-G2タンパク質は、前述のプラスミドを用いて大腸菌ClearColi(登録商標)BL21(DE3)competent cell(ClearColi(登録商標)BL21(DE3)competent cell(Lucigen)を本願の発明者らによりchemical competent cellに作り替えたもの)を形質転換することにより封入体として発現させた。具体的には、形質転換後、100μg/mLアンピシリン含有LB寒天培地に播種後、37℃で一晩培養した。得られたコロニーを100μg/mLアンピシリン含有2×YT培地(10mL)に植菌し、37℃で一晩振盪培養した。100μg/mL アンピシリンを含む2×YT培地1Lに前培養した10mLの菌液を植菌し、37℃で振盪培養した。対数増殖前期であるOptical Density(OD)600=0.6に達したところで、Isopropyl β-D-1-thiogalactopyranoside(IPTG)を終濃度1mMとなるように加えて組換えタンパク質の発現を誘導し、その後INNOVA(エッペンドルフ)で150rpm、37℃で5時間振盪培養した。培養後の菌液を遠心分離(5000rpm、4℃、10分間)して得た菌体を懸濁バッファー(50 mM Tris hydroxymethyl aminomethane[Tris]-HCl pH8.0,150mM NaCl)で懸濁し、氷上で超音波破砕を行った。破砕後、8000rpm、4℃で5分間遠心し、得られた沈殿を封入体として、さらに洗浄バッファー(50mM Tris-HCl pH8.0,150 mM NaCl,0.5% Triton X-100)で懸濁、8000rpm、4℃で5分間遠心する洗浄操作を4回繰り返した。その後、封入体から界面活性剤であるTriton X-100を除去するために、懸濁バッファーを用いて同様の操作を4回繰り返し、封入体を得た。得られた封入体は可溶化バッファー(50mM Tris-HCl pH8.0,100 mM NaCl,6M guanidine-HCl,10mM Etylenediamine-N,N,N’,N’,-tetraacetic acid[EDTA])で一晩4℃静置することによって、完全に溶解させた。可溶化後、5000×g、4℃で5分間遠心して得られた上清を封入体として-80℃で保存した。タンパク質発現誘導以降の遠心操作はすべてユニバーサル冷却遠心機を用いて行った(KUBOTA)。
(Preparation of inclusion bodies of various recombinant proteins using E. coli expression system)
All recombinant proteins used in this study were expressed as inclusion bodies using E. coli. The LILRB2biirA recombinant protein was expressed as inclusion bodies by transforming E. coli BL21 (DE3) pLysS strain (Novagen) with the aforementioned plasmid. In addition, HLA-G2 protein can be obtained by using the above-mentioned plasmids from Escherichia coli ClearColi (registered trademark) BL21 (DE3) competent cell (ClearColi (registered trademark) BL21 (DE3) competitive cell (Lucigen)) by the inventors of the present application. The cells were transformed into cells) and expressed as inclusion bodies. Specifically, after transformation, seeded on an LB agar medium containing 100 μg / mL ampicillin, and then cultured at 37 ° C. overnight. The obtained colonies were inoculated into 2 × YT medium (10 mL) containing 100 μg / mL ampicillin and cultured with shaking at 37 ° C. overnight. 10 mL of the precultured bacterial solution was inoculated in 1 L of 2 × YT medium containing 100 μg / mL ampicillin, and cultured with shaking at 37 ° C. When Optical Density (OD) 600 = 0.6 in the early logarithmic growth phase was reached, Isopropyl β-D-1-thiogalactopyroside (IPTG) was added to a final concentration of 1 mM to induce expression of the recombinant protein. Thereafter, the cells were cultured with shaking in INNOVA (Eppendorf) at 150 rpm and 37 ° C. for 5 hours. The bacterial cells obtained by centrifuging the cultured bacterial solution (5000 rpm, 4 ° C., 10 minutes) are suspended in a suspension buffer (50 mM Tris hydroxylamine [Tris] -HCl pH 8.0, 150 mM NaCl) on ice. Was subjected to ultrasonic crushing. After disruption, the mixture is centrifuged at 8000 rpm and 4 ° C. for 5 minutes, and the resulting precipitate is used as an inclusion body and further suspended in a washing buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5% Triton X-100). The washing operation of centrifuging at 8000 rpm and 4 ° C. for 5 minutes was repeated 4 times. Thereafter, in order to remove the surfactant Triton X-100 from the inclusion body, the same operation was repeated four times using a suspension buffer to obtain an inclusion body. The resulting inclusion bodies were overnight in a solubilization buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 6 M guanidine-HCl, 10 mM Ethylenediamine-N, N, N ′, N ′, -tetraacetic acid [EDTA]). The solution was completely dissolved by standing at 4 ° C. After solubilization, the supernatant obtained by centrifugation at 5000 × g and 4 ° C. for 5 minutes was stored as inclusion bodies at −80 ° C. All centrifugation operations after the induction of protein expression were performed using a universal cooling centrifuge (KUBOTA).
(巻き戻し法による組換えタンパク質の調製)
 HLA-G2及びLILRB2birA組換えタンパク質は、大腸菌封入体の希釈法による巻き戻しにより調製した。希釈時の最終濃度が1~2μM程度になるように、HLA-G2(8mg)、LILRB2birA(4mg)の各可溶化済み封入体にDithiothreitol(DTT)を終濃度10mMとなるように加え、室温で1時間インキュベートした。DTTによる還元処理した封入体変性溶液に、タンパク質の凝集抑制効果を持つアルギニンを含むリフォールディングバッファー(0.1M Tris-HCl pH8.0,1M L-arginine-HCl,2mM EDTA,3.73mM cystamine,6.73mM cysteamine)を1滴ずつグアニジン濃度が1.5M(ジスルフィド結合を組んで、2次構造を取ると考えられている濃度)になるまで加えた。さらに、その希釈溶液を200mLのリフォールディングバッファーに1滴ずつ加えることによってさらに希釈し、4℃で72時間攪拌した。
(Preparation of recombinant protein by unwinding method)
HLA-G2 and LILRB2birA recombinant proteins were prepared by unwinding E. coli inclusion bodies by a dilution method. Dithiothreitol (DTT) was added to each solubilized inclusion body of HLA-G2 (8 mg) and LILRB2biaA (4 mg) so that the final concentration at the time of dilution was about 1 to 2 μM, and the final concentration was 10 mM. Incubated for 1 hour. A refolding buffer (0.1 M Tris-HCl pH 8.0, 1 M L-argine-HCl, 2 mM EDTA, 3.73 mM cystein, which contains arginine having an effect of suppressing protein aggregation, in the inclusion body denaturing solution reduced by DTT. 6.73 mM cysteine) was added drop by drop until the guanidine concentration reached 1.5 M (concentration considered to form a secondary structure with disulfide bonds). The diluted solution was further diluted by adding dropwise to 200 mL of refolding buffer and stirred at 4 ° C. for 72 hours.
(巻き戻した組換えタンパク質の精製)
 希釈法により巻き戻した各組換えタンパク質は、希釈により容量が増えるため、VIVAFLOW system(MWCO:10000Da、Sartorius)を用いた限外ろ過法、必要に応じてその後Amicon Ultra(MWCO:10000 Da、Merk Millipore)を用いた限外ろ過法を行ったのちに、Millex-GV(0.22μm、PVDF、Merk Millipore)フィルタを用いて、凝集体などの微粒子を取り除き、ゲルろ過クロマトグラフィー(Size Exclusion Chromatography:SEC)による精製を行った。SECは、AKTApurifierもしくはAKTApureシステム(いずれもGE Healthcare)を用い、ランニングバッファーとして20mM Tris-HCl pH8.0,100mM NaClを使用した。
(Purification of unwound recombinant protein)
Since the volume of each recombinant protein unwound by the dilution method increases due to dilution, ultrafiltration using a VIVAFLOW system (MWCO: 10000 Da, Sartorius), and then if necessary, Amicon Ultra (MWCO: 10000 Da, Merck) After performing ultrafiltration using Millipore, fine particles such as aggregates are removed using a Millex-GV (0.22 μm, PVDF, Merk Millipore) filter, and gel filtration chromatography (Size Exclusion Chromatography): Purification by SEC) was performed. For SEC, AKTApurifier or AKTApure system (both GE Healthcare) was used, and 20 mM Tris-HCl pH 8.0, 100 mM NaCl was used as a running buffer.
 具体的には、HLA-G2は、VIVAFLOW systemで15mL以下まで濃縮した後、フィルタ処理を行い、Hiload 26/60 Superdex75 pg(GE Healthcare)カラムを用いて精製した。SECで得られた目的のピークフラクションをAmicon Ultra(MWCO:10000 Da、Merk Millipore)を使用して5mL以下まで濃縮した後、透析法を用いて20mM Tris-HCl pH8.0に置換した。フィルタ処理後、Resource Q 1mL(GE Healthcare)カラムに注入した。IEXは、20mM Tris-HCl pH8.0,0-0.5M NaCl/20 Column volume(CV)の条件で行った。 Specifically, HLA-G2 was concentrated to 15 mL or less with a VIVAFLOW system, filtered, and purified using a Hiload 26/60 Superdex75 pg (GE Healthcare) column. The target peak fraction obtained by SEC was concentrated to 5 mL or less using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), and then replaced with 20 mM Tris-HCl pH 8.0 using a dialysis method. After filtering, it was injected into a Resource Q 1 mL (GE Healthcare) column. IEX was performed under the conditions of 20 mM Tris-HCl pH 8.0, 0-0.5 M NaCl / 20 Column volume (CV).
 LILRB2birA組換えタンパク質はVIVAFLOW system及びAmicon Ultraを用いて0.5mL以下まで濃縮した後、フィルタ処理を行ない、Superdex75 10/300 GL(GE Healthcare)カラムで精製した。ランニングバッファーは20mM Tris-HCl pH8.0,200mM NaClを使用した。 The LILRB2biaA recombinant protein was concentrated to 0.5 mL or less using a VIVAFLOW system and Amicon Ultra, filtered, and purified with a Superdex 75 10/300 GL (GE Healthcare) column. As the running buffer, 20 mM Tris-HCl pH 8.0, 200 mM NaCl was used.
(ビオチン化LILRB2の調製)
 SEC法により精製したLILRB2birAを、体積比でLILRB2birA:5×BiomixA buffer(0.25M bicine buffer pH8.3):5×BiomixB buffer(50mM Adenosine triphosphate[ATP],50mM MgOAc,250μM d-biotin)=3:1:1になるように混合して、BirA酵素1μL(本願の発明者らで調製したもの)を加え、30℃で1時間インキュベートした。その後未反応のビオチンを取り除くために、Superdex 75 10/300 GL(GE Healthcare)カラムでSEC精製を行った。ランニングバッファーは20mM Tris-HCl pH8.0,400mM NaClを用いた。
(Preparation of biotinylated LILRB2)
LILRB2 birA purified by the SEC method was mixed with LILRB2 birA: 5 × BiomixA buffer (0.25 M bicine buffer pH 8.3): 5 × BiomixB buffer (50 mM Adenosine triphosphat) The mixture was mixed at 1: 1, and 1 μL of BirA enzyme (prepared by the inventors of the present application) was added, and the mixture was incubated at 30 ° C. for 1 hour. Thereafter, in order to remove unreacted biotin, SEC purification was performed on a Superdex 75 10/300 GL (GE Healthcare) column. As a running buffer, 20 mM Tris-HCl pH 8.0, 400 mM NaCl was used.
 上記の通り調製したHLA-G2タンパク質をSEC精製した結果、これまでの知見と一致して、目的の分子量(HLA-G2:22kDa)の約2倍の分子量(44kDa)相当の位置に溶出ピークが得られた(図10(a))。 As a result of SEC purification of the HLA-G2 protein prepared as described above, an elution peak appears at a position corresponding to a molecular weight (44 kDa) approximately twice the target molecular weight (HLA-G2: 22 kDa), consistent with previous findings. Obtained (FIG. 10A).
(HLA-G2のCys42残基特異的なPEG化反応)
 上記の通り調製したHLA-G2タンパク質を用いて、PEG化反応を行った。PEG化試薬は、高純度直鎖PEGであるME-400MA(MW:42,653Da)(PEG40)、ME-200MAOB(MW:20,841Da)(PEG20)、ME-100MA(MW:10,303Da)(PEG10)、ME-050MA(MW:5,393Da)(PEG5)(いずれも日油株式会社)を用いた。これらの試薬は反応基としてマレイミド基を持ち、チオール基を認識して反応する。
(PEGylation reaction specific to Cys42 residue of HLA-G2)
PEGylation reaction was performed using the HLA-G2 protein prepared as described above. PEGylation reagents are ME-400MA (MW: 42,653 Da) (PEG40), ME-200MAOB (MW: 20,841 Da) (PEG20), ME-100MA (MW: 10,303 Da), which are high-purity linear PEGs. (PEG10), ME-050MA (MW: 5,393 Da) (PEG5) (both NOF Corporation) were used. These reagents have a maleimide group as a reactive group and react by recognizing a thiol group.
(還元剤)
 PEG化反応前に、還元処理によってジスルフィド結合を切断し、PEG化ターゲットとなるCys42残基のチオール基を再度露出させ、反応効率を向上させるために、還元剤を添加した。
(Reducing agent)
Prior to the PEGylation reaction, a disulfide bond was cleaved by a reduction treatment, and the thiol group of the Cys42 residue serving as a PEGylation target was exposed again, and a reducing agent was added to improve the reaction efficiency.
 精製したHLA-G2タンパク質について、Amicon Ultra(MWCO:10000Da、Merk Millipore)を用いた限外ろ過による濃縮、及びPEG化バッファー(1×Phosphate-Bufferd Saline(PBS), 5mM EDTA)への置換を行い0.5mLに調製した溶液を、嫌気条件下でPEG化反応を進行させるために、アスピレーターを用いて1時間脱気処理を行った。続いて、還元剤tris(2-carboxyethyl)phosphine(TCEP)を終濃度0.1、0.5、1、5、10mMとなるように加えたあと、PEG20を加え、4℃で一晩反応させた。還元剤として、無臭で使いやすく、マレイミドとシステインを用いた反応時に多用されるtris(2-carboxyethyl)phosphine(TCEP)を用いた。 The purified HLA-G2 protein was concentrated by ultrafiltration using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), and replaced with PEGylation buffer (1 × Phosphate-Buffer Saline (PBS), 5 mM EDTA). In order to advance the PEGylation reaction under anaerobic conditions, the solution prepared to 0.5 mL was degassed for 1 hour using an aspirator. Subsequently, the reducing agent tris (2-carboxyethyl) phosphine (TCEP) was added to a final concentration of 0.1, 0.5, 1, 5, 10 mM, PEG 20 was added, and the mixture was reacted at 4 ° C. overnight. It was. As the reducing agent, tris (2-carboxyethyl) phosphine (TCEP), which is odorless and easy to use and is frequently used in the reaction using maleimide and cysteine, was used.
 PEG化反応の進行は、反応液を非還元条件でSodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis(SDS-PAGE)(12.5% アクリルアミドゲル、30mA/枚、70分間泳動)し、Coomassie Brilliant Blue(CBB)染色、及び、PEG分子を検出するBarium Iodide(BaI)染色により確認した。BaI2染色は、泳動後のアクリルアミドゲルを5% BaI溶液(15分間)、イオン交換水(30分間)、0.1Mヨウ素溶液(5分間)の順に浸して振盪する、という手順で行った。 The progress of the PEGylation reaction was carried out by subjecting the reaction solution to Sodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) (12.5% acrylamide gel, 30 mA / plate, 70 minutes) and Coomassie Brilliant (for 70 minutes). ) Staining and Barium Iodide (BaI 2 ) staining to detect PEG molecules. BaI2 staining was performed by a procedure in which the acrylamide gel after electrophoresis was immersed in a 5% BaI 2 solution (15 minutes), ion-exchanged water (30 minutes), and 0.1 M iodine solution (5 minutes) in this order and shaken.
 PEG化HLA-G2の精製はSuperdex 200 10/300 GL(GE Healthcare)、Superdex 75 10/300 GL(GE Healthcare)、あるいはSuperose6 10/300 GL(GE Healthcare)カラムを用いたSECにより行った。PEG化反応液を、Amicon Ultra(MWCO:10000Da、Merk Millipore)を使用してSECランニングバッファー(20mM Tris-HCl pH8.0,100mM NaCl)へ置換し、0.5mLまで濃縮してカラムへ打ち込んだ。SECには、AKTApurifierシステム(GE Healthcare)を用いた。精製度は、各フラクションサンプルを非還元条件でSDS-PAGEにより展開し、銀染色(2D-SILVER STAIN REAGENT II、コスモ・バイオ株式会社)で検出して確認した。 PEGylated HLA-G2 was purified using Superdex 200 10/300 GL (GE Healthcare), Superdex 75 10/300 GL (GE Healthcare), or Superose 6 10/300 GL (GE HealthEC) column. The PEGylation reaction solution was replaced with SEC running buffer (20 mM Tris-HCl pH 8.0, 100 mM NaCl) using Amicon Ultra (MWCO: 10000 Da, Merck Millipore), concentrated to 0.5 mL and loaded onto the column. . For the SEC, an AKTA purifier system (GE Healthcare) was used. The degree of purification was confirmed by developing each fraction sample by SDS-PAGE under non-reducing conditions and detecting it with silver staining (2D-SILVER STAIN REAGENT II, Cosmo Bio Inc.).
 反応液を上記の通りSDS-PAGEで展開し、CBB染色したところ、目的のPEG化タンパク質のバンドを確認することができた(図10(b))。以上の結果からTCEPを加えることにより反応効率は大きく向上すること、さらに、TCEP終濃度が0.1mMの条件で最も高い反応効率が得られることがわかった。そのため、以後の実験において、PEG化反応は0.1mM TCEP処理をした条件下で行うこととした。 When the reaction solution was developed by SDS-PAGE and stained with CBB as described above, the band of the target PEGylated protein could be confirmed (FIG. 10 (b)). From the above results, it was found that the reaction efficiency was greatly improved by adding TCEP, and that the highest reaction efficiency was obtained under the condition that the TCEP final concentration was 0.1 mM. Therefore, in the subsequent experiments, the PEGylation reaction was performed under the condition of 0.1 mM TCEP treatment.
(PEG分子量の検討)
 続いて、結合させるPEGの分子量によって、PEG化反応効率、PEG化タンパク質の精製度が異なるかどうかを検証するため、反応基としてマレイミドを持つ4種類の分子量(5、10、20、40kDa)の分子量のPEG化試薬(PEG5、PEG10、PEG20、PEG40)(前述)を用いてHLA-G2のPEG化を行った。得られたPEG化体は以下の通りである。
 ・PEG5-HLA-G2(HLA-G2をPEG5でPEG化したもの)
 ・PEG10-HLA-G2(HLA-G2をPEG10でPEG化したもの)
 ・PEG20-HLA-G2(HLA-G2をPEG20でPEG化したもの)
 ・PEG40-HLA-G2(HLA-G2をPEG40でPEG化したもの)
(Examination of PEG molecular weight)
Subsequently, in order to verify whether the PEGylation reaction efficiency and the degree of purification of the PEGylated protein differ depending on the molecular weight of PEG to be bound, four types of molecular weight (5, 10, 20, 40 kDa) having maleimide as a reactive group HLA-G2 was PEGylated using molecular weight PEGylation reagents (PEG5, PEG10, PEG20, PEG40) (described above). The obtained PEGylated product is as follows.
・ PEG5-HLA-G2 (HLA-G2 PEGylated with PEG5)
・ PEG10-HLA-G2 (HLA-G2 PEGylated with PEG10)
・ PEG20-HLA-G2 (HLA-G2 PEGylated with PEG20)
・ PEG40-HLA-G2 (HLA-G2 PEGylated with PEG40)
 PEG化した反応液についてSDS-PAGEで展開後、CBB染色及びBaI染色し反応の進行を確認したところ、4種類のPEG化タンパク質すべてを確認できた(図11(a)、(b))。また、PEG化タンパク質のバンドの濃さから、PEG化反応率については低分子量のPEG(PEG5、PEG10)のほうが高いことが明らかとなった。 PEGylated reaction solution was developed by SDS-PAGE, then CBB staining and BaI 2 staining were performed to confirm the progress of the reaction. As a result, all four types of PEGylated proteins were confirmed (FIGS. 11 (a) and (b)). . Also, from the density of the PEGylated protein band, it was revealed that the PEGylation reaction rate was higher for low molecular weight PEG (PEG5, PEG10).
 これらのPEG化HLA-G2を精製する方法として、PEG化前後の分子量差を利用して分離するSECを選択した。4種類のPEG化反応液についてSEC精製を行ない、得られたピークフラクションについてSDS-PAGE後、銀染色によって精製度の確認を行ったところ、SECによって、PEG10-HLA-G2、PEG20-HLA-G2については目的のPEG化HLA-G2を未反応のHLA-G2タンパク質と分離して精製することができた(図12(b)、(c))。 SEC was selected as a method for purifying these PEGylated HLA-G2 by using the difference in molecular weight before and after PEGylation. SEC purification was performed on the four types of PEGylation reaction solutions, and the obtained peak fractions were confirmed by SEC using PEG10-HLA-G2 and PEG20-HLA-G2 by SEC after silver-staining after SDS-PAGE. The target PEGylated HLA-G2 was separated from the unreacted HLA-G2 protein and purified (FIGS. 12 (b) and 12 (c)).
(受容体LILRB2との結合実験)
 続いて、PEG化タンパク質として精製できたPEG10-HLA-G2及びPEG20-HLA-G2、並びにPEG化タンパク質をメインに含むSECピークとして得られたPEG5-HLA-G2のSEC精製後サンプルを用いて、Surface Plasmon Resonance(SPR)による受容体LILRB2との相互作用解析を行い、各分子量のPEGが結合したHLA-G2が受容体結合能を維持しているかを確認した。比較対照として、前述の方法により調製されたPEG化していないHLA-G2を用いた。
(Binding experiment with receptor LILRB2)
Subsequently, PEG10-HLA-G2 and PEG20-HLA-G2 that could be purified as PEGylated proteins, and SEC-purified samples of PEG5-HLA-G2 obtained as SEC peaks mainly containing PEGylated proteins, An interaction analysis with the receptor LILRB2 by Surface Plasmon Resonance (SPR) was performed, and it was confirmed whether HLA-G2 to which each molecular weight of PEG was bound maintained the receptor binding ability. As a comparative control, non-PEGylated HLA-G2 prepared by the method described above was used.
 LILRB2は、上述の通り、C末端側にビオチン化タグが付加されている精製LILRB2birAタンパク質を用いて、酵素による部位特異的ビオチン化後、SEC精製によりビオチン化LILRB2として調製した。 As described above, LILRB2 was prepared as biotinylated LILRB2 by SEC purification after site-specific biotinylation using a purified LILRB2biaA protein with a biotinylated tag added to the C-terminal side.
 アナライトとして、2倍ずつ連続希釈したHLA-G2(0.2~0.7μM)、PEG5-HLA-G2(0.4~1.6μM)、PEG10-HLA-G2(0.3~1.1μM)、PEG20-HLA-G2(0.3~1.1μM)を流した。 As analytes, HLA-G2 (0.2-0.7 μM), PEG5-HLA-G2 (0.4-1.6 μM), and PEG10-HLA-G2 (0.3-1. 1 μM) and PEG20-HLA-G2 (0.3 to 1.1 μM).
(Surface Plasmon Resonance(SPR)による相互作用解析)
 PEG化HLA-G2のLILRB2結合への影響を確認するために、SPR法による相互作用解析をBiacore3000(GE Healthcare)を用いて行った。センサーチップ上にはビオチン化LILRB2及びコントロールとしてビオチン化BSAをBiotin CAPture Kit(GE Healthcare)を使用して、プロトコル通りにセンサーチップCAPに固定化した。センサーチップCAP上には一本鎖DNAが固定化されており(図13(a))、そこへストレプトアビジンが付加した相補鎖DNAをハイブリダイゼーションさせることによってストレプトアビジンをチップ上に固定(図13(b))、さらにストレプトアビジンとビオチンの相互作用を利用してビオチン化LILRB2及びビオチン化BSAを200RU~500RUの固定化量で固定化した(図13(c))。
(Interaction analysis by Surface Plasma Resonance (SPR))
In order to confirm the influence of PEGylated HLA-G2 on LILRB2 binding, interaction analysis by SPR method was performed using Biacore 3000 (GE Healthcare). On the sensor chip, biotinylated LILRB2 and biotinylated BSA as a control were immobilized on the sensor chip CAP according to the protocol using Biotin CAPture Kit (GE Healthcare). Single-stranded DNA is immobilized on the sensor chip CAP (FIG. 13 (a)). Streptavidin is immobilized on the chip by hybridization with complementary-strand DNA added with streptavidin (FIG. 13). (B)) Furthermore, biotinylated LILRB2 and biotinylated BSA were immobilized at an immobilized amount of 200 RU to 500 RU by utilizing the interaction between streptavidin and biotin (FIG. 13 (c)).
 アナライトとしては、Amicon Ultra(MWCO:10000、Millipore)を用いた限外ろ過によりランニングバッファーであるHBS-EPバッファー(10mM Na-HEPES pH7.4、150mM NaCl、3mM EDTA、0.005%(v/v)Surfactant P20:GE Healthcare)に置換したHLA-G2、PEG化HLA-G2各タンパク質溶液について、3段階に2倍ずつ段階希釈したサンプルを、低濃度のものから順番に流速10μL/minで流した。測定温度は25℃、結合時間及び解離時間はそれぞれ120秒でカイネティクス測定を行った。解析にはBIAevaluation version:4.1.1(GE Healthcare)を用いた。 As the analyte, HBS-EP buffer (10 mM Na-HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v) was obtained by ultrafiltration using Amicon Ultra (MWCO: 10000, Millipore). / V) Samples of HLA-G2 and PEGylated HLA-G2 protein solutions substituted with Surfactant P20: GE Healthcare) were diluted two-fold in three steps, starting with the lowest concentration, at a flow rate of 10 μL / min. Washed away. Kinetics measurements were performed at a measurement temperature of 25 ° C., a binding time and a dissociation time of 120 seconds each. BIAevaluation version: 4.1.1 (GE Healthcare) was used for the analysis.
 結合解析の結果、3種類すべてのPEG化体についてLILRB2との結合を確認することができた(図14(b)-(d))。 As a result of the binding analysis, it was confirmed that all three types of PEGylated products were bound to LILRB2 (FIGS. 14B to 14D).
 以上の結果から、3種類の分子量でPEG化効率及び受容体との結合能に大きな差は見られないことから、PEG化タンパク質の精製度が高く、さらにPEG化タンパク質の安定性に寄与すると考えられるPEG分子量が3つのうちで最も大きい20kDaのPEGで修飾した「PEG20-HLA-G2」を用いてSLEモデルマウス実験を行うこととした。 From the above results, since there is no significant difference in the PEGylation efficiency and the binding ability with the receptor at the three molecular weights, the degree of purification of the PEGylated protein is high, and further contributes to the stability of the PEGylated protein. The SLE model mouse experiment was conducted using “PEG20-HLA-G2” modified with 20 kDa PEG having the largest PEG molecular weight among the three.
(各投与タンパク質(HLA-G2、PEG20-HLA-G2)の調製)
 続いて、マウスへの各投与タンパク質を調製した。前述の通りSEC精製により得られたHLA-G2及びPEG20-HLA-G2を、透析法によりPBSバッファーに置換し、投与タンパク質溶液とした。
(Preparation of each administered protein (HLA-G2, PEG20-HLA-G2))
Subsequently, each protein administered to mice was prepared. As described above, HLA-G2 and PEG20-HLA-G2 obtained by SEC purification were replaced with PBS buffer by dialysis to obtain a protein solution to be administered.
(投与試験)
 前述の通り調製したHLA-G2、PEG20-HLA-G2又はネガティブコントロールとしてPBSをSLEモデルマウスに下記の通り投与した(“HLA-G2投与群”、“PEG20-HLA-G2投与群”又は“PBS投与群”)。SLEモデルマウスとして、MRL/MpJJmsSlc-lpr/lprマウス(日本エスエルシー株式会社)を用い、各投与群8匹ずつから試験を開始した。なお、HLA-G2及びPEG20-HLA-G2については、約3週間ごとに新しいロット(新たに巻き戻し~精製し直したもの)を投与した。試験の概要を図15に示す。
 ・投与経路:腹腔内投与
 ・投与量:
   HLA-G2投与群:15μg/匹(200μLのPBSに溶解)
   PEG20-HLA-G2投与群:15μg/匹(200μLのPBSに溶解)
   PBS投与群:PBS 200μL
 ・投与間隔:週2回投与
 ・投与期間:95日間
(Dosage test)
HLA-G2, PEG20-HLA-G2 prepared as described above or PBS as a negative control was administered to SLE model mice as follows ("HLA-G2 administration group", "PEG20-HLA-G2 administration group" or "PBS Administration group "). MRL / MpJJmsSlc-lpr / lpr mice (Japan SLC Co., Ltd.) were used as SLE model mice, and the test was started from 8 mice in each administration group. For HLA-G2 and PEG20-HLA-G2, a new lot (newly unwound to repurified) was administered about every 3 weeks. The outline of the test is shown in FIG.
・ Administration route: intraperitoneal administration ・ Dose:
HLA-G2 administration group: 15 μg / animal (dissolved in 200 μL of PBS)
PEG20-HLA-G2 administration group: 15 μg / animal (dissolved in 200 μL of PBS)
PBS administration group: PBS 200 μL
・ Dose interval: twice a week ・ Dose period: 95 days
 初回投与の8日前から、投与終了から23日後まで、3週間又は2週間に一度、矢印(図13)で示した日に血漿及び尿を採取し、SLEの診断及びモニタリングに用いられる血漿中抗dsDNA抗体価及び尿中アルブミン指数を測定した。 From 8 days before the first administration to 23 days after the end of the administration, plasma and urine were collected once every 3 or 2 weeks on the day indicated by the arrow (FIG. 13), and used in the diagnosis and monitoring of SLE. The dsDNA antibody titer and urinary albumin index were measured.
 副作用発生の指標として、投与のタイミングにあわせてマウスの体重測定を行った。図16に、マウスの体重推移を示す。HLA-G2投与群、PEG20-HLA-G2投与群及びPBS投与群において、各投与群間で体重推移に有意な差は見られなかった。 As an indicator of the occurrence of side effects, mouse body weights were measured according to the timing of administration. FIG. 16 shows the weight transition of the mouse. In the HLA-G2 administration group, the PEG20-HLA-G2 administration group and the PBS administration group, there was no significant difference in body weight transition among the administration groups.
(抗dsDNA抗体ELISA)
 レビス 抗dsDNA-マウスELISA KIT、シバヤギ社を用いて、血中抗核抗体量を測定した。緩衝液を用いて希釈したマウス血漿検体、および検量線作成用の標準溶液を抗原固相化マイクロプレートに添加した。2時間のインキュベートおよびウェル洗浄後、標識抗体(ペルオキシダーゼ結合抗マウスIgG抗体)を添加した。さらに2時間のインキュベート及びウェル洗浄後、発色液(TMB)と20分間反応させ、酸性溶液(1M HSO)を添加することで反応を停止させた。分光光度計を用いて450nm(副波長620nm)の吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各血漿サンプルの抗dsDNA抗体価を算出した。
(Anti-dsDNA antibody ELISA)
The amount of antinuclear antibody in the blood was measured using Levis anti-dsDNA-mouse ELISA KIT, Shibayagi. A mouse plasma specimen diluted with a buffer and a standard solution for preparing a calibration curve were added to an antigen-immobilized microplate. After 2 hours of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 2 hours and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the anti-dsDNA antibody titer of each plasma sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
 図17(a)に、各群の抗dsDNA抗体価を示す。PBS投与群に比してHLA-G2投与群及びPEG20-HLA-G2投与群では、抗dsDNA抗体価の低下が確認された(図17(a))。また、図17(b)に、投与90日後のマウスの抗dsDNA抗体価を示す。PBS投与群に比してHLA-G2投与群及びPEG20-HLA-G2投与群では、抗dsDNA抗体価の有意な低下が確認された(図17(b))。 FIG. 17 (a) shows the anti-dsDNA antibody titers of each group. A decrease in the anti-dsDNA antibody titer was confirmed in the HLA-G2 administration group and the PEG20-HLA-G2 administration group as compared to the PBS administration group (FIG. 17 (a)). FIG. 17 (b) shows the anti-dsDNA antibody titer of mice 90 days after administration. A significant decrease in the anti-dsDNA antibody titer was confirmed in the HLA-G2 administration group and the PEG20-HLA-G2 administration group as compared to the PBS administration group (FIG. 17 (b)).
(尿蛋白量)
 尿中アルブミンを、ELISAキット(レビス アルブミン-マウス、シバヤギ社)を用いて測定した。緩衝液を用いて希釈したマウス尿検体、および検量線作成用の標準溶液を抗アルブミン抗体固相化マイクロプレートに添加した。1時間のインキュベートおよびウェル洗浄後、標識抗体(ペルオキシダーゼ結合抗マウスIgG抗体)を添加した。さらに1時間のインキュベートおよびウェル洗浄後、発色液(TMB)と20分間反応させ、酸性溶液(1M HSO)を添加することで反応を停止させた。分光光度計を用いて450nm(副波長620nm)の吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各尿サンプルの尿中アルブミン指数を算出した。さらに尿中クレアチニンをELISAキット(尿中クレアチニン測定用ELISAキット、トランスジェニック社)を用いて測定した。超純水を用いて希釈したマウス尿検体、及び検量線作成用の標準溶液に標識抗体(HRP標識-抗クレアチニン抗体)を添加し30分インキュベートさせ、抗原固相化マイクロプレートに添加した。1時間のインキュベート及びウェル洗浄後、発色液(オルトフェニレンジアミン)と10分間反応させ、酸性溶液(5.4% HSO)を添加することで反応を停止させた。分光光度計を用いて490nmの吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各尿サンプルの尿中クレアチニン濃度を算出した。以上から得られた尿中アルブミン濃度(単位:mg/mL)の値を尿中クレアチニン濃度(単位:g/mL)の値で割ることで尿中アルブミン指数(単位:mgアルブミン/gクレアチニン)を算出した。
(Urine protein content)
Urinary albumin was measured using an ELISA kit (Levis albumin-mouse, Shibayagi). A mouse urine specimen diluted with a buffer solution and a standard solution for preparing a calibration curve were added to an anti-albumin antibody-immobilized microplate. After 1 hour of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse IgG antibody) was added. After further incubation for 1 hour and well washing, the mixture was reacted with the color developing solution (TMB) for 20 minutes, and the reaction was stopped by adding an acidic solution (1M H 2 SO 4 ). The absorbance at 450 nm (subwavelength 620 nm) was measured using a spectrophotometer, and the urine albumin index of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration. Furthermore, urinary creatinine was measured using an ELISA kit (Urine creatinine measurement ELISA kit, Transgenic). A labeled antibody (HRP-labeled anti-creatinine antibody) was added to a mouse urine sample diluted with ultrapure water and a standard solution for preparing a calibration curve, incubated for 30 minutes, and added to an antigen-immobilized microplate. After 1 hour of incubation and well washing, the reaction was stopped with a color developing solution (orthophenylenediamine) for 10 minutes and the reaction was stopped by adding an acidic solution (5.4% H 2 SO 4 ). The absorbance at 490 nm was measured using a spectrophotometer, and the urinary creatinine concentration of each urine sample was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration. The urinary albumin index (unit: mg albumin / g creatinine) is obtained by dividing the value of urinary albumin concentration (unit: mg / mL) obtained from the above by the value of urinary creatinine concentration (unit: g / mL). Calculated.
 図18に、各群の尿中アルブミン指数を示す。各群間で尿中アルブミン指数の有意な差は見られなかったが、PEG20-HLA-G2投与群では、PBS投与群及びHLA-G2投与群に比して、尿中アルブミン指数の低下効果が持続する傾向にあった(図18)。 FIG. 18 shows the urinary albumin index of each group. Although there was no significant difference in the urinary albumin index between the groups, the PEG20-HLA-G2 administration group had a lowering effect on the urinary albumin index compared to the PBS administration group and the HLA-G2 administration group. There was a tendency to persist (FIG. 18).
(Blys血中濃度)
 また、投与開始後90日目に、可溶型Bリンパ球刺激因子(Blys)血中濃度を測定した。より具体的には、Mouse BAFF/BLyS/TNFSF13B Quantikine ELISA Kit(R&D systems社製)を用いて、プロトコルに従い血漿中BLys濃度を測定した。緩衝液を用いて希釈したマウス血漿検体、及び検量線作成用の標準溶液をマウスBLys特異的モノクローナル抗体固相化マイクロプレートに添加した。2時間のインキュベート及びウェル洗浄後、標識抗体(ペルオキシダーゼ結合抗マウスBLysポリクローナル抗体)を添加した。さらに2時間のインキュベート及びウェル洗浄後、発色液(TMB)と30分間反応させ、酸性溶液(希塩酸)を添加することで反応を停止させた。分光光度計を用いて450nm(副波長540nm)の吸光度を測定し、標準液濃度に対する吸光度をプロットすることにより得られた標準曲線から各血漿中BLys濃度を算出した。
(Blys blood concentration)
On the 90th day after the start of administration, the blood concentration of soluble B lymphocyte stimulating factor (Blys) was measured. More specifically, the BLys concentration in plasma was measured using a Mouse BAFF / BLyS / TNFSF13B Quantikine ELISA Kit (manufactured by R & D systems) according to the protocol. A mouse plasma specimen diluted with a buffer and a standard solution for preparing a calibration curve were added to a mouse BLys-specific monoclonal antibody-immobilized microplate. After 2 hours of incubation and well washing, a labeled antibody (peroxidase-conjugated anti-mouse BLys polyclonal antibody) was added. After further incubation for 2 hours and well washing, the mixture was reacted with the coloring solution (TMB) for 30 minutes, and the reaction was stopped by adding an acidic solution (dilute hydrochloric acid). The absorbance at 450 nm (subwavelength 540 nm) was measured using a spectrophotometer, and the BLys concentration in each plasma was calculated from the standard curve obtained by plotting the absorbance against the standard solution concentration.
 図19に、各群のBlys血中濃度を示す。PEG20-HLA-G2投与群では、PBS投与群及びHLA-G2投与群に比して、Blys血中濃度の有意な低下が認められた(図19)。 FIG. 19 shows the Blys blood concentration of each group. In the PEG20-HLA-G2 administration group, a significant decrease in Blys blood concentration was observed compared to the PBS administration group and the HLA-G2 administration group (FIG. 19).
(延長試験)
 次に、PBS投与群を用いて延長試験を行い、PEG20-HLA-G2のSLEに対する治療効果を検証した。
(Extended test)
Next, an extension test was performed using the PBS administration group, and the therapeutic effect of PEG20-HLA-G2 on SLE was verified.
 上記のPBS投与群のマウスについて、初回投与から118日及び132日目に血漿及び尿を採取し、前述同様に、血漿中抗dsDNA抗体価及び尿中アルブミン指数を測定した。132日目の血漿中抗dsDNA抗体価及び尿中アルブミン指数の値が、118日目のそれらの値よりも上昇している(すなわち、SLEを発症している)マウスに対して、PEG20-HLA-G2又はPBSを投与し、治療効果を検証した(PEG20-HLA-G2投与:n= 1、PBS投与:n=1)。132日目から投与を開始し(投与間隔:週2回投与、2週間で計4回投与)、投与経路及び投与量については、前述同様とした。138日目及び145日目に血漿及び尿を採取し、前述同様に、血漿中抗dsDNA抗体価及び尿中アルブミン指数を測定した。 For the mice in the PBS administration group, plasma and urine were collected on days 118 and 132 from the first administration, and the plasma anti-dsDNA antibody titer and urinary albumin index were measured in the same manner as described above. PEG20-HLA for mice with elevated plasma anti-dsDNA antibody titers and urinary albumin index values on day 132 above those on day 118 (ie, developing SLE) -G2 or PBS was administered to verify the therapeutic effect (PEG20-HLA-G2 administration: n = 1, PBS administration: n = 1). Administration was started from day 132 (administration interval: administered twice a week, administered 4 times in total for 2 weeks), and the administration route and dose were the same as described above. Plasma and urine were collected on days 138 and 145, and the plasma anti-dsDNA antibody titer and urinary albumin index were measured as described above.
 図20(a)に、抗dsDNA抗体価の変化を示す。PEG20-HLA-G2投与のマウスでは、PBS投与のそれに比して抗dsDNA抗体価の低下が見られ、PEG20-HLA-G2による治療効果が確認された。 FIG. 20 (a) shows the change in the anti-dsDNA antibody titer. In mice treated with PEG20-HLA-G2, a decrease in the anti-dsDNA antibody titer was observed as compared with PBS administration, confirming the therapeutic effect of PEG20-HLA-G2.
 図20(b)に、尿中アルブミン指数の変化を示す。PEG20-HLA-G2投与のマウスでは、PBS投与のそれに比して尿中アルブミン指数の低下が見られ、PEG20-HLA-G2による治療効果が確認された。 FIG. 20 (b) shows changes in the urinary albumin index. In mice treated with PEG20-HLA-G2, the urinary albumin index decreased as compared with PBS administration, confirming the therapeutic effect of PEG20-HLA-G2.
 以上より、SLEモデルマウス(MRL/MpJJmsSlc-lpr/lprマウス)において、週2回のPEG20-HLA-G2の腹腔内投与によって血中抗核抗体量及び尿蛋白質の低下が認められたことから、PEG20-HLA-G2はSLEに対して治療効果を奏することが明らかとなった。PEG化HLA-G2を用いることで、投与量や投与回数の低減が期待でき、他剤との併用を想定する上でも、患者への金銭的、身体的負担を軽減できるものと期待される。 From the above, in the SLE model mouse (MRL / MpJJmsSlc-lpr / lpr mouse), the intraperitoneal administration of PEG20-HLA-G2 twice a week showed a decrease in blood antinuclear antibody amount and urinary protein. It was revealed that PEG20-HLA-G2 has a therapeutic effect on SLE. The use of PEGylated HLA-G2 can be expected to reduce the dose and the number of administrations, and is expected to reduce the financial and physical burden on the patient even when concomitant with other drugs.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2018年3月13日に出願された、日本国特許出願特願2018-046023号に基づく。本明細書に日本国特許出願特願2018-046023号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2018-046023 filed on Mar. 13, 2018. The specification, claims, and entire drawings of Japanese Patent Application No. 2018-046023 are incorporated herein by reference.
 本発明は、全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤及び膠原病の予防又は治療剤に利用可能である。 The present invention is applicable to preventive or therapeutic agents for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and preventive or therapeutic agents for collagen disease.

Claims (14)

  1.  HLA-G又はHLA-G多量体を有効成分とする全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。 A preventive or therapeutic agent for systemic lupus erythematosus or a disease caused by systemic lupus erythematosus comprising HLA-G or an HLA-G multimer as an active ingredient.
  2.  前記HLA-G多量体は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体である、
     ことを特徴とする請求項1に記載の全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。
    The HLA-G multimer is a multimer of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked.
    The preventive or therapeutic agent for a disease caused by systemic lupus erythematosus or systemic lupus erythematosus according to claim 1.
  3.  前記HLA-G多量体は、
     (a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
     (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
     であって、
     前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である、
     ことを特徴とする請求項1又は2に記載の全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。
    The HLA-G multimer is
    (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1,
    Because
    It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
    The systemic lupus erythematosus or systemic lupus erythematosus according to claim 1 or 2, wherein the disease is caused by systemic lupus erythematosus.
  4.  前記HLA-G又はHLA-G多量体は、
     前記HLA-G又はHLA-G多量体のタンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である、
     ことを特徴とする請求項1に記載の全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。
    The HLA-G or HLA-G multimer is
    The HLA-G or HLA-G multimeric protein is an altered protein or a salt thereof in which at least one amino acid residue in the amino acid sequence is PEGylated with polyethylene glycol (PEG);
    The preventive or therapeutic agent for a disease caused by systemic lupus erythematosus or systemic lupus erythematosus according to claim 1.
  5.  前記HLA-G多量体は、
     HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、
     前記タンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である、
     ことを特徴とする請求項4に記載の全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。
    The HLA-G multimer is
    Consisting of a multimer of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked,
    At least one amino acid residue in the amino acid sequence constituting the protein is a modified protein or a salt thereof that is PEGylated with polyethylene glycol (PEG);
    The preventive or therapeutic agent for a disease caused by systemic lupus erythematosus or systemic lupus erythematosus according to claim 4.
  6.  PEG化修飾に用いるPEGの分子量は、5kDa~100kDaである、
     ことを特徴とする請求項4又は5に記載の全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。
    The molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
    The systemic lupus erythematosus or systemic lupus erythematosus disease-preventing or treating agent according to claim 4 or 5.
  7.  前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
     (a)配列番号1に示されるアミノ酸配列からなるタンパク質、
     (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
     前記多量体が、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである、
     ことを特徴とする請求項4乃至6のいずれか1項に記載の全身性エリテマトーデス又は全身性エリテマトーデスに起因して生じる疾患の予防又は治療剤。
    The protein is a protein having an amino acid sequence described in (a) or (b) below,
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1,
    (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
    The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. ,
    The agent for preventing or treating systemic lupus erythematosus or a disease caused by systemic lupus erythematosus according to any one of claims 4 to 6.
  8.  HLA-G又はHLA-G多量体を有効成分とし、全身投与に用いられる、
     ことを特徴とする膠原病の予防又は治療剤。
    HLA-G or HLA-G multimer as an active ingredient, used for systemic administration,
    A preventive or therapeutic agent for collagen disease characterized by the above.
  9.  前記HLA-G多量体は、HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体である、
     ことを特徴とする請求項8に記載の膠原病の予防又は治療剤。
    The HLA-G multimer is a multimer of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked.
    The preventive or therapeutic agent for collagen disease according to claim 8.
  10.  前記HLA-G多量体は、
     (a)配列番号1に示されるアミノ酸配列からなるタンパク質、又は
     (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
     であって、
     前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体である、
     ことを特徴とする請求項8又は9に記載の膠原病の予防又は治療剤。
    The HLA-G multimer is
    (A) a protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or (b) a protein consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1,
    Because
    It is a homomultimer between (a) or (b) or a heteromultimer between (a) and (b).
    The preventive or therapeutic agent for collagen disease according to claim 8 or 9.
  11.  前記HLA-G又はHLA-G多量体は、
     前記HLA-G又はHLA-G多量体のタンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である、
     ことを特徴とする請求項8に記載の膠原病の予防又は治療剤。
    The HLA-G or HLA-G multimer is
    The HLA-G or HLA-G multimeric protein is an altered protein or a salt thereof in which at least one amino acid residue in the amino acid sequence is PEGylated with polyethylene glycol (PEG);
    The preventive or therapeutic agent for collagen disease according to claim 8.
  12.  前記HLA-G多量体は、
     HLA-Gのα1ドメインとHLA-Gのα3ドメインとが連結したアミノ酸配列を有するタンパク質の多量体からなり、
     前記タンパク質を構成するアミノ酸配列中の少なくとも1つのアミノ酸残基が、ポリエチレングリコール(PEG)でPEG化修飾されている改変タンパク質又はその塩である、
     ことを特徴とする請求項11に記載の膠原病の予防又は治療剤。
    The HLA-G multimer is
    Consisting of a multimer of proteins having an amino acid sequence in which the α1 domain of HLA-G and the α3 domain of HLA-G are linked,
    At least one amino acid residue in the amino acid sequence constituting the protein is a modified protein or a salt thereof that is PEGylated with polyethylene glycol (PEG);
    The preventive or therapeutic agent for collagen disease according to claim 11.
  13.  PEG化修飾に用いるPEGの分子量は、5kDa~100kDaである、
     ことを特徴とする請求項11又は12に記載の膠原病の予防又は治療剤。
    The molecular weight of PEG used for PEGylation modification is 5 kDa to 100 kDa.
    The preventive or therapeutic agent for collagen disease according to claim 11 or 12.
  14.  前記タンパク質は、下記(a)または(b)に記載するアミノ酸配列からなるタンパク質であって、
     (a)配列番号1に示されるアミノ酸配列からなるタンパク質、
     (b)配列番号1に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質、
     前記多量体が、前記(a)同士若しくは(b)同士のホモ多量体又は(a)と(b)とのヘテロ多量体であり、白血球Ig様受容体B2との結合活性を有するものである、
     ことを特徴とする請求項11乃至13のいずれか1項に記載の膠原病の予防又は治療剤。
    The protein is a protein having an amino acid sequence described in (a) or (b) below,
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 1,
    (B) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1;
    The multimer is a homomultimer of (a) or (b) or a heteromultimer of (a) and (b), and has a binding activity to leukocyte Ig-like receptor B2. ,
    The preventive or therapeutic agent for collagen disease according to any one of claims 11 to 13, wherein
PCT/JP2019/010363 2018-03-13 2019-03-13 Prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus, and prophylactic or therapeutic agent for connective tissue diseases WO2019177053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506621A JPWO2019177053A1 (en) 2018-03-13 2019-03-13 Preventive or therapeutic agents for diseases caused by systemic lupus erythematosus or systemic lupus erythematosus and preventive or therapeutic agents for collagen disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046023 2018-03-13
JP2018-046023 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019177053A1 true WO2019177053A1 (en) 2019-09-19

Family

ID=67906801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010363 WO2019177053A1 (en) 2018-03-13 2019-03-13 Prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus, and prophylactic or therapeutic agent for connective tissue diseases

Country Status (2)

Country Link
JP (1) JPWO2019177053A1 (en)
WO (1) WO2019177053A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504425A (en) * 2008-10-02 2012-02-23 エマージェント プロダクト デベロップメント シアトル, エルエルシー Multi-target binding protein of CD86 antagonist
JP2015140322A (en) * 2014-01-29 2015-08-03 国立大学法人北海道大学 Preventive or therapeutic agent of rheumatoid arthritis or associated diseases thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504425A (en) * 2008-10-02 2012-02-23 エマージェント プロダクト デベロップメント シアトル, エルエルシー Multi-target binding protein of CD86 antagonist
JP2015140322A (en) * 2014-01-29 2015-08-03 国立大学法人北海道大学 Preventive or therapeutic agent of rheumatoid arthritis or associated diseases thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUERRA-DE BLAS P. DEL C. ET AL.: "Analysis of the Expression and Function of Immunoglobulin-Like Transcript 4 (ILT4, LILRB2) in Dendritic Cells from Patients with Systemic Lupus Erythematosus", JOURNAL OF IMMUNOLOGY RESEARCH, vol. 2016, 2016, pages 1 - 13, XP055640044, ISSN: 2314-7156 *
HOWANGYIN K. -Y. ET AL.: "Multimeric structures of HLA-G isoforms function through differential binding to LILRB receptors .", C ELLULAR AND MOLECULAR LIFE SCIENCES, vol. 69, no. 23, 2012, pages 4041 - 4049, XP035135150, ISSN: 1420-682X, doi:10.1007/s00018-012-1069-3 *
KUROKI K. ET AL.: "Cutting Edge: Class II-like Structural Features and Strong Receptor Binding of the Nonclassical HLA-G2 Isoform Homodimer.", JOURNAL OF IMMUNOLOGY, vol. 198, no. 8, 2017, pages 3399 - 3403, XP055640051, ISSN: 0022-1767 *
RIZZO R. ET AL.: "HLA-G genotype and HLA-G expression in systemic lupus erythematosus: HLA-G as a putative susceptibility gene in systemic lupus erythematosus.", TISSUE ANTIGENS, vol. 71, no. 6, 2008, pages 520 - 529, XP055640053, ISSN: 0001-2815 *
TSUCHIYA, NAOYUKI ET AL.: "Major Histocompatibility Complex", THE 2015 WORKSHOP TEXTBOOK FOR CERTIFIED HLA TECHNOLOGISTS, HLA ANS AUTOIMMUNE RHEUMATIC DISEASES: ASSOCIATION STUDIES IN JAPAN AND RECENT PROGRESS IN RESEARCH, vol. 22, no. 2, 2015, pages 74 - 83, ISSN: 2187-4239 *

Also Published As

Publication number Publication date
JPWO2019177053A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US10046027B2 (en) Muteins of tear lipocalin and methods for obtaining the same
JP7084965B2 (en) Specific binding polypeptides and their use
JP6608288B2 (en) New polypeptide
Asokan et al. Characterization of human complement receptor type 2 (CR2/CD21) as a receptor for IFN-α: a potential role in systemic lupus erythematosus
US9221885B2 (en) Muteins of human lipocalin 2 with affinity for CTLA-4
BR112020011295A2 (en) bispecific anti-pd-l1 / anti-cd47 antibody with structure similar to the natural antibody and in the form of heterodimer and preparation thereof
TWI691512B (en) Fc fusion high affinity IgE receptor alpha chain
CN112424230A (en) Bifunctional binding polypeptides
KR20200098512A (en) Variants with Fc fragments with increased affinity for FcRn and increased affinity for at least one Fc fragment receptor
RU2725442C2 (en) Novel polypeptides
RU2478645C2 (en) Soluble mutant tumour necrosis factor receptor
WO2020116498A1 (en) Cxcr3 ligand
Magistrelli et al. Robust recombinant FcRn production in mammalian cells enabling oriented immobilization for IgG binding studies
WO2019177053A1 (en) Prophylactic or therapeutic agent for systemic lupus erythematosus or diseases caused by systemic lupus erythematosus, and prophylactic or therapeutic agent for connective tissue diseases
WO2019177056A1 (en) Modified protein, drug, prophylactic or therapeutic agent for inflammatory disease, and method for producing modified protein
CN113912716B (en) Antibodies against alpha-synuclein antigens and uses thereof
Lunde et al. Stabilizing mutations increase secretion of functional soluble TCR-Ig fusion proteins
KR102555328B1 (en) T cell receptor-like antibody to CMV pp65 peptide presented by HLA-A*02 and uses thereof
Chen et al. Stability engineering, biophysical, and biological characterization of the myeloid activating receptor immunoglobulin-like transcript 1 (ILT1/LIR-7/LILRA2)
TWI787151B (en) Specific decoration of antibodies by IgG-binding peptides
EP3632928B1 (en) Fc-gamma receptor mutants
WO2023072279A1 (en) Sirpa mutant and application thereof
WO2021251438A1 (en) Fusion protein containing erythropoietin polypeptide
JP2023547340A (en) Novel type II collagen binding protein
Sprong Analysis of the Interaction Between Recombinant Human Beta2 Integrin I-domains and CD23

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766908

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020506621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766908

Country of ref document: EP

Kind code of ref document: A1