WO2019177037A1 - Antenna, and plasma processing device - Google Patents

Antenna, and plasma processing device Download PDF

Info

Publication number
WO2019177037A1
WO2019177037A1 PCT/JP2019/010311 JP2019010311W WO2019177037A1 WO 2019177037 A1 WO2019177037 A1 WO 2019177037A1 JP 2019010311 W JP2019010311 W JP 2019010311W WO 2019177037 A1 WO2019177037 A1 WO 2019177037A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
insulating
peripheral surface
conductor
insulating element
Prior art date
Application number
PCT/JP2019/010311
Other languages
French (fr)
Japanese (ja)
Inventor
満雄 茨木
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2019177037A1 publication Critical patent/WO2019177037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to an antenna for generating an inductively coupled plasma by flowing a high-frequency current, and a plasma processing apparatus including the antenna.
  • a plurality of metal pipes are connected with a hollow insulator interposed between adjacent metal pipes, and are connected to the outer periphery of the hollow insulator.
  • an O-ring is interposed between the outer peripheral surface of the metal pipe and the inner peripheral surface of the hollow insulator in order to ensure the sealing performance between the screw-fastened metal pipe and the hollow insulator. Therefore, there is a slight gap between them, and the metal pipe and the hollow insulator move relatively through this gap. As a result, if the antenna is lengthened, there is a possibility that the antenna will bend. Then, the distance between the antenna and the substrate changes along the longitudinal direction of the antenna. As a result, the density of plasma generated between the substrate and the antenna becomes non-uniform along the longitudinal direction of the antenna, and the thickness of the film formed on the substrate becomes non-uniform.
  • the present invention has been made to solve the above-mentioned problems, and even when the antenna is lengthened, the bending of the antenna is suppressed, and uniform plasma is generated along the longitudinal direction of the antenna, thereby improving the reliability.
  • the main challenge is to improve.
  • the antenna according to the present invention is an antenna for generating plasma by flowing a high-frequency current, and a pair of conductor elements are screwed to an insulating element interposed between them, One of the insulating elements has an outward surface provided at a position different from the threaded portion, and the other of the conductor element or the insulating element has an inward surface in contact with the outward surface. It is characterized by.
  • the outward surface provided on one of the conductor element or the insulating element and the inward surface provided on the other of the conductor element or the insulating element are in contact with each other, These surfaces restrict the relative movement of the conductor element and the insulating element, so that bending can be suppressed even when the antenna is lengthened. Thereby, since uniform plasma can be generated along the longitudinal direction of the antenna, quality such as film thickness can be ensured, and reliability can be improved.
  • the outward surface is provided over the entire outer peripheral surface of one of the conductor element or the insulating element. It is preferable that the inward surface is provided over the entire inner peripheral surface of the other of the conductor element or the insulating element.
  • one of the conductor element and the insulating element has an external thread portion formed on an outer peripheral surface thereof, Is also provided with a large-diameter portion having an outer diameter larger than the male screw portion on the axially central side, and the other of the conductor element or the insulating element has a female screw portion formed on an inner peripheral surface thereof, An internal diameter larger than that of the female screw portion is provided on the outer side in the axial direction than the female screw portion, and a countersink portion into which the large diameter portion is fitted is provided, and an outer peripheral surface of the large diameter portion is the outward surface.
  • the inner peripheral surface of the counterbored portion is the inward surface.
  • the outer peripheral surface of the large-diameter portion is an outward surface
  • the inner peripheral surface of the countersink portion into which the large-diameter portion is fitted is an inward surface.
  • the contact area of the surface can be increased.
  • a sealing member is interposed between the conductor element and the insulating element in order to ensure sealing performance
  • the sealing member is interposed between the outward surface and the inward surface, the outward surface A gap is formed between the antenna and the inward surface, and the antenna is bent. Therefore, in order to ensure the sealing performance between the conductor element and the insulating element while suppressing the bending of the antenna, the outward surface and the inward surface are different surfaces, the conductor element and the It is preferable that a sealing member is interposed between opposing surfaces of the insulating element.
  • One end portion of the conductor element or the insulating element is formed with a concave portion cut out in the axial center or a convex portion projecting outward in the axial direction, and the other outer peripheral surface of the conductive element or the insulating element. It is preferable that an annular stopper having a convex portion or a concave portion engaged with the concave portion or the convex portion is provided. With such a configuration, for example, by fixing the annular stopper to the conductor element or the insulating element provided with the annular stopper by punching or the like, it is difficult to loosen the screw fastening between the conductor element and the insulating element. Can do.
  • the annular stopper is provided on the outer peripheral surface of the conductor element, and is pressed outward in the axial direction by a nut screwed to the axially central side of the annular stopper on the outer peripheral surface.
  • the antenna may be covered with an insulating cover for the purpose of preventing charged particles in the plasma from entering a conductor element constituting the antenna.
  • the insulating element comes into contact with the insulating cover that is heated by the plasma, and a problem of thermal damage occurs particularly when the insulating element is made of resin.
  • the nut is screwed onto the outer peripheral surface of the conductor element as described above, even if the antenna is bent, the nut contacts the insulating cover, so that the insulating element contacts the insulating cover. And thermal damage to the insulating element can be prevented.
  • a first electrode extending to the other side of the pair of conductor elements, electrically connected to the other of the pair of conductor elements, and extending to one side of the pair of conductor elements through the interior of the insulating element;
  • the second electrode is opposed to the first electrode and a dielectric filling the space between the first electrode and the second electrode, and the dielectric is a liquid.
  • the capacitive element is electrically connected in series with the pair of conductor elements, as described above, the combined reactance of the antenna is obtained by subtracting the capacitive reactance from the inductive reactance. be able to.
  • the impedance of the antenna can be reduced, and even when the antenna is lengthened, the increase in impedance is suppressed, high-frequency current can easily flow through the antenna, and plasma with good uniformity can be generated efficiently.
  • the space between the first electrode and the second electrode is filled with the liquid dielectric, a gap generated between the electrode constituting the capacitor and the dielectric can be eliminated.
  • the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap.
  • the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented.
  • the pair of conductor elements have a flow path through which a coolant flows, and the coolant is the dielectric.
  • the antenna conductor which tends to become high temperature due to heat generated during plasma generation, can be cooled by the coolant, so that damage to the antenna itself or damage to the surrounding structure can be prevented and stable.
  • plasma can be generated.
  • the cooling liquid is used as the dielectric of the capacitive element, it is possible to suppress unexpected fluctuations in the capacitance while cooling the capacitive element.
  • the cooling liquid as a dielectric while adjusting the temperature to a constant temperature by a temperature control mechanism, it is possible to suppress changes in the relative permittivity due to temperature changes, and it is possible to suppress changes in capacitance that occur accordingly. .
  • a plasma processing apparatus includes the antenna described above, a vacuum container in which the antenna is disposed inside or outside, and a high-frequency power source that applies a high-frequency current to the antenna. It is. With the plasma processing apparatus configured as described above, since the bending of the antenna is suppressed as described above, the quality such as the thickness of the film can be ensured, and the reliability can be improved.
  • the bending of the antenna can be suppressed, and by generating uniform plasma along the longitudinal direction of the antenna, quality such as film thickness can be improved. It can be secured and the reliability can be improved.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a peripheral configuration of the antenna of the same embodiment.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a peripheral configuration of the antenna of the same embodiment.
  • It is a schematic diagram which shows the structure of the loosening suppression mechanism of the embodiment.
  • It is an expanded sectional view showing typically the circumference composition of the antenna of a modification.
  • It is an expanded sectional view showing typically the circumference composition of the antenna of a modification.
  • It is a longitudinal cross-sectional view which shows typically the structure of the plasma processing apparatus of deformation
  • the plasma processing apparatus 100 of this embodiment performs processing on the substrate W using inductively coupled plasma P.
  • substrate W is a board
  • the processing applied to the substrate W is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
  • the plasma processing apparatus 100 is a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed. be called.
  • the plasma processing apparatus 100 includes a vacuum vessel 2 that is evacuated and into which a gas 7 is introduced, a linear antenna 3 that is disposed in the vacuum vessel 2, and a vacuum vessel 2. And a high frequency power source 4 for applying a high frequency for generating the inductively coupled plasma P to the antenna 3.
  • a high frequency is applied to the antenna 3 from the high frequency power source 4
  • a high frequency current IR flows through the antenna 3
  • an induction electric field is generated in the vacuum chamber 2, and inductively coupled plasma P is generated.
  • the vacuum vessel 2 is, for example, a metal vessel, and the inside thereof is evacuated by the evacuation device 6.
  • the vacuum vessel 2 is electrically grounded in this example.
  • the gas 7 is introduced into the vacuum vessel 2 via, for example, a flow rate regulator (not shown) and a plurality of gas inlets 21 formed on the side wall of the vacuum vessel 2.
  • the gas 7 may be made in accordance with the processing content applied to the substrate W.
  • the gas 7 is a source gas or a gas obtained by diluting it with a diluent gas (for example, H 2 ). More specifically, when the source gas is SiH 4 , the Si film is formed, when SiH 4 + NH 3 is used, the SiN film is formed, when SiH 4 + O 2 is used, the SiO 2 film is formed, and when SiF 4 + N 2 is used, the SiN film is formed.
  • F films fluorinated silicon nitride films
  • a substrate holder 8 that holds the substrate W is provided in the vacuum container 2.
  • a bias voltage may be applied to the substrate holder 8 from the bias power supply 9.
  • the bias voltage is, for example, a negative DC voltage, a negative pulse voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. .
  • a heater 81 for heating the substrate W may be provided in the substrate holder 8.
  • the antenna 3 is disposed above the substrate W in the vacuum container 2 so as to be along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W).
  • the number of antennas 3 arranged in the vacuum vessel 2 may be one or plural.
  • Insulating members 11 are respectively provided at portions where both ends of the antenna 3 penetrate outside the vacuum vessel 2. Both end portions of the antenna 3 pass through the insulating members 11, and the through portions are vacuum-sealed by, for example, packing 12. Each insulating member 11 and the vacuum vessel 2 are also vacuum-sealed by, for example, packing 13.
  • the insulating member 11 is made of, for example, ceramics such as alumina, quartz, engineering plastics such as polyphenine sulfide (PPS), polyether ether ketone (PEEK), or the like.
  • a portion of the antenna 3 located in the vacuum vessel 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 11. In addition, it is not necessary to seal between the both ends of the insulating cover 10 and the insulating member 11. This is because even if the gas 7 enters the space in the insulating cover 10, the space P is small and the electron moving distance is short, so that plasma P is not normally generated in the space.
  • the material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon or the like.
  • the insulating cover 10 By providing the insulating cover 10, it is possible to prevent charged particles in the plasma P from entering the metal pipe 31 constituting the antenna 3, so that charged particles (mainly electrons) enter the metal pipe 31. An increase in plasma potential can be suppressed, and metal contamination (metal contamination) on the plasma P and the substrate W caused by sputtering of the metal pipe 31 by charged particles (mainly ions) can be suppressed. .
  • a high-frequency power source 4 is connected to a feeding end portion 3a that is one end portion of the antenna 3 via a matching circuit 41, and a termination portion 3b that is the other end portion is directly grounded.
  • the power supply end 3a may be connected to the high frequency power supply 4 via a capacitor or a coil, and the terminal end 3b may be grounded via a capacitor or a coil.
  • the high-frequency current IR can flow from the high-frequency power source 4 to the antenna 3 through the matching circuit 41.
  • the frequency of the high-frequency current IR is, for example, a general 13.56 MHz, but is not limited thereto.
  • the antenna 3 has a hollow structure having a flow path through which the coolant CL flows.
  • the coolant CL circulates through the antenna 3 through a circulation channel 14 provided outside the vacuum vessel 2, and the circulation channel 14 has heat for adjusting the coolant CL to a constant temperature.
  • a temperature control mechanism 141 such as an exchanger and a circulation mechanism 142 such as a pump for circulating the coolant CL in the circulation flow path 14 are provided.
  • the cooling liquid CL high resistance water is preferable from the viewpoint of electrical insulation, for example, pure water or water close thereto is preferable.
  • a liquid refrigerant other than water such as a fluorine-based inert liquid, may be used.
  • the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipes 31”) and metal pipes 31 adjacent to each other.
  • metal pipes 31 tubular metal conductor elements 31
  • metal pipes 31 tubular insulating element 32
  • capacitor 33 that is a capacitive element electrically connected in series with the adjacent metal pipes 31 are provided. ing.
  • the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each.
  • one metal pipe 31 is also referred to as “first metal pipe 31A”, and the other metal pipe is also referred to as “second metal pipe 31B”.
  • the antenna 3 may have a configuration including three or more metal pipes 31. In this case, the number of the insulating pipes 32 and the capacitors 33 is one less than the number of the metal pipes 31. Become.
  • the metal pipe 31 has a straight tube shape in which a linear flow path 31x in which the coolant CL flows is formed. And the external thread part 31a is formed in the outer peripheral part of the longitudinal direction at least one end part of the metal pipe 31. As shown in FIG. In order to make the parts common with the configuration in which the plurality of metal pipes 31 are connected, it is desirable that the male pipe portions 31a be formed at both ends in the longitudinal direction of the metal pipe 31 so as to be compatible.
  • the material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
  • the insulating pipe 32 has a straight tube shape in which a linear flow path 32x in which the cooling liquid CL flows is formed.
  • a female screw portion 32 a is formed on the inner peripheral surface of the insulating pipe 32 to be screwed into and connected to the male screw portion 31 a of the metal pipe 31.
  • a recess 32b for fitting a pair of electrodes 33A and 33B constituting the capacitor 33 is formed on the inner wall of the insulating pipe 32 in the axial direction center side of each female thread portion 32a over the entire circumferential direction.
  • the insulating pipe 32 of this embodiment is formed from a single member, it may be formed by joining a plurality of members.
  • the material of the insulating pipe 32 is, for example, alumina, fluororesin, polyethylene (PE), engineering plastic (for example, polyphenine sulfide (PPS), polyether ether ketone (PEEK), etc.).
  • the capacitor 33 is provided inside the insulating pipe 32. Specifically, the capacitor 33 is provided inside the flow path 32x through which the coolant CL of the insulating pipe 32 flows.
  • the capacitor 33 includes a first electrode 33A electrically connected to one of the adjacent metal pipes 31 (first metal pipe 31A) and the other of the adjacent metal pipes 31 (second metal).
  • each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed at the center along the central axis.
  • each of the electrodes 33A and 33B includes a flange portion 331 that electrically contacts an end portion of the metal pipe 31 on the insulating pipe 32 side, and an extending portion 332 that extends from the flange portion 331 to the insulating pipe 32 side. have.
  • the flange portion 331 and the extending portion 332 may be formed from a single member, or may be formed by separate parts and joined together.
  • the material of the electrodes 33A and 33B is, for example, aluminum, copper, or an alloy thereof.
  • the flange portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction. Specifically, the axial end surface of the flange portion 331 is in contact with the tip end surface of a cylindrical contact portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction.
  • the extending part 332 has a cylindrical shape, and a main flow path 33x is formed therein.
  • the extension part 332 of the first electrode 33A and the extension part 332 of the second electrode 33B are arranged coaxially with each other. That is, the extension part 332 of the second electrode 33B is provided in a state of being inserted into the extension part 332 of the first electrode 33A. Thereby, a cylindrical space along the flow path direction is formed between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B.
  • Each of the electrodes 33 ⁇ / b> A and 33 ⁇ / b> B configured in this way is fitted in a recess 32 b formed on the inner wall of the insulating pipe 32.
  • the first electrode 33A is fitted in the recess 32b formed on one end side in the axial direction of the insulating pipe 32
  • the second electrode is inserted in the recess 32b formed on the other end side in the axial direction of the insulating pipe 32.
  • 33B is fitted.
  • each electrode 33A, 33B when the end face of the flange portion 331 of each electrode 33A, 33B is in contact with the surface facing the axially outer side of each recess 32b, the extension portion of the second electrode 33B with respect to the extension portion 332 of the first electrode 33A An insertion dimension of 332 is defined.
  • the electrodes 33A and 33B are fitted into the recesses 32b of the insulating pipe 32, and the male threaded portion 31a of the metal pipe 31 is screwed into the female threaded portion 32a of the insulating pipe 32, whereby the contact portion of the metal pipe 31 is contacted.
  • the tip surface of 311 comes into contact with the flange portion 331 of the electrodes 33A and 33B, and the electrodes 33A and 33B are sandwiched and fixed between the insulating pipe 32 and the metal pipe 31.
  • the antenna 3 according to this embodiment has a structure in which the metal pipe 31, the insulating pipe 32, the first electrode 33A, and the second electrode 33B are coaxially arranged.
  • connection part of the metal pipe 31 and the insulation pipe 32 has a seal structure with respect to the vacuum and the coolant CL.
  • This seal structure is realized by the seal member 15 such as packing provided at the base end portion of the male screw portion 31a.
  • a taper screw structure for a pipe may be used.
  • the sealing structure between the metal pipe 31 and the insulating pipe 32 and the electrical contact between the metal pipe 31 and each electrode 33A, 33B are performed together with the fastening of the male screw portion 31a and the female screw portion 32a. Is very simple.
  • the antenna 3 of the present embodiment is provided on one of the metal pipe 31 and the insulating pipe 32 and on the other side of the metal pipe 31 or the insulating pipe 32 and is in contact with the outward surface 34.
  • the inwardly facing surface 35 and the outwardly facing surface 34 and the inwardly facing surface 35 constitute a bending suppression mechanism that suppresses the bending of the antenna 3.
  • the inward surface 35 of the present embodiment is provided on the inner peripheral surface of the insulating pipe 32 and is formed at a position different from the internal thread portion 32a. More specifically, the insulating pipe 32 has a countersink portion 321 having an inner wall that is countersunk axially outside the female screw portion 32a, and the inner peripheral surface of the countersink portion 321 is an inward surface. 35.
  • the counterbore portions 321 are formed at both axial ends of the insulating pipe 32. Specifically, the counterbore portions 321 are counterclockwise from the opening at both ends to the front of the seal member 15 described above. That is, the counterbore part 321 has a larger inner diameter than the part where the female thread part 32 a and the seal member 15 are provided on the inner peripheral surface of the insulating pipe 32, and here is the part having the largest inner diameter in the insulating pipe 32.
  • the inward surface 35 is formed over the entire inner peripheral surface of the counterbored portion 321.
  • the inward surface 35 is a surface different from the surface on which the internal thread portion 32 a and the seal member 15 are provided on the inner peripheral surface of the insulating pipe 32, and here, it extends along the axial direction of the insulating pipe 32. (Substantially parallel to the axial direction).
  • the outward surface 34 of the present embodiment is provided on the outer peripheral surface of the metal pipe 31 and is formed at a position different from the male screw portion 31a. More specifically, the metal pipe 31 has a large-diameter portion 312 having an outer diameter larger than that of the male screw portion 31a on the axial center side of the male screw portion 31a and fitted to the counterbore portion 321 described above. The outer peripheral surface of the large diameter portion 312 is the outward surface 34.
  • the large-diameter portion 312 is formed closer to the center side in the axial direction than the seal member 15 of the metal pipe 31. That is, the large-diameter portion 312 has a larger outer diameter than the portion where the male screw portion 31 a and the seal member 15 are provided on the outer peripheral surface of the metal pipe 31, and here is the portion of the metal pipe 31 having the largest outer diameter. Specifically, the outer diameter of the large-diameter portion 312 is equal to the inner diameter of the counterbore portion 321, and thereby the large-diameter portion 312 and the counterbore portion 321 are fitted together with a backlash structure without play.
  • the outward surface 34 is an outer peripheral surface of a portion of the large-diameter portion 312 that is fitted to the counterboring portion 321, in other words, a portion facing the inner peripheral surface of the counterboring portion 321 on the outer peripheral surface of the large-diameter portion 312. is there. That is, the outward surface 34 is a surface different from the surface on which the male screw portion 31 a and the seal member 15 are provided on the outer peripheral surface of the metal pipe 31, and here, along the axial direction of the metal pipe 31. It extends (substantially parallel to the axial direction).
  • the antenna 3 of the present embodiment includes a loosening suppression mechanism 5 that suppresses loosening of the metal pipe 31 and the insulating pipe 32 that are screw-fastened.
  • the antenna 3 according to the present invention is not necessarily provided with the loosening suppression mechanism 5.
  • these convex part 52 and the recessed part 53 comprise the loosening suppression mechanism 5 mentioned above, and when the convex part 52 engages with the recessed part 53, the looseness of the metal pipe 31 and the insulation pipe 32 is suppressed. .
  • the second male threaded portion 31b is formed on the outer peripheral surface of the metal pipe 31 on the center side in the axial direction from the insulating pipe 32.
  • the loosening suppression mechanism 5 further includes a nut 54 that is screwed into the second male screw portion 31b.
  • the nut 54 has a larger outer diameter than the insulating pipe 32, and is provided closer to the center in the axial direction than the annular stopper 51 described above.
  • the outer peripheral surface of the large diameter portion 312 is an outward surface 34
  • the inner peripheral surface of the counterbore portion 321 to which the large diameter portion 312 is fitted is an inward surface 35
  • the sealing member 15 is interposed between the opposing surfaces of the metal pipe 31 and the insulating pipe 32 that are different from the outward surface 34 and the inward surface 35, the outward surface 34 and The sealing property can be ensured without causing a gap or play between the inward surface 35.
  • the convex portion 52 provided on the end surface of the annular stopper 51 is engaged with the concave portion 53 provided on the end surface of the insulating pipe 32, and the annular stopper 51 is pressed against the insulating pipe 32 by the nut 54. Therefore, it is possible to suppress loosening of the screw fastening between the metal pipe 31 and the insulating pipe 32.
  • the metal pipe 31 has the outward surface 34 and the insulating pipe 32 has the inward surface 35, but the metal pipe 31 has the inward surface 35 as shown in FIG. 4.
  • the insulating pipe 32 may have an outward surface 34.
  • the capacitor 33 may be provided outside the insulating pipe 32 as in the configuration shown in FIG.
  • the outward surface 34 was the outer peripheral surface of the large diameter part 312 whose outer diameter is larger than the external thread part 31a in the metal pipe 31 in the said embodiment, as shown in FIG.
  • the outer peripheral surface of the small diameter part 314 whose outer diameter is smaller than the external thread part 31a provided in the axial direction outer side than 31a may be sufficient.
  • the counterbore part 321 of the insulating pipe 32 only needs to be provided in the axial direction center side with respect to the female screw part 32a, and the inner peripheral surface of the counterbore part 321 may be the inward surface 35.
  • outward surface 34 and the inward surface 35 of the above-described embodiment extend along the axial direction of the metal pipe 31 and the insulating pipe 32, but as shown in FIG. It may be inclined with respect to the axial direction.
  • the perimeter of the internal peripheral surface of the counterboring part 321 was the inward surface 35, for example, it is an inward surface intermittently along the circumferential direction in the internal peripheral surface of the counterboring part 321. It is not always necessary to provide the inward surface 35 over the entire circumference of the inner peripheral surface, such as providing 35.
  • the outward surface 34 is not necessarily provided over the entire circumference of the outer peripheral surface, for example, intermittently provided along the circumferential direction on the outer peripheral surface of the large-diameter portion 312.
  • outward surface 34 and the inward surface 35 may be provided at a plurality of locations in the axial direction, such as both sides of the screw portions 31a and 32a along the axial direction.
  • the annular stopper 51 and the metal pipe 31 may be fixed by punching in a state where the convex portion 52 is engaged with the concave portion 53.
  • the antenna 3 is disposed in the processing chamber of the substrate W.
  • the antenna 3 may be disposed outside the processing chamber 18.
  • the plurality of antennas 3 are arranged in an antenna chamber 20 that is partitioned from the processing chamber 18 by a dielectric window 19 in the vacuum vessel 2.
  • the antenna chamber 20 is evacuated by the evacuation device 21.
  • the metal pipe and the insulating pipe have a tubular shape having one internal flow path, but may have two or more internal flow paths or have a branched internal flow path. good. Further, the metal pipe and the insulating pipe may be solid.
  • the extending portion has a cylindrical shape, but may have another rectangular tube shape, a flat plate shape, or a curved or bent plate shape.

Abstract

The purpose of the present invention is to inhibit an antenna from deflecting even when the antenna is long, and to generate a plasma that is uniform in the longitudinal direction of the antenna, thereby increasing reliability. An antenna 3 for generating a plasma upon having a high-frequency current channelled therethrough, wherein a pair of conductor elements 31 are screwed to an insulating element 32 interposed therebetween, either the insulating element 32 or the conductor elements 31 has an outward-facing surface 34 provided at a different location than a screw part, and the other of the insulating element 32 or the conductor elements 31 has an inward-facing surface 35 in contact with the outward-facing surface 34.

Description

アンテナ及びプラズマ処理装置Antenna and plasma processing apparatus
本発明は、高周波電流が流されて誘導結合型のプラズマを発生されるためのアンテナ、及び、このアンテナを備えたプラズマ処理装置に関するものである。 The present invention relates to an antenna for generating an inductively coupled plasma by flowing a high-frequency current, and a plasma processing apparatus including the antenna.
アンテナに高周波電流を流し、それによって生じる誘導電界により誘導結合型のプラズマ(略称ICP)を発生させ、この誘導結合型のプラズマを用いて基板に処理を施すプラズマ処理装置が従来から提案されている。 2. Description of the Related Art Conventionally, a plasma processing apparatus has been proposed in which a high frequency current is passed through an antenna, an inductively coupled plasma (abbreviated as ICP) is generated by an induced electric field generated thereby, and a substrate is processed using the inductively coupled plasma. .
この種のプラズマ処理装置においては、大型の基板に対応する等のためにアンテナを長くすると、当該アンテナのインピーダンスが大きくなり、それによってアンテナの両端間に大きな電位差が発生する。その結果、この大きな電位差の影響を受けてプラズマの密度分布、電位分布、電子温度分布等のプラズマの均一性が悪くなり、ひいては基板処理の均一性が悪くなるという問題がある。また、アンテナのインピーダンスが大きくなると、アンテナに高周波電流を流しにくくなるという問題もある。 In this type of plasma processing apparatus, when the antenna is lengthened to cope with a large substrate, the impedance of the antenna increases, thereby generating a large potential difference between both ends of the antenna. As a result, there is a problem that plasma uniformity such as plasma density distribution, potential distribution, and electron temperature distribution is deteriorated due to the influence of the large potential difference, and the uniformity of substrate processing is also deteriorated. In addition, when the impedance of the antenna increases, there is a problem that it is difficult for a high-frequency current to flow through the antenna.
このような問題を解決する等のために、特許文献1に示すように、複数の金属パイプを、隣り合う金属パイプ間に中空絶縁体を介在させて接続するとともに、中空絶縁体の外周部に容量素子であるコンデンサを配置したものが考えられている。具体的には、金属パイプの外周面に形成された雄ねじ部を、中空絶縁体の内周面に形成された雌ねじ部に螺合させてこれらをねじ締結している。そして、中空絶縁体の両側にねじ締結された金属パイプを、上述した容量素子と電気的に直列接続することで、アンテナの合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを差し引いたものとなる。その結果、アンテナのインピーダンスを低減させることができ、アンテナを長くする場合でもそのインピーダンスの増大が抑制され、アンテナに高周波電流が流れやすくなり、均一性の良いプラズマを効率良く発生させることができる。 In order to solve such a problem, as shown in Patent Document 1, a plurality of metal pipes are connected with a hollow insulator interposed between adjacent metal pipes, and are connected to the outer periphery of the hollow insulator. A device in which a capacitor, which is a capacitive element, is arranged. Specifically, the external thread portion formed on the outer peripheral surface of the metal pipe is screwed to the internal thread portion formed on the inner peripheral surface of the hollow insulator, and these are screwed together. Then, by connecting metal pipes screwed to both sides of the hollow insulator in series with the capacitive element described above, the combined reactance of the antenna can be simply calculated by subtracting the capacitive reactance from the inductive reactance. It will be. As a result, the impedance of the antenna can be reduced, and even when the antenna is lengthened, the increase in impedance is suppressed, high-frequency current can easily flow through the antenna, and plasma with good uniformity can be generated efficiently.
特開2016-138598号公報JP 2016-138598 A
しかしながら、上述したアンテナは、ねじ締結された金属パイプと中空絶縁体とのシール性を確保すべく、金属パイプの外周面と中空絶縁体の内周面との間にOリングを介在させているので、これらの間には僅かな隙間が存在しており、この隙間を介して金属パイプと中空絶縁体とが相対的に動いてしまう。これにより、アンテナを長くすると撓む可能性があり、そうするとアンテナと基板との距離がアンテナの長手方向に沿って変わってしまう。その結果、基板とアンテナとの間に発生するプラズマの密度がアンテナの長手方向に沿って不均一になり、基板に形成される膜の厚み等も不均一になるという問題が生じる。 However, in the antenna described above, an O-ring is interposed between the outer peripheral surface of the metal pipe and the inner peripheral surface of the hollow insulator in order to ensure the sealing performance between the screw-fastened metal pipe and the hollow insulator. Therefore, there is a slight gap between them, and the metal pipe and the hollow insulator move relatively through this gap. As a result, if the antenna is lengthened, there is a possibility that the antenna will bend. Then, the distance between the antenna and the substrate changes along the longitudinal direction of the antenna. As a result, the density of plasma generated between the substrate and the antenna becomes non-uniform along the longitudinal direction of the antenna, and the thickness of the film formed on the substrate becomes non-uniform.
そこで本発明は、上記問題点を解決すべくなされたものであり、アンテナを長くする場合でもアンテナの撓みを抑制し、アンテナの長手方向に沿って均一なプラズマを発生させることで、信頼性の向上を図ることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and even when the antenna is lengthened, the bending of the antenna is suppressed, and uniform plasma is generated along the longitudinal direction of the antenna, thereby improving the reliability. The main challenge is to improve.
すなわち本発明に係るアンテナは、高周波電流が流されてプラズマを発生させるためのアンテナであって、一対の導体要素がこれらの間に介在する絶縁要素にねじ締結されてなり、前記導体要素又は前記絶縁要素の一方は、ねじ部とは異なる位置に設けられた外向き面を有し、前記導体要素又は前記絶縁要素の他方は、前記外向き面と接触する内向き面を有していることを特徴とするものである。 That is, the antenna according to the present invention is an antenna for generating plasma by flowing a high-frequency current, and a pair of conductor elements are screwed to an insulating element interposed between them, One of the insulating elements has an outward surface provided at a position different from the threaded portion, and the other of the conductor element or the insulating element has an inward surface in contact with the outward surface. It is characterized by.
このように構成されたアンテナであれば、導体要素又は絶縁要素の一方に設けられた外向き面と、導体要素又は絶縁要素の他方に設けられた内向き面とが互いに接触しているので、これらの面が導体要素や絶縁要素の相対的な動きを規制して、アンテナを長くする場合でも撓みを抑制することができる。これにより、アンテナの長手方向に沿って均一なプラズマを発生させることができるので、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。 If the antenna is configured in this manner, the outward surface provided on one of the conductor element or the insulating element and the inward surface provided on the other of the conductor element or the insulating element are in contact with each other, These surfaces restrict the relative movement of the conductor element and the insulating element, so that bending can be suppressed even when the antenna is lengthened. Thereby, since uniform plasma can be generated along the longitudinal direction of the antenna, quality such as film thickness can be ensured, and reliability can be improved.
アンテナをより撓みにくくすべく、外向き面と内向き面との接触面積を大きくするためには、前記外向き面は、前記導体要素又は前記絶縁要素の一方の外周面全周に亘って設けられており、前記内向き面は、前記導体要素又は前記絶縁要素の他方の内周面全周に亘って設けられていることが好ましい。 In order to increase the contact area between the outward surface and the inward surface in order to make the antenna more difficult to bend, the outward surface is provided over the entire outer peripheral surface of one of the conductor element or the insulating element. It is preferable that the inward surface is provided over the entire inner peripheral surface of the other of the conductor element or the insulating element.
外向き面と内向き面との接触面積を大きくするための別の実施態様としては、前記導体要素又は前記絶縁要素の一方は、その外周面に雄ねじ部が形成されており、前記雄ねじ部よりも軸方向中央側に前記雄ねじ部よりも外径が大きい大径部が設けられたものであり、前記導体要素又は前記絶縁要素の他方は、その内周面に雌ねじ部が形成されており、前記雌ねじ部よりも軸方向外側に前記雌ねじ部よりも内径が大きく、前記大径部が嵌合する座繰り部が設けられたものであり、前記大径部の外周面が前記外向き面であり、前記座繰り部の内周面が前記内向き面である態様が挙げられる。
このような構成であれば、大径部の外周面を外向き面とするとともに、大径部が嵌合する座繰り部の内周面を内向き面としているので、外向き面や内向き面の接触面積を大きくすることができる。
As another embodiment for increasing the contact area between the outward surface and the inward surface, one of the conductor element and the insulating element has an external thread portion formed on an outer peripheral surface thereof, Is also provided with a large-diameter portion having an outer diameter larger than the male screw portion on the axially central side, and the other of the conductor element or the insulating element has a female screw portion formed on an inner peripheral surface thereof, An internal diameter larger than that of the female screw portion is provided on the outer side in the axial direction than the female screw portion, and a countersink portion into which the large diameter portion is fitted is provided, and an outer peripheral surface of the large diameter portion is the outward surface. There is a mode in which the inner peripheral surface of the counterbored portion is the inward surface.
With such a configuration, the outer peripheral surface of the large-diameter portion is an outward surface, and the inner peripheral surface of the countersink portion into which the large-diameter portion is fitted is an inward surface. The contact area of the surface can be increased.
導体要素と絶縁要素との間のシール性を確保すべく、これらの間にシール部材を介在させる場合、外向き面と内向き面との間にシール部材を介在させてしまうと、外向き面と内向き面との間に隙間が生じてアンテナの撓みが生じてしまう。そこで、アンテナの撓みを抑制しつつ、導体要素と絶縁要素との間のシール性を確保するためには、前記外向き面及び前記内向き面とは異なる面であって、前記導体要素及び前記絶縁要素における互いに対向する対向面の間にシール部材が介在していることが好ましい。 When a sealing member is interposed between the conductor element and the insulating element in order to ensure sealing performance, if the sealing member is interposed between the outward surface and the inward surface, the outward surface A gap is formed between the antenna and the inward surface, and the antenna is bent. Therefore, in order to ensure the sealing performance between the conductor element and the insulating element while suppressing the bending of the antenna, the outward surface and the inward surface are different surfaces, the conductor element and the It is preferable that a sealing member is interposed between opposing surfaces of the insulating element.
前記導体要素又は前記絶縁要素の一方の端部に軸方向中央側に切り欠かれた凹部又は軸方向外側に突出した凸部が形成されており、前記導体要素又は前記絶縁要素の他方の外周面に、前記凹部又は前記凸部に係合する凸部又は凹部が形成された環状止め具が設けられていることが好ましい。
このような構成であれば、例えば環状止め具が設けられている導体要素又は絶縁要素に当該環状止め具をポンチング等によって固定することで、導体要素と絶縁要素とのねじ締結を緩みにくくすることができる。
One end portion of the conductor element or the insulating element is formed with a concave portion cut out in the axial center or a convex portion projecting outward in the axial direction, and the other outer peripheral surface of the conductive element or the insulating element. It is preferable that an annular stopper having a convex portion or a concave portion engaged with the concave portion or the convex portion is provided.
With such a configuration, for example, by fixing the annular stopper to the conductor element or the insulating element provided with the annular stopper by punching or the like, it is difficult to loosen the screw fastening between the conductor element and the insulating element. Can do.
前記環状止め具が、前記導体要素の外周面に設けられており、その外周面における環状止め具よりも軸方向中央側に螺合されたナットにより軸方向外側に押圧されていることが好ましい。
このような構成であれば、環状止め具が軸方向外側に押圧されているので、導体要素や絶縁要素が回転しようとするときに生じる環状止め具と絶縁要素との間の摩擦力を大きくすることができ、絶縁要素と導体要素とのねじ締結を緩みにくくすることができる。
It is preferable that the annular stopper is provided on the outer peripheral surface of the conductor element, and is pressed outward in the axial direction by a nut screwed to the axially central side of the annular stopper on the outer peripheral surface.
With such a configuration, since the annular stopper is pressed outward in the axial direction, the frictional force between the annular stopper and the insulating element generated when the conductor element or the insulating element is about to rotate is increased. It is possible to make the screw fastening between the insulating element and the conductor element difficult to loosen.
ところで、プラズマ処理装置において、プラズマ中の荷電粒子がアンテナを構成する導体要素に入射するのを抑制する目的などにより、アンテナを絶縁カバーにより覆う場合がある。この場合、仮にアンテナが撓んでしまうと、絶縁要素がプラズマにより高温となっている絶縁カバーに接触して、絶縁要素が樹脂製の場合には特に熱損傷の問題が生じる。
かかる問題に対して、上述したように導体要素の外周面にナットを螺合させていれば、仮にアンテナが撓んだとしてもナットが絶縁カバーに接触することによって、絶縁要素が絶縁カバーに接触しないようにすることができ、絶縁要素の熱損傷を防止することができる。
By the way, in a plasma processing apparatus, the antenna may be covered with an insulating cover for the purpose of preventing charged particles in the plasma from entering a conductor element constituting the antenna. In this case, if the antenna is bent, the insulating element comes into contact with the insulating cover that is heated by the plasma, and a problem of thermal damage occurs particularly when the insulating element is made of resin.
To solve this problem, if the nut is screwed onto the outer peripheral surface of the conductor element as described above, even if the antenna is bent, the nut contacts the insulating cover, so that the insulating element contacts the insulating cover. And thermal damage to the insulating element can be prevented.
前記一対の導体要素と電気的に直列に接続された容量素子をさらに備え、前記容量素子が、前記一対の導体要素の一方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の他方側に延びる第1の電極と、前記一対の導体要素の他方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の一方側に延び、前記第1の電極と対向する第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が液体であることが好ましい。
このような構成であれば、容量素子が一対の導体要素と電気的に直列接続されているので、上述したように、アンテナの合成リアクタンスを、誘導性リアクタンスから容量性リアクタンスを引いた形にすることができる。その結果、アンテナのインピーダンスを低減させることができ、アンテナを長くする場合でもそのインピーダンスの増大が抑制され、アンテナに高周波電流が流れやすくなり、均一性の良いプラズマを効率良く発生させることができる。
しかも、第1の電極及び第2の電極の間の空間を液体の誘電体で満たしているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び液体の誘電体の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。
A capacitor element electrically connected in series with the pair of conductor elements, the capacitor element being electrically connected to one of the pair of conductor elements and passing through the interior of the insulating element; A first electrode extending to the other side of the pair of conductor elements, electrically connected to the other of the pair of conductor elements, and extending to one side of the pair of conductor elements through the interior of the insulating element; It is preferable that the second electrode is opposed to the first electrode and a dielectric filling the space between the first electrode and the second electrode, and the dielectric is a liquid.
In such a configuration, since the capacitive element is electrically connected in series with the pair of conductor elements, as described above, the combined reactance of the antenna is obtained by subtracting the capacitive reactance from the inductive reactance. be able to. As a result, the impedance of the antenna can be reduced, and even when the antenna is lengthened, the increase in impedance is suppressed, high-frequency current can easily flow through the antenna, and plasma with good uniformity can be generated efficiently.
In addition, since the space between the first electrode and the second electrode is filled with the liquid dielectric, a gap generated between the electrode constituting the capacitor and the dielectric can be eliminated. As a result, arc discharge that can occur in the gap between the electrode and the dielectric can be eliminated, and damage to the capacitive element due to arc discharge can be eliminated. In addition, the capacitance value can be accurately set from the distance between the first electrode and the second electrode, the facing area, and the relative dielectric constant of the liquid dielectric without considering the gap. Furthermore, the structure for pressing the electrode and the dielectric for filling the gap can be eliminated, and the structure around the antenna due to the pressing structure can be prevented from being complicated and the uniformity of plasma caused thereby can be prevented.
前記一対の導体要素は、内部に冷却液が流れる流路を有しており、前記冷却液が前記誘電体であることが好ましい。
このような構成であれば、プラズマ生成時に生じる熱によって高温になりがちなアンテナ導体を冷却液によって冷却することができるので、アンテナ自体の破損又はその周辺構造の破損などを防ぐことができ、安定してプラズマを発生させることが可能となる。
しかも、その冷却液を容量素子の誘電体として用いているので、容量素子を冷却しつつその静電容量の不意の変動を抑えることができる。
さらに、冷却液を温調機構により一定温度に調整しながら誘電体として用いることで、温度変化による比誘電率の変化を抑えることができ、それに伴って生じる静電容量の変化を抑えることができる。
It is preferable that the pair of conductor elements have a flow path through which a coolant flows, and the coolant is the dielectric.
With such a configuration, the antenna conductor, which tends to become high temperature due to heat generated during plasma generation, can be cooled by the coolant, so that damage to the antenna itself or damage to the surrounding structure can be prevented and stable. Thus, plasma can be generated.
In addition, since the cooling liquid is used as the dielectric of the capacitive element, it is possible to suppress unexpected fluctuations in the capacitance while cooling the capacitive element.
Furthermore, by using the cooling liquid as a dielectric while adjusting the temperature to a constant temperature by a temperature control mechanism, it is possible to suppress changes in the relative permittivity due to temperature changes, and it is possible to suppress changes in capacitance that occur accordingly. .
また、本発明に係るプラズマ処理装置は、上述したアンテナと、前記アンテナが内部又は外部に配置された真空容器と、前記アンテナに高周波電流を印加する高周波電源とを具備することを特徴とするものである。
このように構成されたプラズマ処理装置であれば、上述したようにアンテナの撓みが抑制されるので、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。
A plasma processing apparatus according to the present invention includes the antenna described above, a vacuum container in which the antenna is disposed inside or outside, and a high-frequency power source that applies a high-frequency current to the antenna. It is.
With the plasma processing apparatus configured as described above, since the bending of the antenna is suppressed as described above, the quality such as the thickness of the film can be ensured, and the reliability can be improved.
このように構成した本発明によれば、アンテナを長くする場合でもアンテナの撓みを抑制することができ、アンテナの長手方向に沿って均一なプラズマを発生させることで、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。 According to the present invention configured as described above, even when the antenna is lengthened, the bending of the antenna can be suppressed, and by generating uniform plasma along the longitudinal direction of the antenna, quality such as film thickness can be improved. It can be secured and the reliability can be improved.
本実施形態のプラズマ処理装置の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the plasma processing apparatus of this embodiment. 同実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing a peripheral configuration of the antenna of the same embodiment. 同実施形態の緩み抑制機構の構成を示す模式図である。It is a schematic diagram which shows the structure of the loosening suppression mechanism of the embodiment. 変形実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the circumference composition of the antenna of a modification. 変形実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the circumference composition of the antenna of a modification. 変形実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the circumference composition of the antenna of a modification. 変形実施形態の緩み抑制機構の構成を示す模式図である。It is a schematic diagram which shows the structure of the loosening suppression mechanism of deformation | transformation embodiment. 変形実施形態のプラズマ処理装置の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the plasma processing apparatus of deformation | transformation embodiment.
以下に、本発明に係るプラズマ処理装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of a plasma processing apparatus according to the present invention will be described with reference to the drawings.
<装置構成>
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。
<Device configuration>
The plasma processing apparatus 100 of this embodiment performs processing on the substrate W using inductively coupled plasma P. Here, the board | substrate W is a board | substrate for flat panel displays (FPD), such as a liquid crystal display and an organic electroluminescent display, a flexible board | substrate for flexible displays, etc., for example. The processing applied to the substrate W is, for example, film formation by plasma CVD, etching, ashing, sputtering, or the like.
なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。 The plasma processing apparatus 100 is a plasma CVD apparatus when a film is formed by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed. be called.
具体的にプラズマ処理装置100は、図1に示すように、真空排気され且つガス7が導入される真空容器2と、真空容器2内に配置された直線状のアンテナ3と、真空容器2内に誘導結合型のプラズマPを生成するための高周波をアンテナ3に印加する高周波電源4とを備えている。なお、アンテナ3に高周波電源4から高周波を印加することによりアンテナ3には高周波電流IRが流れて、真空容器2内に誘導電界が発生して誘導結合型のプラズマPが生成される。 Specifically, as shown in FIG. 1, the plasma processing apparatus 100 includes a vacuum vessel 2 that is evacuated and into which a gas 7 is introduced, a linear antenna 3 that is disposed in the vacuum vessel 2, and a vacuum vessel 2. And a high frequency power source 4 for applying a high frequency for generating the inductively coupled plasma P to the antenna 3. When a high frequency is applied to the antenna 3 from the high frequency power source 4, a high frequency current IR flows through the antenna 3, an induction electric field is generated in the vacuum chamber 2, and inductively coupled plasma P is generated.
真空容器2は、例えば金属製の容器であり、その内部は真空排気装置6によって真空排気される。真空容器2はこの例では電気的に接地されている。 The vacuum vessel 2 is, for example, a metal vessel, and the inside thereof is evacuated by the evacuation device 6. The vacuum vessel 2 is electrically grounded in this example.
真空容器2内に、例えば流量調整器(図示省略)及び真空容器2の側壁に形成された複数のガス導入口21を経由して、ガス7が導入される。ガス7は、基板Wに施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板Wに膜形成を行う場合には、ガス7は、原料ガス又はそれを希釈ガス(例えばH)で希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板W上に形成することができる。 The gas 7 is introduced into the vacuum vessel 2 via, for example, a flow rate regulator (not shown) and a plurality of gas inlets 21 formed on the side wall of the vacuum vessel 2. The gas 7 may be made in accordance with the processing content applied to the substrate W. For example, when film formation is performed on the substrate W by the plasma CVD method, the gas 7 is a source gas or a gas obtained by diluting it with a diluent gas (for example, H 2 ). More specifically, when the source gas is SiH 4 , the Si film is formed, when SiH 4 + NH 3 is used, the SiN film is formed, when SiH 4 + O 2 is used, the SiO 2 film is formed, and when SiF 4 + N 2 is used, the SiN film is formed. : F films (fluorinated silicon nitride films) can be formed on the substrate W, respectively.
また、真空容器2内には、基板Wを保持する基板ホルダ8が設けられている。この例のように、基板ホルダ8にバイアス電源9からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のパルス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ8内に、基板Wを加熱するヒータ81を設けておいても良い。 A substrate holder 8 that holds the substrate W is provided in the vacuum container 2. As in this example, a bias voltage may be applied to the substrate holder 8 from the bias power supply 9. The bias voltage is, for example, a negative DC voltage, a negative pulse voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. . A heater 81 for heating the substrate W may be provided in the substrate holder 8.
アンテナ3は、真空容器2内における基板Wの上方に、基板Wの表面に沿うように(例えば、基板Wの表面と実質的に平行に)配置されている。真空容器2内に配置するアンテナ3は、1つでも良いし、複数でも良い。 The antenna 3 is disposed above the substrate W in the vacuum container 2 so as to be along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W). The number of antennas 3 arranged in the vacuum vessel 2 may be one or plural.
アンテナ3の両端部付近は、真空容器2の相対向する側壁をそれぞれ貫通している。アンテナ3の両端部を真空容器2外へ貫通させる部分には、絶縁部材11がそれぞれ設けられている。この各絶縁部材11を、アンテナ3の両端部が貫通しており、その貫通部は例えばパッキン12によって真空シールされている。各絶縁部材11と真空容器2との間も、例えばパッキン13によって真空シールされている。なお、絶縁部材11の材質は、例えば、アルミナ等のセラミックス、石英、又はポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等のエンジニアリングプラスチック等である。 Near both ends of the antenna 3, the opposite side walls of the vacuum container 2 are respectively penetrated. Insulating members 11 are respectively provided at portions where both ends of the antenna 3 penetrate outside the vacuum vessel 2. Both end portions of the antenna 3 pass through the insulating members 11, and the through portions are vacuum-sealed by, for example, packing 12. Each insulating member 11 and the vacuum vessel 2 are also vacuum-sealed by, for example, packing 13. The insulating member 11 is made of, for example, ceramics such as alumina, quartz, engineering plastics such as polyphenine sulfide (PPS), polyether ether ketone (PEEK), or the like.
さらに、アンテナ3において、真空容器2内に位置する部分は、直管状の絶縁カバー10により覆われている。この絶縁カバー10の両端部は絶縁部材11によって支持されている。なお、絶縁カバー10の両端部と絶縁部材11間はシールしなくても良い。絶縁カバー10内の空間にガス7が入っても、当該空間は小さくて電子の移動距離が短いので、通常は空間にプラズマPは発生しないからである。なお、絶縁カバー10の材質は、例えば、石英、アルミナ、フッ素樹脂、窒化シリコン、炭化シリコン、シリコン等である。 Further, a portion of the antenna 3 located in the vacuum vessel 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by insulating members 11. In addition, it is not necessary to seal between the both ends of the insulating cover 10 and the insulating member 11. This is because even if the gas 7 enters the space in the insulating cover 10, the space P is small and the electron moving distance is short, so that plasma P is not normally generated in the space. The material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon or the like.
絶縁カバー10を設けることによって、プラズマP中の荷電粒子がアンテナ3を構成する金属パイプ31に入射するのを抑制することができるので、金属パイプ31に荷電粒子(主として電子)が入射することによるプラズマ電位の上昇を抑制することができると共に、金属パイプ31が荷電粒子(主としてイオン)によってスパッタされてプラズマPおよび基板Wに対して金属汚染(メタルコンタミネーション)が生じるのを抑制することができる。 By providing the insulating cover 10, it is possible to prevent charged particles in the plasma P from entering the metal pipe 31 constituting the antenna 3, so that charged particles (mainly electrons) enter the metal pipe 31. An increase in plasma potential can be suppressed, and metal contamination (metal contamination) on the plasma P and the substrate W caused by sputtering of the metal pipe 31 by charged particles (mainly ions) can be suppressed. .
アンテナ3の一端部である給電端部3aには、整合回路41を介して高周波電源4が接続されており、他端部である終端部3bは直接接地されている。なお、給電端部3aは、コンデンサ又はコイル等を介して高周波電源4に接続しても良いし、終端部3bは、コンデンサ又はコイル等を介して接地しても良い。 A high-frequency power source 4 is connected to a feeding end portion 3a that is one end portion of the antenna 3 via a matching circuit 41, and a termination portion 3b that is the other end portion is directly grounded. The power supply end 3a may be connected to the high frequency power supply 4 via a capacitor or a coil, and the terminal end 3b may be grounded via a capacitor or a coil.
上記構成によって、高周波電源4から、整合回路41を介して、アンテナ3に高周波電流IRを流すことができる。高周波電流IRの周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。 With the above configuration, the high-frequency current IR can flow from the high-frequency power source 4 to the antenna 3 through the matching circuit 41. The frequency of the high-frequency current IR is, for example, a general 13.56 MHz, but is not limited thereto.
アンテナ3は、内部に冷却液CLが流通する流路を有する中空構造のものである。なお、冷却液CLは、真空容器2の外部に設けられた循環流路14によりアンテナ3を流通するものであり、前記循環流路14には、冷却液CLを一定温度に調整するための熱交換器などの温調機構141と、循環流路14において冷却液CLを循環させるためのポンプなどの循環機構142とが設けられている。冷却液CLとしては、電気絶縁の観点から、高抵抗の水が好ましく、例えば純水またはそれに近い水が好ましい。その他、例えばフッ素系不活性液体などの水以外の液冷媒を用いても良い。 The antenna 3 has a hollow structure having a flow path through which the coolant CL flows. The coolant CL circulates through the antenna 3 through a circulation channel 14 provided outside the vacuum vessel 2, and the circulation channel 14 has heat for adjusting the coolant CL to a constant temperature. A temperature control mechanism 141 such as an exchanger and a circulation mechanism 142 such as a pump for circulating the coolant CL in the circulation flow path 14 are provided. As the cooling liquid CL, high resistance water is preferable from the viewpoint of electrical insulation, for example, pure water or water close thereto is preferable. In addition, a liquid refrigerant other than water, such as a fluorine-based inert liquid, may be used.
具体的にアンテナ3は、図2に示すように、少なくとも2つの管状をなす金属製の導体要素31(以下、「金属パイプ31」という。)と、互いに隣り合う金属パイプ31の間に設けられて、それら金属パイプ31を絶縁する管状の絶縁要素32(以下、「絶縁パイプ32」という。)と、互いに隣り合う金属パイプ31と電気的に直列接続された容量素子であるコンデンサ33とを備えている。 Specifically, as shown in FIG. 2, the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipes 31”) and metal pipes 31 adjacent to each other. In addition, a tubular insulating element 32 (hereinafter referred to as “insulating pipe 32”) that insulates the metal pipes 31 and a capacitor 33 that is a capacitive element electrically connected in series with the adjacent metal pipes 31 are provided. ing.
本実施形態では金属パイプ31の数は2つであり、絶縁パイプ32及びコンデンサ33の数は各1つである。以下の説明において、一方の金属パイプ31を「第1の金属パイプ31A」、他方の金属パイプを「第2の金属パイプ31B」ともいう。なお、アンテナ3は、3つ以上の金属パイプ31を有する構成であってもしても良く、この場合、絶縁パイプ32及びコンデンサ33の数はいずれも金属パイプ31の数よりも1つ少ないものになる。 In the present embodiment, the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each. In the following description, one metal pipe 31 is also referred to as “first metal pipe 31A”, and the other metal pipe is also referred to as “second metal pipe 31B”. The antenna 3 may have a configuration including three or more metal pipes 31. In this case, the number of the insulating pipes 32 and the capacitors 33 is one less than the number of the metal pipes 31. Become.
金属パイプ31は、内部に冷却液CLが流れる直線状の流路31xが形成された直管状をなすものである。そして、金属パイプ31の少なくとも長手方向一端部の外周部には、雄ねじ部31aが形成されている。なお、複数の金属パイプ31を接続する構成との部品の共通化を図るべく、金属パイプ31の長手方向両端部に雄ねじ部31aを形成して互換性を持たせておくことが望ましい。金属パイプ31の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。 The metal pipe 31 has a straight tube shape in which a linear flow path 31x in which the coolant CL flows is formed. And the external thread part 31a is formed in the outer peripheral part of the longitudinal direction at least one end part of the metal pipe 31. As shown in FIG. In order to make the parts common with the configuration in which the plurality of metal pipes 31 are connected, it is desirable that the male pipe portions 31a be formed at both ends in the longitudinal direction of the metal pipe 31 so as to be compatible. The material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.
絶縁パイプ32は、内部に冷却液CLが流れる直線状の流路32xが形成された直管状をなすものである。そして、絶縁パイプ32の内周面には、金属パイプ31の雄ねじ部31aと螺合して接続される雌ねじ部32aが形成されている。また、絶縁パイプ32の内壁には、それぞれの雌ねじ部32aよりも軸方向中央側に、コンデンサ33を構成する一対の電極33A、33Bを嵌合させるための凹部32bが周方向全体に亘って形成されている。本実施形態の絶縁パイプ32は、単一の部材から形成しているが、複数の部材を接合して形成しても良い。なお、絶縁パイプ32の材質は、例えば、アルミナ、フッ素樹脂、ポリエチレン(PE)、エンジニアリングプラスチック(例えばポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)など)等である。 The insulating pipe 32 has a straight tube shape in which a linear flow path 32x in which the cooling liquid CL flows is formed. A female screw portion 32 a is formed on the inner peripheral surface of the insulating pipe 32 to be screwed into and connected to the male screw portion 31 a of the metal pipe 31. In addition, a recess 32b for fitting a pair of electrodes 33A and 33B constituting the capacitor 33 is formed on the inner wall of the insulating pipe 32 in the axial direction center side of each female thread portion 32a over the entire circumferential direction. Has been. Although the insulating pipe 32 of this embodiment is formed from a single member, it may be formed by joining a plurality of members. The material of the insulating pipe 32 is, for example, alumina, fluororesin, polyethylene (PE), engineering plastic (for example, polyphenine sulfide (PPS), polyether ether ketone (PEEK), etc.).
コンデンサ33は、絶縁パイプ32の内部に設けられており、具体的には、絶縁パイプ32の冷却液CLが流れる流路32xの内部に設けられている。 The capacitor 33 is provided inside the insulating pipe 32. Specifically, the capacitor 33 is provided inside the flow path 32x through which the coolant CL of the insulating pipe 32 flows.
具体的にコンデンサ33は、互いに隣り合う金属パイプ31の一方(第1の金属パイプ31A)と電気的に接続された第1の電極33Aと、互いに隣り合う金属パイプ31の他方(第2の金属パイプ31B)と電気的に接続されるとともに、第1の電極33Aに対向して配置された第2の電極33Bとを備えており、第1の電極33A及び第2の電極33Bの間の空間を冷却液CLが満たすように構成されている。つまり、この第1の電極33A及び第2の電極33Bの間の空間を流れる冷却液CLが、コンデンサ33を構成する誘電体となる。 Specifically, the capacitor 33 includes a first electrode 33A electrically connected to one of the adjacent metal pipes 31 (first metal pipe 31A) and the other of the adjacent metal pipes 31 (second metal). A space between the first electrode 33A and the second electrode 33B, the second electrode 33B being electrically connected to the pipe 31B) and disposed opposite to the first electrode 33A. Is configured to be filled with the coolant CL. That is, the coolant CL that flows in the space between the first electrode 33 </ b> A and the second electrode 33 </ b> B becomes a dielectric that constitutes the capacitor 33.
各電極33A、33Bは、概略回転体形状をなすとともに、その中心軸に沿って中央部に主流路33xが形成されている。具体的に各電極33A、33Bは、金属パイプ31における絶縁パイプ32側の端部に電気的に接触するフランジ部331と、当該フランジ部331から絶縁パイプ32側に延出した延出部332とを有している。各電極33A、33Bは、フランジ部331及び延出部332を単一の部材から形成しても良いし、別部品により形成してそれらを接合しても良い。電極33A、33Bの材質は、例えば、アルミニウム、銅、これらの合金等である。 Each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed at the center along the central axis. Specifically, each of the electrodes 33A and 33B includes a flange portion 331 that electrically contacts an end portion of the metal pipe 31 on the insulating pipe 32 side, and an extending portion 332 that extends from the flange portion 331 to the insulating pipe 32 side. have. In each of the electrodes 33A and 33B, the flange portion 331 and the extending portion 332 may be formed from a single member, or may be formed by separate parts and joined together. The material of the electrodes 33A and 33B is, for example, aluminum, copper, or an alloy thereof.
フランジ部331は、金属パイプ31における絶縁パイプ32側の端部に周方向全体に亘って接触している。具体的には、フランジ部331の軸方向端面は、金属パイプ31の端部に形成された円筒状の接触部311の先端面に周方向全体に亘って接触している。 The flange portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction. Specifically, the axial end surface of the flange portion 331 is in contact with the tip end surface of a cylindrical contact portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction.
延出部332は、円筒形状をなすものであり、その内部に主流路33xが形成されている。第1の電極33Aの延出部332及び第2の電極33Bの延出部332は、互いに同軸上に配置されている。つまり、第1の電極33Aの延出部332の内部に第2の電極33Bの延出部332が挿し込まれた状態で設けられている。これにより、第1の電極33Aの延出部332と第2の電極33Bの延出部332との間に、流路方向に沿った円筒状の空間が形成される。 The extending part 332 has a cylindrical shape, and a main flow path 33x is formed therein. The extension part 332 of the first electrode 33A and the extension part 332 of the second electrode 33B are arranged coaxially with each other. That is, the extension part 332 of the second electrode 33B is provided in a state of being inserted into the extension part 332 of the first electrode 33A. Thereby, a cylindrical space along the flow path direction is formed between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B.
このように構成された各電極33A、33Bは、絶縁パイプ32の内壁に形成された凹部32bに嵌合されている。具体的には、絶縁パイプ32の軸方向一端側に形成された凹部32bに第1の電極33Aが嵌合され、絶縁パイプ32の軸方向他端側に形成された凹部32bに第2の電極33Bが嵌合されている。このように各凹部32bに各電極33A、33Bを嵌合させることによって、第1の電極33Aの延出部332及び第2の電極33Bの延出部332は、互いに同軸上に配置される。また、各凹部32bの軸方向外側を向く面に各電極33A、33Bのフランジ部331の端面が接触することによって、第1の電極33Aの延出部332に対する第2の電極33Bの延出部332の挿入寸法が規定される。 Each of the electrodes 33 </ b> A and 33 </ b> B configured in this way is fitted in a recess 32 b formed on the inner wall of the insulating pipe 32. Specifically, the first electrode 33A is fitted in the recess 32b formed on one end side in the axial direction of the insulating pipe 32, and the second electrode is inserted in the recess 32b formed on the other end side in the axial direction of the insulating pipe 32. 33B is fitted. Thus, by fitting each electrode 33A, 33B to each recessed part 32b, the extension part 332 of the 1st electrode 33A and the extension part 332 of the 2nd electrode 33B are mutually arrange | positioned coaxially. Further, when the end face of the flange portion 331 of each electrode 33A, 33B is in contact with the surface facing the axially outer side of each recess 32b, the extension portion of the second electrode 33B with respect to the extension portion 332 of the first electrode 33A An insertion dimension of 332 is defined.
また、絶縁パイプ32の各凹部32bに各電極33A、33Bを嵌合させるとともに、当該絶縁パイプ32の雌ねじ部32aに金属パイプ31の雄ねじ部31aを螺合させることによって、金属パイプ31の接触部311の先端面が電極33A、33Bのフランジ部331に接触して各電極33A、33Bが、絶縁パイプ32と金属パイプ31との間に挟まれて固定される。このように本実施形態のアンテナ3は、金属パイプ31、絶縁パイプ32、第1の電極33A及び第2の電極33Bが同軸上に配置された構造となる。 Further, the electrodes 33A and 33B are fitted into the recesses 32b of the insulating pipe 32, and the male threaded portion 31a of the metal pipe 31 is screwed into the female threaded portion 32a of the insulating pipe 32, whereby the contact portion of the metal pipe 31 is contacted. The tip surface of 311 comes into contact with the flange portion 331 of the electrodes 33A and 33B, and the electrodes 33A and 33B are sandwiched and fixed between the insulating pipe 32 and the metal pipe 31. As described above, the antenna 3 according to this embodiment has a structure in which the metal pipe 31, the insulating pipe 32, the first electrode 33A, and the second electrode 33B are coaxially arranged.
この構成において、第1の金属パイプ31Aから冷却液CLが流れてくると、冷却液CLは、第1の電極33Aの主流路33xを通じて第2の電極33B側に流れる。第2の電極33B側に流れた冷却液CLは、第2の電極33Bの主流路33xを通じて第2の金属パイプ31Bに流れる。このとき、第1の電極33Aの延出部332と第2の電極33Bの延出部332との間の円筒状の空間が冷却液CLに満たされて、当該冷却液CLが誘電体となりコンデンサ33が構成される。 In this configuration, when the coolant CL flows from the first metal pipe 31A, the coolant CL flows to the second electrode 33B side through the main channel 33x of the first electrode 33A. The coolant CL that has flowed to the second electrode 33B side flows to the second metal pipe 31B through the main flow path 33x of the second electrode 33B. At this time, the cylindrical space between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B is filled with the cooling liquid CL, and the cooling liquid CL becomes a dielectric and becomes a capacitor. 33 is configured.
さらに本実施形態では、金属パイプ31及び絶縁パイプ32の接続部が、真空及び冷却液CLに対するシール構造を有している。このシール構造は、雄ねじ部31aの基端部に設けられたパッキン等のシール部材15により実現されているが、例えば管用テーパねじ構造を用いても良い。 Furthermore, in this embodiment, the connection part of the metal pipe 31 and the insulation pipe 32 has a seal structure with respect to the vacuum and the coolant CL. This seal structure is realized by the seal member 15 such as packing provided at the base end portion of the male screw portion 31a. However, for example, a taper screw structure for a pipe may be used.
上述した構成により、金属パイプ31及び絶縁パイプ32の間のシール構造、金属パイプ31と各電極33A、33Bとの電気的接触が、雄ねじ部31a及び雌ねじ部32aの締結と共に行われるので、組み立て作業が非常に簡便となる。 With the above-described configuration, the sealing structure between the metal pipe 31 and the insulating pipe 32 and the electrical contact between the metal pipe 31 and each electrode 33A, 33B are performed together with the fastening of the male screw portion 31a and the female screw portion 32a. Is very simple.
然して、本実施形態のアンテナ3は、金属パイプ31又は絶縁パイプ32の一方に設けられた外向き面34と、金属パイプ31又は絶縁パイプ32の他方に設けられて、外向き面34と接触する内向き面35とを備えており、これらの外向き面34及び内向き面35がアンテナ3の撓みを抑制する撓み抑制機構を構成している。 However, the antenna 3 of the present embodiment is provided on one of the metal pipe 31 and the insulating pipe 32 and on the other side of the metal pipe 31 or the insulating pipe 32 and is in contact with the outward surface 34. The inwardly facing surface 35 and the outwardly facing surface 34 and the inwardly facing surface 35 constitute a bending suppression mechanism that suppresses the bending of the antenna 3.
まず、内向き面35について説明すると、本実施形態の内向き面35は、絶縁パイプ32の内周面に設けられており、雌ねじ部32aとは異なる位置に形成されている。より具体的に説明すると、絶縁パイプ32は、雌ねじ部32aよりも軸方向外側において内壁が座繰られた座繰り部321を有しており、この座繰り部321の内周面が内向き面35である。 First, the inward surface 35 will be described. The inward surface 35 of the present embodiment is provided on the inner peripheral surface of the insulating pipe 32 and is formed at a position different from the internal thread portion 32a. More specifically, the insulating pipe 32 has a countersink portion 321 having an inner wall that is countersunk axially outside the female screw portion 32a, and the inner peripheral surface of the countersink portion 321 is an inward surface. 35.
座繰り部321は、絶縁パイプ32の軸方向両端部それぞれに形成されており、具体的には両端開口それぞれから上述したシール部材15の手前まで座繰られている。つまり、座繰り部321は、絶縁パイプ32の内周面において雌ねじ部32aやシール部材15が設けられた部分よりも内径が大きく、ここでは絶縁パイプ32のうち最も内径が大きい部分である。内向き面35は、この座繰り部321の内周面の全周に亘って形成されている。つまり、この内向き面35は、絶縁パイプ32の内周面において、雌ねじ部32aやシール部材15が設けられている面とは異なる面であり、ここでは、絶縁パイプ32の軸方向に沿うように(軸方向と実質的に平行に)延びている。 The counterbore portions 321 are formed at both axial ends of the insulating pipe 32. Specifically, the counterbore portions 321 are counterclockwise from the opening at both ends to the front of the seal member 15 described above. That is, the counterbore part 321 has a larger inner diameter than the part where the female thread part 32 a and the seal member 15 are provided on the inner peripheral surface of the insulating pipe 32, and here is the part having the largest inner diameter in the insulating pipe 32. The inward surface 35 is formed over the entire inner peripheral surface of the counterbored portion 321. That is, the inward surface 35 is a surface different from the surface on which the internal thread portion 32 a and the seal member 15 are provided on the inner peripheral surface of the insulating pipe 32, and here, it extends along the axial direction of the insulating pipe 32. (Substantially parallel to the axial direction).
一方、本実施形態の外向き面34は、金属パイプ31の外周面に設けられており、雄ねじ部31aとは異なる位置に形成されている。より具体的に説明すると、金属パイプ31は、雄ねじ部31aよりも軸方向中央側に雄ねじ部31aよりも外径が大きく、上述した座繰り部321に嵌合する大径部312を有しており、この大径部312の外周面が外向き面34である。 On the other hand, the outward surface 34 of the present embodiment is provided on the outer peripheral surface of the metal pipe 31 and is formed at a position different from the male screw portion 31a. More specifically, the metal pipe 31 has a large-diameter portion 312 having an outer diameter larger than that of the male screw portion 31a on the axial center side of the male screw portion 31a and fitted to the counterbore portion 321 described above. The outer peripheral surface of the large diameter portion 312 is the outward surface 34.
大径部312は、金属パイプ31のシール部材15よりも軸方向中央側に形成されている。つまり、大径部312は、金属パイプ31の外周面において雄ねじ部31aやシール部材15が設けられた部分よりも外径が大きく、ここでは金属パイプ31のうち最も外径が大きい部分である。具体的に大径部312の外径は座繰り部321の内径と等しく、これにより大径部312及び座繰り部321はインロー構造によりガタなく嵌め合わされている。外向き面34は、この大径部312において座繰り部321に嵌合している部分の外周面、言い換えれば大径部312の外周面において座繰り部321の内周面に対向する部分である。つまり、この外向き面34は、金属パイプ31の外周面において、雄ねじ部31aやシール部材15が設けられている面とは異なる面であり、ここでは、金属パイプ31の軸方向に沿うように(軸方向と実質的に平行に)延びている。 The large-diameter portion 312 is formed closer to the center side in the axial direction than the seal member 15 of the metal pipe 31. That is, the large-diameter portion 312 has a larger outer diameter than the portion where the male screw portion 31 a and the seal member 15 are provided on the outer peripheral surface of the metal pipe 31, and here is the portion of the metal pipe 31 having the largest outer diameter. Specifically, the outer diameter of the large-diameter portion 312 is equal to the inner diameter of the counterbore portion 321, and thereby the large-diameter portion 312 and the counterbore portion 321 are fitted together with a backlash structure without play. The outward surface 34 is an outer peripheral surface of a portion of the large-diameter portion 312 that is fitted to the counterboring portion 321, in other words, a portion facing the inner peripheral surface of the counterboring portion 321 on the outer peripheral surface of the large-diameter portion 312. is there. That is, the outward surface 34 is a surface different from the surface on which the male screw portion 31 a and the seal member 15 are provided on the outer peripheral surface of the metal pipe 31, and here, along the axial direction of the metal pipe 31. It extends (substantially parallel to the axial direction).
さらに本実施形態のアンテナ3は、図2及び図3に示すように、ねじ締結されている金属パイプ31及び絶縁パイプ32が緩むことを抑制する緩み抑制機構5を備えている。ただし、本発明に係るアンテナ3としては、必ずしも緩み抑制機構5を備えている必要はない。 Further, as shown in FIGS. 2 and 3, the antenna 3 of the present embodiment includes a loosening suppression mechanism 5 that suppresses loosening of the metal pipe 31 and the insulating pipe 32 that are screw-fastened. However, the antenna 3 according to the present invention is not necessarily provided with the loosening suppression mechanism 5.
緩み抑制機構5は、金属パイプ31に外嵌された環状止め具51を用いて構成されている。この環状止め具51は、金属パイプ31の軸周りに回転自在に且つ軸方向にスライド可能に設けられたものであり、絶縁パイプ32に対向する端面には、絶縁パイプ32に向かって突出する1又は複数の凸部52が設けられている。なお、凸部52の個数、形状、配置などは適宜変更して構わない。 The loosening suppression mechanism 5 is configured using an annular stopper 51 that is externally fitted to the metal pipe 31. The annular stopper 51 is provided so as to be rotatable about the axis of the metal pipe 31 and to be slidable in the axial direction, and protrudes toward the insulating pipe 32 at an end surface facing the insulating pipe 32. Or the some convex part 52 is provided. Note that the number, shape, arrangement, and the like of the convex portions 52 may be changed as appropriate.
一方、絶縁パイプ32における環状止め具51に対向する端面には、軸方向中央側に向かって切り欠かれた凹部53が形成されている。具体的に凹部53は、凸部52と対応する形状であり、凸部52と対応する1又は複数の位置に形成されている。 On the other hand, the end face of the insulating pipe 32 facing the annular stopper 51 is formed with a recess 53 cut out toward the center in the axial direction. Specifically, the concave portion 53 has a shape corresponding to the convex portion 52 and is formed at one or a plurality of positions corresponding to the convex portion 52.
そして、これらの凸部52及び凹部53が、上述した緩み抑制機構5を構成しており、凸部52が凹部53に係合することで、金属パイプ31及び絶縁パイプ32の緩みが抑制される。 And these convex part 52 and the recessed part 53 comprise the loosening suppression mechanism 5 mentioned above, and when the convex part 52 engages with the recessed part 53, the looseness of the metal pipe 31 and the insulation pipe 32 is suppressed. .
ここでは、金属パイプ31と絶縁パイプ32とがねじ締結されている状態において、金属パイプ31の外周面における絶縁パイプ32よりも軸方向中央側に第2の雄ねじ部31bが形成されており、上述した緩み抑制機構5は、この第2の雄ねじ部31bに螺合するナット54をさらに備えている。具体的にこのナット54は、絶縁パイプ32より外径が大きいものであり、上述した環状止め具51よりも軸方向中央側に設けられている。そして、上述した凸部52を凹部53に係合させた状態で、ナット54を回して軸方向外側に移動させ、ナット54によって環状止め具51を絶縁パイプ32の端面に押圧することで、金属パイプ31及び絶縁パイプ32の緩みを抑えることができる。 Here, in a state where the metal pipe 31 and the insulating pipe 32 are screw-fastened, the second male threaded portion 31b is formed on the outer peripheral surface of the metal pipe 31 on the center side in the axial direction from the insulating pipe 32. The loosening suppression mechanism 5 further includes a nut 54 that is screwed into the second male screw portion 31b. Specifically, the nut 54 has a larger outer diameter than the insulating pipe 32, and is provided closer to the center in the axial direction than the annular stopper 51 described above. And in the state which engaged the convex part 52 mentioned above with the recessed part 53, the nut 54 is rotated and it moves to an axial direction outer side, and the annular stopper 51 is pressed by the end surface of the insulation pipe 32 with the nut 54, and metal Loosening of the pipe 31 and the insulating pipe 32 can be suppressed.
<本実施形態の効果>
このように構成した本実施形態のプラズマ処理装置100によれば、金属パイプ31と絶縁パイプ32をねじ締結すると、金属パイプ31に設けられた外向き面34と、絶縁パイプ32に設けられた内向き面35とが互いに接触するので、アンテナ3を長くする場合でも撓みを抑制することができる。これにより、アンテナ3の長手方向に沿って均一なプラズマを発生させることができるので、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。
<Effect of this embodiment>
According to the plasma processing apparatus 100 of the present embodiment configured as described above, when the metal pipe 31 and the insulating pipe 32 are screwed together, the outward surface 34 provided on the metal pipe 31 and the inner surface provided on the insulating pipe 32. Since the facing surfaces 35 are in contact with each other, bending can be suppressed even when the antenna 3 is lengthened. Thereby, since uniform plasma can be generated along the longitudinal direction of the antenna 3, quality such as the thickness of the film can be ensured, and reliability can be improved.
また、大径部312の外周面を外向き面34とするとともに、大径部312が嵌合する座繰り部321の内周面を内向き面35としており、しかも大径部312の外周面の全周が外向き面34であり、座繰り部321の内周面の全周が内向き面35であるので、外向き面34と内向き面35との接触面積を大きくすることができ、アンテナ3の撓みをより抑えることができる。 In addition, the outer peripheral surface of the large diameter portion 312 is an outward surface 34, the inner peripheral surface of the counterbore portion 321 to which the large diameter portion 312 is fitted is an inward surface 35, and the outer peripheral surface of the large diameter portion 312. Is the outward surface 34, and the entire inner peripheral surface of the counterbored portion 321 is the inward surface 35. Therefore, the contact area between the outward surface 34 and the inward surface 35 can be increased. The bending of the antenna 3 can be further suppressed.
さらに、外向き面34及び内向き面35とは異なる面であって、金属パイプ31及び絶縁パイプ32における互いに対向する対向面の間にシール部材15を介在させているので、外向き面34及び内向き面35との間に隙間やガタを生じさせることなく、シール性を担保することができる。 Further, since the sealing member 15 is interposed between the opposing surfaces of the metal pipe 31 and the insulating pipe 32 that are different from the outward surface 34 and the inward surface 35, the outward surface 34 and The sealing property can be ensured without causing a gap or play between the inward surface 35.
加えて、環状止め具51の端面に設けられた凸部52を、絶縁パイプ32の端面に設けられた凹部53に係合させるとともに、環状止め具51をナット54によって絶縁パイプ32に押圧しているので、金属パイプ31と絶縁パイプ32とのねじ締結が緩むことを抑制することができる。 In addition, the convex portion 52 provided on the end surface of the annular stopper 51 is engaged with the concave portion 53 provided on the end surface of the insulating pipe 32, and the annular stopper 51 is pressed against the insulating pipe 32 by the nut 54. Therefore, it is possible to suppress loosening of the screw fastening between the metal pipe 31 and the insulating pipe 32.
さらに加えて、金属パイプ31に外嵌させたナット54の外径が絶縁パイプ32の外径よりも大きいので、仮にアンテナ3が撓んだとしても、ナット54が絶縁カバー10に接触して、絶縁パイプ32が絶縁カバー10に接触しないようにすることができる。これにより、絶縁パイプ32の熱損傷を防止することができる。また、絶縁パイプ32と絶縁カバー10の接触を防ぐことにより、絶縁パイプ32が絶縁カバー10に接触することによるコンデンサ33の誘電体となる冷却液CLの温度上昇を防止でき、その結果、冷却液CLの誘電率の変化を抑制することができる。 In addition, since the outer diameter of the nut 54 fitted on the metal pipe 31 is larger than the outer diameter of the insulating pipe 32, even if the antenna 3 is bent, the nut 54 comes into contact with the insulating cover 10, It is possible to prevent the insulating pipe 32 from contacting the insulating cover 10. Thereby, the thermal damage of the insulation pipe 32 can be prevented. Further, by preventing the insulating pipe 32 and the insulating cover 10 from contacting each other, it is possible to prevent the temperature rise of the cooling liquid CL serving as a dielectric of the capacitor 33 due to the insulating pipe 32 coming into contact with the insulating cover 10. The change in the dielectric constant of CL can be suppressed.
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
例えば、前記実施形態では、金属パイプ31が外向き面34を有し、絶縁パイプ32が内向き面35を有していたが、図4に示すように、金属パイプ31が内向き面35を有し、絶縁パイプ32が外向き面34を有していても良い。
なおこの場合は、図4に示す構成のように、コンデンサ33が絶縁パイプ32の外側に設けられていても良い。
For example, in the above embodiment, the metal pipe 31 has the outward surface 34 and the insulating pipe 32 has the inward surface 35, but the metal pipe 31 has the inward surface 35 as shown in FIG. 4. The insulating pipe 32 may have an outward surface 34.
In this case, the capacitor 33 may be provided outside the insulating pipe 32 as in the configuration shown in FIG.
また、外向き面34は、前記実施形態では金属パイプ31における雄ねじ部31aよりも外径の大きい大径部312の外周面であったが、図5に示すように、金属パイプ31における雄ねじ部31aよりも軸方向外側に設けられた雄ねじ部31aよりも外径の小さい小径部314の外周面であっても良い。
この場合、絶縁パイプ32の座繰り部321は、雌ねじ部32aよりも軸方向中央側に設けられていれば良く、この座繰り部321の内周面を内向き面35とすれば良い。なお、ここでの座繰り部321には、上述した小径部314とともに電極33A、33Bのフランジ部331がインロー構造によりガタなく嵌め合わされている。
Moreover, although the outward surface 34 was the outer peripheral surface of the large diameter part 312 whose outer diameter is larger than the external thread part 31a in the metal pipe 31 in the said embodiment, as shown in FIG. The outer peripheral surface of the small diameter part 314 whose outer diameter is smaller than the external thread part 31a provided in the axial direction outer side than 31a may be sufficient.
In this case, the counterbore part 321 of the insulating pipe 32 only needs to be provided in the axial direction center side with respect to the female screw part 32a, and the inner peripheral surface of the counterbore part 321 may be the inward surface 35. Note that the flange portion 331 of the electrodes 33 </ b> A and 33 </ b> B is fitted to the counterbore portion 321 together with the above-described small-diameter portion 314 with a backlash structure without play.
さらに、前記実施形態の外向き面34及び内向き面35は、金属パイプ31や絶縁パイプ32の軸方向に沿って延びていたが、図6に示すように、金属パイプ31や絶縁パイプ32の軸方向に対して傾いていても良い。 Furthermore, the outward surface 34 and the inward surface 35 of the above-described embodiment extend along the axial direction of the metal pipe 31 and the insulating pipe 32, but as shown in FIG. It may be inclined with respect to the axial direction.
加えて、前記実施形態では、座繰り部321の内周面の全周が内向き面35であったが、例えば座繰り部321の内周面において周方向に沿って間欠的に内向き面35を設けるなど、必ずしも内周面の全周に亘って内向き面35を設ける必要はない。
外向き面34も同様に、例えば大径部312の外周面において周方向に沿って間欠的に設けるなど、必ずしも外周面の全周に亘って外向き面34を設ける必要はない。
In addition, in the said embodiment, although the perimeter of the internal peripheral surface of the counterboring part 321 was the inward surface 35, for example, it is an inward surface intermittently along the circumferential direction in the internal peripheral surface of the counterboring part 321. It is not always necessary to provide the inward surface 35 over the entire circumference of the inner peripheral surface, such as providing 35.
Similarly, the outward surface 34 is not necessarily provided over the entire circumference of the outer peripheral surface, for example, intermittently provided along the circumferential direction on the outer peripheral surface of the large-diameter portion 312.
さらに加えて、外向き面34及び内向き面35は、例えば軸方向に沿ったねじ部31a、32aの両側など、軸方向の複数箇所に設けられていても良い。 In addition, the outward surface 34 and the inward surface 35 may be provided at a plurality of locations in the axial direction, such as both sides of the screw portions 31a and 32a along the axial direction.
また、ねじ部31a、32aに関しては、金属パイプ31に雌ねじ部32aが設けられており、絶縁パイプ32に雄ねじ部31aが設けられていても良い。 As for the screw portions 31a and 32a, the metal pipe 31 may be provided with the female screw portion 32a, and the insulating pipe 32 may be provided with the male screw portion 31a.
緩み抑制機構5に関しては、図7に示すように、絶縁パイプ32の環状止め具51に対向する端面に環状止め具51に向かって突出する凸部52が設けられており、環状止め具51の絶縁パイプ32に対向する端面に凸部52が係合する凹部53が設けられていても良い。
さらに、環状止め具51は、前記実施形態では金属パイプ31に外嵌されていたが、絶縁パイプ32に外嵌されていても良い。この場合のナット54の配置としては、絶縁パイプ32における環状止め具51よりも軸方向中央側に螺合されている態様が挙げられる。
With respect to the loosening suppression mechanism 5, as shown in FIG. 7, a convex portion 52 that protrudes toward the annular stopper 51 is provided on the end surface of the insulating pipe 32 that faces the annular stopper 51. A concave portion 53 with which the convex portion 52 engages may be provided on the end surface facing the insulating pipe 32.
Further, the annular stopper 51 is externally fitted to the metal pipe 31 in the above embodiment, but may be externally fitted to the insulating pipe 32. As an arrangement of the nut 54 in this case, a mode in which the nut 54 is screwed to the center side in the axial direction from the annular stopper 51 in the insulating pipe 32 can be mentioned.
加えて、環状止め具51を金属パイプ31に固定すべく、凹部53に凸部52が係合した状態において、環状止め具51と金属パイプ31とをポンチングにより固定しても良い。 In addition, in order to fix the annular stopper 51 to the metal pipe 31, the annular stopper 51 and the metal pipe 31 may be fixed by punching in a state where the convex portion 52 is engaged with the concave portion 53.
前記実施形態のプラズマ処理装置100ではアンテナ3が基板Wの処理室内に配置されたものであったが、図8に示すように、アンテナ3を処理室18外に配置したものであってもよい。この場合、複数のアンテナ3は、真空容器2内において誘電体窓19によって処理室18とは区画されたアンテナ室20に配置されている。なお、アンテナ室20は真空排気装置21によって真空排気される。このプラズマ処理装置100であれば、処理室18の圧力などの条件と、アンテナ室20の圧力などの条件とを個別に制御することができ、プラズマPの発生を効率的にできるとともに、基板Wの処理を効率的にできる。 In the plasma processing apparatus 100 of the above embodiment, the antenna 3 is disposed in the processing chamber of the substrate W. However, as shown in FIG. 8, the antenna 3 may be disposed outside the processing chamber 18. . In this case, the plurality of antennas 3 are arranged in an antenna chamber 20 that is partitioned from the processing chamber 18 by a dielectric window 19 in the vacuum vessel 2. The antenna chamber 20 is evacuated by the evacuation device 21. With this plasma processing apparatus 100, conditions such as the pressure in the processing chamber 18 and conditions such as the pressure in the antenna chamber 20 can be individually controlled, and the generation of plasma P can be efficiently performed, and the substrate W Can be processed efficiently.
加えて、金属パイプ及び絶縁パイプは、1つの内部流路を有する管状をなすものであったが、2以上の内部流路を有するもの、或いは、分岐した内部流路を有するものであっても良い。また、金属パイプや絶縁パイプは中実のものであっても良い。 In addition, the metal pipe and the insulating pipe have a tubular shape having one internal flow path, but may have two or more internal flow paths or have a branched internal flow path. good. Further, the metal pipe and the insulating pipe may be solid.
前記実施形態の電極において延出部は、円筒状であったが、その他の角筒状であっても良いし、平板状又は湾曲又は屈曲した板状であっても良い。 In the electrode of the embodiment, the extending portion has a cylindrical shape, but may have another rectangular tube shape, a flat plate shape, or a curved or bent plate shape.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・プラズマ処理装置
W  ・・・基板
P  ・・・誘導結合プラズマ
2  ・・・真空容器
3  ・・・アンテナ
31 ・・・金属パイプ(導体要素)
32 ・・・絶縁パイプ(絶縁要素)
32b・・・凹部
33 ・・・コンデンサ
33A・・・第1の電極
33B・・・第2の電極
331・・・フランジ部
332・・・延出部
34 ・・・外向き面
35 ・・・内向き面
312・・・大径部
321・・・座繰り部
5  ・・・緩み抑制機構
51 ・・・環状止め具
52 ・・・凸部
53 ・・・凹部
54 ・・・ナット
CL・・・冷却液(液体の誘電体)
DESCRIPTION OF SYMBOLS 100 ... Plasma processing apparatus W ... Board | substrate P ... Inductively coupled plasma 2 ... Vacuum container 3 ... Antenna 31 ... Metal pipe (conductor element)
32 ... Insulating pipe (insulating element)
32b ... Concave part 33 ... Capacitor 33A ... First electrode 33B ... Second electrode 331 ... Flange part 332 ... Extension part 34 ... Outward surface 35 ... Inward surface 312 ... Large diameter part 321 ... Countersink part 5 ... Loosening suppression mechanism 51 ... Ring stopper 52 ... Convex part 53 ... Concave part 54 ... Nut CL・ Coolant (liquid dielectric)

Claims (9)

  1. 高周波電流が流されてプラズマを発生させるためのアンテナであって、一対の導体要素がこれらの間に介在する絶縁要素にねじ締結されてなり、
    前記導体要素又は前記絶縁要素の一方は、ねじ部とは異なる位置に設けられた外向き面を有し、
    前記導体要素又は前記絶縁要素の他方は、前記外向き面と接触する内向き面を有しているアンテナ。
    An antenna for generating plasma by flowing a high-frequency current, wherein a pair of conductor elements are screwed to an insulating element interposed therebetween,
    One of the conductor element or the insulating element has an outward surface provided at a position different from the screw portion,
    The other of the conductor element or the insulating element has an inward surface in contact with the outward surface.
  2. 前記外向き面は、前記導体要素又は前記絶縁要素の一方の外周面全周に亘って設けられており、
    前記内向き面は、前記導体要素又は前記絶縁要素の他方の内周面全周に亘って設けられている、請求項1記載のアンテナ。
    The outward surface is provided over the entire circumference of one outer peripheral surface of the conductor element or the insulating element,
    The antenna according to claim 1, wherein the inward surface is provided over the entire circumference of the other inner peripheral surface of the conductor element or the insulating element.
  3. 前記導体要素又は前記絶縁要素の一方は、その外周面に雄ねじ部が形成されており、前記雄ねじ部よりも軸方向中央側に前記雄ねじ部よりも外径が大きい大径部が設けられたものであり、
    前記導体要素又は前記絶縁要素の他方は、その内周面に雌ねじ部が形成されており、前記雌ねじ部よりも軸方向外側に前記雌ねじ部よりも内径が大きく、前記大径部に嵌合する座繰り部が設けられたものであり、
    前記大径部の外周面が前記外向き面であり、
    前記座繰り部の内周面が前記内向き面である、請求項1又は2記載のアンテナ。
    One of the conductor element or the insulating element has a male thread portion formed on the outer peripheral surface thereof, and a large diameter portion having a larger outer diameter than the male thread portion is provided on the axial center side of the male thread portion. And
    The other of the conductor element or the insulating element has a female threaded portion formed on the inner peripheral surface thereof, and has an inner diameter larger than the female threaded portion on the axially outer side than the female threaded portion and fits into the large diameter portion. A countersink is provided,
    The outer peripheral surface of the large diameter portion is the outward surface,
    The antenna according to claim 1 or 2, wherein an inner peripheral surface of the counterbored portion is the inward surface.
  4. 前記外向き面及び前記内向き面とは異なる面であって、前記導体要素及び前記絶縁要素における互いに対向する対向面の間にシール部材が介在している、請求項1乃至3のうち何れか一項に記載のアンテナ。 4. The seal member according to claim 1, wherein a seal member is interposed between opposing surfaces of the conductor element and the insulating element that are different from the outward surface and the inward surface. The antenna according to one item.
  5. 前記導体要素又は前記絶縁要素の一方の端部に軸方向中央側に切り欠かれた凹部又は軸方向外側に突出した凸部が形成されており、
    前記導体要素又は前記絶縁要素の他方の外周面に、前記凹部又は前記凸部に係合する凸部又は凹部が形成された環状止め具が設けられている、請求項1乃至4のうち何れか一項に記載のアンテナ。
    A concave portion cut out in the axial center or a convex portion protruding outward in the axial direction is formed at one end of the conductor element or the insulating element,
    5. The annular stopper having a convex portion or a concave portion that engages with the concave portion or the convex portion is provided on the other outer peripheral surface of the conductor element or the insulating element. The antenna according to one item.
  6. 前記環状止め具が、前記導体要素の外周面に設けられており、その外周面における環状止め具よりも軸方向中央側に螺合されたナットにより軸方向外側に押圧されている、請求項5記載のアンテナ。 The said annular stopper is provided in the outer peripheral surface of the said conductor element, and is pressed on the axial direction outer side by the nut screwed together by the axial direction center side rather than the annular stopper in the outer peripheral surface. The described antenna.
  7. 前記一対の導体要素と電気的に直列に接続された容量素子をさらに備え、
    前記容量素子が、
    前記一対の導体要素の一方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の他方側に延びる第1の電極と、
    前記一対の導体要素の他方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の一方側に延び、前記第1の電極と対向する第2の電極と、
    前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、
    前記誘電体が液体である、請求項1乃至6のうち何れか一項に記載のアンテナ。
    A capacitor element electrically connected in series with the pair of conductor elements;
    The capacitive element is
    A first electrode electrically connected to one of the pair of conductor elements and extending to the other side of the pair of conductor elements through the interior of the insulating element;
    A second electrode that is electrically connected to the other of the pair of conductor elements, extends to one side of the pair of conductor elements through the interior of the insulating element, and faces the first electrode;
    A dielectric that fills a space between the first electrode and the second electrode;
    The antenna according to claim 1, wherein the dielectric is a liquid.
  8. 前記一対の導体要素は、内部に冷却液が流れる流路を有しており、
    前記冷却液が前記誘電体である、請求項7記載のアンテナ。
    The pair of conductor elements has a flow path through which a coolant flows.
    The antenna according to claim 7, wherein the cooling liquid is the dielectric.
  9. 請求項1乃至8のうち何か一項に記載のアンテナと、
    前記アンテナが内部又は外部に配置された真空容器と、
    前記アンテナに高周波電流を印加する高周波電源とを具備する、プラズマ処理装置。
    An antenna according to any one of claims 1 to 8;
    A vacuum vessel in which the antenna is arranged inside or outside;
    A plasma processing apparatus, comprising: a high frequency power source that applies a high frequency current to the antenna.
PCT/JP2019/010311 2018-03-14 2019-03-13 Antenna, and plasma processing device WO2019177037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046324A JP7025711B2 (en) 2018-03-14 2018-03-14 Antenna and plasma processing equipment
JP2018-046324 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019177037A1 true WO2019177037A1 (en) 2019-09-19

Family

ID=67906817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010311 WO2019177037A1 (en) 2018-03-14 2019-03-13 Antenna, and plasma processing device

Country Status (3)

Country Link
JP (1) JP7025711B2 (en)
TW (1) TWI708526B (en)
WO (1) WO2019177037A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230008774A (en) * 2020-06-23 2023-01-16 미쿠니 일렉트론 코포레이션 Film formation apparatus that performs film formation by sputtering by inductively coupled plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041087A2 (en) * 2009-09-29 2011-04-07 Applied Materials, Inc. Inductively-coupled plasma (icp) resonant source element
JP2015508565A (en) * 2012-01-27 2015-03-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Segmented antenna assembly
JP2016138598A (en) * 2015-01-28 2016-08-04 日新電機株式会社 Pipe holding connection structure and high frequency antenna device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491780B (en) * 2014-10-01 2018-03-30 日新电机株式会社 The antenna of plasma generation and the plasma processing apparatus for possessing the antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041087A2 (en) * 2009-09-29 2011-04-07 Applied Materials, Inc. Inductively-coupled plasma (icp) resonant source element
JP2015508565A (en) * 2012-01-27 2015-03-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Segmented antenna assembly
JP2016138598A (en) * 2015-01-28 2016-08-04 日新電機株式会社 Pipe holding connection structure and high frequency antenna device including the same

Also Published As

Publication number Publication date
TWI708526B (en) 2020-10-21
TW201946501A (en) 2019-12-01
JP2019160593A (en) 2019-09-19
JP7025711B2 (en) 2022-02-25

Similar Documents

Publication Publication Date Title
KR101763277B1 (en) Antenna for generating a plasma and Plasma processing apparatus having the same
JP6471515B2 (en) Pipe holding connection structure and high-frequency antenna device including the same
JP4694596B2 (en) Microwave plasma processing apparatus and microwave power feeding method
JP6341329B1 (en) Antenna for generating plasma and plasma processing apparatus including the same
CN110709533B (en) Sputtering device
JP2017033788A (en) Plasma processing apparatus
KR102235221B1 (en) Plasma generating antenna, plasma processing apparatus and antenna structure including the same
JP6931461B2 (en) Antenna for plasma generation, plasma processing device and antenna structure equipped with it
WO2019181776A1 (en) Antenna and plasma processing device
JP6996096B2 (en) Plasma processing equipment
WO2019177037A1 (en) Antenna, and plasma processing device
JP2017004602A (en) Antenna for plasma generation and plasma processing apparatus comprising the same
WO2018151114A1 (en) Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma
JP2018156763A (en) Antenna for plasma generation and plasma processing apparatus including the same
WO2023139957A1 (en) Antenna, and plasma processing device
JP7028001B2 (en) Film formation method
JP2021018923A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766520

Country of ref document: EP

Kind code of ref document: A1