WO2019176810A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2019176810A1
WO2019176810A1 PCT/JP2019/009485 JP2019009485W WO2019176810A1 WO 2019176810 A1 WO2019176810 A1 WO 2019176810A1 JP 2019009485 W JP2019009485 W JP 2019009485W WO 2019176810 A1 WO2019176810 A1 WO 2019176810A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cathode
axis direction
cathode region
width
Prior art date
Application number
PCT/JP2019/009485
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 達也
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112019000096.9T priority Critical patent/DE112019000096T5/en
Priority to CN201980004216.6A priority patent/CN111066149B/en
Priority to JP2020506487A priority patent/JP6954449B2/en
Priority to CN202410080118.3A priority patent/CN117936538A/en
Publication of WO2019176810A1 publication Critical patent/WO2019176810A1/en
Priority to US16/799,719 priority patent/US11476249B2/en
Priority to US17/961,546 priority patent/US20230029909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0761Vertical bipolar transistor in combination with diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 International Publication WO2016 / 129041
  • a semiconductor device in a first aspect of the present invention, includes a semiconductor substrate, a transistor portion provided on the semiconductor substrate, and a diode portion provided on the semiconductor substrate and arranged with the transistor portion along a predetermined arrangement direction.
  • the diode portion is in contact with a first conductivity type drift region provided on the semiconductor substrate, a second conductivity type base region provided above the drift region, and above the drift region, and a lower surface of the semiconductor substrate.
  • a plurality of second conductivity type floating regions arranged at least partially overlapping the first cathode region.
  • the first cathode region may protrude in the arrangement direction from the floating region in a top view of the semiconductor substrate.
  • the first cathode region and the second cathode region may be alternately arranged in the extending direction orthogonal to the arrangement direction in a top view of the semiconductor substrate.
  • a plurality of floating regions may be provided in the extending direction so as to overlap both the first cathode region and the second cathode region in a top view of the semiconductor substrate.
  • the floating region may protrude in the extending direction from the first cathode region in a top view of the semiconductor substrate.
  • the first cathode region may protrude in the extending direction perpendicular to the arrangement direction than the floating region.
  • the first cathode region and the second cathode region may be alternately arranged in the arrangement direction in a top view of the semiconductor substrate.
  • a plurality of floating regions may be provided in the arrangement direction so as to overlap both the first cathode region and the second cathode region in a top view of the semiconductor substrate.
  • the floating region may protrude in the arrangement direction from the first cathode region in a top view of the semiconductor substrate.
  • a semiconductor device in a second aspect of the present invention, includes a semiconductor substrate, a first conductivity type drift region provided on the semiconductor substrate, and a second conductivity type base region provided in contact with the upper surface of the semiconductor substrate and above the drift region.
  • the semiconductor device is in contact with the lower surface of the semiconductor substrate and is provided below the drift region, the first conductivity type first cathode region, is in contact with the lower surface of the semiconductor substrate and is provided below the drift region, and the first cathode
  • a second-conductivity-type second cathode region provided between the regions and a lower surface of the semiconductor substrate, provided below the drift region, and provided so as to sandwich the first and second cathode regions.
  • a third cathode region of the second conductivity type in a semiconductor substrate, a first conductivity type drift region provided on the semiconductor substrate, and a second conductivity type base region provided in contact with the upper surface of the semiconductor substrate and above the drift region.
  • the semiconductor device is in contact with the lower surface of the semiconductor substrate and is
  • the width of the third cathode region along the arrangement direction of the first cathode region and the second cathode region is larger than the width of the second cathode region along the arrangement direction.
  • the width of the second cathode region along the direction in which the third cathode region sandwiches the first cathode region and the second cathode region is larger than the width of the second cathode region along the arrangement direction.
  • the semiconductor device may include a plurality of second cathode regions and a plurality of third cathode regions. The plurality of second cathode regions and the plurality of third cathode regions may be in contact with each other in a top view of the semiconductor substrate.
  • a semiconductor device in a third aspect of the present invention, includes a semiconductor substrate and one or more diode portions provided on the semiconductor substrate.
  • the diode portion includes a first conductivity type drift region provided on the semiconductor substrate and a second conductivity type base region provided in contact with the upper surface of the semiconductor substrate and above the drift region.
  • the semiconductor device is in contact with the lower surface of the semiconductor substrate and is provided below the drift region and separated from each other, the first cathode region of the first conductivity type and the second cathode region having a conductivity type different from that of the first cathode region.
  • a plurality of second conductivity type floating regions which are provided separately from each other for each first cathode region and are arranged at least partially overlapping the first cathode region.
  • FIG. 3 is an enlarged view of a region C1 in FIG. 2b. It is a figure which shows an example of the aa 'cross section in FIG. 2b. It is a figure which shows an example of the bb 'cross section in FIG. 2b. It is another enlarged view of the area
  • FIG. 3b is an enlarged view of region B2 in FIG. 3a.
  • FIG. 3b is an enlarged view of a region C2 in FIG.
  • FIG. 3b It is a figure which shows an example of the cc 'cross section in FIG. 3b. It is a figure which shows an example of the dd 'cross section in FIG. 3b. It is another enlarged view of the area
  • FIG. 5b is a diagram showing an example of a gg ′ cross section in FIG. 5b. It is a figure which shows an example of the hh 'cross section in FIG. 5b. It is another enlarged view of the area
  • FIG. 6b is an enlarged view of region B5 in FIG. 6a.
  • FIG. 6b is an enlarged view of region C5 in FIG. 6b. It is a figure which shows an example of the ii 'cross section in FIG. 6b. It is a figure which shows an example of the j 'cross section in FIG. 6b. It is another enlarged view of the area
  • FIG. 7b is an enlarged view of a region C6 in FIG. 7b.
  • FIG. 8 is a diagram showing an example of a kk ′ cross section in FIG. 7b. It is a figure which shows an example of the mm 'cross section in FIG. 7b. It is another enlarged view of the area
  • FIG. 9b is an enlarged view of region C8 in FIG. 9b.
  • FIG. 9B is a diagram showing an example of a qq ′ cross section in FIG. 9B.
  • FIG. 9B is a diagram showing an example of an rr ′ cross section in FIG. 9B.
  • FIG. 10b is an enlarged view of region B9 in FIG. 10a.
  • FIG. 10b is a diagram showing an example of an ss ′ cross section in FIG. 10b.
  • FIG. 10B is a diagram showing an example of a tt ′ cross section in FIG. 10B. It is another enlarged view of the area
  • FIG. 12 is an enlarged view of a region C10 in FIG. 11b. It is a figure which shows an example of the uu 'cross section in FIG. 11b.
  • FIG. 12 is a diagram showing an example of a vv ′ cross section in FIG. 11b. It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment.
  • FIG. 12B is a diagram showing an example of a cross section aa-aa ′ in FIG. 12b.
  • FIG. 12B is a diagram showing an example of a bb-bb ′ cross section in FIG. 12b.
  • FIG. 14a It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. It is the enlarged view of the area
  • FIG. 16a It is a figure which shows an example of the upper surface of the semiconductor device 200 which concerns on this embodiment. It is an enlarged view of the area
  • FIG. 17a It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. It is the enlarged view of the area
  • one side in a direction parallel to the depth direction of the semiconductor substrate is referred to as “upper” and the other side is referred to as “lower”.
  • the upper surface is referred to as the upper surface and the other surface is referred to as the lower surface.
  • the directions of “up” and “down” are not limited to the direction of gravity or the direction of attachment to a substrate or the like when the semiconductor device is mounted.
  • a plane parallel to the upper surface of the semiconductor substrate is defined as an XY plane, and a depth direction of the semiconductor substrate is defined as a Z axis.
  • the first conductivity type is an N type and the second conductivity type is a P type.
  • the first conductivity type may be a P type and the second conductivity type may be an N type.
  • the conductivity types of the substrates, layers, regions, etc. in the respective embodiments have opposite polarities.
  • the doping concentration refers to the concentration of impurities that have become donors or acceptors.
  • the concentration difference between the donor and the acceptor may be referred to as a doping concentration.
  • the peak value may be used as the doping concentration in the doping region.
  • the doping concentration in the doped region is substantially uniform, the average doping concentration in the doping region may be used as the doping concentration.
  • FIG. 1 a is a diagram showing an example of the upper surface of the semiconductor device 100 according to the present embodiment.
  • the semiconductor device 100 of this example is a semiconductor chip including a transistor unit 70 and a diode unit 80.
  • the transistor unit 70 includes a transistor such as an IGBT.
  • the diode unit 80 includes a diode such as an FWD (Free Wheel Diode) provided adjacent to the transistor unit 70 on the upper surface of the semiconductor substrate 10.
  • FWD Free Wheel Diode
  • the semiconductor substrate 10 is provided with an active portion 72.
  • the active portion 72 is a region where a main current flows between the upper surface and the lower surface of the semiconductor substrate 10 when the semiconductor device 100 is controlled to be in an on state. That is, the current flows in the depth direction in the semiconductor substrate 10 from the upper surface to the lower surface or from the lower surface to the upper surface of the semiconductor substrate 10.
  • the transistor unit 70 and the diode unit 80 are referred to as an element unit or an element region, respectively.
  • the region where the element portion is provided may be the active portion 72.
  • the active portion 72 includes a region sandwiched between the element portions and provided with the gate metal layer 50.
  • the active portion 72 may be a region where the emitter electrode is provided in a top view of the semiconductor substrate 10 and a region sandwiched between the emitter electrodes.
  • an emitter electrode is provided above the transistor unit 70 and the diode unit 80.
  • a region between the active portion 72 and the outer peripheral edge 76 of the semiconductor substrate 10 is defined as an outer peripheral region 74.
  • the outer peripheral region 74 is provided so as to surround the active portion 72 when the semiconductor substrate 10 is viewed from above.
  • one or more metal pads for connecting the semiconductor device 100 and an external device with a wire or the like may be arranged.
  • the semiconductor device 100 may have an edge termination structure portion surrounding the active portion 72 in the outer peripheral region 74.
  • the edge termination structure part alleviates electric field concentration on the upper surface side of the semiconductor substrate 10.
  • the edge termination structure portion may have, for example, a guard ring, a field plate, a RESURF, and a combination of these.
  • the active unit 72 may be provided with a plurality of transistor units 70 and diode units 80.
  • the transistor unit 70 and the diode unit 80 may be alternately and periodically arranged in the XY plane.
  • FIG. 1a shows an example in which three transistor portions 70 are provided in the X axis direction and seven in the Y axis direction, and three diode portions 80 are provided in the X axis direction and six in the Y axis direction.
  • a gate metal layer 50 may be provided between the transistor portions 70 facing each other in the X-axis direction.
  • Each diode portion 80 is provided with a first conductivity type cathode region 81 on the lower surface of the semiconductor substrate 10.
  • the cathode region 81 may be provided in a range not in contact with the outer peripheral region 74 as shown in FIG.
  • the gate metal layer 50 may be provided so as to surround the active portion 72 when the semiconductor substrate 10 is viewed from above. Gate metal layer 50 is electrically connected to gate pad 55 provided in outer peripheral region 74. The gate metal layer 50 may be provided along the outer peripheral edge 76 of the semiconductor substrate 10. The gate pad 55 may be disposed between the outer peripheral end 76 of the semiconductor substrate 10 and the active portion 72 in the X-axis direction. A gate metal layer 50 may be provided extending in the Y-axis direction between the gate pad 55 and the outer peripheral end 76.
  • the temperature sensing unit 90 is provided above the active unit 72.
  • the temperature sensing part 90 may be provided in the center of the active part 72 when the semiconductor substrate 10 is viewed from above.
  • the temperature sensing unit 90 detects the temperature of the active unit 72.
  • the temperature sensing unit 90 may be a pn junction type temperature sensing diode formed of single crystal or polycrystalline silicon.
  • the temperature sense wiring 92 is provided above the active portion 72 when the semiconductor substrate 10 is viewed from above.
  • the temperature sense wiring 92 is connected to the temperature sense unit 90.
  • the temperature sensing wiring 92 extends in a predetermined direction (X-axis direction in this example) up to the outer peripheral region 74 and is connected to a temperature measurement pad 94 provided in the outer peripheral region 74.
  • the current flowing from the temperature measurement pad 94 flows to the temperature sense wiring 92 and the temperature sense unit 90.
  • the temperature sensing unit 90 is a pn junction type temperature sensing diode
  • at least two temperature sensing wirings 92 and temperature measuring pads 94 are provided, one of which is electrically connected to the anode terminal of the pn junction type temperature sensing diode.
  • the other is electrically connected to the cathode of the pn junction type temperature sensing diode.
  • the detection unit 96 is provided as a spare for the temperature sensing unit 90.
  • a current sensing portion 59 In the outer peripheral region 74, a current sensing portion 59, a current sensing pad 58, and a Kelvin pad 53 are provided.
  • the current sense unit 59 detects a current flowing through the gate pad 55.
  • the current sense pad 58 is a pad for measuring the current flowing through the current sense unit 59.
  • the Kelvin pad 53 is connected to an emitter electrode provided above the active portion 72 in a top view of the semiconductor substrate 10.
  • FIG. 1b is an enlarged view of region D in FIG. 1a.
  • the semiconductor device 100 of this example is provided inside the semiconductor substrate 10 and exposed on the upper surface of the semiconductor substrate 10.
  • the gate trench portion 40, the dummy trench portion 30, the P + type well region 11, and the N + type emitter region. 12 includes a P ⁇ type base region 14 and a P + type contact region 15.
  • the gate trench portion 40 or the dummy trench portion 30 may be simply referred to as a trench portion.
  • the semiconductor device 100 of this example includes an emitter electrode 52 and a gate metal layer 50 provided above the upper surface of the semiconductor substrate 10. The emitter electrode 52 and the gate metal layer 50 are provided separately from each other.
  • an interlayer insulating film is provided between the emitter electrode 52 and the gate metal layer 50 and the upper surface of the semiconductor substrate 10, it is omitted in FIG.
  • a contact hole 56, a contact hole 49, and a contact hole 54 are provided through the interlayer insulating film.
  • Gate metal layer 50 contacts gate runner 48 through contact hole 49.
  • the emitter electrode 52 is in contact with the emitter region 12, the contact region 15, and the base region 14 on the upper surface of the semiconductor substrate 10 through the contact hole 54.
  • the emitter electrode 52 is connected to the dummy conductive portion in the dummy trench portion 30 through the contact hole 56.
  • a connection portion 25 made of a conductive material such as polysilicon doped with impurities may be provided.
  • An insulating film such as an oxide film is provided between the connection portion 25 and the upper surface of the semiconductor substrate 10.
  • the gate runner 48 is formed of polysilicon doped with impurities.
  • the gate runner 48 is connected to the gate conductive portion in the gate trench portion 40 on the upper surface of the semiconductor substrate 10. Gate runner 48 is not connected to the dummy conductive portion in dummy trench portion 30.
  • the gate runner 48 of this example is formed from below the contact hole 49 to the tip 41 of the gate trench 40.
  • An insulating film such as an oxide film is provided between the gate runner 48 and the upper surface of the semiconductor substrate 10. At the distal end portion 41 of the gate trench portion 40, the gate conductive portion is exposed on the upper surface of the semiconductor substrate 10. A contact hole for connecting the gate conductive portion and the gate runner 48 is provided in the insulating film above the gate conductive portion.
  • FIG. 1b there is a portion where the emitter electrode 52 and the gate runner 48 overlap in plan view, but the emitter electrode 52 and the gate runner 48 are electrically insulated from each other with an insulating film (not shown) interposed therebetween.
  • the emitter electrode 52 and the gate metal layer 50 are formed of a material containing metal.
  • each electrode is formed of aluminum or an aluminum-silicon alloy.
  • Each electrode may have a barrier metal formed of titanium, a titanium compound, or the like below a region formed of aluminum or the like, and may have a plug formed of tungsten or the like in the contact hole.
  • the one or more gate trench portions 40 and the one or more dummy trench portions 30 are arranged on the upper surface of the semiconductor substrate 10 at predetermined intervals along a predetermined arrangement direction (Y-axis direction in this example). In the transistor portion 70 of this example, one or more gate trench portions 40 and one or more dummy trench portions 30 are alternately provided along the arrangement direction.
  • the gate trench portion 40 in this example includes two straight portions 39 extending linearly along a longitudinal direction (X-axis direction in this example) perpendicular to the arrangement direction, and a tip portion 41 connecting the two straight portions 39. May be included. It is preferable that at least a part of the tip portion 41 is provided in a curved shape on the upper surface of the semiconductor substrate 10.
  • the end portions 41 which are straight ends along the longitudinal direction, are connected to each other by the tip portion 41, so that electric field concentration at the end portions of the straight portions 39 can be reduced. it can.
  • each straight line portion 39 of the gate trench portion 40 is treated as one gate trench portion 40.
  • the at least one dummy trench portion 30 is provided between the respective straight portions 39 of the gate trench portion 40. Similar to the gate trench portion 40, these dummy trench portions 30 may have a straight portion 29 and a tip portion 31. In another example, the dummy trench part 30 has the straight part 29 and does not have to have the tip part 31. In the example illustrated in FIG. 1B, in the transistor portion 70, the two straight portions 29 of the dummy trench portion 30 are disposed between the two straight portions 39 of the gate trench portion 40.
  • a plurality of dummy trench portions 30 are arranged along the X-axis direction on the upper surface of the semiconductor substrate 10.
  • the shape of the dummy trench portion 30 in the diode portion 80 on the XY plane may be the same as that of the dummy trench portion 30 provided in the transistor portion 70.
  • the front end portion 31 and the straight portion 29 of the dummy trench portion 30 may have the same shape as the front end portion 41 and the straight portion 39 of the gate trench portion 40.
  • the dummy trench part 30 provided in the diode part 80 and the linear dummy trench part 30 provided in the transistor part 70 may have the same length in the Y-axis direction.
  • the emitter electrode 52 is provided above the gate trench portion 40, the dummy trench portion 30, the well region 11, the emitter region 12, the base region 14, and the contact region 15.
  • the well region 11 and the end of the contact hole 54 in the longitudinal direction on the side where the gate metal layer 50 is provided are separated from each other in the XY plane.
  • the diffusion depth of the well region 11 may be deeper than the depth of the gate trench portion 40 and the dummy trench portion 30. Partial regions on the gate metal layer 50 side of the gate trench portion 40 and the dummy trench portion 30 are provided in the well region 11. The bottom part in the Z-axis direction of the tip part 41 of the gate trench part 40 and the bottom part in the Z-axis direction of the tip part 31 of the dummy trench part 30 may be covered with the well region 11.
  • Each of the transistor portion 70 and the diode portion 80 is provided with one or more mesa portions 60 sandwiched between the trench portions.
  • the mesa portion 60 is a region on the upper surface side of the deepest bottom portion of the trench portion in the region of the semiconductor substrate 10 sandwiched between the trench portions.
  • the base region 14 is provided in the mesa portion 60 sandwiched between the trench portions.
  • the base region 14 is a second conductivity type (P ⁇ type) having a doping concentration lower than that of the well region 11.
  • a contact region 15 of the second conductivity type having a higher doping concentration than the base region 14 is provided on the upper surface of the base region 14 of the mesa portion 60.
  • the contact region 15 in this example is P + type.
  • the well region 11 may be provided away from the contact region 15 disposed at the end of the contact region 15 in the Y-axis direction in the direction of the gate metal layer 50.
  • the base region 14 is exposed between the well region 11 and the contact region 15.
  • the first conductivity type emitter region 12 having a higher doping concentration than the drift region provided in the semiconductor substrate 10 is selectively provided on the upper surface of the mesa unit 60-1.
  • the emitter region 12 of this example is N + type.
  • a portion in contact with the gate trench portion 40 functions as a channel portion.
  • an electron inversion layer is formed in a portion adjacent to the gate trench portion 40 in the base region 14 provided between the emitter region 12 and the drift region in the Z-axis direction.
  • a channel is formed.
  • base regions 14-e are disposed at both ends of each mesa 60 in the Y-axis direction.
  • the region adjacent to the base region 14-e on the center side of the mesa portion 60 is the contact region 15. Further, the region that is in contact with the base region 14-e on the opposite side to the contact region 15 is the well region 11.
  • the contact regions 15 and the emitter regions 12 are alternately arranged along the Y-axis direction in the region sandwiched between the base regions 14-e at both ends in the Y-axis direction. .
  • Each of the contact region 15 and the emitter region 12 is provided from one adjacent trench portion to the other trench portion.
  • one or more mesa portions 60-2 provided at the boundary with the diode portion 80 have a contact region 15 having a larger area than the contact region 15 of the mesa portion 60-1. Is provided.
  • the emitter region 12 may not be provided in the mesa unit 60-2.
  • the contact region 15 is provided in the entire region sandwiched between the base regions 14-e.
  • each mesa portion 60-1 of the transistor portion 70 of this example the contact hole 54 is provided above each of the contact region 15 and the emitter region 12.
  • the contact hole 54 in the mesa portion 60-2 is provided above the contact region 15.
  • the contact hole 54 is not provided in a region corresponding to the base region 14-e and the well region 11.
  • the contact hole 54 in each mesa unit 60 of the transistor unit 70 may have the same length in the Y-axis direction.
  • a cathode region 81 is provided in a region in contact with the lower surface of the semiconductor substrate 10.
  • the cathode region 81 may include an N + type first cathode region, a P + type second cathode region, and a P + third cathode region.
  • region 81 is provided is shown with the broken line.
  • a P + type collector region may be provided in a region where the cathode region 81 is not provided in a region in contact with the lower surface of the semiconductor substrate 10.
  • the transistor portion 70 is a region in which a mesa portion 60 provided with the contact region 15 and the emitter region 12 and a trench portion adjacent to the mesa portion 60 are provided in a region overlapping with the collector region in the Z-axis direction. It's okay. However, a contact region 15 may be provided in place of the emitter region 12 in the mesa unit 60-2 at the boundary with the diode unit 80.
  • the base region 14 is disposed on the upper surface of the mesa unit 60-3 of the diode unit 80.
  • the contact region 15 may be provided in a region adjacent to the base region 14-e.
  • a contact hole 54 terminates above the contact region 15.
  • the diode unit 80 includes five mesa units 60-3 and seven dummy trench units 30 sandwiching the mesa unit 60-3.
  • the number of dummy trench portions 30 is not limited to this. More mesa portions 60-3 and dummy trench portions 30 may be provided in the diode portion 80.
  • FIG. 2a is an enlarged view of region A in FIG. 1a.
  • the transistor unit 70 is provided adjacent to the diode unit 80 on both the Y axis direction positive side and the Y axis direction negative side of the diode unit 80.
  • the width WI is the width of the transistor unit 70 in the Y-axis direction.
  • the width WF is the width of the diode portion 80 in the Y-axis direction.
  • the width Wh is arranged on the X axis direction negative side with respect to the transistor unit 70 and the diode part 80 from the end of the well region 11 arranged on the X axis direction positive side with respect to the transistor part 70 and the diode part 80. This is the width of the portion up to the end of the well region 11.
  • the base region 14 is provided on the upper surface side of the semiconductor substrate 10 and the well region 11 is not provided.
  • Width WI may be larger than width WF.
  • the width WI may be not less than 2 times and not more than 5 times the width WF.
  • the width WI may be 1200 ⁇ m or more and 2000 ⁇ m or less.
  • the width WI is 1500 ⁇ m as an example.
  • the width WF may be 400 ⁇ m or more and 600 ⁇ m or less.
  • the width WF is 500 ⁇ m as an example.
  • the end S of the P + type well region 11 is provided on the positive side in the X-axis direction of the diode unit 80 and the transistor unit 70. Further, an end S ′ of the P + type well region 11 is provided on the negative side in the X-axis direction of the diode portion 80 and the transistor portion 70.
  • the well region 11 is provided outside the region where the transistor portions 70 and the diode portions 80 are alternately arranged. In other words, the well region 11 is not provided in the transistor portion 70 and the diode portion 80 from the end portion S.
  • the width Wh from the end S of the well region 11 on the X axis direction positive side to the end S ′ of the well region 11 on the X axis direction negative side may be larger than the width WI.
  • the width Wh may be not less than 1.5 times and not more than 3 times the width WI.
  • the width Wh may be not less than 3000 ⁇ m and not more than 3600 ⁇ m.
  • the width Wh may be 3100 ⁇ m as an example.
  • the cathode region 81 includes a first cathode region 82 and a second cathode region 83 as shown in FIG.
  • a plurality of first cathode regions 82 and second cathode regions 83 extending in the X-axis direction are provided separately from each other.
  • the first cathode regions 82 and the second cathode regions 83 are alternately arranged in the Y-axis direction when the semiconductor substrate 10 is viewed from above.
  • the first cathode region 82 is the first conductivity type.
  • the first cathode region 82 of this example is an N + type as an example.
  • the second cathode region 83 has a conductivity type different from that of the first cathode region 82.
  • the second cathode region 83 of this example is a P + type as an example.
  • configurations other than the first cathode region 82 and the second cathode region 83 and the floating region 17 provided in the diode unit 80 and the transistor unit 70, that is, configurations of the gate trench unit 40, the dummy trench unit 30, and the like. Is omitted.
  • the first cathode region 82 provided on the most positive side in the Y-axis direction in the diode part 80 may be in contact with the adjacent transistor part 70 on the positive side in the Y-axis direction of the diode part 80 when the semiconductor substrate 10 is viewed from above.
  • the first cathode region 82 provided on the most negative side in the Y-axis direction in the diode unit 80 may be in contact with the adjacent transistor unit 70 on the negative side in the Y-axis direction of the diode unit 80 in a top view of the semiconductor substrate 10.
  • a second conductivity type collector region 22 is provided in a region in contact with the lower surface of the semiconductor substrate 10 between the end of the first cathode region 82 on the positive side in the X-axis direction and the end S. Good.
  • the collector region 22 may be provided in a region in contact with the lower surface of the semiconductor substrate 10 between the end on the negative side in the X-axis direction of the first cathode region 82 and the end S ′.
  • the collector region 22 of this example is a P + type as an example.
  • the positional relationship between the cathode region 81 including the first cathode region 82 and the second cathode region 83 and the configuration other than the first cathode region 82 and the second cathode region 83 is the positional relationship in the top view shown in FIG. Good.
  • the configurations other than the first cathode region 82 and the second cathode region 83 are, for example, the contact hole 54, the dummy trench portion 30, and the contact region 15 provided at the end of the contact hole 54 in the X-axis direction.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 may be 60% or more and 90% or less. .
  • the ratio of the area of the second cathode region 83 to the total area may be 10% or more and 40% or less.
  • the ratio of the area of the first cathode region 82 and the area of the second cathode region 83 to the total area is 80% and 20%, respectively.
  • the semiconductor device 100 of this example has a plurality of floating regions 17 provided separately for each first cathode region 82.
  • the floating region 17 is of the second conductivity type.
  • the floating region 17 of this example is a P + type as an example.
  • the floating region 17 is disposed so as to at least partially overlap the first cathode region 82 when the semiconductor substrate 10 is viewed from above.
  • FIG. 2 a shows an example in which the entire floating region 17 is arranged so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. That is, in FIG. 2 a, the first cathode region 82 protrudes in the arrangement direction (Y-axis direction) from the floating region 17 in a top view of the semiconductor substrate 10. Further, the first cathode region 82 protrudes in the extending direction (X-axis direction) perpendicular to the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10.
  • the floating region 17 is arranged so as not to overlap the transistor portion 70 when the semiconductor substrate 10 is viewed from above.
  • the floating region 17 is arranged so as not to contact the boundary between the diode portion 80 and the transistor portion 70.
  • FIG. 2b is an enlarged view of region B1 in FIG. 2a.
  • FIG. 2B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 2A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the floating region 17 extending in the X-axis direction is arranged in the Y-axis direction as an example inside the first cathode region 82 in the XY plane. Are provided.
  • the width Wwc in the X-axis direction in a top view from the end S of the well region 11 on the X-axis direction positive side to the end on the X-axis direction positive side of the first cathode region 82 may be smaller than the width WF of the diode portion 80. .
  • the width Wwc may be not less than 0.25 times and not more than 0.75 times the width WF.
  • the width Wwc may be 150 ⁇ m or more and 300 ⁇ m or less.
  • the width Wwc is 250 ⁇ m as an example.
  • the end T on the positive side in the X-axis direction of the contact hole 54 is provided with a width Wwca away from the end S on the positive side in the X-axis direction of the well region 11 on the negative side in the X-axis direction, as shown in FIG. Further, the end portion T ′ on the negative side in the X-axis direction of the contact hole 54 is provided to be separated from the end portion S ′ on the negative side in the X-axis direction of the well region 11 on the positive side in the X-axis direction by a width Wwca.
  • the contact hole 54 may be provided continuously from the end T to the end T ′ in the X-axis direction.
  • one contact hole 54 is shown, but actually, as is clear from the top view shown in FIG. 1b, the position of the end T in the X-axis direction and the end T ' A plurality of contact holes 54 having the same position in the X-axis direction are provided in the Y-axis direction.
  • the width Wwca from the end S on the positive side in the X-axis direction of the well region 11 to the end T on the positive side in the X-axis direction of the plurality of contact holes 54 provided in the diode portion 80 is the first width from the end T.
  • the width may be smaller than the width Wwcb in the X-axis direction in a top view up to the end on the positive side in the X-axis direction of the cathode region 82.
  • the width Wwca may be not less than 0.1 times and not more than 0.9 times the width Wwcb.
  • the width Wwca may be 20 ⁇ m or more and 110 ⁇ m or less.
  • the width Wwcb may be 120 ⁇ m or more and 180 ⁇ m or less.
  • the width Wwca is 100 ⁇ m as an example.
  • the width Wwcb is 150 ⁇ m as an example.
  • the sum of the width Wwca and the width Wwcb is the width Wwc.
  • the width from the end S ′ on the negative side in the X-axis direction of the well region 11 to the end T ′ on the negative side in the X-axis direction of the plurality of contact holes 54 provided in the diode portion 80 is also equal to the width Wwca. It's okay.
  • the width in the X-axis direction in the top view of the semiconductor substrate 10 from the end T ′ to the end on the negative side in the X-axis direction of the first cathode region 82 may be equal to the width Wwcb.
  • the width in the X-axis direction in a top view from the end S ′ of the well region 11 on the negative side in the X-axis direction to the end on the negative side in the X-axis direction of the first cathode region 82 may be equal to the width Wwc.
  • the width Wcv1 in the X-axis direction of the first cathode region 82 may be smaller than the width Wh.
  • the width Wcv1 is equal to a value obtained by subtracting twice the width Wwc from the width Wh.
  • the width Wcv1 may be 90% or more and 96% or less of the width Wh.
  • the width Wcv1 may be 2700 ⁇ m or more and 3450 ⁇ m or less.
  • the width Wcv1 is 2850 ⁇ m as an example.
  • the width Wch1 in the Y-axis direction of the first cathode region 82 may be 5% to 40% of the width WF.
  • the width Wch1 may be 20 ⁇ m or more and 240 ⁇ m or less.
  • the floating region 17 is provided inside the first cathode region 82 in the XY plane, as shown in FIG. 2b.
  • the floating region 17 is not connected to the emitter electrode 52.
  • the width Wfl11 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch1.
  • the width Wfl21 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv1.
  • the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less.
  • the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
  • the width Wcf1 up to the end of may be 3% or more and 6% or less of the width Wch1.
  • the width Wcf1 may not be zero.
  • the width Wcf1 may be 2 ⁇ m or more and 6 ⁇ m or less.
  • the width Wcf1 is 5 ⁇ m as an example.
  • the Y-axis of the floating region 17 provided on the most negative side in the Y-axis direction from the boundary between the diode unit 80 and the transistor unit 70 adjacent to the diode unit 80 on the negative side in the Y-axis direction.
  • the width to the end on the negative direction side may also be equal to the width Wcf1.
  • the width Wcf2 from the X-axis direction positive end of the first cathode region 82 to the X-axis direction positive end of the floating region 17 is 3% or more and 6% or less of the width Wcv1. It may be.
  • the width Wcf2 may be zero. Further, the width Wcf2 may be equal to or different from the width Wcf1.
  • the width Wcf2 may be 2 ⁇ m or more and 6 ⁇ m or less.
  • the width Wcf2 is 5 ⁇ m as an example.
  • the width from the Y-axis direction negative side end of the first cathode region 82 to the Y-axis direction negative side end of the Y-axis direction negative side floating region 17 is also equal to the width Wcf2.
  • the width Wcnt in the Y-axis direction of the contact hole 54 may be smaller than Wcf1 and width Wcf2.
  • the width Wcnt may be not less than 0.3 ⁇ m and not more than 0.7 ⁇ m.
  • the width Wcnt is 0.5 ⁇ m as an example.
  • FIG. 2c is an enlarged view of region C1 in FIG. 2b.
  • three first cathode regions 82 are provided in the Y-axis direction as an example.
  • a second cathode region 83 is provided between adjacent first cathode regions 82 in the Y-axis direction.
  • the width Wnf1 is the floating region 17 arranged so as to overlap the first cathode region 82 from the Y-axis direction negative end of the first cathode region 82 in the most positive first cathode region 82 in the Y-axis direction. Is the width in the Y-axis direction to the end on the negative side in the Y-axis direction.
  • the width Wnf1 is a floating in the first cathode region 82 that is the most negative side in the Y-axis direction, overlapping the first cathode region 82 from the Y-axis direction positive end of the first cathode region 82. This is the width in the Y-axis direction up to the end on the Y-axis direction positive side of the region 17.
  • the width in the Y-axis direction up to the positive end of the floating region 17 disposed so as to overlap the first cathode region 82 may be equal to the width Wnf1.
  • the width in the Y-axis direction from the end on the negative side in the Y-axis direction of the first cathode region 82 to the end on the negative side of the floating region 17 arranged so as to overlap the first cathode region 82 is also equal to the width Wnf1. Good.
  • Width Wnf1 may be equal to width Wcf1, but may be different.
  • the width Wnf1 may be zero.
  • the first conductive type first cathode regions 82 and the second conductive type second cathode regions 83 are alternately provided in the Y-axis direction in the diode portion 80.
  • a plurality of second conductivity type floating regions 17 are provided separately from each other for each first cathode region 82, and are disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
  • FIG. 2d is a diagram showing an example of a cross section aa ′ in FIG. 2b.
  • the semiconductor device 100 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the section aa ′.
  • the emitter electrode 52 is provided on the upper surface 21 of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 38.
  • the collector electrode 24 is provided on the lower surface 23 of the semiconductor substrate 10.
  • the emitter electrode 52 and the collector electrode 24 are formed of a conductive material such as metal.
  • the interlayer insulating film 38 may be silicate glass such as PSG or BPSG.
  • the interlayer insulating film 38 may be an oxide film or a nitride film.
  • the semiconductor substrate 10 may be a silicon substrate, a silicon carbide substrate, a nitride semiconductor substrate such as gallium nitride, or a gallium oxide substrate.
  • the semiconductor substrate 10 in this example is a silicon substrate.
  • the semiconductor substrate 10 includes a first conductivity type drift region 18.
  • the drift region 18 in this example is N-type.
  • the drift region 18 may be a region remaining in the semiconductor substrate 10 without being provided with another doping region.
  • the upper surface 21 of the semiconductor substrate 10 is provided with one or more gate trench portions 40 and one or more dummy trench portions 30. Each trench portion is provided from the upper surface 21 through the base region 14 to reach the drift region 18.
  • the dummy trench portion 30 includes a dummy trench provided on the upper surface 21, and a dummy insulating film 32 and a dummy conductive portion 34 provided in the dummy trench.
  • the upper end of the dummy trench may be at the same position as the upper surface 21 in the Z-axis direction.
  • the dummy insulating film 32 is provided so as to cover the inner wall of the dummy trench.
  • the dummy insulating film 32 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the dummy trench.
  • the dummy conductive portion 34 is provided inside the dummy insulating film 32 inside the dummy trench. That is, the dummy insulating film 32 insulates the dummy conductive portion 34 from the semiconductor substrate 10.
  • the dummy conductive portion 34 is formed of a conductive material such as polysilicon.
  • the dummy conductive portion 44 includes a region facing the base region 14 with the dummy insulating film 32 interposed therebetween.
  • the dummy trench portion 30 in the cross section is covered with the interlayer insulating film 38 on the upper surface 21.
  • a gate trench part 40 is provided in the Y-axis direction positive side and negative side transistor part 70 with respect to the aa ′ cross section.
  • the gate trench portion 40 may have the same structure as the dummy trench portion 30 in the YZ section.
  • the gate trench portion 40 includes a gate trench provided on the upper surface 21 side, and a gate insulating film and a gate conductive portion provided in the gate trench. When a predetermined voltage is applied to the gate conductive portion, a channel formed by an electron inversion layer is formed on the surface layer of the base region 14 in contact with the gate trench.
  • the gate conductive part may be formed of the same material as the dummy conductive part 34.
  • the dummy conductive portion 34 and the gate conductive portion are formed of a conductive material such as polysilicon.
  • the bottoms of the dummy trench portion 30 and the gate trench portion 40 may have a curved surface (curved shape in cross section) convex downward.
  • one or more high-concentration regions 19 of the first conductivity type may be provided above the drift region 18 in contact with the dummy trench portion 30.
  • the high concentration region 19 is, for example, an N + type.
  • the high concentration region 19 may be provided in the mesa unit 60-3, but may not be provided.
  • the high concentration region 19 may be in contact with the dummy trench portion 30, but may not be in contact with it.
  • the high concentration regions 19-1 and 19-2 are arranged side by side in the Z-axis direction. In the Z-axis direction, a drift region 18 may be provided between the high concentration region 19-1 and the high concentration region 19-2.
  • the second conductivity type base region 14 is provided above the high concentration region 19 in contact with the upper surface 21 and in contact with the dummy trench portion 30.
  • the base region 14 in this example is a P-type as an example.
  • the hole concentration is reduced by the charge neutrality condition as compared with the drift region 18. That is, the high concentration region 19 suppresses the injection of holes from the base region 14 to the drift region 18. Thereby, the injection efficiency of minority carriers from the base region 14 to the drift region 18 is significantly reduced. As the number of high-concentration regions 19 increases, the minority carrier injection efficiency can be reduced. Thereby, the reverse recovery characteristic of the diode part 80, especially the recovery current can be greatly reduced.
  • the base region 14 of the second conductivity type is provided above the drift region 18 in contact with the dummy trench portion 30.
  • a second conductivity type contact region 15 is provided in contact with the upper surface 21 and in contact with the dummy trench portion 30.
  • the base region of this example is a P + type as an example.
  • the contact region 15 may be in contact with the dummy trench portion 30, but may not be in contact.
  • a buffer region 20 of the first conductivity type may be provided below the drift region 18.
  • the buffer area 20 is an N + type as an example.
  • the doping concentration of the buffer region 20 is higher than the doping concentration of the drift region 18.
  • the buffer region 20 is a field stop that prevents the depletion layer extending from the lower surface side of the base region 14 from reaching the P + type collector region 22, the N + type first cathode region 82, and the P + type second cathode region 83. It may function as a layer.
  • a P + type collector region 22 exposed on the lower surface 23 is provided below the buffer region 20.
  • an N + type first cathode region 82 and a P + type second cathode region 83 exposed on the lower surface 23 are provided below the buffer region 20.
  • a first cathode region 82 is provided in a region adjacent to the transistor unit 70.
  • the diode portion 80 is a region that overlaps the first cathode region 82 and the second cathode region 83 in the direction perpendicular to the lower surface 23.
  • the transistor unit 70 is a region in which predetermined unit configurations including the emitter region 12 and the contact region 15 are regularly arranged in a region overlapping the collector region 22 in a direction perpendicular to the lower surface 23.
  • the floating region 17 is provided above the first cathode region 82 in the diode portion 80.
  • three floating regions 17 are provided in the Y-axis direction in the section aa ′.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • the boundary position P1 is a boundary position on the Y axis direction positive side among the two boundary positions.
  • the boundary position P1 ′ is a boundary position on the Y axis direction negative side among the two boundary positions.
  • the boundary positions P1 and P1 ′ are boundary positions in a cross section parallel to the aa ′ cross section.
  • the aa ′ cross section is a plane perpendicular to the lower surface 23 and parallel to the arrangement direction of the dummy trench portions 30.
  • the end position P2 is an end position closest to the boundary position P1 of the floating region 17 provided on the most positive side in the Y-axis direction in a plane parallel to the lower surface 23.
  • the end position P2 ′ is the end position closest to the boundary position P1 ′ of the floating region 17 provided on the most negative side in the Y-axis direction in a plane parallel to the lower surface 23.
  • a plurality of floating regions 17 may be provided in the Y-axis direction from the end position P2 to the end position P2 ′.
  • three floating regions 17 are provided in the Y-axis direction from the end position P2 to the end position P2 ′.
  • the width Wcf1 is a distance in the Y-axis direction from the boundary position P1 to the end position P2.
  • the width Wcf1 is a distance in the Y-axis direction from the boundary position P1 ′ to the end position P2 ′.
  • the width Wd is the width of the floating region 17 in the Z-axis direction.
  • the width Wd may be smaller than the width Wcf1.
  • the width Wd may be not less than 0.05 times and not more than 0.5 times the width Wcf1.
  • the width Wd may be not less than 0.3 ⁇ m and not more than 1 ⁇ m.
  • the width Wd is 0.5 ⁇ m as an example.
  • the floating is arranged so as to overlap the first cathode region 82 from the Y-axis direction positive end of the first cathode region 82.
  • the width in the Y-axis direction to the positive end of the region 17 may be equal to the width Wnf1.
  • the width in the Y-axis direction from the end on the negative side in the Y-axis direction of the first cathode region 82 to the end on the negative side of the floating region 17 arranged so as to overlap the first cathode region 82 is also equal to the width Wnf1. Good.
  • the width Wfl11 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch1.
  • the width Wnf1 may be equal to the width Wcf1, but may be different.
  • the width Wnf1 may be zero.
  • FIG. 2e is a diagram showing an example of a bb ′ cross section in FIG. 2b.
  • the bb ′ cross section is the XZ plane passing through the b ′′ -b ′ ′′ line in FIG. 2d.
  • the floating region 17 is provided above the first cathode region 82 in the diode unit 80.
  • the boundary position P5 is a boundary position on the negative side in the X-axis direction among the two boundary positions.
  • the boundary position P5 ′ is a boundary position on the positive side in the X-axis direction among the two boundary positions.
  • the boundary positions P5 and P5 ′ are boundary positions in a cross section parallel to the bb ′ cross section.
  • the bb ′ cross section is a surface perpendicular to the lower surface 23 and parallel to the extending direction of the dummy trench portion 30.
  • the end position P6 is closest to the boundary position P5 of the floating region 17 arranged on the most negative side in the X-axis direction among the plurality of floating regions 17 arranged in the X-axis direction in a plane parallel to the lower surface 23.
  • the end position P6 ′ is a boundary position of the floating region 17 arranged on the most positive side in the X-axis direction among the plurality of floating regions 17 arranged in the Y-axis direction in a plane parallel to the lower surface 23. This is the end position closest to P5 ′.
  • the floating region 17 is continuously provided in the X-axis direction from the end position P6 to the end position P6 ′.
  • the width Wfl21 is the width of the floating region 17 in the X-axis direction.
  • the width Wcf2 is a distance in the X-axis direction from the boundary position P5 to the end position P6.
  • the width Wcf2 is a distance in the X-axis direction from the boundary position P5 ′ to the end position P6 ′.
  • the width Wcv1 is a distance in the X-axis direction from the boundary position P5 to the boundary position P5 ′.
  • the width Wfl21 may be 89% or more and 95% or less of the width Wcv1.
  • the floating region 17 is provided above the first cathode region 82 in the diode unit 80, the surge voltage during reverse recovery of the diode unit 80 can be suppressed.
  • a lifetime killer region can be locally provided by irradiating He or the like on the upper surface 21 side and the lower surface 23 side of the diode portion 80 to suppress carrier injection, but the formation of the lifetime killer region is costly. high.
  • the surge voltage at the time of reverse recovery of the diode part 80 becomes large, the diode part 80 cannot be speeded up.
  • the collector region 22 on the X axis direction positive side in FIG. 2E may extend to the outer peripheral region 74 on the X axis direction positive side in FIG. 1A.
  • the collector region 22 may be connected to the collector region 22 provided on the lower surface 23 of the transistor portion 70.
  • the collector region 22 provided on the negative side in the X-axis direction may extend to the outer peripheral region 74 on the negative side in the X-axis direction in FIG. .
  • a first conductivity type termination region having a doping concentration lower than that of the first cathode region 82 may be provided on the lower surface 23 instead of the collector region 22.
  • the doping concentration of the termination region may be 1/10 or less of the doping concentration of the first cathode region 82.
  • FIG. 3a is another enlarged view of region A in FIG. 1a.
  • the semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 2A in that some of the floating regions 17 have a first cathode region 82 and a second cathode in the top view of the semiconductor substrate 10.
  • the semiconductor device 100 is different from the semiconductor device 100 shown in FIG. That is, in the semiconductor device 100 of this example, some floating regions 17 among the plurality of floating regions 17 are in the X-axis direction between the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. It overlaps with the boundary and is provided from the first cathode region 82 to the second cathode region 83 in the Y-axis direction.
  • FIG. 3b is an enlarged view of region B2 in FIG. 3a.
  • FIG. 3B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 3A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the contact hole 54 shown in FIGS. 2b and 2c is omitted.
  • the semiconductor device 100 of this example is provided with nine floating regions 17 extending in the X-axis direction and arranged in the Y-axis direction as an example in the diode unit 80.
  • three first cathode regions 82 and two second cathode regions 83 are provided as an example, so that the first cathode region 82 and the second cathode region 83 are arranged in the X-axis direction.
  • the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less.
  • the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
  • the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG.
  • the width Wcf1 may not be zero.
  • the width Wcf2 may be zero.
  • the width Wfl21 of the floating region 17 in the X-axis direction may be the same as the width Wfl21 in the example illustrated in FIG.
  • the width Wfl12 of the floating region 17 in the Y-axis direction may be smaller than the width Wfl11 in the example illustrated in FIG.
  • FIG. 3c is an enlarged view of region C2 in FIG. 3b.
  • nine first cathode regions 82 are provided in the Y-axis direction as an example.
  • a second cathode region 83 is provided between adjacent first cathode regions 82 in the Y-axis direction.
  • four floating regions 17 out of nine floating regions 17 are provided so as to overlap with the boundary in the X-axis direction between the first cathode region 82 and the second cathode region 83.
  • five floating regions 17 are provided inside the first cathode region 82 in a top view of the semiconductor substrate 10.
  • the width Wfn1 is such that the floating region 17 provided on the negative side in the Y-axis direction of the floating region 17 provided to overlap the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the negative side in the Y-axis direction. It is the width in the Y-axis direction from the end to the boundary.
  • the width Wfn1 is the positive value in the Y-axis direction of the floating region 17 provided to overlap the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the Y-axis direction positive side. This is the width in the Y-axis direction from the side end to the boundary.
  • the width Wff11 is an interval in the Y-axis direction between the floating region 17 and the floating region 17 adjacent to the floating region 17. All of the plurality of floating regions 17 may be arranged in the Y-axis direction at intervals of the width Wff11. However, if there is the floating region 17 that overlaps the boundary between the first cathode region 82 and the second cathode region 83, the width Wff11 There may be floating regions 17 arranged at different intervals.
  • Width Wfn1 is smaller than width Wfl12.
  • the width Wfn1 may be equal to or different from the width Wcf1.
  • FIG. 3d is a diagram showing an example of a cross section along the line cc ′ in FIG. 3b.
  • the semiconductor device 100 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the section cc ′.
  • the emitter electrode 52 is provided on the upper surface 21 of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 38.
  • the collector electrode 24 is provided on the lower surface 23 of the semiconductor substrate 10.
  • the floating region 17 is provided above the first cathode region 82 in the diode portion 80.
  • nine floating regions 17 are provided in the Y-axis direction in the section cc ′.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • some floating regions 17 are provided above the boundary between the first cathode region 82 and the second cathode region 83.
  • the floating region 17 provided above the boundary is provided in contact with both the first cathode region 82 and the second cathode region 83.
  • four floating regions 17 out of the nine floating regions 17 are provided in contact with both the first cathode region 82 and the second cathode region 83 above the boundary.
  • the diode unit 80 is more reverse than the semiconductor device 100 shown in FIG. The surge voltage at the time of recovery can be further suppressed.
  • FIG. 3e is a diagram showing an example of a dd ′ cross section in FIG. 3b.
  • the dd ′ cross section is an XZ plane passing through a d ′′ -d ′ ′′ line in FIG. 3D.
  • the configuration of the section dd ′ in the semiconductor device 100 of this example is the same as the configuration of the section bb ′ in the semiconductor device 100 shown in FIG. 2e.
  • FIG. 4a is another enlarged view of region A in FIG. 1a.
  • the semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 2A in that the first cathode regions 82 and the second cathode regions 83 are alternately arranged in the X-axis direction when the semiconductor substrate 10 is viewed from above. Different from the semiconductor device 100 shown in FIG.
  • the first cathode region 82 and the second cathode region 83 are provided in contact with the transistor unit 70 on both the Y axis direction positive side and the negative side.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 may be 60% or more and 90% or less.
  • the ratio of the area of the second cathode region 83 to the total area may be 10% or more and 40% or less.
  • the area of the first cathode region 82 and the area of the second cathode region 83 occupying the total area are 80% and 20%, respectively.
  • the semiconductor device 100 of this example has a plurality of floating regions 17 provided separately for each first cathode region 82.
  • the first cathode region 82 protrudes in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10.
  • both sides of the first cathode region 82 protrude in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10 in the arrangement direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the Y-axis direction.
  • one side of the first cathode region 82 may protrude from the floating region 17 in the arrangement direction when the semiconductor substrate 10 is viewed from above.
  • the first cathode region 82 protrudes in the extending direction from the floating region 17.
  • both sides of the first cathode region 82 project in the extending direction from the floating region 17 in a top view of the semiconductor substrate 10 in the extending direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the X-axis direction. Note that, in the extending direction, one side of the first cathode region 82 may protrude from the floating region 17 in the extending direction in a top view of the semiconductor substrate 10.
  • the entire floating region 17 is disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. That is, the floating region 17 is provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above.
  • the floating region 17 is arranged so as not to overlap the transistor portion 70 when the semiconductor substrate 10 is viewed from above.
  • the floating region 17 is arranged so as not to contact the boundary between the diode portion 80 and the transistor portion 70.
  • FIG. 4b is an enlarged view of region B3 in FIG. 4a.
  • FIG. 4B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 4A to the end S ′ of the well region 11 on the X axis direction negative side.
  • ten floating regions 17 are provided as an example inside the first cathode region 82 in the XY plane.
  • the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG.
  • the width Wcf1 may not be zero.
  • the width Wcf2 may be zero.
  • the width Wnf2 is determined from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the negative side in the X-axis direction. Is the width in the X-axis direction up to the end on the negative side in the X-axis direction of the floating region 17 provided to overlap.
  • the width Wnf2 is a floating provided to overlap the first cathode region 82 from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the X axis direction positive side. This is the width in the X-axis direction up to the end on the X-axis direction positive side of the region 17.
  • the width Wnf2 may be the same as the width Wcf2, but may be different.
  • the width Wch2 is the width of the first cathode region 82 and the second cathode region 83 in the Y-axis direction.
  • the width Wch is equal to the width WF.
  • the width Wcv2 is the width of the first cathode region 82 in the X-axis direction.
  • the width Wfl13 is the width of the floating region 17 in the Y-axis direction.
  • the width Wfl22 is the width of the floating region 17 in the X-axis direction.
  • the width Wfl13 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch2.
  • the width Wfl22 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv2.
  • the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less.
  • the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
  • FIG. 4c is a diagram showing an example of a cross section taken along line ee ′ in FIG. 4b.
  • the semiconductor device 100 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the ee ′ cross section.
  • the emitter electrode 52 is provided on the upper surface 21 of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 38.
  • the collector electrode 24 is provided on the lower surface 23 of the semiconductor substrate 10.
  • the floating region 17 is provided above the first cathode region 82 in the diode portion 80.
  • the floating region 17 is continuously provided from the end position P2 to the end position P2 ′ in the ee ′ cross section.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • FIG. 4d is a diagram showing an example of the ff ′ cross section in FIG. 4b.
  • the ff ′ cross section is an XZ plane passing through the f ′′ -f ′ ′′ line in FIG. 4C.
  • 10 floating regions 17 are provided in the X-axis direction in the ff ′ cross section.
  • the floating region 17 may be in contact with the first cathode region 82.
  • the width Wnf2 may be the same as the width Wcf2, but may be different.
  • the width Wfl22 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv2.
  • the floating region 17 since the floating region 17 is provided above the first cathode region 82 in the diode unit 80, the surge voltage (overshoot voltage) during reverse recovery of the diode unit 80 can be suppressed. it can.
  • FIG. 5a is another enlarged view of region A in FIG. 1a.
  • some floating regions 17 among the plurality of floating regions 17 are the first cathode region 82 and the second cathode region in the top view of the semiconductor substrate 10.
  • the semiconductor device 100 differs from the semiconductor device 100 shown in FIG. That is, in the semiconductor device 100 of this example, some floating regions 17 among the plurality of floating regions 17 are in the Y-axis direction between the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. It overlaps with the boundary and is provided from the first cathode region 82 to the second cathode region 83 in the X-axis direction.
  • FIG. 5b is an enlarged view of region B4 in FIG. 5a.
  • FIG. 5b shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 5a to the end S ′ of the well region 11 on the X axis direction negative side.
  • the semiconductor device 100 of this example is provided with 30 floating regions 17 as an example in the diode unit 80.
  • the semiconductor device 100 of this example is provided with ten first cathode regions 82 and nine second cathode regions 83, and therefore, in the Y-axis direction between the first cathode region 82 and the second cathode region 83.
  • the first cathode region 82 provided on the most positive side in the X-axis direction is adjacent to the collector region 22 provided on the X-axis direction positive side of the first cathode region 82.
  • One floating region 17 is provided so as to overlap with a boundary parallel to the Y-axis direction between the first cathode region 82 and the collector region 22.
  • the first cathode region 82 provided on the most negative side in the X-axis direction is adjacent to the collector region 22 provided on the X-axis direction negative side of the first cathode region 82.
  • Another one floating region 17 is provided so as to overlap with a boundary parallel to the Y-axis direction between the first cathode region 82 and the collector region 22.
  • the remaining 10 floating regions 17 are provided inside the first cathode region 82 in a top view of the semiconductor substrate 10.
  • the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less.
  • the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
  • the width Wcf1 may be the same as the width Wcf1 in the example illustrated in FIG.
  • the width Wcf1 may not be zero.
  • the width Wfl13 of the floating region 17 in the Y-axis direction may be the same as the width Wfl13 in the example illustrated in FIG.
  • the width Wfl23 in the X-axis direction of the floating region 17 may be smaller than the width Wfl22 in the example illustrated in FIG.
  • the width Wfc2 is the first cathode region 82 provided on the most positive side in the X-axis direction from the end on the positive side in the X-axis direction of the floating region 17 provided on the most positive side in the X-axis direction. And the width in the X-axis direction to the boundary parallel to the Y-axis direction between the collector region 22 provided on the positive side in the X-axis direction.
  • the width Wfc2 is equal to the first cathode region 82 provided on the most negative side in the X-axis direction from the end on the negative side in the X-axis direction of the floating region 17 provided on the most negative side in the X-axis direction.
  • FIG. 5c is an enlarged view of region C4 in FIG. 5b.
  • the first cathode region 82 and the second cathode region 83 are provided from the boundary on the Y axis direction positive side to the negative side boundary of the transistor unit 70.
  • the floating region 17 provided on the most negative side in the X-axis direction is provided so as to overlap the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above.
  • FIG. 5c is an enlarged view of region C4 in FIG. 5b.
  • the floating region 17 provided on the most positive side in the X-axis direction is provided so as to overlap the first cathode region 82 and the collector region 22 in a top view of the semiconductor substrate 10.
  • the width Wfn2 is determined from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the negative side in the X-axis direction. Is the width in the X-axis direction up to the end on the negative side in the X-axis direction of the floating region 17 provided to overlap.
  • the width Wfn2 is outside the region C4, but from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the positive side in the X-axis direction, This is the width in the X-axis direction to the end on the positive side in the X-axis direction of the floating region 17 provided so as to overlap the region 82.
  • the width Wff21 is an interval in the X-axis direction between the floating region 17 and the floating region 17 adjacent to the floating region 17. All of the plurality of floating regions 17 may be arranged in the X-axis direction at intervals of the width Wff21. However, if there is the floating region 17 that overlaps the boundary between the first cathode region 82 and the second cathode region 83, the width Wff21 There may be floating regions 17 arranged at different intervals.
  • Width Wfn2 is smaller than width Wfl23.
  • the width Wfn2 may be equal to the width Wfc2, but may be different.
  • FIG. 5d is a diagram showing an example of a gg ′ cross section in FIG. 5b.
  • the configuration of the dd ′ section in the semiconductor device 100 of this example is the same as the configuration of the ee ′ section in the semiconductor device 100 shown in FIG. 4c.
  • FIG. 5e is a diagram showing an example of the hh ′ cross section in FIG. 5b.
  • the hh ′ cross section is the XZ plane passing through the h ′′ -h ′ ′′ line in FIG. 5D.
  • the floating region 17 is provided above the first cathode region 82 in the diode unit 80.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • the end position P6 ′′ on the X axis direction negative side of the first cathode region 82 on the most negative side in the X axis direction is provided on the X axis direction negative side with respect to the boundary position P5.
  • the end position P6 ′ ′′ on the X axis direction positive side of the first cathode region 82 on the most positive side in the X axis direction is provided on the X axis direction positive side with respect to the boundary position P5 ′.
  • the width Wfc2 is a width in the X-axis direction from the boundary position P5 to the end position P6 ′′.
  • the width Wfc2 is a width in the X-axis direction from the boundary position P5 ′ to the end position P6 ′ ′′.
  • some floating regions 17 are provided above the boundary between the first cathode region 82 and the second cathode region 83.
  • the floating region 17 provided above the boundary is provided in contact with both the first cathode region 82 and the second cathode region 83.
  • the floating regions 17 provided on the most negative side and the most positive side in the X-axis direction are provided above the boundary position P5 and the boundary position P5 ′, respectively.
  • the floating region 17 provided above the boundary position P5 is provided in contact with both the first cathode region 82 on the most negative side in the X-axis direction and the collector region 22 on the negative side in the X-axis direction.
  • the floating region 17 provided above the boundary position P5 ′ is provided in contact with both the first cathode region 82 on the most positive side in the X-axis direction and the collector region 22 on the positive side in the X-axis direction.
  • the second conductivity type second cathode region 83 and the second conductivity type floating region 17 are provided in contact with each other. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be further suppressed than the semiconductor device 100 shown in FIG.
  • FIG. 6a is another enlarged view of region A in FIG. 1a.
  • the first cathode regions 82 are separated from each other and provided in a lattice shape when the semiconductor substrate 10 is viewed from above.
  • the lattice shape means that the first cathode regions 82 are periodically arranged in both the X-axis direction and the Y-axis direction.
  • FIG. 6a shows an example in which ten first cathode regions 82 are provided in the X-axis direction and three in the Y-axis direction.
  • a second cathode region 83 is provided between two first cathode regions 82 adjacent to each other in the Y-axis direction when the semiconductor substrate 10 is viewed from above.
  • a third cathode region 84 is provided between two first cathode regions 82 adjacent in the X-axis direction.
  • a third cathode region 84 is also provided between two second cathode regions 83 adjacent in the X-axis direction when the semiconductor substrate 10 is viewed from above.
  • the semiconductor device 100 of this example has a plurality of floating regions 17 provided separately for each first cathode region 82.
  • the first cathode region 82 protrudes in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10.
  • both sides of the first cathode region 82 protrude in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10 in the arrangement direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the Y-axis direction.
  • the first cathode region 82 protrudes in the extending direction from the floating region 17.
  • both sides of the first cathode region 82 project in the extending direction from the floating region 17 in a top view of the semiconductor substrate 10 in the extending direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the X-axis direction.
  • the entire floating region 17 is disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. That is, the floating region 17 is provided inside the first cathode region 82 provided in a lattice shape when the semiconductor substrate 10 is viewed from above.
  • the floating region 17 is arranged so as not to overlap the transistor portion 70 when the semiconductor substrate 10 is viewed from above.
  • the floating region 17 is arranged so as not to contact the boundary between the diode portion 80 and the transistor portion 70.
  • FIG. 6b is an enlarged view of region B5 in FIG. 6a.
  • 6B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 6A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the floating region 17 is provided inside the first cathode region 82 in the XY plane.
  • the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG.
  • the width Wcf1 may not be zero.
  • the width Wcf2 may be zero.
  • the width Wfl11 may be the same as the width Wfl11 in the example illustrated in FIG.
  • the width Wfl22 may be the same as the width Wfl22 in the example shown in FIG. 4b.
  • the width Wch1 may be the same as the width Wch1 in the example illustrated in FIG.
  • the width Wcv2 may be the same as the width Wcv2 in the example shown in FIG. 4b.
  • the width Wfl11 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch1.
  • the width Wfl22 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv2.
  • the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less.
  • the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
  • FIG. 6c is an enlarged view of region C5 in FIG. 6b.
  • the semiconductor device 100 of this example includes the second cathode in a direction (X-axis direction) parallel to the boundary between the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above.
  • a third cathode region 84 provided in contact with the second cathode region 83 is provided at the end portion U ⁇ b> 1 on the X axis direction negative side of the region 83.
  • the third cathode region 84 may be provided in contact with each of the two ends U1 of the second cathode region 83.
  • the semiconductor device 100 of this example includes three first cathode regions 82 in the Y-axis direction as an example.
  • the floating region 17 is provided inside the XY plane of each first cathode region 82.
  • the width Wnf2 is the width in the X-axis direction from the end on the negative side in the X-axis direction of the first cathode region 82 to the end on the negative side in the X-axis direction of the floating region 17 arranged to overlap the first cathode region 82 It is. Further, the width Wnf2 is outside the region C5, but in the first cathode region 82 excluding the most negative and positive first cathode regions 82 in the X-axis direction, the first cathode region 82 is positive in the X-axis direction. This is the width in the X-axis direction from the end on the side to the end on the positive side in the X-axis direction of the floating region 17 disposed so as to overlap the first cathode region 82.
  • Width Wnf2 may be equal to width Wcf2, but may be different.
  • the width Wnf2 may be zero.
  • FIG. 6d is a diagram showing an example of the ii ′ cross section in FIG. 6b.
  • the configuration of the semiconductor device 100 of this example along the ii ′ cross section is the same as the configuration of the semiconductor device 100 shown in FIG.
  • FIG. 6e is a diagram showing an example of a section ij ′ in FIG. 6b.
  • the jj ′ cross section is the XZ plane passing through the j ′′ -j ′ ′′ line in FIG. 6d.
  • the configuration of the jj ′ section in the semiconductor device 100 of this example is that a third cathode region 84 is provided in place of the second cathode region 83 in the ff ′ section in the semiconductor device 100 shown in FIG. Different from the semiconductor device 100 shown in FIG.
  • the semiconductor device 100 of the present example includes the floating region 17 for each first cathode region 82 provided separately in a grid pattern. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
  • FIG. 7a is another enlarged view of region A in FIG. 1a.
  • the floating region 17 projects in the extending direction from the first cathode region 82 in a top view of the semiconductor substrate 10.
  • both sides of the floating region 17 protrude in the extending direction from the first cathode region 82 in the extending direction. That is, the floating region 17 is provided so as to overlap the entire first cathode region 82 in the X-axis direction. Note that either one of the positive side and the negative side in the X-axis direction of the floating region 17 may protrude in the extending direction from the first cathode region 82.
  • the end on the positive side in the X-axis direction of the floating region 17 is X more than the end on the positive side in the X-axis direction of the first cathode region 82.
  • the end on the negative side in the X-axis direction of the floating region 17 is provided on the negative side in the X-axis direction with respect to the end on the negative side in the X-axis direction of the first cathode region 82.
  • the floating regions 17 may be provided in a lattice shape.
  • the semiconductor device 100 shown in FIG. 7A shows an example in which ten floating regions 17 are provided in the X-axis direction and three in the Y-axis direction.
  • the number of floating regions 17 in the X-axis direction may match the number of first cathode regions 82 in the X-axis direction.
  • the floating region 17 provided to overlap the first cathode region 82 includes the floating region 17 provided to overlap the other first cathode region 82 adjacent to the first cathode region 82 in either the positive or negative direction of the X-axis direction. , May be separated from each other in the X-axis direction, but may be integrated.
  • FIG. 7b is an enlarged view of region B6 in FIG. 7a.
  • FIG. 7B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 7A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the floating region 17 is provided in the diode portion 80 so as to overlap the entire first cathode region 82 in the X-axis direction.
  • the width Wcf1 may be the same as the width Wcf1 in the example illustrated in FIG.
  • the width Wcf1 may not be zero.
  • the width Wfl14 of the floating region 17 in the Y-axis direction may be larger, smaller, or equal to the width Wfl11 in the semiconductor device 100 of FIG.
  • the width Wfl24 of the floating region 17 in the X-axis direction may be larger than the width Wfl22 in the semiconductor device 100 of FIG. 4b.
  • a region of the floating region 17 that does not overlap with the first cathode region 82 in a top view of the semiconductor substrate 10 may overlap with the second cathode region 83.
  • An end on the positive side in the X-axis direction of the floating region 17 provided so as to overlap with the first cathode region 82 provided on the most positive side in the X-axis direction is the X-axis of the first cathode region 82 in a top view of the semiconductor substrate 10. It may overlap with a part of the collector region 22 provided on the positive direction side.
  • An end on the negative side in the X-axis direction of the floating region 17 provided so as to overlap with the first cathode region 82 provided on the most negative side in the X-axis direction is the X-axis of the first cathode region 82 in a top view of the semiconductor substrate 10. It may overlap with a part of the collector region 22 provided on the negative direction side.
  • the width Wfc ⁇ b> 2 is the width of the first cathode region 82 from the end on the positive side in the X-axis direction of the floating region 17 provided so as to overlap with the first cathode region 82 on the most positive side in the X-axis direction. This is the width in the X-axis direction up to the end on the positive side in the X-axis direction.
  • the width Wfc2 extends from the end on the negative side in the X axis direction of the floating region 17 provided so as to overlap with the first negative cathode region 82 on the most negative side in the X axis direction to the negative side in the X axis direction of the first cathode region 82. This is the width in the X-axis direction to the end.
  • the width Wfc2 may be equal to or different from the width Wch2 in the semiconductor device 100 shown in FIG. 4b.
  • the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less.
  • the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
  • FIG. 7c is an enlarged view of region C6 in FIG. 7b.
  • the floating region 17 is provided so as to overlap the entire first cathode region 82 in the X-axis direction when the semiconductor substrate 10 is viewed from above.
  • the semiconductor device 100 of this example includes three first cathode regions 82 in the Y-axis direction. Further, the width Wfl24 is larger than the width Wcv2.
  • the width Wfn2 is negative in the X-axis direction of the floating region 17 provided to overlap the first cathode region 82 from the end on the negative side in the X-axis direction of the first cathode region 82 in the region C6 when the semiconductor substrate 10 is viewed from above. It is the width in the X-axis direction to the end on the side.
  • the width Wfn2 may be equal to the width Wfc2, but may be different.
  • FIG. 7d is a diagram showing an example of a kk ′ cross section in FIG. 7b.
  • the first cathode region 82 is continuously provided in the Y-axis direction from the end portion P1 to the end portion P1 ′ in the kk ′ cross section.
  • the floating region 17 is provided above the first cathode region 82.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • the width Wfl14 may be larger, smaller, or equal to the width Wfl11 in the example shown in FIG. 2d.
  • FIG. 7e is a diagram showing an example of a mm ′ cross section in FIG. 7b.
  • the mm ′ cross section is the XZ plane passing through the m ′′ -m ′ ′′ line in FIG. 7d.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction in the mm ′ cross section.
  • the floating region 17 is provided above the first cathode region 82.
  • the floating region 17 provided above the first cathode region 82 is also provided above a part of the second cathode region 83 adjacent to the first cathode region 82 in the X-axis direction. For this reason, the width Wfl24 is larger than the width Wcv2.
  • the floating region 17 provided on the most positive side in the X-axis direction may be provided above a part of the collector region 22 provided on the positive side in the X-axis direction.
  • the floating region 17 provided on the most negative side in the X-axis direction may also be provided above a part of the collector region 22 on the X-axis direction negative side.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • the floating region 17 may be provided in contact with the second cathode region 83.
  • the floating region 17 may be provided in contact with the collector region 22.
  • the floating region 17 is provided so as to overlap the entire first cathode region 82 in the X-axis direction.
  • the floating region 17 is provided so as to overlap the second cathode region 83 at both ends in the X-axis direction of the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be further suppressed than the semiconductor device 100 shown in FIG. 6a.
  • FIG. 8a is another enlarged view of region A in FIG. 1a.
  • a plurality of first cathode regions 82 separated from each other in a top view of the semiconductor substrate 10 are provided extending in the X-axis direction, like the semiconductor device 100 illustrated in FIG.
  • a second cathode region 83 is provided between the first cathode regions 82 adjacent to each other in the Y axis direction when the semiconductor substrate 10 is viewed from above.
  • the first cathode region 82 provided on the most positive side in the Y-axis direction may be in contact with the transistor unit adjacent to the positive side of the diode unit 80 in the Y-axis direction.
  • the first cathode region 82 provided on the most negative side in the Y-axis direction may be in contact with the transistor portion adjacent on the Y-axis direction negative side of the diode portion 80.
  • the floating regions 17 may be provided in a lattice shape.
  • the semiconductor device 100 shown in FIG. 8A shows an example in which 20 floating regions 17 are provided in the X axis direction and 3 in the Y axis direction.
  • the number of floating regions 17 in the Y-axis direction may match the number of first cathode regions 82 in the Y-axis direction.
  • the floating region 17 protrudes in the arrangement direction from the first cathode region 82 in a top view of the semiconductor substrate 10.
  • the central floating region 17 has both sides of the floating region 17 projecting beyond the first cathode region 82 in the arrangement direction. That is, the floating region 17 is provided so as to overlap the entire first cathode region 82 in the arrangement direction.
  • the Y region in the Y axis direction of the floating region 17 on the positive side in the Y axis direction protrudes beyond the first cathode region 82 in the Y direction in the arrangement direction. That is, the Y-axis direction negative end of the floating region 17 is provided on the Y-axis direction negative side of the first cathode region 82 on the Y-axis negative side.
  • the floating region 17 on the negative side in the Y-axis direction protrudes beyond the first cathode region 82 in the Y-axis direction positive side of the floating region 17 in the arrangement direction. . That is, the end on the Y axis direction positive side of the floating region 17 is provided closer to the Y axis direction positive side than the end portion of the first cathode region 82 on the Y axis direction positive side. Note that the floating region 17 is not provided so as to overlap the transistor portion 70.
  • FIG. 8b is an enlarged view of region B7 in FIG. 8a.
  • FIG. 8B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 8A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the floating region 17 provided to overlap the first cathode region 82 that does not contact the transistor unit 70 among the plurality of first cathode regions 82 in the diode unit 80 includes: The first cathode region 82 is provided so as to overlap the entire Y-axis direction.
  • the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG.
  • the width Wcf1 may not be zero.
  • the width Wcf2 may be zero.
  • the width Wfl15 in the Y-axis direction of the floating region 17 provided on the most positive side and the negative side in the Y-axis direction may be larger or smaller than the width Wfl11 in the semiconductor device 100 in FIG. Or may be equal.
  • the width Wfl16 in the Y-axis direction of the floating region 17 provided at the center in the Y-axis direction may be larger, smaller, or equal to the width Wfl11 in the semiconductor device 100 of FIG. Further, the width Wfl16 may be larger than the width Wfl5.
  • the width Wfl25 of the floating region 17 in the X-axis direction may be larger, smaller, or equal to the width Wfl22 in the example of FIG.
  • the width Wfl22 may be larger, smaller, or equal to the width Wfl15.
  • Width Wfl22 may be larger than width Wfl16, may be smaller, or may be equal.
  • FIG. 8c is an enlarged view of region C7 in FIG. 8b.
  • the semiconductor device 100 of this example includes the floating region 17 provided to overlap the first cathode region 82 provided at the center in the Y-axis direction when the semiconductor substrate 10 is viewed from the top among the plurality of floating regions 17. Is provided so as to overlap the entire first cathode region 82 in the Y-axis direction.
  • the width Wfn1 is the Y axis from the end on the Y axis direction positive side of the first cathode region 82 to the end on the Y axis direction positive side of the floating region 17 provided to overlap with the end.
  • the width Wfn1 is a width in the Y-axis direction from the end on the Y-axis direction negative side of the first cathode region 82 to the end on the Y-axis direction negative side of the floating region 17 provided so as to overlap with the end.
  • the width Wfn1 may be equal to the width Wfn1 in the example of FIG.
  • the width Wfn1 may be equal to the width Wcf1.
  • FIG. 8d is a diagram showing an example of the nn ′ cross section in FIG. 8b.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in the Y-axis direction in the nn ′ cross section.
  • the floating region 17 is provided above the first cathode region 82.
  • the floating region 17 provided above the first cathode region 82 is also provided above a part of the second cathode region 83 adjacent to the first cathode region 82 in the Y-axis direction. For this reason, the width Wfl16 is larger than the width Wch1.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • the floating region 17 may be provided in contact with the second cathode region 83.
  • the floating region 17 provided in the center in the Y-axis direction is provided so as to overlap the entire first cathode region 82 in the Y-axis direction.
  • the floating region 17 is provided so as to overlap the second cathode region 83 at both ends in the Y-axis direction of the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be further suppressed than the semiconductor device 100 shown in FIG. 6a.
  • FIG. 8e is a diagram showing an example of a pp ′ section in FIG. 8b.
  • the pp ′ cross section is an XZ plane passing through the p ′′ -p ′ ′′ line in FIG.
  • the first cathode region 82 is continuously provided in the Y-axis direction from the boundary position P5 to the boundary position P5 ′ in the pp ′ cross section.
  • the floating region 17 is provided above the first cathode region 82.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • FIG. 9a is another enlarged view of region A in FIG. 1a.
  • the semiconductor device 100 of this example is further provided with a second conductivity type third cathode region 84 so as to sandwich the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above.
  • the third cathode region 84 is provided in contact with the lower surface 23 on the positive side and the negative side in the X-axis direction of the cathode region 81.
  • the third cathode region 84 of this example is a P + type as an example.
  • FIG. 9b is an enlarged view of region B8 in FIG. 9a.
  • FIG. 9B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 9A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the third cathode regions 84 are respectively provided on the positive side and the negative side of the cathode region 81 in the X-axis direction in the diode portion 80 when the semiconductor substrate 10 is viewed from above. .
  • the first cathode region 82 and the second cathode region 83 are alternately provided in the Y-axis direction between the third cathode regions 84 provided at both ends in the X-axis direction when the semiconductor substrate 10 is viewed from above. It is done.
  • the width Wch1 may be the same as the width Wch1 in the example shown in FIG. 2b.
  • the width Wcv2 may be the same as the width Wcv1 in the example illustrated in FIG.
  • the width Wcv3 is the width in the X-axis direction of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10.
  • the width Wcv3 may be smaller than the width Wcv1.
  • the width Wcv3 may be not less than 70% and not more than 90% of the width Wcv1.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 60% or more and 90% or less. Good.
  • the ratio of the total area of the second cathode region 83 and the third cathode region 84 in the total area may be 10% or more and 40% or less.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 80%.
  • the ratio of the total area of the second cathode region 83 and the third cathode region 84 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 20%.
  • FIG. 9c is an enlarged view of region C8 in FIG. 9b.
  • three first cathode regions 82 are provided in the Y-axis direction as an example.
  • a second cathode region 83 is provided between the first cathode regions 82 adjacent in the Y-axis direction.
  • a third cathode region 84 is provided in contact with the second cathode region 83.
  • the width Wcc is the width of the second cathode region 83 along the arrangement direction of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10.
  • the width Wct is the width of the third cathode region 84 along the arrangement direction when the semiconductor substrate 10 is viewed from above.
  • the width Wct is larger than the width Wcc.
  • the arrangement direction is the Y-axis direction is shown, but the arrangement direction may be a direction different from the Y-axis direction.
  • the doping concentration of the third cathode region 84 may be equal to the doping concentration of the second cathode region 83. That is, in the region C8, the second cathode region 83 and the third cathode region 84 may be connected as a cathode region of the second conductivity type having the same doping concentration.
  • FIG. 9d is a diagram showing an example of a qq ′ cross section in FIG. 9b.
  • the configuration of the qq ′ cross section of the semiconductor device 100 of this example is the same as the configuration of the cross section aa ′ in FIG.
  • FIG. 9e is a diagram showing an example of the rr ′ cross section in FIG. 9b.
  • the first cathode region 82 is in contact with the first cathode region 82 on the positive side and the negative side in the X-axis direction, respectively.
  • a cathode region 84 is provided.
  • the third cathode region 84 on the X axis direction positive side may be sandwiched between the first cathode region 82 and the collector region 22 provided on the X axis direction positive side of the first cathode region 82 in the X axis direction.
  • the third cathode region 84 on the X axis direction negative side may be sandwiched between the first cathode region 82 and the collector region 22 provided on the X axis direction negative side of the first cathode region 82 in the X axis direction.
  • a third cathode region 84 is provided in contact with the second cathode region 83. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
  • FIG. 10a is another enlarged view of region A in FIG. 1a.
  • the semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 4A in that the floating region 17 is not provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above. And different.
  • FIG. 10b is an enlarged view of region B9 in FIG. 10a.
  • FIG. 10B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 10A to the end S ′ of the well region 11 on the X axis direction negative side.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction in the diode portion 80.
  • ten first cathode regions 82 are provided in the X-axis direction
  • nine second cathode regions 83 are provided in the X-axis direction.
  • the width Wch2 may be the same as the width Wch2 in the example shown in FIG. 4b.
  • the width Wcv2 may be the same as the width Wcv2 in the example shown in FIG. 4b.
  • the width Wcv4 is a width in the X-axis direction of the second cathode region 83 when the semiconductor substrate 10 is viewed from above.
  • the width Wcv4 may be 5% or more and 30% or less of the width Wcv2.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 may be 60% or more and 90% or less.
  • the ratio of the area of the second cathode region 83 to the total area may be 10% or more and 40% or less.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 is 80%.
  • the ratio of the area of the second cathode region 83 to the total area of the first cathode region 82 and the second cathode region 83 is 20%.
  • FIG. 10c is a diagram showing an example of the ss ′ cross section in FIG. 10b.
  • the configuration of the ss ′ cross section in the semiconductor device 100 of this example is the same as the configuration of the ee ′ cross section in FIG.
  • FIG. 10d is a diagram showing an example of a tt ′ cross section in FIG. 10b.
  • the semiconductor device 100 of this example includes a first cathode region 82 and a second cathode region 83 in contact with the lower surface 23 in the tt ′ cross section.
  • the first cathode regions 82 and the second cathode regions 83 are provided alternately in the X-axis direction. For this reason, the semiconductor device 100 of this example can suppress the surge voltage at the time of reverse recovery of the diode unit 80.
  • FIG. 11a is another enlarged view of region A in FIG. 1a.
  • the semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 6A in that the floating region 17 is not provided inside the first cathode region 82 provided in a lattice shape in a top view of the semiconductor substrate 10. Different from the semiconductor device 100 shown in FIG.
  • FIG. 11b is an enlarged view of region B10 in FIG. 11a.
  • FIG. 11b shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 11a to the end S ′ of the well region 11 on the X axis direction negative side.
  • ten first cathode regions 82 are provided in the X-axis direction and three in the Y-axis direction.
  • the width Wch1 may be the same as the width Wch1 in the example shown in FIG. 2b.
  • the width Wcv2 may be the same as the width Wcv2 in the example shown in FIG. 4b.
  • the width Wcv4 may be the same as the width Wcv4 in the example illustrated in FIG.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 60% or more and 90% or less. Good.
  • the ratio of the total area of the second cathode region 83 and the third cathode region 84 in the total area may be 10% or more and 40% or less.
  • the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 80%.
  • the ratio of the total area of the second cathode region 83 and the third cathode region 84 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 20%.
  • FIG. 11c is an enlarged view of region C9 in FIG. 11b.
  • the semiconductor device 100 of this example is provided with a third cathode region 84 so as to sandwich the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. That is, in the top view of the semiconductor substrate 10, the X of the second cathode region 83 is along the direction in which the third cathode region 84 sandwiches the first cathode region 82 and the second cathode region 83 (in this example, the X-axis direction).
  • a third cathode region 84 provided in contact with the second cathode region 83 is provided at the end U1 on the axially positive side.
  • the second cathode region 83 includes a third cathode region 84 provided in contact with the second cathode region 83 at the end U2 on the X axis direction negative side.
  • the third cathode region 84 may be provided in contact with each of the two ends of the second cathode region 83, as shown in FIG. 11c. That is, the third cathode region 84 may be provided in contact with each of the one end U1 and the other end U2 of the second cathode region 83.
  • the plurality of second cathode regions 83 and the plurality of third cathode regions 84 may be in contact with each other when the semiconductor substrate 10 is viewed from above. That is, each of the plurality of third cathode regions 84 may be provided in contact with each end of the plurality of second cathode regions 83, as shown in FIG. 11c. That is, in the region C9, the third cathode region 84 includes both the end portion U1 of the second cathode region 83 provided on the Y axis direction negative side and the end portion U1 of the second cathode region 83 provided on the Y axis direction positive side. It may be provided in contact with.
  • the third cathode region 84 has ends U2 and Y of the second cathode region 83 arranged adjacent to the second cathode region 83 provided on the Y axis direction positive side on the X axis direction positive side.
  • the second cathode region 83 provided on the negative side in the axial direction may be provided in contact with both ends U2 of the second cathode region 83 arranged adjacent to the positive side in the X-axis direction.
  • the width of the second cathode region 83 along the direction in which the third cathode region 84 sandwiches the first cathode region 82 and the second cathode region 83 is the width It may be equal to Wcv2.
  • the width Wcv2 may be larger than the width Wcc. That is, the second cathode region 83 may be a rectangle that is long in the X-axis direction.
  • the width of the second cathode region 83 along the arrangement direction of the first cathode region 82 and the second cathode region 83 (in this example, the Y-axis direction) in the top view of the semiconductor substrate 10 may be equal to the width Wch1. .
  • the width Wcv2 may be larger than the width Wch1.
  • Width Wcc may be smaller than width Wch1.
  • the width Wct may be larger than the width Wch1.
  • the width Wct may be equal to the width WF of the diode unit 80 in the Y-axis direction.
  • the doping concentration of the third cathode region 84 may be equal to the doping concentration of the second cathode region 83. That is, in the region C9, the second cathode region 83 and the third cathode region 84 may be connected as a cathode region of the second conductivity type having the same doping concentration.
  • the doping concentrations of all the second cathode regions 83 and the third cathode regions 84 in one diode portion 80 may be equal. Further, all the second cathode regions 83 and the third cathode regions 84 in one diode portion 80 may be connected as cathode regions of the second conductivity type having the same doping concentration. In other words, all the second cathode regions 83 and the third cathode regions 84 in one diode unit 80 may be integrated as a cathode region of the second conductivity type having the same doping concentration.
  • FIG. 11d is a diagram showing an example of a uu ′ cross section in FIG. 11b.
  • the configuration of the uu ′ section in the semiconductor device 100 of this example is the same as the configuration of the qq ′ section in the semiconductor device 100 of FIG. 9D.
  • FIG. 11e is a diagram showing an example of a vv ′ cross section in FIG. 11b.
  • the vv ′ cross section is an XZ plane passing through the line v ′′ -v ′ ′′ in FIG. 11d.
  • the semiconductor device 100 of this example includes a first cathode region 82 and a third cathode region 84 in contact with the lower surface 23 in the vv ′ cross section.
  • the first cathode regions 82 and the third cathode regions 84 are alternately provided in the X-axis direction.
  • the third cathode region 84 is provided in contact with one end U1 and the other end U2 of the second cathode region 83, respectively.
  • a third cathode region 84 is provided in contact with each end of the plurality of second cathode regions 83. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
  • FIG. 12 a is a diagram illustrating another example of the upper surface of the semiconductor device 200 according to the present embodiment.
  • the semiconductor device 200 is a diode such as FWD.
  • the semiconductor substrate 10 is provided with an active portion 72 and an outer peripheral region 74 similar to those of the semiconductor device 100.
  • the active portion 72 of this example is provided with the diode portion 80 and the transistor portion 70 may not be provided.
  • the active unit 72 may be provided with a plurality of diode units 80 in the Y-axis direction.
  • the diode unit 80 includes a first cathode region 82 and a second cathode region 83.
  • the first cathode region 82 is the first conductivity type.
  • the first cathode region in this example is an N + type as an example.
  • the second cathode region 83 has a conductivity type different from that of the first cathode region 82.
  • the second cathode region 83 of this example is a P + type as an example.
  • the width Wh is a width in the X-axis direction of the semiconductor device 200 when the semiconductor substrate 10 is viewed from above.
  • the width WF is a width in the Y-axis direction of the semiconductor device 200 when the semiconductor substrate 10 is viewed from above.
  • the configuration other than the first cathode region 82 and the second cathode region 83, that is, the configuration of the dummy trench portion 30 and the like is omitted.
  • the semiconductor device 200 of this example has a plurality of floating regions 17 provided separately from each other for each first cathode region 82 in a top view of the semiconductor substrate 10.
  • the floating region 17 is of the second conductivity type.
  • the floating region 17 of this example is a P + type as an example.
  • the floating region 17 is disposed so as to at least partially overlap the first cathode region 82 when the semiconductor substrate 10 is viewed from above.
  • FIG. 12 a shows an example in which the entire floating region 17 is disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10.
  • the first cathode region 82 protrudes in the Y-axis direction from the floating region 17 in a top view of the semiconductor substrate 10.
  • both sides of the first cathode region 82 protrude from the floating region 17 in a top view of the semiconductor substrate 10 in the Y-axis direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the Y-axis direction.
  • the first cathode region 82 protrudes in the X-axis direction from the floating region 17.
  • both sides of the first cathode region 82 protrude from the floating region 17 in a top view of the semiconductor substrate 10 in the X-axis direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the X-axis direction.
  • the entire floating region 17 is disposed so as to overlap the first cathode region 82 when the semiconductor substrate 10 is viewed from above. That is, in the semiconductor device 200 of this example, the floating region 17 is provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above. The floating region 17 is provided separately for each first cathode region 82. Note that at least a part of the floating region 17 may be disposed so as to overlap the first cathode region 82.
  • FIG. 12b is an enlarged view of the region E1 in FIG. 12a.
  • the semiconductor device 200 of this example is provided with the floating region 17 inside the first cathode region 82 in a top view of the semiconductor substrate 10.
  • the floating region 17 is provided separately from each other for each first cathode region 82, and is disposed to at least partially overlap the first cathode region 82.
  • This example is an example in which the entire floating region 17 in a top view of the semiconductor substrate 10 is disposed so as to overlap the first cathode region 82.
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • FIG. 12c is a diagram showing an example of a cross section aa-aa ′ in FIG. 12b.
  • the semiconductor device 200 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the aa-aa ′ cross section.
  • the emitter electrode 52 is provided on the upper surface 21 and the upper surface of the interlayer insulating film 38.
  • the collector electrode 24 is provided on the lower surface 23.
  • the semiconductor device 200 of this example has a drift region 18 of the first conductivity type provided on the semiconductor substrate 10.
  • the semiconductor device 200 of the present example includes a second conductivity type base region 14 provided in contact with the upper surface 21 and above the drift region 18.
  • the semiconductor device 200 of the present example includes a plurality of first cathode regions 82 and 83 of a first conductivity type that are in contact with the lower surface 23 and provided below the drift region 18 and are separated from each other.
  • the semiconductor device 200 may not have the high concentration region 19. Further, when the high concentration region 19 is not provided, the dummy trench portion 30 may not be provided.
  • FIG. 12d is a diagram showing an example of a bb-bb ′ cross section in FIG. 12b.
  • the bb-bb ′ cross section is an XZ plane passing through the line bb ′′ -bb ′ ′′ in FIG. 12c.
  • the floating region 17 is continuously provided in the X-axis direction from the end position P6 to the end position P6 ′ above the first cathode region 82 in the bb-bb ′ cross section. .
  • the floating region 17 may be provided in contact with the first cathode region 82.
  • the second cathode region 83 on the X axis direction positive side in FIG. 12d may extend to the outer peripheral region 74 on the X axis direction positive side in FIG. 12a.
  • the second cathode region 83 on the X axis direction negative side may extend to the outer peripheral region 74 on the X axis direction negative side in FIG.
  • a first conductivity type termination region having a doping concentration lower than that of the first cathode region 82 may be provided on the lower surface 23 instead of the second cathode region 83.
  • the doping concentration of the termination region may be 1/10 or less of the doping concentration of the first cathode region 82.
  • the floating region 17 is provided separately for each first cathode region 82 and is provided above the first cathode region 82 for each first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
  • FIG. 13a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment.
  • the first cathode region 82 is an end portion on the negative side from the end region on the positive side in the Y-axis direction of the unit structure of the diode indicated by the region E2.
  • the semiconductor device 200 is different from the semiconductor device 200 shown in FIG. Further, the semiconductor device 200 shown in FIG. 12A differs from the semiconductor device 200 shown in FIG. 15A in that the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction.
  • FIG. 13b is an enlarged view of region E2 in FIG. 13a.
  • the first cathode region 82 is continuously provided from the end region on the positive side in the Y-axis direction of the unit structure of the diode to the end region on the negative side.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction.
  • the floating region 17 is provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above. Ten floating regions 17 are provided in the X-axis direction. The floating region 17 is provided above the first cathode region 82. The floating region 17 may be provided in contact with the first cathode region 82.
  • FIG. 13c is a diagram showing an example of a cc-cc ′ cross section in FIG. 13b.
  • the first cathode region 82 continues in the Y-axis direction from the Y-axis direction positive end region to the negative-side end region of the semiconductor device 200.
  • the width Wch2 in the Y-axis direction of the first cathode region 82 is equal to the width WF in the Y-axis direction of the semiconductor device 200.
  • FIG. 13d is a diagram showing an example of a dd-dd ′ section in FIG. 13b.
  • the section dd-dd ′ is the XZ plane passing through the line dd ′′ -dd ′ ′′ in FIG. 13c.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in contact with the lower surface 23 in the X-axis direction.
  • the floating region 17 is provided above the first cathode region 82 and in contact with the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
  • FIG. 14 a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment.
  • the first cathode regions 82 are separated from each other and provided in a lattice shape when the semiconductor substrate 10 is viewed from above.
  • FIG. 14A shows an example in which ten first cathode regions 82 are provided in the X-axis direction and three in the Y-axis direction in the diode unit structure shown by the region E3.
  • FIG. 14b is an enlarged view of the region E3 in FIG. 14a.
  • the semiconductor device 200 of this example is provided with the floating region 17 inside the first cathode region 82 in a top view of the semiconductor substrate 10.
  • Ten floating regions 17 are provided in the X-axis direction and three in the Y-axis direction.
  • a second cathode region 83 is provided between two first cathode regions 82 adjacent to each other in the Y-axis direction when the semiconductor substrate 10 is viewed from above. Between the two first cathode regions 82 adjacent in the X-axis direction, a second conductivity type third cathode region 84 is provided. A third cathode region 84 is also provided between two second cathode regions 83 adjacent in the X-axis direction when the semiconductor substrate 10 is viewed from above.
  • the third cathode region 84 is a P + type as an example.
  • the doping concentration of the third cathode region 84 may be equal to the doping concentration of the second cathode region 83.
  • the second cathode region 83 and the third cathode region 84 may be connected as cathode regions having the same doping concentration.
  • FIG. 14c is a diagram showing an example of a cross-section ee-ee ′ in FIG. 14b.
  • the configuration of the ee-ee ′ section in the semiconductor device 200 of this example is the same as the configuration of the aa-aa ′ section in the semiconductor device 200 shown in FIG.
  • FIG. 14d is a diagram showing an example of the ff-ff ′ cross section in FIG. 14b.
  • the ff-ff ′ cross section is the XZ plane passing through the line ff ′′ -ff ′ ′′ in FIG. 14c.
  • the configuration of the ff-ff ′ cross section in the semiconductor device 200 of this example is shown in FIG. 13d in that a third cathode region 84 is provided in place of the second cathode region 83 in the dd-dd ′ cross section shown in FIG. 13d. Different from the configuration of the dd-dd ′ cross section.
  • the first cathode region 82 and the third cathode region 84 are alternately provided in contact with the lower surface 23 in the X-axis direction, and the first cathode region 82 is located above the first cathode region 82.
  • a floating region 17 is provided in contact with 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
  • FIG. 15 a is a diagram illustrating an example of the upper surface of the semiconductor device 200 according to the present embodiment.
  • the semiconductor device 200 shown in FIG. 15a is different from the semiconductor device 200 shown in FIG. 12a in that the floating region 17 is not provided in the semiconductor device 200 shown in FIG. 12a.
  • the diode unit structure indicated by the region E4 is arranged in the Y-axis direction.
  • FIG. 15b is an enlarged view of region E4 in FIG. 15a.
  • the semiconductor device 200 of this example is provided with a second cathode region 83 on the positive side and the negative side of the first cathode region 82 in contact with the lower surface 23, respectively.
  • the second cathode region 83 may be connected to the second cathode region 83 adjacent to the first cathode region 82 in the Y-axis direction.
  • FIG. 15c is a diagram showing an example of a gg-gg ′ section in FIG. 15b.
  • the configuration of the gg-gg ′ cross section in the semiconductor device 200 of this example is that the floating region 17 is not provided above the first cathode region 82 in the cross section aa-aa ′ shown in FIG. 12c. -Different from the configuration of the cross section aa '.
  • FIG. 15d is a diagram showing an example of a hh-hh ′ cross section in FIG. 15b.
  • the hh-hh ′ cross section is an XZ plane passing through the line hh ′′ -hh ′ ′′ in FIG. 15C.
  • the configuration of the hh-hh ′ cross section in the semiconductor device 200 of the present example is that the floating region 17 is not provided and the collector regions 22 are not provided at both ends in the X-axis direction in the semiconductor device 100 shown in FIG. Except that the cathode region 83 is provided, the configuration is the same as that of the bb ′ cross section in the semiconductor device 100 shown in FIG. 2e.
  • the semiconductor device 200 of this example has a first cathode region 82 and a second cathode region 83 in contact with the lower surface 23.
  • the second cathode regions 83 are provided at both ends in the X axis direction.
  • the first cathode region 82 is provided between the second cathode regions 83 in the X-axis direction.
  • the second cathode region 83 is different in conductivity type or doping concentration from the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
  • FIG. 16 a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment.
  • the semiconductor device 200 of this example is different from the semiconductor device 200 shown in FIG. 13A in that the floating region 17 is not provided in the semiconductor device 200 shown in FIG. 13A.
  • the unit structures of the diode indicated by the region E5 are arranged in the Y-axis direction.
  • FIG. 16b is an enlarged view of region E5 in FIG. 16a.
  • the first cathode region 82 is continuously provided from the end region on the positive side in the Y-axis direction of the unit structure of the diode to the end region on the negative side.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction.
  • FIG. 16c is a diagram showing an example of a section ii-ii ′ in FIG. 16b.
  • the configuration of the semiconductor device 200 of this example in the section ii-ii ′ is that the floating region 17 is not provided above the first cathode region 82 in the section cc-cc ′ shown in FIG. 13c. -Different from the configuration of the cc 'cross section.
  • FIG. 16d is a diagram showing an example of a jj-jj ′ cross section in FIG. 16b.
  • the jj-jj ′ cross section is the XZ plane passing through the jj ′′ -jj ′ ′′ line in FIG. 16c.
  • the first cathode regions 82 and the second cathode regions 83 are alternately provided in contact with the lower surface 23 in the X-axis direction. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
  • FIG. 17a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment.
  • the semiconductor device 200 of this example is different from the semiconductor device 200 shown in FIG. 14A in that the floating region 17 is not provided in the semiconductor device 200 shown in FIG. 14A.
  • the diode unit structures indicated by the region E6 are arranged in the Y-axis direction.
  • FIG. 17b is an enlarged view of region E6 in FIG. 17a.
  • the first cathode regions 82 are separated from each other and provided in a grid pattern when the semiconductor substrate 10 is viewed from above.
  • FIG. 17c is a diagram showing an example of a kk-kk ′ cross section in FIG. 17b.
  • the configuration of the kk-kk ′ section in the semiconductor device 200 of this example is the same as the configuration of the gg-gg ′ section in the semiconductor device 200 shown in FIG. 15c.
  • FIG. 17d is a diagram showing an example of the mm-mm ′ cross section in FIG. 17b.
  • the mm-mm ′ cross section is the XZ plane that passes through the mm ′′ -mm ′ ′′ line in FIG. 17c.
  • the configuration of the mm-mm ′ cross section of the semiconductor device 200 of this example is that a third cathode region 84 is provided in place of the second cathode region 83 in the jj-jj ′ cross section of the semiconductor device 200 shown in FIG. It differs from the configuration of the jj-jj ′ cross section shown in FIG.
  • the first cathode region 82 and the third cathode region 84 are alternately provided in contact with the lower surface 23 in the X-axis direction. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
  • DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... Well region, 12 ... Emitter region, 14 ... Base region, 15 ... Contact region, 17 ... Floating region, 18 ... Drift region, 20 ... Buffer region, 21 ... Upper surface, 22 ... Collector region, 23 ... Lower surface, 24 ... Collector electrode, 29 ... Linear part, 30 ... Dummy trench part, 31 ... Tip part, 32 ... dummy insulating film, 34 ... dummy conductive part, 38 ... interlayer insulating film, 39 ... straight line part, 40 ... gate trench part, 41 ... tip part, 48 ... gate runner, 49 ... contact hole, 50 ... gate metal layer, 52 ...
  • emitter electrode 53 ..., Kelvin pad, 54 ... contact hole, 55 ... gate pad 56 ... Tact hole, 58 ... current sense pad, 59 ... current sense part, 60 ... mesa part, 70 ... transistor part, 72 ... active part, 74 ... outer peripheral area, 76 ... -Outer peripheral edge, 80 ... Diode part, 81 ... Cathode region, 82 ... First cathode region, 83 ... Second cathode region, 84 ... Third cathode region, 90 ... Temperature Sense unit, 92 ... temperature sense wiring, 94 ... temperature measuring pad, 96 ... detection unit, 100 ... semiconductor device, 200 ... semiconductor device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention comprises a semiconductor substrate, a transistor portion provided to the semiconductor substrate, and a diode portion that is provided to the semiconductor substrate and is arranged with the transistor portion along a pre-established arrangement direction. The diode portion has: a first-conductivity-type drift region provided to the semiconductor substrate; a second-conductivity-type base region, which is in contact with the upper surface of the semiconductor substrate and which is provided above the drift region; a plurality of first-conductivity-type first cathode regions and second cathode regions of a different conductivity type than the first cathode regions, the cathode regions being in contact with the lower surface of the semiconductor substrate and being provided below the drift region and set apart from each other; and a plurality of second-conductivity-type floating regions, which are provided so as to be set apart from each other in correspondence with each of the first cathode regions and which are disposed so as to at least partially overlap the first cathode regions.

Description

半導体装置Semiconductor device
 本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.
 従来、絶縁ゲート型バイポーラトランジスタ(IGBT)等の半導体装置が知られている(例えば、特許文献1参照)。
 特許文献1 国際公開WO2016/129041
Conventionally, a semiconductor device such as an insulated gate bipolar transistor (IGBT) is known (see, for example, Patent Document 1).
Patent Document 1 International Publication WO2016 / 129041
解決しようとする課題Challenges to be solved
 半導体装置においては、逆回復時のサージ電圧を抑制することが好ましい。 In a semiconductor device, it is preferable to suppress a surge voltage during reverse recovery.
一般的開示General disclosure
 本発明の第1の態様においては、半導体装置を提供する。半導体装置は、半導体基板と、半導体基板に設けられたトランジスタ部と、半導体基板に設けられ、予め定められた配列方向に沿ってトランジスタ部と配列されたダイオード部と、を備える。ダイオード部は、半導体基板に設けられた第1導電型のドリフト領域と、半導体基板の上面に接し、ドリフト領域よりも上方に設けられた第2導電型のベース領域と、半導体基板の下面に接し、ドリフト領域よりも下方に設けられた、互いに分離した複数の第1導電型の第1カソード領域および第1カソード領域とは導電型が異なる第2カソード領域と、第1カソード領域毎に互いに分離して設けられ、前記第1カソード領域と少なくとも部分的に重なって配置された複数の第2導電型のフローティング領域と、を有する。 In a first aspect of the present invention, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate, a transistor portion provided on the semiconductor substrate, and a diode portion provided on the semiconductor substrate and arranged with the transistor portion along a predetermined arrangement direction. The diode portion is in contact with a first conductivity type drift region provided on the semiconductor substrate, a second conductivity type base region provided above the drift region, and above the drift region, and a lower surface of the semiconductor substrate. A plurality of first cathode regions of a first conductivity type provided below the drift region and a second cathode region having a conductivity type different from that of the first cathode region and separated from each other for each first cathode region. And a plurality of second conductivity type floating regions arranged at least partially overlapping the first cathode region.
 第1カソード領域は、半導体基板の上面視で、フローティング領域よりも配列方向に張り出していてよい。第1カソード領域および第2カソード領域は、半導体基板の上面視で、配列方向に直交する延伸方向に交互に配置されてよい。フローティング領域は、半導体基板の上面視で、第1カソード領域および第2カソード領域の両方と重なって、延伸方向に複数設けられてよい。 The first cathode region may protrude in the arrangement direction from the floating region in a top view of the semiconductor substrate. The first cathode region and the second cathode region may be alternately arranged in the extending direction orthogonal to the arrangement direction in a top view of the semiconductor substrate. A plurality of floating regions may be provided in the extending direction so as to overlap both the first cathode region and the second cathode region in a top view of the semiconductor substrate.
 フローティング領域は、半導体基板の上面視で、第1カソード領域よりも延伸方向に張り出していてよい。第1カソード領域は、フローティング領域よりも配列方向に直交する延伸方向に張り出していてよい。 The floating region may protrude in the extending direction from the first cathode region in a top view of the semiconductor substrate. The first cathode region may protrude in the extending direction perpendicular to the arrangement direction than the floating region.
 第1カソード領域および第2カソード領域は、半導体基板の上面視で、配列方向に交互に配置されてよい。フローティング領域は、半導体基板の上面視で、第1カソード領域および第2カソード領域の両方と重なって、配列方向に複数設けられてよい。フローティング領域は、半導体基板の上面視で、第1カソード領域よりも配列方向に張り出していてよい。 The first cathode region and the second cathode region may be alternately arranged in the arrangement direction in a top view of the semiconductor substrate. A plurality of floating regions may be provided in the arrangement direction so as to overlap both the first cathode region and the second cathode region in a top view of the semiconductor substrate. The floating region may protrude in the arrangement direction from the first cathode region in a top view of the semiconductor substrate.
 本発明の第2の態様においては、半導体装置を提供する。半導体装置は、半導体基板と、半導体基板に設けられた第1導電型のドリフト領域と、半導体基板の上面に接し、前記ドリフト領域よりも上方に設けられた第2導電型のベース領域を備える。半導体装置は、半導体基板の下面に接し、ドリフト領域よりも下方に設けられた第1導電型の第1カソード領域と、半導体基板の下面に接し、ドリフト領域よりも下方に設けられ、第1カソード領域に挟まれて設けられた第2導電型の第2カソード領域と、半導体基板の下面に接し、ドリフト領域よりも下方に設けられ、第1カソード領域および第2カソード領域を挟むように設けられた第2導電型の第3カソード領域と、を備える。半導体装置は、半導体基板の上面視において、第1カソード領域と第2カソード領域との配列方向に沿った第3カソード領域の幅が、配列方向に沿った前記第2カソード領域の幅よりも大きい。 In a second aspect of the present invention, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate, a first conductivity type drift region provided on the semiconductor substrate, and a second conductivity type base region provided in contact with the upper surface of the semiconductor substrate and above the drift region. The semiconductor device is in contact with the lower surface of the semiconductor substrate and is provided below the drift region, the first conductivity type first cathode region, is in contact with the lower surface of the semiconductor substrate and is provided below the drift region, and the first cathode A second-conductivity-type second cathode region provided between the regions and a lower surface of the semiconductor substrate, provided below the drift region, and provided so as to sandwich the first and second cathode regions. And a third cathode region of the second conductivity type. In the semiconductor device, in the top view of the semiconductor substrate, the width of the third cathode region along the arrangement direction of the first cathode region and the second cathode region is larger than the width of the second cathode region along the arrangement direction. .
 半導体基板の上面視において、第3カソード領域が第1カソード領域および第2カソード領域を挟む方向に沿った第2カソード領域の幅は、配列方向に沿った第2カソード領域の幅よりも大きくてよい。半導体装置は、複数の第2カソード領域と、複数の第3カソード領域と、を備えてよい。複数の第2カソード領域と複数の第3カソード領域とは、半導体基板の上面視で接していてよい。 In the top view of the semiconductor substrate, the width of the second cathode region along the direction in which the third cathode region sandwiches the first cathode region and the second cathode region is larger than the width of the second cathode region along the arrangement direction. Good. The semiconductor device may include a plurality of second cathode regions and a plurality of third cathode regions. The plurality of second cathode regions and the plurality of third cathode regions may be in contact with each other in a top view of the semiconductor substrate.
 本発明の第3の態様においては、半導体装置を提供する。半導体装置は、半導体基板と、半導体基板に設けられた1つ以上のダイオード部と、を備える。ダイオード部は、半導体基板に設けられた第1導電型のドリフト領域と、半導体基板の上面に接し、ドリフト領域よりも上方に設けられた第2導電型のベース領域を備える。半導体装置は、半導体基板の下面に接し、ドリフト領域よりも下方に設けられた、互いに分離した複数の第1導電型の第1カソード領域および第1カソード領域とは導電型が異なる第2カソード領域と、第1カソード領域毎に互いに分離して設けられ、第1カソード領域と少なくとも部分的に重なって配置された複数の第2導電型のフローティング領域を有する。 In a third aspect of the present invention, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate and one or more diode portions provided on the semiconductor substrate. The diode portion includes a first conductivity type drift region provided on the semiconductor substrate and a second conductivity type base region provided in contact with the upper surface of the semiconductor substrate and above the drift region. The semiconductor device is in contact with the lower surface of the semiconductor substrate and is provided below the drift region and separated from each other, the first cathode region of the first conductivity type and the second cathode region having a conductivity type different from that of the first cathode region. And a plurality of second conductivity type floating regions, which are provided separately from each other for each first cathode region and are arranged at least partially overlapping the first cathode region.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る半導体チップ120の上面の一例を示す図である。It is a figure which shows an example of the upper surface of the semiconductor chip 120 which concerns on this embodiment. 図1aにおける領域Dの拡大図である。It is the enlarged view of the area | region D in FIG. 図1aにおける領域Aの拡大図である。It is the enlarged view of the area | region A in FIG. 図2aにおける領域B1の拡大図である。It is the enlarged view of area | region B1 in FIG. 2a. 図2bにおける領域C1の拡大図である。FIG. 3 is an enlarged view of a region C1 in FIG. 2b. 図2bにおけるa-a'断面の一例を示す図である。It is a figure which shows an example of the aa 'cross section in FIG. 2b. 図2bにおけるb-b'断面の一例を示す図である。It is a figure which shows an example of the bb 'cross section in FIG. 2b. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図3aにおける領域B2の拡大図である。FIG. 3b is an enlarged view of region B2 in FIG. 3a. 図3bにおける領域C2の拡大図である。FIG. 3b is an enlarged view of a region C2 in FIG. 3b. 図3bにおけるc-c'断面の一例を示す図である。It is a figure which shows an example of the cc 'cross section in FIG. 3b. 図3bにおけるd-d'断面の一例を示す図である。It is a figure which shows an example of the dd 'cross section in FIG. 3b. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図4aにおける領域B3の拡大図である。It is the enlarged view of area | region B3 in FIG. 4a. 図4bにおけるe-e'断面の一例を示す図である。It is a figure which shows an example of the ee 'cross section in FIG. 4b. 図4cにおけるf-f'断面の一例を示す図である。It is a figure which shows an example of the ff 'cross section in FIG. 4c. 図1aにおおける領域Aの他の拡大図である。It is the other enlarged view of the area | region A in FIG. 図5aにおける領域B4の拡大図である。It is the enlarged view of area | region B4 in FIG. 5a. 図5bにおける領域C4の拡大図である。It is the enlarged view of the area | region C4 in FIG. 5b. 図5bにおけるg-g'断面の一例を示す図である。FIG. 5b is a diagram showing an example of a gg ′ cross section in FIG. 5b. 図5bにおけるh-h'断面の一例を示す図である。It is a figure which shows an example of the hh 'cross section in FIG. 5b. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図6aにおける領域B5の拡大図である。FIG. 6b is an enlarged view of region B5 in FIG. 6a. 図6bにおける領域C5の拡大図である。FIG. 6b is an enlarged view of region C5 in FIG. 6b. 図6bにおけるi-i'断面の一例を示す図である。It is a figure which shows an example of the ii 'cross section in FIG. 6b. 図6bにおけるj-j'断面の一例を示す図である。It is a figure which shows an example of the j 'cross section in FIG. 6b. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図7aにおける領域B6の拡大図である。It is the enlarged view of area | region B6 in FIG. 7a. 図7bにおける領域C6の拡大図である。FIG. 7b is an enlarged view of a region C6 in FIG. 7b. 図7bにおけるk-k'断面の一例を示す図である。FIG. 8 is a diagram showing an example of a kk ′ cross section in FIG. 7b. 図7bにおけるm-m'断面の一例を示す図である。It is a figure which shows an example of the mm 'cross section in FIG. 7b. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図8aにおける領域B7の拡大図である。It is an enlarged view of area | region B7 in FIG. 8a. 図8bにおける領域C7の拡大図である。It is an enlarged view of the area | region C7 in FIG. 8b. 図8bにおけるn-n'断面の一例を示す図である。It is a figure which shows an example of the nn 'cross section in FIG. 8b. 図8bにおけるp-p'断面の一例を示す図である。It is a figure which shows an example of the pp 'cross section in FIG. 8b. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図9aにおける領域B8の拡大図である。It is an enlarged view of area | region B8 in FIG. 9a. 図9bにおける領域C8の拡大図である。FIG. 9b is an enlarged view of region C8 in FIG. 9b. 図9bにおけるq-q'断面の一例を示す図であるFIG. 9B is a diagram showing an example of a qq ′ cross section in FIG. 9B. 図9bにおけるr-r'断面の一例を示す図である。FIG. 9B is a diagram showing an example of an rr ′ cross section in FIG. 9B. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図10aにおける領域B9の拡大図である。FIG. 10b is an enlarged view of region B9 in FIG. 10a. 図10bにおけるs-s'断面の一例を示す図である。FIG. 10b is a diagram showing an example of an ss ′ cross section in FIG. 10b. 図10bにおけるt-t'断面の一例を示す図である。FIG. 10B is a diagram showing an example of a tt ′ cross section in FIG. 10B. 図1aにおける領域Aの他の拡大図である。It is another enlarged view of the area | region A in FIG. 図11aにおける領域B10の拡大図である。It is the enlarged view of area | region B10 in FIG. 11a. 図11bにおける領域C10の拡大図である。FIG. 12 is an enlarged view of a region C10 in FIG. 11b. 図11bにおけるu-u'断面の一例を示す図である。It is a figure which shows an example of the uu 'cross section in FIG. 11b. 図11bにおけるv-v'断面の一例を示す図である。FIG. 12 is a diagram showing an example of a vv ′ cross section in FIG. 11b. 本実施形態に係る半導体装置200の上面の他の一例を示す図である。It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. 図12aにおける領域E1の拡大図である。It is the enlarged view of the area | region E1 in FIG. 12a. 図12bにおけるaa-aa'断面の一例を示す図である。FIG. 12B is a diagram showing an example of a cross section aa-aa ′ in FIG. 12b. 図12bにおけるbb-bb'断面の一例を示す図である。FIG. 12B is a diagram showing an example of a bb-bb ′ cross section in FIG. 12b. 本実施形態に係る半導体装置200の上面の他の一例を示す図である。It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. 図13aにおける領域E2の拡大図である。It is the enlarged view of the area | region E2 in FIG. 13a. 図13bにおけるcc-cc'断面の一例を示す図である。It is a figure which shows an example of the cc-cc 'cross section in FIG. 13b. 図13bにおけるdd-dd'断面の一例を示す図である。It is a figure which shows an example of the dd-dd 'cross section in FIG. 13b. 本実施形態に係る半導体装置200の上面の他の一例を示す図である。It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. 図14aにおける領域E3の拡大図である。It is the enlarged view of the area | region E3 in FIG. 14a. 図14bにおけるee-ee'断面の一例を示す図である。It is a figure which shows an example of the ee-ee 'cross section in FIG. 図14bにおけるff-ff'断面の一例を示す図である。It is a figure which shows an example of the ff-ff 'cross section in FIG. 14b. 本実施形態に係る半導体装置200の上面の一例を示す図である。It is a figure which shows an example of the upper surface of the semiconductor device 200 which concerns on this embodiment. 図15aにおける領域E4の拡大図である。It is an enlarged view of the area | region E4 in FIG. 15a. 図15bにおけるgg-gg'断面の一例を示す図である。It is a figure which shows an example of the gg-gg 'cross section in FIG. 15b. 図15bにおけるhh-hh'断面の一例を示す図である。It is a figure which shows an example of the hh-hh 'cross section in FIG. 15b. 本実施形態に係る半導体装置200の上面の他の一例を示す図である。It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. 図16aにおける領域E5の拡大図である。It is the enlarged view of the area | region E5 in FIG. 16a. 図16bにおけるii-ii'断面の一例を示す図である。It is a figure which shows an example of the ii-ii 'cross section in FIG. 図16bにおけるjj-jj'断面の一例を示す図である。It is a figure which shows an example of the jj-jj 'cross section in FIG. 16b. 本実施形態に係る半導体装置200の上面の他の一例を示す図である。It is a figure which shows another example of the upper surface of the semiconductor device 200 which concerns on this embodiment. 図17aにおける領域E6の拡大図である。It is the enlarged view of the area | region E6 in FIG. 17a. 図17bにおけるkk-kk'断面の一例を示す図である。It is a figure which shows an example of the kk-kk 'cross section in FIG. 図17bにおけるmm-mm'断面の一例を示す図である。It is a figure which shows an example of the mm-mm 'cross section in FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 本明細書においては、半導体基板の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。基板、層またはその他の部材の2つの主面のうち、一方の面を上面、他方の面を下面と称する。「上」、「下」の方向は重力方向、または、半導体装置の実装時における基板等への取り付け方向に限定されない。 In this specification, one side in a direction parallel to the depth direction of the semiconductor substrate is referred to as “upper” and the other side is referred to as “lower”. Of the two principal surfaces of the substrate, layer or other member, one surface is referred to as the upper surface and the other surface is referred to as the lower surface. The directions of “up” and “down” are not limited to the direction of gravity or the direction of attachment to a substrate or the like when the semiconductor device is mounted.
 本明細書では、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書では、半導体基板の上面と平行な面をXY面とし、半導体基板の深さ方向をZ軸とする。 In this specification, technical matters may be described using the orthogonal coordinate axes of the X axis, the Y axis, and the Z axis. In this specification, a plane parallel to the upper surface of the semiconductor substrate is defined as an XY plane, and a depth direction of the semiconductor substrate is defined as a Z axis.
 各実施例においては、第1導電型をN型、第2導電型をP型とした例を示しているが、第1導電型をP型、第2導電型をN型としてもよい。この場合、各実施例における基板、層、領域等の導電型は、それぞれ逆の極性となる。 In each of the embodiments, the first conductivity type is an N type and the second conductivity type is a P type. However, the first conductivity type may be a P type and the second conductivity type may be an N type. In this case, the conductivity types of the substrates, layers, regions, etc. in the respective embodiments have opposite polarities.
 本明細書においてドーピング濃度とは、ドナーまたはアクセプタ化した不純物の濃度を指す。本明細書において、ドナーおよびアクセプタの濃度差をドーピング濃度とする場合がある。また、ドーピングされた領域におけるドーピング濃度分布がピークを有する場合、当該ピーク値を当該ドーピング領域におけるドーピング濃度としてよい。ドーピングされた領域におけるドーピング濃度がほぼ均一な場合等においては、当該ドーピング領域におけるドーピング濃度の平均値をドーピング濃度としてよい。 In this specification, the doping concentration refers to the concentration of impurities that have become donors or acceptors. In this specification, the concentration difference between the donor and the acceptor may be referred to as a doping concentration. Further, when the doping concentration distribution in the doped region has a peak, the peak value may be used as the doping concentration in the doping region. When the doping concentration in the doped region is substantially uniform, the average doping concentration in the doping region may be used as the doping concentration.
 図1aは、本実施形態に係る半導体装置100の上面の一例を示す図である。本例の半導体装置100は、トランジスタ部70およびダイオード部80を備える半導体チップである。トランジスタ部70は、IGBT等のトランジスタを含む。ダイオード部80は、半導体基板10の上面においてトランジスタ部70と隣接して設けられたFWD(Free Wheel Diode)等のダイオードを含む。 FIG. 1 a is a diagram showing an example of the upper surface of the semiconductor device 100 according to the present embodiment. The semiconductor device 100 of this example is a semiconductor chip including a transistor unit 70 and a diode unit 80. The transistor unit 70 includes a transistor such as an IGBT. The diode unit 80 includes a diode such as an FWD (Free Wheel Diode) provided adjacent to the transistor unit 70 on the upper surface of the semiconductor substrate 10.
 半導体基板10には、活性部72が設けられる。活性部72は、半導体装置100をオン状態に制御した場合に、半導体基板10の上面と下面との間で主電流が流れる領域である。即ち、半導体基板10の上面から下面、または下面から上面に、半導体基板10の内部を深さ方向に電流が流れる領域である。本明細書では、トランジスタ部70およびダイオード部80をそれぞれ素子部または素子領域と称する。素子部が設けられた領域を活性部72としてよい。 The semiconductor substrate 10 is provided with an active portion 72. The active portion 72 is a region where a main current flows between the upper surface and the lower surface of the semiconductor substrate 10 when the semiconductor device 100 is controlled to be in an on state. That is, the current flows in the depth direction in the semiconductor substrate 10 from the upper surface to the lower surface or from the lower surface to the upper surface of the semiconductor substrate 10. In the present specification, the transistor unit 70 and the diode unit 80 are referred to as an element unit or an element region, respectively. The region where the element portion is provided may be the active portion 72.
 なお、半導体基板10の上面視において、2つの素子部に挟まれた領域も活性部72とする。図1aの例では、素子部に挟まれてゲート金属層50が設けられている領域も活性部72に含めている。活性部72は、半導体基板10の上面視においてエミッタ電極が設けられた領域、およびエミッタ電極に挟まれた領域とすることもできる。図1aの例では、トランジスタ部70およびダイオード部80の上方にエミッタ電極が設けられる。 Note that the region sandwiched between the two element portions in the top view of the semiconductor substrate 10 is also referred to as the active portion 72. In the example of FIG. 1 a, the active portion 72 includes a region sandwiched between the element portions and provided with the gate metal layer 50. The active portion 72 may be a region where the emitter electrode is provided in a top view of the semiconductor substrate 10 and a region sandwiched between the emitter electrodes. In the example of FIG. 1 a, an emitter electrode is provided above the transistor unit 70 and the diode unit 80.
 半導体基板10の上面視において、活性部72と半導体基板10の外周端76との間の領域を、外周領域74とする。外周領域74は、半導体基板10の上面視において、活性部72を囲んで設けられる。外周領域74には、半導体装置100と外部の装置とをワイヤ等で接続するための1つ以上の金属のパッドが配置されてよい。半導体装置100は、活性部72を囲むエッジ終端構造部を外周領域74に有してよい。エッジ終端構造部は、半導体基板10の上面側の電界集中を緩和する。エッジ終端構造部は、例えばガードリング、フィールドプレート、リサーフおよびこれらを組み合わせた構造を有してよい。 In the top view of the semiconductor substrate 10, a region between the active portion 72 and the outer peripheral edge 76 of the semiconductor substrate 10 is defined as an outer peripheral region 74. The outer peripheral region 74 is provided so as to surround the active portion 72 when the semiconductor substrate 10 is viewed from above. In the outer peripheral region 74, one or more metal pads for connecting the semiconductor device 100 and an external device with a wire or the like may be arranged. The semiconductor device 100 may have an edge termination structure portion surrounding the active portion 72 in the outer peripheral region 74. The edge termination structure part alleviates electric field concentration on the upper surface side of the semiconductor substrate 10. The edge termination structure portion may have, for example, a guard ring, a field plate, a RESURF, and a combination of these.
 活性部72には、トランジスタ部70およびダイオード部80が複数設けられてよい。トランジスタ部70およびダイオード部80は、XY平面内において交互に周期的に配列されてよい。図1aは、トランジスタ部70がX軸方向に3つ、Y軸方向に7つ設けられ、ダイオード部80がX軸方向に3つ、Y軸方向に6つ設けられる一例を示している。X軸方向において対向するトランジスタ部70の間には、ゲート金属層50が設けられてよい。 The active unit 72 may be provided with a plurality of transistor units 70 and diode units 80. The transistor unit 70 and the diode unit 80 may be alternately and periodically arranged in the XY plane. FIG. 1a shows an example in which three transistor portions 70 are provided in the X axis direction and seven in the Y axis direction, and three diode portions 80 are provided in the X axis direction and six in the Y axis direction. A gate metal layer 50 may be provided between the transistor portions 70 facing each other in the X-axis direction.
 それぞれのダイオード部80には、半導体基板10の下面に第1導電型のカソード領域81が設けられている。カソード領域81は、図1aに示すように、外周領域74と接しない範囲に設けられてよい。 Each diode portion 80 is provided with a first conductivity type cathode region 81 on the lower surface of the semiconductor substrate 10. The cathode region 81 may be provided in a range not in contact with the outer peripheral region 74 as shown in FIG.
 ゲート金属層50は、半導体基板10の上面視で、活性部72を囲うように設けられてよい。ゲート金属層50は、外周領域74に設けられるゲートパッド55と電気的に接続される。ゲート金属層50は、半導体基板10の外周端76に沿って設けられてよい。ゲートパッド55は、X軸方向において、半導体基板10の外周端76と、活性部72との間に配置されてよい。ゲートパッド55と外周端76との間には、ゲート金属層50がY軸方向に延伸して設けられてよい。 The gate metal layer 50 may be provided so as to surround the active portion 72 when the semiconductor substrate 10 is viewed from above. Gate metal layer 50 is electrically connected to gate pad 55 provided in outer peripheral region 74. The gate metal layer 50 may be provided along the outer peripheral edge 76 of the semiconductor substrate 10. The gate pad 55 may be disposed between the outer peripheral end 76 of the semiconductor substrate 10 and the active portion 72 in the X-axis direction. A gate metal layer 50 may be provided extending in the Y-axis direction between the gate pad 55 and the outer peripheral end 76.
 温度センス部90は、活性部72の上方に設けられる。温度センス部90は、半導体基板10の上面視で、活性部72の中央に設けられてよい。温度センス部90は、活性部72の温度を検知する。温度センス部90は、単結晶または多結晶のシリコンで形成されるpn接合型温度センスダイオードであってよい。 The temperature sensing unit 90 is provided above the active unit 72. The temperature sensing part 90 may be provided in the center of the active part 72 when the semiconductor substrate 10 is viewed from above. The temperature sensing unit 90 detects the temperature of the active unit 72. The temperature sensing unit 90 may be a pn junction type temperature sensing diode formed of single crystal or polycrystalline silicon.
 温度センス配線92は、半導体基板10の上面視で、活性部72の上方に設けられる。温度センス配線92は、温度センス部90と接続される。温度センス配線92は、外周領域74まで、予め定められた方向(本例においてはX軸方向)に延伸し、外周領域74に設けられた温度測定用パッド94と接続される。温度測定用パッド94から流れる電流は、温度センス配線92および温度センス部90に流れる。温度センス部90がpn接合型温度センスダイオードである場合、温度センス配線92および温度測定用パッド94は少なくとも2つ設けられ、その一方はpn接合型温度センスダイオードのアノード端子と電気的に接続され、他方はpn接合型温度センスダイオードのカソードと電気的に接続される。検知部96は、温度センス部90の予備として設けられる。 The temperature sense wiring 92 is provided above the active portion 72 when the semiconductor substrate 10 is viewed from above. The temperature sense wiring 92 is connected to the temperature sense unit 90. The temperature sensing wiring 92 extends in a predetermined direction (X-axis direction in this example) up to the outer peripheral region 74 and is connected to a temperature measurement pad 94 provided in the outer peripheral region 74. The current flowing from the temperature measurement pad 94 flows to the temperature sense wiring 92 and the temperature sense unit 90. When the temperature sensing unit 90 is a pn junction type temperature sensing diode, at least two temperature sensing wirings 92 and temperature measuring pads 94 are provided, one of which is electrically connected to the anode terminal of the pn junction type temperature sensing diode. The other is electrically connected to the cathode of the pn junction type temperature sensing diode. The detection unit 96 is provided as a spare for the temperature sensing unit 90.
 外周領域74には、電流センス部59および電流センスパッド58、並びにケルビンパッド53が設けられる。電流センス部59は、ゲートパッド55に流れる電流を検知する。電流センスパッド58は、電流センス部59に流れる電流を測定するためのパッドである。ケルビンパッド53は、半導体基板10の上面視で、活性部72の上方に設けられるエミッタ電極と接続される。 In the outer peripheral region 74, a current sensing portion 59, a current sensing pad 58, and a Kelvin pad 53 are provided. The current sense unit 59 detects a current flowing through the gate pad 55. The current sense pad 58 is a pad for measuring the current flowing through the current sense unit 59. The Kelvin pad 53 is connected to an emitter electrode provided above the active portion 72 in a top view of the semiconductor substrate 10.
 図1bは、図1aにおける領域Dの拡大図である。本例の半導体装置100は、半導体基板10の内部に設けられ、且つ、半導体基板10の上面に露出する、ゲートトレンチ部40、ダミートレンチ部30、P+型のウェル領域11、N+型のエミッタ領域12、P-型のベース領域14およびP+型のコンタクト領域15を備える。本明細書では、ゲートトレンチ部40またはダミートレンチ部30を単にトレンチ部と称する場合がある。また、本例の半導体装置100は、半導体基板10の上面の上方に設けられたエミッタ電極52およびゲート金属層50を備える。エミッタ電極52およびゲート金属層50は互いに分離して設けられる。 FIG. 1b is an enlarged view of region D in FIG. 1a. The semiconductor device 100 of this example is provided inside the semiconductor substrate 10 and exposed on the upper surface of the semiconductor substrate 10. The gate trench portion 40, the dummy trench portion 30, the P + type well region 11, and the N + type emitter region. 12 includes a P− type base region 14 and a P + type contact region 15. In the present specification, the gate trench portion 40 or the dummy trench portion 30 may be simply referred to as a trench portion. In addition, the semiconductor device 100 of this example includes an emitter electrode 52 and a gate metal layer 50 provided above the upper surface of the semiconductor substrate 10. The emitter electrode 52 and the gate metal layer 50 are provided separately from each other.
 エミッタ電極52およびゲート金属層50と、半導体基板10の上面との間には層間絶縁膜が設けられるが、図1bでは省略している。本例の層間絶縁膜には、コンタクトホール56、コンタクトホール49およびコンタクトホール54が、当該層間絶縁膜を貫通して設けられる。ゲート金属層50は、コンタクトホール49を通って、ゲートランナー48と接触する。 Although an interlayer insulating film is provided between the emitter electrode 52 and the gate metal layer 50 and the upper surface of the semiconductor substrate 10, it is omitted in FIG. In the interlayer insulating film of this example, a contact hole 56, a contact hole 49, and a contact hole 54 are provided through the interlayer insulating film. Gate metal layer 50 contacts gate runner 48 through contact hole 49.
 エミッタ電極52は、コンタクトホール54を通って、半導体基板10の上面におけるエミッタ領域12、コンタクト領域15およびベース領域14と接触する。また、エミッタ電極52は、コンタクトホール56を通って、ダミートレンチ部30内のダミー導電部と接続される。エミッタ電極52とダミー導電部との間には、不純物がドープされたポリシリコン等の、導電性を有する材料で形成された接続部25が設けられてよい。接続部25と半導体基板10の上面との間には、酸化膜等の絶縁膜が設けられる。 The emitter electrode 52 is in contact with the emitter region 12, the contact region 15, and the base region 14 on the upper surface of the semiconductor substrate 10 through the contact hole 54. The emitter electrode 52 is connected to the dummy conductive portion in the dummy trench portion 30 through the contact hole 56. Between the emitter electrode 52 and the dummy conductive portion, a connection portion 25 made of a conductive material such as polysilicon doped with impurities may be provided. An insulating film such as an oxide film is provided between the connection portion 25 and the upper surface of the semiconductor substrate 10.
 ゲートランナー48は、不純物がドープされたポリシリコン等で形成される。ゲートランナー48は、半導体基板10の上面において、ゲートトレンチ部40内のゲート導電部と接続される。ゲートランナー48は、ダミートレンチ部30内のダミー導電部とは接続されない。本例のゲートランナー48は、コンタクトホール49の下方から、ゲートトレンチ部40の先端部41まで形成される。 The gate runner 48 is formed of polysilicon doped with impurities. The gate runner 48 is connected to the gate conductive portion in the gate trench portion 40 on the upper surface of the semiconductor substrate 10. Gate runner 48 is not connected to the dummy conductive portion in dummy trench portion 30. The gate runner 48 of this example is formed from below the contact hole 49 to the tip 41 of the gate trench 40.
 ゲートランナー48と半導体基板10の上面との間には、酸化膜等の絶縁膜が設けられる。ゲートトレンチ部40の先端部41において、ゲート導電部は、半導体基板10の上面に露出している。ゲート導電部の上方における絶縁膜には、ゲート導電部およびゲートランナー48を接続するコンタクトホールが設けられている。なお、図1bでは平面視で、エミッタ電極52とゲートランナー48が重なっている箇所があるが、エミッタ電極52とゲートランナー48は図示しない絶縁膜を挟んで互いに電気的に絶縁している。 An insulating film such as an oxide film is provided between the gate runner 48 and the upper surface of the semiconductor substrate 10. At the distal end portion 41 of the gate trench portion 40, the gate conductive portion is exposed on the upper surface of the semiconductor substrate 10. A contact hole for connecting the gate conductive portion and the gate runner 48 is provided in the insulating film above the gate conductive portion. In FIG. 1b, there is a portion where the emitter electrode 52 and the gate runner 48 overlap in plan view, but the emitter electrode 52 and the gate runner 48 are electrically insulated from each other with an insulating film (not shown) interposed therebetween.
 エミッタ電極52およびゲート金属層50は、金属を含む材料で形成される。例えば、各電極の少なくとも一部の領域はアルミニウムまたはアルミニウム‐シリコン合金で形成される。各電極は、アルミニウム等で形成された領域の下層にチタンやチタン化合物等で形成されたバリアメタルを有してよく、コンタクトホール内においてタングステン等で形成されたプラグを有してもよい。 The emitter electrode 52 and the gate metal layer 50 are formed of a material containing metal. For example, at least a partial region of each electrode is formed of aluminum or an aluminum-silicon alloy. Each electrode may have a barrier metal formed of titanium, a titanium compound, or the like below a region formed of aluminum or the like, and may have a plug formed of tungsten or the like in the contact hole.
 1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30は、半導体基板10の上面において、所定の配列方向(本例ではY軸方向)に沿って所定の間隔で配列される。本例のトランジスタ部70においては、配列方向に沿って1つ以上のゲートトレンチ部40と、1つ以上のダミートレンチ部30とが交互に設けられている。 The one or more gate trench portions 40 and the one or more dummy trench portions 30 are arranged on the upper surface of the semiconductor substrate 10 at predetermined intervals along a predetermined arrangement direction (Y-axis direction in this example). In the transistor portion 70 of this example, one or more gate trench portions 40 and one or more dummy trench portions 30 are alternately provided along the arrangement direction.
 本例のゲートトレンチ部40は、配列方向と垂直な長手方向(本例ではX軸方向)に沿って直線状に延伸する2つの直線部39と、2つの直線部39を接続する先端部41とを有してよい。先端部41の少なくとも一部は、半導体基板10の上面において曲線状に設けられることが好ましい。ゲートトレンチ部40の2つの直線部39において、長手方向に沿った直線形状の端である端部同士を先端部41が接続することで、直線部39の端部における電界集中を緩和することができる。本明細書では、ゲートトレンチ部40のそれぞれの直線部39を、一つのゲートトレンチ部40として扱う。 The gate trench portion 40 in this example includes two straight portions 39 extending linearly along a longitudinal direction (X-axis direction in this example) perpendicular to the arrangement direction, and a tip portion 41 connecting the two straight portions 39. May be included. It is preferable that at least a part of the tip portion 41 is provided in a curved shape on the upper surface of the semiconductor substrate 10. In the two straight portions 39 of the gate trench portion 40, the end portions 41, which are straight ends along the longitudinal direction, are connected to each other by the tip portion 41, so that electric field concentration at the end portions of the straight portions 39 can be reduced. it can. In the present specification, each straight line portion 39 of the gate trench portion 40 is treated as one gate trench portion 40.
 少なくとも一つのダミートレンチ部30は、ゲートトレンチ部40のそれぞれの直線部39の間に設けられる。これらのダミートレンチ部30は、ゲートトレンチ部40と同様に、直線部29および先端部31を有してよい。他の例では、ダミートレンチ部30は直線部29を有し、先端部31を有さなくてもよい。図1bに示した例では、トランジスタ部70において、ゲートトレンチ部40の2つの直線部39の間に、ダミートレンチ部30の2つの直線部29が配置されている。 The at least one dummy trench portion 30 is provided between the respective straight portions 39 of the gate trench portion 40. Similar to the gate trench portion 40, these dummy trench portions 30 may have a straight portion 29 and a tip portion 31. In another example, the dummy trench part 30 has the straight part 29 and does not have to have the tip part 31. In the example illustrated in FIG. 1B, in the transistor portion 70, the two straight portions 29 of the dummy trench portion 30 are disposed between the two straight portions 39 of the gate trench portion 40.
 ダイオード部80においては、複数のダミートレンチ部30が、半導体基板10の上面においてX軸方向に沿って配置されている。ダイオード部80におけるダミートレンチ部30のXY面における形状は、トランジスタ部70に設けられたダミートレンチ部30と同様であってよい。 In the diode portion 80, a plurality of dummy trench portions 30 are arranged along the X-axis direction on the upper surface of the semiconductor substrate 10. The shape of the dummy trench portion 30 in the diode portion 80 on the XY plane may be the same as that of the dummy trench portion 30 provided in the transistor portion 70.
 ダミートレンチ部30の先端部31および直線部29は、ゲートトレンチ部40の先端部41および直線部39と同様の形状を有してよい。ダイオード部80に設けられたダミートレンチ部30と、トランジスタ部70に設けられた直線形状のダミートレンチ部30は、Y軸方向における長さが同一であってよい。 The front end portion 31 and the straight portion 29 of the dummy trench portion 30 may have the same shape as the front end portion 41 and the straight portion 39 of the gate trench portion 40. The dummy trench part 30 provided in the diode part 80 and the linear dummy trench part 30 provided in the transistor part 70 may have the same length in the Y-axis direction.
 エミッタ電極52は、ゲートトレンチ部40、ダミートレンチ部30、ウェル領域11、エミッタ領域12、ベース領域14およびコンタクト領域15の上方に設けられる。ウェル領域11と、コンタクトホール54の長手方向の端のうちゲート金属層50が設けられる側の端とは、XY面内において離れて設けられる。 The emitter electrode 52 is provided above the gate trench portion 40, the dummy trench portion 30, the well region 11, the emitter region 12, the base region 14, and the contact region 15. The well region 11 and the end of the contact hole 54 in the longitudinal direction on the side where the gate metal layer 50 is provided are separated from each other in the XY plane.
 ウェル領域11の拡散深さは、ゲートトレンチ部40およびダミートレンチ部30の深さよりも深くてよい。ゲートトレンチ部40およびダミートレンチ部30の、ゲート金属層50側の一部の領域は、ウェル領域11に設けられる。ゲートトレンチ部40の先端部41のZ軸方向における底部、ダミートレンチ部30の先端部31のZ軸方向における底部は、ウェル領域11に覆われていてよい。 The diffusion depth of the well region 11 may be deeper than the depth of the gate trench portion 40 and the dummy trench portion 30. Partial regions on the gate metal layer 50 side of the gate trench portion 40 and the dummy trench portion 30 are provided in the well region 11. The bottom part in the Z-axis direction of the tip part 41 of the gate trench part 40 and the bottom part in the Z-axis direction of the tip part 31 of the dummy trench part 30 may be covered with the well region 11.
 トランジスタ部70およびダイオード部80のそれぞれには、各トレンチ部に挟まれたメサ部60が1つ以上設けられる。メサ部60とは、トレンチ部に挟まれた半導体基板10の領域において、トレンチ部の最も深い底部よりも上面側の領域である。 Each of the transistor portion 70 and the diode portion 80 is provided with one or more mesa portions 60 sandwiched between the trench portions. The mesa portion 60 is a region on the upper surface side of the deepest bottom portion of the trench portion in the region of the semiconductor substrate 10 sandwiched between the trench portions.
 各トレンチ部に挟まれたメサ部60には、ベース領域14が設けられる。ベース領域14は、ウェル領域11よりもドーピング濃度の低い第2導電型(P-型)である。 The base region 14 is provided in the mesa portion 60 sandwiched between the trench portions. The base region 14 is a second conductivity type (P− type) having a doping concentration lower than that of the well region 11.
 メサ部60のベース領域14の上面には、ベース領域14よりもドーピング濃度の高い第2導電型のコンタクト領域15が設けられる。本例のコンタクト領域15はP+型である。半導体基板10の上面において、ウェル領域11は、コンタクト領域15のうちY軸方向において最も端に配置されたコンタクト領域15から、ゲート金属層50の方向に離れて設けられてよい。半導体基板10の上面において、ウェル領域11とコンタクト領域15との間には、ベース領域14が露出している。 A contact region 15 of the second conductivity type having a higher doping concentration than the base region 14 is provided on the upper surface of the base region 14 of the mesa portion 60. The contact region 15 in this example is P + type. On the upper surface of the semiconductor substrate 10, the well region 11 may be provided away from the contact region 15 disposed at the end of the contact region 15 in the Y-axis direction in the direction of the gate metal layer 50. On the upper surface of the semiconductor substrate 10, the base region 14 is exposed between the well region 11 and the contact region 15.
 トランジスタ部70においては、半導体基板10の内部に設けられたドリフト領域よりもドーピング濃度が高い第1導電型のエミッタ領域12が、メサ部60-1の上面に選択的に設けられる。本例のエミッタ領域12はN+型である。エミッタ領域12の半導体基板10の深さ方向(-Z軸方向)に隣接するベース領域14のうち、ゲートトレンチ部40に接する部分が、チャネル部として機能する。ゲートトレンチ部40にオン電圧が印加されると、Z軸方向においてエミッタ領域12とドリフト領域との間に設けられたベース領域14において、ゲートトレンチ部40に隣接する部分に電子の反転層であるチャネルが形成される。ベース領域14にチャネルが形成されることで、エミッタ領域12とドリフト領域との間にキャリアが流れる。 In the transistor unit 70, the first conductivity type emitter region 12 having a higher doping concentration than the drift region provided in the semiconductor substrate 10 is selectively provided on the upper surface of the mesa unit 60-1. The emitter region 12 of this example is N + type. Of the base region 14 adjacent to the emitter region 12 in the depth direction (−Z axis direction) of the semiconductor substrate 10, a portion in contact with the gate trench portion 40 functions as a channel portion. When a turn-on voltage is applied to the gate trench portion 40, an electron inversion layer is formed in a portion adjacent to the gate trench portion 40 in the base region 14 provided between the emitter region 12 and the drift region in the Z-axis direction. A channel is formed. By forming a channel in the base region 14, carriers flow between the emitter region 12 and the drift region.
 本例では、各メサ部60のY軸方向における両端部には、ベース領域14-eが配置されている。本例では、それぞれのメサ部60の上面において、ベース領域14-eに対してメサ部60の中央側で隣接する領域は、コンタクト領域15である。また、ベース領域14-eに対して、コンタクト領域15とは逆側で接する領域はウェル領域11である。 In this example, base regions 14-e are disposed at both ends of each mesa 60 in the Y-axis direction. In this example, on the upper surface of each mesa portion 60, the region adjacent to the base region 14-e on the center side of the mesa portion 60 is the contact region 15. Further, the region that is in contact with the base region 14-e on the opposite side to the contact region 15 is the well region 11.
 本例のトランジスタ部70のメサ部60-1においてY軸方向両端のベース領域14-eに挟まれる領域には、コンタクト領域15およびエミッタ領域12がY軸方向に沿って交互に配置されている。コンタクト領域15およびエミッタ領域12のそれぞれは、隣接する一方のトレンチ部から、他方のトレンチ部まで設けられている。 In the mesa portion 60-1 of the transistor portion 70 of this example, the contact regions 15 and the emitter regions 12 are alternately arranged along the Y-axis direction in the region sandwiched between the base regions 14-e at both ends in the Y-axis direction. . Each of the contact region 15 and the emitter region 12 is provided from one adjacent trench portion to the other trench portion.
 トランジスタ部70のメサ部60のうち、ダイオード部80との境界に設けられた1つ以上のメサ部60-2には、メサ部60-1のコンタクト領域15よりも面積の大きいコンタクト領域15が設けられている。メサ部60-2にはエミッタ領域12が設けられていなくてよい。本例のメサ部60-2においては、ベース領域14-eに挟まれた領域全体に、コンタクト領域15が設けられている。 Among the mesa portions 60 of the transistor portion 70, one or more mesa portions 60-2 provided at the boundary with the diode portion 80 have a contact region 15 having a larger area than the contact region 15 of the mesa portion 60-1. Is provided. The emitter region 12 may not be provided in the mesa unit 60-2. In the mesa portion 60-2 of this example, the contact region 15 is provided in the entire region sandwiched between the base regions 14-e.
 本例のトランジスタ部70の各メサ部60-1においてコンタクトホール54は、コンタクト領域15およびエミッタ領域12の各領域の上方に設けられる。メサ部60-2におけるコンタクトホール54は、コンタクト領域15の上方に設けられる。各メサ部60においてコンタクトホール54は、ベース領域14-eおよびウェル領域11に対応する領域には設けられていない。トランジスタ部70の各メサ部60におけるコンタクトホール54は、Y軸方向において同一の長さを有してよい。 In each mesa portion 60-1 of the transistor portion 70 of this example, the contact hole 54 is provided above each of the contact region 15 and the emitter region 12. The contact hole 54 in the mesa portion 60-2 is provided above the contact region 15. In each mesa portion 60, the contact hole 54 is not provided in a region corresponding to the base region 14-e and the well region 11. The contact hole 54 in each mesa unit 60 of the transistor unit 70 may have the same length in the Y-axis direction.
 ダイオード部80において、半導体基板10の下面と接する領域には、カソード領域81が設けられる。後述するように、カソード領域81は、N+型の第1カソード領域、P+型の第2カソード領域およびP+の第3カソード領域を含んでよい。図1bにおいては、カソード領域81が設けられる領域を破線で示している。半導体基板10の下面と接する領域においてカソード領域81が設けられていない領域には、P+型のコレクタ領域が設けられてよい。 In the diode portion 80, a cathode region 81 is provided in a region in contact with the lower surface of the semiconductor substrate 10. As will be described later, the cathode region 81 may include an N + type first cathode region, a P + type second cathode region, and a P + third cathode region. In FIG. 1b, the area | region where the cathode area | region 81 is provided is shown with the broken line. A P + type collector region may be provided in a region where the cathode region 81 is not provided in a region in contact with the lower surface of the semiconductor substrate 10.
 トランジスタ部70は、Z軸方向においてコレクタ領域と重なる領域のうち、コンタクト領域15およびエミッタ領域12が設けられたメサ部60と、当該メサ部60に隣接するトレンチ部とが設けられた領域であってよい。ただし、ダイオード部80との境界におけるメサ部60-2には、エミッタ領域12に代えてコンタクト領域15が設けられていてよい。 The transistor portion 70 is a region in which a mesa portion 60 provided with the contact region 15 and the emitter region 12 and a trench portion adjacent to the mesa portion 60 are provided in a region overlapping with the collector region in the Z-axis direction. It's okay. However, a contact region 15 may be provided in place of the emitter region 12 in the mesa unit 60-2 at the boundary with the diode unit 80.
 ダイオード部80のメサ部60-3の上面には、ベース領域14が配置されている。ただし、ベース領域14-eに隣接する領域には、コンタクト領域15が設けられてもよい。コンタクト領域15の上方で、コンタクトホール54が終端している。なお、図1bの例では、ダイオード部80が5つのメサ部60-3とメサ部60-3を挟む7つのダミートレンチ部30を有しているが、ダイオード部80におけるメサ部60-3とダミートレンチ部30の数は、これに限定されない。ダイオード部80には、より多くのメサ部60-3およびダミートレンチ部30が設けられてよい。 The base region 14 is disposed on the upper surface of the mesa unit 60-3 of the diode unit 80. However, the contact region 15 may be provided in a region adjacent to the base region 14-e. A contact hole 54 terminates above the contact region 15. In the example of FIG. 1b, the diode unit 80 includes five mesa units 60-3 and seven dummy trench units 30 sandwiching the mesa unit 60-3. The number of dummy trench portions 30 is not limited to this. More mesa portions 60-3 and dummy trench portions 30 may be provided in the diode portion 80.
 図2aは、図1aにおける領域Aの拡大図である。本例の半導体装置100は、図2aに示すように、ダイオード部80のY軸方向正側およびY軸方向負側の双方に、当該ダイオード部80と隣接して、トランジスタ部70が設けられる。 FIG. 2a is an enlarged view of region A in FIG. 1a. In the semiconductor device 100 of this example, as illustrated in FIG. 2A, the transistor unit 70 is provided adjacent to the diode unit 80 on both the Y axis direction positive side and the Y axis direction negative side of the diode unit 80.
 幅WIは、トランジスタ部70のY軸方向の幅である。幅WFはダイオード部80のY軸方向の幅である。幅Whは、トランジスタ部70およびダイオード部80に対してX軸方向正側に配置されたウェル領域11の端部から、トランジスタ部70およびダイオード部80に対してX軸方向負側に配置されたウェル領域11の端部までの部分の幅である。当該部分には、ベース領域14が半導体基板10の上面側に設けられ、且つウェル領域11が設けられていない。 The width WI is the width of the transistor unit 70 in the Y-axis direction. The width WF is the width of the diode portion 80 in the Y-axis direction. The width Wh is arranged on the X axis direction negative side with respect to the transistor unit 70 and the diode part 80 from the end of the well region 11 arranged on the X axis direction positive side with respect to the transistor part 70 and the diode part 80. This is the width of the portion up to the end of the well region 11. In this portion, the base region 14 is provided on the upper surface side of the semiconductor substrate 10 and the well region 11 is not provided.
 幅WIは、幅WFより大きくてよい。幅WIは、幅WFの2倍以上5倍以下であってよい。幅WIは、1200μm以上2000μm以下であってよい。幅WIは、一例として1500μmである。幅WFは、400μm以上600μm以下であってよい。幅WFは、一例として500μmである。 Width WI may be larger than width WF. The width WI may be not less than 2 times and not more than 5 times the width WF. The width WI may be 1200 μm or more and 2000 μm or less. The width WI is 1500 μm as an example. The width WF may be 400 μm or more and 600 μm or less. The width WF is 500 μm as an example.
 ダイオード部80およびトランジスタ部70のX軸方向正側には、P+型のウェル領域11の端部Sが設けられる。また、ダイオード部80およびトランジスタ部70のX軸方向負側には、P+型のウェル領域11の端部S'が設けられる。ウェル領域11は、トランジスタ部70とダイオード部80が交互に配置された領域の外側に設けられている。言い換えると、端部Sよりトランジスタ部70およびダイオード部80の内部には、ウェル領域11は設けられていない。 The end S of the P + type well region 11 is provided on the positive side in the X-axis direction of the diode unit 80 and the transistor unit 70. Further, an end S ′ of the P + type well region 11 is provided on the negative side in the X-axis direction of the diode portion 80 and the transistor portion 70. The well region 11 is provided outside the region where the transistor portions 70 and the diode portions 80 are alternately arranged. In other words, the well region 11 is not provided in the transistor portion 70 and the diode portion 80 from the end portion S.
 X軸方向正側のウェル領域11の端部Sから、X軸方向負側のウェル領域11の端部S'までの幅Whは、幅WIより大きくてよい。幅Whは、幅WIの1.5倍以上3倍以下であってよい。幅Whは、3000μm以上3600μm以下であってよい。幅Whは、一例として3100μmであってよい。 The width Wh from the end S of the well region 11 on the X axis direction positive side to the end S ′ of the well region 11 on the X axis direction negative side may be larger than the width WI. The width Wh may be not less than 1.5 times and not more than 3 times the width WI. The width Wh may be not less than 3000 μm and not more than 3600 μm. The width Wh may be 3100 μm as an example.
 本例の半導体装置100におけるダイオード部80において、カソード領域81は、図2aに示す通り、第1カソード領域82および第2カソード領域83を含む。本例の半導体装置100は、X軸方向に延伸する第1カソード領域82および第2カソード領域83が、互いに分離して複数設けられる。本例においては、第1カソード領域82および第2カソード領域83は、半導体基板10の上面視でY軸方向に交互に配置される。 In the diode unit 80 of the semiconductor device 100 of this example, the cathode region 81 includes a first cathode region 82 and a second cathode region 83 as shown in FIG. In the semiconductor device 100 of this example, a plurality of first cathode regions 82 and second cathode regions 83 extending in the X-axis direction are provided separately from each other. In this example, the first cathode regions 82 and the second cathode regions 83 are alternately arranged in the Y-axis direction when the semiconductor substrate 10 is viewed from above.
 第1カソード領域82は第1導電型である。本例の第1カソード領域82は、一例としてN+型である。第2カソード領域83は、第1カソード領域82とは導電型が異なる。本例の第2カソード領域83は、一例としてP+型である。なお、図2aにおいては、ダイオード部80およびトランジスタ部70に設けられる第1カソード領域82および第2カソード領域83、並びにフローティング領域17以外の構成、即ちゲートトレンチ部40およびダミートレンチ部30等の構成を、省略して示している。 The first cathode region 82 is the first conductivity type. The first cathode region 82 of this example is an N + type as an example. The second cathode region 83 has a conductivity type different from that of the first cathode region 82. The second cathode region 83 of this example is a P + type as an example. In FIG. 2a, configurations other than the first cathode region 82 and the second cathode region 83 and the floating region 17 provided in the diode unit 80 and the transistor unit 70, that is, configurations of the gate trench unit 40, the dummy trench unit 30, and the like. Is omitted.
 ダイオード部80においてY軸方向の最も正側に設けられる第1カソード領域82は、半導体基板10の上面視で、当該ダイオード部80のY軸方向正側で隣接するトランジスタ部70と接してよい。ダイオード部80においてY軸方向の最も負側に設けられる第1カソード領域82は、半導体基板10の上面視で、当該ダイオード部80のY軸方向負側で隣接するトランジスタ部70と接してよい。 The first cathode region 82 provided on the most positive side in the Y-axis direction in the diode part 80 may be in contact with the adjacent transistor part 70 on the positive side in the Y-axis direction of the diode part 80 when the semiconductor substrate 10 is viewed from above. The first cathode region 82 provided on the most negative side in the Y-axis direction in the diode unit 80 may be in contact with the adjacent transistor unit 70 on the negative side in the Y-axis direction of the diode unit 80 in a top view of the semiconductor substrate 10.
 X軸方向において、第1カソード領域82のX軸方向正側の端と端部Sとの間には、半導体基板10の下面と接する領域に、第2導電型のコレクタ領域22が設けられてよい。X軸方向において、第1カソード領域82のX軸方向負側の端と端部S'との間にも、半導体基板10の下面と接する領域に、コレクタ領域22が設けられてよい。本例のコレクタ領域22は、一例としてP+型である。 In the X-axis direction, a second conductivity type collector region 22 is provided in a region in contact with the lower surface of the semiconductor substrate 10 between the end of the first cathode region 82 on the positive side in the X-axis direction and the end S. Good. In the X-axis direction, the collector region 22 may be provided in a region in contact with the lower surface of the semiconductor substrate 10 between the end on the negative side in the X-axis direction of the first cathode region 82 and the end S ′. The collector region 22 of this example is a P + type as an example.
 第1カソード領域82および第2カソード領域83を含むカソード領域81と第1カソード領域82および第2カソード領域83以外の構成との位置関係は、図1bに示した上面図における位置関係であってよい。第1カソード領域82および第2カソード領域83以外の構成とは、例えばコンタクトホール54、ダミートレンチ部30、コンタクトホール54のX軸方向の端部に設けられたコンタクト領域15である。 The positional relationship between the cathode region 81 including the first cathode region 82 and the second cathode region 83 and the configuration other than the first cathode region 82 and the second cathode region 83 is the positional relationship in the top view shown in FIG. Good. The configurations other than the first cathode region 82 and the second cathode region 83 are, for example, the contact hole 54, the dummy trench portion 30, and the contact region 15 provided at the end of the contact hole 54 in the X-axis direction.
 ダイオード部80において、半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積の割合は、60%以上90%以下であってよい。当該合計面積に占める第2カソード領域83の面積の割合は、10%以上40%以下であってよい。一例として、当該合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積の割合は、それぞれ80%および20%である。 In the diode portion 80, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 may be 60% or more and 90% or less. . The ratio of the area of the second cathode region 83 to the total area may be 10% or more and 40% or less. As an example, the ratio of the area of the first cathode region 82 and the area of the second cathode region 83 to the total area is 80% and 20%, respectively.
 本例の半導体装置100は、第1カソード領域82毎に互いに分離して設けられた複数のフローティング領域17を有する。フローティング領域17は第2導電型である。本例のフローティング領域17は、一例としてP+型である。 The semiconductor device 100 of this example has a plurality of floating regions 17 provided separately for each first cathode region 82. The floating region 17 is of the second conductivity type. The floating region 17 of this example is a P + type as an example.
 フローティング領域17は、半導体基板10の上面視で、第1カソード領域82と少なくとも部分的に重なって配置される。図2aは、半導体基板10の上面視で、フローティング領域17の全体が、第1カソード領域82と重なって配置される一例を示している。即ち、図2aにおいて、第1カソード領域82は、半導体基板10の上面視で、フローティング領域17よりも配列方向(Y軸方向)に張り出している。また、第1カソード領域82は、半導体基板10の上面視で、フローティング領域17よりも配列方向に直交する延伸方向(X軸方向)に張り出している。 The floating region 17 is disposed so as to at least partially overlap the first cathode region 82 when the semiconductor substrate 10 is viewed from above. FIG. 2 a shows an example in which the entire floating region 17 is arranged so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. That is, in FIG. 2 a, the first cathode region 82 protrudes in the arrangement direction (Y-axis direction) from the floating region 17 in a top view of the semiconductor substrate 10. Further, the first cathode region 82 protrudes in the extending direction (X-axis direction) perpendicular to the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10.
 フローティング領域17は、半導体基板10の上面視で、トランジスタ部70と重ならないように配置される。フローティング領域17は、ダイオード部80とトランジスタ部70との境界にも接しないように配置される。 The floating region 17 is arranged so as not to overlap the transistor portion 70 when the semiconductor substrate 10 is viewed from above. The floating region 17 is arranged so as not to contact the boundary between the diode portion 80 and the transistor portion 70.
 図2bは、図2aにおける領域B1の拡大図である。図2bは、図2aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図2bに示す通り、本例の半導体装置100は、ダイオード部80において、第1カソード領域82のXY平面内における内側において、X軸方向に延伸するフローティング領域17が、一例としてY軸方向に3個設けられる。 FIG. 2b is an enlarged view of region B1 in FIG. 2a. FIG. 2B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 2A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 2b, in the semiconductor device 100 of this example, in the diode portion 80, the floating region 17 extending in the X-axis direction is arranged in the Y-axis direction as an example inside the first cathode region 82 in the XY plane. Are provided.
 X軸方向正側のウェル領域11の端部Sから第1カソード領域82のX軸方向正側の端までの上面視におけるX軸方向の幅Wwcは、ダイオード部80の幅WFより小さくてよい。幅Wwcは、幅WFの0.25倍以上0.75倍以下であってよい。幅Wwcは、150μm以上300μm以下であってよい。幅Wwcは、一例として250μmである。 The width Wwc in the X-axis direction in a top view from the end S of the well region 11 on the X-axis direction positive side to the end on the X-axis direction positive side of the first cathode region 82 may be smaller than the width WF of the diode portion 80. . The width Wwc may be not less than 0.25 times and not more than 0.75 times the width WF. The width Wwc may be 150 μm or more and 300 μm or less. The width Wwc is 250 μm as an example.
 コンタクトホール54のX軸方向正側の端部Tは、図2bに示すように、ウェル領域11のX軸方向正側の端部SからX軸方向負側に幅Wwca離れて設けられる。また、コンタクトホール54のX軸方向負側の端部T'は、ウェル領域11のX軸方向負側の端部S'からX軸方向正側に幅Wwca離れて設けられる。コンタクトホール54は、端部Tから端部T'まで、X軸方向に連続して設けられてよい。 The end T on the positive side in the X-axis direction of the contact hole 54 is provided with a width Wwca away from the end S on the positive side in the X-axis direction of the well region 11 on the negative side in the X-axis direction, as shown in FIG. Further, the end portion T ′ on the negative side in the X-axis direction of the contact hole 54 is provided to be separated from the end portion S ′ on the negative side in the X-axis direction of the well region 11 on the positive side in the X-axis direction by a width Wwca. The contact hole 54 may be provided continuously from the end T to the end T ′ in the X-axis direction.
 なお図2bにおいては、1つのコンタクトホール54を図示しているが、実際には、図1bに示した上面図から明らかなように、端部TのX軸方向の位置および端部T'のX軸方向の位置がそれぞれ等しいコンタクトホール54が、Y軸方向に複数設けられる。 In FIG. 2b, one contact hole 54 is shown, but actually, as is clear from the top view shown in FIG. 1b, the position of the end T in the X-axis direction and the end T ' A plurality of contact holes 54 having the same position in the X-axis direction are provided in the Y-axis direction.
 ウェル領域11のX軸方向正側の端部Sから、ダイオード部80に設けられた複数のコンタクトホール54のX軸方向正側の端部Tまでの幅Wwcaは、当該端部Tから第1カソード領域82のX軸方向正側の端までの上面視におけるX軸方向の幅Wwcbより小さくてよい。幅Wwcaは、幅Wwcbの0.1倍以上0.9倍以下であってよい。幅Wwcaは、20μm以上110μm以下であってよい。幅Wwcbは、120μm以上180μm以下であってよい。幅Wwcaは、一例として100μmである。幅Wwcbは、一例として150μmである。幅Wwcaと幅Wwcbの和は、幅Wwcである。 The width Wwca from the end S on the positive side in the X-axis direction of the well region 11 to the end T on the positive side in the X-axis direction of the plurality of contact holes 54 provided in the diode portion 80 is the first width from the end T. The width may be smaller than the width Wwcb in the X-axis direction in a top view up to the end on the positive side in the X-axis direction of the cathode region 82. The width Wwca may be not less than 0.1 times and not more than 0.9 times the width Wwcb. The width Wwca may be 20 μm or more and 110 μm or less. The width Wwcb may be 120 μm or more and 180 μm or less. The width Wwca is 100 μm as an example. The width Wwcb is 150 μm as an example. The sum of the width Wwca and the width Wwcb is the width Wwc.
 また、ウェル領域11のX軸方向負側の端部S'から、ダイオード部80に設けられた複数のコンタクトホール54のX軸方向負側の端部T'までの幅も、幅Wwcaに等しくてよい。当該端部T'から第1カソード領域82のX軸方向負側の端までの、半導体基板10の上面視におけるX軸方向の幅も、幅Wwcbに等しくてよい。なお、X軸方向負側のウェル領域11の端部S'から第1カソード領域82のX軸方向負側の端までの上面視におけるX軸方向の幅も、幅Wwcに等しくてよい。 The width from the end S ′ on the negative side in the X-axis direction of the well region 11 to the end T ′ on the negative side in the X-axis direction of the plurality of contact holes 54 provided in the diode portion 80 is also equal to the width Wwca. It's okay. The width in the X-axis direction in the top view of the semiconductor substrate 10 from the end T ′ to the end on the negative side in the X-axis direction of the first cathode region 82 may be equal to the width Wwcb. The width in the X-axis direction in a top view from the end S ′ of the well region 11 on the negative side in the X-axis direction to the end on the negative side in the X-axis direction of the first cathode region 82 may be equal to the width Wwc.
 第1カソード領域82のX軸方向の幅Wcv1は、幅Whよりも小さくてよい。幅Wcv1は、幅Whから幅Wwcの2倍を減じた値に等しい。幅Wcv1は、幅Whの90%以上96%以下であってよい。幅Wcv1は、2700μm以上3450μm以下であってよい。幅Wcv1は、一例として2850μmである。 The width Wcv1 in the X-axis direction of the first cathode region 82 may be smaller than the width Wh. The width Wcv1 is equal to a value obtained by subtracting twice the width Wwc from the width Wh. The width Wcv1 may be 90% or more and 96% or less of the width Wh. The width Wcv1 may be 2700 μm or more and 3450 μm or less. The width Wcv1 is 2850 μm as an example.
 第1カソード領域82のY軸方向の幅Wch1は、幅WFの5%以上40%以下であってよい。幅Wch1は、20μm以上240μm以下であってよい。 The width Wch1 in the Y-axis direction of the first cathode region 82 may be 5% to 40% of the width WF. The width Wch1 may be 20 μm or more and 240 μm or less.
 第1カソード領域82のXY平面内における内側には、図2bに示すように、フローティング領域17が設けられる。フローティング領域17は、エミッタ電極52には接続されない。 Inside the first cathode region 82 in the XY plane, as shown in FIG. 2b, the floating region 17 is provided. The floating region 17 is not connected to the emitter electrode 52.
 それぞれの第1カソード領域82において、フローティング領域17のY軸方向の幅Wfl11は、幅Wch1の89%以上95%以下であってよい。また、それぞれの第1カソード領域82において、フローティング領域17のX軸方向の幅Wfl21は、幅Wcv1の89%以上95%以下であってよい。 In each first cathode region 82, the width Wfl11 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch1. In each first cathode region 82, the width Wfl21 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv1.
 それぞれの第1カソード領域82において、半導体基板10の上面視で、第1カソード領域82の面積に占めるフローティング領域17の面積は、80%以上90%以下であってよい。半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積が、それぞれ80%および20%の場合、当該面積に占めるフローティング領域17の面積の割合は、64%以上72%以下であってよい。 In each first cathode region 82, the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less. When the area of the first cathode region 82 and the area of the second cathode region 83 in the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 are 80% and 20%, respectively, The ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
 Y軸方向において、ダイオード部80と、当該ダイオード部80にY軸方向正側で隣接するトランジスタ部70との境界から、Y軸方向の最も正側に設けられるフローティング領域17のY軸方向正側の端までの幅Wcf1は、幅Wch1の3%以上6%以下であってよい。幅Wcf1は、ゼロでなければよい。幅Wcf1は、2μm以上6μm以下であってよい。幅Wcf1は、一例として5μmである。なお、Y軸方向において、当該ダイオード部80と、当該ダイオード部80にY軸方向負側で隣接するトランジスタ部70との境界から、Y軸方向の最も負側に設けられるフローティング領域17のY軸方向負側の端までの幅も、幅Wcf1に等しくてよい。 In the Y-axis direction, the Y-axis direction positive side of the floating region 17 provided on the most positive side in the Y-axis direction from the boundary between the diode unit 80 and the transistor unit 70 adjacent to the diode unit 80 on the Y-axis direction positive side The width Wcf1 up to the end of may be 3% or more and 6% or less of the width Wch1. The width Wcf1 may not be zero. The width Wcf1 may be 2 μm or more and 6 μm or less. The width Wcf1 is 5 μm as an example. In the Y-axis direction, the Y-axis of the floating region 17 provided on the most negative side in the Y-axis direction from the boundary between the diode unit 80 and the transistor unit 70 adjacent to the diode unit 80 on the negative side in the Y-axis direction. The width to the end on the negative direction side may also be equal to the width Wcf1.
 それぞれの第1カソード領域82において、第1カソード領域82のX軸方向正側の端から、フローティング領域17のX軸方向正側の端までの幅Wcf2は、幅Wcv1の3%以上6%以下であってよい。幅Wcf2は、ゼロであってもよい。また、幅Wcf2は、幅Wcf1と等しくてもよいし、異なっていてもよい。幅Wcf2は、2μm以上6μm以下であってよい。幅Wcf2は、一例として5μmである。なお、第1カソード領域82のY軸方向負側の端から、Y軸方向負側のフローティング領域17のY軸方向負側の端までの幅も、幅Wcf2に等しい。 In each first cathode region 82, the width Wcf2 from the X-axis direction positive end of the first cathode region 82 to the X-axis direction positive end of the floating region 17 is 3% or more and 6% or less of the width Wcv1. It may be. The width Wcf2 may be zero. Further, the width Wcf2 may be equal to or different from the width Wcf1. The width Wcf2 may be 2 μm or more and 6 μm or less. The width Wcf2 is 5 μm as an example. The width from the Y-axis direction negative side end of the first cathode region 82 to the Y-axis direction negative side end of the Y-axis direction negative side floating region 17 is also equal to the width Wcf2.
 なお、本例においてコンタクトホール54のY軸方向の幅Wcntは、Wcf1および幅Wcf2より小さくてよい。幅Wcntは、0.3μm以上0.7μm以下であってよい。幅Wcntは、一例として0.5μmである。 In this example, the width Wcnt in the Y-axis direction of the contact hole 54 may be smaller than Wcf1 and width Wcf2. The width Wcnt may be not less than 0.3 μm and not more than 0.7 μm. The width Wcnt is 0.5 μm as an example.
 図2cは、図2bにおける領域C1の拡大図である。図2cに示す通り、本例の半導体装置100は、一例として第1カソード領域82がY軸方向に3つ設けられる。Y軸方向において、隣り合う第1カソード領域82の間には、第2カソード領域83が設けられる。 FIG. 2c is an enlarged view of region C1 in FIG. 2b. As shown in FIG. 2c, in the semiconductor device 100 of this example, three first cathode regions 82 are provided in the Y-axis direction as an example. A second cathode region 83 is provided between adjacent first cathode regions 82 in the Y-axis direction.
 幅Wnf1は、Y軸方向の最も正側の第1カソード領域82において、当該第1カソード領域82のY軸方向負側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17のY軸方向負側の端までの、Y軸方向における幅である。また、幅Wnf1は、Y軸方向の最も負側の第1カソード領域82において、当該第1カソード領域82のY軸方向正側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17のY軸方向正側の端までの、Y軸方向における幅である。 The width Wnf1 is the floating region 17 arranged so as to overlap the first cathode region 82 from the Y-axis direction negative end of the first cathode region 82 in the most positive first cathode region 82 in the Y-axis direction. Is the width in the Y-axis direction to the end on the negative side in the Y-axis direction. In addition, the width Wnf1 is a floating in the first cathode region 82 that is the most negative side in the Y-axis direction, overlapping the first cathode region 82 from the Y-axis direction positive end of the first cathode region 82. This is the width in the Y-axis direction up to the end on the Y-axis direction positive side of the region 17.
 Y軸方向の最も正側の第1カソード領域82および最も負側の第1カソード領域82の双方を除く第1カソード領域82においても、当該第1カソード領域82のY軸方向正側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17の正側の端までのY軸方向における幅は、幅Wnf1と等しくてよい。当該第1カソード領域82のY軸方向負側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17の負側の端までのY軸方向における幅も、幅Wnf1と等しくてよい。 Also in the first cathode region 82 excluding both the most positive first cathode region 82 and the most negative first cathode region 82 in the Y-axis direction, from the Y-axis direction positive end of the first cathode region 82. The width in the Y-axis direction up to the positive end of the floating region 17 disposed so as to overlap the first cathode region 82 may be equal to the width Wnf1. The width in the Y-axis direction from the end on the negative side in the Y-axis direction of the first cathode region 82 to the end on the negative side of the floating region 17 arranged so as to overlap the first cathode region 82 is also equal to the width Wnf1. Good.
 幅Wnf1は、幅Wcf1と等しくてよいが、異なっていてもよい。幅Wnf1は、ゼロであってもよい。 Width Wnf1 may be equal to width Wcf1, but may be different. The width Wnf1 may be zero.
 本例の半導体装置100は、ダイオード部80に第1導電型の第1カソード領域82および第2導電型の第2カソード領域83が、Y軸方向に交互に設けられる。また、複数の第2導電型のフローティング領域17が、第1カソード領域82毎に互いに分離して設けられ、半導体基板10の上面視で、第1カソード領域82と重なって配置される。このため、ダイオード部80の逆回復時におけるサージ電圧を抑制することができる。 In the semiconductor device 100 of this example, the first conductive type first cathode regions 82 and the second conductive type second cathode regions 83 are alternately provided in the Y-axis direction in the diode portion 80. A plurality of second conductivity type floating regions 17 are provided separately from each other for each first cathode region 82, and are disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
 図2dは、図2bにおけるa-a'断面の一例を示す図である。本例の半導体装置100は、a-a'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10の上面21および層間絶縁膜38の上面に設けられる。コレクタ電極24は、半導体基板10の下面23に設けられる。エミッタ電極52およびコレクタ電極24は、金属等の導電材料で形成される。層間絶縁膜38は、PSG、BPSG等のシリケートガラスであってよい。また、層間絶縁膜38は、酸化膜または窒化膜等であってもよい。 FIG. 2d is a diagram showing an example of a cross section aa ′ in FIG. 2b. The semiconductor device 100 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the section aa ′. The emitter electrode 52 is provided on the upper surface 21 of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 38. The collector electrode 24 is provided on the lower surface 23 of the semiconductor substrate 10. The emitter electrode 52 and the collector electrode 24 are formed of a conductive material such as metal. The interlayer insulating film 38 may be silicate glass such as PSG or BPSG. The interlayer insulating film 38 may be an oxide film or a nitride film.
 半導体基板10は、シリコン基板であってよく、炭化シリコン基板であってよく、窒化ガリウム等の窒化物半導体基板または酸化ガリウム基板等であってもよい。本例の半導体基板10はシリコン基板である。 The semiconductor substrate 10 may be a silicon substrate, a silicon carbide substrate, a nitride semiconductor substrate such as gallium nitride, or a gallium oxide substrate. The semiconductor substrate 10 in this example is a silicon substrate.
 半導体基板10は、第1導電型のドリフト領域18を備える。本例のドリフト領域18はN-型である。ドリフト領域18は、半導体基板10において、他のドーピング領域が設けられずに残存した領域であってよい。 The semiconductor substrate 10 includes a first conductivity type drift region 18. The drift region 18 in this example is N-type. The drift region 18 may be a region remaining in the semiconductor substrate 10 without being provided with another doping region.
 半導体基板10の上面21には、1つ以上のゲートトレンチ部40および1つ以上のダミートレンチ部30が設けられる。各トレンチ部は、上面21から、ベース領域14を貫通して、ドリフト領域18に到達して設けられている。 The upper surface 21 of the semiconductor substrate 10 is provided with one or more gate trench portions 40 and one or more dummy trench portions 30. Each trench portion is provided from the upper surface 21 through the base region 14 to reach the drift region 18.
 ダミートレンチ部30は、上面21に設けられたダミートレンチ、並びにダミートレンチ内に設けられたダミー絶縁膜32およびダミー導電部34を有する。ダミートレンチの上端は、Z軸方向において上面21と同じ位置であってよい。ダミー絶縁膜32は、ダミートレンチの内壁を覆って設けられる。ダミー絶縁膜32は、ダミートレンチの内壁の半導体を酸化または窒化して形成してよい。ダミー導電部34は、ダミートレンチの内部においてダミー絶縁膜32よりも内側に設けられる。即ち、ダミー絶縁膜32は、ダミー導電部34と半導体基板10とを絶縁する。ダミー導電部34は、ポリシリコン等の導電材料で形成される。 The dummy trench portion 30 includes a dummy trench provided on the upper surface 21, and a dummy insulating film 32 and a dummy conductive portion 34 provided in the dummy trench. The upper end of the dummy trench may be at the same position as the upper surface 21 in the Z-axis direction. The dummy insulating film 32 is provided so as to cover the inner wall of the dummy trench. The dummy insulating film 32 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the dummy trench. The dummy conductive portion 34 is provided inside the dummy insulating film 32 inside the dummy trench. That is, the dummy insulating film 32 insulates the dummy conductive portion 34 from the semiconductor substrate 10. The dummy conductive portion 34 is formed of a conductive material such as polysilicon.
 ダミー導電部44は、ダミー絶縁膜32を挟んで、ベース領域14と対向する領域を含む。当該断面におけるダミートレンチ部30は、上面21において層間絶縁膜38により覆われる。 The dummy conductive portion 44 includes a region facing the base region 14 with the dummy insulating film 32 interposed therebetween. The dummy trench portion 30 in the cross section is covered with the interlayer insulating film 38 on the upper surface 21.
 a-a'断面よりもY軸方向正側および負側のトランジスタ部70においては、ゲートトレンチ部40が設けられる。ゲートトレンチ部40は、YZ断面において、ダミートレンチ部30と同一の構造を有してよい。ゲートトレンチ部40は、上面21側に設けられたゲートトレンチ、並びにゲートトレンチ内に設けられたゲート絶縁膜およびゲート導電部を有する。ゲート導電部に所定の電圧が印加されると、ベース領域14のうちゲートトレンチに接する界面の表層に電子の反転層によるチャネルが形成される。 In the Y-axis direction positive side and negative side transistor part 70 with respect to the aa ′ cross section, a gate trench part 40 is provided. The gate trench portion 40 may have the same structure as the dummy trench portion 30 in the YZ section. The gate trench portion 40 includes a gate trench provided on the upper surface 21 side, and a gate insulating film and a gate conductive portion provided in the gate trench. When a predetermined voltage is applied to the gate conductive portion, a channel formed by an electron inversion layer is formed on the surface layer of the base region 14 in contact with the gate trench.
 ゲート導電部は、ダミー導電部34と同一の材料で形成されてよい。例えば、ダミー導電部34およびゲート導電部は、ポリシリコン等の導電材料で形成される。なお、ダミートレンチ部30およびゲートトレンチ部40の底部は下方側に凸の曲面状(断面においては曲線状)であってよい。 The gate conductive part may be formed of the same material as the dummy conductive part 34. For example, the dummy conductive portion 34 and the gate conductive portion are formed of a conductive material such as polysilicon. Note that the bottoms of the dummy trench portion 30 and the gate trench portion 40 may have a curved surface (curved shape in cross section) convex downward.
 ダイオード部80のメサ部60-3において、ドリフト領域18の上方には、ダミートレンチ部30に接して一つ以上の第1導電型の高濃度領域19が設けられてよい。高濃度領域19は、一例としてN+型である。高濃度領域19は、メサ部60-3に設けられてよいが、設けられなくてもよい。高濃度領域19は、ダミートレンチ部30に接してよいが、接さなくてもよい。高濃度領域19が複数設けられる場合、それぞれの高濃度領域19-1および高濃度領域19-2は、Z軸方向に並んで配置される。Z軸方向において、高濃度領域19-1と高濃度領域19-2の間には、ドリフト領域18が設けられてよい。 In the mesa portion 60-3 of the diode portion 80, one or more high-concentration regions 19 of the first conductivity type may be provided above the drift region 18 in contact with the dummy trench portion 30. The high concentration region 19 is, for example, an N + type. The high concentration region 19 may be provided in the mesa unit 60-3, but may not be provided. The high concentration region 19 may be in contact with the dummy trench portion 30, but may not be in contact with it. When a plurality of high concentration regions 19 are provided, the high concentration regions 19-1 and 19-2 are arranged side by side in the Z-axis direction. In the Z-axis direction, a drift region 18 may be provided between the high concentration region 19-1 and the high concentration region 19-2.
 メサ部60-3において、高濃度領域19の上方には、上面21に接し、且つ、ダミートレンチ部30に接して、第2導電型のベース領域14が設けられる。本例のベース領域14は、一例としてP-型である。 In the mesa portion 60-3, the second conductivity type base region 14 is provided above the high concentration region 19 in contact with the upper surface 21 and in contact with the dummy trench portion 30. The base region 14 in this example is a P-type as an example.
 高濃度領域19においては、ドリフト領域18と比べて、電荷中性条件により正孔の濃度が減少する。即ち、高濃度領域19が、ベース領域14からドリフト領域18への正孔の注入を抑制する。これにより、ベース領域14からドリフト領域18への少数キャリアの注入効率が格段に低減する。高濃度領域19の個数が多いほど、少数キャリアの注入効率の低減が可能となる。これにより、ダイオード部80の逆回復特性、特にリカバリー電流を大きく低減することができる。 In the high concentration region 19, the hole concentration is reduced by the charge neutrality condition as compared with the drift region 18. That is, the high concentration region 19 suppresses the injection of holes from the base region 14 to the drift region 18. Thereby, the injection efficiency of minority carriers from the base region 14 to the drift region 18 is significantly reduced. As the number of high-concentration regions 19 increases, the minority carrier injection efficiency can be reduced. Thereby, the reverse recovery characteristic of the diode part 80, especially the recovery current can be greatly reduced.
 トランジスタ部70のメサ部60-2において、ドリフト領域18の上方には、ダミートレンチ部30に接して第2導電型のベース領域14が設けられる。ベース領域14の上方には、上面21に接し、且つ、ダミートレンチ部30に接して、第2導電型のコンタクト領域15が設けられる。本例のベース領域は、一例としてP+型である。コンタクト領域15は、ダミートレンチ部30に接してよいが、接さなくてもよい。 In the mesa portion 60-2 of the transistor portion 70, the base region 14 of the second conductivity type is provided above the drift region 18 in contact with the dummy trench portion 30. Above the base region 14, a second conductivity type contact region 15 is provided in contact with the upper surface 21 and in contact with the dummy trench portion 30. The base region of this example is a P + type as an example. The contact region 15 may be in contact with the dummy trench portion 30, but may not be in contact.
 ドリフト領域18の下方には、第1導電型のバッファ領域20が設けられてよい。バッファ領域20は、一例としてN+型である。バッファ領域20のドーピング濃度は、ドリフト領域18のドーピング濃度よりも高い。バッファ領域20は、ベース領域14の下面側から広がる空乏層が、P+型のコレクタ領域22、並びにN+型の第1カソード領域82およびP+型の第2カソード領域83に到達することを防ぐフィールドストップ層として機能してよい。 A buffer region 20 of the first conductivity type may be provided below the drift region 18. The buffer area 20 is an N + type as an example. The doping concentration of the buffer region 20 is higher than the doping concentration of the drift region 18. The buffer region 20 is a field stop that prevents the depletion layer extending from the lower surface side of the base region 14 from reaching the P + type collector region 22, the N + type first cathode region 82, and the P + type second cathode region 83. It may function as a layer.
 トランジスタ部70において、バッファ領域20の下方には、下面23に露出するP+型のコレクタ領域22が設けられる。ダイオード部80において、バッファ領域20の下方には、下面23に露出するN+型の第1カソード領域82およびP+型の第2カソード領域83が設けられる。ダイオード部80において、トランジスタ部70と隣接する領域には、第1カソード領域82が設けられる。 In the transistor unit 70, a P + type collector region 22 exposed on the lower surface 23 is provided below the buffer region 20. In the diode portion 80, an N + type first cathode region 82 and a P + type second cathode region 83 exposed on the lower surface 23 are provided below the buffer region 20. In the diode unit 80, a first cathode region 82 is provided in a region adjacent to the transistor unit 70.
 なお、ダイオード部80は、下面23に垂直な方向において、第1カソード領域82および第2カソード領域83と重なる領域である。また、トランジスタ部70は、下面23に垂直な方向においてコレクタ領域22と重なる領域のうち、エミッタ領域12およびコンタクト領域15を含む所定の単位構成が規則的に配置された領域である。 The diode portion 80 is a region that overlaps the first cathode region 82 and the second cathode region 83 in the direction perpendicular to the lower surface 23. The transistor unit 70 is a region in which predetermined unit configurations including the emitter region 12 and the contact region 15 are regularly arranged in a region overlapping the collector region 22 in a direction perpendicular to the lower surface 23.
 本例の半導体装置100は、ダイオード部80において、第1カソード領域82の上方にフローティング領域17が設けられる。フローティング領域17は、a-a'断面において、Y軸方向に一例として3つ設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 In the semiconductor device 100 of this example, the floating region 17 is provided above the first cathode region 82 in the diode portion 80. As an example, three floating regions 17 are provided in the Y-axis direction in the section aa ′. The floating region 17 may be provided in contact with the first cathode region 82.
 本例においては、図2dに示す通り、半導体基板10の下面23と平行な面内において、コレクタ領域22と第1カソード領域82との境界位置が2つ存在する。境界位置P1は、当該2つの境界位置のうち、Y軸方向正側の境界位置である。また、境界位置P1'は、当該2つの境界位置のうち、Y軸方向負側の境界位置である。境界位置P1およびP1'は、a-a'断面と平行な断面における境界位置である。一例として、a-a'断面は、下面23と垂直であり、且つ、ダミートレンチ部30の配列方向と平行な面である。 In this example, as shown in FIG. 2 d, there are two boundary positions between the collector region 22 and the first cathode region 82 in a plane parallel to the lower surface 23 of the semiconductor substrate 10. The boundary position P1 is a boundary position on the Y axis direction positive side among the two boundary positions. The boundary position P1 ′ is a boundary position on the Y axis direction negative side among the two boundary positions. The boundary positions P1 and P1 ′ are boundary positions in a cross section parallel to the aa ′ cross section. As an example, the aa ′ cross section is a plane perpendicular to the lower surface 23 and parallel to the arrangement direction of the dummy trench portions 30.
 本例においては、図2dに示す通り、下面23と平行な面内において、フローティング領域17の端部位置が2つ存在する。端部位置P2は、下面23と平行な面内において、Y軸方向の最も正側に設けられるフローティング領域17の、境界位置P1に最も近い端部位置である。また、端部位置P2'は、下面23と平行な面内において、Y軸方向の最も負側に設けられるフローティング領域17の、境界位置P1'に最も近い端部位置である。 In this example, as shown in FIG. 2 d, there are two end positions of the floating region 17 in a plane parallel to the lower surface 23. The end position P2 is an end position closest to the boundary position P1 of the floating region 17 provided on the most positive side in the Y-axis direction in a plane parallel to the lower surface 23. The end position P2 ′ is the end position closest to the boundary position P1 ′ of the floating region 17 provided on the most negative side in the Y-axis direction in a plane parallel to the lower surface 23.
 フローティング領域17は、端部位置P2から端部位置P2'まで、Y軸方向に複数設けられてよい。本例の半導体装置100は、フローティング領域17は、端部位置P2から端部位置P2'まで、Y軸方向に3つ設けられる。 A plurality of floating regions 17 may be provided in the Y-axis direction from the end position P2 to the end position P2 ′. In the semiconductor device 100 of this example, three floating regions 17 are provided in the Y-axis direction from the end position P2 to the end position P2 ′.
 幅Wcf1は、境界位置P1から端部位置P2までのY軸方向における距離である。また、幅Wcf1は、境界位置P1'から端部位置P2'までのY軸方向における距離である。幅Wcf1を小さくすることで、ダイオード部80の端部において、第1カソード領域82からの電子の注入を抑制することができる。 The width Wcf1 is a distance in the Y-axis direction from the boundary position P1 to the end position P2. The width Wcf1 is a distance in the Y-axis direction from the boundary position P1 ′ to the end position P2 ′. By reducing the width Wcf1, the injection of electrons from the first cathode region 82 can be suppressed at the end of the diode portion 80.
 幅Wdは、フローティング領域17のZ軸方向の幅である。幅Wdは、幅Wcf1より小さくてよい。幅Wdは、幅Wcf1の0.05倍以上0.5倍以下であってよい。幅Wdは、0.3μm以上1μm以下であってよい。幅Wdは、一例として0.5μmである。 The width Wd is the width of the floating region 17 in the Z-axis direction. The width Wd may be smaller than the width Wcf1. The width Wd may be not less than 0.05 times and not more than 0.5 times the width Wcf1. The width Wd may be not less than 0.3 μm and not more than 1 μm. The width Wd is 0.5 μm as an example.
 a-a'断面においてY軸方向中央に設けられる第1カソード領域82においても、当該第1カソード領域82のY軸方向正側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17の正側の端までのY軸方向における幅は、幅Wnf1と等しくてよい。当該第1カソード領域82のY軸方向負側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17の負側の端までのY軸方向における幅も、幅Wnf1と等しくてよい。 Also in the first cathode region 82 provided at the center in the Y-axis direction in the aa ′ cross section, the floating is arranged so as to overlap the first cathode region 82 from the Y-axis direction positive end of the first cathode region 82. The width in the Y-axis direction to the positive end of the region 17 may be equal to the width Wnf1. The width in the Y-axis direction from the end on the negative side in the Y-axis direction of the first cathode region 82 to the end on the negative side of the floating region 17 arranged so as to overlap the first cathode region 82 is also equal to the width Wnf1. Good.
 それぞれの第1カソード領域82において、フローティング領域17のY軸方向の幅Wfl11は、幅Wch1の89%以上95%以下であってよい。幅Wnf1は、幅Wcf1と等しくてよいが、異なっていてもよい。幅Wnf1は、ゼロであってもよい。 In each first cathode region 82, the width Wfl11 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch1. The width Wnf1 may be equal to the width Wcf1, but may be different. The width Wnf1 may be zero.
 図2eは、図2bにおけるb-b'断面の一例を示す図である。b-b'断面は、図2dにおけるb''-b'''線を通るXZ平面である。本例の半導体装置100は、ダイオード部80において、第1カソード領域82の上方にフローティング領域17が設けられる。 FIG. 2e is a diagram showing an example of a bb ′ cross section in FIG. 2b. The bb ′ cross section is the XZ plane passing through the b ″ -b ′ ″ line in FIG. 2d. In the semiconductor device 100 of this example, the floating region 17 is provided above the first cathode region 82 in the diode unit 80.
 本例においては、図2eに示す通り、半導体基板10の下面23と平行な面内において、コレクタ領域22と第1カソード領域82との境界位置が2つ存在する。境界位置P5は、当該2つの境界位置のうち、X軸方向負側の境界位置である。また、境界位置P5'は、当該2つの境界位置のうち、X軸方向正側の境界位置である。境界位置P5およびP5'は、b-b'断面と平行な断面における境界位置である。一例として、b-b'断面は、下面23と垂直であり、且つ、ダミートレンチ部30の延伸方向と平行な面である。 In this example, there are two boundary positions between the collector region 22 and the first cathode region 82 in a plane parallel to the lower surface 23 of the semiconductor substrate 10 as shown in FIG. 2e. The boundary position P5 is a boundary position on the negative side in the X-axis direction among the two boundary positions. The boundary position P5 ′ is a boundary position on the positive side in the X-axis direction among the two boundary positions. The boundary positions P5 and P5 ′ are boundary positions in a cross section parallel to the bb ′ cross section. As an example, the bb ′ cross section is a surface perpendicular to the lower surface 23 and parallel to the extending direction of the dummy trench portion 30.
 本例においては、図2eに示す通り、下面23と平行な面内において、フローティング領域17の端部位置が2つ存在する。端部位置P6は、下面23と平行な面内において、X軸方向に複数配列されるフローティング領域17のうち、X軸方向の最も負側に配置されるフローティング領域17の、境界位置P5に最も近い端部位置である。また、端部位置P6'は、下面23と平行な面内において、Y軸方向に複数配列されるフローティング領域17のうち、X軸方向の最も正側に配置されるフローティング領域17の、境界位置P5'に最も近い端部位置である。本例においては、フローティング領域17が、端部位置P6から端部位置P6'まで、X軸方向に連続して設けられる。 In this example, as shown in FIG. 2 e, there are two end positions of the floating region 17 in a plane parallel to the lower surface 23. The end position P6 is closest to the boundary position P5 of the floating region 17 arranged on the most negative side in the X-axis direction among the plurality of floating regions 17 arranged in the X-axis direction in a plane parallel to the lower surface 23. Close end position. The end position P6 ′ is a boundary position of the floating region 17 arranged on the most positive side in the X-axis direction among the plurality of floating regions 17 arranged in the Y-axis direction in a plane parallel to the lower surface 23. This is the end position closest to P5 ′. In this example, the floating region 17 is continuously provided in the X-axis direction from the end position P6 to the end position P6 ′.
 幅Wfl21は、フローティング領域17のX軸方向における幅である。幅Wcf2は、境界位置P5から端部位置P6までのX軸方向における距離である。また、幅Wcf2は、境界位置P5'から端部位置P6'までのX軸方向における距離である。また、幅Wcv1は、境界位置P5から境界位置P5'までのX軸方向における距離である。幅Wfl21は、幅Wcv1の89%以上95%以下であってよい。本例の半導体装置100は、ダイオード部80において、フローティング領域17を第1カソード領域82の上方に設けているので、ダイオード部80の逆回復時のサージ電圧を抑制することができる。ダイオード部80における上面21側および下面23側に、それぞれHe等を照射して局所的にライフタイムキラー領域を設け、キャリアの注入を抑制することができるが、ライフタイムキラー領域の形成はコストが高い。また、ダイオード部80の逆回復時におけるサージ電圧が大きくなるので、ダイオード部80を高速化することができない。 The width Wfl21 is the width of the floating region 17 in the X-axis direction. The width Wcf2 is a distance in the X-axis direction from the boundary position P5 to the end position P6. The width Wcf2 is a distance in the X-axis direction from the boundary position P5 ′ to the end position P6 ′. The width Wcv1 is a distance in the X-axis direction from the boundary position P5 to the boundary position P5 ′. The width Wfl21 may be 89% or more and 95% or less of the width Wcv1. In the semiconductor device 100 of this example, since the floating region 17 is provided above the first cathode region 82 in the diode unit 80, the surge voltage during reverse recovery of the diode unit 80 can be suppressed. A lifetime killer region can be locally provided by irradiating He or the like on the upper surface 21 side and the lower surface 23 side of the diode portion 80 to suppress carrier injection, but the formation of the lifetime killer region is costly. high. Moreover, since the surge voltage at the time of reverse recovery of the diode part 80 becomes large, the diode part 80 cannot be speeded up.
 なお、図2eにおけるX軸方向正側のコレクタ領域22は、図1aにおけるX軸方向正側の外周領域74まで延伸していてよい。当該コレクタ領域22は、トランジスタ部70における下面23に設けられたコレクタ領域22とつながっていてよい。同様に、図1aにおけるX軸方向の最も負側のダイオード部80において、X軸方向負側に設けられるコレクタ領域22は、図1aにおけるX軸方向負側の外周領域74まで延伸していてよい。外周領域74の下方においては、下面23には、コレクタ領域22に代えて第1カソード領域82よりもドーピング濃度の薄い第1導電型の終端領域が設けられてよい。終端領域のドーピング濃度は、第1カソード領域82のドーピング濃度の1/10以下であってよい。 Note that the collector region 22 on the X axis direction positive side in FIG. 2E may extend to the outer peripheral region 74 on the X axis direction positive side in FIG. 1A. The collector region 22 may be connected to the collector region 22 provided on the lower surface 23 of the transistor portion 70. Similarly, in the diode portion 80 on the most negative side in the X-axis direction in FIG. 1a, the collector region 22 provided on the negative side in the X-axis direction may extend to the outer peripheral region 74 on the negative side in the X-axis direction in FIG. . Below the outer peripheral region 74, a first conductivity type termination region having a doping concentration lower than that of the first cathode region 82 may be provided on the lower surface 23 instead of the collector region 22. The doping concentration of the termination region may be 1/10 or less of the doping concentration of the first cathode region 82.
 図3aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、図2aに示す半導体装置100において、複数のフローティング領域17のうち、一部のフローティング領域17が、半導体基板10の上面視で、第1カソード領域82および第2カソード領域83の両方と重なって、配列方向に複数設けられる点で、図2aに示す半導体装置100と異なる。即ち、本例の半導体装置100は、複数のフローティング領域17のうち一部のフローティング領域17が、半導体基板10の上面視で、第1カソード領域82と第2カソード領域83とのX軸方向の境界と重なって、Y軸方向に、第1カソード領域82から第2カソード領域83にわたって設けられる。 FIG. 3a is another enlarged view of region A in FIG. 1a. The semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 2A in that some of the floating regions 17 have a first cathode region 82 and a second cathode in the top view of the semiconductor substrate 10. The semiconductor device 100 is different from the semiconductor device 100 shown in FIG. That is, in the semiconductor device 100 of this example, some floating regions 17 among the plurality of floating regions 17 are in the X-axis direction between the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. It overlaps with the boundary and is provided from the first cathode region 82 to the second cathode region 83 in the Y-axis direction.
 図3bは、図3aにおける領域B2の拡大図である。図3bは、図3aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。なお、図3b以降の図面においては、図2bおよび図2cにおいて示したコンタクトホール54を省略して示す。 FIG. 3b is an enlarged view of region B2 in FIG. 3a. FIG. 3B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 3A to the end S ′ of the well region 11 on the X axis direction negative side. In FIG. 3b and subsequent drawings, the contact hole 54 shown in FIGS. 2b and 2c is omitted.
 本例の半導体装置100は、図3bに示す通り、ダイオード部80において、X軸方向に延伸しY軸方向に配列するフローティング領域17が、一例として9個設けられる。本例の半導体装置100は、一例として第1カソード領域82が3つ設けられ、第2カソード領域83が2つ設けられるので、第1カソード領域82と第2カソード領域83とのX軸方向に平行な境界が4か所存在する。このため、9個のフローティング領域17のうち、4個のフローティング領域17が、それぞれ当該境界と重なって設けられる。9個のフローティング領域17のうち、5個のフローティング領域17は、半導体基板10の上面視で第1カソード領域82の内側に設けられる。 As shown in FIG. 3B, the semiconductor device 100 of this example is provided with nine floating regions 17 extending in the X-axis direction and arranged in the Y-axis direction as an example in the diode unit 80. In the semiconductor device 100 of this example, three first cathode regions 82 and two second cathode regions 83 are provided as an example, so that the first cathode region 82 and the second cathode region 83 are arranged in the X-axis direction. There are four parallel boundaries. For this reason, of the nine floating regions 17, four floating regions 17 are provided so as to overlap with the boundary respectively. Of the nine floating regions 17, five floating regions 17 are provided inside the first cathode region 82 in a top view of the semiconductor substrate 10.
 それぞれの第1カソード領域82において、半導体基板10の上面視で、第1カソード領域82の面積に占めるフローティング領域17の面積は、80%以上90%以下であってよい。半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積が、それぞれ80%および20%の場合、当該面積に占めるフローティング領域17の面積の割合は、64%以上72%以下であってよい。 In each first cathode region 82, the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less. When the area of the first cathode region 82 and the area of the second cathode region 83 in the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 are 80% and 20%, respectively, The ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
 本例の半導体装置100において、幅Wcf1および幅Wcf2は、それぞれ図2bに示す例における幅Wcf1および幅Wcf2と同じであってよい。幅Wcf1は、ゼロでなければよい。幅Wcf2は、ゼロであってもよい。 In the semiconductor device 100 of this example, the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG. The width Wcf1 may not be zero. The width Wcf2 may be zero.
 本例の半導体装置100において、フローティング領域17のX軸方向の幅Wfl21は、図2bに示す例における幅Wfl21と同じであってよい。フローティング領域17のY軸方向の幅Wfl12は、図2bに示す例における幅Wfl11よりも小さくてよい。 In the semiconductor device 100 of this example, the width Wfl21 of the floating region 17 in the X-axis direction may be the same as the width Wfl21 in the example illustrated in FIG. The width Wfl12 of the floating region 17 in the Y-axis direction may be smaller than the width Wfl11 in the example illustrated in FIG.
 図3cは、図3bにおける領域C2の拡大図である。図3cに示す通り、本例の半導体装置100は、一例として第1カソード領域82がY軸方向に9個設けられる。Y軸方向において、隣り合う第1カソード領域82の間には、第2カソード領域83が設けられる。本例の半導体装置100は、9個のフローティング領域17のうち、4個のフローティング領域17が、第1カソード領域82と第2カソード領域83とのX軸方向の境界と重なって設けられる。9個のフローティング領域17のうち、5個のフローティング領域17は、半導体基板10の上面視で第1カソード領域82の内側に設けられる。 FIG. 3c is an enlarged view of region C2 in FIG. 3b. As shown in FIG. 3C, in the semiconductor device 100 of this example, nine first cathode regions 82 are provided in the Y-axis direction as an example. A second cathode region 83 is provided between adjacent first cathode regions 82 in the Y-axis direction. In the semiconductor device 100 of this example, four floating regions 17 out of nine floating regions 17 are provided so as to overlap with the boundary in the X-axis direction between the first cathode region 82 and the second cathode region 83. Of the nine floating regions 17, five floating regions 17 are provided inside the first cathode region 82 in a top view of the semiconductor substrate 10.
 幅Wfn1は、第1カソード領域82と、当該第1カソード領域82にY軸方向負側で隣接する第2カソード領域83との境界と重なって設けられるフローティング領域17の、Y軸方向負側の端から当該境界までのY軸方向における幅である。また、幅Wfn1は、第1カソード領域82と、当該第1カソード領域82にY軸方向正側で隣接する第2カソード領域83との境界と重なって設けられるフローティング領域17の、Y軸方向正側の端から当該境界までのY軸方向における幅である。 The width Wfn1 is such that the floating region 17 provided on the negative side in the Y-axis direction of the floating region 17 provided to overlap the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the negative side in the Y-axis direction. It is the width in the Y-axis direction from the end to the boundary. In addition, the width Wfn1 is the positive value in the Y-axis direction of the floating region 17 provided to overlap the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the Y-axis direction positive side. This is the width in the Y-axis direction from the side end to the boundary.
 幅Wff11は、フローティング領域17と、当該フローティング領域17に隣り合うフローティング領域17とのY軸方向における間隔である。複数のフローティング領域17の全てが、幅Wff11の間隔でY軸方向に配列されてよいが、第1カソード領域82と第2カソード領域83との境界と重なるフローティング領域17があれば、幅Wff11と異なる間隔で配列されるフローティング領域17があってもよい。 The width Wff11 is an interval in the Y-axis direction between the floating region 17 and the floating region 17 adjacent to the floating region 17. All of the plurality of floating regions 17 may be arranged in the Y-axis direction at intervals of the width Wff11. However, if there is the floating region 17 that overlaps the boundary between the first cathode region 82 and the second cathode region 83, the width Wff11 There may be floating regions 17 arranged at different intervals.
 幅Wfn1は、幅Wfl12よりも小さい。幅Wfn1は、幅Wcf1と等しくてもよいし、異なっていてもよい。 Width Wfn1 is smaller than width Wfl12. The width Wfn1 may be equal to or different from the width Wcf1.
 図3dは、図3bにおけるc-c'断面の一例を示す図である。本例の半導体装置100は、c-c'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10の上面21および層間絶縁膜38の上面に設けられる。コレクタ電極24は、半導体基板10の下面23に設けられる。 FIG. 3d is a diagram showing an example of a cross section along the line cc ′ in FIG. 3b. The semiconductor device 100 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the section cc ′. The emitter electrode 52 is provided on the upper surface 21 of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 38. The collector electrode 24 is provided on the lower surface 23 of the semiconductor substrate 10.
 本例の半導体装置100は、ダイオード部80において、第1カソード領域82の上方にフローティング領域17が設けられる。フローティング領域17は、c-c'断面において、Y軸方向に一例として9つ設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 In the semiconductor device 100 of this example, the floating region 17 is provided above the first cathode region 82 in the diode portion 80. As an example, nine floating regions 17 are provided in the Y-axis direction in the section cc ′. The floating region 17 may be provided in contact with the first cathode region 82.
 複数のフローティング領域17のうち、一部のフローティング領域17は、第1カソード領域82と第2カソード領域83との境界の上方に設けられる。当該境界の上方に設けられるフローティング領域17は、当該第1カソード領域82および当該第2カソード領域83の双方に接して設けられる。本例の半導体装置100においては、9つのフローティング領域17のうち、4つのフローティング領域17が、当該境界の上方に、第1カソード領域82および第2カソード領域83の双方に接して設けられる。本例の半導体装置100は、第2導電型の第2カソード領域83と第2導電型のフローティング領域17とが接して設けられるので、図2dに示す半導体装置100よりも、ダイオード部80の逆回復時のサージ電圧を、さらに抑制することができる。 Among the plurality of floating regions 17, some floating regions 17 are provided above the boundary between the first cathode region 82 and the second cathode region 83. The floating region 17 provided above the boundary is provided in contact with both the first cathode region 82 and the second cathode region 83. In the semiconductor device 100 of this example, four floating regions 17 out of the nine floating regions 17 are provided in contact with both the first cathode region 82 and the second cathode region 83 above the boundary. In the semiconductor device 100 of this example, since the second conductivity type second cathode region 83 and the second conductivity type floating region 17 are provided in contact with each other, the diode unit 80 is more reverse than the semiconductor device 100 shown in FIG. The surge voltage at the time of recovery can be further suppressed.
 図3eは、図3bにおけるd-d'断面の一例を示す図である。d-d'断面は、図3dにおけるd''-d'''線を通るXZ平面である。本例の半導体装置100におけるd-d'断面の構成は、図2eに示す半導体装置100におけるb-b'断面の構成と同じである。 FIG. 3e is a diagram showing an example of a dd ′ cross section in FIG. 3b. The dd ′ cross section is an XZ plane passing through a d ″ -d ′ ″ line in FIG. 3D. The configuration of the section dd ′ in the semiconductor device 100 of this example is the same as the configuration of the section bb ′ in the semiconductor device 100 shown in FIG. 2e.
 図4aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、図2aに示す半導体装置100において、第1カソード領域82および第2カソード領域83が、半導体基板10の上面視で、X軸方向に交互に配置される点で、図2aに示す半導体装置100と異なる。第1カソード領域82および第2カソード領域83は、Y軸方向正側および負側の双方において、トランジスタ部70と接して設けられる。 FIG. 4a is another enlarged view of region A in FIG. 1a. The semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 2A in that the first cathode regions 82 and the second cathode regions 83 are alternately arranged in the X-axis direction when the semiconductor substrate 10 is viewed from above. Different from the semiconductor device 100 shown in FIG. The first cathode region 82 and the second cathode region 83 are provided in contact with the transistor unit 70 on both the Y axis direction positive side and the negative side.
 ダイオード部80において、半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積の割合は、60%以上90%以下であってよい。当該合計面積に占める第2カソード領域83の面積の割合は、10%以上40%以下であってよい。一例として、当該合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積は、それぞれ80%および20%である。 In the diode portion 80, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 may be 60% or more and 90% or less. . The ratio of the area of the second cathode region 83 to the total area may be 10% or more and 40% or less. As an example, the area of the first cathode region 82 and the area of the second cathode region 83 occupying the total area are 80% and 20%, respectively.
 本例の半導体装置100は、第1カソード領域82毎に互いに分離して設けられた複数のフローティング領域17を有する。本例の半導体装置100は、第1カソード領域82が、半導体基板10の上面視で、フローティング領域17よりも配列方向に張り出している。本例の半導体装置100は、配列方向において、第1カソード領域82の両側が、半導体基板10の上面視でフローティング領域17よりも配列方向に張り出している。即ち、第1カソード領域82は、Y軸方向におけるフローティング領域17の両側において、フローティング領域17に覆われていない部分を有する。なお、配列方向において、第1カソード領域82の片側が、半導体基板10の上面視でフローティング領域17よりも配列方向に張り出していてもよい。 The semiconductor device 100 of this example has a plurality of floating regions 17 provided separately for each first cathode region 82. In the semiconductor device 100 of this example, the first cathode region 82 protrudes in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10. In the semiconductor device 100 of this example, both sides of the first cathode region 82 protrude in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10 in the arrangement direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the Y-axis direction. In the arrangement direction, one side of the first cathode region 82 may protrude from the floating region 17 in the arrangement direction when the semiconductor substrate 10 is viewed from above.
 また、本例の半導体装置100は、第1カソード領域82が、フローティング領域17よりも延伸方向に張り出している。本例の半導体装置100は、延伸方向において、第1カソード領域82の両側が、半導体基板10の上面視でフローティング領域17よりも延伸方向に張り出している。即ち、第1カソード領域82は、X軸方向におけるフローティング領域17の両側において、フローティング領域17に覆われていない部分を有する。なお、延伸方向において、第1カソード領域82の片側が、半導体基板10の上面視でフローティング領域17よりも延伸方向に張り出していてもよい。 Further, in the semiconductor device 100 of this example, the first cathode region 82 protrudes in the extending direction from the floating region 17. In the semiconductor device 100 of this example, both sides of the first cathode region 82 project in the extending direction from the floating region 17 in a top view of the semiconductor substrate 10 in the extending direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the X-axis direction. Note that, in the extending direction, one side of the first cathode region 82 may protrude from the floating region 17 in the extending direction in a top view of the semiconductor substrate 10.
 本例の半導体装置100は、半導体基板10の上面視で、フローティング領域17の全体が、第1カソード領域82と重なって配置される。即ち、半導体基板10の上面視で、第1カソード領域82の内側に、フローティング領域17を有する。 In the semiconductor device 100 of this example, the entire floating region 17 is disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. That is, the floating region 17 is provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above.
 フローティング領域17は、半導体基板10の上面視で、トランジスタ部70とは重ならないように配置される。フローティング領域17は、ダイオード部80とトランジスタ部70との境界にも接しないように配置される。 The floating region 17 is arranged so as not to overlap the transistor portion 70 when the semiconductor substrate 10 is viewed from above. The floating region 17 is arranged so as not to contact the boundary between the diode portion 80 and the transistor portion 70.
 図4bは、図4aにおける領域B3の拡大図である。図4bは、図4aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図2bに示す通り、本例の半導体装置100は、ダイオード部80において、第1カソード領域82のXY平面内における内側に、フローティング領域17が、一例として10個設けられる。 FIG. 4b is an enlarged view of region B3 in FIG. 4a. FIG. 4B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 4A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 2B, in the semiconductor device 100 of this example, in the diode portion 80, ten floating regions 17 are provided as an example inside the first cathode region 82 in the XY plane.
 本例の半導体装置100において、幅Wcf1および幅Wcf2は、それぞれ図2bに示す例における幅Wcf1および幅Wcf2と同じであってよい。幅Wcf1は、ゼロでなければよい。幅Wcf2は、ゼロであってもよい。 In the semiconductor device 100 of this example, the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG. The width Wcf1 may not be zero. The width Wcf2 may be zero.
 本例の半導体装置100において、幅Wnf2は、第1カソード領域82と、当該第1カソード領域82にX軸方向負側で隣接する第2カソード領域83との境界から、当該第1カソード領域82に重なって設けられるフローティング領域17のX軸方向負側の端までの、X軸方向における幅である。また、幅Wnf2は、第1カソード領域82と、当該第1カソード領域82にX軸方向正側で隣接する第2カソード領域83との境界から、当該第1カソード領域82に重なって設けられるフローティング領域17のX軸方向正側の端までの、X軸方向における幅である。幅Wnf2は、幅Wcf2と同じであってよいが、異なっていてもよい。 In the semiconductor device 100 of this example, the width Wnf2 is determined from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the negative side in the X-axis direction. Is the width in the X-axis direction up to the end on the negative side in the X-axis direction of the floating region 17 provided to overlap. The width Wnf2 is a floating provided to overlap the first cathode region 82 from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the X axis direction positive side. This is the width in the X-axis direction up to the end on the X-axis direction positive side of the region 17. The width Wnf2 may be the same as the width Wcf2, but may be different.
 本例の半導体装置100において、幅Wch2は、第1カソード領域82および第2カソード領域83のY軸方向の幅である。幅Wchは、幅WFに等しい。幅Wcv2は、第1カソード領域82のX軸方向の幅である。また、幅Wfl13は、フローティング領域17のY軸方向の幅である。幅Wfl22は、フローティング領域17のX軸方向の幅である。 In the semiconductor device 100 of this example, the width Wch2 is the width of the first cathode region 82 and the second cathode region 83 in the Y-axis direction. The width Wch is equal to the width WF. The width Wcv2 is the width of the first cathode region 82 in the X-axis direction. The width Wfl13 is the width of the floating region 17 in the Y-axis direction. The width Wfl22 is the width of the floating region 17 in the X-axis direction.
 それぞれの第1カソード領域82において、フローティング領域17のY軸方向の幅Wfl13は、幅Wch2の89%以上95%以下であってよい。それぞれの第1カソード領域82において、フローティング領域17のX軸方向の幅Wfl22は、幅Wcv2の89%以上95%以下であってよい。 In each first cathode region 82, the width Wfl13 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch2. In each first cathode region 82, the width Wfl22 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv2.
 それぞれの第1カソード領域82において、半導体基板10の上面視で、第1カソード領域82の面積に占めるフローティング領域17の面積は、80%以上90%以下であってよい。半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積が、それぞれ80%および20%の場合、当該面積に占めるフローティング領域17の面積の割合は、64%以上72%以下であってよい。 In each first cathode region 82, the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less. When the area of the first cathode region 82 and the area of the second cathode region 83 in the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 are 80% and 20%, respectively, The ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
 図4cは、図4bにおけるe-e'断面の一例を示す図である。本例の半導体装置100は、e-e'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、半導体基板10の上面21および層間絶縁膜38の上面に設けられる。コレクタ電極24は、半導体基板10の下面23に設けられる。 FIG. 4c is a diagram showing an example of a cross section taken along line ee ′ in FIG. 4b. The semiconductor device 100 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the ee ′ cross section. The emitter electrode 52 is provided on the upper surface 21 of the semiconductor substrate 10 and the upper surface of the interlayer insulating film 38. The collector electrode 24 is provided on the lower surface 23 of the semiconductor substrate 10.
 本例の半導体装置100は、ダイオード部80において、第1カソード領域82の上方にフローティング領域17が設けられる。フローティング領域17は、e-e'断面において、端部位置P2から端部位置P2'にわたり、連続して設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 In the semiconductor device 100 of this example, the floating region 17 is provided above the first cathode region 82 in the diode portion 80. The floating region 17 is continuously provided from the end position P2 to the end position P2 ′ in the ee ′ cross section. The floating region 17 may be provided in contact with the first cathode region 82.
 図4dは、図4bにおけるf-f'断面の一例を示す図である。f-f'断面は、図4cにおけるf''-f'''線を通るXZ平面である。フローティング領域17は、f-f'断面において、X軸方向に一例として10個設けられる。フローティング領域17は、第1カソード領域82と接してよい。本例の半導体装置100において、幅Wnf2は、幅Wcf2と同じであってよいが、異なっていてもよい。フローティング領域17のX軸方向の幅Wfl22は、幅Wcv2の89%以上95%以下であってよい。本例の半導体装置100は、ダイオード部80において、フローティング領域17を第1カソード領域82の上方に設けているので、ダイオード部80の逆回復時のサージ電圧(オーバーシュート電圧)を抑制することができる。 FIG. 4d is a diagram showing an example of the ff ′ cross section in FIG. 4b. The ff ′ cross section is an XZ plane passing through the f ″ -f ′ ″ line in FIG. 4C. As an example, 10 floating regions 17 are provided in the X-axis direction in the ff ′ cross section. The floating region 17 may be in contact with the first cathode region 82. In the semiconductor device 100 of this example, the width Wnf2 may be the same as the width Wcf2, but may be different. The width Wfl22 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv2. In the semiconductor device 100 of this example, since the floating region 17 is provided above the first cathode region 82 in the diode unit 80, the surge voltage (overshoot voltage) during reverse recovery of the diode unit 80 can be suppressed. it can.
 図5aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、図4aに示す半導体装置において、複数のフローティング領域17のうち、一部のフローティング領域17が、半導体基板10の上面視で、第1カソード領域82および第2カソード領域83の両方と重なって、X軸方向に複数設けられる点で、図2aに示す半導体装置100と異なる。即ち、本例の半導体装置100は、複数のフローティング領域17のうち一部のフローティング領域17が、半導体基板10の上面視で、第1カソード領域82と第2カソード領域83とのY軸方向の境界と重なって、X軸方向に、第1カソード領域82から第2カソード領域83にわたって設けられる。 FIG. 5a is another enlarged view of region A in FIG. 1a. In the semiconductor device 100 of this example, in the semiconductor device illustrated in FIG. 4A, some floating regions 17 among the plurality of floating regions 17 are the first cathode region 82 and the second cathode region in the top view of the semiconductor substrate 10. The semiconductor device 100 differs from the semiconductor device 100 shown in FIG. That is, in the semiconductor device 100 of this example, some floating regions 17 among the plurality of floating regions 17 are in the Y-axis direction between the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. It overlaps with the boundary and is provided from the first cathode region 82 to the second cathode region 83 in the X-axis direction.
 図5bは、図5aにおける領域B4の拡大図である。図5bは、図5aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。 FIG. 5b is an enlarged view of region B4 in FIG. 5a. FIG. 5b shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 5a to the end S ′ of the well region 11 on the X axis direction negative side.
 本例の半導体装置100は、図5bに示す通り、本例の半導体装置100は、ダイオード部80において、フローティング領域17が、一例として30個設けられる。本例の半導体装置100は、一例として第1カソード領域82が10個設けられ、第2カソード領域83が9個設けられるので、第1カソード領域82と第2カソード領域83とのY軸方向に平行な境界が18か所存在する。このため、30個のフローティング領域17のうち、18個のフローティング領域17が、それぞれ当該境界と重なって設けられる。 As shown in FIG. 5B, the semiconductor device 100 of this example is provided with 30 floating regions 17 as an example in the diode unit 80. As an example, the semiconductor device 100 of this example is provided with ten first cathode regions 82 and nine second cathode regions 83, and therefore, in the Y-axis direction between the first cathode region 82 and the second cathode region 83. There are 18 parallel boundaries. For this reason, of the 30 floating regions 17, 18 floating regions 17 are provided so as to overlap with the boundary respectively.
 X軸方向の最も正側に設けられる第1カソード領域82は、当該第1カソード領域82のX軸方向正側に設けられるコレクタ領域22と隣接する。1つのフローティング領域17が、当該第1カソード領域82と当該コレクタ領域22とのY軸方向に平行な境界と重なって設けられる。また、X軸方向の最も負側に設けられる第1カソード領域82は、当該第1カソード領域82のX軸方向負側に設けられるコレクタ領域22と隣接する。他の1つのフローティング領域17が、当該第1カソード領域82と当該コレクタ領域22とのY軸方向に平行な境界と重なって設けられる。30個のフローティング領域17のうち、残りの10個のフローティング領域17は、半導体基板10の上面視で第1カソード領域82の内側に設けられる。 The first cathode region 82 provided on the most positive side in the X-axis direction is adjacent to the collector region 22 provided on the X-axis direction positive side of the first cathode region 82. One floating region 17 is provided so as to overlap with a boundary parallel to the Y-axis direction between the first cathode region 82 and the collector region 22. The first cathode region 82 provided on the most negative side in the X-axis direction is adjacent to the collector region 22 provided on the X-axis direction negative side of the first cathode region 82. Another one floating region 17 is provided so as to overlap with a boundary parallel to the Y-axis direction between the first cathode region 82 and the collector region 22. Of the 30 floating regions 17, the remaining 10 floating regions 17 are provided inside the first cathode region 82 in a top view of the semiconductor substrate 10.
 それぞれの第1カソード領域82において、半導体基板10の上面視で、第1カソード領域82の面積に占めるフローティング領域17の面積は、80%以上90%以下であってよい。半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積が、それぞれ80%および20%の場合、当該面積に占めるフローティング領域17の面積の割合は、64%以上72%以下であってよい。 In each first cathode region 82, the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less. When the area of the first cathode region 82 and the area of the second cathode region 83 in the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 are 80% and 20%, respectively, The ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
 本例の半導体装置100において、幅Wcf1は、図4bに示す例における幅Wcf1と同じであってよい。幅Wcf1は、ゼロでなければよい。 In the semiconductor device 100 of this example, the width Wcf1 may be the same as the width Wcf1 in the example illustrated in FIG. The width Wcf1 may not be zero.
 本例の半導体装置100において、フローティング領域17のY軸方向の幅Wfl13は、図4bに示す例における幅Wfl13と同じであってよい。フローティング領域17のX軸方向の幅Wfl23は、図4bに示す例における幅Wfl22よりも小さくてよい。 In the semiconductor device 100 of this example, the width Wfl13 of the floating region 17 in the Y-axis direction may be the same as the width Wfl13 in the example illustrated in FIG. The width Wfl23 in the X-axis direction of the floating region 17 may be smaller than the width Wfl22 in the example illustrated in FIG.
 本例の半導体装置100において、幅Wfc2は、X軸方向の最も正側に設けられるフローティング領域17のX軸方向正側の端から、X軸方向の最も正側に設けられる第1カソード領域82とX軸方向正側に設けられるコレクタ領域22とのY軸方向に平行な境界までの、X軸方向における幅である。また、幅Wfc2は、X軸方向の最も負側に設けられるフローティング領域17のX軸方向負側の端から、X軸方向の最も負側に設けられる第1カソード領域82とX軸方向負側に設けられるコレクタ領域22とのY軸方向に平行な境界までの、X軸方向における幅である。 In the semiconductor device 100 of this example, the width Wfc2 is the first cathode region 82 provided on the most positive side in the X-axis direction from the end on the positive side in the X-axis direction of the floating region 17 provided on the most positive side in the X-axis direction. And the width in the X-axis direction to the boundary parallel to the Y-axis direction between the collector region 22 provided on the positive side in the X-axis direction. The width Wfc2 is equal to the first cathode region 82 provided on the most negative side in the X-axis direction from the end on the negative side in the X-axis direction of the floating region 17 provided on the most negative side in the X-axis direction. The width in the X-axis direction to the boundary parallel to the Y-axis direction with the collector region 22 provided in
 図5cは、図5bにおける領域C4の拡大図である。図5cに示す通り、本例の半導体装置100は、第1カソード領域82および第2カソード領域83が、トランジスタ部70のY軸方向正側の境界から負側の境界まで設けられる。図5cにおいてX軸方向の最も負側に設けられるフローティング領域17は、半導体基板10の上面視で、第1カソード領域82および第2カソード領域83と重なって設けられる。図5cにおいてX軸方向の最も正側に設けられるフローティング領域17は、半導体基板10の上面視で、第1カソード領域82およびコレクタ領域22と重なって設けられる。図5cにおいてX軸方向中央に設けられるフローティング領域17は、半導体基板10の上面視で、第1カソード領域82と重なって設けられる。 FIG. 5c is an enlarged view of region C4 in FIG. 5b. As shown in FIG. 5c, in the semiconductor device 100 of this example, the first cathode region 82 and the second cathode region 83 are provided from the boundary on the Y axis direction positive side to the negative side boundary of the transistor unit 70. In FIG. 5 c, the floating region 17 provided on the most negative side in the X-axis direction is provided so as to overlap the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. In FIG. 5 c, the floating region 17 provided on the most positive side in the X-axis direction is provided so as to overlap the first cathode region 82 and the collector region 22 in a top view of the semiconductor substrate 10. The floating region 17 provided in the center in the X-axis direction in FIG.
 本例の半導体装置100において、幅Wfn2は、第1カソード領域82と、当該第1カソード領域82にX軸方向負側で隣接する第2カソード領域83との境界から、当該第1カソード領域82に重なって設けられるフローティング領域17のX軸方向負側の端までの、X軸方向における幅である。また、幅Wfn2は、領域C4の外ではあるが、第1カソード領域82と、当該第1カソード領域82にX軸方向正側で隣接する第2カソード領域83との境界から、当該第1カソード領域82に重なって設けられるフローティング領域17のX軸方向正側の端までの、X軸方向における幅である。 In the semiconductor device 100 of this example, the width Wfn2 is determined from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the negative side in the X-axis direction. Is the width in the X-axis direction up to the end on the negative side in the X-axis direction of the floating region 17 provided to overlap. In addition, the width Wfn2 is outside the region C4, but from the boundary between the first cathode region 82 and the second cathode region 83 adjacent to the first cathode region 82 on the positive side in the X-axis direction, This is the width in the X-axis direction to the end on the positive side in the X-axis direction of the floating region 17 provided so as to overlap the region 82.
 本例の半導体装置100において、幅Wff21は、フローティング領域17と、当該フローティング領域17に隣り合うフローティング領域17とのX軸方向における間隔である。複数のフローティング領域17の全てが、幅Wff21の間隔でX軸方向に配列されてよいが、第1カソード領域82と第2カソード領域83との境界と重なるフローティング領域17があれば、幅Wff21と異なる間隔で配列されるフローティング領域17があってもよい。 In the semiconductor device 100 of this example, the width Wff21 is an interval in the X-axis direction between the floating region 17 and the floating region 17 adjacent to the floating region 17. All of the plurality of floating regions 17 may be arranged in the X-axis direction at intervals of the width Wff21. However, if there is the floating region 17 that overlaps the boundary between the first cathode region 82 and the second cathode region 83, the width Wff21 There may be floating regions 17 arranged at different intervals.
 幅Wfn2は、幅Wfl23よりも小さい。幅Wfn2は、幅Wfc2と等しくてもよいが、異なっていてもよい。 Width Wfn2 is smaller than width Wfl23. The width Wfn2 may be equal to the width Wfc2, but may be different.
 図5dは、図5bにおけるg-g'断面の一例を示す図である。本例の半導体装置100におけるd-d'断面の構成は、図4cに示す半導体装置100におけるe-e'断面の構成と同じである。 FIG. 5d is a diagram showing an example of a gg ′ cross section in FIG. 5b. The configuration of the dd ′ section in the semiconductor device 100 of this example is the same as the configuration of the ee ′ section in the semiconductor device 100 shown in FIG. 4c.
 図5eは、図5bにおけるh-h'断面の一例を示す図である。h-h'断面は、図5dにおけるh''-h'''線を通るXZ平面である。本例の半導体装置100は、ダイオード部80において、第1カソード領域82の上方にフローティング領域17が設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 FIG. 5e is a diagram showing an example of the hh ′ cross section in FIG. 5b. The hh ′ cross section is the XZ plane passing through the h ″ -h ′ ″ line in FIG. 5D. In the semiconductor device 100 of this example, the floating region 17 is provided above the first cathode region 82 in the diode unit 80. The floating region 17 may be provided in contact with the first cathode region 82.
 本例の半導体装置100は、X軸方向の最も負側の第1カソード領域82のX軸方向負側の端部位置P6''が、境界位置P5よりもX軸方向負側に設けられる。また、X軸方向の最も正側の第1カソード領域82のX軸方向正側の端部位置P6'''が、境界位置P5'よりもX軸方向正側に設けられる。幅Wfc2は、境界位置P5から端部位置P6''までのX軸方向における幅である。また、幅Wfc2は、境界位置P5'から端部位置P6'''までのX軸方向における幅である。 In the semiconductor device 100 of this example, the end position P6 ″ on the X axis direction negative side of the first cathode region 82 on the most negative side in the X axis direction is provided on the X axis direction negative side with respect to the boundary position P5. Further, the end position P6 ′ ″ on the X axis direction positive side of the first cathode region 82 on the most positive side in the X axis direction is provided on the X axis direction positive side with respect to the boundary position P5 ′. The width Wfc2 is a width in the X-axis direction from the boundary position P5 to the end position P6 ″. The width Wfc2 is a width in the X-axis direction from the boundary position P5 ′ to the end position P6 ′ ″.
 複数のフローティング領域17のうち、一部のフローティング領域17は、第1カソード領域82と第2カソード領域83との境界の上方に設けられる。当該境界の上方に設けられるフローティング領域17は、当該第1カソード領域82および当該第2カソード領域83の双方に接して設けられる。また、X軸方向の最も負側および最も正側に設けられるフローティング領域17は、それぞれ境界位置P5および境界位置P5'の上方に設けられる。境界位置P5の上方に設けられるフローティング領域17は、X軸方向の最も負側の第1カソード領域82とX軸方向負側のコレクタ領域22との双方に接して設けられる。また、境界位置P5'の上方に設けられるフローティング領域17は、X軸方向の最も正側の第1カソード領域82とX軸方向正側のコレクタ領域22との双方に接して設けられる。 Among the plurality of floating regions 17, some floating regions 17 are provided above the boundary between the first cathode region 82 and the second cathode region 83. The floating region 17 provided above the boundary is provided in contact with both the first cathode region 82 and the second cathode region 83. The floating regions 17 provided on the most negative side and the most positive side in the X-axis direction are provided above the boundary position P5 and the boundary position P5 ′, respectively. The floating region 17 provided above the boundary position P5 is provided in contact with both the first cathode region 82 on the most negative side in the X-axis direction and the collector region 22 on the negative side in the X-axis direction. The floating region 17 provided above the boundary position P5 ′ is provided in contact with both the first cathode region 82 on the most positive side in the X-axis direction and the collector region 22 on the positive side in the X-axis direction.
 本例の半導体装置100は、第2導電型の第2カソード領域83と第2導電型のフローティング領域17とが接して設けられる。このため、図4dに示す半導体装置100よりも、ダイオード部80の逆回復時のサージ電圧を、さらに抑制することができる。 In the semiconductor device 100 of this example, the second conductivity type second cathode region 83 and the second conductivity type floating region 17 are provided in contact with each other. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be further suppressed than the semiconductor device 100 shown in FIG.
 図6aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、半導体基板10の上面視で、第1カソード領域82が互いに分離して格子状に設けられる。格子状とは、第1カソード領域82が、X軸方向およびY軸方向の双方に、周期的に配列されることを指す。図6aは、第1カソード領域82が、X軸方向に10個設けられ、Y軸方向に3個設けられる一例を示している。 FIG. 6a is another enlarged view of region A in FIG. 1a. In the semiconductor device 100 of this example, the first cathode regions 82 are separated from each other and provided in a lattice shape when the semiconductor substrate 10 is viewed from above. The lattice shape means that the first cathode regions 82 are periodically arranged in both the X-axis direction and the Y-axis direction. FIG. 6a shows an example in which ten first cathode regions 82 are provided in the X-axis direction and three in the Y-axis direction.
 半導体基板10の上面視で、Y軸方向に隣り合う2つの第1カソード領域82の間には、第2カソード領域83が設けられる。X軸方向に隣り合う2つの第1カソード領域82の間には、第3カソード領域84が設けられる。半導体基板10の上面視で、X軸方向に隣り合う2つの第2カソード領域83の間にも、第3カソード領域84が設けられる。 A second cathode region 83 is provided between two first cathode regions 82 adjacent to each other in the Y-axis direction when the semiconductor substrate 10 is viewed from above. A third cathode region 84 is provided between two first cathode regions 82 adjacent in the X-axis direction. A third cathode region 84 is also provided between two second cathode regions 83 adjacent in the X-axis direction when the semiconductor substrate 10 is viewed from above.
 本例の半導体装置100は、第1カソード領域82毎に互いに分離して設けられた複数のフローティング領域17を有する。本例の半導体装置100は、第1カソード領域82が、半導体基板10の上面視でフローティング領域17よりも配列方向に張り出している。本例の半導体装置100は、配列方向において、第1カソード領域82の両側が、半導体基板10の上面視でフローティング領域17よりも配列方向に張り出している。即ち、第1カソード領域82は、Y軸方向におけるフローティング領域17の両側において、フローティング領域17に覆われていない部分を有する。 The semiconductor device 100 of this example has a plurality of floating regions 17 provided separately for each first cathode region 82. In the semiconductor device 100 of this example, the first cathode region 82 protrudes in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10. In the semiconductor device 100 of this example, both sides of the first cathode region 82 protrude in the arrangement direction from the floating region 17 in a top view of the semiconductor substrate 10 in the arrangement direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the Y-axis direction.
 また、本例の半導体装置100は、第1カソード領域82が、フローティング領域17よりも延伸方向に張り出している。本例の半導体装置100は、延伸方向において、第1カソード領域82の両側が、半導体基板10の上面視でフローティング領域17よりも延伸方向に張り出している。即ち、第1カソード領域82は、X軸方向におけるフローティング領域17の両側において、フローティング領域17に覆われていない部分を有する。 Further, in the semiconductor device 100 of this example, the first cathode region 82 protrudes in the extending direction from the floating region 17. In the semiconductor device 100 of this example, both sides of the first cathode region 82 project in the extending direction from the floating region 17 in a top view of the semiconductor substrate 10 in the extending direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the X-axis direction.
 本例の半導体装置100は、半導体基板10の上面視で、フローティング領域17の全体が、第1カソード領域82と重なって配置される。即ち、半導体基板10の上面視で、格子状に設けられた第1カソード領域82の内側に、フローティング領域17を有する。 In the semiconductor device 100 of this example, the entire floating region 17 is disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10. That is, the floating region 17 is provided inside the first cathode region 82 provided in a lattice shape when the semiconductor substrate 10 is viewed from above.
 フローティング領域17は、半導体基板10の上面視で、トランジスタ部70とは重ならないように配置される。フローティング領域17は、ダイオード部80とトランジスタ部70との境界にも接しないように配置される。 The floating region 17 is arranged so as not to overlap the transistor portion 70 when the semiconductor substrate 10 is viewed from above. The floating region 17 is arranged so as not to contact the boundary between the diode portion 80 and the transistor portion 70.
 図6bは、図6aにおける領域B5の拡大図である。図6bは、図6aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図6bに示す通り、本例の半導体装置100は、それぞれの第1カソード領域82のXY平面内における内側に、フローティング領域17が設けられる。 FIG. 6b is an enlarged view of region B5 in FIG. 6a. 6B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 6A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 6B, in the semiconductor device 100 of the present example, the floating region 17 is provided inside the first cathode region 82 in the XY plane.
 本例の半導体装置100において、幅Wcf1および幅Wcf2は、それぞれ図2bに示す例における幅Wcf1および幅Wcf2と同じであってよい。幅Wcf1は、ゼロでなければよい。幅Wcf2は、ゼロであってもよい。 In the semiconductor device 100 of this example, the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG. The width Wcf1 may not be zero. The width Wcf2 may be zero.
 本例の半導体装置100において、幅Wfl11は、図2bに示す例における幅Wfl11と同じであってよい。幅Wfl22は、図4bに示す例における幅Wfl22と同じであってよい。幅Wch1は、図2bに示す例における幅Wch1と同じであってよい。幅Wcv2は、図4bに示す例における幅Wcv2と同じであってよい。 In the semiconductor device 100 of this example, the width Wfl11 may be the same as the width Wfl11 in the example illustrated in FIG. The width Wfl22 may be the same as the width Wfl22 in the example shown in FIG. 4b. The width Wch1 may be the same as the width Wch1 in the example illustrated in FIG. The width Wcv2 may be the same as the width Wcv2 in the example shown in FIG. 4b.
 それぞれの第1カソード領域82において、フローティング領域17のY軸方向の幅Wfl11は、幅Wch1の89%以上95%以下であってよい。また、それぞれの第1カソード領域82において、フローティング領域17のX軸方向の幅Wfl22は、幅Wcv2の89%以上95%以下であってよい。 In each first cathode region 82, the width Wfl11 of the floating region 17 in the Y-axis direction may be 89% or more and 95% or less of the width Wch1. In each first cathode region 82, the width Wfl22 of the floating region 17 in the X-axis direction may be 89% or more and 95% or less of the width Wcv2.
 それぞれの第1カソード領域82において、半導体基板10の上面視で、第1カソード領域82の面積に占めるフローティング領域17の面積は、80%以上90%以下であってよい。半導体基板10の上面視における第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第1カソード領域82の面積および第2カソード領域83と第3カソード領域84の合計面積が、それぞれ80%および20%の場合、当該面積に占めるフローティング領域17の面積の割合は、64%以上72%以下であってよい。 In each first cathode region 82, the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less. The area of the first cathode region 82 and the total of the second cathode region 83 and the third cathode region 84 in the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 in the top view of the semiconductor substrate 10. When the areas are 80% and 20%, respectively, the ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
 図6cは、図6bにおける領域C5の拡大図である。図6cに示す通り、本例の半導体装置100は、半導体基板10の上面視で、第1カソード領域82と第2カソード領域83との境界と平行な方向(X軸方向)における、第2カソード領域83のX軸方向負側の端部U1において、第2カソード領域83と接して設けられた第3カソード領域84を備える。第3カソード領域84は、第2カソード領域83の2つの端部U1のそれぞれに接して設けられてよい。 FIG. 6c is an enlarged view of region C5 in FIG. 6b. As shown in FIG. 6c, the semiconductor device 100 of this example includes the second cathode in a direction (X-axis direction) parallel to the boundary between the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. A third cathode region 84 provided in contact with the second cathode region 83 is provided at the end portion U <b> 1 on the X axis direction negative side of the region 83. The third cathode region 84 may be provided in contact with each of the two ends U1 of the second cathode region 83.
 本例の半導体装置100は、図6cに示す通り、一例として第1カソード領域82がY軸方向に3つ設けられる。フローティング領域17は、それぞれの第1カソード領域82のXY平面内における内側に設けられる。 As shown in FIG. 6C, the semiconductor device 100 of this example includes three first cathode regions 82 in the Y-axis direction as an example. The floating region 17 is provided inside the XY plane of each first cathode region 82.
 幅Wnf2は、第1カソード領域82のX軸方向負側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17のX軸方向負側の端までの、X軸方向における幅である。また、幅Wnf2は、領域C5の外ではあるが、X軸方向の最も負側および正側の第1カソード領域82を除く第1カソード領域82において、当該第1カソード領域82のX軸方向正側の端から、当該第1カソード領域82に重なって配置されるフローティング領域17のX軸方向正側の端までの、X軸方向における幅である。 The width Wnf2 is the width in the X-axis direction from the end on the negative side in the X-axis direction of the first cathode region 82 to the end on the negative side in the X-axis direction of the floating region 17 arranged to overlap the first cathode region 82 It is. Further, the width Wnf2 is outside the region C5, but in the first cathode region 82 excluding the most negative and positive first cathode regions 82 in the X-axis direction, the first cathode region 82 is positive in the X-axis direction. This is the width in the X-axis direction from the end on the side to the end on the positive side in the X-axis direction of the floating region 17 disposed so as to overlap the first cathode region 82.
 幅Wnf2は、幅Wcf2と等しくてよいが、異なっていてもよい。幅Wnf2は、ゼロであってもよい。 Width Wnf2 may be equal to width Wcf2, but may be different. The width Wnf2 may be zero.
 図6dは、図6bにおけるi-i'断面の一例を示す図である。本例の半導体装置100におけるi-i'断面の構成は、図2dに示す半導体装置100におけるa-a'断面の構成と同じである。 FIG. 6d is a diagram showing an example of the ii ′ cross section in FIG. 6b. The configuration of the semiconductor device 100 of this example along the ii ′ cross section is the same as the configuration of the semiconductor device 100 shown in FIG.
 図6eは、図6bにおけるj-j'断面の一例を示す図である。j-j'断面は、図6dにおけるj''-j'''線を通るXZ平面である。本例の半導体装置100におけるj-j'断面の構成は、図4dに示す半導体装置100におけるf-f'断面において、第2カソード領域83に代えて第3カソード領域84が設けられる点で、図4dに示す半導体装置100と異なる。 FIG. 6e is a diagram showing an example of a section ij ′ in FIG. 6b. The jj ′ cross section is the XZ plane passing through the j ″ -j ′ ″ line in FIG. 6d. The configuration of the jj ′ section in the semiconductor device 100 of this example is that a third cathode region 84 is provided in place of the second cathode region 83 in the ff ′ section in the semiconductor device 100 shown in FIG. Different from the semiconductor device 100 shown in FIG.
 本例の半導体装置100は、格子状に互いに分離して設けられた第1カソード領域82毎に、フローティング領域17を有する。このため、ダイオード部80の逆回復時におけるサージ電圧を抑制することができる。 The semiconductor device 100 of the present example includes the floating region 17 for each first cathode region 82 provided separately in a grid pattern. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
 図7aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、半導体基板10の上面視で、フローティング領域17が、第1カソード領域82よりも延伸方向に張り出している。本例の半導体装置100は、延伸方向において、フローティング領域17の両側が、第1カソード領域82よりも延伸方向に張り出している。即ち、フローティング領域17が、X軸方向における第1カソード領域82の全体と重なって設けられる。なお、フローティング領域17のX軸方向正側および負側のいずれか一方が、第1カソード領域82よりも延伸方向に張り出していてもよい。 FIG. 7a is another enlarged view of region A in FIG. 1a. In the semiconductor device 100 of this example, the floating region 17 projects in the extending direction from the first cathode region 82 in a top view of the semiconductor substrate 10. In the semiconductor device 100 of this example, both sides of the floating region 17 protrude in the extending direction from the first cathode region 82 in the extending direction. That is, the floating region 17 is provided so as to overlap the entire first cathode region 82 in the X-axis direction. Note that either one of the positive side and the negative side in the X-axis direction of the floating region 17 may protrude in the extending direction from the first cathode region 82.
 言い換えると、本例の半導体装置100は、半導体基板10の上面視で、フローティング領域17のX軸方向正側の端部が、第1カソード領域82のX軸方向正側の端部よりもX軸方向正側に設けられ、且つ、当該フローティング領域17のX軸方向負側の端部が、当該第1カソード領域82のX軸方向負側の端部よりもX軸方向負側に設けられる。 In other words, in the semiconductor device 100 of this example, when viewed from the top of the semiconductor substrate 10, the end on the positive side in the X-axis direction of the floating region 17 is X more than the end on the positive side in the X-axis direction of the first cathode region 82. Provided on the positive side in the axial direction, and the end on the negative side in the X-axis direction of the floating region 17 is provided on the negative side in the X-axis direction with respect to the end on the negative side in the X-axis direction of the first cathode region 82. .
 本例の半導体装置100において、フローティング領域17は格子状に設けられてよい。図7aに示す半導体装置100は、フローティング領域17が、X軸方向に10個、Y軸方向に3個設けられる一例を示している。本例の半導体装置100において、X軸方向のフローティング領域17の個数は、X軸方向の第1カソード領域82の個数と一致してよい。 In the semiconductor device 100 of this example, the floating regions 17 may be provided in a lattice shape. The semiconductor device 100 shown in FIG. 7A shows an example in which ten floating regions 17 are provided in the X-axis direction and three in the Y-axis direction. In the semiconductor device 100 of this example, the number of floating regions 17 in the X-axis direction may match the number of first cathode regions 82 in the X-axis direction.
 第1カソード領域82に重なって設けられるフローティング領域17は、当該第1カソード領域82にX軸方向の正負いずれかの方向で隣り合う他の第1カソード領域82に重なって設けられるフローティング領域17と、X軸方向において互いに分離していてよいが、一体であってもよい。 The floating region 17 provided to overlap the first cathode region 82 includes the floating region 17 provided to overlap the other first cathode region 82 adjacent to the first cathode region 82 in either the positive or negative direction of the X-axis direction. , May be separated from each other in the X-axis direction, but may be integrated.
 図7bは、図7aにおける領域B6の拡大図である。図7bは、図7aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図7bに示す通り、本例の半導体装置100は、ダイオード部80において、フローティング領域17が、X軸方向における第1カソード領域82の全体と重なって設けられる。 FIG. 7b is an enlarged view of region B6 in FIG. 7a. FIG. 7B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 7A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 7b, in the semiconductor device 100 of this example, the floating region 17 is provided in the diode portion 80 so as to overlap the entire first cathode region 82 in the X-axis direction.
 本例の半導体装置100において、幅Wcf1は、図2bに示す例における幅Wcf1と同じであってよい。幅Wcf1は、ゼロでなければよい。 In the semiconductor device 100 of this example, the width Wcf1 may be the same as the width Wcf1 in the example illustrated in FIG. The width Wcf1 may not be zero.
 本例の半導体装置100において、フローティング領域17のY軸方向の幅Wfl14は、図2bの半導体装置100における幅Wfl11よりも大きくてもよく、小さくてもよく、等しくてもよい。フローティング領域17のX軸方向の幅Wfl24は、図4bの半導体装置100における幅Wfl22よりも大きくてよい。 In the semiconductor device 100 of this example, the width Wfl14 of the floating region 17 in the Y-axis direction may be larger, smaller, or equal to the width Wfl11 in the semiconductor device 100 of FIG. The width Wfl24 of the floating region 17 in the X-axis direction may be larger than the width Wfl22 in the semiconductor device 100 of FIG. 4b.
 本例の半導体装置100において、フローティング領域17のうち、半導体基板10の上面視で第1カソード領域82と重ならない領域は、第2カソード領域83と重なってよい。X軸方向の最も正側に設けられる第1カソード領域82と重なって設けられるフローティング領域17のX軸方向正側の端は、半導体基板10の上面視で、当該第1カソード領域82のX軸方向正側に設けられるコレクタ領域22の一部と重なってよい。X軸方向の最も負側に設けられる第1カソード領域82と重なって設けられるフローティング領域17のX軸方向負側の端は、半導体基板10の上面視で、当該第1カソード領域82のX軸方向負側に設けられるコレクタ領域22の一部と重なってよい。 In the semiconductor device 100 of this example, a region of the floating region 17 that does not overlap with the first cathode region 82 in a top view of the semiconductor substrate 10 may overlap with the second cathode region 83. An end on the positive side in the X-axis direction of the floating region 17 provided so as to overlap with the first cathode region 82 provided on the most positive side in the X-axis direction is the X-axis of the first cathode region 82 in a top view of the semiconductor substrate 10. It may overlap with a part of the collector region 22 provided on the positive direction side. An end on the negative side in the X-axis direction of the floating region 17 provided so as to overlap with the first cathode region 82 provided on the most negative side in the X-axis direction is the X-axis of the first cathode region 82 in a top view of the semiconductor substrate 10. It may overlap with a part of the collector region 22 provided on the negative direction side.
 本例の半導体装置100において、幅Wfc2は、X軸方向の最も正側の第1カソード領域82と重なって設けられるフローティング領域17のX軸方向正側の端から、当該第1カソード領域82のX軸方向正側の端までの、X軸方向における幅である。また、幅Wfc2は、X軸方向の最も負側の第1カソード領域82と重なって設けられるフローティング領域17のX軸方向負側の端から、当該第1カソード領域82のX軸方向負側の端までの、X軸方向における幅である。 In the semiconductor device 100 of this example, the width Wfc <b> 2 is the width of the first cathode region 82 from the end on the positive side in the X-axis direction of the floating region 17 provided so as to overlap with the first cathode region 82 on the most positive side in the X-axis direction. This is the width in the X-axis direction up to the end on the positive side in the X-axis direction. Further, the width Wfc2 extends from the end on the negative side in the X axis direction of the floating region 17 provided so as to overlap with the first negative cathode region 82 on the most negative side in the X axis direction to the negative side in the X axis direction of the first cathode region 82. This is the width in the X-axis direction to the end.
 幅Wfc2は、図4bに示す半導体装置100における幅Wch2と等しくてよいが、異なっていてもよい。 The width Wfc2 may be equal to or different from the width Wch2 in the semiconductor device 100 shown in FIG. 4b.
 それぞれの第1カソード領域82において、半導体基板10の上面視で、第1カソード領域82の面積に占めるフローティング領域17の面積は、80%以上90%以下であってよい。半導体基板10の上面視における第1カソード領域82と第2カソード領域83との合計面積に占める第1カソード領域82の面積および第2カソード領域83の面積が、それぞれ80%および20%の場合、当該面積に占めるフローティング領域17の面積の割合は、64%以上72%以下であってよい。 In each first cathode region 82, the area of the floating region 17 occupying the area of the first cathode region 82 in the top view of the semiconductor substrate 10 may be 80% or more and 90% or less. When the area of the first cathode region 82 and the area of the second cathode region 83 in the total area of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10 are 80% and 20%, respectively, The ratio of the area of the floating region 17 to the area may be 64% or more and 72% or less.
 図7cは、図7bにおける領域C6の拡大図である。図7cに示す通り、本例の半導体装置100は、半導体基板10の上面視で、フローティング領域17が、X軸方向における第1カソード領域82の全体と重なって設けられる。 FIG. 7c is an enlarged view of region C6 in FIG. 7b. As shown in FIG. 7C, in the semiconductor device 100 of this example, the floating region 17 is provided so as to overlap the entire first cathode region 82 in the X-axis direction when the semiconductor substrate 10 is viewed from above.
 本例の半導体装置100は、一例として、第1カソード領域82がY軸方向に3つ設けられる。また、幅Wfl24は、幅Wcv2よりも大きい。 As an example, the semiconductor device 100 of this example includes three first cathode regions 82 in the Y-axis direction. Further, the width Wfl24 is larger than the width Wcv2.
 幅Wfn2は、領域C6において、半導体基板10の上面視で、第1カソード領域82のX軸方向負側の端から、当該第1カソード領域82に重なって設けられるフローティング領域17のX軸方向負側の端までの、X軸方向における幅である。幅Wfn2は、幅Wfc2と等しくてよいが、異なっていてもよい。 The width Wfn2 is negative in the X-axis direction of the floating region 17 provided to overlap the first cathode region 82 from the end on the negative side in the X-axis direction of the first cathode region 82 in the region C6 when the semiconductor substrate 10 is viewed from above. It is the width in the X-axis direction to the end on the side. The width Wfn2 may be equal to the width Wfc2, but may be different.
 図7dは、図7bにおけるk-k'断面の一例を示す図である。本例の半導体装置100は、k-k'断面において、第1カソード領域82が、端部P1から端部P1'まで、Y軸方向に連続して設けられる。第1カソード領域82の上方には、フローティング領域17が設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 FIG. 7d is a diagram showing an example of a kk ′ cross section in FIG. 7b. In the semiconductor device 100 of this example, the first cathode region 82 is continuously provided in the Y-axis direction from the end portion P1 to the end portion P1 ′ in the kk ′ cross section. The floating region 17 is provided above the first cathode region 82. The floating region 17 may be provided in contact with the first cathode region 82.
 本例において、フローティング領域17はY軸方向に3つ設けられる。幅Wfl14は、図2dに示す例における幅Wfl11よりも大きくてよく、小さくてよく、等しくてもよい。 In this example, three floating regions 17 are provided in the Y-axis direction. The width Wfl14 may be larger, smaller, or equal to the width Wfl11 in the example shown in FIG. 2d.
 図7eは、図7bにおけるm-m'断面の一例を示す図である。m-m'断面は、図7dにおけるm''-m'''線を通るXZ平面である。図7eに示すように、本例の半導体装置100は、m-m'断面において、第1カソード領域82および第2カソード領域83が、X軸方向に交互に設けられる。 FIG. 7e is a diagram showing an example of a mm ′ cross section in FIG. 7b. The mm ′ cross section is the XZ plane passing through the m ″ -m ′ ″ line in FIG. 7d. As shown in FIG. 7e, in the semiconductor device 100 of this example, the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction in the mm ′ cross section.
 第1カソード領域82の上方には、フローティング領域17が設けられる。また、第1カソード領域82の上方に設けられるフローティング領域17は、当該第1カソード領域82にX軸方向で隣り合う第2カソード領域83の一部の上方にも設けられる。このため、幅Wfl24は幅Wcv2よりも大きい。 The floating region 17 is provided above the first cathode region 82. The floating region 17 provided above the first cathode region 82 is also provided above a part of the second cathode region 83 adjacent to the first cathode region 82 in the X-axis direction. For this reason, the width Wfl24 is larger than the width Wcv2.
 X軸方向の最も正側に設けられるフローティング領域17は、X軸方向正側に設けられるコレクタ領域22の一部の上方にも設けられてよい。X軸方向の最も負側に設けられるフローティング領域17は、X軸方向負側のコレクタ領域22の一部の上方にも設けられてよい。 The floating region 17 provided on the most positive side in the X-axis direction may be provided above a part of the collector region 22 provided on the positive side in the X-axis direction. The floating region 17 provided on the most negative side in the X-axis direction may also be provided above a part of the collector region 22 on the X-axis direction negative side.
 フローティング領域17は、第1カソード領域82と接して設けられてよい。また、フローティング領域17は、第2カソード領域83と接して設けられてよい。また、フローティング領域17は、コレクタ領域22と接して設けられてよい。 The floating region 17 may be provided in contact with the first cathode region 82. The floating region 17 may be provided in contact with the second cathode region 83. The floating region 17 may be provided in contact with the collector region 22.
 本例の半導体装置100は、フローティング領域17が第1カソード領域82のX軸方向における全体と重なって設けられる。また、フローティング領域17は、第1カソード領域82のX軸方向における両端において、第2カソード領域83と重なって設けられる。このため、ダイオード部80の逆回復時におけるサージ電圧を、図6aに示す半導体装置100よりも、さらに抑制することができる。 In the semiconductor device 100 of this example, the floating region 17 is provided so as to overlap the entire first cathode region 82 in the X-axis direction. The floating region 17 is provided so as to overlap the second cathode region 83 at both ends in the X-axis direction of the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be further suppressed than the semiconductor device 100 shown in FIG. 6a.
 図8aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、半導体基板10の上面視で、互いに分離した複数の第1カソード領域82が、図2aに示す半導体装置100と同様に、X軸方向に延伸して設けられる。半導体基板10の上面視で、Y軸方向に隣り合う第1カソード領域82の間には、第2カソード領域83が設けられる。 FIG. 8a is another enlarged view of region A in FIG. 1a. In the semiconductor device 100 of this example, a plurality of first cathode regions 82 separated from each other in a top view of the semiconductor substrate 10 are provided extending in the X-axis direction, like the semiconductor device 100 illustrated in FIG. A second cathode region 83 is provided between the first cathode regions 82 adjacent to each other in the Y axis direction when the semiconductor substrate 10 is viewed from above.
 ダイオード部80において、Y軸方向の最も正側に設けられる第1カソード領域82は、当該ダイオード部80のY軸方向正側に隣接するトランジスタ部と接してよい。Y軸方向の最も負側に設けられる第1カソード領域82は、当該ダイオード部80のY軸方向負側に隣接するトランジスタ部と接してよい。 In the diode unit 80, the first cathode region 82 provided on the most positive side in the Y-axis direction may be in contact with the transistor unit adjacent to the positive side of the diode unit 80 in the Y-axis direction. The first cathode region 82 provided on the most negative side in the Y-axis direction may be in contact with the transistor portion adjacent on the Y-axis direction negative side of the diode portion 80.
 本例の半導体装置100において、フローティング領域17は格子状に設けられてよい。図8aに示す半導体装置100は、フローティング領域17が、X軸方向に20個、Y軸方向に3個設けられる一例を示している。本例の半導体装置100において、Y軸方向のフローティング領域17の個数は、Y軸方向の第1カソード領域82の個数と一致してよい。 In the semiconductor device 100 of this example, the floating regions 17 may be provided in a lattice shape. The semiconductor device 100 shown in FIG. 8A shows an example in which 20 floating regions 17 are provided in the X axis direction and 3 in the Y axis direction. In the semiconductor device 100 of this example, the number of floating regions 17 in the Y-axis direction may match the number of first cathode regions 82 in the Y-axis direction.
 本例の半導体装置100は、半導体基板10の上面視で、フローティング領域17が、第1カソード領域82よりも配列方向に張り出している。本例の半導体装置100において、配列方向に設けられる3つのフローティング領域17のうち、中央のフローティング領域17は、配列方向において当該フローティング領域17の両側が、第1カソード領域82よりも張り出している。即ち、フローティング領域17が、配列方向における第1カソード領域82の全体と重なって設けられる。 In the semiconductor device 100 of this example, the floating region 17 protrudes in the arrangement direction from the first cathode region 82 in a top view of the semiconductor substrate 10. In the semiconductor device 100 of this example, among the three floating regions 17 provided in the arrangement direction, the central floating region 17 has both sides of the floating region 17 projecting beyond the first cathode region 82 in the arrangement direction. That is, the floating region 17 is provided so as to overlap the entire first cathode region 82 in the arrangement direction.
 配列方向に設けられる3つのフローティング領域17のうち、Y軸方向正側のフローティング領域17は、配列方向において当該フローティング領域17のY軸方向負側が、第1カソード領域82よりも張り出している。即ち、当該フローティング領域17のY軸方向負側の端部は、当該第1カソード領域82のY軸方向負側の端部よりもY軸方向負側に設けられる。 Among the three floating regions 17 provided in the arrangement direction, the Y region in the Y axis direction of the floating region 17 on the positive side in the Y axis direction protrudes beyond the first cathode region 82 in the Y direction in the arrangement direction. That is, the Y-axis direction negative end of the floating region 17 is provided on the Y-axis direction negative side of the first cathode region 82 on the Y-axis negative side.
 また、配列方向に設けられる3つのフローティング領域17のうち、Y軸方向負側のフローティング領域17は、配列方向において当該フローティング領域17のY軸方向正側が、第1カソード領域82よりも張り出している。即ち、当該フローティング領域17のY軸方向正側の端部は、当該第1カソード領域82のY軸方向正側の端部よりもY軸方向正側に設けられる。なお、フローティング領域17は、トランジスタ部70とは重なって設けられない。 Of the three floating regions 17 provided in the arrangement direction, the floating region 17 on the negative side in the Y-axis direction protrudes beyond the first cathode region 82 in the Y-axis direction positive side of the floating region 17 in the arrangement direction. . That is, the end on the Y axis direction positive side of the floating region 17 is provided closer to the Y axis direction positive side than the end portion of the first cathode region 82 on the Y axis direction positive side. Note that the floating region 17 is not provided so as to overlap the transistor portion 70.
 図8bは、図8aにおける領域B7の拡大図である。図8bは、図8aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図8bに示す通り、本例の半導体装置100は、ダイオード部80において、複数の第1カソード領域82のうち、トランジスタ部70に接しない第1カソード領域82と重なって設けられるフローティング領域17が、当該第1カソード領域82のY軸方向における全体と重なって設けられる。 FIG. 8b is an enlarged view of region B7 in FIG. 8a. FIG. 8B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 8A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 8b, in the semiconductor device 100 of this example, the floating region 17 provided to overlap the first cathode region 82 that does not contact the transistor unit 70 among the plurality of first cathode regions 82 in the diode unit 80 includes: The first cathode region 82 is provided so as to overlap the entire Y-axis direction.
 本例の半導体装置100において、幅Wcf1および幅Wcf2は、それぞれ図2bに示す例における幅Wcf1および幅Wcf2と同じであってよい。幅Wcf1は、ゼロでなければよい。幅Wcf2は、ゼロであってもよい。 In the semiconductor device 100 of this example, the width Wcf1 and the width Wcf2 may be the same as the width Wcf1 and the width Wcf2 in the example illustrated in FIG. The width Wcf1 may not be zero. The width Wcf2 may be zero.
 本例の半導体装置100において、Y軸方向の最も正側および負側に設けられるフローティング領域17のY軸方向の幅Wfl15は、図2bの半導体装置100における幅Wfl11よりも大きくてもよく、小さくてもよく、等しくてもよい。Y軸方向の中央に設けられるフローティング領域17のY軸方向の幅Wfl16は、図2bの半導体装置100における幅Wfl11よりも大きくてもよく、小さくてもよく、等しくてもよい。また、幅Wfl16は、幅Wfl5よりも大きくてよい。 In the semiconductor device 100 of this example, the width Wfl15 in the Y-axis direction of the floating region 17 provided on the most positive side and the negative side in the Y-axis direction may be larger or smaller than the width Wfl11 in the semiconductor device 100 in FIG. Or may be equal. The width Wfl16 in the Y-axis direction of the floating region 17 provided at the center in the Y-axis direction may be larger, smaller, or equal to the width Wfl11 in the semiconductor device 100 of FIG. Further, the width Wfl16 may be larger than the width Wfl5.
 本例の半導体装置100において、フローティング領域17のX軸方向の幅Wfl25は、図4bの例における幅Wfl22よりも大きくてよく、小さくてもよく、等しくてもよい。幅Wfl22は、幅Wfl15よりも大きくてよく、小さくてもよく、等しくてもよい。幅Wfl22は、幅Wfl16よりも大きくてよく、小さくてもよく、等しくてもよい。 In the semiconductor device 100 of this example, the width Wfl25 of the floating region 17 in the X-axis direction may be larger, smaller, or equal to the width Wfl22 in the example of FIG. The width Wfl22 may be larger, smaller, or equal to the width Wfl15. Width Wfl22 may be larger than width Wfl16, may be smaller, or may be equal.
 図8cは、図8bにおける領域C7の拡大図である。図8cに示す通り、本例の半導体装置100は、複数のフローティング領域17のうち、半導体基板10の上面視で、Y軸方向中央に設けられる第1カソード領域82と重なって設けられるフローティング領域17は、当該第1カソード領域82のY軸方向における全体と重なって設けられる。 FIG. 8c is an enlarged view of region C7 in FIG. 8b. As shown in FIG. 8 c, the semiconductor device 100 of this example includes the floating region 17 provided to overlap the first cathode region 82 provided at the center in the Y-axis direction when the semiconductor substrate 10 is viewed from the top among the plurality of floating regions 17. Is provided so as to overlap the entire first cathode region 82 in the Y-axis direction.
 本例の半導体装置100において、幅Wfn1は、第1カソード領域82のY軸方向正側の端から、当該端と重なって設けられるフローティング領域17のY軸方向正側の端までの、Y軸方向における幅である。また、幅Wfn1は、第1カソード領域82のY軸方向負側の端から、当該端と重なって設けられるフローティング領域17のY軸方向負側の端までの、Y軸方向における幅である。 In the semiconductor device 100 of this example, the width Wfn1 is the Y axis from the end on the Y axis direction positive side of the first cathode region 82 to the end on the Y axis direction positive side of the floating region 17 provided to overlap with the end. The width in the direction. The width Wfn1 is a width in the Y-axis direction from the end on the Y-axis direction negative side of the first cathode region 82 to the end on the Y-axis direction negative side of the floating region 17 provided so as to overlap with the end.
 幅Wfn1は、図3cの例における幅Wfn1と等しくてよい。幅Wfn1は、幅Wcf1と等しくてよい。 The width Wfn1 may be equal to the width Wfn1 in the example of FIG. The width Wfn1 may be equal to the width Wcf1.
 図8dは、図8bにおけるn-n'断面の一例を示す図である。本例の半導体装置100は、n-n'断面において、第1カソード領域82および第2カソード領域83が、Y軸方向に交互に設けられる。第1カソード領域82の上方には、フローティング領域17が設けられる。第1カソード領域82の上方に設けられるフローティング領域17は、当該第1カソード領域82にY軸方向で隣り合う第2カソード領域83の一部の上方にも設けられる。このため、幅Wfl16は幅Wch1よりも大きい。 FIG. 8d is a diagram showing an example of the nn ′ cross section in FIG. 8b. In the semiconductor device 100 of this example, the first cathode regions 82 and the second cathode regions 83 are alternately provided in the Y-axis direction in the nn ′ cross section. The floating region 17 is provided above the first cathode region 82. The floating region 17 provided above the first cathode region 82 is also provided above a part of the second cathode region 83 adjacent to the first cathode region 82 in the Y-axis direction. For this reason, the width Wfl16 is larger than the width Wch1.
 フローティング領域17は、第1カソード領域82と接して設けられてよい。また、フローティング領域17は、第2カソード領域83と接して設けられてよい。 The floating region 17 may be provided in contact with the first cathode region 82. The floating region 17 may be provided in contact with the second cathode region 83.
 本例の半導体装置100は、Y軸方向中央に設けられるフローティング領域17が、第1カソード領域82のY軸方向における全体と重なって設けられる。また、当該フローティング領域17は、当該第1カソード領域82のY軸方向における両端において、第2カソード領域83と重なって設けられる。このため、ダイオード部80の逆回復時におけるサージ電圧を、図6aに示す半導体装置100よりも、さらに抑制することができる。 In the semiconductor device 100 of this example, the floating region 17 provided in the center in the Y-axis direction is provided so as to overlap the entire first cathode region 82 in the Y-axis direction. The floating region 17 is provided so as to overlap the second cathode region 83 at both ends in the Y-axis direction of the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be further suppressed than the semiconductor device 100 shown in FIG. 6a.
 図8eは、図8bにおけるp-p'断面の一例を示す図である。p-p'断面は、図8dにおけるp''-p'''線を通るXZ平面である。図8eに示すように、本例の半導体装置100は、p-p'断面において、第1カソード領域82が、境界位置P5から境界位置P5'まで、Y軸方向に連続して設けられる。第1カソード領域82の上方には、フローティング領域17が設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 FIG. 8e is a diagram showing an example of a pp ′ section in FIG. 8b. The pp ′ cross section is an XZ plane passing through the p ″ -p ′ ″ line in FIG. As shown in FIG. 8e, in the semiconductor device 100 of this example, the first cathode region 82 is continuously provided in the Y-axis direction from the boundary position P5 to the boundary position P5 ′ in the pp ′ cross section. The floating region 17 is provided above the first cathode region 82. The floating region 17 may be provided in contact with the first cathode region 82.
 図9aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、半導体基板10の上面視で、第1カソード領域82および第2カソード領域83を挟むように、第2導電型の第3カソード領域84がさらに設けられる。本例の半導体装置100において、第3カソード領域84は、カソード領域81のX軸方向正側および負側に、下面23に接してそれぞれ設けられる。本例の第3カソード領域84は、一例としてP+型である。 FIG. 9a is another enlarged view of region A in FIG. 1a. The semiconductor device 100 of this example is further provided with a second conductivity type third cathode region 84 so as to sandwich the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. In the semiconductor device 100 of this example, the third cathode region 84 is provided in contact with the lower surface 23 on the positive side and the negative side in the X-axis direction of the cathode region 81. The third cathode region 84 of this example is a P + type as an example.
 図9bは、図9aにおける領域B8の拡大図である。図9bは、図9aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図9bに示す通り、本例の半導体装置100は、ダイオード部80において、半導体基板10の上面視で、カソード領域81のX軸方向正側および負側に、第3カソード領域84がそれぞれ設けられる。半導体基板10の上面視で、X軸方向の両端に設けられる第3カソード領域84のX軸方向の間には、第1カソード領域82および第2カソード領域83が、Y軸方向に交互に設けられる。 FIG. 9b is an enlarged view of region B8 in FIG. 9a. FIG. 9B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 9A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 9b, in the semiconductor device 100 of the present example, the third cathode regions 84 are respectively provided on the positive side and the negative side of the cathode region 81 in the X-axis direction in the diode portion 80 when the semiconductor substrate 10 is viewed from above. . The first cathode region 82 and the second cathode region 83 are alternately provided in the Y-axis direction between the third cathode regions 84 provided at both ends in the X-axis direction when the semiconductor substrate 10 is viewed from above. It is done.
 幅Wch1は、図2bに示す例における幅Wch1と同じであってよい。幅Wcv2は、図2bに示す例における幅Wcv1と同じであってよい。 The width Wch1 may be the same as the width Wch1 in the example shown in FIG. 2b. The width Wcv2 may be the same as the width Wcv1 in the example illustrated in FIG.
 幅Wcv3は、半導体基板10の上面視における、第1カソード領域82および第2カソード領域83のX軸方向の幅である。幅Wcv3は、幅Wcv1よりも小さくてよい。幅Wcv3は、幅Wcv1の70%以上90%以下であってよい。 The width Wcv3 is the width in the X-axis direction of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10. The width Wcv3 may be smaller than the width Wcv1. The width Wcv3 may be not less than 70% and not more than 90% of the width Wcv1.
 半導体基板10の上面視において、第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第1カソード領域82の面積の割合は、60%以上90%以下であってよい。当該合計面積に占める第2カソード領域83および第3カソード領域84の合計面積の割合は、10%以上40%以下であってよい。一例として、第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第1カソード領域82の面積の割合は、80%である。一例として、第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第2カソード領域83および第3カソード領域84の合計面積の割合は、20%である。 In the top view of the semiconductor substrate 10, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 60% or more and 90% or less. Good. The ratio of the total area of the second cathode region 83 and the third cathode region 84 in the total area may be 10% or more and 40% or less. As an example, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 80%. As an example, the ratio of the total area of the second cathode region 83 and the third cathode region 84 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 20%.
 図9cは、図9bにおける領域C8の拡大図である。図9cに示す通り、本例の半導体装置100は、一例として第1カソード領域82がY軸方向に3つ設けられる。Y軸方向に隣り合う第1カソード領域82の間には、第2カソード領域83が設けられる。さらに、半導体基板10の上面視で、第1カソード領域82と第2カソード領域83との境界と平行な方向(X軸方向)における、第2カソード領域83のX軸方向正側の端部U1において、第2カソード領域83と接して第3カソード領域84が設けられる。 FIG. 9c is an enlarged view of region C8 in FIG. 9b. As shown in FIG. 9c, in the semiconductor device 100 of the present example, three first cathode regions 82 are provided in the Y-axis direction as an example. A second cathode region 83 is provided between the first cathode regions 82 adjacent in the Y-axis direction. Furthermore, when viewed from the top of the semiconductor substrate 10, the end portion U1 on the positive side in the X-axis direction of the second cathode region 83 in the direction parallel to the boundary between the first cathode region 82 and the second cathode region 83 (X-axis direction). , A third cathode region 84 is provided in contact with the second cathode region 83.
 本例の半導体装置100において、幅Wccは、半導体基板10の上面視で、第1カソード領域82と第2カソード領域83との配列方向に沿った第2カソード領域83の幅である。幅Wctは、半導体基板10の上面視で、当該配列方向に沿った第3カソード領域84の幅である。本例の半導体装置100において、幅Wctは、幅Wccよりも大きい。なお、本例においては、当該配列方向がY軸方向である一例を示しているが、当該配列方向がY軸方向と異なる方向であってもよい。 In the semiconductor device 100 of this example, the width Wcc is the width of the second cathode region 83 along the arrangement direction of the first cathode region 82 and the second cathode region 83 in the top view of the semiconductor substrate 10. The width Wct is the width of the third cathode region 84 along the arrangement direction when the semiconductor substrate 10 is viewed from above. In the semiconductor device 100 of this example, the width Wct is larger than the width Wcc. In this example, an example in which the arrangement direction is the Y-axis direction is shown, but the arrangement direction may be a direction different from the Y-axis direction.
 第3カソード領域84のドーピング濃度は、第2カソード領域83のドーピング濃度と等しくてよい。即ち、領域C8において、第2カソード領域83および第3カソード領域84は、ドーピング濃度の等しい第2導電型のカソード領域としてつながっていてよい。 The doping concentration of the third cathode region 84 may be equal to the doping concentration of the second cathode region 83. That is, in the region C8, the second cathode region 83 and the third cathode region 84 may be connected as a cathode region of the second conductivity type having the same doping concentration.
 図9dは、図9bにおけるq-q'断面の一例を示す図である。本例の半導体装置100におけるq-q'断面の構成は、図2dにおけるa-a'断面の構成において、フローティング領域17を除いた構成に等しい。 FIG. 9d is a diagram showing an example of a qq ′ cross section in FIG. 9b. The configuration of the qq ′ cross section of the semiconductor device 100 of this example is the same as the configuration of the cross section aa ′ in FIG.
 図9eは、図9bにおけるr-r'断面の一例を示す図である。図9eに示すように、本例の半導体装置100は、r-r'断面において、第1カソード領域82のX軸方向正側および負側に、第1カソード領域82に接して、それぞれ第3カソード領域84が設けられる。X軸方向正側の第3カソード領域84は、X軸方向において、第1カソード領域82と、当該第1カソード領域82のX軸方向正側に設けられるコレクタ領域22とに挟まれてよい。X軸方向負側の第3カソード領域84は、X軸方向において、第1カソード領域82と、当該第1カソード領域82のX軸方向負側に設けられるコレクタ領域22とに挟まれてよい。 FIG. 9e is a diagram showing an example of the rr ′ cross section in FIG. 9b. As shown in FIG. 9e, in the semiconductor device 100 of this example, in the rr ′ cross section, the first cathode region 82 is in contact with the first cathode region 82 on the positive side and the negative side in the X-axis direction, respectively. A cathode region 84 is provided. The third cathode region 84 on the X axis direction positive side may be sandwiched between the first cathode region 82 and the collector region 22 provided on the X axis direction positive side of the first cathode region 82 in the X axis direction. The third cathode region 84 on the X axis direction negative side may be sandwiched between the first cathode region 82 and the collector region 22 provided on the X axis direction negative side of the first cathode region 82 in the X axis direction.
 本例の半導体装置100は、第1カソード領域82と第2カソード領域83との境界と平行な方向(X軸方向)における、第2カソード領域83のX軸方向正側の端部U1において、第2カソード領域83と接して第3カソード領域84が設けられる。このため、ダイオード部80の逆回復時におけるサージ電圧を抑制することができる。 In the semiconductor device 100 of this example, at the end U1 on the X axis direction positive side of the second cathode region 83 in the direction (X axis direction) parallel to the boundary between the first cathode region 82 and the second cathode region 83, A third cathode region 84 is provided in contact with the second cathode region 83. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
 図10aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、図4aに示す半導体装置100において、半導体基板10の上面視で、第1カソード領域82の内側にフローティング領域17を有さない点で、図4aに示す半導体装置100と異なる。 FIG. 10a is another enlarged view of region A in FIG. 1a. The semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 4A in that the floating region 17 is not provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above. And different.
 図10bは、図10aにおける領域B9の拡大図である。図10bは、図10aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図10bに示す通り、本例の半導体装置100は、ダイオード部80において、第1カソード領域82および第2カソード領域83がX軸方向に交互に設けられる。本例の半導体装置100は、ダイオード部80において、第1カソード領域82がX軸方向に10個設けられ、第2カソード領域83がX軸方向に9個設けられる。 FIG. 10b is an enlarged view of region B9 in FIG. 10a. FIG. 10B shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 10A to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 10b, in the semiconductor device 100 of this example, the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction in the diode portion 80. In the semiconductor device 100 of this example, in the diode portion 80, ten first cathode regions 82 are provided in the X-axis direction, and nine second cathode regions 83 are provided in the X-axis direction.
 幅Wch2は、図4bに示す例における幅Wch2と同じであってよい。幅Wcv2は、図4bに示す例における幅Wcv2と同じであってよい。 The width Wch2 may be the same as the width Wch2 in the example shown in FIG. 4b. The width Wcv2 may be the same as the width Wcv2 in the example shown in FIG. 4b.
 幅Wcv4は、半導体基板10の上面視における、第2カソード領域83のX軸方向の幅である。幅Wcv4は、幅Wcv2の5%以上30%以下であってよい。 The width Wcv4 is a width in the X-axis direction of the second cathode region 83 when the semiconductor substrate 10 is viewed from above. The width Wcv4 may be 5% or more and 30% or less of the width Wcv2.
 半導体基板10の上面視において、第1カソード領域82および第2カソード領域83の合計面積に占める第1カソード領域82の面積の割合は、60%以上90%以下であってよい。当該合計面積に占める第2カソード領域83の面積の割合は、10%以上40%以下であってよい。一例として、第1カソード領域82および第2カソード領域83の合計面積に占める第1カソード領域82の面積の割合は、80%である。一例として、第1カソード領域82および第2カソード領域83の合計面積に占める第2カソード領域83の面積の割合は、20%である。 In the top view of the semiconductor substrate 10, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 may be 60% or more and 90% or less. The ratio of the area of the second cathode region 83 to the total area may be 10% or more and 40% or less. As an example, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82 and the second cathode region 83 is 80%. As an example, the ratio of the area of the second cathode region 83 to the total area of the first cathode region 82 and the second cathode region 83 is 20%.
 図10cは、図10bにおけるs-s'断面の一例を示す図である。本例の半導体装置100におけるs-s'断面の構成は、図4cにおけるe-e'断面の構成において、フローティング領域17を除いた構成に等しい。 FIG. 10c is a diagram showing an example of the ss ′ cross section in FIG. 10b. The configuration of the ss ′ cross section in the semiconductor device 100 of this example is the same as the configuration of the ee ′ cross section in FIG.
 図10dは、図10bにおけるt-t'断面の一例を示す図である。本例の半導体装置100は、t-t'断面において、下面23に接して第1カソード領域82および第2カソード領域83を有する。第1カソード領域82および第2カソード領域83は、X軸方向に交互に設けられる。このため、本例の半導体装置100は、ダイオード部80の逆回復時におけるサージ電圧を抑制することができる。 FIG. 10d is a diagram showing an example of a tt ′ cross section in FIG. 10b. The semiconductor device 100 of this example includes a first cathode region 82 and a second cathode region 83 in contact with the lower surface 23 in the tt ′ cross section. The first cathode regions 82 and the second cathode regions 83 are provided alternately in the X-axis direction. For this reason, the semiconductor device 100 of this example can suppress the surge voltage at the time of reverse recovery of the diode unit 80.
 図11aは、図1aにおける領域Aの他の拡大図である。本例の半導体装置100は、図6aに示す半導体装置100において、半導体基板10の上面視で、格子状に設けられた第1カソード領域82の内側にフローティング領域17を有さない点で、図6aに示す半導体装置100と異なる。 FIG. 11a is another enlarged view of region A in FIG. 1a. The semiconductor device 100 of this example is different from the semiconductor device 100 shown in FIG. 6A in that the floating region 17 is not provided inside the first cathode region 82 provided in a lattice shape in a top view of the semiconductor substrate 10. Different from the semiconductor device 100 shown in FIG.
 図11bは、図11aにおける領域B10の拡大図である。図11bは、図11aにおけるダイオード部80のX軸方向正側のウェル領域11の端SからX軸方向負側のウェル領域11の端S'までを、拡大して示している。図11bに示す通り、本例の半導体装置100は、ダイオード部80において、第1カソード領域82がX軸方向に10個設けられ、Y軸方向に3個設けられる。 FIG. 11b is an enlarged view of region B10 in FIG. 11a. FIG. 11b shows an enlarged view from the end S of the well region 11 on the X axis direction positive side of the diode portion 80 in FIG. 11a to the end S ′ of the well region 11 on the X axis direction negative side. As shown in FIG. 11B, in the semiconductor device 100 of this example, in the diode portion 80, ten first cathode regions 82 are provided in the X-axis direction and three in the Y-axis direction.
 幅Wch1は、図2bに示す例における幅Wch1と同じであってよい。幅Wcv2は、図4bに示す例における幅Wcv2と同じであってよい。幅Wcv4は、図10bに示す例における幅Wcv4と同じであってよい。 The width Wch1 may be the same as the width Wch1 in the example shown in FIG. 2b. The width Wcv2 may be the same as the width Wcv2 in the example shown in FIG. 4b. The width Wcv4 may be the same as the width Wcv4 in the example illustrated in FIG.
 半導体基板10の上面視において、第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第1カソード領域82の面積の割合は、60%以上90%以下であってよい。当該合計面積に占める第2カソード領域83および第3カソード領域84の合計面積の割合は、10%以上40%以下であってよい。一例として、第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第1カソード領域82の面積の割合は、80%である。一例として、第1カソード領域82、第2カソード領域83および第3カソード領域84の合計面積に占める第2カソード領域83および第3カソード領域84の合計面積の割合は、20%である。 In the top view of the semiconductor substrate 10, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 60% or more and 90% or less. Good. The ratio of the total area of the second cathode region 83 and the third cathode region 84 in the total area may be 10% or more and 40% or less. As an example, the ratio of the area of the first cathode region 82 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 80%. As an example, the ratio of the total area of the second cathode region 83 and the third cathode region 84 to the total area of the first cathode region 82, the second cathode region 83, and the third cathode region 84 is 20%.
 図11cは、図11bにおける領域C9の拡大図である。図11cに示すように、本例の半導体装置100は、半導体基板10の上面視で、第1カソード領域82および第2カソード領域83を挟むように、第3カソード領域84が設けられる。即ち、半導体基板10の上面視で、第3カソード領域84が第1カソード領域82および第2カソード領域83を挟む方向(本例においてはX軸方向)に沿った、第2カソード領域83のX軸方向正側の端部U1において、第2カソード領域83と接して設けられた第3カソード領域84を備える。また、第2カソード領域83のX軸方向負側の端部U2において、第2カソード領域83と接して設けられた第3カソード領域84を備える。 FIG. 11c is an enlarged view of region C9 in FIG. 11b. As shown in FIG. 11c, the semiconductor device 100 of this example is provided with a third cathode region 84 so as to sandwich the first cathode region 82 and the second cathode region 83 when the semiconductor substrate 10 is viewed from above. That is, in the top view of the semiconductor substrate 10, the X of the second cathode region 83 is along the direction in which the third cathode region 84 sandwiches the first cathode region 82 and the second cathode region 83 (in this example, the X-axis direction). A third cathode region 84 provided in contact with the second cathode region 83 is provided at the end U1 on the axially positive side. The second cathode region 83 includes a third cathode region 84 provided in contact with the second cathode region 83 at the end U2 on the X axis direction negative side.
 第3カソード領域84は、図11cに示す通り、第2カソード領域83の2つの端部のそれぞれに対して、接して設けられてよい。即ち、第3カソード領域84は、第2カソード領域83の一方の端部U1および他方の端部U2のそれぞれに対して、接して設けられてよい。 The third cathode region 84 may be provided in contact with each of the two ends of the second cathode region 83, as shown in FIG. 11c. That is, the third cathode region 84 may be provided in contact with each of the one end U1 and the other end U2 of the second cathode region 83.
 また、複数の第2カソード領域83と複数の第3カソード領域84とは、半導体基板10の上面視で接していてよい。即ち、複数のそれぞれの第3カソード領域84は、図11cに示す通り、複数の第2カソード領域83のそれぞれの端部に接して設けられてよい。即ち、領域C9において、第3カソード領域84は、Y軸方向負側に設けられる第2カソード領域83の端部U1およびY軸方向正側に設けられる第2カソード領域83の端部U1の双方に接して、設けられてよい。また、当該第3カソード領域84は、Y軸方向正側に設けられる当該第2カソード領域83に対してX軸方向正側に隣り合って配置される第2カソード領域83の端部U2およびY軸方向負側に設けられる当該第2カソード領域83に対してX軸方向正側に隣り合って配置される第2カソード領域83の端部U2の双方にも、接して設けられてよい。 Further, the plurality of second cathode regions 83 and the plurality of third cathode regions 84 may be in contact with each other when the semiconductor substrate 10 is viewed from above. That is, each of the plurality of third cathode regions 84 may be provided in contact with each end of the plurality of second cathode regions 83, as shown in FIG. 11c. That is, in the region C9, the third cathode region 84 includes both the end portion U1 of the second cathode region 83 provided on the Y axis direction negative side and the end portion U1 of the second cathode region 83 provided on the Y axis direction positive side. It may be provided in contact with. In addition, the third cathode region 84 has ends U2 and Y of the second cathode region 83 arranged adjacent to the second cathode region 83 provided on the Y axis direction positive side on the X axis direction positive side. The second cathode region 83 provided on the negative side in the axial direction may be provided in contact with both ends U2 of the second cathode region 83 arranged adjacent to the positive side in the X-axis direction.
 半導体基板10の上面視で、第3カソード領域84が第1カソード領域82および第2カソード領域83を挟む方向(本例においてはX軸方向)に沿った第2カソード領域83の幅は、幅Wcv2と等しくてよい。幅Wcv2は、幅Wccよりも大きくてよい。即ち、第2カソード領域83は、X軸方向に長い長方形であってよい。 In the top view of the semiconductor substrate 10, the width of the second cathode region 83 along the direction in which the third cathode region 84 sandwiches the first cathode region 82 and the second cathode region 83 (in this example, the X-axis direction) is the width It may be equal to Wcv2. The width Wcv2 may be larger than the width Wcc. That is, the second cathode region 83 may be a rectangle that is long in the X-axis direction.
 半導体基板10の上面視で、第1カソード領域82と第2カソード領域83との配列方向(本例においてはY軸方向)に沿った第2カソード領域83の幅は、幅Wch1と等しくてよい。幅Wcv2は、幅Wch1よりも大きくてよい。 The width of the second cathode region 83 along the arrangement direction of the first cathode region 82 and the second cathode region 83 (in this example, the Y-axis direction) in the top view of the semiconductor substrate 10 may be equal to the width Wch1. . The width Wcv2 may be larger than the width Wch1.
 幅Wccは、幅Wch1よりも小さくてよい。幅Wctは、幅Wch1よりも大きくてよい。幅Wctは、ダイオード部80のY軸方向の幅WFと等しくてよい。 Width Wcc may be smaller than width Wch1. The width Wct may be larger than the width Wch1. The width Wct may be equal to the width WF of the diode unit 80 in the Y-axis direction.
 第3カソード領域84のドーピング濃度は、第2カソード領域83のドーピング濃度と等しくてよい。即ち、領域C9において、第2カソード領域83および第3カソード領域84は、ドーピング濃度の等しい第2導電型のカソード領域として、つながっていてよい。 The doping concentration of the third cathode region 84 may be equal to the doping concentration of the second cathode region 83. That is, in the region C9, the second cathode region 83 and the third cathode region 84 may be connected as a cathode region of the second conductivity type having the same doping concentration.
 また、図11aおよび図11bの半導体基板10の上面視において、1つのダイオード部80における全ての第2カソード領域83および第3カソード領域84のドーピング濃度が等しくてよい。また、1つのダイオード部80における全ての第2カソード領域83および第3カソード領域84が、ドーピング濃度の等しい第2導電型のカソード領域としてつながっていてよい。いいかえると、1つのダイオード部80における全ての第2カソード領域83および第3カソード領域84は、ドーピング濃度の等しい第2導電型のカソード領域として、一体であってよい。 Further, in the top view of the semiconductor substrate 10 of FIGS. 11a and 11b, the doping concentrations of all the second cathode regions 83 and the third cathode regions 84 in one diode portion 80 may be equal. Further, all the second cathode regions 83 and the third cathode regions 84 in one diode portion 80 may be connected as cathode regions of the second conductivity type having the same doping concentration. In other words, all the second cathode regions 83 and the third cathode regions 84 in one diode unit 80 may be integrated as a cathode region of the second conductivity type having the same doping concentration.
 図11dは、図11bにおけるu-u'断面の一例を示す図である。本例の半導体装置100におけるu-u'断面の構成は、図9dの半導体装置100におけるq-q'断面の構成と同じである。 FIG. 11d is a diagram showing an example of a uu ′ cross section in FIG. 11b. The configuration of the uu ′ section in the semiconductor device 100 of this example is the same as the configuration of the qq ′ section in the semiconductor device 100 of FIG. 9D.
 図11eは、図11bにおけるv-v'断面の一例を示す図である。v-v'断面は、図11dにおけるv''-v'''線を通るXZ平面である。本例の半導体装置100は、v-v'断面において、下面23に接して第1カソード領域82および第3カソード領域84を有する。第1カソード領域82および第3カソード領域84は、X軸方向に交互に設けられる。 FIG. 11e is a diagram showing an example of a vv ′ cross section in FIG. 11b. The vv ′ cross section is an XZ plane passing through the line v ″ -v ′ ″ in FIG. 11d. The semiconductor device 100 of this example includes a first cathode region 82 and a third cathode region 84 in contact with the lower surface 23 in the vv ′ cross section. The first cathode regions 82 and the third cathode regions 84 are alternately provided in the X-axis direction.
 本例の半導体装置100は、第3カソード領域84が、第2カソード領域83の一方の端部U1および他方の端部U2のそれぞれに対して、接して設けられる。また、第3カソード領域84が、複数の第2カソード領域83のそれぞれの端部に接して設けられる。このため、ダイオード部80の逆回復時におけるサージ電圧を抑制することができる。 In the semiconductor device 100 of this example, the third cathode region 84 is provided in contact with one end U1 and the other end U2 of the second cathode region 83, respectively. A third cathode region 84 is provided in contact with each end of the plurality of second cathode regions 83. For this reason, the surge voltage at the time of reverse recovery of the diode part 80 can be suppressed.
 図12aは、本実施形態に係る半導体装置200の上面の他の一例を示す図である。半導体装置200は、FWD等のダイオードである。半導体基板10には、半導体装置100と同様の活性部72、外周領域74が設けられる。ただし本例の活性部72には、ダイオード部80が設けられ、トランジスタ部70は設けられていなくてよい。 FIG. 12 a is a diagram illustrating another example of the upper surface of the semiconductor device 200 according to the present embodiment. The semiconductor device 200 is a diode such as FWD. The semiconductor substrate 10 is provided with an active portion 72 and an outer peripheral region 74 similar to those of the semiconductor device 100. However, the active portion 72 of this example is provided with the diode portion 80 and the transistor portion 70 may not be provided.
 活性部72には、ダイオード部80がY軸方向に複数設けられてよい。ダイオード部80は、第1カソード領域82および第2カソード領域83を備える。 The active unit 72 may be provided with a plurality of diode units 80 in the Y-axis direction. The diode unit 80 includes a first cathode region 82 and a second cathode region 83.
 本例の半導体装置200において、第1カソード領域82は第1導電型である。本例の第1カソード領域は、一例としてN+型である。第2カソード領域83は、第1カソード領域82とは導電型が異なる。本例の第2カソード領域83は、一例としてP+型である。 In the semiconductor device 200 of this example, the first cathode region 82 is the first conductivity type. The first cathode region in this example is an N + type as an example. The second cathode region 83 has a conductivity type different from that of the first cathode region 82. The second cathode region 83 of this example is a P + type as an example.
 幅Whは、半導体基板10の上面視における、半導体装置200のX軸方向の幅である。幅WFは、半導体基板10の上面視における、半導体装置200のY軸方向の幅である。なお、図12aにおいて、第1カソード領域82および第2カソード領域83以外の構成、即ちダミートレンチ部30等の構成を、省略して示している。 The width Wh is a width in the X-axis direction of the semiconductor device 200 when the semiconductor substrate 10 is viewed from above. The width WF is a width in the Y-axis direction of the semiconductor device 200 when the semiconductor substrate 10 is viewed from above. In FIG. 12a, the configuration other than the first cathode region 82 and the second cathode region 83, that is, the configuration of the dummy trench portion 30 and the like is omitted.
 本例の半導体装置200は、半導体基板10の上面視で、第1カソード領域82毎に互いに分離して設けられた複数のフローティング領域17を有する。フローティング領域17は第2導電型である。本例のフローティング領域17は、一例としてP+型である。 The semiconductor device 200 of this example has a plurality of floating regions 17 provided separately from each other for each first cathode region 82 in a top view of the semiconductor substrate 10. The floating region 17 is of the second conductivity type. The floating region 17 of this example is a P + type as an example.
 フローティング領域17は、半導体基板10の上面視で、第1カソード領域82と少なくとも部分的に重なって配置される。図12aは、半導体基板10の上面視で、フローティング領域17の全体が、第1カソード領域82と重なって配置される一例を示している。 The floating region 17 is disposed so as to at least partially overlap the first cathode region 82 when the semiconductor substrate 10 is viewed from above. FIG. 12 a shows an example in which the entire floating region 17 is disposed so as to overlap the first cathode region 82 in a top view of the semiconductor substrate 10.
 本例の半導体装置200は、第1カソード領域82が、半導体基板10の上面視で、フローティング領域17よりもY軸方向に張り出している。本例の半導体装置200は、Y軸方向において、第1カソード領域82の両側が、半導体基板10の上面視でフローティング領域17よりも張り出している。即ち、第1カソード領域82は、Y軸方向におけるフローティング領域17の両側において、フローティング領域17に覆われていない部分を有する。 In the semiconductor device 200 of this example, the first cathode region 82 protrudes in the Y-axis direction from the floating region 17 in a top view of the semiconductor substrate 10. In the semiconductor device 200 of this example, both sides of the first cathode region 82 protrude from the floating region 17 in a top view of the semiconductor substrate 10 in the Y-axis direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the Y-axis direction.
 また、本例の半導体装置200は、第1カソード領域82が、フローティング領域17よりもX軸方向に張り出している。本例の半導体装置200は、X軸方向において、第1カソード領域82の両側が、半導体基板10の上面視でフローティング領域17よりも張り出している。即ち、第1カソード領域82は、X軸方向におけるフローティング領域17の両側において、フローティング領域17に覆われていない部分を有する。 Further, in the semiconductor device 200 of this example, the first cathode region 82 protrudes in the X-axis direction from the floating region 17. In the semiconductor device 200 of this example, both sides of the first cathode region 82 protrude from the floating region 17 in a top view of the semiconductor substrate 10 in the X-axis direction. That is, the first cathode region 82 has portions that are not covered by the floating region 17 on both sides of the floating region 17 in the X-axis direction.
 本例の半導体装置200は、半導体基板10の上面視で、フローティング領域17の全体が、第1カソード領域82と重なって配置される。即ち、本例の半導体装置200は、半導体基板10の上面視で、第1カソード領域82の内側にフローティング領域17が設けられる。フローティング領域17は、第1カソード領域82毎に互いに分離して設けられる。なお、フローティング領域17の少なくとも一部が、第1カソード領域82と重なって配置されてもよい。 In the semiconductor device 200 of this example, the entire floating region 17 is disposed so as to overlap the first cathode region 82 when the semiconductor substrate 10 is viewed from above. That is, in the semiconductor device 200 of this example, the floating region 17 is provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above. The floating region 17 is provided separately for each first cathode region 82. Note that at least a part of the floating region 17 may be disposed so as to overlap the first cathode region 82.
 図12bは、図12aにおける領域E1の拡大図である。図12bに示すように、本例の半導体装置200は、半導体基板10の上面視で、第1カソード領域82の内側にフローティング領域17が設けられる。フローティング領域17は、第1カソード領域82毎に互いに分離して設けられ、第1カソード領域82と少なくとも部分的に重なって配置される。本例は、半導体基板10の上面視におけるフローティング領域17の全体が、第1カソード領域82と重なって配置される一例である。フローティング領域17は、第1カソード領域82と接して設けられてよい。 FIG. 12b is an enlarged view of the region E1 in FIG. 12a. As shown in FIG. 12 b, the semiconductor device 200 of this example is provided with the floating region 17 inside the first cathode region 82 in a top view of the semiconductor substrate 10. The floating region 17 is provided separately from each other for each first cathode region 82, and is disposed to at least partially overlap the first cathode region 82. This example is an example in which the entire floating region 17 in a top view of the semiconductor substrate 10 is disposed so as to overlap the first cathode region 82. The floating region 17 may be provided in contact with the first cathode region 82.
 図12cは、図12bにおけるaa-aa'断面の一例を示す図である。本例の半導体装置200は、aa-aa'断面において、半導体基板10、層間絶縁膜38、エミッタ電極52およびコレクタ電極24を有する。エミッタ電極52は、上面21および層間絶縁膜38の上面に設けられる。コレクタ電極24は、下面23に設けられる。 FIG. 12c is a diagram showing an example of a cross section aa-aa ′ in FIG. 12b. The semiconductor device 200 of this example includes the semiconductor substrate 10, the interlayer insulating film 38, the emitter electrode 52, and the collector electrode 24 in the aa-aa ′ cross section. The emitter electrode 52 is provided on the upper surface 21 and the upper surface of the interlayer insulating film 38. The collector electrode 24 is provided on the lower surface 23.
 本例の半導体装置200は、半導体基板10に設けられた第1導電型のドリフト領域18を有する。また、本例の半導体装置200は、上面21に接し、ドリフト領域18よりも上方に設けられた第2導電型のベース領域14を有する。また、本例の半導体装置200は、下面23に接し、ドリフト領域18よりも下方に設けられた、互いに分離した複数の第1導電型の第1カソード領域82および第2カソード領域83を有する。半導体装置200は、高濃度領域19を有さなくてもよい。さらに、高濃度領域19を有さない場合は、ダミートレンチ部30を有さなくてもよい。 The semiconductor device 200 of this example has a drift region 18 of the first conductivity type provided on the semiconductor substrate 10. In addition, the semiconductor device 200 of the present example includes a second conductivity type base region 14 provided in contact with the upper surface 21 and above the drift region 18. In addition, the semiconductor device 200 of the present example includes a plurality of first cathode regions 82 and 83 of a first conductivity type that are in contact with the lower surface 23 and provided below the drift region 18 and are separated from each other. The semiconductor device 200 may not have the high concentration region 19. Further, when the high concentration region 19 is not provided, the dummy trench portion 30 may not be provided.
 図12dは、図12bにおけるbb-bb'断面の一例を示す図である。bb-bb'断面は、図12cにおけるbb''-bb'''線を通るXZ平面である。本例の半導体装置200は、bb-bb'断面において、フローティング領域17が、第1カソード領域82の上方に、端部位置P6から端部位置P6'まで、X軸方向に連続して設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 FIG. 12d is a diagram showing an example of a bb-bb ′ cross section in FIG. 12b. The bb-bb ′ cross section is an XZ plane passing through the line bb ″ -bb ′ ″ in FIG. 12c. In the semiconductor device 200 of this example, the floating region 17 is continuously provided in the X-axis direction from the end position P6 to the end position P6 ′ above the first cathode region 82 in the bb-bb ′ cross section. . The floating region 17 may be provided in contact with the first cathode region 82.
 なお、図12dにおけるX軸方向正側の第2カソード領域83は、図12aにおけるX軸方向正側の外周領域74まで延伸していてよい。また、X軸方向負側の第2カソード領域83は、図12aにおけるX軸方向負側の外周領域74まで延伸していてよい。外周領域74の下方においては、下面23には、第2カソード領域83に代えて、第1カソード領域82よりもドーピング濃度の薄い第1導電型の終端領域が設けられてよい。終端領域のドーピング濃度は、第1カソード領域82のドーピング濃度の1/10以下であってよい。 It should be noted that the second cathode region 83 on the X axis direction positive side in FIG. 12d may extend to the outer peripheral region 74 on the X axis direction positive side in FIG. 12a. Further, the second cathode region 83 on the X axis direction negative side may extend to the outer peripheral region 74 on the X axis direction negative side in FIG. Below the outer peripheral region 74, a first conductivity type termination region having a doping concentration lower than that of the first cathode region 82 may be provided on the lower surface 23 instead of the second cathode region 83. The doping concentration of the termination region may be 1/10 or less of the doping concentration of the first cathode region 82.
 本例の半導体装置200は、フローティング領域17は、第1カソード領域82毎に互いに分離して設けられ、第1カソード領域82毎に、第1カソード領域82の上方に設けられる。このため、半導体装置200の逆回復時のサージ電圧を抑制することができる。 In the semiconductor device 200 of this example, the floating region 17 is provided separately for each first cathode region 82 and is provided above the first cathode region 82 for each first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
 図13aは、本実施形態に係る半導体装置200の上面の他の一例を示す図である。本例の半導体装置200は、図12aに示す半導体装置200において、第1カソード領域82が、領域E2で示した、ダイオードの単位構造のY軸方向正側の端部領域から負側の端部領域まで、連続して設けられる点で、図12aに示す半導体装置200と異なる。また、図12aに示す半導体装置200において、第1カソード領域82と第2カソード領域83が、X軸方向に交互に設けられる点で、図15aに示す半導体装置200と異なる。 FIG. 13a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment. In the semiconductor device 200 of this example, in the semiconductor device 200 shown in FIG. 12A, the first cathode region 82 is an end portion on the negative side from the end region on the positive side in the Y-axis direction of the unit structure of the diode indicated by the region E2. The semiconductor device 200 is different from the semiconductor device 200 shown in FIG. Further, the semiconductor device 200 shown in FIG. 12A differs from the semiconductor device 200 shown in FIG. 15A in that the first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction.
 図13bは、図13aにおける領域E2の拡大図である。図13bに示すように、本例の半導体装置200は、第1カソード領域82が、ダイオードの単位構造のY軸方向正側の端部領域から負側の端部領域まで、連続して設けられる。また、第1カソード領域82と第2カソード領域83が、X軸方向に交互に設けられる。 FIG. 13b is an enlarged view of region E2 in FIG. 13a. As shown in FIG. 13b, in the semiconductor device 200 of this example, the first cathode region 82 is continuously provided from the end region on the positive side in the Y-axis direction of the unit structure of the diode to the end region on the negative side. . The first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction.
 本例の半導体装置200は、半導体基板10の上面視で、第1カソード領域82の内側にフローティング領域17が設けられる。フローティング領域17は、X軸方向に10個設けられる。フローティング領域17は、第1カソード領域82の上方に設けられる。フローティング領域17は、第1カソード領域82と接して設けられてよい。 In the semiconductor device 200 of this example, the floating region 17 is provided inside the first cathode region 82 when the semiconductor substrate 10 is viewed from above. Ten floating regions 17 are provided in the X-axis direction. The floating region 17 is provided above the first cathode region 82. The floating region 17 may be provided in contact with the first cathode region 82.
 図13cは、図13bにおけるcc-cc'断面の一例を示す図である。本例の半導体装置200は、cc-cc'断面において、第1カソード領域82が、半導体装置200のY軸方向正側の端部領域から負側の端部領域まで、Y軸方向に連続して設けられる。第1カソード領域82のY軸方向の幅Wch2は、半導体装置200のY軸方向の幅WFと等しい。 FIG. 13c is a diagram showing an example of a cc-cc ′ cross section in FIG. 13b. In the semiconductor device 200 of this example, in the cc-cc ′ cross section, the first cathode region 82 continues in the Y-axis direction from the Y-axis direction positive end region to the negative-side end region of the semiconductor device 200. Provided. The width Wch2 in the Y-axis direction of the first cathode region 82 is equal to the width WF in the Y-axis direction of the semiconductor device 200.
 図13dは、図13bにおけるdd-dd'断面の一例を示す図である。dd-dd'断面は、図13cにおけるdd''-dd'''線を通るXZ平面である。本例の半導体装置200は、X軸方向において、下面23に接して第1カソード領域82および第2カソード領域83が交互に設けられる。また、フローティング領域17が、第1カソード領域82の上方に、第1カソード領域82と接して設けられる。このため、半導体装置200の逆回復時のサージ電圧を抑制することができる。 FIG. 13d is a diagram showing an example of a dd-dd ′ section in FIG. 13b. The section dd-dd ′ is the XZ plane passing through the line dd ″ -dd ′ ″ in FIG. 13c. In the semiconductor device 200 of this example, the first cathode regions 82 and the second cathode regions 83 are alternately provided in contact with the lower surface 23 in the X-axis direction. The floating region 17 is provided above the first cathode region 82 and in contact with the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
 図14aは、本実施形態に係る半導体装置200の上面の他の一例を示す図である。本例の半導体装置200は、半導体基板10の上面視で、第1カソード領域82が互いに分離して格子状に設けられる。図14aは、領域E3で示した、ダイオードの単位構造において、第1カソード領域82がX軸方向に10個設けられ、Y軸方向に3個設けられる一例を示している。 FIG. 14 a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment. In the semiconductor device 200 of this example, the first cathode regions 82 are separated from each other and provided in a lattice shape when the semiconductor substrate 10 is viewed from above. FIG. 14A shows an example in which ten first cathode regions 82 are provided in the X-axis direction and three in the Y-axis direction in the diode unit structure shown by the region E3.
 図14bは、図14aにおける領域E3の拡大図である。図14bに示すように、本例の半導体装置200は、半導体基板10の上面視で、第1カソード領域82の内側にフローティング領域17が設けられる。フローティング領域17は、X軸方向に10個、Y軸方向に3個設けられる。 FIG. 14b is an enlarged view of the region E3 in FIG. 14a. As shown in FIG. 14 b, the semiconductor device 200 of this example is provided with the floating region 17 inside the first cathode region 82 in a top view of the semiconductor substrate 10. Ten floating regions 17 are provided in the X-axis direction and three in the Y-axis direction.
 半導体基板10の上面視で、Y軸方向に隣り合う2つの第1カソード領域82の間には、第2カソード領域83が設けられる。X軸方向に隣り合う2つの第1カソード領域82の間には、第2導電型の第3カソード領域84が設けられる。半導体基板10の上面視で、X軸方向に隣り合う2つの第2カソード領域83の間にも、第3カソード領域84が設けられる。 A second cathode region 83 is provided between two first cathode regions 82 adjacent to each other in the Y-axis direction when the semiconductor substrate 10 is viewed from above. Between the two first cathode regions 82 adjacent in the X-axis direction, a second conductivity type third cathode region 84 is provided. A third cathode region 84 is also provided between two second cathode regions 83 adjacent in the X-axis direction when the semiconductor substrate 10 is viewed from above.
 第3カソード領域84は、一例としてP+型である。第3カソード領域84のドーピング濃度は、第2カソード領域83のドーピング濃度と等しくてよい。第2カソード領域83および第3カソード領域84は、ドーピング濃度の等しいカソード領域としてつながっていてよい。 The third cathode region 84 is a P + type as an example. The doping concentration of the third cathode region 84 may be equal to the doping concentration of the second cathode region 83. The second cathode region 83 and the third cathode region 84 may be connected as cathode regions having the same doping concentration.
 図14cは、図14bにおけるee-ee'断面の一例を示す図である。本例の半導体装置200におけるee-ee'断面の構成は、図12cに示す半導体装置200におけるaa-aa'断面の構成と同じである。 FIG. 14c is a diagram showing an example of a cross-section ee-ee ′ in FIG. 14b. The configuration of the ee-ee ′ section in the semiconductor device 200 of this example is the same as the configuration of the aa-aa ′ section in the semiconductor device 200 shown in FIG.
 図14dは、図14bにおけるff-ff'断面の一例を示す図である。ff-ff'断面は、図14cにおけるff''-ff'''線を通るXZ平面である。本例の半導体装置200におけるff-ff'断面の構成は、図13dに示すdd-dd'断面において、第2カソード領域83に代えて第3カソード領域84が設けられる点で、図13dに示すdd-dd'断面の構成と異なる。 FIG. 14d is a diagram showing an example of the ff-ff ′ cross section in FIG. 14b. The ff-ff ′ cross section is the XZ plane passing through the line ff ″ -ff ′ ″ in FIG. 14c. The configuration of the ff-ff ′ cross section in the semiconductor device 200 of this example is shown in FIG. 13d in that a third cathode region 84 is provided in place of the second cathode region 83 in the dd-dd ′ cross section shown in FIG. 13d. Different from the configuration of the dd-dd ′ cross section.
 本例の半導体装置200は、X軸方向において、下面23に接して第1カソード領域82および第3カソード領域84が交互に設けられ、且つ、第1カソード領域82の上方に、第1カソード領域82に接してフローティング領域17が設けられる。このため、半導体装置200の逆回復時のサージ電圧を抑制することができる。 In the semiconductor device 200 of this example, the first cathode region 82 and the third cathode region 84 are alternately provided in contact with the lower surface 23 in the X-axis direction, and the first cathode region 82 is located above the first cathode region 82. A floating region 17 is provided in contact with 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
 図15aは、本実施形態に係る半導体装置200の上面の一例を示す図である。図15aに示す半導体装置200は、図12aに示す半導体装置200において、フローティング領域17が設けられない点で、図12aに示す半導体装置200と異なる。本例の半導体装置200は、領域E4で示されるダイオードの単位構造が、Y軸方向に配列されている。 FIG. 15 a is a diagram illustrating an example of the upper surface of the semiconductor device 200 according to the present embodiment. The semiconductor device 200 shown in FIG. 15a is different from the semiconductor device 200 shown in FIG. 12a in that the floating region 17 is not provided in the semiconductor device 200 shown in FIG. 12a. In the semiconductor device 200 of this example, the diode unit structure indicated by the region E4 is arranged in the Y-axis direction.
 図15bは、図15aにおける領域E4の拡大図である。図1bに示すように、本例の半導体装置200は、第1カソード領域82のX軸方向正側および負側に、それぞれ下面23に接して第2カソード領域83が設けられる。当該第2カソード領域83は、第1カソード領域82のY軸方向に隣接する第2カソード領域83と、つながっていてよい。 FIG. 15b is an enlarged view of region E4 in FIG. 15a. As shown in FIG. 1b, the semiconductor device 200 of this example is provided with a second cathode region 83 on the positive side and the negative side of the first cathode region 82 in contact with the lower surface 23, respectively. The second cathode region 83 may be connected to the second cathode region 83 adjacent to the first cathode region 82 in the Y-axis direction.
 図15cは、図15bにおけるgg-gg'断面の一例を示す図である。本例の半導体装置200におけるgg-gg'断面の構成は、図12cに示すaa-aa'断面において、第1カソード領域82の上方にフローティング領域17が設けられない点で、図12cに示すaa-aa'断面の構成と異なる。 FIG. 15c is a diagram showing an example of a gg-gg ′ section in FIG. 15b. The configuration of the gg-gg ′ cross section in the semiconductor device 200 of this example is that the floating region 17 is not provided above the first cathode region 82 in the cross section aa-aa ′ shown in FIG. 12c. -Different from the configuration of the cross section aa '.
 図15dは、図15bにおけるhh-hh'断面の一例を示す図である。hh-hh'断面は、図15cにおけるhh''-hh'''線を通るXZ平面である。 FIG. 15d is a diagram showing an example of a hh-hh ′ cross section in FIG. 15b. The hh-hh ′ cross section is an XZ plane passing through the line hh ″ -hh ′ ″ in FIG. 15C.
 本例の半導体装置200におけるhh-hh'断面の構成は、図2eに示す半導体装置100において、フローティング領域17が設けられない点およびX軸方向の両端にコレクタ領域22が設けられず、第2カソード領域83が設けられる点を除き、図2eに示す半導体装置100におけるb-b'断面の構成と同じである。 The configuration of the hh-hh ′ cross section in the semiconductor device 200 of the present example is that the floating region 17 is not provided and the collector regions 22 are not provided at both ends in the X-axis direction in the semiconductor device 100 shown in FIG. Except that the cathode region 83 is provided, the configuration is the same as that of the bb ′ cross section in the semiconductor device 100 shown in FIG. 2e.
 本例の半導体装置200は、下面23に接して第1カソード領域82および第2カソード領域83を有する。第2カソード領域83は、X軸方向の両端に設けられる。第1カソード領域82は、X軸方向において第2カソード領域83に挟まれて設けられる。第2カソード領域83は、第1カソード領域82とは導電型またはドーピング濃度が異なる。このため、半導体装置200の逆回復時のサージ電圧を抑制することができる。 The semiconductor device 200 of this example has a first cathode region 82 and a second cathode region 83 in contact with the lower surface 23. The second cathode regions 83 are provided at both ends in the X axis direction. The first cathode region 82 is provided between the second cathode regions 83 in the X-axis direction. The second cathode region 83 is different in conductivity type or doping concentration from the first cathode region 82. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
 図16aは、本実施形態に係る半導体装置200の上面の他の一例を示す図である。本例の半導体装置200は、図13aに示す半導体装置200において、フローティング領域17が設けられない点で、図13aに示す半導体装置200と異なる。本例の半導体装置200は、領域E5で示されるダイオードの単位構造が、Y軸方向に配列されている。 FIG. 16 a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment. The semiconductor device 200 of this example is different from the semiconductor device 200 shown in FIG. 13A in that the floating region 17 is not provided in the semiconductor device 200 shown in FIG. 13A. In the semiconductor device 200 of this example, the unit structures of the diode indicated by the region E5 are arranged in the Y-axis direction.
 図16bは、図16aにおける領域E5の拡大図である。図16bに示すように、本例の半導体装置200は、第1カソード領域82が、ダイオードの単位構造のY軸方向正側の端部領域から負側の端部領域まで、連続して設けられる。また、第1カソード領域82と第2カソード領域83が、X軸方向に交互に設けられる。 FIG. 16b is an enlarged view of region E5 in FIG. 16a. As shown in FIG. 16b, in the semiconductor device 200 of this example, the first cathode region 82 is continuously provided from the end region on the positive side in the Y-axis direction of the unit structure of the diode to the end region on the negative side. . The first cathode regions 82 and the second cathode regions 83 are alternately provided in the X-axis direction.
 図16cは、図16bにおけるii-ii'断面の一例を示す図である。本例の半導体装置200におけるii-ii'断面の構成は、図13cに示すcc-cc'断面において、第1カソード領域82の上方にフローティング領域17が設けられない点で、図13cに示すcc-cc'断面の構成と異なる。 FIG. 16c is a diagram showing an example of a section ii-ii ′ in FIG. 16b. The configuration of the semiconductor device 200 of this example in the section ii-ii ′ is that the floating region 17 is not provided above the first cathode region 82 in the section cc-cc ′ shown in FIG. 13c. -Different from the configuration of the cc 'cross section.
 図16dは、図16bにおけるjj-jj'断面の一例を示す図である。jj-jj'断面は、図16cにおけるjj''-jj'''線を通るXZ平面である。本例の半導体装置200は、X軸方向において、下面23に接して第1カソード領域82および第2カソード領域83が交互に設けられる。このため、半導体装置200の逆回復時のサージ電圧を抑制することができる。 FIG. 16d is a diagram showing an example of a jj-jj ′ cross section in FIG. 16b. The jj-jj ′ cross section is the XZ plane passing through the jj ″ -jj ′ ″ line in FIG. 16c. In the semiconductor device 200 of this example, the first cathode regions 82 and the second cathode regions 83 are alternately provided in contact with the lower surface 23 in the X-axis direction. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
 図17aは、本実施形態に係る半導体装置200の上面の他の一例を示す図である。本例の半導体装置200は、図14aに示す半導体装置200において、フローティング領域17が設けられない点で、図14aに示す半導体装置200と異なる。本例の半導体装置200は、領域E6で示されるダイオードの単位構造が、Y軸方向に配列されている。 FIG. 17a is a diagram showing another example of the upper surface of the semiconductor device 200 according to the present embodiment. The semiconductor device 200 of this example is different from the semiconductor device 200 shown in FIG. 14A in that the floating region 17 is not provided in the semiconductor device 200 shown in FIG. 14A. In the semiconductor device 200 of this example, the diode unit structures indicated by the region E6 are arranged in the Y-axis direction.
 図17bは、図17aにおける領域E6の拡大図である。図17bに示すように、本例の半導体装置200は、ダイオードの単位構造において、半導体基板10の上面視で第1カソード領域82が互いに分離して格子状に設けられる。 FIG. 17b is an enlarged view of region E6 in FIG. 17a. As shown in FIG. 17B, in the semiconductor device 200 of this example, in the unit structure of the diode, the first cathode regions 82 are separated from each other and provided in a grid pattern when the semiconductor substrate 10 is viewed from above.
 図17cは、図17bにおけるkk-kk'断面の一例を示す図である。本例の半導体装置200におけるkk-kk'断面の構成は、図15cに示す半導体装置200におけるgg-gg'断面の構成と同じである。 FIG. 17c is a diagram showing an example of a kk-kk ′ cross section in FIG. 17b. The configuration of the kk-kk ′ section in the semiconductor device 200 of this example is the same as the configuration of the gg-gg ′ section in the semiconductor device 200 shown in FIG. 15c.
 図17dは、図17bにおけるmm-mm'断面の一例を示す図である。mm-mm'断面は、図17cにおけるmm''-mm'''線を通るXZ平面である。本例の半導体装置200におけるmm-mm'断面の構成は、図16dに示す半導体装置200におけるjj-jj'断面において、第2カソード領域83に代えて第3カソード領域84が設けられる点で、図16dに示すjj-jj'断面の構成と異なる。 FIG. 17d is a diagram showing an example of the mm-mm ′ cross section in FIG. 17b. The mm-mm ′ cross section is the XZ plane that passes through the mm ″ -mm ′ ″ line in FIG. 17c. The configuration of the mm-mm ′ cross section of the semiconductor device 200 of this example is that a third cathode region 84 is provided in place of the second cathode region 83 in the jj-jj ′ cross section of the semiconductor device 200 shown in FIG. It differs from the configuration of the jj-jj ′ cross section shown in FIG.
 本例の半導体装置200は、X軸方向において、下面23に接して第1カソード領域82および第3カソード領域84が交互に設けられる。このため、半導体装置200の逆回復時のサージ電圧を抑制することができる。 In the semiconductor device 200 of this example, the first cathode region 82 and the third cathode region 84 are alternately provided in contact with the lower surface 23 in the X-axis direction. For this reason, the surge voltage at the time of reverse recovery of the semiconductor device 200 can be suppressed.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10・・・半導体基板、11・・・ウェル領域、12・・・エミッタ領域、14・・・ベース領域、15・・・コンタクト領域、17・・・フローティング領域、18・・・ドリフト領域、20・・・バッファ領域、21・・・上面、22・・・コレクタ領域、23・・・下面、24・・・コレクタ電極、29・・・直線部、30・・・ダミートレンチ部、31・・・先端部、32・・・ダミー絶縁膜、34・・・ダミー導電部、38・・・層間絶縁膜、39・・・直線部、40・・・ゲートトレンチ部、41・・・先端部、48・・・ゲートランナー、49・・・コンタクトホール、50・・・ゲート金属層、52・・・エミッタ電極、53・・・、ケルビンパッド、54・・・コンタクトホール、55・・・ゲートパッド、56・・・コンタクトホール、58・・・電流センスパッド、59・・・電流センス部、60・・・メサ部、70・・・トランジスタ部、72・・・活性部、74・・・外周領域、76・・・外周端、80・・・ダイオード部、81・・・カソード領域、82・・・第1カソード領域、83・・・第2カソード領域、84・・・第3カソード領域、90・・・温度センス部、92・・・温度センス配線、94・・・温度測定用パッド、96・・・検知部、100・・・半導体装置、200・・・半導体装置 DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... Well region, 12 ... Emitter region, 14 ... Base region, 15 ... Contact region, 17 ... Floating region, 18 ... Drift region, 20 ... Buffer region, 21 ... Upper surface, 22 ... Collector region, 23 ... Lower surface, 24 ... Collector electrode, 29 ... Linear part, 30 ... Dummy trench part, 31 ... Tip part, 32 ... dummy insulating film, 34 ... dummy conductive part, 38 ... interlayer insulating film, 39 ... straight line part, 40 ... gate trench part, 41 ... tip part, 48 ... gate runner, 49 ... contact hole, 50 ... gate metal layer, 52 ... emitter electrode, 53 ..., Kelvin pad, 54 ... contact hole, 55 ... gate pad 56 ... Tact hole, 58 ... current sense pad, 59 ... current sense part, 60 ... mesa part, 70 ... transistor part, 72 ... active part, 74 ... outer peripheral area, 76 ... -Outer peripheral edge, 80 ... Diode part, 81 ... Cathode region, 82 ... First cathode region, 83 ... Second cathode region, 84 ... Third cathode region, 90 ... Temperature Sense unit, 92 ... temperature sense wiring, 94 ... temperature measuring pad, 96 ... detection unit, 100 ... semiconductor device, 200 ... semiconductor device

Claims (11)

  1.  半導体基板と、
     前記半導体基板に設けられたトランジスタ部と、
     前記半導体基板に設けられ、予め定められた配列方向に沿って前記トランジスタ部と配列されたダイオード部と、
     を備え、
     前記ダイオード部は、
      前記半導体基板に設けられた第1導電型のドリフト領域と、
      前記半導体基板の上面に接し、前記ドリフト領域よりも上方に設けられた第2導電型のベース領域と、
      前記半導体基板の下面に接し、前記ドリフト領域よりも下方に設けられた、互いに分離した複数の第1導電型の第1カソード領域および前記第1カソード領域とは導電型が異なる第2カソード領域と、
      前記第1カソード領域毎に互いに分離して設けられ、前記第1カソード領域と少なくとも部分的に重なって配置された複数の第2導電型のフローティング領域と、
     を有する、
     半導体装置。
    A semiconductor substrate;
    A transistor portion provided on the semiconductor substrate;
    A diode part provided on the semiconductor substrate and arranged with the transistor part along a predetermined arrangement direction;
    With
    The diode part is
    A first conductivity type drift region provided in the semiconductor substrate;
    A base region of a second conductivity type in contact with the upper surface of the semiconductor substrate and provided above the drift region;
    A plurality of first cathode regions of a first conductivity type that are in contact with a lower surface of the semiconductor substrate and are provided below the drift region and are separated from each other, and a second cathode region having a conductivity type different from that of the first cathode region ,
    A plurality of second conductivity type floating regions provided separately from each other for each of the first cathode regions, and disposed at least partially overlapping the first cathode region;
    Having
    Semiconductor device.
  2.  前記第1カソード領域は、前記半導体基板の上面視で、前記フローティング領域よりも前記配列方向に張り出している、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first cathode region protrudes in the arrangement direction from the floating region in a top view of the semiconductor substrate.
  3.  前記第1カソード領域および前記第2カソード領域は、前記上面視で、前記配列方向に直交する延伸方向に交互に配置され、
     前記フローティング領域は、前記上面視で、前記第1カソード領域および前記第2カソード領域の両方と重なって、前記延伸方向に複数設けられる、
     請求項2に記載の半導体装置。
    The first cathode region and the second cathode region are alternately arranged in an extending direction perpendicular to the arrangement direction in the top view,
    A plurality of the floating regions are provided in the extending direction so as to overlap both the first cathode region and the second cathode region in the top view.
    The semiconductor device according to claim 2.
  4.  前記フローティング領域は、前記上面視で、前記第1カソード領域よりも前記延伸方向に張り出している、請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the floating region protrudes in the extending direction from the first cathode region in the top view.
  5.  前記第1カソード領域は、前記フローティング領域よりも前記配列方向に直交する延伸方向に張り出している、請求項1から3のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the first cathode region protrudes in an extending direction perpendicular to the arrangement direction with respect to the floating region.
  6.  前記第1カソード領域および前記第2カソード領域は、前記半導体基板の上面視で、前記配列方向に交互に配置され、
     前記フローティング領域は、前記上面視で、前記第1カソード領域および前記第2カソード領域の両方と重なって、前記配列方向に複数設けられる、
     請求項5に記載の半導体装置。
    The first cathode regions and the second cathode regions are alternately arranged in the arrangement direction in a top view of the semiconductor substrate,
    A plurality of the floating regions are provided in the arrangement direction so as to overlap both the first cathode region and the second cathode region in the top view.
    The semiconductor device according to claim 5.
  7.  前記フローティング領域は、前記上面視で、前記第1カソード領域よりも前記配列方向に張り出している、請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the floating region protrudes in the arrangement direction from the first cathode region in the top view.
  8.  半導体基板と、
     前記半導体基板に設けられた第1導電型のドリフト領域と、
     前記半導体基板の上面に接し、前記ドリフト領域よりも上方に設けられた第2導電型のベース領域と、
     前記半導体基板の下面に接し、前記ドリフト領域よりも下方に設けられた第1導電型の第1カソード領域と、
     前記半導体基板の下面に接し、前記ドリフト領域よりも下方に設けられ、前記第1カソード領域に挟まれて設けられた第2導電型の第2カソード領域と、
     前記半導体基板の下面に接し、前記ドリフト領域よりも下方に設けられ、前記第1カソード領域および前記第2カソード領域を挟むように設けられた第2導電型の第3カソード領域と、
     を備え、
     前記半導体基板の上面視において、前記第1カソード領域と前記第2カソード領域との配列方向に沿った前記第3カソード領域の幅が、前記配列方向に沿った前記第2カソード領域の幅よりも大きい、
     半導体装置。
    A semiconductor substrate;
    A first conductivity type drift region provided in the semiconductor substrate;
    A base region of a second conductivity type in contact with the upper surface of the semiconductor substrate and provided above the drift region;
    A first cathode region of a first conductivity type in contact with a lower surface of the semiconductor substrate and provided below the drift region;
    A second cathode region of a second conductivity type in contact with the lower surface of the semiconductor substrate, provided below the drift region, and sandwiched between the first cathode regions;
    A third cathode region of a second conductivity type in contact with the lower surface of the semiconductor substrate and provided below the drift region and sandwiching the first cathode region and the second cathode region;
    With
    In the top view of the semiconductor substrate, the width of the third cathode region along the arrangement direction of the first cathode region and the second cathode region is larger than the width of the second cathode region along the arrangement direction. large,
    Semiconductor device.
  9.  前記上面視において、前記第3カソード領域が前記第1カソード領域および前記第2カソード領域を挟む方向に沿った前記第2カソード領域の幅が、前記配列方向に沿った前記第2カソード領域の幅よりも大きい、請求項8に記載の半導体装置。 In the top view, the width of the second cathode region along the direction in which the third cathode region sandwiches the first cathode region and the second cathode region is the width of the second cathode region along the arrangement direction. The semiconductor device according to claim 8, wherein the semiconductor device is larger.
  10.  複数の前記第2カソード領域と、複数の前記第3カソード領域と、を備え、
     複数の前記第2カソード領域と複数の前記第3カソード領域とが、前記上面視で接している、
     請求項8または9に記載の半導体装置。
    A plurality of the second cathode regions, and a plurality of the third cathode regions,
    The plurality of second cathode regions and the plurality of third cathode regions are in contact with each other when viewed from above.
    The semiconductor device according to claim 8 or 9.
  11.  半導体基板と、
     前記半導体基板に設けられた1つ以上のダイオード部と、
     を備え、
     前記ダイオード部は、
      前記半導体基板に設けられた第1導電型のドリフト領域と、
      前記半導体基板の上面に接し、前記ドリフト領域よりも上方に設けられた第2導電型のベース領域と、
      前記半導体基板の下面に接し、前記ドリフト領域よりも下方に設けられた、互いに分離した複数の第1導電型の第1カソード領域および前記第1カソード領域とは導電型が異なる第2カソード領域と、
      前記第1カソード領域毎に互いに分離して設けられ、前記第1カソード領域と少なくとも部分的に重なって配置された複数の第2導電型のフローティング領域と、
     を有する、
     半導体装置。
    A semiconductor substrate;
    One or more diode portions provided on the semiconductor substrate;
    With
    The diode part is
    A first conductivity type drift region provided in the semiconductor substrate;
    A base region of a second conductivity type in contact with the upper surface of the semiconductor substrate and provided above the drift region;
    A plurality of first cathode regions of a first conductivity type that are in contact with a lower surface of the semiconductor substrate and are provided below the drift region and are separated from each other, and a second cathode region having a conductivity type different from that of the first cathode region ,
    A plurality of second conductivity type floating regions provided separately from each other for each of the first cathode regions, and disposed at least partially overlapping the first cathode region;
    Having
    Semiconductor device.
PCT/JP2019/009485 2018-03-15 2019-03-08 Semiconductor device WO2019176810A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112019000096.9T DE112019000096T5 (en) 2018-03-15 2019-03-08 SEMI-CONDUCTOR DEVICE
CN201980004216.6A CN111066149B (en) 2018-03-15 2019-03-08 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2020506487A JP6954449B2 (en) 2018-03-15 2019-03-08 Semiconductor device
CN202410080118.3A CN117936538A (en) 2018-03-15 2019-03-08 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US16/799,719 US11476249B2 (en) 2018-03-15 2020-02-24 Semiconductor device
US17/961,546 US20230029909A1 (en) 2018-03-15 2022-10-06 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048634 2018-03-15
JP2018-048634 2018-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/799,719 Continuation US11476249B2 (en) 2018-03-15 2020-02-24 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019176810A1 true WO2019176810A1 (en) 2019-09-19

Family

ID=67907798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009485 WO2019176810A1 (en) 2018-03-15 2019-03-08 Semiconductor device

Country Status (5)

Country Link
US (2) US11476249B2 (en)
JP (1) JP6954449B2 (en)
CN (2) CN117936538A (en)
DE (1) DE112019000096T5 (en)
WO (1) WO2019176810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220965A1 (en) * 2020-04-28 2021-11-04 株式会社デンソー Semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015000206T5 (en) * 2014-10-03 2016-08-25 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing a semiconductor device
DE102021115946A1 (en) 2021-06-21 2022-12-22 Infineon Technologies Ag PROJECT AREA CONTAINING SEMICONDUCTOR DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065735A (en) * 2011-09-19 2013-04-11 Denso Corp Semiconductor device
JP2013152996A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Semiconductor device
JP2015177057A (en) * 2014-03-14 2015-10-05 株式会社東芝 semiconductor device
JP2016225345A (en) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 Reverse conducting igbt
WO2017146148A1 (en) * 2016-02-23 2017-08-31 富士電機株式会社 Semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045733B2 (en) * 2008-12-24 2012-10-10 株式会社デンソー Semiconductor device
JP2010283132A (en) 2009-06-04 2010-12-16 Mitsubishi Electric Corp Semiconductor device
JP5321669B2 (en) * 2010-11-25 2013-10-23 株式会社デンソー Semiconductor device
JP2014103376A (en) * 2012-09-24 2014-06-05 Toshiba Corp Semiconductor device
JP2014156849A (en) 2013-02-18 2014-08-28 Toyota Motor Corp Control device of internal combustion engine
EP2980856B1 (en) 2013-03-25 2020-07-22 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
JP6288315B2 (en) 2015-02-09 2018-03-07 三菱電機株式会社 Semiconductor device
JP6445952B2 (en) * 2015-10-19 2018-12-26 株式会社東芝 Semiconductor device
EP3324443B1 (en) 2016-11-17 2019-09-11 Fuji Electric Co., Ltd. Semiconductor device
JP7151084B2 (en) * 2018-01-11 2022-10-12 株式会社デンソー semiconductor equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065735A (en) * 2011-09-19 2013-04-11 Denso Corp Semiconductor device
JP2013152996A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Semiconductor device
JP2015177057A (en) * 2014-03-14 2015-10-05 株式会社東芝 semiconductor device
JP2016225345A (en) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 Reverse conducting igbt
WO2017146148A1 (en) * 2016-02-23 2017-08-31 富士電機株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220965A1 (en) * 2020-04-28 2021-11-04 株式会社デンソー Semiconductor device
JP7435214B2 (en) 2020-04-28 2024-02-21 株式会社デンソー semiconductor equipment

Also Published As

Publication number Publication date
CN117936538A (en) 2024-04-26
CN111066149B (en) 2024-02-06
DE112019000096T5 (en) 2020-08-27
JPWO2019176810A1 (en) 2020-09-24
JP6954449B2 (en) 2021-10-27
US20200194429A1 (en) 2020-06-18
US11476249B2 (en) 2022-10-18
US20230029909A1 (en) 2023-02-02
CN111066149A (en) 2020-04-24

Similar Documents

Publication Publication Date Title
JP2019161168A (en) Semiconductor device
JP2018046187A (en) Semiconductor device
US10957690B2 (en) Semiconductor device
WO2019176810A1 (en) Semiconductor device
US10566448B2 (en) Insulated gate bipolar transistor
JP2019145613A (en) Semiconductor device
JP2019004060A (en) Semiconductor device and method of manufacturing the same
JP2019140322A (en) Semiconductor device
JPWO2019116696A1 (en) Semiconductor device
JP2023040134A (en) Semiconductor device
WO2022239285A1 (en) Semiconductor device
US10957758B2 (en) Semiconductor device
JP7327672B2 (en) semiconductor equipment
US11276771B2 (en) Semiconductor device
JP2019186309A (en) Semiconductor device
JP2021136241A (en) Semiconductor device and manufacturing method for semiconductor device
JP7459976B2 (en) semiconductor equipment
WO2022239284A1 (en) Semiconductor device
JP7456113B2 (en) Semiconductor Device
CN112768518A (en) Semiconductor die, semiconductor device, and insulated gate bipolar transistor module
JP2019161167A (en) Semiconductor device and manufacturing method thereof
US20220352360A1 (en) Semiconductor device
WO2023047687A1 (en) Semiconductor device and power conversion device
WO2024080002A1 (en) Semiconductor device and production method for semiconductor device
WO2022264697A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506487

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19767067

Country of ref document: EP

Kind code of ref document: A1