JP7025711B2 - Antenna and plasma processing equipment - Google Patents

Antenna and plasma processing equipment Download PDF

Info

Publication number
JP7025711B2
JP7025711B2 JP2018046324A JP2018046324A JP7025711B2 JP 7025711 B2 JP7025711 B2 JP 7025711B2 JP 2018046324 A JP2018046324 A JP 2018046324A JP 2018046324 A JP2018046324 A JP 2018046324A JP 7025711 B2 JP7025711 B2 JP 7025711B2
Authority
JP
Japan
Prior art keywords
antenna
conductor
peripheral surface
insulating
insulating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046324A
Other languages
Japanese (ja)
Other versions
JP2019160593A (en
Inventor
満雄 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2018046324A priority Critical patent/JP7025711B2/en
Priority to PCT/JP2019/010311 priority patent/WO2019177037A1/en
Priority to TW108108686A priority patent/TWI708526B/en
Publication of JP2019160593A publication Critical patent/JP2019160593A/en
Application granted granted Critical
Publication of JP7025711B2 publication Critical patent/JP7025711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Description

本発明は、高周波電流が流されて誘導結合型のプラズマを発生されるためのアンテナ、及び、このアンテナを備えたプラズマ処理装置に関するものである。 The present invention relates to an antenna for generating inductively coupled plasma by passing a high frequency current, and a plasma processing apparatus provided with this antenna.

アンテナに高周波電流を流し、それによって生じる誘導電界により誘導結合型のプラズマ(略称ICP)を発生させ、この誘導結合型のプラズマを用いて基板に処理を施すプラズマ処理装置が従来から提案されている。 Conventionally, a plasma processing apparatus has been proposed in which a high-frequency current is passed through an antenna, an inductively coupled plasma (abbreviated as ICP) is generated by an induced electric field generated by the high frequency current, and the substrate is processed using this inductively coupled plasma. ..

この種のプラズマ処理装置においては、大型の基板に対応する等のためにアンテナを長くすると、当該アンテナのインピーダンスが大きくなり、それによってアンテナの両端間に大きな電位差が発生する。その結果、この大きな電位差の影響を受けてプラズマの密度分布、電位分布、電子温度分布等のプラズマの均一性が悪くなり、ひいては基板処理の均一性が悪くなるという問題がある。また、アンテナのインピーダンスが大きくなると、アンテナに高周波電流を流しにくくなるという問題もある。 In this type of plasma processing apparatus, if the antenna is lengthened to accommodate a large substrate or the like, the impedance of the antenna becomes large, which causes a large potential difference between both ends of the antenna. As a result, there is a problem that the uniformity of plasma such as the density distribution, the potential distribution, and the electron temperature distribution of the plasma is deteriorated due to the influence of this large potential difference, and the uniformity of the substrate processing is deteriorated. Further, when the impedance of the antenna becomes large, there is a problem that it becomes difficult for a high frequency current to flow through the antenna.

このような問題を解決する等のために、特許文献1に示すように、複数の金属パイプを、隣り合う金属パイプ間に中空絶縁体を介在させて接続するとともに、中空絶縁体の外周部に容量素子であるコンデンサを配置したものが考えられている。具体的には、金属パイプの外周面に形成された雄ねじ部を、中空絶縁体の内周面に形成された雌ねじ部に螺合させてこれらをねじ締結している。そして、中空絶縁体の両側にねじ締結された金属パイプを、上述した容量素子と電気的に直列接続することで、アンテナの合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを差し引いたものとなる。その結果、アンテナのインピーダンスを低減させることができ、アンテナを長くする場合でもそのインピーダンスの増大が抑制され、アンテナに高周波電流が流れやすくなり、均一性の良いプラズマを効率良く発生させることができる。 In order to solve such a problem, as shown in Patent Document 1, a plurality of metal pipes are connected by interposing a hollow insulator between adjacent metal pipes, and are connected to the outer peripheral portion of the hollow insulator. It is considered that a capacitor, which is a capacitive element, is arranged. Specifically, the male threaded portion formed on the outer peripheral surface of the metal pipe is screwed into the female threaded portion formed on the inner peripheral surface of the hollow insulator, and these are screwed and fastened. Then, by electrically connecting the metal pipes screwed to both sides of the hollow insulator in series with the above-mentioned capacitive element, the synthetic reactance of the antenna is simply the inductive reactance minus the capacitive reactance. It becomes a thing. As a result, the impedance of the antenna can be reduced, the increase in the impedance is suppressed even when the antenna is lengthened, the high frequency current easily flows through the antenna, and plasma with good uniformity can be efficiently generated.

特開2016-138598号公報Japanese Unexamined Patent Publication No. 2016-138598

しかしながら、上述したアンテナは、ねじ締結された金属パイプと中空絶縁体とのシール性を確保すべく、金属パイプの外周面と中空絶縁体の内周面との間にOリングを介在させているので、これらの間には僅かな隙間が存在しており、この隙間を介して金属パイプと中空絶縁体とが相対的に動いてしまう。これにより、アンテナを長くすると撓む可能性があり、そうするとアンテナと基板との距離がアンテナの長手方向に沿って変わってしまう。その結果、基板とアンテナとの間に発生するプラズマの密度がアンテナの長手方向に沿って不均一になり、基板に形成される膜の厚み等も不均一になるという問題が生じる。 However, in the above-mentioned antenna, an O-ring is interposed between the outer peripheral surface of the metal pipe and the inner peripheral surface of the hollow insulator in order to ensure the sealing property between the screw-fastened metal pipe and the hollow insulator. Therefore, there is a slight gap between them, and the metal pipe and the hollow insulator move relatively through this gap. As a result, if the antenna is lengthened, it may bend, and then the distance between the antenna and the substrate changes along the longitudinal direction of the antenna. As a result, there arises a problem that the density of plasma generated between the substrate and the antenna becomes non-uniform along the longitudinal direction of the antenna, and the thickness of the film formed on the substrate also becomes non-uniform.

そこで本発明は、上記問題点を解決すべくなされたものであり、アンテナを長くする場合でもアンテナの撓みを抑制し、アンテナの長手方向に沿って均一なプラズマを発生させることで、信頼性の向上を図ることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and it is reliable by suppressing the bending of the antenna even when the antenna is lengthened and generating uniform plasma along the longitudinal direction of the antenna. The main issue is to improve.

すなわち本発明に係るアンテナは、高周波電流が流されてプラズマを発生させるためのアンテナであって、一対の導体要素がこれらの間に介在する絶縁要素にねじ締結されてなり、前記導体要素又は前記絶縁要素の一方は、ねじ部とは異なる位置に設けられた外向き面を有し、前記導体要素又は前記絶縁要素の他方は、前記外向き面と接触する内向き面を有していることを特徴とするものである。 That is, the antenna according to the present invention is an antenna for generating plasma by passing a high-frequency current, and a pair of conductor elements are screwed to an insulating element interposed between them, and the conductor element or the said. One of the insulating elements has an outward facing surface provided at a position different from the threaded portion, and the conductor element or the other of the insulating elements has an inward facing surface in contact with the outward facing surface. It is characterized by.

このように構成されたアンテナであれば、導体要素又は絶縁要素の一方に設けられた外向き面と、導体要素又は絶縁要素の他方に設けられた内向き面とが互いに接触しているので、これらの面が導体要素や絶縁要素の相対的な動きを規制して、アンテナを長くする場合でも撓みを抑制することができる。これにより、アンテナの長手方向に沿って均一なプラズマを発生させることができるので、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。 In the case of an antenna configured in this way, the outward surface provided on one of the conductor elements or the insulating element and the inward surface provided on the other of the conductor element or the insulating element are in contact with each other. These surfaces regulate the relative movement of the conductor element and the insulating element, and can suppress the deflection even when the antenna is lengthened. As a result, uniform plasma can be generated along the longitudinal direction of the antenna, so that quality such as film thickness can be ensured and reliability can be improved.

アンテナをより撓みにくくすべく、外向き面と内向き面との接触面積を大きくするためには、前記外向き面は、前記導体要素又は前記絶縁要素の一方の外周面全周に亘って設けられており、前記内向き面は、前記導体要素又は前記絶縁要素の他方の内周面全周に亘って設けられていることが好ましい。 In order to increase the contact area between the outward surface and the inward surface in order to make the antenna less flexible, the outward surface is provided over the entire outer peripheral surface of one of the conductor element or the insulating element. It is preferable that the inward facing surface is provided over the entire inner peripheral surface of the other inner peripheral surface of the conductor element or the insulating element.

外向き面と内向き面との接触面積を大きくするための別の実施態様としては、前記導体要素又は前記絶縁要素の一方は、その外周面に雄ねじ部が形成されており、前記雄ねじ部よりも軸方向中央側に前記雄ねじ部よりも外径が大きい大径部が設けられたものであり、前記導体要素又は前記絶縁要素の他方は、その内周面に雌ねじ部が形成されており、前記雌ねじ部よりも軸方向外側に前記雌ねじ部よりも内径が大きく、前記大径部が嵌合する座繰り部が設けられたものであり、前記大径部の外周面が前記外向き面であり、前記座繰り部の内周面が前記内向き面である態様が挙げられる。
このような構成であれば、大径部の外周面を外向き面とするとともに、大径部が嵌合する座繰り部の内周面を内向き面としているので、外向き面や内向き面の接触面積を大きくすることができる。
As another embodiment for increasing the contact area between the outward facing surface and the inward facing surface, one of the conductor element and the insulating element has a male threaded portion formed on the outer peripheral surface thereof, and the male threaded portion is formed from the male threaded portion. Also, a large diameter portion having a larger outer diameter than the male screw portion is provided on the central side in the axial direction, and the conductor element or the other of the insulating elements has a female screw portion formed on the inner peripheral surface thereof. A counterbore portion having a larger inner diameter than the female screw portion and fitting the large diameter portion is provided on the outer side in the axial direction of the female screw portion, and the outer peripheral surface of the large diameter portion is the outward surface. There is an embodiment in which the inner peripheral surface of the counterbore portion is the inward facing surface.
With such a configuration, the outer peripheral surface of the large-diameter portion is an outward surface, and the inner peripheral surface of the countersunk portion into which the large-diameter portion is fitted is an inward-facing surface. The contact area of the surface can be increased.

導体要素と絶縁要素との間のシール性を確保すべく、これらの間にシール部材を介在させる場合、外向き面と内向き面との間にシール部材を介在させてしまうと、外向き面と内向き面との間に隙間が生じてアンテナの撓みが生じてしまう。そこで、アンテナの撓みを抑制しつつ、導体要素と絶縁要素との間のシール性を確保するためには、前記外向き面及び前記内向き面とは異なる面であって、前記導体要素及び前記絶縁要素における互いに対向する対向面の間にシール部材が介在していることが好ましい。 When a sealing member is interposed between the conductor element and the insulating element in order to secure the sealing property, if the sealing member is interposed between the outward surface and the inward surface, the outward surface is surfaced. A gap is created between the antenna and the inward facing surface, causing the antenna to bend. Therefore, in order to secure the sealing property between the conductor element and the insulating element while suppressing the bending of the antenna, the surface is different from the outward surface and the inward surface, and the conductor element and the inward surface are different from each other. It is preferable that the sealing member is interposed between the facing surfaces of the insulating element facing each other.

前記導体要素又は前記絶縁要素の一方の端部に軸方向中央側に切り欠かれた凹部又は軸方向外側に突出した凸部が形成されており、前記導体要素又は前記絶縁要素の他方の外周面に、前記凹部又は前記凸部に係合する凸部又は凹部が形成された環状止め具が設けられていることが好ましい。
このような構成であれば、例えば環状止め具が設けられている導体要素又は絶縁要素に当該環状止め具をポンチング等によって固定することで、導体要素と絶縁要素とのねじ締結を緩みにくくすることができる。
At one end of the conductor element or the insulating element, a concave portion cut out in the central direction in the axial direction or a convex portion protruding outward in the axial direction is formed, and the outer peripheral surface of the conductor element or the other outer peripheral surface of the insulating element is formed. Is preferably provided with an annular stopper having a convex portion or a concave portion that engages with the concave portion or the convex portion.
With such a configuration, for example, by fixing the annular stopper to the conductor element or the insulating element provided with the annular stopper by punching or the like, it is difficult to loosen the screw fastening between the conductor element and the insulating element. Can be done.

前記環状止め具が、前記導体要素の外周面に設けられており、その外周面における環状止め具よりも軸方向中央側に螺合されたナットにより軸方向外側に押圧されていることが好ましい。
このような構成であれば、環状止め具が軸方向外側に押圧されているので、導体要素や絶縁要素が回転しようとするときに生じる環状止め具と絶縁要素との間の摩擦力を大きくすることができ、絶縁要素と導体要素とのねじ締結を緩みにくくすることができる。
It is preferable that the annular stopper is provided on the outer peripheral surface of the conductor element and is pressed outward in the axial direction by a nut screwed toward the center side in the axial direction with respect to the annular stopper on the outer peripheral surface thereof.
In such a configuration, since the annular stopper is pressed outward in the axial direction, the frictional force between the annular stopper and the insulating element generated when the conductor element or the insulating element tries to rotate is increased. This makes it difficult to loosen the screw fastening between the insulating element and the conductor element.

ところで、プラズマ処理装置において、プラズマ中の荷電粒子がアンテナを構成する導体要素に入射するのを抑制する目的などにより、アンテナを絶縁カバーにより覆う場合がある。この場合、仮にアンテナが撓んでしまうと、絶縁要素がプラズマにより高温となっている絶縁カバーに接触して、絶縁要素が樹脂製の場合には特に熱損傷の問題が生じる。
かかる問題に対して、上述したように導体要素の外周面にナットを螺合させていれば、仮にアンテナが撓んだとしてもナットが絶縁カバーに接触することによって、絶縁要素が絶縁カバーに接触しないようにすることができ、絶縁要素の熱損傷を防止することができる。
By the way, in the plasma processing apparatus, the antenna may be covered with an insulating cover for the purpose of suppressing the charged particles in the plasma from being incident on the conductor element constituting the antenna. In this case, if the antenna is bent, the insulating element comes into contact with the insulating cover whose temperature is high due to plasma, and if the insulating element is made of resin, a problem of thermal damage arises.
In response to this problem, if the nut is screwed onto the outer peripheral surface of the conductor element as described above, even if the antenna bends, the nut will come into contact with the insulating cover, and the insulating element will come into contact with the insulating cover. It can be prevented and the thermal damage of the insulating element can be prevented.

前記一対の導体要素と電気的に直列に接続された容量素子をさらに備え、前記容量素子が、前記一対の導体要素の一方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の他方側に延びる第1の電極と、前記一対の導体要素の他方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の一方側に延び、前記第1の電極と対向する第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が液体であることが好ましい。
このような構成であれば、容量素子が一対の導体要素と電気的に直列接続されているので、上述したように、アンテナの合成リアクタンスを、誘導性リアクタンスから容量性リアクタンスを引いた形にすることができる。その結果、アンテナのインピーダンスを低減させることができ、アンテナを長くする場合でもそのインピーダンスの増大が抑制され、アンテナに高周波電流が流れやすくなり、均一性の良いプラズマを効率良く発生させることができる。
しかも、第1の電極及び第2の電極の間の空間を液体の誘電体で満たしているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び液体の誘電体の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。
Further comprising a capacitive element electrically connected in series with the pair of conductor elements, the capacitive element is electrically connected to one of the pair of conductor elements and passes through the interior of the insulating element. A first electrode extending to the other side of the pair of conductor elements is electrically connected to the other of the pair of conductor elements and extends through the inside of the insulating element to one side of the pair of conductor elements. It is composed of a second electrode facing the first electrode and a dielectric that fills the space between the first electrode and the second electrode, and the dielectric is preferably a liquid.
In such a configuration, since the capacitive elements are electrically connected in series with the pair of conductor elements, the combined reactance of the antenna is made by subtracting the capacitive reactance from the inductive reactance, as described above. be able to. As a result, the impedance of the antenna can be reduced, the increase in the impedance is suppressed even when the antenna is lengthened, the high frequency current easily flows through the antenna, and plasma with good uniformity can be efficiently generated.
Moreover, since the space between the first electrode and the second electrode is filled with the liquid dielectric, it is possible to eliminate the gap generated between the electrodes constituting the capacitive element and the dielectric. As a result, it is possible to eliminate the arc discharge that may occur in the gap between the electrode and the dielectric, and to eliminate the damage of the capacitive element due to the arc discharge. Further, the capacitance value can be set accurately from the distance between the first electrode and the second electrode, the facing area, and the relative permittivity of the liquid dielectric without considering the gap. Further, it is possible to eliminate the need for a structure for pressing the electrodes and the dielectric for filling the gap, and it is possible to prevent the structure around the antenna from becoming complicated and the resulting deterioration of plasma uniformity due to the pressing structure.

前記一対の導体要素は、内部に冷却液が流れる流路を有しており、前記冷却液が前記誘電体であることが好ましい。
このような構成であれば、プラズマ生成時に生じる熱によって高温になりがちなアンテナ導体を冷却液によって冷却することができるので、アンテナ自体の破損又はその周辺構造の破損などを防ぐことができ、安定してプラズマを発生させることが可能となる。
しかも、その冷却液を容量素子の誘電体として用いているので、容量素子を冷却しつつその静電容量の不意の変動を抑えることができる。
さらに、冷却液を温調機構により一定温度に調整しながら誘電体として用いることで、温度変化による比誘電率の変化を抑えることができ、それに伴って生じる静電容量の変化を抑えることができる。
The pair of conductor elements has a flow path through which the cooling liquid flows, and it is preferable that the cooling liquid is the dielectric.
With such a configuration, the antenna conductor, which tends to become hot due to the heat generated during plasma generation, can be cooled by the coolant, so that it is possible to prevent damage to the antenna itself or damage to its peripheral structure, and it is stable. It becomes possible to generate plasma.
Moreover, since the coolant is used as the dielectric of the capacitive element, it is possible to suppress unexpected fluctuations in the capacitance while cooling the capacitive element.
Furthermore, by using the coolant as a dielectric while adjusting it to a constant temperature by a temperature control mechanism, it is possible to suppress changes in the relative permittivity due to temperature changes, and it is possible to suppress changes in capacitance that accompany it. ..

また、本発明に係るプラズマ処理装置は、上述したアンテナと、前記アンテナが内部又は外部に配置された真空容器と、前記アンテナに高周波電流を印加する高周波電源とを具備することを特徴とするものである。
このように構成されたプラズマ処理装置であれば、上述したようにアンテナの撓みが抑制されるので、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。
Further, the plasma processing apparatus according to the present invention is characterized by including the above-mentioned antenna, a vacuum container in which the antenna is arranged inside or outside, and a high-frequency power source for applying a high-frequency current to the antenna. Is.
With the plasma processing device configured in this way, the bending of the antenna is suppressed as described above, so that the quality such as the thickness of the film can be ensured and the reliability can be improved.

このように構成した本発明によれば、アンテナを長くする場合でもアンテナの撓みを抑制することができ、アンテナの長手方向に沿って均一なプラズマを発生させることで、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。 According to the present invention configured in this way, it is possible to suppress the deflection of the antenna even when the antenna is lengthened, and by generating uniform plasma along the longitudinal direction of the antenna, the quality such as the thickness of the film can be improved. It can be guaranteed and reliability can be improved.

本実施形態のプラズマ処理装置の構成を模式的に示す縦断面図である。It is a vertical sectional view schematically showing the structure of the plasma processing apparatus of this embodiment. 同実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an enlarged sectional view schematically showing the peripheral structure of the antenna of the same embodiment. 同実施形態の緩み抑制機構の構成を示す模式図である。It is a schematic diagram which shows the structure of the loosening suppression mechanism of the same embodiment. 変形実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an enlarged sectional view schematically showing the peripheral structure of the antenna of the modified embodiment. 変形実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an enlarged sectional view schematically showing the peripheral structure of the antenna of the modified embodiment. 変形実施形態のアンテナの周辺構成を模式的に示す拡大断面図である。It is an enlarged sectional view schematically showing the peripheral structure of the antenna of the modified embodiment. 変形実施形態の緩み抑制機構の構成を示す模式図である。It is a schematic diagram which shows the structure of the loosening suppression mechanism of a modification embodiment. 変形実施形態のプラズマ処理装置の構成を模式的に示す縦断面図である。It is a vertical sectional view schematically showing the structure of the plasma processing apparatus of a modification embodiment.

以下に、本発明に係るプラズマ処理装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the plasma processing apparatus according to the present invention will be described with reference to the drawings.

<装置構成>
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。
<Device configuration>
The plasma processing apparatus 100 of the present embodiment processes the substrate W using an inductively coupled plasma P. Here, the substrate W is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like. The processing applied to the substrate W is, for example, film formation, etching, ashing, sputtering, or the like by a plasma CVD method.

なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。 The plasma processing apparatus 100 includes a plasma CVD apparatus when forming a film by a plasma CVD method, a plasma etching apparatus when performing etching, a plasma ashing apparatus when performing ashing, and a plasma sputtering apparatus when performing sputtering. Called.

具体的にプラズマ処理装置100は、図1に示すように、真空排気され且つガス7が導入される真空容器2と、真空容器2内に配置された直線状のアンテナ3と、真空容器2内に誘導結合型のプラズマPを生成するための高周波をアンテナ3に印加する高周波電源4とを備えている。なお、アンテナ3に高周波電源4から高周波を印加することによりアンテナ3には高周波電流IRが流れて、真空容器2内に誘導電界が発生して誘導結合型のプラズマPが生成される。 Specifically, as shown in FIG. 1, the plasma processing apparatus 100 includes a vacuum container 2 that is evacuated and into which a gas 7 is introduced, a linear antenna 3 arranged in the vacuum container 2, and a vacuum container 2. It is provided with a high frequency power supply 4 that applies a high frequency for generating an inductively coupled plasma P to the antenna 3. By applying a high frequency from the high frequency power supply 4 to the antenna 3, a high frequency current IR flows through the antenna 3, an inductive electric field is generated in the vacuum vessel 2, and an inductively coupled plasma P is generated.

真空容器2は、例えば金属製の容器であり、その内部は真空排気装置6によって真空排気される。真空容器2はこの例では電気的に接地されている。 The vacuum container 2 is, for example, a metal container, and the inside thereof is evacuated by the vacuum exhaust device 6. The vacuum vessel 2 is electrically grounded in this example.

真空容器2内に、例えば流量調整器(図示省略)及び真空容器2の側壁に形成された複数のガス導入口21を経由して、ガス7が導入される。ガス7は、基板Wに施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板Wに膜形成を行う場合には、ガス7は、原料ガス又はそれを希釈ガス(例えばH)で希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板W上に形成することができる。 The gas 7 is introduced into the vacuum vessel 2 via, for example, a flow rate regulator (not shown) and a plurality of gas inlets 21 formed on the side walls of the vacuum vessel 2. The gas 7 may be set according to the processing content to be applied to the substrate W. For example, when a film is formed on the substrate W by the plasma CVD method, the gas 7 is a raw material gas or a gas obtained by diluting the raw material gas ( for example, H2). More specifically, when the raw material gas is SiH 4 , a Si film is used, when SiH 4 + NH 3 is used, a SiN film is used, when SiH 4 + O 2 is used, a SiO 2 film is used, and when SiF 4 + N 2 is used, a SiN film is used. : The F film (fluoride silicon nitride film) can be formed on the substrate W, respectively.

また、真空容器2内には、基板Wを保持する基板ホルダ8が設けられている。この例のように、基板ホルダ8にバイアス電源9からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のパルス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ8内に、基板Wを加熱するヒータ81を設けておいても良い。 Further, a substrate holder 8 for holding the substrate W is provided in the vacuum container 2. As in this example, a bias voltage may be applied to the substrate holder 8 from the bias power supply 9. The bias voltage is, for example, a negative DC voltage, a negative pulse voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when the positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. .. A heater 81 for heating the substrate W may be provided in the substrate holder 8.

アンテナ3は、真空容器2内における基板Wの上方に、基板Wの表面に沿うように(例えば、基板Wの表面と実質的に平行に)配置されている。真空容器2内に配置するアンテナ3は、1つでも良いし、複数でも良い。 The antenna 3 is arranged above the substrate W in the vacuum vessel 2 along the surface of the substrate W (for example, substantially parallel to the surface of the substrate W). The number of antennas 3 arranged in the vacuum container 2 may be one or a plurality.

アンテナ3の両端部付近は、真空容器2の相対向する側壁をそれぞれ貫通している。アンテナ3の両端部を真空容器2外へ貫通させる部分には、絶縁部材11がそれぞれ設けられている。この各絶縁部材11を、アンテナ3の両端部が貫通しており、その貫通部は例えばパッキン12によって真空シールされている。各絶縁部材11と真空容器2との間も、例えばパッキン13によって真空シールされている。なお、絶縁部材11の材質は、例えば、アルミナ等のセラミックス、石英、又はポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等のエンジニアリングプラスチック等である。 The vicinity of both ends of the antenna 3 penetrates the side walls facing each other of the vacuum vessel 2. Insulating members 11 are provided at portions that allow both ends of the antenna 3 to penetrate the outside of the vacuum vessel 2. Both ends of the antenna 3 penetrate each of the insulating members 11, and the penetrating portions are vacuum-sealed by, for example, packing 12. The space between each insulating member 11 and the vacuum container 2 is also vacuum-sealed by, for example, packing 13. The material of the insulating member 11 is, for example, ceramics such as alumina, quartz, or engineering plastics such as polyphenylene sulfide (PPS) and polyetheretherketone (PEEK).

さらに、アンテナ3において、真空容器2内に位置する部分は、直管状の絶縁カバー10により覆われている。この絶縁カバー10の両端部は絶縁部材11によって支持されている。なお、絶縁カバー10の両端部と絶縁部材11間はシールしなくても良い。絶縁カバー10内の空間にガス7が入っても、当該空間は小さくて電子の移動距離が短いので、通常は空間にプラズマPは発生しないからである。なお、絶縁カバー10の材質は、例えば、石英、アルミナ、フッ素樹脂、窒化シリコン、炭化シリコン、シリコン等である。 Further, in the antenna 3, a portion located inside the vacuum container 2 is covered with a straight tubular insulating cover 10. Both ends of the insulating cover 10 are supported by the insulating member 11. It is not necessary to seal between both ends of the insulating cover 10 and the insulating member 11. This is because even if the gas 7 enters the space inside the insulating cover 10, plasma P is not normally generated in the space because the space is small and the moving distance of electrons is short. The material of the insulating cover 10 is, for example, quartz, alumina, fluororesin, silicon nitride, silicon carbide, silicon, or the like.

絶縁カバー10を設けることによって、プラズマP中の荷電粒子がアンテナ3を構成する金属パイプ31に入射するのを抑制することができるので、金属パイプ31に荷電粒子(主として電子)が入射することによるプラズマ電位の上昇を抑制することができると共に、金属パイプ31が荷電粒子(主としてイオン)によってスパッタされてプラズマPおよび基板Wに対して金属汚染(メタルコンタミネーション)が生じるのを抑制することができる。 By providing the insulating cover 10, it is possible to suppress the incident of charged particles in the plasma P on the metal pipe 31 constituting the antenna 3, so that the charged particles (mainly electrons) are incident on the metal pipe 31. The increase in plasma potential can be suppressed, and the metal pipe 31 can be sputtered by charged particles (mainly ions) to suppress metal contamination (metal contamination) on the plasma P and the substrate W. ..

アンテナ3の一端部である給電端部3aには、整合回路41を介して高周波電源4が接続されており、他端部である終端部3bは直接接地されている。なお、給電端部3aは、コンデンサ又はコイル等を介して高周波電源4に接続しても良いし、終端部3bは、コンデンサ又はコイル等を介して接地しても良い。 A high-frequency power supply 4 is connected to the feeding end 3a, which is one end of the antenna 3, via a matching circuit 41, and the end 3b, which is the other end, is directly grounded. The feeding end portion 3a may be connected to the high frequency power supply 4 via a capacitor, a coil, or the like, and the end portion 3b may be grounded via a capacitor, a coil, or the like.

上記構成によって、高周波電源4から、整合回路41を介して、アンテナ3に高周波電流IRを流すことができる。高周波電流IRの周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。 With the above configuration, a high frequency current IR can be passed from the high frequency power supply 4 to the antenna 3 via the matching circuit 41. The frequency of the high frequency current IR is, for example, 13.56 MHz, which is general, but is not limited to this.

アンテナ3は、内部に冷却液CLが流通する流路を有する中空構造のものである。なお、冷却液CLは、真空容器2の外部に設けられた循環流路14によりアンテナ3を流通するものであり、前記循環流路14には、冷却液CLを一定温度に調整するための熱交換器などの温調機構141と、循環流路14において冷却液CLを循環させるためのポンプなどの循環機構142とが設けられている。冷却液CLとしては、電気絶縁の観点から、高抵抗の水が好ましく、例えば純水またはそれに近い水が好ましい。その他、例えばフッ素系不活性液体などの水以外の液冷媒を用いても良い。 The antenna 3 has a hollow structure having a flow path through which the coolant CL flows. The coolant CL circulates the antenna 3 through a circulation flow path 14 provided outside the vacuum vessel 2, and the circulation flow path 14 has heat for adjusting the coolant CL to a constant temperature. A temperature control mechanism 141 such as an exchanger and a circulation mechanism 142 such as a pump for circulating the coolant CL in the circulation flow path 14 are provided. As the coolant CL, water having high resistance is preferable from the viewpoint of electrical insulation, and for example, pure water or water close to it is preferable. In addition, a liquid refrigerant other than water, such as a fluorine-based inert liquid, may be used.

具体的にアンテナ3は、図2に示すように、少なくとも2つの管状をなす金属製の導体要素31(以下、「金属パイプ31」という。)と、互いに隣り合う金属パイプ31の間に設けられて、それら金属パイプ31を絶縁する管状の絶縁要素32(以下、「絶縁パイプ32」という。)と、互いに隣り合う金属パイプ31と電気的に直列接続された容量素子であるコンデンサ33とを備えている。 Specifically, as shown in FIG. 2, the antenna 3 is provided between at least two tubular metal conductor elements 31 (hereinafter referred to as “metal pipe 31”) and metal pipes 31 adjacent to each other. A tubular insulating element 32 (hereinafter referred to as “insulated pipe 32”) that insulates the metal pipes 31 and a capacitor 33 that is a capacitive element electrically connected in series with the metal pipes 31 adjacent to each other are provided. ing.

本実施形態では金属パイプ31の数は2つであり、絶縁パイプ32及びコンデンサ33の数は各1つである。以下の説明において、一方の金属パイプ31を「第1の金属パイプ31A」、他方の金属パイプを「第2の金属パイプ31B」ともいう。なお、アンテナ3は、3つ以上の金属パイプ31を有する構成であってもしても良く、この場合、絶縁パイプ32及びコンデンサ33の数はいずれも金属パイプ31の数よりも1つ少ないものになる。 In this embodiment, the number of metal pipes 31 is two, and the number of insulating pipes 32 and capacitors 33 is one each. In the following description, one metal pipe 31 is also referred to as a "first metal pipe 31A", and the other metal pipe is also referred to as a "second metal pipe 31B". The antenna 3 may be configured to have three or more metal pipes 31, in which case the number of insulating pipes 32 and capacitors 33 is one less than the number of metal pipes 31. Become.

金属パイプ31は、内部に冷却液CLが流れる直線状の流路31xが形成された直管状をなすものである。そして、金属パイプ31の少なくとも長手方向一端部の外周部には、雄ねじ部31aが形成されている。なお、複数の金属パイプ31を接続する構成との部品の共通化を図るべく、金属パイプ31の長手方向両端部に雄ねじ部31aを形成して互換性を持たせておくことが望ましい。金属パイプ31の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。 The metal pipe 31 has a straight tubular shape in which a linear flow path 31x through which the coolant CL flows is formed. A male screw portion 31a is formed on the outer peripheral portion of at least one end portion in the longitudinal direction of the metal pipe 31. It is desirable to form male threaded portions 31a at both ends in the longitudinal direction of the metal pipe 31 so as to have compatibility in order to share the parts with the configuration in which the plurality of metal pipes 31 are connected. The material of the metal pipe 31 is, for example, copper, aluminum, alloys thereof, stainless steel, or the like.

絶縁パイプ32は、内部に冷却液CLが流れる直線状の流路32xが形成された直管状をなすものである。そして、絶縁パイプ32の内周面には、金属パイプ31の雄ねじ部31aと螺合して接続される雌ねじ部32aが形成されている。また、絶縁パイプ32の内壁には、それぞれの雌ねじ部32aよりも軸方向中央側に、コンデンサ33を構成する一対の電極33A、33Bを嵌合させるための凹部32bが周方向全体に亘って形成されている。本実施形態の絶縁パイプ32は、単一の部材から形成しているが、複数の部材を接合して形成しても良い。なお、絶縁パイプ32の材質は、例えば、アルミナ、フッ素樹脂、ポリエチレン(PE)、エンジニアリングプラスチック(例えばポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)など)等である。 The insulating pipe 32 has a straight tubular shape in which a linear flow path 32x through which the coolant CL flows is formed. An internal threaded portion 32a that is screwed and connected to the male threaded portion 31a of the metal pipe 31 is formed on the inner peripheral surface of the insulating pipe 32. Further, on the inner wall of the insulating pipe 32, recesses 32b for fitting the pair of electrodes 33A and 33B constituting the capacitor 33 are formed on the central side in the axial direction from the respective female threaded portions 32a over the entire circumferential direction. Has been done. Although the insulating pipe 32 of the present embodiment is formed from a single member, it may be formed by joining a plurality of members. The material of the insulating pipe 32 is, for example, alumina, fluororesin, polyethylene (PE), engineering plastic (for example, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), etc.) and the like.

コンデンサ33は、絶縁パイプ32の内部に設けられており、具体的には、絶縁パイプ32の冷却液CLが流れる流路32xの内部に設けられている。 The capacitor 33 is provided inside the insulating pipe 32, and specifically, is provided inside the flow path 32x through which the coolant CL of the insulating pipe 32 flows.

具体的にコンデンサ33は、互いに隣り合う金属パイプ31の一方(第1の金属パイプ31A)と電気的に接続された第1の電極33Aと、互いに隣り合う金属パイプ31の他方(第2の金属パイプ31B)と電気的に接続されるとともに、第1の電極33Aに対向して配置された第2の電極33Bとを備えており、第1の電極33A及び第2の電極33Bの間の空間を冷却液CLが満たすように構成されている。つまり、この第1の電極33A及び第2の電極33Bの間の空間を流れる冷却液CLが、コンデンサ33を構成する誘電体となる。 Specifically, the capacitor 33 has a first electrode 33A electrically connected to one of the metal pipes 31 adjacent to each other (first metal pipe 31A) and the other of the metal pipes 31 adjacent to each other (second metal). It is electrically connected to the pipe 31B) and has a second electrode 33B arranged so as to face the first electrode 33A, and is provided with a space between the first electrode 33A and the second electrode 33B. Is configured to be filled with the coolant CL. That is, the coolant CL flowing in the space between the first electrode 33A and the second electrode 33B becomes the dielectric constituting the capacitor 33.

各電極33A、33Bは、概略回転体形状をなすとともに、その中心軸に沿って中央部に主流路33xが形成されている。具体的に各電極33A、33Bは、金属パイプ31における絶縁パイプ32側の端部に電気的に接触するフランジ部331と、当該フランジ部331から絶縁パイプ32側に延出した延出部332とを有している。各電極33A、33Bは、フランジ部331及び延出部332を単一の部材から形成しても良いし、別部品により形成してそれらを接合しても良い。電極33A、33Bの材質は、例えば、アルミニウム、銅、これらの合金等である。 Each of the electrodes 33A and 33B has a substantially rotating body shape, and a main flow path 33x is formed in the central portion along the central axis thereof. Specifically, the electrodes 33A and 33B have a flange portion 331 that electrically contacts the end portion of the metal pipe 31 on the insulating pipe 32 side, and an extension portion 332 extending from the flange portion 331 to the insulating pipe 32 side. have. Each of the electrodes 33A and 33B may have a flange portion 331 and an extension portion 332 formed of a single member, or may be formed of separate parts and joined to each other. The materials of the electrodes 33A and 33B are, for example, aluminum, copper, alloys thereof and the like.

フランジ部331は、金属パイプ31における絶縁パイプ32側の端部に周方向全体に亘って接触している。具体的には、フランジ部331の軸方向端面は、金属パイプ31の端部に形成された円筒状の接触部311の先端面に周方向全体に亘って接触している。 The flange portion 331 is in contact with the end portion of the metal pipe 31 on the insulating pipe 32 side over the entire circumferential direction. Specifically, the axial end surface of the flange portion 331 is in contact with the tip surface of the cylindrical contact portion 311 formed at the end portion of the metal pipe 31 over the entire circumferential direction.

延出部332は、円筒形状をなすものであり、その内部に主流路33xが形成されている。第1の電極33Aの延出部332及び第2の電極33Bの延出部332は、互いに同軸上に配置されている。つまり、第1の電極33Aの延出部332の内部に第2の電極33Bの延出部332が挿し込まれた状態で設けられている。これにより、第1の電極33Aの延出部332と第2の電極33Bの延出部332との間に、流路方向に沿った円筒状の空間が形成される。 The extending portion 332 has a cylindrical shape, and a main flow path 33x is formed inside the extending portion 332. The extension portion 332 of the first electrode 33A and the extension portion 332 of the second electrode 33B are arranged coaxially with each other. That is, the extension portion 332 of the second electrode 33B is provided in a state of being inserted inside the extension portion 332 of the first electrode 33A. As a result, a cylindrical space along the flow path direction is formed between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B.

このように構成された各電極33A、33Bは、絶縁パイプ32の内壁に形成された凹部32bに嵌合されている。具体的には、絶縁パイプ32の軸方向一端側に形成された凹部32bに第1の電極33Aが嵌合され、絶縁パイプ32の軸方向他端側に形成された凹部32bに第2の電極33Bが嵌合されている。このように各凹部32bに各電極33A、33Bを嵌合させることによって、第1の電極33Aの延出部332及び第2の電極33Bの延出部332は、互いに同軸上に配置される。また、各凹部32bの軸方向外側を向く面に各電極33A、33Bのフランジ部331の端面が接触することによって、第1の電極33Aの延出部332に対する第2の電極33Bの延出部332の挿入寸法が規定される。 Each of the electrodes 33A and 33B configured in this way is fitted in the recess 32b formed in the inner wall of the insulating pipe 32. Specifically, the first electrode 33A is fitted into the recess 32b formed on one end side in the axial direction of the insulating pipe 32, and the second electrode is fitted in the recess 32b formed on the other end side in the axial direction of the insulating pipe 32. 33B is fitted. By fitting the electrodes 33A and 33B into the recesses 32b in this way, the extension portion 332 of the first electrode 33A and the extension portion 332 of the second electrode 33B are arranged coaxially with each other. Further, when the end faces of the flange portions 331 of the electrodes 33A and 33B come into contact with the surfaces of the recesses 32b facing outward in the axial direction, the extending portion of the second electrode 33B with respect to the extending portion 332 of the first electrode 33A. The insertion dimension of 332 is specified.

また、絶縁パイプ32の各凹部32bに各電極33A、33Bを嵌合させるとともに、当該絶縁パイプ32の雌ねじ部32aに金属パイプ31の雄ねじ部31aを螺合させることによって、金属パイプ31の接触部311の先端面が電極33A、33Bのフランジ部331に接触して各電極33A、33Bが、絶縁パイプ32と金属パイプ31との間に挟まれて固定される。このように本実施形態のアンテナ3は、金属パイプ31、絶縁パイプ32、第1の電極33A及び第2の電極33Bが同軸上に配置された構造となる。 Further, the electrodes 33A and 33B are fitted into the recesses 32b of the insulating pipe 32, and the male threaded portion 31a of the metal pipe 31 is screwed into the female threaded portion 32a of the insulating pipe 32 to form the contact portion of the metal pipe 31. The tip surface of 311 comes into contact with the flange portions 331 of the electrodes 33A and 33B, and the electrodes 33A and 33B are sandwiched and fixed between the insulating pipe 32 and the metal pipe 31. As described above, the antenna 3 of the present embodiment has a structure in which the metal pipe 31, the insulating pipe 32, the first electrode 33A, and the second electrode 33B are coaxially arranged.

この構成において、第1の金属パイプ31Aから冷却液CLが流れてくると、冷却液CLは、第1の電極33Aの主流路33xを通じて第2の電極33B側に流れる。第2の電極33B側に流れた冷却液CLは、第2の電極33Bの主流路33xを通じて第2の金属パイプ31Bに流れる。このとき、第1の電極33Aの延出部332と第2の電極33Bの延出部332との間の円筒状の空間が冷却液CLに満たされて、当該冷却液CLが誘電体となりコンデンサ33が構成される。 In this configuration, when the coolant CL flows from the first metal pipe 31A, the coolant CL flows to the second electrode 33B side through the main flow path 33x of the first electrode 33A. The coolant CL that has flowed to the second electrode 33B side flows to the second metal pipe 31B through the main flow path 33x of the second electrode 33B. At this time, the cylindrical space between the extending portion 332 of the first electrode 33A and the extending portion 332 of the second electrode 33B is filled with the coolant CL, and the coolant CL becomes a dielectric and a capacitor. 33 is configured.

さらに本実施形態では、金属パイプ31及び絶縁パイプ32の接続部が、真空及び冷却液CLに対するシール構造を有している。このシール構造は、雄ねじ部31aの基端部に設けられたパッキン等のシール部材15により実現されているが、例えば管用テーパねじ構造を用いても良い。 Further, in the present embodiment, the connection portion between the metal pipe 31 and the insulating pipe 32 has a sealing structure against the vacuum and the coolant CL. This seal structure is realized by a seal member 15 such as a packing provided at the base end portion of the male screw portion 31a, but for example, a taper screw structure for pipes may be used.

上述した構成により、金属パイプ31及び絶縁パイプ32の間のシール構造、金属パイプ31と各電極33A、33Bとの電気的接触が、雄ねじ部31a及び雌ねじ部32aの締結と共に行われるので、組み立て作業が非常に簡便となる。 With the above-described configuration, the sealing structure between the metal pipe 31 and the insulating pipe 32, and the electrical contact between the metal pipe 31 and the electrodes 33A and 33B are performed together with the fastening of the male threaded portion 31a and the female threaded portion 32a. Is very convenient.

然して、本実施形態のアンテナ3は、金属パイプ31又は絶縁パイプ32の一方に設けられた外向き面34と、金属パイプ31又は絶縁パイプ32の他方に設けられて、外向き面34と接触する内向き面35とを備えており、これらの外向き面34及び内向き面35がアンテナ3の撓みを抑制する撓み抑制機構を構成している。 Therefore, the antenna 3 of the present embodiment is provided on one of the metal pipe 31 or the insulating pipe 32 and has an outward surface 34, and is provided on the other side of the metal pipe 31 or the insulating pipe 32 and comes into contact with the outward surface 34. An inward facing surface 35 is provided, and the outward facing surface 34 and the inward facing surface 35 form a bending suppressing mechanism for suppressing the bending of the antenna 3.

まず、内向き面35について説明すると、本実施形態の内向き面35は、絶縁パイプ32の内周面に設けられており、雌ねじ部32aとは異なる位置に形成されている。より具体的に説明すると、絶縁パイプ32は、雌ねじ部32aよりも軸方向外側において内壁が座繰られた座繰り部321を有しており、この座繰り部321の内周面が内向き面35である。 First, the inward facing surface 35 will be described. The inward facing surface 35 of the present embodiment is provided on the inner peripheral surface of the insulating pipe 32, and is formed at a position different from that of the female threaded portion 32a. More specifically, the insulating pipe 32 has a countersunk portion 321 whose inner wall is countersunk on the outer side in the axial direction from the female screw portion 32a, and the inner peripheral surface of the countersunk portion 321 is an inward facing surface. 35.

座繰り部321は、絶縁パイプ32の軸方向両端部それぞれに形成されており、具体的には両端開口それぞれから上述したシール部材15の手前まで座繰られている。つまり、座繰り部321は、絶縁パイプ32の内周面において雌ねじ部32aやシール部材15が設けられた部分よりも内径が大きく、ここでは絶縁パイプ32のうち最も内径が大きい部分である。内向き面35は、この座繰り部321の内周面の全周に亘って形成されている。つまり、この内向き面35は、絶縁パイプ32の内周面において、雌ねじ部32aやシール部材15が設けられている面とは異なる面であり、ここでは、絶縁パイプ32の軸方向に沿うように(軸方向と実質的に平行に)延びている。 The countersunk portion 321 is formed at each of both ends in the axial direction of the insulating pipe 32, and specifically, is countersunk from each of the openings at both ends to the front of the seal member 15 described above. That is, the countersunk portion 321 has a larger inner diameter than the portion provided with the female screw portion 32a and the seal member 15 on the inner peripheral surface of the insulating pipe 32, and here, the inner diameter is the largest portion of the insulating pipe 32. The inward facing surface 35 is formed over the entire circumference of the inner peripheral surface of the counterbore portion 321. That is, the inward facing surface 35 is a surface on the inner peripheral surface of the insulating pipe 32 that is different from the surface on which the female thread portion 32a and the sealing member 15 are provided, and here, the surface is along the axial direction of the insulating pipe 32. Extends to (substantially parallel to the axial direction).

一方、本実施形態の外向き面34は、金属パイプ31の外周面に設けられており、雄ねじ部31aとは異なる位置に形成されている。より具体的に説明すると、金属パイプ31は、雄ねじ部31aよりも軸方向中央側に雄ねじ部31aよりも外径が大きく、上述した座繰り部321に嵌合する大径部312を有しており、この大径部312の外周面が外向き面34である。 On the other hand, the outward surface 34 of the present embodiment is provided on the outer peripheral surface of the metal pipe 31, and is formed at a position different from that of the male screw portion 31a. More specifically, the metal pipe 31 has a larger outer diameter than the male threaded portion 31a on the central side in the axial direction than the male threaded portion 31a, and has a large diameter portion 312 fitted to the countersunk portion 321 described above. The outer peripheral surface of the large diameter portion 312 is the outward surface 34.

大径部312は、金属パイプ31のシール部材15よりも軸方向中央側に形成されている。つまり、大径部312は、金属パイプ31の外周面において雄ねじ部31aやシール部材15が設けられた部分よりも外径が大きく、ここでは金属パイプ31のうち最も外径が大きい部分である。具体的に大径部312の外径は座繰り部321の内径と等しく、これにより大径部312及び座繰り部321はインロー構造によりガタなく嵌め合わされている。外向き面34は、この大径部312において座繰り部321に嵌合している部分の外周面、言い換えれば大径部312の外周面において座繰り部321の内周面に対向する部分である。つまり、この外向き面34は、金属パイプ31の外周面において、雄ねじ部31aやシール部材15が設けられている面とは異なる面であり、ここでは、金属パイプ31の軸方向に沿うように(軸方向と実質的に平行に)延びている。 The large diameter portion 312 is formed on the central side in the axial direction with respect to the seal member 15 of the metal pipe 31. That is, the large diameter portion 312 has a larger outer diameter than the portion provided with the male screw portion 31a and the seal member 15 on the outer peripheral surface of the metal pipe 31, and here, the outer diameter is the largest portion of the metal pipe 31. Specifically, the outer diameter of the large diameter portion 312 is equal to the inner diameter of the counterbore portion 321 so that the large diameter portion 312 and the counterbore portion 321 are fitted together without play due to the inlay structure. The outward surface 34 is an outer peripheral surface of the portion of the large diameter portion 312 that is fitted to the counterbore portion 321, in other words, a portion of the outer peripheral surface of the large diameter portion 312 that faces the inner peripheral surface of the counterbore portion 321. be. That is, the outward surface 34 is a surface different from the surface on which the male screw portion 31a and the seal member 15 are provided on the outer peripheral surface of the metal pipe 31, and here, the surface is along the axial direction of the metal pipe 31. It extends (substantially parallel to the axial direction).

さらに本実施形態のアンテナ3は、図2及び図3に示すように、ねじ締結されている金属パイプ31及び絶縁パイプ32が緩むことを抑制する緩み抑制機構5を備えている。ただし、本発明に係るアンテナ3としては、必ずしも緩み抑制機構5を備えている必要はない。 Further, as shown in FIGS. 2 and 3, the antenna 3 of the present embodiment includes a loosening suppressing mechanism 5 for suppressing loosening of the metal pipe 31 and the insulating pipe 32 screw-fastened. However, the antenna 3 according to the present invention does not necessarily have to be provided with the loosening suppressing mechanism 5.

緩み抑制機構5は、金属パイプ31に外嵌された環状止め具51を用いて構成されている。この環状止め具51は、金属パイプ31の軸周りに回転自在に且つ軸方向にスライド可能に設けられたものであり、絶縁パイプ32に対向する端面には、絶縁パイプ32に向かって突出する1又は複数の凸部52が設けられている。なお、凸部52の個数、形状、配置などは適宜変更して構わない。 The loosening suppressing mechanism 5 is configured by using an annular stopper 51 externally fitted to the metal pipe 31. The annular stopper 51 is provided so as to be rotatable around the axis of the metal pipe 31 and slidable in the axial direction, and the end surface facing the insulating pipe 32 projects toward the insulating pipe 321. Alternatively, a plurality of convex portions 52 are provided. The number, shape, arrangement, etc. of the convex portions 52 may be appropriately changed.

一方、絶縁パイプ32における環状止め具51に対向する端面には、軸方向中央側に向かって切り欠かれた凹部53が形成されている。具体的に凹部53は、凸部52と対応する形状であり、凸部52と対応する1又は複数の位置に形成されている。 On the other hand, a recess 53 notched toward the central side in the axial direction is formed on the end surface of the insulating pipe 32 facing the annular stopper 51. Specifically, the concave portion 53 has a shape corresponding to the convex portion 52, and is formed at one or a plurality of positions corresponding to the convex portion 52.

そして、これらの凸部52及び凹部53が、上述した緩み抑制機構5を構成しており、凸部52が凹部53に係合することで、金属パイプ31及び絶縁パイプ32の緩みが抑制される。 The convex portion 52 and the concave portion 53 constitute the loosening suppressing mechanism 5 described above, and the convex portion 52 engages with the concave portion 53 to suppress loosening of the metal pipe 31 and the insulating pipe 32. ..

ここでは、金属パイプ31と絶縁パイプ32とがねじ締結されている状態において、金属パイプ31の外周面における絶縁パイプ32よりも軸方向中央側に第2の雄ねじ部31bが形成されており、上述した緩み抑制機構5は、この第2の雄ねじ部31bに螺合するナット54をさらに備えている。具体的にこのナット54は、絶縁パイプ32より外径が大きいものであり、上述した環状止め具51よりも軸方向中央側に設けられている。そして、上述した凸部52を凹部53に係合させた状態で、ナット54を回して軸方向外側に移動させ、ナット54によって環状止め具51を絶縁パイプ32の端面に押圧することで、金属パイプ31及び絶縁パイプ32の緩みを抑えることができる。 Here, in a state where the metal pipe 31 and the insulating pipe 32 are screwed together, the second male threaded portion 31b is formed on the central side in the axial direction with respect to the insulating pipe 32 on the outer peripheral surface of the metal pipe 31. The loosening suppressing mechanism 5 is further provided with a nut 54 to be screwed into the second male threaded portion 31b. Specifically, the nut 54 has a larger outer diameter than the insulating pipe 32, and is provided on the central side in the axial direction with respect to the above-mentioned annular stopper 51. Then, in a state where the above-mentioned convex portion 52 is engaged with the concave portion 53, the nut 54 is turned to move outward in the axial direction, and the annular stopper 51 is pressed against the end surface of the insulating pipe 32 by the nut 54, whereby the metal is formed. Looseness of the pipe 31 and the insulating pipe 32 can be suppressed.

<本実施形態の効果>
このように構成した本実施形態のプラズマ処理装置100によれば、金属パイプ31と絶縁パイプ32をねじ締結すると、金属パイプ31に設けられた外向き面34と、絶縁パイプ32に設けられた内向き面35とが互いに接触するので、アンテナ3を長くする場合でも撓みを抑制することができる。これにより、アンテナ3の長手方向に沿って均一なプラズマを発生させることができるので、膜の厚み等の品質を担保することができ、信頼性の向上を図れる。
<Effect of this embodiment>
According to the plasma processing apparatus 100 of the present embodiment configured as described above, when the metal pipe 31 and the insulating pipe 32 are screwed together, the outward surface 34 provided on the metal pipe 31 and the inner side provided on the insulating pipe 32 are provided. Since the facing surfaces 35 are in contact with each other, bending can be suppressed even when the antenna 3 is lengthened. As a result, uniform plasma can be generated along the longitudinal direction of the antenna 3, so that quality such as film thickness can be ensured and reliability can be improved.

また、大径部312の外周面を外向き面34とするとともに、大径部312が嵌合する座繰り部321の内周面を内向き面35としており、しかも大径部312の外周面の全周が外向き面34であり、座繰り部321の内周面の全周が内向き面35であるので、外向き面34と内向き面35との接触面積を大きくすることができ、アンテナ3の撓みをより抑えることができる。 Further, the outer peripheral surface of the large-diameter portion 312 is an outward surface 34, and the inner peripheral surface of the countersunk portion 321 into which the large-diameter portion 312 is fitted is an inward-facing surface 35, and the outer peripheral surface of the large-diameter portion 312. Since the entire circumference of is the outward surface 34 and the entire circumference of the inner peripheral surface of the counterbore portion 321 is the inward surface 35, the contact area between the outward surface 34 and the inward surface 35 can be increased. , The bending of the antenna 3 can be further suppressed.

さらに、外向き面34及び内向き面35とは異なる面であって、金属パイプ31及び絶縁パイプ32における互いに対向する対向面の間にシール部材15を介在させているので、外向き面34及び内向き面35との間に隙間やガタを生じさせることなく、シール性を担保することができる。 Further, since the sealing member 15 is interposed between the facing surfaces facing each other in the metal pipe 31 and the insulating pipe 32, which are different surfaces from the outward surface 34 and the inward surface 35, the outward surface 34 and the inward surface 35 The sealing property can be ensured without causing a gap or play with the inward facing surface 35.

加えて、環状止め具51の端面に設けられた凸部52を、絶縁パイプ32の端面に設けられた凹部53に係合させるとともに、環状止め具51をナット54によって絶縁パイプ32に押圧しているので、金属パイプ31と絶縁パイプ32とのねじ締結が緩むことを抑制することができる。 In addition, the convex portion 52 provided on the end surface of the annular stopper 51 is engaged with the concave portion 53 provided on the end surface of the insulating pipe 32, and the annular stopper 51 is pressed against the insulating pipe 32 by the nut 54. Therefore, it is possible to prevent the metal pipe 31 and the insulating pipe 32 from loosening the screw fastening.

さらに加えて、金属パイプ31に外嵌させたナット54の外径が絶縁パイプ32の外径よりも大きいので、仮にアンテナ3が撓んだとしても、ナット54が絶縁カバー10に接触して、絶縁パイプ32が絶縁カバー10に接触しないようにすることができる。これにより、絶縁パイプ32の熱損傷を防止することができる。また、絶縁パイプ32と絶縁カバー10の接触を防ぐことにより、絶縁パイプ32が絶縁カバー10に接触することによるコンデンサ33の誘電体となる冷却液CLの温度上昇を防止でき、その結果、冷却液CLの誘電率の変化を抑制することができる。 Furthermore, since the outer diameter of the nut 54 fitted to the metal pipe 31 is larger than the outer diameter of the insulating pipe 32, even if the antenna 3 bends, the nut 54 comes into contact with the insulating cover 10. The insulating pipe 32 can be prevented from coming into contact with the insulating cover 10. This makes it possible to prevent thermal damage to the insulating pipe 32. Further, by preventing the insulation pipe 32 from coming into contact with the insulation cover 10, it is possible to prevent the temperature of the coolant CL, which is the dielectric material of the capacitor 33, from rising due to the insulation pipe 32 coming into contact with the insulation cover 10, and as a result, the coolant can be prevented from rising. It is possible to suppress the change in the dielectric constant of CL.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.

例えば、前記実施形態では、金属パイプ31が外向き面34を有し、絶縁パイプ32が内向き面35を有していたが、図4に示すように、金属パイプ31が内向き面35を有し、絶縁パイプ32が外向き面34を有していても良い。
なおこの場合は、図4に示す構成のように、コンデンサ33が絶縁パイプ32の外側に設けられていても良い。
For example, in the above embodiment, the metal pipe 31 has an outward surface 34 and the insulating pipe 32 has an inward surface 35, but as shown in FIG. 4, the metal pipe 31 has an inward surface 35. The insulating pipe 32 may have an outward surface 34.
In this case, the capacitor 33 may be provided on the outside of the insulating pipe 32 as shown in FIG.

また、外向き面34は、前記実施形態では金属パイプ31における雄ねじ部31aよりも外径の大きい大径部312の外周面であったが、図5に示すように、金属パイプ31における雄ねじ部31aよりも軸方向外側に設けられた雄ねじ部31aよりも外径の小さい小径部314の外周面であっても良い。
この場合、絶縁パイプ32の座繰り部321は、雌ねじ部32aよりも軸方向中央側に設けられていれば良く、この座繰り部321の内周面を内向き面35とすれば良い。なお、ここでの座繰り部321には、上述した小径部314とともに電極33A、33Bのフランジ部331がインロー構造によりガタなく嵌め合わされている。
Further, the outward surface 34 was the outer peripheral surface of the large diameter portion 312 having a larger outer diameter than the male screw portion 31a in the metal pipe 31 in the above embodiment, but as shown in FIG. 5, the male screw portion in the metal pipe 31. It may be the outer peripheral surface of the small diameter portion 314 having an outer diameter smaller than that of the male screw portion 31a provided on the outer side in the axial direction from 31a.
In this case, the countersunk portion 321 of the insulating pipe 32 may be provided on the central side in the axial direction with respect to the female screw portion 32a, and the inner peripheral surface of the countersunk portion 321 may be an inward facing surface 35. The countersunk portion 321 here is fitted with the flange portions 331 of the electrodes 33A and 33B together with the small diameter portion 314 described above without play due to the inlay structure.

さらに、前記実施形態の外向き面34及び内向き面35は、金属パイプ31や絶縁パイプ32の軸方向に沿って延びていたが、図6に示すように、金属パイプ31や絶縁パイプ32の軸方向に対して傾いていても良い。 Further, the outward surface 34 and the inward surface 35 of the embodiment extend along the axial direction of the metal pipe 31 and the insulating pipe 32, but as shown in FIG. 6, the metal pipe 31 and the insulating pipe 32 It may be tilted with respect to the axial direction.

加えて、前記実施形態では、座繰り部321の内周面の全周が内向き面35であったが、例えば座繰り部321の内周面において周方向に沿って間欠的に内向き面35を設けるなど、必ずしも内周面の全周に亘って内向き面35を設ける必要はない。
外向き面34も同様に、例えば大径部312の外周面において周方向に沿って間欠的に設けるなど、必ずしも外周面の全周に亘って外向き面34を設ける必要はない。
In addition, in the above-described embodiment, the entire circumference of the inner peripheral surface of the countersunk portion 321 is an inward facing surface 35, but for example, the inner peripheral surface of the countersunk portion 321 is an intermittent inward facing surface along the circumferential direction. It is not always necessary to provide the inward facing surface 35 over the entire circumference of the inner peripheral surface, such as providing the 35.
Similarly, the outward surface 34 does not necessarily have to be provided over the entire circumference of the outer peripheral surface, for example, intermittently provided along the circumferential direction on the outer peripheral surface of the large diameter portion 312.

さらに加えて、外向き面34及び内向き面35は、例えば軸方向に沿ったねじ部31a、32aの両側など、軸方向の複数箇所に設けられていても良い。 Further, the outward surface 34 and the inward surface 35 may be provided at a plurality of positions in the axial direction, for example, on both sides of the screw portions 31a and 32a along the axial direction.

また、ねじ部31a、32aに関しては、金属パイプ31に雌ねじ部32aが設けられており、絶縁パイプ32に雄ねじ部31aが設けられていても良い。 Further, regarding the threaded portions 31a and 32a, the metal pipe 31 may be provided with the female threaded portion 32a, and the insulating pipe 32 may be provided with the male threaded portion 31a.

緩み抑制機構5に関しては、図7に示すように、絶縁パイプ32の環状止め具51に対向する端面に環状止め具51に向かって突出する凸部52が設けられており、環状止め具51の絶縁パイプ32に対向する端面に凸部52が係合する凹部53が設けられていても良い。
さらに、環状止め具51は、前記実施形態では金属パイプ31に外嵌されていたが、絶縁パイプ32に外嵌されていても良い。この場合のナット54の配置としては、絶縁パイプ32における環状止め具51よりも軸方向中央側に螺合されている態様が挙げられる。
As for the loosening suppressing mechanism 5, as shown in FIG. 7, a convex portion 52 projecting toward the annular stopper 51 is provided on the end surface of the insulating pipe 32 facing the annular stopper 51, and the annular stopper 51 is provided with a convex portion 52. A concave portion 53 with which the convex portion 52 is engaged may be provided on the end surface facing the insulating pipe 32.
Further, although the annular stopper 51 is externally fitted to the metal pipe 31 in the above embodiment, it may be externally fitted to the insulating pipe 32. As the arrangement of the nut 54 in this case, there is an embodiment in which the nut 54 is screwed toward the center side in the axial direction with respect to the annular stopper 51 in the insulating pipe 32.

加えて、環状止め具51を金属パイプ31に固定すべく、凹部53に凸部52が係合した状態において、環状止め具51と金属パイプ31とをポンチングにより固定しても良い。 In addition, in order to fix the annular stopper 51 to the metal pipe 31, the annular stopper 51 and the metal pipe 31 may be fixed by punching in a state where the convex portion 52 is engaged with the concave portion 53.

前記実施形態のプラズマ処理装置100ではアンテナ3が基板Wの処理室内に配置されたものであったが、図8に示すように、アンテナ3を処理室18外に配置したものであってもよい。この場合、複数のアンテナ3は、真空容器2内において誘電体窓19によって処理室18とは区画されたアンテナ室20に配置されている。なお、アンテナ室20は真空排気装置21によって真空排気される。このプラズマ処理装置100であれば、処理室18の圧力などの条件と、アンテナ室20の圧力などの条件とを個別に制御することができ、プラズマPの発生を効率的にできるとともに、基板Wの処理を効率的にできる。 In the plasma processing apparatus 100 of the above embodiment, the antenna 3 is arranged in the processing chamber of the substrate W, but as shown in FIG. 8, the antenna 3 may be arranged outside the processing chamber 18. .. In this case, the plurality of antennas 3 are arranged in the antenna chamber 20 separated from the processing chamber 18 by the dielectric window 19 in the vacuum vessel 2. The antenna chamber 20 is evacuated by the vacuum exhaust device 21. With this plasma processing apparatus 100, conditions such as the pressure of the processing chamber 18 and conditions such as the pressure of the antenna chamber 20 can be individually controlled, plasma P can be efficiently generated, and the substrate W can be used. Can be processed efficiently.

加えて、金属パイプ及び絶縁パイプは、1つの内部流路を有する管状をなすものであったが、2以上の内部流路を有するもの、或いは、分岐した内部流路を有するものであっても良い。また、金属パイプや絶縁パイプは中実のものであっても良い。 In addition, the metal pipe and the insulating pipe were tubular with one internal flow path, but may have two or more internal flow paths or a branched internal flow path. good. Further, the metal pipe and the insulating pipe may be solid.

前記実施形態の電極において延出部は、円筒状であったが、その他の角筒状であっても良いし、平板状又は湾曲又は屈曲した板状であっても良い。 In the electrode of the above embodiment, the extending portion has a cylindrical shape, but may be another square tubular shape, a flat plate shape, or a curved or bent plate shape.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

100・・・プラズマ処理装置
W ・・・基板
P ・・・誘導結合プラズマ
2 ・・・真空容器
3 ・・・アンテナ
31 ・・・金属パイプ(導体要素)
32 ・・・絶縁パイプ(絶縁要素)
32b・・・凹部
33 ・・・コンデンサ
33A・・・第1の電極
33B・・・第2の電極
331・・・フランジ部
332・・・延出部
34 ・・・外向き面
35 ・・・内向き面
312・・・大径部
321・・・座繰り部
5 ・・・緩み抑制機構
51 ・・・環状止め具
52 ・・・凸部
53 ・・・凹部
54 ・・・ナット
CL ・・・冷却液(液体の誘電体)
100 ... Plasma processing device W ... Substrate P ... Inductively coupled plasma 2 ... Vacuum container 3 ... Antenna 31 ... Metal pipe (conductor element)
32 ... Insulation pipe (insulation element)
32b ... Recessed portion 33 ... Condenser 33A ... First electrode 33B ... Second electrode 331 ... Flange portion 332 ... Extension portion 34 ... Outward surface 35 ... Inward facing surface 312 ・ ・ ・ Large diameter part 321 ・ ・ ・ Counterbore part 5 ・ ・ ・ Looseness suppressing mechanism 51 ・ ・ ・ Circular stopper 52 ・ ・ ・ Convex part 53 ・ ・ ・ Concave part 54 ・ ・ ・ Nut CL ・ ・・ Coolant (liquid dielectric)

Claims (9)

高周波電流が流されてプラズマを発生させるためのアンテナであって、一対の導体要素がこれらの間に介在する絶縁要素にねじ締結されてなり、
前記導体要素又は前記絶縁要素の一方は、ねじ部とは異なる位置に設けられた外向き面を有し、
前記導体要素又は前記絶縁要素の他方は、前記外向き面と接触する内向き面を有し
前記外向き面及び前記内向き面とは異なる面であって、前記導体要素及び前記絶縁要素における互いに対向する対向面の間にシール部材が介在しているアンテナ。
It is an antenna for generating plasma by passing a high frequency current, and a pair of conductor elements are screwed to an insulating element intervening between them.
One of the conductor element or the insulating element has an outward facing surface provided at a position different from that of the threaded portion.
The other of the conductor element or the insulating element has an inward surface in contact with the outward surface and has an inward surface.
An antenna that is different from the outward facing surface and the inward facing surface, and in which a sealing member is interposed between the facing surfaces of the conductor element and the insulating element that face each other .
前記外向き面は、前記導体要素又は前記絶縁要素の一方の外周面全周に亘って設けられており、
前記内向き面は、前記導体要素又は前記絶縁要素の他方の内周面全周に亘って設けられている、請求項1記載のアンテナ。
The outward surface is provided over the entire outer peripheral surface of one of the conductor element or the insulating element.
The antenna according to claim 1, wherein the inward facing surface is provided over the entire inner peripheral surface of the other inner peripheral surface of the conductor element or the insulating element.
前記導体要素又は前記絶縁要素の一方は、その外周面に雄ねじ部が形成されており、前記雄ねじ部よりも軸方向中央側に前記雄ねじ部よりも外径が大きい大径部が設けられたものであり、
前記導体要素又は前記絶縁要素の他方は、その内周面に雌ねじ部が形成されており、前記雌ねじ部よりも軸方向外側に前記雌ねじ部よりも内径が大きく、前記大径部に嵌合する座繰り部が設けられたものであり、
前記大径部の外周面が前記外向き面であり、
前記座繰り部の内周面が前記内向き面である、請求項1又は2記載のアンテナ。
One of the conductor element and the insulating element has a male screw portion formed on the outer peripheral surface thereof, and a large diameter portion having a larger outer diameter than the male screw portion is provided on the central side in the axial direction of the male screw portion. And
The other of the conductor element or the insulating element has a female threaded portion formed on the inner peripheral surface thereof, has an inner diameter larger than that of the female threaded portion on the outer side in the axial direction of the female threaded portion, and fits into the large diameter portion. It has a countersunk part,
The outer peripheral surface of the large diameter portion is the outward surface,
The antenna according to claim 1 or 2, wherein the inner peripheral surface of the counterbore portion is the inward facing surface.
前記導体要素又は前記絶縁要素の一方の端部に軸方向中央側に切り欠かれた凹部又は軸方向外側に突出した凸部が形成されており、
前記導体要素又は前記絶縁要素の他方の外周面に、前記凹部又は前記凸部に係合する凸部又は凹部が形成された環状止め具が設けられている、請求項1乃至のうち何れか一項に記載のアンテナ。
At one end of the conductor element or the insulating element, a concave portion notched in the central side in the axial direction or a convex portion protruding outward in the axial direction is formed.
Any of claims 1 to 3 , wherein an annular stopper having a concave portion or a convex portion or a concave portion engaged with the concave portion is provided on the other outer peripheral surface of the conductor element or the insulating element. The antenna described in item 1.
前記環状止め具が、前記導体要素の外周面に設けられており、その外周面における環状止め具よりも軸方向中央側に螺合されたナットにより軸方向外側に押圧されている、請求項記載のアンテナ。 4. The annular stopper is provided on the outer peripheral surface of the conductor element, and is pressed outward in the axial direction by a nut screwed toward the center side in the axial direction with respect to the annular stopper on the outer peripheral surface thereof. Described antenna. 前記一対の導体要素と電気的に直列に接続された容量素子をさらに備え、
前記容量素子が、
前記一対の導体要素の一方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の他方側に延びる第1の電極と、
前記一対の導体要素の他方と電気的に接続されるとともに、前記絶縁要素の内部を通って前記一対の導体要素の一方側に延び、前記第1の電極と対向する第2の電極と、
前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、
前記誘電体が液体である、請求項1乃至のうち何れか一項に記載のアンテナ。
Further comprising a capacitive element electrically connected in series with the pair of conductor elements
The capacitive element
A first electrode that is electrically connected to one of the pair of conductor elements and extends through the interior of the insulating element to the other side of the pair of conductor elements.
A second electrode that is electrically connected to the other of the pair of conductor elements and extends to one side of the pair of conductor elements through the interior of the insulating element and faces the first electrode.
It consists of a dielectric that fills the space between the first electrode and the second electrode.
The antenna according to any one of claims 1 to 5 , wherein the dielectric is a liquid.
前記一対の導体要素は、内部に冷却液が流れる流路を有しており、
前記冷却液が前記誘電体である、請求項記載のアンテナ。
The pair of conductor elements has a flow path through which the cooling liquid flows.
The antenna according to claim 6 , wherein the coolant is the dielectric.
請求項1乃至のうち何か一項に記載のアンテナと、
前記アンテナが内部又は外部に配置された真空容器と、
前記アンテナに高周波電流を印加する高周波電源とを具備する、プラズマ処理装置。
The antenna according to any one of claims 1 to 7 .
A vacuum container in which the antenna is arranged inside or outside,
A plasma processing apparatus including a high frequency power supply that applies a high frequency current to the antenna.
高周波電流が流されてプラズマを発生させるためのアンテナであって、一対の導体要素がこれらの間に介在する絶縁要素にねじ締結されてなり、 It is an antenna for generating plasma by passing a high frequency current, and a pair of conductor elements are screwed to an insulating element intervening between them.
前記導体要素又は前記絶縁要素の一方は、ねじ部とは異なる位置に設けられた外向き面を有し、 One of the conductor element and the insulating element has an outward facing surface provided at a position different from that of the threaded portion.
前記導体要素又は前記絶縁要素の他方は、前記外向き面と接触する内向き面を有し、 The other of the conductor element or the insulating element has an inward surface in contact with the outward surface and has an inward surface.
前記導体要素又は前記絶縁要素の一方の端部に軸方向中央側に切り欠かれた凹部又は軸方向外側に突出した凸部が形成されており、 At one end of the conductor element or the insulating element, a concave portion notched in the central side in the axial direction or a convex portion protruding outward in the axial direction is formed.
前記導体要素又は前記絶縁要素の他方の外周面に、前記凹部又は前記凸部に係合する凸部又は凹部が形成された環状止め具が設けられているアンテナ。 An antenna provided with an annular stopper having a convex portion or a concave portion formed on the outer peripheral surface of the conductor element or the other outer peripheral surface of the insulating element so as to engage with the concave portion or the convex portion.
JP2018046324A 2018-03-14 2018-03-14 Antenna and plasma processing equipment Active JP7025711B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018046324A JP7025711B2 (en) 2018-03-14 2018-03-14 Antenna and plasma processing equipment
PCT/JP2019/010311 WO2019177037A1 (en) 2018-03-14 2019-03-13 Antenna, and plasma processing device
TW108108686A TWI708526B (en) 2018-03-14 2019-03-14 Antenna and plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046324A JP7025711B2 (en) 2018-03-14 2018-03-14 Antenna and plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2019160593A JP2019160593A (en) 2019-09-19
JP7025711B2 true JP7025711B2 (en) 2022-02-25

Family

ID=67906817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046324A Active JP7025711B2 (en) 2018-03-14 2018-03-14 Antenna and plasma processing equipment

Country Status (3)

Country Link
JP (1) JP7025711B2 (en)
TW (1) TWI708526B (en)
WO (1) WO2019177037A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261484A1 (en) * 2020-06-23 2021-12-30 三国電子有限会社 Film formation device for performing sputtering film formation with inductively coupled plasma

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041087A2 (en) 2009-09-29 2011-04-07 Applied Materials, Inc. Inductively-coupled plasma (icp) resonant source element
JP2015508565A (en) 2012-01-27 2015-03-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Segmented antenna assembly
JP2016138598A (en) 2015-01-28 2016-08-04 日新電機株式会社 Pipe holding connection structure and high frequency antenna device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491780B (en) * 2014-10-01 2018-03-30 日新电机株式会社 The antenna of plasma generation and the plasma processing apparatus for possessing the antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041087A2 (en) 2009-09-29 2011-04-07 Applied Materials, Inc. Inductively-coupled plasma (icp) resonant source element
JP2015508565A (en) 2012-01-27 2015-03-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Segmented antenna assembly
JP2016138598A (en) 2015-01-28 2016-08-04 日新電機株式会社 Pipe holding connection structure and high frequency antenna device including the same

Also Published As

Publication number Publication date
TWI708526B (en) 2020-10-21
JP2019160593A (en) 2019-09-19
TW201946501A (en) 2019-12-01
WO2019177037A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
TWI580324B (en) Antenna for plasma generation and plasma processing device having the same
JP6471515B2 (en) Pipe holding connection structure and high-frequency antenna device including the same
US11217429B2 (en) Plasma processing device
JP6341329B1 (en) Antenna for generating plasma and plasma processing apparatus including the same
JP2017033788A (en) Plasma processing apparatus
CN110709533B (en) Sputtering device
KR102235221B1 (en) Plasma generating antenna, plasma processing apparatus and antenna structure including the same
JP6931461B2 (en) Antenna for plasma generation, plasma processing device and antenna structure equipped with it
JP2021088727A (en) Deposition method
JP6996096B2 (en) Plasma processing equipment
JP7025711B2 (en) Antenna and plasma processing equipment
JP7101335B2 (en) Antenna and plasma processing equipment
JP2017004602A (en) Antenna for plasma generation and plasma processing apparatus comprising the same
WO2018151114A1 (en) Antenna for generating plasma, and plasma treatment device and antenna structure provided with antenna for generating plasma
JP7028001B2 (en) Film formation method
JP2018156763A (en) Antenna for plasma generation and plasma processing apparatus including the same
WO2023139957A1 (en) Antenna, and plasma processing device
TWI708525B (en) Plasma processing device
JP2021018923A (en) Plasma processing apparatus
JP2021068600A (en) Antenna and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126

R150 Certificate of patent or registration of utility model

Ref document number: 7025711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150