WO2019176789A1 - Floor structure - Google Patents

Floor structure Download PDF

Info

Publication number
WO2019176789A1
WO2019176789A1 PCT/JP2019/009411 JP2019009411W WO2019176789A1 WO 2019176789 A1 WO2019176789 A1 WO 2019176789A1 JP 2019009411 W JP2019009411 W JP 2019009411W WO 2019176789 A1 WO2019176789 A1 WO 2019176789A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor panel
floor
side sill
floor structure
less
Prior art date
Application number
PCT/JP2019/009411
Other languages
French (fr)
Japanese (ja)
Inventor
豊 三日月
中田 匡浩
栄志 磯貝
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020506473A priority Critical patent/JP7006771B2/en
Priority to CN201980017377.9A priority patent/CN111819129A/en
Publication of WO2019176789A1 publication Critical patent/WO2019176789A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units

Definitions

  • the present invention relates to an automobile floor structure.
  • the floor structure of an automobile includes, for example, a floor panel, a side sill, a floor cross member, and other reinforcing members.
  • a shock is absorbed mainly by bending deformation of the side sill and crushing deformation of the floor cross member, thereby securing a living space for the occupant.
  • the floor panel is required not to be greatly deformed in order to secure the occupant's living space and to support the load from the side sill.
  • a driving component called a propeller shaft and an exhaust pipe are not required compared to a conventional vehicle. Therefore, a step shape called a tunnel provided at the center of the floor panel in the vehicle width direction is not required, and the floor panel can be formed into a substantially flat shape. From the viewpoint of processing such as press molding, a substantially flat floor panel can be easily provided with a shape such as emboss as compared with a conventional floor panel.
  • Patent Document 1 discloses a structure in which a reinforcing member is joined to the lower surface of the center portion in the vehicle width direction of the front portion of the cab floor as a cab over type cab floor reinforcing structure.
  • the reinforcement member is formed with a plurality of bead portions extending in the vehicle length direction, thereby suppressing deformation against external force in the vehicle length direction.
  • Patent Document 2 as a vehicle floor structure, a corrugated plate having a ridge line extending in the vehicle length direction is joined to the lower side (vehicle outer side) of the floor panel, and a vehicle plate is connected to the end of the corrugated plate in the vehicle length direction.
  • a structure in which cross members extending in the width direction are joined is disclosed.
  • the upper edge portion of the corrugated plate is joined to the floor panel, the end portion in the vehicle width direction of the corrugated plate is joined to the floor frame, and the end portion in the vehicle length direction of the corrugated plate is on the bottom surface of the cross member.
  • the structure is abutted or joined.
  • Patent Document 3 as a vehicle floor structure, there is a structure having a floor panel, side sills joined to both sides of the floor panel, and cross members arranged between the side sills so as to be orthogonal to the side sills. It is disclosed.
  • concentric arc-shaped beads are formed on the floor panel centering on a portion where the cross member and the side sill intersect, thereby dispersing the input load at the time of a side collision.
  • the floor structure is required to have improved proof stress, while light weight is also required to improve fuel efficiency. Therefore, it is required for the floor structure of an automobile to satisfy both of securing of proof stress and weight reduction. For this purpose, it is required to improve the yield strength per unit mass (proof strength / mass), that is, the mass efficiency related to the yield strength. If the mass efficiency can be improved, it is possible to ensure sufficient yield strength even if the plate thickness of the member is reduced to reduce the weight. Further, the floor structure is desired to be a simple structure in order to expand the indoor space or the battery mounting space.
  • the floor structure of Patent Document 1 is a structure in which a closed section is formed by a floor tunnel and a reinforcing member, and an increase in the number of parts and an increase in mass are caused by combining large-sized members for forming the closed section. Moreover, the floor structure of patent document 1 is a structure which suppresses a deformation
  • the floor structure of Patent Document 2 is a structure in which a closed section is formed by a floor panel and a corrugated plate, and an increase in the number of parts and an increase in mass are caused by combining large-sized members for forming the closed section. Further, the floor structure of Patent Document 2 is a structure in which the upper ridge portion of the corrugated plate is joined to the floor panel, and the end portion in the vehicle length direction of the corrugated plate contacts the bottom surface of the cross member. Limited by the height of the cross member. Due to such restrictions, the floor structure of Patent Document 2 has a limit in improving the mass efficiency of yield strength. Furthermore, since the floor structure of Patent Document 2 is a floor structure on the premise that a cross member is provided, it is disadvantageous in terms of expansion of indoor space or battery mounting space.
  • the floor structure of Patent Document 3 is a structure in which a closed section is formed by a floor panel and a cross member, and as a result of combining large-size members for forming the closed section, an increase in the number of parts and an increase in mass are caused. Further, the bead shape formed on the floor panel functions effectively when it has a cross member, and the mass efficiency of yield strength is greatly reduced in a floor structure in which no cross member is arranged. Moreover, since the floor structure of patent document 3 is a floor structure on the assumption that a cross member is provided, it is disadvantageous from the viewpoint of expansion of an indoor space or a battery mounting space.
  • the present invention has been made in view of such problems of the prior art, and is (a) a simple structure that does not have a closed cross section formed by a cross member for collision, and (b) relates to strength.
  • An object of the present invention is to provide a floor structure with improved mass efficiency.
  • the present inventor conducted a collision simulation simulating a substantially flat floor panel and a side sill, and as a result of earnestly examining the relationship between the behavior of the out-of-plane deformation of the floor panel and the maximum input load, With this knowledge, the present invention was completed. That is, the present inventor gives a corrugated shape having a ridge line portion parallel to the vehicle width direction or the vehicle length direction to the floor panel, and uses the period C and the height h of the convex portion of the floor panel. It has been found that the above problem can be solved when the value of h is less than 60.
  • a floor structure which includes a floor panel having a corrugated portion having a ridge line portion parallel to the vehicle width direction or the vehicle length direction, and the vehicle of the floor panel.
  • a side sill joined to an end portion in the width direction, and a value of C / ⁇ h using a height C and a period C of the convex portion of the corrugated portion is less than 60.
  • a floor structure that has a simple structure that does not have a closed cross-section formed by a cross member for collision, and has improved mass efficiency regarding yield strength.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 3 is a view corresponding to the BB cross-sectional view of FIG. 2 showing an example of the shape of the floor panel.
  • FIG. 3 is a perspective view which shows schematic structure of the floor structure concerning 2nd Embodiment of this invention. It is a figure equivalent to the AA sectional view in Drawing 2 of the floor structure concerning a 2nd embodiment of the present invention.
  • FIG. 1 It is a perspective view which shows schematic structure of the floor structure concerning 3rd Embodiment of this invention. It is CC sectional drawing of FIG. It is a figure which shows the joining example of the floor panel and side sill which used the L-shaped bracket. It is sectional drawing when a bracket is seen from the vehicle inside which shows the example of a shape of an L-shaped bracket. It is a figure which shows the example when the period C is not constant. It is a figure which shows the example in case the height h is not constant. It is a figure which shows the example in case the period C and height h are not constant. It is a figure which shows the analysis model in a side collision simulation (A). It is a figure which shows the analysis model in a side collision simulation (A).
  • FIG. It is DD sectional drawing of FIG. It is a figure which shows the analysis model in a side collision simulation (A). It is a figure which shows the relationship between the displacement of the pole in a comparative example and an Example, and the input load to a floor panel. In addition, the vertical axis
  • FIG. It is a figure which shows the state of the out-of-plane deformation of the comparative example 1. It is a figure which shows the state of the out-of-plane deformation
  • FIG. It is a figure which shows the relationship between the period C and the maximum input load when the height h / period C of the convex part of a floor panel is 0.067.
  • shaft of this figure is represented by the maximum load ratio which normalized the maximum input load in each analysis model with the maximum input load of the comparative example 1.
  • FIG. It is a figure which shows the relationship between C / (root) h of the convex part of a floor panel, and the mass efficiency of yield strength in each analysis model.
  • the floor structure 1 of the first embodiment includes a floor panel 2 and a side sill 3.
  • the side sill 3 includes a side sill outer 4 and a side sill inner 5.
  • the side sill outer 4 is a hat-shaped member having a cross section perpendicular to the vehicle length direction L.
  • the side sill outer 4 extends in the vehicle height direction H, and both ends of the top surface portion 4a in the vehicle height direction H extend in the vehicle width direction W. It has the vertical wall part 4b extended inside a vehicle, and the flange part 4c extended perpendicularly
  • the side sill inner 5 is a hat-shaped member having a cross section perpendicular to the vehicle length direction L.
  • the top surface portion 5a extends in the vehicle height direction H, and the vehicle width direction from both ends in the vehicle height direction H of the top surface portion 5a. It has the vertical wall part 5b extended to the vehicle outer side of W, and the flange part 5c extended perpendicularly
  • the side sill outer 4 and the side sill inner 5 are joined by, for example, spot welding of the flange portion 4c and the flange portion 5c.
  • the hat shape of the side sill outer 4 and the hat shape of the side sill inner 5 include, for example, a substantially hat shape in which the vertical wall portion is inclined with respect to the top surface portion. Further, for example, one of the side sill outer 4 and the side sill inner 5 may be a flat plate member.
  • the floor panel 2 has a corrugated shape having a periodically formed convex portion 10, a bottom surface portion 11, and a ridge line portion 12 that is a corner portion connecting the convex portion 10 and the bottom surface portion 11. It has become.
  • the convex part 10 of the floor panel 2 in the first embodiment includes a top surface part 10a, a side wall part 10b extending in the vehicle height direction H from both ends of the top surface part 10a, and a corner part connecting the top surface part 10a and the side wall part 10b. And a ridge line portion 10c.
  • the ridge lines 10c and 12 are parallel to the vehicle width direction W. That is, the longitudinal direction of the convex portion 10 is parallel to the vehicle width direction W.
  • the length of the top surface part 10a and the bottom face part 11 of the vehicle length direction L is mutually the same.
  • Such a corrugated floor panel 2 is manufactured by imparting a shape to a flat plate by, for example, transfer by a roll or press molding.
  • the end of the floor panel 2 in the vehicle width direction W (hereinafter, “end in the width direction”) is joined in contact with the side sill 3. More specifically, in the state in which the width direction end of the floor panel 2 is in contact with the top surface 5a of the side sill inner 5, the width direction end and the top surface 5a are joined by fillet welding, for example.
  • the floor structure 1 of the first embodiment is configured as described above.
  • the height from the bottom surface portion 11 of the corrugated portion of the floor panel 2 to the top surface portion 10a is defined as h
  • the period of the convex portion 10 of the corrugated portion is defined as C.
  • “period of the convex portion” means an interval from a boundary position between the convex portion 10 and the bottom surface portion 11 to a boundary position between the convex portion 10 adjacent to the convex portion 10 and the bottom surface portion 11. To do.
  • the period C is the interval from the side wall portion 10 b of the first convex portion 10 to the side wall portion 10 b of the second convex portion 10 among the adjacent convex portions 10. is there. Further, as shown in FIG. 5, for example, when the side wall portion 10 b of the convex portion 10 is inclined with respect to the top surface portion 10 a, the period C is equal to the inner surface P 1 of the side wall portion 10 b of the first convex portion 10. is the spacing from the intersection of the lower surface P 2 of the bottom portion 11, an inner surface P 1 of the second side wall portion 10b of the protrusion 10, until the line of intersection of the lower surface P 2 of the bottom portion 11.
  • out-of-plane deformation occurs in the top surface portion 10a and the bottom surface portion 11 of the floor panel 2 at the time of a side collision of an automobile, but as the period C becomes smaller, each top surface portion 10a and each bottom surface.
  • the length of the portion 11 in the vehicle length direction L is shortened.
  • the period C of the convex portion 10 is preferably 15 to 200 mm.
  • the height h of the convex portion 10 is preferably 2 to 20 mm.
  • the corrugated portion is formed so that C / ⁇ h is less than 60.
  • the floor panel 2 in which C / ⁇ h is less than 60 has improved proof mass efficiency relative to a floor panel having C / ⁇ h of 60 or more. That is, by replacing the conventional floor panel with the floor panel 2 as in the first embodiment, the mass efficiency of yield strength as the floor structure is also improved.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the floor panel is preferably a steel plate having a tensile strength of 780 MPa or more.
  • the floor structure 1 as in the first embodiment sufficient strength can be exerted without the floor panel 2 having a closed cross-sectional structure, so that the floor structure is configured without providing a reinforcing member such as a cross member. It is also possible to do. As a result, the indoor space or the battery mounting space can be expanded. However, from the viewpoint of improving the proof stress, the proof strength of the floor structure 1 can be further increased by providing a reinforcing member such as a cross member on the floor structure 1 as in the first embodiment.
  • the lower limit of C / ⁇ h is not particularly limited.
  • the lower limit of the period C is constrained from the viewpoint of formability of the floor panel 2, or the upper limit of the height h is constrained from the viewpoint of securing indoor space or battery mounting space, and the lower limit of C / ⁇ h is appropriately determined.
  • C / ⁇ h is preferably 3.34 or more.
  • the shape of the end portion in the width direction of the floor panel 2 is different from that in the first embodiment.
  • the end in the width direction is a flange portion 13 raised by, for example, bending.
  • the floor panel 2 and the side sill 3 are joined by spot welding in the state which the bottom face part 11 of the flange part 13 contact
  • the width direction edge part of the floor panel 2 is the flange part 13, Therefore Spot welding can be employ
  • FIG. As a result, the joining operation between the floor panel 2 and the side sill 3 is facilitated, and the productivity is improved.
  • the length of the bottom face part 11 of the flange part 13 in the vehicle length direction L is 15 mm or more in order to ensure a sufficient spot hitting space.
  • the flange portion 13 of the floor panel 2 has a shape that extends upward in the vehicle height direction H, but may have a shape that extends downward.
  • the floor panel 2 of the third embodiment has the same shape as the floor panel 2 of the first embodiment, and the flange portion 13 as in the second embodiment is not formed.
  • the end in the width direction of the floor panel 2 is in contact with the top surface portion 5 a of the side sill inner 5, and the floor panel 2 and the side sill 3 are joined via the bracket 6.
  • the bracket 6 is a member extending in the vehicle length direction L and having a L-shaped cross section perpendicular to the vehicle length direction L.
  • the bracket 6 is arrange
  • the joining method of members is not specifically limited, For example, spot welding is employ
  • the length of the top surface portion 10a of the floor panel 2 in the vehicle length direction L is preferably 15 mm or more in order to ensure a sufficient spot hitting space.
  • the floor structure 1 of the third embodiment it is not necessary to form the flange portion 13 of the floor panel 2 as in the second embodiment, and the manufacturing of the floor panel 2 is facilitated. Furthermore, since spot welding can be adopted for joining the floor panel 2 and the side sill 3, the joining operation of the floor panel 2 and the side sill 3 becomes easy. Thereby, it becomes easy to make the floor structure 1, and productivity can be improved.
  • the bracket 6 When using the bracket 6 of the third embodiment, the bracket 6 may be disposed between the floor panel 2 and the side sill 3 as shown in FIG.
  • the first wall surface portion 6 a of the bracket 6 is bonded to the lower surface of the bottom surface portion 11 of the floor panel, and the second wall surface portion 6 b is bonded to the upper surface of the top surface portion 5 a of the side sill inner 5.
  • the bracket 6 since a load is first input from the side sill 3 to the bracket 6 in the case of a side collision, the bracket 6 is deformed before the floor panel 2. For this reason, depending on the load input state, the deformation of the floor panel 2 may be induced following the deformation of the bracket 6.
  • the bracket 6 is arranged so that the vehicle width direction end of the floor panel 2 abuts against the side sill 3 as in the floor structure 1 shown in FIGS. 8 and 9. Thereby, since a load is directly input to the floor panel 2 from the side sill 3 at the time of a side collision, the proof stress as the floor structure 1 can be improved.
  • the first wall surface portion 6 a of the bracket 6 of the third embodiment may have a corrugated portion similar to the corrugated portion of the floor panel 2.
  • the convex part 7 is periodically formed in the 1st wall surface part 6a of the bracket 6, and the convex part 7 of the 1st wall surface part 6a and the convex part 10 of the floor panel 2 exist.
  • the bracket 6 and the floor panel 2 are joined so as to contact each other. If the bracket 6 having such a first wall surface portion 6a is used, the joint strength between the bracket 6 and the floor panel 2 can be increased, and the proof stress as the floor structure 1 can be improved.
  • the bracket 6 was provided in the upper side (vehicle inner side) of the floor panel 2, you may be provided in the lower side (vehicle outer side) of the floor panel 2.
  • FIG. When the bracket 6 is provided on the lower side (the vehicle outer side) of the floor panel, the first wall surface portion 6 a of the bracket 6 is joined to the lower surface of the bottom surface portion 11 of the floor panel 2, and the second wall surface portion 6 b is connected to the side sill inner 5. Is joined to the top surface portion 5a.
  • the shape of the bracket 6 is L-shaped, but other shapes may be used as long as the floor panel 2 and the side sill 3 can be joined.
  • the floor panel 2 may not have a wave shape over the entire region in the vehicle length direction L, and may have a wave shape only in a part of the section in the vehicle length direction L. Even in such a floor structure, if C / ⁇ h is less than 60 in the portion of the floor panel 2 to which the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the range of the corrugated portion is, for example, 200 mm or more in front of the vehicle length direction L around the collision position of the pole in the pole side collision test, and the rear It is preferable that it is 200 mm or more.
  • the range of the corrugated portion is, for example, 200 mm or more in front of the vehicle length direction L around the collision position of the pole in the pole side collision test, and the rear It is preferable that it is 200 mm or more.
  • the floor panel 2 may not have a wave shape over the entire region in the vehicle width direction W, and only the end in the width direction may have a wave shape. Even in such a floor structure, if C / ⁇ h is less than 60 in the portion to which the corrugation at the end in the width direction is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the range of the corrugated part is the width of the floor panel 2 (from one side sill of the vehicle body to the other, starting from the end point in the vehicle width direction W of the floor panel 2. It is preferable that it is 1/4 or more of the length in the vehicle width direction W to the side sill.
  • the period C of the convex part 10 of the floor panel 2 may not be constant.
  • the “cycle C” is an average value of the cycles C of the convex portions 10.
  • the period of the first convex portion 10 is “C 1 ”
  • the second is located next to the first convex portion 10.
  • the period C in this specification is (C 1 + C 2). + C 3 ) / 3.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • C / ⁇ h may not be less than 60 over the entire region in the vehicle length direction L.
  • the value of C / ⁇ h using the average period C and the height h of some sections in the vehicle length direction L If it is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / ⁇ h of less than 60, so it can be said that the floor structure according to the present invention.
  • the height h of the convex portion 10 of the floor panel 2 may not be constant.
  • the “height h” is an average value of the heights h of the convex portions 10.
  • the height of the first convex portion 10 is “h 1 ”, which is located next to the first convex portion 10.
  • the height of the second convex portion 10 is “h 2 ” and the height of the third convex portion located next to the second convex portion 10 is “h 3 ”
  • the height h in this specification is This is a value calculated by (h 1 + h 2 + h 3 ) / 3.
  • C / ⁇ h is less than 60 in the portion where the wave shape is given, the mass efficiency of the proof stress is improved as described in the above embodiment.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • C / ⁇ h may not be less than 60 over the entire region in the vehicle length direction L.
  • the floor panel 2 has a wave shape over the entire region in the vehicle length direction L, the value of C / ⁇ h using the average value of the height h and the period C of some sections in the vehicle length direction L If it is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / ⁇ h of less than 60, so it can be said that the floor structure according to the present invention.
  • the period C and height h of the convex part 10 of the floor panel 2 do not need to be constant, respectively.
  • the “cycle C” in this case is the average value of the period C of each convex portion 10 as in FIG. 12, and the “height h” is the average of the height h of each convex portion 10 as in FIG. Value.
  • the period C is calculated by (C 1 + C 2 + C 3 ) / 3
  • C / ⁇ h is less than 60 in the portion to which the wave shape is given, the mass of the proof stress as described in the above embodiment. Efficiency is improved.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • C / ⁇ h may not be less than 60 over the entire vehicle length direction L. For example, even if the floor panel 2 has a wave shape over the entire region in the vehicle length direction L, C that is the average period of some sections in the vehicle length direction L and h that is the average height of the sections are used.
  • the floor structure has a C / ⁇ h of less than 60, so it can be said that the floor structure according to the present invention.
  • the height h of the convex portion 10 of the floor panel 2 may be different depending on the position in the vehicle width direction W.
  • the “height h” is an average value of heights different from each other at the position in the vehicle width direction W.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • C / ⁇ h may not be less than 60 over the entire region in the vehicle width direction W.
  • ⁇ h is less than 60, the yield strength of the floor panel 2 is improved.
  • the range in which C / ⁇ h in this case is less than 60 is the width of the floor panel 2 (the vehicle width direction W from one side sill of the vehicle body to the other side sill, starting from the end point of the floor panel 2 in the vehicle width direction W).
  • the length is preferably 1 ⁇ 4 or more of the length.
  • the convex portion 10 of the floor panel 2 is configured by the top surface portion 10a, the side wall portion 10b, and the ridge line portion 10c.
  • the shape of the convex portion 10 is not particularly limited.
  • the cross-sectional shape perpendicular to the longitudinal direction may be circular.
  • the “height h” is a height from the bottom surface portion 11 to the farthest position of the convex portion 10.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the ridgeline portions 10c and 12 of the floor panel 2 are parallel to the vehicle width direction W and the floor structure is adapted to the side collision, but the ridgeline portions 10c and 12 are arranged in the vehicle length direction L of the floor panel 2. It is good also as a floor structure corresponding to front collision or rear collision. Even in such a floor structure, if C / ⁇ h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the floor panel 2 may not be corrugated over the entire region in the vehicle width direction W, and only a portion of the section in the vehicle width direction W is corrugated. There may be. Even in such a floor structure, if C / ⁇ h is less than 60 in the portion of the floor panel 2 to which the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the range of the wave shape portion is, for example, 200 mm or more from the center position in the vehicle width direction W of the floor panel 2 to the right in the vehicle width direction W, And it is preferable that it is 200 mm or more to the left.
  • the floor panel 2 may not be wavy throughout the vehicle length direction L.
  • the end portion of the vehicle length direction L (hereinafter referred to as “longitudinal direction”). Only the edge ”) may be wavy.
  • C / ⁇ h is less than 60 in the portion to which the corrugation at the end in the longitudinal direction is given, the mass efficiency of yield strength is improved as described in the above embodiment.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • the range of the corrugated portion is 1 of the length from the front end to the rear end of the floor panel 2 starting from the end point of the floor panel 2 in the vehicle length direction L. / 4 or more is preferable.
  • the period C of the convex part 10 of the floor panel 2 may not be constant.
  • the “cycle C” is an average value of the cycles C of the convex portions 10. Even in such a floor structure, if C / ⁇ h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / ⁇ h is preferably 55 or less, and more preferably 25 or less. If the period C is not constant, C / ⁇ h may not be less than 60 over the entire region in the vehicle width direction W.
  • the floor structure has a C / ⁇ h of less than 60, so it can be said that the floor structure according to the present invention.
  • the height h of the convex portion 10 of the floor panel 2 may not be constant.
  • the “height h” is an average value of the heights h of the convex portions 10. Even in such a floor structure, if C / ⁇ h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / ⁇ h is preferably 55 or less, and more preferably 25 or less. When the height h is not constant, C / ⁇ h may not be less than 60 over the entire region in the vehicle width direction W.
  • the floor structure has a C / ⁇ h of less than 60, so it can be said that the floor structure according to the present invention.
  • period C and the height h of the convex portion 10 of the floor panel 2 may not be constant.
  • “period C” is an average value of the periods C of the respective convex portions 10
  • “height h” is an average value of the height h of each convex portion 10.
  • C / ⁇ h may not be less than 60 over the entire region in the vehicle width direction W.
  • C that is the average period of a part of the section in the vehicle width direction W and h that is the average height of the section are used. If the value of C / ⁇ h is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / ⁇ h of less than 60, so it can be said that the floor structure according to the present invention.
  • the height h of the convex portion 10 of the floor panel 2 may be different depending on the position in the vehicle length direction L.
  • the “height h” in this case is an average value of heights that are different at the position in the vehicle length direction L.
  • C / ⁇ h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment.
  • C / ⁇ h is preferably 55 or less, and more preferably 25 or less.
  • C / ⁇ h may not be less than 60 over the entire region in the vehicle length direction L, and C / only at the longitudinal end portion. If ⁇ h is less than 60, the yield strength of the floor panel 2 is improved. In this case, the range in which C / ⁇ h is less than 60 may be 1 ⁇ 4 or more of the length from the front end to the rear end of the floor panel 2 starting from the end point of the floor panel 2 in the vehicle length direction L. preferable.
  • Example 10 A side impact simulation of the floor structure was conducted assuming a pole side impact.
  • the floor structure of the analysis model used in this simulation is the structure having the flat floor panel shown in FIG. 15 (Comparative Example 1) and the flat floor panel as shown in FIG. This is a structure using a cross-member for joining (comparative example 2) and a corrugated floor panel shown in FIG. Further, regarding the floor structure using the corrugated floor panel, a plurality of analysis models in which the period C and the height h of the convex portion were changed were created and simulations were carried out (Examples 1 to 10).
  • the structure of Example 10 is a structure in which a cross member is joined to a corrugated floor panel. In this simulation, the evaluation is performed by paying attention to the proof stress of the floor panel. Therefore, the side sill is replaced with an elastic plate having a thickness of 6 mm.
  • Table 1 shows the conditions of the analysis model of the side collision simulation and the maximum load ratio (F 1 / F 0 ) obtained by normalizing the maximum input load F 1 of each analysis model with the maximum input load F 0 of Comparative Example 1.
  • the mass ratio (m 1 / m 0 ) obtained by normalizing the mass m 1 of each analysis model with the mass m 0 of Comparative Example 1 is also shown.
  • FIG. 19 shows displacement-load ratio diagrams of Comparative Example 1 and Examples 1 and 2.
  • the load ratio shown in FIG. 19 is a value obtained by normalizing the input load in each analysis model with the maximum input load of Comparative Example 1.
  • the input load decreases and changes after the input load reaches the maximum load under any condition.
  • the reason for such transition is that the floor panel undergoes a large deformation after the input load reaches the maximum load. That is, the maximum input load is an input load before the floor panel is largely deformed, and corresponds to a proof stress. Accordingly, FIG. 19 shows that the proof stress of the floor structure of Example 1 is higher than that of Comparative Example 1.
  • FIG. 20 shows the state of the out-of-plane deformation caused by the simulation of the analysis model of Comparative Example 1.
  • FIG. 21 shows a state of out-of-plane deformation caused by the simulation of the analysis model of the first embodiment.
  • the top surface portion 10a and the bottom surface portion 11 of the convex portion are individually deformed out of plane.
  • region of out-of-plane deformation at the time of seeing as the whole floor panel is narrower than the flat floor panel shown in FIG.
  • the reason why the top surface portion 10a and the bottom surface portion 11 are individually deformed out of plane in this way is that the ridge line portion 10c (FIG. 4) connecting the top surface portion 10a and the side wall portion 10b, and the ridge line connecting the bottom surface portion 11 and the side wall portion 10b. Since the extending direction of the portion 12 (FIG.
  • each ridge line portion 10c, 12 serves as a support point at the time of bending deformation. This is because it works.
  • the space between the supporting points is a region where the out-of-plane deformation of the floor panel can occur, but the interval between the supporting points is shortened because the floor panel is corrugated, and the span of bending deformation is changed to a flat floor panel. On the other hand, it becomes shorter. Thereby, in the floor panel of Example 1, resistance to bending deformation is increased, and the proof stress is greater than that of a floor panel that is not corrugated.
  • Example 1 and Example 2 are compared in FIG. 19, the maximum load is larger in Example 2 than in Example 1, while the attenuation of the input load after reaching the maximum load is in Example 1. Is smaller.
  • the maximum load before the large deformation of the floor panel is smaller in the first embodiment than in the second embodiment, but the input load after the large deformation of the floor panel is kept high. Therefore, it can be said that the floor structure of Example 1 is a structure having higher energy absorption performance than that of Example 2, but from the viewpoint of exhibiting high proof strength before large deformation of the floor panel, Is better. This result shows that a floor structure with high energy absorption performance is not necessarily a structure with high yield strength.
  • FIG. 22 shows the maximum load ratio F 1 / F obtained by standardizing the convex period C of each analysis model having a corrugated floor panel and the maximum input load F 1 of each analysis model by the maximum input load F 0 of Comparative Example 1. The relationship with F 0 is shown.
  • the plots in FIG. 22 correspond to the results of Comparative Example 5 and Examples 1 to 5 in Table 1 above, and are for the case where h / C is all constant at 0.067. When h / C is constant, the line length of the floor panel in the cross-sectional view as shown in FIG. 4 is constant, and the proof stress can be evaluated under the condition of constant mass.
  • FIG. 22 shows that the proof stress of the floor panel increases when the period C is made smaller than when the height h of the convex part is made higher under the condition of constant mass.
  • the plot in the case where the period C in FIG. 22 is 30 mm corresponds to the result of Example 2 of Table 1 above, but according to Table 1 above, the plot is more implemented than Comparative Example 2 which is a floor structure having a cross member. Example 2 has a larger maximum load ratio. From this result, the floor structure of Example 2 shows that the proof stress increases to the extent that the cross member for dealing with the pole side collision can be omitted.
  • C / ⁇ h of the convex portion of the floor panel and the maximum load ratio F 1 / F 0 of each analysis model are normalized by the mass ratio m 1 / m 0 with reference to Comparative Example 1. Show the relationship.
  • the value on the vertical axis in FIG. 23 is the mass efficiency of the yield strength indicating the magnitude of the yield strength per mass, and the higher the value on the vertical axis, the better the balance between the yield strength and the mass.
  • FIG. 23 shows that the smaller the value of C / ⁇ h, the better the mass efficiency. Further, as is clear from FIG. 23 and Table 1 above, even if the floor panel is corrugated, the proof stress mass efficiency may be inferior to that of Comparative Example 1 of a flat floor panel. That is, it is impossible to achieve both yield strength and weight reduction by simply making the floor panel corrugated.
  • the floor structure that is superior in mass efficiency of yield strength to Comparative Example 1 is a floor structure in which C / ⁇ h is less than 60. Moreover, the mass efficiency of yield strength is greatly improved in the floor structure in which C / ⁇ h is 55 or less, and further 25 or less.
  • Example 10 in Table 1 above the mass efficiency of yield strength is greatly improved if the cross member is joined to the corrugated floor panel. For this reason, for example, in the case where both improvement in yield strength and weight reduction are prioritized over securing the indoor space and the battery mounting space, it is effective to provide a cross member on the corrugated floor panel.
  • ⁇ Side collision simulation (B)> a side collision simulation was performed when the floor panel of Example 2 was joined to a side sill via a bracket.
  • the floor structure of the analysis model used in this simulation is a structure in which an L-shaped bracket is arranged on the upper side of the floor panel (inside the vehicle) with the width direction end of the floor panel in contact with the side sill as shown in FIG. Example 11) and a structure (Example 12) in which an L-shaped bracket is arranged between a floor panel and a side sill as shown in FIG.
  • the side sill is replaced with an elastic plate having a thickness of 6 mm in order to pay attention to the influence of the strength of the floor panel due to the difference in the joining position of the L-shaped bracket.
  • the load input conditions are the same as those in the side collision simulation (A) described above.
  • Example 11 When the simulation was performed under the above conditions, the maximum input load of Example 11 was 1.56 times the maximum input load of Example 12. That is, when the floor panel and the side sill are joined using the L-shaped bracket, the floor panel is brought into contact with the side sill as shown in FIG. 9 rather than arranging the L-shaped bracket between the floor panel and the side sill as shown in FIG. When the L-shaped bracket is arranged on the floor, the strength as a floor structure is increased.
  • the present invention can be used as a floor structure attached to a vehicle such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

The present invention provides a floor structure that is provided with: a floor panel that includes a wave-shaped part having ridge line sections parallel to a vehicle width direction or a vehicle length direction; and a side sill that is joined to an end section of the floor panel in the vehicle width direction W. The value of C/√h, where C is the cycle of protruding sections in the floor panel, and h is the height thereof, is less than 60.

Description

フロア構造Floor structure
 本発明は、自動車のフロア構造に関する。 The present invention relates to an automobile floor structure.
 自動車のフロア構造は、例えばフロアパネル、サイドシル、フロアクロスメンバおよびその他補強部材等からなる。このようなフロア構造では、例えば自動車の側面衝突時、特にポール側面衝突時において、主にサイドシルの曲げ変形とフロアクロスメンバの圧潰変形により衝撃を吸収することで、乗員の生存空間を確保している。この時、フロアパネルには、乗員の生存空間の確保のために大変形しないこと、およびサイドシルからの荷重を支持することが求められる。 The floor structure of an automobile includes, for example, a floor panel, a side sill, a floor cross member, and other reinforcing members. In such a floor structure, for example, at the time of a side collision of an automobile, in particular, at the time of a pole side collision, a shock is absorbed mainly by bending deformation of the side sill and crushing deformation of the floor cross member, thereby securing a living space for the occupant. Yes. At this time, the floor panel is required not to be greatly deformed in order to secure the occupant's living space and to support the load from the side sill.
 近年、電気自動車の航続距離を高めることを目的に、フロアパネルの下に大容量のバッテリーを搭載する車体レイアウトが採用され始めている。このようなレイアウトの車体では、ポール側面衝突時の電気安全の観点から、バッテリーが損傷しないよう、サイドシルの変形で確実に衝撃を吸収することが望まれる。そのため、サイドシルの変形時の耐荷重性能を高めなければならず、フロアパネルには、自身が大変形しないようサイドシルから伝達されるその高い荷重に耐えることが求められる。なお、フロアパネル等の部材は大変形することで部材に入力される荷重が大変形前より小さくなるが、本明細書においては部材が大変形する前の最大入力荷重を“耐力”と称す。 In recent years, a vehicle body layout in which a large-capacity battery is mounted under the floor panel has been adopted for the purpose of increasing the cruising range of an electric vehicle. In the vehicle body having such a layout, it is desired that the impact is surely absorbed by the deformation of the side sill so as not to damage the battery from the viewpoint of electrical safety at the time of a pole side collision. Therefore, it is necessary to enhance the load bearing performance when the side sill is deformed, and the floor panel is required to withstand the high load transmitted from the side sill so that the floor panel does not deform greatly. Note that a member such as a floor panel is greatly deformed so that a load input to the member is smaller than that before the large deformation. However, in this specification, the maximum input load before the member is largely deformed is referred to as “proof strength”.
 一方、電気自動車では、従来の自動車に対し、プロペラシャフトと呼ばれる駆動部品や排気管が不要になる。そのため、フロアパネルの車幅方向の中央部に設けられるトンネルと呼ばれる段差形状が不要となり、フロアパネルを略フラットな形状にすることができる。プレス成形等の加工の観点では、略フラットなフロアパネルは従来のフロアパネルに比べてエンボスなどの形状付与が容易になる。 On the other hand, in an electric vehicle, a driving component called a propeller shaft and an exhaust pipe are not required compared to a conventional vehicle. Therefore, a step shape called a tunnel provided at the center of the floor panel in the vehicle width direction is not required, and the floor panel can be formed into a substantially flat shape. From the viewpoint of processing such as press molding, a substantially flat floor panel can be easily provided with a shape such as emboss as compared with a conventional floor panel.
 従来のフロア構造として、特許文献1~3に記載されたものがある。特許文献1には、キャブオーバー型のキャブフロアの補強構造として、キャブフロアの前部の、車幅方向の中央部の下面に補強部材が接合された構造が開示されている。特許文献1のフロア構造では、その補強部材に車長方向に延伸する複数本のビード部が形成されることで、車長方向の外力に対する変形の抑制が図られている。 Conventional floor structures are described in Patent Documents 1 to 3. Patent Document 1 discloses a structure in which a reinforcing member is joined to the lower surface of the center portion in the vehicle width direction of the front portion of the cab floor as a cab over type cab floor reinforcing structure. In the floor structure of Patent Document 1, the reinforcement member is formed with a plurality of bead portions extending in the vehicle length direction, thereby suppressing deformation against external force in the vehicle length direction.
 特許文献2には、車両のフロア構造として、フロアパネルの下側(車外側)に、稜線部が車長方向に延伸する波板が接合され、波板の車長方向の端部に、車幅方向に延伸するクロスメンバが接合された構造が開示されている。特許文献2のフロア構造は、波板の上側稜線部がフロアパネルに接合され、波板の車幅方向端部がフロアフレームに接合され、波板の車長方向端部がクロスメンバの底面に当接、または接合された構造となっている。そのようなフロア構造とすることで、例えばオフセット前面衝突の際の入力荷重を左右のフロアフレームに分散させている。 In Patent Document 2, as a vehicle floor structure, a corrugated plate having a ridge line extending in the vehicle length direction is joined to the lower side (vehicle outer side) of the floor panel, and a vehicle plate is connected to the end of the corrugated plate in the vehicle length direction. A structure in which cross members extending in the width direction are joined is disclosed. In the floor structure of Patent Document 2, the upper edge portion of the corrugated plate is joined to the floor panel, the end portion in the vehicle width direction of the corrugated plate is joined to the floor frame, and the end portion in the vehicle length direction of the corrugated plate is on the bottom surface of the cross member. The structure is abutted or joined. By adopting such a floor structure, for example, an input load at the time of an offset frontal collision is distributed to the left and right floor frames.
 特許文献3には、車両のフロア構造として、フロアパネルと、フロアパネルの両側部に接合されたサイドシルと、サイドシルと直交するように各サイドシルの間に配置されたクロスメンバとを有した構造が開示されている。特許文献3のフロア構造は、クロスメンバとサイドシルが交差する部位を中心として同心円弧状のビードがフロアパネルに形成され、これにより側面衝突時の入力荷重を分散させている。 In Patent Document 3, as a vehicle floor structure, there is a structure having a floor panel, side sills joined to both sides of the floor panel, and cross members arranged between the side sills so as to be orthogonal to the side sills. It is disclosed. In the floor structure of Patent Document 3, concentric arc-shaped beads are formed on the floor panel centering on a portion where the cross member and the side sill intersect, thereby dispersing the input load at the time of a side collision.
特開2000-135990号公報JP 2000-135990 A 特開2004-168252号公報JP 2004-168252 A 特開2006-297966号公報JP 2006-297966 A
 フロア構造には耐力の向上が求められる一方で、燃費向上のために軽量化も求められる。したがって、自動車のフロア構造としては耐力の確保と軽量化を両立させることが求められる。そのためには質量あたりの耐力(耐力/質量)、すなわち耐力に関する質量効率を向上させることが求められる。質量効率を向上させることができれば、部材の板厚を薄くして軽量化を図ったとしても十分な耐力を確保することが可能である。また、フロア構造には室内空間またはバッテリー搭載空間の拡大のため、簡素な構造であることが望まれる。 The floor structure is required to have improved proof stress, while light weight is also required to improve fuel efficiency. Therefore, it is required for the floor structure of an automobile to satisfy both of securing of proof stress and weight reduction. For this purpose, it is required to improve the yield strength per unit mass (proof strength / mass), that is, the mass efficiency related to the yield strength. If the mass efficiency can be improved, it is possible to ensure sufficient yield strength even if the plate thickness of the member is reduced to reduce the weight. Further, the floor structure is desired to be a simple structure in order to expand the indoor space or the battery mounting space.
 特許文献1のフロア構造は、フロアトンネルと補強部材で閉断面が形成される構造であり、閉断面形成のためにサイズの大きな部材を組み合わせる分、部品点数の増加と質量の増加を招く。また、特許文献1のフロア構造は、前面衝突の際にキャブフロアの前部中央と補強部材が変形しながら高い荷重を伝達する、いわゆるエネルギー吸収性能を高めることで変形を抑制する構造である。そのため、耐力に焦点を当てた場合、特許文献1のフロア構造では必ずしも十分な耐力が得られるとは限らない。 The floor structure of Patent Document 1 is a structure in which a closed section is formed by a floor tunnel and a reinforcing member, and an increase in the number of parts and an increase in mass are caused by combining large-sized members for forming the closed section. Moreover, the floor structure of patent document 1 is a structure which suppresses a deformation | transformation by improving what is called energy absorption performance which transmits a high load, deform | transforming the front center of a cab floor and a reinforcement member in the case of a frontal collision. Therefore, when focusing on the proof stress, the floor structure of Patent Document 1 does not always provide sufficient proof strength.
 特許文献2のフロア構造は、フロアパネルと波板で閉断面が形成される構造であり、閉断面形成のためにサイズの大きな部材を組み合わせる分、部品点数の増加と質量の増加を招く。また、特許文献2のフロア構造は、波板の上側稜線部がフロアパネルに接合され、波板の車長方向端部がクロスメンバ底面に当接する構造であることから、波板の高さはクロスメンバの高さに律速される。そのような制約があるために、特許文献2のフロア構造では耐力の質量効率の改善に限界がある。さらに、特許文献2のフロア構造はクロスメンバを設けることを前提としたフロア構造であるため、室内空間またはバッテリー搭載空間の拡大という観点で不利である。 The floor structure of Patent Document 2 is a structure in which a closed section is formed by a floor panel and a corrugated plate, and an increase in the number of parts and an increase in mass are caused by combining large-sized members for forming the closed section. Further, the floor structure of Patent Document 2 is a structure in which the upper ridge portion of the corrugated plate is joined to the floor panel, and the end portion in the vehicle length direction of the corrugated plate contacts the bottom surface of the cross member. Limited by the height of the cross member. Due to such restrictions, the floor structure of Patent Document 2 has a limit in improving the mass efficiency of yield strength. Furthermore, since the floor structure of Patent Document 2 is a floor structure on the premise that a cross member is provided, it is disadvantageous in terms of expansion of indoor space or battery mounting space.
 特許文献3のフロア構造は、フロアパネルとクロスメンバで閉断面が形成される構造であり、閉断面形成のためにサイズの大きな部材を組み合わせる分、部品点数の増加と質量の増加を招く。また、フロアパネルに形成されるビード形状はクロスメンバを有する場合に効果的に機能するものであり、クロスメンバを配置しないフロア構造においては、耐力の質量効率が大きく低下する。また、特許文献3のフロア構造はクロスメンバを設けることを前提としたフロア構造であるため、室内空間またはバッテリー搭載空間の拡大という観点で不利である。 The floor structure of Patent Document 3 is a structure in which a closed section is formed by a floor panel and a cross member, and as a result of combining large-size members for forming the closed section, an increase in the number of parts and an increase in mass are caused. Further, the bead shape formed on the floor panel functions effectively when it has a cross member, and the mass efficiency of yield strength is greatly reduced in a floor structure in which no cross member is arranged. Moreover, since the floor structure of patent document 3 is a floor structure on the assumption that a cross member is provided, it is disadvantageous from the viewpoint of expansion of an indoor space or a battery mounting space.
 本発明は、従来技術が有するこのような課題に鑑みてなされたものであり、(a)衝突対応用のクロスメンバによって形成される閉断面、を有しない簡素な構造で、(b)耐力に関する質量効率が向上したフロア構造を提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and is (a) a simple structure that does not have a closed cross section formed by a cross member for collision, and (b) relates to strength. An object of the present invention is to provide a floor structure with improved mass efficiency.
 上記課題を解決するため、本発明者は、略フラットなフロアパネルとサイドシルとを模擬した衝突シミュレーションを実施し、フロアパネルの面外変形の挙動と最大入力荷重の関係について鋭意検討した結果、以下の知見を以て本発明を完成した。すなわち、本発明者は、フロアパネルに、車幅方向または車長方向に平行な稜線部を有する波形状を付与し、そのフロアパネルの凸部の周期Cと高さhを用いたC/√hの値が60未満となる場合に上記課題を解決できることを見出した。 In order to solve the above problems, the present inventor conducted a collision simulation simulating a substantially flat floor panel and a side sill, and as a result of earnestly examining the relationship between the behavior of the out-of-plane deformation of the floor panel and the maximum input load, With this knowledge, the present invention was completed. That is, the present inventor gives a corrugated shape having a ridge line portion parallel to the vehicle width direction or the vehicle length direction to the floor panel, and uses the period C and the height h of the convex portion of the floor panel. It has been found that the above problem can be solved when the value of h is less than 60.
 したがって、上記課題を解決する本発明の一態様は、フロア構造であって、車幅方向または車長方向に平行な稜線部を有する波形状部を備えたフロアパネルと、前記フロアパネルの前記車幅方向の端部に接合されたサイドシルと、を備え、前記波形状部の凸部の周期Cと、高さhを用いたC/√hの値が60未満であることを特徴としている。  Therefore, one aspect of the present invention for solving the above problems is a floor structure, which includes a floor panel having a corrugated portion having a ridge line portion parallel to the vehicle width direction or the vehicle length direction, and the vehicle of the floor panel. A side sill joined to an end portion in the width direction, and a value of C / √h using a height C and a period C of the convex portion of the corrugated portion is less than 60. *
 本発明によれば、衝突対応用のクロスメンバによって形成される閉断面、を有しない簡素な構造で、耐力に関する質量効率が向上したフロア構造を提供することができる。 According to the present invention, it is possible to provide a floor structure that has a simple structure that does not have a closed cross-section formed by a cross member for collision, and has improved mass efficiency regarding yield strength.
本発明の第1実施形態に係るフロア構造の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a floor structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るフロア構造の概略構成を示す平面図である。It is a top view showing a schematic structure of a floor structure concerning a 1st embodiment of the present invention. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図2のB-B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. フロアパネルの形状例を示す、図2のB-B断面図に相当する図である。FIG. 3 is a view corresponding to the BB cross-sectional view of FIG. 2 showing an example of the shape of the floor panel. 本発明の第2実施形態に係るフロア構造の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the floor structure concerning 2nd Embodiment of this invention. 本発明の第2実施形態に係るフロア構造の、図2中のA-A断面図に相当する図である。It is a figure equivalent to the AA sectional view in Drawing 2 of the floor structure concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係るフロア構造の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the floor structure concerning 3rd Embodiment of this invention. 図8のC-C断面図である。It is CC sectional drawing of FIG. L字ブラケットを用いたフロアパネルとサイドシルの接合例を示す図である。It is a figure which shows the joining example of the floor panel and side sill which used the L-shaped bracket. L字ブラケットの形状例を示す、車内側からブラケットを見たときの断面図である。It is sectional drawing when a bracket is seen from the vehicle inside which shows the example of a shape of an L-shaped bracket. 周期Cが一定でない場合の例を示す図である。It is a figure which shows the example when the period C is not constant. 高さhが一定でない場合の例を示す図である。It is a figure which shows the example in case the height h is not constant. 周期Cおよび高さhが一定でない場合の例を示す図である。It is a figure which shows the example in case the period C and height h are not constant. 側面衝突シミュレーション(A)における解析モデルを示す図である。It is a figure which shows the analysis model in a side collision simulation (A). 側面衝突シミュレーション(A)における解析モデルを示す図である。It is a figure which shows the analysis model in a side collision simulation (A). 図16のD-D断面図である。It is DD sectional drawing of FIG. 側面衝突シミュレーション(A)における解析モデルを示す図である。It is a figure which shows the analysis model in a side collision simulation (A). 比較例および実施例におけるポールの変位とフロアパネルへの入力荷重との関係を示す図である。なお、本図の縦軸は各解析モデルにおける入力荷重を比較例1の最大入力荷重で規格化した荷重比で表されている。It is a figure which shows the relationship between the displacement of the pole in a comparative example and an Example, and the input load to a floor panel. In addition, the vertical axis | shaft of this figure is represented by the load ratio which normalized the input load in each analysis model with the maximum input load of the comparative example 1. FIG. 比較例1の面外変形の状態を示す図である。It is a figure which shows the state of the out-of-plane deformation of the comparative example 1. 実施例1の面外変形の状態を示す図である。It is a figure which shows the state of the out-of-plane deformation | transformation of Example 1. FIG. フロアパネルの凸部の高さh/周期Cが0.067の時の、周期Cと最大入力荷重との関係を示す図である。なお、本図の縦軸は各解析モデルにおける最大入力荷重を比較例1の最大入力荷重で規格化した最大荷重比で表されている。It is a figure which shows the relationship between the period C and the maximum input load when the height h / period C of the convex part of a floor panel is 0.067. In addition, the vertical axis | shaft of this figure is represented by the maximum load ratio which normalized the maximum input load in each analysis model with the maximum input load of the comparative example 1. FIG. フロアパネルの凸部のC/√hと、各解析モデルにおける耐力の質量効率との関係を示す図である。It is a figure which shows the relationship between C / (root) h of the convex part of a floor panel, and the mass efficiency of yield strength in each analysis model.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
<第1実施形態>
 図1~図3に示すように第1実施形態のフロア構造1は、フロアパネル2とサイドシル3で構成されている。サイドシル3はサイドシルアウタ4とサイドシルインナ5で構成されている。
<First Embodiment>
As shown in FIGS. 1 to 3, the floor structure 1 of the first embodiment includes a floor panel 2 and a side sill 3. The side sill 3 includes a side sill outer 4 and a side sill inner 5.
 サイドシルアウタ4は、車長方向Lに垂直な断面がハット形状の部材であり、車高方向Hに延伸する天面部4aと、天面部4aの車高方向Hの両端部から車幅方向Wの車内側に延伸する縦壁部4bと、縦壁部4bの先端部から当該縦壁部4bに対して垂直に延伸するフランジ部4cを有している。サイドシルインナ5も同様に、車長方向Lに垂直な断面がハット形状の部材であり、車高方向Hに延伸する天面部5aと、天面部5aの車高方向Hの両端部から車幅方向Wの車外側に延伸する縦壁部5bと、縦壁部5bの先端部から当該縦壁部5bに対して垂直に延伸するフランジ部5cを有している。サイドシルアウタ4とサイドシルインナ5とは、フランジ部4cとフランジ部5cとが例えばスポット溶接されることで接合されている。なお、サイドシルアウタ4のハット形状、およびサイドシルインナ5のハット形状には、例えば縦壁部が天面部に対して傾斜した略ハット形状も含まれる。また、例えばサイドシルアウタ4とサイドシルインナ5のいずれか一方の部材が平板部材であっても良い。 The side sill outer 4 is a hat-shaped member having a cross section perpendicular to the vehicle length direction L. The side sill outer 4 extends in the vehicle height direction H, and both ends of the top surface portion 4a in the vehicle height direction H extend in the vehicle width direction W. It has the vertical wall part 4b extended inside a vehicle, and the flange part 4c extended perpendicularly | vertically with respect to the said vertical wall part 4b from the front-end | tip part of the vertical wall part 4b. Similarly, the side sill inner 5 is a hat-shaped member having a cross section perpendicular to the vehicle length direction L. The top surface portion 5a extends in the vehicle height direction H, and the vehicle width direction from both ends in the vehicle height direction H of the top surface portion 5a. It has the vertical wall part 5b extended to the vehicle outer side of W, and the flange part 5c extended perpendicularly | vertically with respect to the said vertical wall part 5b from the front-end | tip part of the vertical wall part 5b. The side sill outer 4 and the side sill inner 5 are joined by, for example, spot welding of the flange portion 4c and the flange portion 5c. Note that the hat shape of the side sill outer 4 and the hat shape of the side sill inner 5 include, for example, a substantially hat shape in which the vertical wall portion is inclined with respect to the top surface portion. Further, for example, one of the side sill outer 4 and the side sill inner 5 may be a flat plate member.
 図4に示すようにフロアパネル2は、周期的に形成された凸部10と、底面部11と、凸部10と底面部11とを繋ぐ角部である稜線部12とを有した波形状となっている。第1実施形態におけるフロアパネル2の凸部10は、天面部10aと、天面部10aの両端部から車高方向Hに延伸する側壁部10bと、天面部10aと側壁部10bとを繋ぐ角部である稜線部10cとを有した形状となっている。稜線部10c、12は車幅方向Wに平行となっている。すなわち、凸部10の長手方向は車幅方向Wに平行となっている。また、第1実施形態のフロアパネル2においては、天面部10aと底面部11の車長方向Lの長さが互いに同一となっている。このような波形状のフロアパネル2は、例えばロールによる転写またはプレス成形によって平板に形状が付与されることで製造される。 As shown in FIG. 4, the floor panel 2 has a corrugated shape having a periodically formed convex portion 10, a bottom surface portion 11, and a ridge line portion 12 that is a corner portion connecting the convex portion 10 and the bottom surface portion 11. It has become. The convex part 10 of the floor panel 2 in the first embodiment includes a top surface part 10a, a side wall part 10b extending in the vehicle height direction H from both ends of the top surface part 10a, and a corner part connecting the top surface part 10a and the side wall part 10b. And a ridge line portion 10c. The ridge lines 10c and 12 are parallel to the vehicle width direction W. That is, the longitudinal direction of the convex portion 10 is parallel to the vehicle width direction W. Moreover, in the floor panel 2 of 1st Embodiment, the length of the top surface part 10a and the bottom face part 11 of the vehicle length direction L is mutually the same. Such a corrugated floor panel 2 is manufactured by imparting a shape to a flat plate by, for example, transfer by a roll or press molding.
 図3に示すように、フロアパネル2の車幅方向Wの端部(以下、“幅方向端部”)はサイドシル3に当接した状態で接合されている。詳述すると、フロアパネル2の幅方向端部が、サイドシルインナ5の天面部5aに当接した状態で、例えば隅肉溶接で幅方向端部と天面部5aとが接合されている。 As shown in FIG. 3, the end of the floor panel 2 in the vehicle width direction W (hereinafter, “end in the width direction”) is joined in contact with the side sill 3. More specifically, in the state in which the width direction end of the floor panel 2 is in contact with the top surface 5a of the side sill inner 5, the width direction end and the top surface 5a are joined by fillet welding, for example.
 第1実施形態のフロア構造1は以上のように構成されている。ここで、フロアパネル2の波形状部の底面部11から天面部10aまでの高さをhと定義し、波形状部の凸部10の周期をCと定義する。本明細書における“凸部の周期”とは、凸部10と底面部11との境界位置から、当該凸部10の隣にある凸部10と底面部11との境界位置までの間隔を意味する。第1実施形態の凸部10の形状の場合、周期Cは、隣り合う凸部10のうち、第1の凸部10の側壁部10bから第2の凸部10の側壁部10bまでの間隔である。また、図5のように、例えば凸部10の側壁部10bが天面部10aに対して傾斜している場合、周期Cは、第1の凸部10の側壁部10bの内側の面P1と、底面部11の下面P2との交線から、第2の凸部10の側壁部10bの内側の面P1と、底面部11の下面P2との交線までの間隔である。 The floor structure 1 of the first embodiment is configured as described above. Here, the height from the bottom surface portion 11 of the corrugated portion of the floor panel 2 to the top surface portion 10a is defined as h, and the period of the convex portion 10 of the corrugated portion is defined as C. In the present specification, “period of the convex portion” means an interval from a boundary position between the convex portion 10 and the bottom surface portion 11 to a boundary position between the convex portion 10 adjacent to the convex portion 10 and the bottom surface portion 11. To do. In the case of the shape of the convex portion 10 of the first embodiment, the period C is the interval from the side wall portion 10 b of the first convex portion 10 to the side wall portion 10 b of the second convex portion 10 among the adjacent convex portions 10. is there. Further, as shown in FIG. 5, for example, when the side wall portion 10 b of the convex portion 10 is inclined with respect to the top surface portion 10 a, the period C is equal to the inner surface P 1 of the side wall portion 10 b of the first convex portion 10. is the spacing from the intersection of the lower surface P 2 of the bottom portion 11, an inner surface P 1 of the second side wall portion 10b of the protrusion 10, until the line of intersection of the lower surface P 2 of the bottom portion 11.
 第1実施形態のフロア構造においては、例えば自動車の側面衝突の際にフロアパネル2の天面部10aおよび底面部11に面外変形が生じるが、周期Cが小さくなるほど、各天面部10aおよび各底面部11の車長方向Lの長さが短くなる。これにより、各天面部10aおよび各底面部11において曲げ変形が生じ得るスパンが短くなり、面外変形が起こりにくくなる。その結果、フロアパネル2の耐力が向上する。凸部10の周期Cは15~200mmであることが好ましい。一方、凸部10の高さhに関しては、高さhが高くなるほど、車長方向Lを回転軸とする曲げ変形に対する曲げ剛性が高まるため、フロアパネル2の耐力が向上しやすくなる。凸部10の高さhは2~20mmであることが好ましい。 In the floor structure of the first embodiment, for example, out-of-plane deformation occurs in the top surface portion 10a and the bottom surface portion 11 of the floor panel 2 at the time of a side collision of an automobile, but as the period C becomes smaller, each top surface portion 10a and each bottom surface. The length of the portion 11 in the vehicle length direction L is shortened. As a result, the span where bending deformation can occur in each top surface portion 10a and each bottom surface portion 11 is shortened, and out-of-plane deformation is unlikely to occur. As a result, the proof stress of the floor panel 2 is improved. The period C of the convex portion 10 is preferably 15 to 200 mm. On the other hand, with respect to the height h of the convex portion 10, the higher the height h, the higher the bending rigidity against bending deformation with the vehicle length direction L as the rotation axis, so the proof stress of the floor panel 2 is easily improved. The height h of the convex portion 10 is preferably 2 to 20 mm.
 周期Cを小さくすると共に高さhを高くすると、その分、フロアパネル2を製造する際の材料使用量が多くなり、フロアパネル2の質量が増加する。したがって、耐力確保と軽量化の両立という観点においては、周期Cと高さhのバランスが重要である。この点について、第1実施形態のフロアパネル2においては、C/√hが60未満となるように波形状部が形成されている。C/√hが60未満となるフロアパネル2は、C/√hが60以上のフロアパネルに対して耐力の質量効率が向上する。すなわち、従来のフロアパネルを第1実施形態のようなフロアパネル2に置き換えることでフロア構造としての耐力の質量効率も向上する。なお、その効果をさらに高めるためには、C/√hが55以下であることが好ましく、25以下であることがより好ましい。また、その効果をさらに高めるためには、フロアパネルは、引張強度が780MPa以上の鋼板であることが好ましい。 When the period C is reduced and the height h is increased, the amount of material used when the floor panel 2 is manufactured increases and the mass of the floor panel 2 increases accordingly. Therefore, the balance between the cycle C and the height h is important from the viewpoint of achieving both yield strength and weight reduction. In this regard, in the floor panel 2 of the first embodiment, the corrugated portion is formed so that C / √h is less than 60. The floor panel 2 in which C / √h is less than 60 has improved proof mass efficiency relative to a floor panel having C / √h of 60 or more. That is, by replacing the conventional floor panel with the floor panel 2 as in the first embodiment, the mass efficiency of yield strength as the floor structure is also improved. In order to further enhance the effect, C / √h is preferably 55 or less, and more preferably 25 or less. In order to further enhance the effect, the floor panel is preferably a steel plate having a tensile strength of 780 MPa or more.
 また、第1実施形態のようなフロア構造1によれば、フロアパネル2を閉断面構造としなくても十分な耐力を発揮し得るため、クロスメンバ等の補強部材を設けずにフロア構造を構成することも可能となる。これにより室内空間またはバッテリー搭載空間を拡大することも可能となる。ただし、耐力向上の観点においては、第1実施形態のようなフロア構造1にさらにクロスメンバ等の補強部材を設けることで、フロア構造1としての耐力をさらに高めることも可能である。 Further, according to the floor structure 1 as in the first embodiment, sufficient strength can be exerted without the floor panel 2 having a closed cross-sectional structure, so that the floor structure is configured without providing a reinforcing member such as a cross member. It is also possible to do. As a result, the indoor space or the battery mounting space can be expanded. However, from the viewpoint of improving the proof stress, the proof strength of the floor structure 1 can be further increased by providing a reinforcing member such as a cross member on the floor structure 1 as in the first embodiment.
 なお、C/√hの下限は特に限定されない。例えばフロアパネル2の成形性の観点から周期Cの下限が制約されたり、室内空間またはバッテリー搭載空間の確保の観点から高さhの上限が制約されてC/√hの下限が適宜定まるが、C/√hは3.34以上であることが好ましい。 Note that the lower limit of C / √h is not particularly limited. For example, the lower limit of the period C is constrained from the viewpoint of formability of the floor panel 2, or the upper limit of the height h is constrained from the viewpoint of securing indoor space or battery mounting space, and the lower limit of C / √h is appropriately determined. C / √h is preferably 3.34 or more.
<第2実施形態>
 図6および図7に示すように第2実施形態では、フロアパネル2の幅方向端部の形状が第1実施形態と異なっている。第2実施形態のフロアパネル2は、幅方向端部が例えば曲げ加工によって立ち上げられたフランジ部13となっている。そして、そのフランジ部13の底面部11がサイドシルインナ5の天面部5aに当接した状態でスポット溶接されることで、フロアパネル2とサイドシル3とが接合されている。このように、第2実施形態のフロア構造1では、フロアパネル2の幅方向端部がフランジ部13となっていることで、フロアパネル2とサイドシル3の接合にスポット溶接を採用することができる。これによりフロアパネル2とサイドシル3との接合作業が容易になり、生産性が向上する。
Second Embodiment
As shown in FIGS. 6 and 7, in the second embodiment, the shape of the end portion in the width direction of the floor panel 2 is different from that in the first embodiment. In the floor panel 2 of the second embodiment, the end in the width direction is a flange portion 13 raised by, for example, bending. And the floor panel 2 and the side sill 3 are joined by spot welding in the state which the bottom face part 11 of the flange part 13 contact | abutted to the top | upper surface part 5a of the side sill inner 5. FIG. Thus, in the floor structure 1 of 2nd Embodiment, the width direction edge part of the floor panel 2 is the flange part 13, Therefore Spot welding can be employ | adopted for joining of the floor panel 2 and the side sill 3. FIG. . As a result, the joining operation between the floor panel 2 and the side sill 3 is facilitated, and the productivity is improved.
 なお、スポット溶接を行う場合、スポット打点のスペースを十分に確保するために、フランジ部13の底面部11の、車長方向Lの長さは15mm以上であることが好ましい。また、図6および図7に示す例では、フロアパネル2のフランジ部13が車高方向Hの上方に延伸する形状となっているが、下方に延伸する形状であっても良い。 In addition, when performing spot welding, it is preferable that the length of the bottom face part 11 of the flange part 13 in the vehicle length direction L is 15 mm or more in order to ensure a sufficient spot hitting space. 6 and 7, the flange portion 13 of the floor panel 2 has a shape that extends upward in the vehicle height direction H, but may have a shape that extends downward.
<第3実施形態>
 図8および図9に示すように、第3実施形態のフロアパネル2は第1実施形態のフロアパネル2と同一の形状であり、第2実施形態のようなフランジ部13は形成されていない。第3実施形態では、フロアパネル2の幅方向端部がサイドシルインナ5の天面部5aに当接した状態にあり、フロアパネル2とサイドシル3はブラケット6を介して接合されている。ブラケット6は、車長方向Lに垂直な断面の形状がL字状の、車長方向Lに延伸した部材である。本明細書では、ブラケット6の互いに垂直な2つの壁面部をそれぞれ“第1の壁面部6a”と“第2の壁面部6b”と称す。
<Third Embodiment>
As shown in FIGS. 8 and 9, the floor panel 2 of the third embodiment has the same shape as the floor panel 2 of the first embodiment, and the flange portion 13 as in the second embodiment is not formed. In the third embodiment, the end in the width direction of the floor panel 2 is in contact with the top surface portion 5 a of the side sill inner 5, and the floor panel 2 and the side sill 3 are joined via the bracket 6. The bracket 6 is a member extending in the vehicle length direction L and having a L-shaped cross section perpendicular to the vehicle length direction L. In the present specification, the two wall surface portions perpendicular to each other of the bracket 6 are referred to as “first wall surface portion 6a” and “second wall surface portion 6b”, respectively.
 第3実施形態のフロア構造1では、ブラケット6がフロアパネル2の上側(車内側)に配置され、第1の壁面部6aがフロアパネル2の天面部10aに接合され、第2の壁面部6bがサイドシルインナ5の天面部5aに接合されている。部材同士の接合方法は特に限定されないが、例えばスポット溶接が採用される。スポット溶接を採用する場合、スポット打点のスペースを十分に確保するために、フロアパネル2の天面部10aの、車長方向Lの長さは15mm以上であることが好ましい。 In the floor structure 1 of 3rd Embodiment, the bracket 6 is arrange | positioned above the floor panel 2 (vehicle inside), the 1st wall surface part 6a is joined to the top | upper surface part 10a of the floor panel 2, and the 2nd wall surface part 6b. Is joined to the top surface portion 5 a of the side sill inner 5. Although the joining method of members is not specifically limited, For example, spot welding is employ | adopted. When employing spot welding, the length of the top surface portion 10a of the floor panel 2 in the vehicle length direction L is preferably 15 mm or more in order to ensure a sufficient spot hitting space.
 第3実施形態のフロア構造1によれば、第2実施形態のようなフロアパネル2のフランジ部13を形成する必要がなくなり、フロアパネル2の製造が容易になる。さらに、フロアパネル2とサイドシル3の接合にスポット溶接を採用できるため、フロアパネル2とサイドシル3の接合作業が容易になる。これにより、フロア構造1を造りやすくなり、生産性を向上させることができる。 According to the floor structure 1 of the third embodiment, it is not necessary to form the flange portion 13 of the floor panel 2 as in the second embodiment, and the manufacturing of the floor panel 2 is facilitated. Furthermore, since spot welding can be adopted for joining the floor panel 2 and the side sill 3, the joining operation of the floor panel 2 and the side sill 3 becomes easy. Thereby, it becomes easy to make the floor structure 1, and productivity can be improved.
 また、第3実施形態のブラケット6を用いる場合、図10に示すようにフロアパネル2とサイドシル3との間にブラケット6を配置しても良い。図10に示す例ではブラケット6の第1の壁面部6aがフロアパネルの底面部11の下面に接合され、第2の壁面部6bはサイドシルインナ5の天面部5aの上面に接合されている。一方で、図10に示す例では、側面衝突の際にサイドシル3から、まずブラケット6に荷重が入力されることになるため、フロアパネル2よりも先にブラケット6が変形する。このため、荷重の入力状況によってはブラケット6の変形に追従してフロアパネル2の変形が誘発される場合もある。したがって、図8および図9に示すフロア構造1のようにフロアパネル2の車幅方向端部がサイドシル3に当接するようにブラケット6が配置されることが好ましい。これにより、側面衝突の際にサイドシル3から直接フロアパネル2に荷重が入力されるため、フロア構造1としての耐力を向上させることができる。 When using the bracket 6 of the third embodiment, the bracket 6 may be disposed between the floor panel 2 and the side sill 3 as shown in FIG. In the example shown in FIG. 10, the first wall surface portion 6 a of the bracket 6 is bonded to the lower surface of the bottom surface portion 11 of the floor panel, and the second wall surface portion 6 b is bonded to the upper surface of the top surface portion 5 a of the side sill inner 5. On the other hand, in the example shown in FIG. 10, since a load is first input from the side sill 3 to the bracket 6 in the case of a side collision, the bracket 6 is deformed before the floor panel 2. For this reason, depending on the load input state, the deformation of the floor panel 2 may be induced following the deformation of the bracket 6. Therefore, it is preferable that the bracket 6 is arranged so that the vehicle width direction end of the floor panel 2 abuts against the side sill 3 as in the floor structure 1 shown in FIGS. 8 and 9. Thereby, since a load is directly input to the floor panel 2 from the side sill 3 at the time of a side collision, the proof stress as the floor structure 1 can be improved.
 また、図11に示すように、第3実施形態のブラケット6の第1の壁面部6aは、フロアパネル2の波形状部と同様の波形状部を有していてもよい。図11に示す例では、ブラケット6の第1の壁面部6aに周期的に凸部7が形成されており、第1の壁面部6aの凸部7と、フロアパネル2の凸部10とが互いに接するようにしてブラケット6とフロアパネル2が接合されている。このような第1の壁面部6aを有するブラケット6を用いれば、ブラケット6とフロアパネル2の接合強度を高めることができ、フロア構造1としての耐力を向上させることができる。 Further, as shown in FIG. 11, the first wall surface portion 6 a of the bracket 6 of the third embodiment may have a corrugated portion similar to the corrugated portion of the floor panel 2. In the example shown in FIG. 11, the convex part 7 is periodically formed in the 1st wall surface part 6a of the bracket 6, and the convex part 7 of the 1st wall surface part 6a and the convex part 10 of the floor panel 2 exist. The bracket 6 and the floor panel 2 are joined so as to contact each other. If the bracket 6 having such a first wall surface portion 6a is used, the joint strength between the bracket 6 and the floor panel 2 can be increased, and the proof stress as the floor structure 1 can be improved.
 なお、第3実施形態では、ブラケット6がフロアパネル2の上側(車内側)に設けられていたが、フロアパネル2の下側(車外側)に設けられていても良い。ブラケット6がフロアパネルの下側(車外側)に設けられる場合、ブラケット6の第1の壁面部6aがフロアパネル2の底面部11の下面に接合され、第2の壁面部6bはサイドシルインナ5の天面部5aに接合される。また、第3実施形態ではブラケット6の形状をL字状としたが、フロアパネル2とサイドシル3とを接合することができれば、他の形状であっても良い。 In addition, in 3rd Embodiment, although the bracket 6 was provided in the upper side (vehicle inner side) of the floor panel 2, you may be provided in the lower side (vehicle outer side) of the floor panel 2. FIG. When the bracket 6 is provided on the lower side (the vehicle outer side) of the floor panel, the first wall surface portion 6 a of the bracket 6 is joined to the lower surface of the bottom surface portion 11 of the floor panel 2, and the second wall surface portion 6 b is connected to the side sill inner 5. Is joined to the top surface portion 5a. In the third embodiment, the shape of the bracket 6 is L-shaped, but other shapes may be used as long as the floor panel 2 and the side sill 3 can be joined.
 以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.
 例えばフロアパネル2は、車長方向Lの全域にわたって波形状でなくても良く、車長方向Lにおける一部の区間のみ波形状であっても良い。そのようなフロア構造あっても、フロアパネル2の、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。車長方向Lの一部の区間のみが波形状である場合、その波形状部の範囲は、例えばポール側面衝突試験におけるポールの衝突位置を中心として車長方向Lの前方に200mm以上、かつ後方に200mm以上であることが好ましい。なお、上記実施形態のようにフロアパネル2の車長方向Lの全域にわたって波形状を付与することで、側面衝突時に荷重の入力位置に関わらず、高い耐力を発揮することができ、ロバスト性に優れたフロア構造とすることができる。 For example, the floor panel 2 may not have a wave shape over the entire region in the vehicle length direction L, and may have a wave shape only in a part of the section in the vehicle length direction L. Even in such a floor structure, if C / √h is less than 60 in the portion of the floor panel 2 to which the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. When only a part of the section in the vehicle length direction L is corrugated, the range of the corrugated portion is, for example, 200 mm or more in front of the vehicle length direction L around the collision position of the pole in the pole side collision test, and the rear It is preferable that it is 200 mm or more. In addition, by giving a waveform over the entire region in the vehicle length direction L of the floor panel 2 as in the above embodiment, high proof stress can be exhibited regardless of the load input position at the time of a side collision, and robustness can be achieved. An excellent floor structure can be obtained.
 フロアパネル2は、車幅方向Wの全域にわたって波形状でなくても良く、幅方向端部のみが波形状であっても良い。そのようなフロア構造であっても、幅方向端部の波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、幅方向端部のみが波形状である場合、その波形状部の範囲は、フロアパネル2の車幅方向Wの端点を起点として、フロアパネル2の幅(車体の一方のサイドシルから他方のサイドシルまでの車幅方向Wの長さ)の1/4以上であることが好ましい。 The floor panel 2 may not have a wave shape over the entire region in the vehicle width direction W, and only the end in the width direction may have a wave shape. Even in such a floor structure, if C / √h is less than 60 in the portion to which the corrugation at the end in the width direction is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. In addition, when only the width direction edge part is corrugated, the range of the corrugated part is the width of the floor panel 2 (from one side sill of the vehicle body to the other, starting from the end point in the vehicle width direction W of the floor panel 2. It is preferable that it is 1/4 or more of the length in the vehicle width direction W to the side sill.
 図12に示すようにフロアパネル2の凸部10の周期Cは一定でなくても良い。この場合の“周期C”は各凸部10の周期Cの平均値となる。例えば図12のように周期が互いに異なる凸部10が4つ設けられている場合に、第1の凸部10の周期を“C1”、第1の凸部10の隣に位置する第2の凸部10の周期を“C2”、第2の凸部10の隣に位置する第3の凸部の周期を“C3”とすると、本明細書における周期Cは(C1+C2+C3)/3で算出される値である。このように周期Cが一定でないフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、周期Cが一定でない場合、車長方向Lの全域にわたってC/√hが60未満でなくても良い。例えば、フロアパネル2が車長方向Lの全域にわたって波形状であったとしても、車長方向Lの一部の区間の平均周期であるCと高さhとを用いたC/√hの値が60未満であれば、当該区間においては耐力の質量効率が向上する。したがって、当該区間に着目すれば、C/√hが60未満であるフロア構造となるため、本発明に係るフロア構造であると言える。 As shown in FIG. 12, the period C of the convex part 10 of the floor panel 2 may not be constant. In this case, the “cycle C” is an average value of the cycles C of the convex portions 10. For example, when four convex portions 10 having different periods are provided as shown in FIG. 12, the period of the first convex portion 10 is “C 1 ”, and the second is located next to the first convex portion 10. Assuming that the period of the convex part 10 is “C 2 ” and the period of the third convex part adjacent to the second convex part 10 is “C 3 ”, the period C in this specification is (C 1 + C 2). + C 3 ) / 3. Thus, even in a floor structure in which the period C is not constant, if C / √h is less than 60 in a portion to which a wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. If the period C is not constant, C / √h may not be less than 60 over the entire region in the vehicle length direction L. For example, even if the floor panel 2 has a wave shape over the entire region in the vehicle length direction L, the value of C / √h using the average period C and the height h of some sections in the vehicle length direction L If it is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / √h of less than 60, so it can be said that the floor structure according to the present invention.
 図13に示すようにフロアパネル2の凸部10の高さhは一定でなくても良い。この場合の“高さh”は各凸部10の高さhの平均値となる。例えば図13のように高さが互いに異なる凸部10が4つ設けられている場合に、第1の凸部10の高さを“h1”、第1の凸部10の隣に位置する第2の凸部10の高さを“h2”、第2の凸部10の隣に位置する第3の凸部の高さを“h3”とすると、本明細書における高さhは(h1+h2+h3)/3で算出される値である。このように高さhが一定でないフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、高さhが一定でない場合、車長方向Lの全域にわたってC/√hが60未満でなくても良い。例えば、フロアパネル2が車長方向Lの全域にわたって波形状であったとしても、車長方向Lの一部の区間の高さhの平均値と周期Cとを用いたC/√hの値が60未満であれば、当該区間においては耐力の質量効率が向上する。したがって、当該区間に着目すれば、C/√hが60未満であるフロア構造となるため、本発明に係るフロア構造であると言える。 As shown in FIG. 13, the height h of the convex portion 10 of the floor panel 2 may not be constant. In this case, the “height h” is an average value of the heights h of the convex portions 10. For example, when four convex portions 10 having different heights are provided as shown in FIG. 13, the height of the first convex portion 10 is “h 1 ”, which is located next to the first convex portion 10. Assuming that the height of the second convex portion 10 is “h 2 ” and the height of the third convex portion located next to the second convex portion 10 is “h 3 ”, the height h in this specification is This is a value calculated by (h 1 + h 2 + h 3 ) / 3. Even in the floor structure where the height h is not constant as described above, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of the proof stress is improved as described in the above embodiment. . Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. When the height h is not constant, C / √h may not be less than 60 over the entire region in the vehicle length direction L. For example, even if the floor panel 2 has a wave shape over the entire region in the vehicle length direction L, the value of C / √h using the average value of the height h and the period C of some sections in the vehicle length direction L If it is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / √h of less than 60, so it can be said that the floor structure according to the present invention.
 また、図14に示すようにフロアパネル2の凸部10の周期Cと高さhがそれぞれ一定でなくても良い。この場合の“周期C”は図12の場合と同様に各凸部10の周期Cの平均値となり、“高さh”は図13の場合と同様に各凸部10の高さhの平均値となる。例えば図14のように周期が互いに異なり、かつ、高さが互いに異なる凸部10が4つ設けられている場合、周期Cは(C1+C2+C3)/3で算出され、高さhは(h1+h2+h3)/3で算出される。このように周期Cと高さhがそれぞれ一定でないフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、周期Cと高さhがそれぞれ一定でない場合、車長方向Lの全域にわたってC/√hが60未満でなくても良い。例えば、フロアパネル2が車長方向Lの全域にわたって波形状であったとしても、車長方向Lの一部の区間の平均周期であるCと、当該区間の平均高さであるhとを用いたC/√hの値が60未満であれば、当該区間においては耐力の質量効率が向上する。したがって、当該区間に着目すれば、C/√hが60未満であるフロア構造となるため、本発明に係るフロア構造であると言える。 Moreover, as shown in FIG. 14, the period C and height h of the convex part 10 of the floor panel 2 do not need to be constant, respectively. The “cycle C” in this case is the average value of the period C of each convex portion 10 as in FIG. 12, and the “height h” is the average of the height h of each convex portion 10 as in FIG. Value. For example, as shown in FIG. 14, when four convex portions 10 having different periods and different heights are provided, the period C is calculated by (C 1 + C 2 + C 3 ) / 3, and the height h Is calculated by (h 1 + h 2 + h 3 ) / 3. In this way, even in a floor structure in which the period C and the height h are not constant, if C / √h is less than 60 in the portion to which the wave shape is given, the mass of the proof stress as described in the above embodiment. Efficiency is improved. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. Note that if the period C and the height h are not constant, C / √h may not be less than 60 over the entire vehicle length direction L. For example, even if the floor panel 2 has a wave shape over the entire region in the vehicle length direction L, C that is the average period of some sections in the vehicle length direction L and h that is the average height of the sections are used. If the value of C / √h is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / √h of less than 60, so it can be said that the floor structure according to the present invention.
 フロアパネル2の凸部10の高さhが車幅方向Wの位置によって異なっていても良い。この場合の“高さh”は車幅方向Wの位置でそれぞれ異なる各高さの平均値である。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、凸部10の高さhが車幅方向Wの位置によって異なっている場合、車幅方向Wの全域にわたってC/√hが60未満でなくても良く、幅方向端部においてのみC/√hが60未満であれば、フロアパネル2の耐力は向上する。この場合のC/√hが60未満となる範囲は、フロアパネル2の車幅方向Wの端点を起点として、フロアパネル2の幅(車体の一方のサイドシルから他方のサイドシルまでの車幅方向Wの長さ)の1/4以上であることが好ましい。 The height h of the convex portion 10 of the floor panel 2 may be different depending on the position in the vehicle width direction W. In this case, the “height h” is an average value of heights different from each other at the position in the vehicle width direction W. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. In addition, when the height h of the convex portion 10 varies depending on the position in the vehicle width direction W, C / √h may not be less than 60 over the entire region in the vehicle width direction W. If √h is less than 60, the yield strength of the floor panel 2 is improved. The range in which C / √h in this case is less than 60 is the width of the floor panel 2 (the vehicle width direction W from one side sill of the vehicle body to the other side sill, starting from the end point of the floor panel 2 in the vehicle width direction W). The length is preferably ¼ or more of the length.
 以上の説明では、フロアパネル2の凸部10が天面部10aと、側壁部10bと、稜線部10cで構成されるものとしたが、凸部10の形状は特に限定されず、例えば凸部10の長手方向に垂直な断面の形状が円形状であっても良い。この場合の“高さh”は底面部11から凸部10の最も離れた位置までの高さである。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。 In the above description, the convex portion 10 of the floor panel 2 is configured by the top surface portion 10a, the side wall portion 10b, and the ridge line portion 10c. However, the shape of the convex portion 10 is not particularly limited. The cross-sectional shape perpendicular to the longitudinal direction may be circular. In this case, the “height h” is a height from the bottom surface portion 11 to the farthest position of the convex portion 10. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less.
 また、以上の説明では、フロアパネル2の稜線部10c、12を車幅方向Wに平行とし、側面衝突に対応したフロア構造としたが、稜線部10c、12をフロアパネル2の車長方向Lに平行とし、前面衝突または後面衝突に対応したフロア構造としても良い。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。 Further, in the above description, the ridgeline portions 10c and 12 of the floor panel 2 are parallel to the vehicle width direction W and the floor structure is adapted to the side collision, but the ridgeline portions 10c and 12 are arranged in the vehicle length direction L of the floor panel 2. It is good also as a floor structure corresponding to front collision or rear collision. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less.
 稜線部10c、12が車長方向Lに平行である場合も、フロアパネル2は、車幅方向Wの全域にわたって波形状でなくても良く、車幅方向Wにおける一部の区間のみ波形状であっても良い。そのようなフロア構造あっても、フロアパネル2の、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。車幅方向Wの一部の区間のみが波形状である場合、その波形状部の範囲は、例えばフロアパネル2の車幅方向Wにおける中心位置から、車幅方向Wの右方に200mm以上、かつ左方に200mm以上であることが好ましい。 Even when the ridge portions 10c and 12 are parallel to the vehicle length direction L, the floor panel 2 may not be corrugated over the entire region in the vehicle width direction W, and only a portion of the section in the vehicle width direction W is corrugated. There may be. Even in such a floor structure, if C / √h is less than 60 in the portion of the floor panel 2 to which the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. When only a part of the section in the vehicle width direction W has a wave shape, the range of the wave shape portion is, for example, 200 mm or more from the center position in the vehicle width direction W of the floor panel 2 to the right in the vehicle width direction W, And it is preferable that it is 200 mm or more to the left.
 稜線部10c、12が車長方向Lに平行である場合も、フロアパネル2は、車長方向Lの全域にわたって波形状でなくても良く、車長方向Lの端部(以下、“長手方向端部”)のみが波形状であっても良い。そのようなフロア構造であっても、長手方向端部の波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、長手方向端部のみが波形状である場合、その波形状部の範囲は、フロアパネル2の車長方向Lの端点を起点として、フロアパネル2の前端から後端までの長さの1/4以上であることが好ましい。 Even when the ridge portions 10c and 12 are parallel to the vehicle length direction L, the floor panel 2 may not be wavy throughout the vehicle length direction L. The end portion of the vehicle length direction L (hereinafter referred to as “longitudinal direction”). Only the edge ") may be wavy. Even in such a floor structure, if C / √h is less than 60 in the portion to which the corrugation at the end in the longitudinal direction is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. When only the longitudinal end portion is corrugated, the range of the corrugated portion is 1 of the length from the front end to the rear end of the floor panel 2 starting from the end point of the floor panel 2 in the vehicle length direction L. / 4 or more is preferable.
 稜線部10c、12が車長方向Lに平行である場合も、フロアパネル2の凸部10の周期Cは一定でなくても良い。この場合の“周期C”は各凸部10の周期Cの平均値となる。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、周期Cが一定でない場合、車幅方向Wの全域にわたってC/√hが60未満でなくても良い。例えば、フロアパネル2が車幅方向Wの全域にわたって波形状であったとしても、車幅方向Wの一部の区間の平均周期であるCと高さhとを用いたC/√hの値が60未満であれば、当該区間においては耐力の質量効率が向上する。したがって、当該区間に着目すれば、C/√hが60未満であるフロア構造となるため、本発明に係るフロア構造であると言える。 Also when the ridges 10c and 12 are parallel to the vehicle length direction L, the period C of the convex part 10 of the floor panel 2 may not be constant. In this case, the “cycle C” is an average value of the cycles C of the convex portions 10. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. If the period C is not constant, C / √h may not be less than 60 over the entire region in the vehicle width direction W. For example, even if the floor panel 2 has a wave shape over the entire region in the vehicle width direction W, the value of C / √h using the average period C and the height h of some sections in the vehicle width direction W If it is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / √h of less than 60, so it can be said that the floor structure according to the present invention.
 稜線部10c、12が車長方向Lに平行である場合も、フロアパネル2の凸部10の高さhは一定でなくても良い。この場合の“高さh”は各凸部10の高さhの平均値となる。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、高さhが一定でない場合、車幅方向Wの全域にわたってC/√hが60未満でなくても良い。例えば、フロアパネル2が車幅方向Wの全域にわたって波形状であったとしても、車幅方向Wの一部の区間の高さhの平均値と周期Cとを用いたC/√hの値が60未満であれば、当該区間においては耐力の質量効率が向上する。したがって、当該区間に着目すれば、C/√hが60未満であるフロア構造となるため、本発明に係るフロア構造であると言える。 Also when the ridge portions 10c and 12 are parallel to the vehicle length direction L, the height h of the convex portion 10 of the floor panel 2 may not be constant. In this case, the “height h” is an average value of the heights h of the convex portions 10. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. When the height h is not constant, C / √h may not be less than 60 over the entire region in the vehicle width direction W. For example, even if the floor panel 2 has a wave shape over the entire region in the vehicle width direction W, the value of C / √h using the average value of the height h and the period C of some sections in the vehicle width direction W If it is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / √h of less than 60, so it can be said that the floor structure according to the present invention.
 稜線部10c、12が車長方向Lに平行である場合も、フロアパネル2の凸部10の周期Cと高さhがそれぞれ一定でなくても良い。この場合の“周期C”は各凸部10の周期Cの平均値となり、“高さh”は各凸部10の高さhの平均値となる。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、周期Cと高さhがそれぞれ一定でない場合、車幅方向Wの全域にわたってC/√hが60未満でなくても良い。例えば、フロアパネル2が車幅方向Wの全域にわたって波形状であったとしても、車幅方向Wの一部の区間の平均周期であるCと、当該区間の平均高さであるhとを用いたC/√hの値が60未満であれば、当該区間においては耐力の質量効率が向上する。したがって、当該区間に着目すれば、C/√hが60未満であるフロア構造となるため、本発明に係るフロア構造であると言える。 Also when the ridge line portions 10c and 12 are parallel to the vehicle length direction L, the period C and the height h of the convex portion 10 of the floor panel 2 may not be constant. In this case, “period C” is an average value of the periods C of the respective convex portions 10, and “height h” is an average value of the height h of each convex portion 10. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. If the period C and the height h are not constant, C / √h may not be less than 60 over the entire region in the vehicle width direction W. For example, even if the floor panel 2 has a wave shape over the entire area in the vehicle width direction W, C that is the average period of a part of the section in the vehicle width direction W and h that is the average height of the section are used. If the value of C / √h is less than 60, the mass efficiency of yield strength is improved in the section. Therefore, if attention is paid to the section, the floor structure has a C / √h of less than 60, so it can be said that the floor structure according to the present invention.
 稜線部10c、12が車長方向Lに平行である場合も、フロアパネル2の凸部10の高さhが車長方向Lの位置によって異なっていても良い。この場合の“高さh”は車長方向Lの位置でそれぞれ異なる各高さの平均値である。そのようなフロア構造であっても、波形状が付与された部分においてC/√hが60未満であれば、上記実施形態で説明したように耐力の質量効率が向上する。この場合もC/√hは55以下であることが好ましく、25以下であることがより好ましい。なお、凸部10の高さhが車長方向Lの位置によって異なっている場合、車長方向Lの全域にわたってC/√hが60未満でなくても良く、長手方向端部においてのみC/√hが60未満であれば、フロアパネル2の耐力は向上する。この場合のC/√hが60未満となる範囲は、フロアパネル2の車長方向Lの端点を起点として、フロアパネル2の前端から後端までの長さの1/4以上であることが好ましい。 When the ridges 10c and 12 are parallel to the vehicle length direction L, the height h of the convex portion 10 of the floor panel 2 may be different depending on the position in the vehicle length direction L. The “height h” in this case is an average value of heights that are different at the position in the vehicle length direction L. Even in such a floor structure, if C / √h is less than 60 in the portion where the wave shape is given, the mass efficiency of yield strength is improved as described in the above embodiment. Also in this case, C / √h is preferably 55 or less, and more preferably 25 or less. In addition, when the height h of the convex portion 10 varies depending on the position in the vehicle length direction L, C / √h may not be less than 60 over the entire region in the vehicle length direction L, and C / only at the longitudinal end portion. If √h is less than 60, the yield strength of the floor panel 2 is improved. In this case, the range in which C / √h is less than 60 may be ¼ or more of the length from the front end to the rear end of the floor panel 2 starting from the end point of the floor panel 2 in the vehicle length direction L. preferable.
<側面衝突シミュレーション(A)>
 ポール側面衝突を想定したフロア構造の側面衝突シミュレーションを実施した。本シミュレーションに用いた解析モデルのフロア構造は、図15に示す平板状のフロアパネルを有する構造(比較例1)と、図16に示すような、平板状のフロアパネルに図17の側面衝突対応用のクロスメンバを接合した構造(比較例2)と、図18に示す波形状のフロアパネルを用いた構造である。また、波形状のフロアパネルを用いたフロア構造に関しては、凸部の周期Cと高さhを変化させた複数の解析モデルを作成してシミュレーションを実施した(実施例1~10)。実施例10の構造は、波形状のフロアパネルにクロスメンバを接合した構造である。なお、本シミュレーションではフロアパネルの耐力に着目して評価を行うため、サイドシルを厚み6mmの弾性体のプレートに置き換えている。 
<Side collision simulation (A)>
A side impact simulation of the floor structure was conducted assuming a pole side impact. The floor structure of the analysis model used in this simulation is the structure having the flat floor panel shown in FIG. 15 (Comparative Example 1) and the flat floor panel as shown in FIG. This is a structure using a cross-member for joining (comparative example 2) and a corrugated floor panel shown in FIG. Further, regarding the floor structure using the corrugated floor panel, a plurality of analysis models in which the period C and the height h of the convex portion were changed were created and simulations were carried out (Examples 1 to 10). The structure of Example 10 is a structure in which a cross member is joined to a corrugated floor panel. In this simulation, the evaluation is performed by paying attention to the proof stress of the floor panel. Therefore, the side sill is replaced with an elastic plate having a thickness of 6 mm.
 側面衝突シミュレーションは、サイドシルを模擬した弾性体のプレートの中央部に直径254mmのポールを配置し、そのポールを車幅方向Wに平行に1m/sで10mm移動させることで実施した。その際のポールの押込み量(変位量)と入力荷重を記録し、入力された最大荷重、すなわち耐力を計測した。なお、フロアパネルは通常、強度が270~440MPaの材料が適用されるため、比較例2のみフロアパネルについては強度を270MPaとした。その他のフロアパネルについては強度を980MPaとし、通常のものに比べ高強度のものとした。比較例2のポール側面衝突対応用のクロスメンバは通常590MPaの材料が適用されるが、本シミュレーションでは強度を980MPaとし、通常のものに比べ高強度のものとした。 Side simulation was performed by placing a 254 mm diameter pole in the center of an elastic plate simulating a side sill and moving the pole by 10 mm at 1 m / s parallel to the vehicle width direction W. The indentation amount (displacement amount) and input load of the pole at that time were recorded, and the input maximum load, that is, the proof stress was measured. Since a material having a strength of 270 to 440 MPa is usually applied to the floor panel, only the floor panel of Comparative Example 2 has a strength of 270 MPa. The other floor panels had a strength of 980 MPa, which was higher than that of a normal one. A material of 590 MPa is usually used for the cross member for pole side collision in Comparative Example 2, but in this simulation, the strength was 980 MPa, which was higher than that of a normal one.
 下記表1に側面衝突シミュレーションの解析モデルの条件、および各解析モデルの最大入力荷重F1を比較例1の最大入力荷重F0で規格化した最大荷重比(F1/F0)を示す。また、各解析モデルの質量m1を比較例1の質量m0で規格化した質量比(m1/m0)も示す。 Table 1 below shows the conditions of the analysis model of the side collision simulation and the maximum load ratio (F 1 / F 0 ) obtained by normalizing the maximum input load F 1 of each analysis model with the maximum input load F 0 of Comparative Example 1. The mass ratio (m 1 / m 0 ) obtained by normalizing the mass m 1 of each analysis model with the mass m 0 of Comparative Example 1 is also shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図19に、比較例1と、実施例1および実施例2の変位-荷重比線図を示す。図19に示す荷重比は、各解析モデルにおける入力荷重を比較例1の最大入力荷重で規格化した値である。図19に示すように、どの条件においても入力荷重が最大荷重に到達した後は入力荷重が低下して推移している。このように推移する理由は、入力荷重が最大荷重に到達した後、フロアパネルが大変形するためである。すなわち、最大入力荷重はフロアパネルが大変形する前の入力荷重であり、耐力に相当する。したがって、図19によれば、実施例1のフロア構造の耐力が比較例1と比較して高いことが示される。 FIG. 19 shows displacement-load ratio diagrams of Comparative Example 1 and Examples 1 and 2. The load ratio shown in FIG. 19 is a value obtained by normalizing the input load in each analysis model with the maximum input load of Comparative Example 1. As shown in FIG. 19, the input load decreases and changes after the input load reaches the maximum load under any condition. The reason for such transition is that the floor panel undergoes a large deformation after the input load reaches the maximum load. That is, the maximum input load is an input load before the floor panel is largely deformed, and corresponds to a proof stress. Accordingly, FIG. 19 shows that the proof stress of the floor structure of Example 1 is higher than that of Comparative Example 1.
 ここで、図20に比較例1の解析モデルのシミュレーションで生じた面外変形の状態を示す。また、図21に実施例1の解析モデルのシミュレーションで生じた面外変形の状態を示す。ポールがサイドシルに衝突することで、フロアパネルは圧縮荷重を受けることになるが、図20に示すように平板状のフロアパネルの場合にはポールの衝突によりフロアパネルの衝突部近傍に大きな面外変形が生じている。 Here, FIG. 20 shows the state of the out-of-plane deformation caused by the simulation of the analysis model of Comparative Example 1. FIG. 21 shows a state of out-of-plane deformation caused by the simulation of the analysis model of the first embodiment. When the pole collides with the side sill, the floor panel receives a compressive load. However, in the case of a flat floor panel as shown in FIG. Deformation has occurred.
 一方、図21に示すように実施例1の波形状のフロアパネルの場合には、凸部の天面部10aと底面部11が個々に面外変形している。そして、フロアパネル全体として見た場合の面外変形の発生領域は、図20に示す平板状のフロアパネルよりも狭くなっている。このように天面部10aと底面部11が個々に面外変形する理由は、天面部10aと側壁部10bとを繋ぐ稜線部10c(図4)、および底面部11と側壁部10bとを繋ぐ稜線部12(図4)の延伸方向が荷重入力方向に一致していることにより、荷重入力によるフロアパネルの変形に対し強い抵抗力が生じ、各稜線部10c、12が曲げ変形時の支持点として作用するためである。その支持点間はフロアパネルの面外変形が生じ得る領域となるが、フロアパネルが波形状であるために支持点間の間隔が短くなっており、曲げ変形のスパンが平板状のフロアパネルに対して短くなる。これにより、実施例1のフロアパネルでは曲げ変形に対する抵抗力が高まり、波形状でないフロアパネルよりも耐力が大きくなる。 On the other hand, as shown in FIG. 21, in the case of the corrugated floor panel of Example 1, the top surface portion 10a and the bottom surface portion 11 of the convex portion are individually deformed out of plane. And the generation | occurrence | production area | region of out-of-plane deformation at the time of seeing as the whole floor panel is narrower than the flat floor panel shown in FIG. The reason why the top surface portion 10a and the bottom surface portion 11 are individually deformed out of plane in this way is that the ridge line portion 10c (FIG. 4) connecting the top surface portion 10a and the side wall portion 10b, and the ridge line connecting the bottom surface portion 11 and the side wall portion 10b. Since the extending direction of the portion 12 (FIG. 4) coincides with the load input direction, a strong resistance is generated against the deformation of the floor panel due to the load input, and each ridge line portion 10c, 12 serves as a support point at the time of bending deformation. This is because it works. The space between the supporting points is a region where the out-of-plane deformation of the floor panel can occur, but the interval between the supporting points is shortened because the floor panel is corrugated, and the span of bending deformation is changed to a flat floor panel. On the other hand, it becomes shorter. Thereby, in the floor panel of Example 1, resistance to bending deformation is increased, and the proof stress is greater than that of a floor panel that is not corrugated.
 次に、図19において実施例1と実施例2を比較すると、実施例2では実施例1よりも最大荷重が大きくなっている一方、最大荷重に到達した後の入力荷重の減衰は実施例1の方が小さくなっている。換言すると、実施例1は実施例2に比べ、フロアパネルの大変形前の最大荷重が小さいが、フロアパネルの大変形後の入力荷重は高く維持される。したがって、実施例1のフロア構造は、実施例2に対してエネルギー吸収性能の高い構造であると言えるが、フロアパネルの大変形前に高い耐力を発揮させるという観点では実施例2のフロア構造の方が優れている。この結果によれば、エネルギー吸収性能の高いフロア構造が、必ずしも耐力が大きい構造ではないことが示される。 Next, when Example 1 and Example 2 are compared in FIG. 19, the maximum load is larger in Example 2 than in Example 1, while the attenuation of the input load after reaching the maximum load is in Example 1. Is smaller. In other words, the maximum load before the large deformation of the floor panel is smaller in the first embodiment than in the second embodiment, but the input load after the large deformation of the floor panel is kept high. Therefore, it can be said that the floor structure of Example 1 is a structure having higher energy absorption performance than that of Example 2, but from the viewpoint of exhibiting high proof strength before large deformation of the floor panel, Is better. This result shows that a floor structure with high energy absorption performance is not necessarily a structure with high yield strength.
 図22に波形状のフロアパネルを有する各解析モデルの凸部の周期Cと、各解析モデルの最大入力荷重F1を比較例1の最大入力荷重F0で規格化した最大荷重比F1/F0との関係を示す。図22中のプロットは、上記表1中の比較例5、および実施例1~5の結果に対応するものであり、h/Cが全て0.067で一定の場合のケースのものである。h/Cが一定であることにより、図4のような断面図におけるフロアパネルの線長が一定となり、質量一定の条件で耐力の評価を行うことが可能となる。 FIG. 22 shows the maximum load ratio F 1 / F obtained by standardizing the convex period C of each analysis model having a corrugated floor panel and the maximum input load F 1 of each analysis model by the maximum input load F 0 of Comparative Example 1. The relationship with F 0 is shown. The plots in FIG. 22 correspond to the results of Comparative Example 5 and Examples 1 to 5 in Table 1 above, and are for the case where h / C is all constant at 0.067. When h / C is constant, the line length of the floor panel in the cross-sectional view as shown in FIG. 4 is constant, and the proof stress can be evaluated under the condition of constant mass.
 図22の結果によれば、質量一定の条件下では、凸部の高さhを高くするより周期Cを小さくした方が、フロアパネルの耐力が高まることが示される。また、図22中の周期Cが30mmの場合のプロットは上記表1の実施例2の結果に対応するが、上記表1によれば、クロスメンバを有するフロア構造である比較例2よりも実施例2の方が最大荷重比が大きい。この結果から、実施例2のフロア構造であれば、ポール側面衝突対応用のクロスメンバの省略が可能なほどに、耐力が高まることが示される。 The result of FIG. 22 shows that the proof stress of the floor panel increases when the period C is made smaller than when the height h of the convex part is made higher under the condition of constant mass. In addition, the plot in the case where the period C in FIG. 22 is 30 mm corresponds to the result of Example 2 of Table 1 above, but according to Table 1 above, the plot is more implemented than Comparative Example 2 which is a floor structure having a cross member. Example 2 has a larger maximum load ratio. From this result, the floor structure of Example 2 shows that the proof stress increases to the extent that the cross member for dealing with the pole side collision can be omitted.
 図23にフロアパネルの凸部のC/√hと、各解析モデルの最大荷重比F1/F0を、比較例1を基準とした質量比m1/m0で規格化したものとの関係を示す。図23の縦軸の値は、質量あたりの耐力の大きさを示す耐力の質量効率であり、縦軸の値が高いほど、耐力と質量のバランスに優れることを意味する。 In FIG. 23, C / √h of the convex portion of the floor panel and the maximum load ratio F 1 / F 0 of each analysis model are normalized by the mass ratio m 1 / m 0 with reference to Comparative Example 1. Show the relationship. The value on the vertical axis in FIG. 23 is the mass efficiency of the yield strength indicating the magnitude of the yield strength per mass, and the higher the value on the vertical axis, the better the balance between the yield strength and the mass.
 図23によれば、C/√hの値が小さいほど、質量効率に優れることが示される。また、図23および上記表1からも明らかなように、たとえフロアパネルが波形状であっても、平板状のフロアパネルの比較例1よりも耐力の質量効率が劣る場合もある。すなわち、単にフロアパネルを波形状とするだけでは、耐力確保と軽量化を両立させることはできない。本シミュレーションの結果に鑑みれば、比較例1に対して耐力の質量効率に優れるフロア構造は、C/√hが60未満となるフロア構造である。また、C/√hが55以下、さらには25以下となるフロア構造において耐力の質量効率が大きく向上する。 FIG. 23 shows that the smaller the value of C / √h, the better the mass efficiency. Further, as is clear from FIG. 23 and Table 1 above, even if the floor panel is corrugated, the proof stress mass efficiency may be inferior to that of Comparative Example 1 of a flat floor panel. That is, it is impossible to achieve both yield strength and weight reduction by simply making the floor panel corrugated. In view of the results of this simulation, the floor structure that is superior in mass efficiency of yield strength to Comparative Example 1 is a floor structure in which C / √h is less than 60. Moreover, the mass efficiency of yield strength is greatly improved in the floor structure in which C / √h is 55 or less, and further 25 or less.
 なお、上記表1の実施例10の結果によれば、波形状のフロアパネルにクロスメンバが接合された構造であれば、耐力の質量効率が大きく向上する。このため、例えば室内空間やバッテリー搭載空間の確保よりも、耐力の向上と軽量化の両立がより優先される場合には、波形状のフロアパネルにクロスメンバを設けることが有効である。 In addition, according to the result of Example 10 in Table 1 above, the mass efficiency of yield strength is greatly improved if the cross member is joined to the corrugated floor panel. For this reason, for example, in the case where both improvement in yield strength and weight reduction are prioritized over securing the indoor space and the battery mounting space, it is effective to provide a cross member on the corrugated floor panel.
<側面衝突シミュレーション(B)>
 次に、実施例2のフロアパネルを、ブラケットを介してサイドシルに接合した場合の側面衝突シミュレーションを実施した。本シミュレーションに用いた解析モデルのフロア構造は、図9のようなフロアパネルの幅方向端部がサイドシルに当接した状態でフロアパネルの上側(車内側)にL字ブラケットが配置された構造(実施例11)と、図10のようなフロアパネルとサイドシルの間にL字ブラケットが配置された構造(実施例12)である。本シミュレーションでは、L字ブラケットの接合位置の違いによるフロアパネルの耐力の影響に着目するため、サイドシルを、厚み6mmの弾性体のプレートに置き換えている。荷重の入力条件は前述の側面衝突シミュレーション(A)と同様である。
<Side collision simulation (B)>
Next, a side collision simulation was performed when the floor panel of Example 2 was joined to a side sill via a bracket. The floor structure of the analysis model used in this simulation is a structure in which an L-shaped bracket is arranged on the upper side of the floor panel (inside the vehicle) with the width direction end of the floor panel in contact with the side sill as shown in FIG. Example 11) and a structure (Example 12) in which an L-shaped bracket is arranged between a floor panel and a side sill as shown in FIG. In this simulation, the side sill is replaced with an elastic plate having a thickness of 6 mm in order to pay attention to the influence of the strength of the floor panel due to the difference in the joining position of the L-shaped bracket. The load input conditions are the same as those in the side collision simulation (A) described above.
 以上の条件の下でシミュレーションを実施したところ、実施例11の最大入力荷重は実施例12の最大入力荷重の1.56倍となった。すなわち、L字ブラケットを用いてフロアパネルとサイドシルを接合する場合、図10のようにフロアパネルとサイドシルの間にL字ブラケットを配置するより、図9のようにフロアパネルがサイドシルに当接するようにL字ブラケットを配置する方がフロア構造としての耐力が高まる。 When the simulation was performed under the above conditions, the maximum input load of Example 11 was 1.56 times the maximum input load of Example 12. That is, when the floor panel and the side sill are joined using the L-shaped bracket, the floor panel is brought into contact with the side sill as shown in FIG. 9 rather than arranging the L-shaped bracket between the floor panel and the side sill as shown in FIG. When the L-shaped bracket is arranged on the floor, the strength as a floor structure is increased.
 本発明は、自動車等の車両に取り付けられるフロア構造として利用することができる。 The present invention can be used as a floor structure attached to a vehicle such as an automobile.
1    フロア構造
2    フロアパネル
3    サイドシル
4    サイドシルアウタ
4a   サイドシルアウタ天面部
4b   サイドシルアウタ縦壁部
4c   サイドシルアウタフランジ部
5    サイドシルインナ
5a   サイドシルインナ天面部
5b   サイドシルインナ縦壁部
5c   サイドシルインナフランジ部
6    ブラケット
6a   ブラケットの第1の壁面部
6b   ブラケットの第2の壁面部
7    第1の壁面部の凸部
10   フロアパネルの凸部
10a  凸部の天面部
10b  凸部の側壁部
10c  凸部の稜線部
11   底面部
12   稜線部
13   フロアパネルのフランジ部
C    凸部の周期
H    車高方向
h    凸部の高さ
L    車長方向
W    車幅方向
 
DESCRIPTION OF SYMBOLS 1 Floor structure 2 Floor panel 3 Side sill 4 Side sill outer 4a Side sill outer top surface part 4b Side sill outer vertical wall part 4c Side sill outer flange part 5 Side sill inner 5a Side sill inner top surface part 5b Side sill inner vertical wall part 5c Side sill inner flange part 6 Bracket 6a Bracket 1st wall surface part 6b 2nd wall surface part 7 of bracket 1st wall surface convex part 10 Floor panel convex part 10a Convex part top surface part 10b Convex part side wall part 10c Convex part ridgeline part 11 Bottom face part 12 Ridge Line 13 Flange C of Floor Panel Projection Period H Vehicle Height Direction h Projection Height L Vehicle Length Direction W Vehicle Width Direction

Claims (7)

  1.  フロア構造であって、
     車幅方向または車長方向に平行な稜線部を有する波形状部を備えたフロアパネルと、
     前記フロアパネルの前記車幅方向の端部に接合されたサイドシルと、を備え、
     前記波形状部の凸部の周期Cと、高さhを用いたC/√hの値が60未満である。
    A floor structure,
    A floor panel having a corrugated portion having a ridge portion parallel to the vehicle width direction or the vehicle length direction;
    A side sill joined to an end of the floor panel in the vehicle width direction,
    The value of C / √h using the period C of the convex portion of the corrugated portion and the height h is less than 60.
  2.  請求項1に記載のフロア構造において、
     C/√hの値が55以下である。
    In the floor structure according to claim 1,
    The value of C / √h is 55 or less.
  3.  請求項1または2に記載のフロア構造において、
     前記稜線部が前記車幅方向に平行である。
    In the floor structure according to claim 1 or 2,
    The ridge line portion is parallel to the vehicle width direction.
  4.  請求項3に記載のフロア構造において、
     前記フロアパネルと前記サイドシルとがブラケットを介して接合されている。
    In the floor structure according to claim 3,
    The floor panel and the side sill are joined via a bracket.
  5.  請求項4に記載のフロア構造において、
     前記サイドシルは、サイドシルアウタと、サイドシルインナと、を備え、
     前記サイドシルインナは、天面部と、前記天面部から車幅方向の車外側に延伸する縦壁部と、を有し、
     前記ブラケットは、第1の壁面部と第2の壁面部とを有するL字状であり、
     前記第1の壁面部が前記フロアパネルに接合され、前記第2の壁面部が前記サイドシルインナの前記天面部に接合されている。
    In the floor structure according to claim 4,
    The side sill includes a side sill outer and a side sill inner,
    The side sill inner has a top surface portion, and a vertical wall portion extending from the top surface portion to the vehicle outer side in the vehicle width direction,
    The bracket is L-shaped having a first wall surface portion and a second wall surface portion,
    The first wall surface portion is bonded to the floor panel, and the second wall surface portion is bonded to the top surface portion of the side sill inner.
  6.  請求項5に記載のフロア構造において、
     前記フロアパネルの車幅方向の端部が前記サイドシルインナの前記天面部に当接している。
    In the floor structure according to claim 5,
    An end portion of the floor panel in the vehicle width direction is in contact with the top surface portion of the side sill inner.
  7.  請求項1~6のいずれか一項に記載のフロア構造において、
     前記フロアパネルは、引張強度が780MPa以上の鋼板からなる。
     
     
     
    The floor structure according to any one of claims 1 to 6,
    The floor panel is made of a steel plate having a tensile strength of 780 MPa or more.


PCT/JP2019/009411 2018-03-13 2019-03-08 Floor structure WO2019176789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020506473A JP7006771B2 (en) 2018-03-13 2019-03-08 Floor structure
CN201980017377.9A CN111819129A (en) 2018-03-13 2019-03-08 Floor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045351 2018-03-13
JP2018045351 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176789A1 true WO2019176789A1 (en) 2019-09-19

Family

ID=67906781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009411 WO2019176789A1 (en) 2018-03-13 2019-03-08 Floor structure

Country Status (3)

Country Link
JP (1) JP7006771B2 (en)
CN (1) CN111819129A (en)
WO (1) WO2019176789A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315527A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Panel structure
JP2009061955A (en) * 2007-09-07 2009-03-26 Nissan Motor Co Ltd Floor panel structure of vehicle
US20120119545A1 (en) * 2010-11-12 2012-05-17 GM Global Technology Operations LLC Floor structure of an automobile body
JP2016013830A (en) * 2014-07-02 2016-01-28 ジーエム・グローバル・テクノロジー・オペレーションズ・エルエルシー Impact resistant component for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444016A1 (en) * 1974-09-14 1976-03-25 Volkswagenwerk Ag Impact strengthened car floor section - has edge beams as external boundary with longitudinal slats absorbing side impacts
JPH01119481A (en) * 1987-10-30 1989-05-11 Mazda Motor Corp Floor structure of automobile
CN1040414C (en) * 1993-11-18 1998-10-28 洛尔工业公司 Plate unit composed of steel sheet with holes
JP3964775B2 (en) * 2002-11-22 2007-08-22 本田技研工業株式会社 Vehicle floor structure
CN103118926B (en) * 2011-04-18 2015-11-25 丰田自动车株式会社 Body structure
WO2014061109A1 (en) * 2012-10-16 2014-04-24 トヨタ自動車株式会社 Cell installation structure for vehicle
US9592853B2 (en) * 2014-07-02 2017-03-14 GM Global Technology Operations LLC Corrugation designs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315527A (en) * 2005-05-12 2006-11-24 Toyota Motor Corp Panel structure
JP2009061955A (en) * 2007-09-07 2009-03-26 Nissan Motor Co Ltd Floor panel structure of vehicle
US20120119545A1 (en) * 2010-11-12 2012-05-17 GM Global Technology Operations LLC Floor structure of an automobile body
JP2016013830A (en) * 2014-07-02 2016-01-28 ジーエム・グローバル・テクノロジー・オペレーションズ・エルエルシー Impact resistant component for vehicle

Also Published As

Publication number Publication date
JP7006771B2 (en) 2022-01-24
CN111819129A (en) 2020-10-23
JPWO2019176789A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6958722B2 (en) Floor structure
JP4059187B2 (en) Vehicle hood structure
US9463758B2 (en) Crash box and automobile chassis
JP6703322B1 (en) Vehicle frame members and electric vehicles
JP2008222097A (en) Vehicle body structure for automobile
JP5790785B2 (en) Vehicle front structure
CN106697058A (en) Automobile body front longitudinal beam structure and automoible
JP6414298B1 (en) Body structure
WO2018161698A1 (en) Engine compartment frame and vehicle having same
JP5686586B2 (en) Reinforcement structure in automobile body frame
CN107628115B (en) Automobile variable thickness and variable cross section front longitudinal beam structure for function customization
WO2019176789A1 (en) Floor structure
JP6733848B1 (en) Automotive structural member
JP2011063191A (en) Crash box
WO2022124335A1 (en) Automotive battery case and method for manufacturing same
JP5732797B2 (en) Vehicle bumper
JP5692187B2 (en) Body front structure
JP5861288B2 (en) Front body structure of the vehicle
JP2011148413A (en) Engine hood for automobile
JP2011110954A (en) Vehicle panel
JP6687179B1 (en) Automotive frame members and electric vehicles
JP7376797B2 (en) Automobile frame parts and electric vehicles
US11981370B2 (en) Structural member for vehicle
WO2022118897A1 (en) Vehicle body lower structure of automobile
WO2020085383A1 (en) Automobile frame member and electric automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766714

Country of ref document: EP

Kind code of ref document: A1