WO2019176773A1 - Wear amount estimation system, correction system, fault detection system, service life detection system, machine tool and wear amount estimation method, machine tool and fault detection method, and machine tool and service life detection method - Google Patents

Wear amount estimation system, correction system, fault detection system, service life detection system, machine tool and wear amount estimation method, machine tool and fault detection method, and machine tool and service life detection method Download PDF

Info

Publication number
WO2019176773A1
WO2019176773A1 PCT/JP2019/009337 JP2019009337W WO2019176773A1 WO 2019176773 A1 WO2019176773 A1 WO 2019176773A1 JP 2019009337 W JP2019009337 W JP 2019009337W WO 2019176773 A1 WO2019176773 A1 WO 2019176773A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
wear amount
wear
amount estimation
relational expression
Prior art date
Application number
PCT/JP2019/009337
Other languages
French (fr)
Japanese (ja)
Inventor
巧人 三好
山田 栄二
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019176773A1 publication Critical patent/WO2019176773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Definitions

  • the present invention relates to a wear amount estimation system, a correction system, an abnormality detection system, a life detection system, a machine tool and a wear amount estimation method, a machine tool and an abnormality detection method, a machine tool, and a life detection method.
  • Patent Document 1 JP-A-8-132332
  • Patent Document 2 A method for estimating the wear amount of a tool of such a machine tool is disclosed in, for example, International Publication No. 00/12260 (Patent Document 2). Further, the machine tool predicts the life by confirming the state of wear of the tool used. Such a technique is disclosed in, for example, International Publication No. 00/12260 (Patent Document 3). *
  • Patent Document 1 the position where the working surface of the tool is detected is measured at least three times, the deviation amount between the reference position and the measurement position is stored together with the measurement time, and the time is determined based on the relationship between the deviation amount and the measurement time.
  • Disclosed is a method for correcting misalignment in a machine tool in which a function of a curve indicating the relationship between the amount of misalignment and the amount of misalignment is obtained and then the misalignment is obtained based on the function of the curve and the current time to correct the command position of the tool. Has been. *
  • Patent Document 2 describes a process for creating a tool wear database that associates a tool cutting length and a tool wear amount, and a tool wear amount when the machining is performed before actual machining using the tool wear database.
  • a tool wear amount estimation method comprising: an estimation step.
  • a tool usage determination method is provided that includes a step of comparing the estimated amount of tool wear and a tool life database and giving permission for actual machining.
  • Patent Document 1 describes that a curve function for estimating a deviation amount is obtained by smoothly connecting measured points. Since there are many curve functions, the obtained curve function may be inaccurate. If the obtained curve function is inaccurate, the accuracy of estimating the wear amount of the tool is deteriorated. In this case, the command position of the tool cannot be corrected accurately.
  • the present invention improves the accuracy of the estimated tool wear amount and easily estimates the tool wear amount, correction system, abnormality detection system, life detection system, machine tool And a wear amount estimation method.
  • the present invention provides an abnormality detection system, a machine tool, and an abnormality detection method for reducing defective products.
  • Patent Document 2 has a problem in that the accuracy of determining the life is poor when there is not enough data in the tool wear database and the tool life database.
  • the present invention provides a life detection system, a machine tool, and a life detection method that improve the accuracy of determining the life.
  • a wear amount estimation system is a system for estimating the amount of wear of a tool in a machine tool that repeatedly processes a workpiece having the same specifications under the same conditions using a tool.
  • W the amount of wear from the machining start time of the tool
  • t the elapsed time
  • t the constants
  • a and ⁇ ( ⁇ 1) , W At ⁇ , a calculation unit for calculating A and ⁇ of the relational expression represented by:
  • a wear amount estimation system is a system for estimating a wear amount of a tool in a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool, Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time, the wear amount from the machining start time of the tool is W, the elapsed time is t, and constants calculated from the measured values are A 1 and A 2.
  • Equation 2 a step of preparing a storage unit having data of a plurality of tools of the same specification represented by (Equation 2), a step of calculating Equation 1 for a tool being processed of the same specification, and a storage unit, reads the calculated closest data a 1 and alpha 1 was, during processing the a 2 and alpha 2 of the data And a step of estimating the formula 2 fixings, the.
  • An abnormality detection system is an abnormality detection system for a machine tool that uses a tool to repeatedly process a workpiece having the same specifications under the same conditions, and the process from the start of machining the tool. Calculates the amount of tool wear over time and calculates a relational expression between the machining time and the amount of wear, and the difference between the amount of wear estimated from the relational expression and the amount of wear measured after the calculation is predetermined. And a determination unit that determines that an abnormality has occurred in the machine tool when the value is exceeded.
  • An abnormality detection method is an abnormality detection method for a machine tool in which a workpiece having the same specifications is repeatedly processed using the tool under the same conditions, and the process has started since the tool was started.
  • the difference between the process of calculating the relationship between the machining time and the amount of wear by measuring the amount of wear of the tool with respect to time and the amount of wear estimated from the relationship and the amount of wear measured after the calculation is a predetermined value.
  • a life detection system is a system for detecting the life of a tool in a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool. If the relational expression changes due to the calculation unit that calculates the relationship between the machining time and the amount of wear by measuring the amount of wear relative to the elapsed time from the start time, and the calculated amount of wear, the tool life will be reduced. And a determination unit that determines that it has been reached. *
  • a life detection method is a method for detecting the life of a tool of a machine tool that uses a tool to repeatedly process a workpiece of the same specification under the same conditions, and starts machining the tool.
  • the tool life is reached when the relational expression changes due to the process of calculating the relational expression between the machining time and the wear amount by measuring multiple wear amounts with respect to the elapsed time from the time point and the calculation of the wear amount after the calculation. And a step of determining.
  • the present invention improves the accuracy of the estimated tool wear amount and easily estimates the tool wear amount, correction system, abnormality detection system, life detection system, and machine tool.
  • a wear amount estimation method can be provided.
  • the present invention can provide an abnormality detection system, a machine tool, and an abnormality detection method for the purpose of reducing defective products.
  • the present invention can provide a life detection system, a machine tool, and a life detection method that improve the accuracy of determining the life.
  • FIG. 1 is a schematic diagram of a machine tool in the embodiment.
  • FIG. 2 is a diagram illustrating the wear amount with respect to the elapsed time of the tool in the embodiment.
  • FIG. 3 is a block diagram illustrating a control configuration of the machine tool according to the first embodiment.
  • FIG. 4 is a flowchart showing a wear amount estimation method according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a correction method according to the embodiment.
  • FIG. 6 is a diagram illustrating a relational expression specified by the wear amount estimation system in the embodiment and measured values of the tool in operation.
  • FIG. 7 is a diagram for explaining parameters of the error index in the embodiment.
  • FIG. 8 is a diagram for explaining an error index in the embodiment.
  • FIG. 1 is a schematic diagram of a machine tool in the embodiment.
  • FIG. 2 is a diagram illustrating the wear amount with respect to the elapsed time of the tool in the embodiment.
  • FIG. 3 is a block diagram illustrating
  • FIG. 9 is a diagram for explaining another error index in the embodiment.
  • FIG. 10 is a diagram for explaining still another error index in the embodiment.
  • FIG. 11 is a flowchart illustrating an abnormality detection method according to the embodiment.
  • FIG. 12 is a flowchart illustrating a life detection method in the embodiment.
  • FIG. 13 is a diagram showing the amount of wear of the tool in the example.
  • FIG. 14 is a diagram in which normal data is extracted from FIG.
  • FIG. 15 is a diagram illustrating the wear amount with respect to the elapsed time of the tool in the example.
  • FIG. 16 is a block diagram illustrating a control configuration of the machine tool according to the second embodiment.
  • FIG. 17 is a diagram for explaining a relational expression in the second embodiment.
  • FIG. 18 shows data stored in the storage unit in the second embodiment.
  • FIG. 19 is a flowchart illustrating a wear amount estimation method according to the second embodiment.
  • FIG. 20 is a flowchart illustrating an abnormality detection method according to another embodiment.
  • FIG. 21 is a diagram showing measured values of the tool and two relational expressions in the embodiment.
  • FIG. 22 is a diagram illustrating the measured values of the tool and the values of A and ⁇ in the embodiment.
  • a wear amount estimation system 1 to 12 and 16 to 22, a wear amount estimation system, a correction system, an abnormality detection system, a life detection system, a machine tool, a wear amount estimation method, and a machine tool according to an embodiment of the present invention.
  • a machine, an abnormality detection method, a machine tool, and a life detection method will be described.
  • the machine tool 1 uses a tool 2 to repeatedly process a workpiece 5 having the same specifications under the same conditions. Thereby, the workpiece can be processed into a workpiece having the same shape.
  • Workpieces with the same specifications are workpieces with the same manufactured conditions.
  • the material of a workpiece is not specifically limited, A metal may be sufficient and materials other than a metal may be sufficient.
  • “Repeatedly processing under the same conditions” means that the plurality of workpieces are processed under the same conditions because they are processed into the same shape. *
  • the machine tool 1 includes a tool 2, a support portion 3, and a placement portion 4.
  • the tool 2 processes the workpiece 5.
  • the method of processing is not specifically limited, For example, it is a cutting process.
  • the support part 3 supports the tool 2.
  • the support portion 3 is movable in the left-right (x-axis) direction, the front-rear (y-axis) direction, and the up-down (z-axis) direction.
  • the position of the tool 2 can be moved by moving the support part 3.
  • the placement unit 4 places the workpiece 5 thereon.
  • the support unit 3 moves relative to the workpiece 5 placed on the placement unit 4. For this reason, the mounting part 4 may be movable in the left-right direction, the front-back direction, and the up-down direction. *
  • the machine tool 1 is an NC (numerical control) machine tool, and further includes a numerical control device that controls the operation of the machine tool 1.
  • the control device instructs a work process necessary for machining such as a path of the tool 2 with respect to the workpiece with corresponding numerical information.
  • Tool 2 When the operation of the machine tool 1 is continued, the tool 2 is worn by the processing of the workpiece 5 by the tool 2. Further, during the operation of the machine tool 1, the tool 2 reaches the end of its life or is damaged. Thus, when it cannot process into the workpiece of the same shape, it exchanges for another tool 2 of the same specification. “Tools with the same specifications” are tools with the same manufactured conditions. *
  • the control device of the machine tool 1 includes a wear amount estimation system 10.
  • the wear amount estimation system is a system for estimating the wear amount of the tool 2 in the machine tool shown in FIG. *
  • the wear amount estimation system 10 includes a measurement unit 11, a calculation unit 12, an average calculation unit 13, and a storage unit 14.
  • the control unit including the calculation unit 12 and the average calculation unit 13 is realized by an arithmetic processing device such as a CPU (Central Processing Unit).
  • the storage unit 14 is realized by, for example, a nonvolatile storage device such as a flash memory.
  • the measuring unit 11 measures the amount of wear in the elapsed time from the machining start time of the tool 2.
  • the measuring unit 11 may measure the wear amount of the machined surface of the tool, or may obtain the wear amount of the tool by measuring the shape of the workpiece.
  • the calculation unit 12 calculates a relational expression between the machining time and the wear amount from a plurality of measured values of the wear amount of the tool 2 with respect to the elapsed time from the machining start time of the tool 2. Specifically, the calculation unit 12 calculates a relational expression between the machining time and the wear amount based on a plurality of measurement values measured by the measurement unit 11 for the tool 2 in operation.
  • the calculation unit 12 uses at least two measured values for one tool 2 in order to calculate A and ⁇ and determine a relational expression.
  • the calculation unit 12 may use measurement values obtained by measuring all the workpieces from the machining start time point, or may use measurement values obtained by measuring a part of the workpieces from the machining start time point. You may use only the measured value which measured the workpiece of (refer FIG. 2). *
  • the calculation unit 12 may calculate A and ⁇ of the tool in operation, or may calculate A and ⁇ of a tool having the same specification as that of the tool being operated.
  • the tool of the same specification may be a tool attached to one machine tool, or may be a tool attached to another machine tool of the same specification. “Machine tools with the same specifications” are machine tools that produce the same workpiece by the same operation. *
  • the wear amount W with respect to the elapsed time t from the machining start time of the tool 2 can be expressed by the model shown in FIG.
  • the wear time of the tool is an initial stage (0 ⁇ t ⁇ t 0 ) in which the wear amount is W 1 or less with respect to the elapsed time from the start of machining, and a steady stage in which the wear amount exceeds W 1 and is W 2 or less ( t 0 ⁇ t ⁇ t 1 ), and there is an end stage (t 1 ⁇ t) where the amount of wear exceeds W 2 .
  • the initial stage is a state where the amount of wear changes greatly.
  • the steady stage is a stable state in which the change in wear amount is small.
  • the final stage is a state where the amount of wear rapidly increases and reaches the end of its life.
  • the elapsed time t is the time that has elapsed while the machining has been continued, with the time when machining is started after installing a new tool having the same specification as 0.
  • This elapsed time t means that the time for processing one workpiece 5 is the same and is continuously processed at the same pace.
  • the elapsed time t does not include time required for tool replacement. For this reason, the elapsed time t and the number of processes are proportional.
  • the storage unit 14 stores the relational expression estimated by the calculation unit 12.
  • the storage unit 14 of the present embodiment stores the relational expression acquired by the calculation unit 12 for each of a plurality of tools 2 having the same specification. That is, the storage unit 14 stores a plurality of relational expressions for the tool 2 having the same specification.
  • the plurality of tools 2 of the same specification may be a tool of one specific machine tool, or may be a tool attached to another machine tool of the same specification. Further, the storage unit 14 may classify and store a relational expression of a plurality of tools having the same specification of one specific machine tool and a relational expression of tools having the same specification of another machine tool having the same specification. . *
  • the inventor has specified that when ⁇ is 1 or more, it is noise. Although ⁇ may be calculated as 1 or more in the initial stage, the storage unit 14 does not include a relational expression where ⁇ is 1 or more. For this reason, it is possible to prevent the error expression from being stored in the storage unit 14. *
  • the average calculation unit 13 reads a plurality of relational expressions from the storage unit 14 and calculates an average of the plurality of relational expressions. Since the average calculation unit 13 can calculate the average of a plurality of relational expressions of tools having the same specification, the reliability of the relational expression for estimating the wear amount can be improved. *
  • Means for calculating the average is not particularly limited, but it is preferable that the average calculation unit 13 calculates a geometric mean of a plurality of relational expressions.
  • the geometric mean is calculated by the following formula 1. In this case, the accuracy of the estimated wear amount can be further improved and the relational expression can be easily specified.
  • the average calculation unit deforms Equation 1 as Equation 2 below, and calculates a geometric average of a plurality of relational expressions. *
  • the method for calculating the average is not particularly limited.
  • the average calculator 13 may calculate an arithmetic average (arithmetic average) represented by, for example, Equation 3 below. *
  • the control device of the machine tool 1 includes a wear amount estimation system 10.
  • the wear amount estimation system 10 is a system for estimating the wear amount of the tool 2 in the machine tool shown in FIG. *
  • the wear amount estimation system 10 includes a storage unit 14, a measurement unit 11, a calculation unit 12, and an estimation unit 15.
  • the storage unit 14 is realized by, for example, a nonvolatile storage device such as a flash memory.
  • the control unit including the calculation unit 12 and the estimation unit 15 is realized by an arithmetic processing device such as a CPU (Central Processing Unit), for example.
  • a CPU Central Processing Unit
  • the plurality of tools 2 of the same specification may be a tool of one specific machine tool, or may be a tool attached to another machine tool of the same specification. “Machine tools with the same specifications” are machine tools that produce the same workpiece by the same operation. Further, the storage unit 14 may classify and store a relational expression of a plurality of tools having the same specification of one specific machine tool and a relational expression of tools having the same specification of another machine tool having the same specification. .
  • Equation 1 is calculated from a plurality of measured values obtained by measuring the wear amount with respect to time up to time T 0 .
  • Expression 2 is calculated from a plurality of measured values obtained by measuring the wear amount with respect to the time after the time T 0 is exceeded.
  • T 0 can be set arbitrarily. T 0 may be set based on the number of measurements in consideration of the accuracy of Equation 1 and Equation 2.
  • the storage unit 14 stores A 1 and ⁇ in Expression 1 for each of the tools I to III as shown in FIG. 1, and a 2 and alpha 2 of formula 2, storing.
  • the numerical value is not described in FIG. 18, the acquired numerical value is actually stored as data.
  • ⁇ 1 and ⁇ 2 are not particularly limited, but are preferably less than 1.
  • the inventor has specified that when ⁇ is 1 or more, it is noise. Since ⁇ may be calculated as 1 or more in the initial stage, the storage unit 14 does not include a relational expression where ⁇ is 1 or more. For this reason, it is possible to prevent the error expression from being stored in the storage unit 14.
  • the storage unit 14 of the present embodiment has only data that satisfies ⁇ 1 > ⁇ 2 .
  • the present inventor has found that ⁇ is large in the initial stage, and that ⁇ decreases as the stage shifts from the initial stage to the steady stage. For this reason, since the storage unit has only accurate data satisfying ⁇ 1 > ⁇ 2 , it is possible to improve the accuracy of estimating the wear amount.
  • the measuring unit 11 measures the amount of wear in the elapsed time from the start of machining of the tool 2 in operation.
  • the measuring unit 11 may measure the amount of wear on the machined surface of the tool 2 or may obtain the amount of wear on the tool 2 by measuring the shape of the workpiece.
  • the measurement part 11 of this Embodiment calculates
  • the calculation unit 12 uses at least two or more measurement values for one tool 2 in order to calculate A 1 and ⁇ 1 and determine Equation 1.
  • Calculator 12 may use a measurement value measured for all workpieces from the machining start point to the time T 0, using the measurements of the part of the workpiece was measured from the machining start point to the time T 0 May be. It is preferable that the calculation unit 12 calculates A 1 and ⁇ 1 using only the initial measurement values.
  • the estimation unit 15 reads data closest to A 1 and ⁇ 1 calculated by the calculation unit 12 from the storage unit 14 and estimates Formula 2 of the read data as Formula 2 of the tool being processed.
  • the estimation unit 15 can acquire the normal-stage equation 2.
  • the estimator 15 can estimate the wear amount with respect to the elapsed time exceeds the time T 0.
  • the estimation unit 15 is not particularly limited to a method of selecting data closest to A 1 and ⁇ 1 calculated by the calculation unit 12 from the data in the storage unit 14. Data that minimizes the error index value represented is selected.
  • error index value E 1 is expressed by equation 4 below.
  • Equation 4 is a mean square error with respect to the equation of the storage unit 14 at each measurement point.
  • Equation 5 the error index value E 2 is expressed by Equation 5 below.
  • the wear amount estimation system 10 includes a measurement unit 11 that measures the wear amount with respect to a time exceeding the time T 0 of the tool being processed, a calculation unit 12 that calculates Formula 2 based on this measurement value, and a calculation unit 12. And a storage unit 14 that further stores Formula 1 and Formula 2 obtained by the above. In this case, since the data accumulated in the storage unit 14 increases, the accuracy can be improved in the wear amount estimation system 10 of the machine tool 1 having the same specification including the tool 2 having the same specification.
  • the measurement unit 11 measures a plurality of wear amounts with respect to the elapsed time from the machining start time of the tool 2 (step S1). *
  • the acquired relational expression is stored in the storage unit 14 (step S3).
  • steps S1 to S3 are performed for another tool 2 having the same specification.
  • a relational expression can be memorize
  • step S4 it is preferable to calculate a geometric mean of a plurality of relational expressions.
  • steps S3 and S4 may be omitted.
  • steps S1 and S2 for the tool 2 in operation A and ⁇ are calculated to obtain a relational expression, and the wear amount is estimated from the relational expression.
  • step S4 the relational expression of one tool stored in the storage unit 14 may be read and the wear amount may be estimated from the relational expression.
  • the measurement unit 11 measures a plurality of wear amounts with respect to the elapsed time from the machining start time of the operating tool 2 (step S42).
  • step S42 by measuring the wear amount by time T 0, obtaining a plurality of measurements up time T 0.
  • Formula 1 of the tool 2 in operation may be calculated based on the measured values in the first half of the initial stage.
  • step S 44 data closest to A 1 and ⁇ 1 calculated by the calculation unit 12 is read from the storage unit 14, and the data A 2 and ⁇ 2 are estimated as Formula 2 of the tool being processed (step S 44). .
  • Formula 2 about the tool in operation can be acquired.
  • the wear amount estimation system and the wear amount estimation method according to the present embodiment reads data closest to A 1 and ⁇ 1 calculated by the calculation unit 12 from the storage unit 14, and estimates the estimation unit 15. Thus, it is estimated as Formula 2 of the tool being processed.
  • Equations 1 and 2 the relationship between the elapsed time t from the start of machining and the wear amount W of the tool 2 is expressed by Equations 1 and 2.
  • the formula 1 can be specified by measuring the wear amount of the tool 2 being processed at an arbitrary timing before T 0 has elapsed.
  • the expression 2 can be estimated by comparing the expression 1 of the tool 2 being processed and the expression 1 of the storage unit 14 and reading the closest data. That is, in the past, it has been necessary to compare at each measurement point, but in the present embodiment, the comparison can be made by an equation, and thus does not depend on the measurement timing. Therefore, since the expression of the wear amount with respect to the elapsed time of the tool can be easily obtained, the wear amount of the tool can be easily estimated.
  • T 0 is stored in the storage unit 14 as a relational expression consisting of Expression 1 and Expression 2 for one tool, in the vicinity of the boundary between the initial stage and the steady stage.
  • the wear amount estimation system 10 and the wear amount estimation method of the present invention may include, for example, a storage unit 14 that stores a relational expression including three or more expressions.
  • time T 1 is the boundary between the initial stage and the steady stage.
  • the estimation unit 15 may estimate Formula 3 from Formula 1 or Formula 2, or may estimate Formula 2 and Formula 3 from Formula 1.
  • the control device of the machine tool 1 includes a correction system 20 as shown in FIG.
  • the correction system 20 is a system that corrects the position of the tool 2 in accordance with the amount of wear of the tool 2 in order to process the workpiece 5 into the same shape in the machine tool 1 shown in FIG. *
  • the correction system 20 includes the wear amount estimation system 10 and the correction unit 21 described above.
  • the wear amount estimation system 10 is based on the relational expression of the tool 2 having the same specification in the first embodiment, and from the expression 2 acquired by the estimation unit 15 in the second embodiment, from the machining start time of the operating tool 2. Estimate the amount of wear with respect to elapsed time. *
  • the correction unit 21 corrects the position of the operating tool 2 based on the estimated wear amount. Specifically, the correction unit 21 calculates a correction amount of the position of the support unit 3 that supports the operating tool 2 based on the estimated wear amount, and sends a correction command to the support unit 3.
  • the correction unit 21 can employ a known technique. *
  • the wear amount with respect to the elapsed time of the operating tool 2 is estimated from the relational expression acquired by the above-described wear amount estimation method (step S10).
  • the correction unit 21 calculates a correction amount of the position of the support unit 3 according to the estimated wear amount (step S11).
  • a correction command is sent to the positioning means of the support unit 3 so as to change the position of the support unit 3 based on the correction amount.
  • the position of the tool 2 can be corrected according to the amount of wear (step S12).
  • the wear amount estimation system 10 As described above, according to the correction system 20 and the correction method of the present embodiment, since the wear amount estimation system 10 described above is provided, the accuracy of the estimated wear amount can be improved. Therefore, the accuracy of correcting the position of the tool 2 can be improved in the machine tool 1 that uses the tool 2 having the same specification. Further, the wear amount of the tool 2 can be easily estimated. Therefore, in the machine tool 1, the position of the tool 2 can be easily corrected.
  • the wear amount can be estimated over the entire use period of the tool 2, so measurement at regular intervals can be omitted. Therefore, since the number of work steps for correction can be reduced, labor costs can also be reduced.
  • the control device of the machine tool 1 includes an abnormality detection system 30 as shown in FIG.
  • the abnormality detection system 30 is a system that detects an abnormality of the machine tool 1 in the machine tool 1 shown in FIG.
  • the abnormality of the machine tool 1 includes an abnormality of the tool 2 and a failure in supplying cooling water.
  • the abnormality detection system 30 includes the above-described wear amount estimation system 10, a measurement unit, an abnormality determination unit 31, and an abnormality display unit 32.
  • the wear amount estimation system 10 is obtained from the relational expression related to the tool of the same specification acquired in the first embodiment, and from the expression 2 acquired by the estimation unit 15 in the second embodiment, from the processing start time of the operating tool 2. The amount of wear with respect to the elapsed time is estimated. *
  • the measurement unit After estimating the wear amount, the measurement unit measures the wear amount. Specifically, a measurement part measures the shape of the workpiece after a process, and calculates the wear amount of the tool 2 in operation
  • the measurement unit of the present embodiment is also used as the measurement unit 11 of the wear amount estimation system 10. Note that the measurement unit of the abnormality detection system may be provided separately from the measurement unit 11 of the wear amount estimation system. *
  • the abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1 when the difference between the wear amount estimated by the wear amount estimation system 10 and the wear amount measured for the tool 2 having the same specification exceeds a predetermined value. . In the present embodiment, the abnormality determination unit 31 calculates a difference between the measured value and the estimated value, and sends a command to display an abnormality on the abnormality display unit 32 when the difference exceeds a predetermined value.
  • the difference between the measured value and the estimated value may be the difference between the wear amount estimated from the relational expression acquired by the wear amount estimation system 10 and the measured wear amount.
  • the relational expression acquired by the wear amount estimation system 10 It may be a difference from the relational expression calculated by measurement. *
  • the predetermined value determined as abnormal can be set arbitrarily.
  • the predetermined value can be set small in consideration of the safety factor.
  • FIG. 6 shows a relational expression acquired by the wear amount estimation system and a measured value of the wear amount of the operating tool.
  • the difference between the estimated wear amount and the measured value is large.
  • the abnormality determination unit 31 determines that the difference is greater than a predetermined value at the elapsed time 190.
  • the predetermined value determined as abnormal will be described.
  • the relational expression estimated by the wear amount estimation system 10 based on the measured values up to the elapsed time s is W (s n
  • Equation 8 above captures the mean square error of Equation 7 continuously.
  • R (s n ) is 0.5 or more and 1.5 or less, it is within a predetermined value, and when R (s n ) is less than 0.5 or exceeds 1.5, it exceeds the predetermined value.
  • R (s n ) calculated from the error indexes E 1 (s n ) to E 3 (s n ) are shown in FIGS.
  • the measured values of the top wear amount in FIGS. 8 to 10 are the same as those in FIG. As shown in FIGS. 8 to 10, R (s n ) exceeds 1.5 at the elapsed time 190.
  • the abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1 at a timing when R (s n ) exceeds 1.5. In addition, since R (s n ) may not be accurately determined in the initial stage, the abnormality determination unit 31 may use the case where R (s n ) exceeds 1.5 or less than 0.5 in the steady stage. In addition, it may be determined that the difference between the measured value and the estimated value exceeds a predetermined value.
  • the abnormality determination unit 31 may determine abnormality by means different from the error index.
  • the present inventor has found that ⁇ in the relational expression is large in the initial stage, and that ⁇ decreases as the stage shifts from the initial stage to the steady stage. Using this knowledge, it is preferable that the abnormality determination unit 31 of the present embodiment determines that an abnormality has occurred in the machine tool 1 when ⁇ measured in the steady stage is larger than ⁇ in the initial stage. In this case, the accuracy of determining an abnormality can be further improved.
  • ⁇ in the initial stage may be a maximum value less than 1 in the initial stage. *
  • the inventor has specified that when ⁇ is 1 or more, it is noise. For this reason, it is more preferable that the abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1 when ⁇ measured in the steady stage is larger than ⁇ less than 1 in the initial stage.
  • a predetermined value that is determined to be abnormal may be set based on data when an abnormality has occurred for tools of the same specification.
  • the abnormality detection system 30 may further include a storage unit 14 that stores a predetermined value determined to be abnormal.
  • the predetermined value may be an average value or a minimum value.
  • the abnormality detection system 30 includes the storage unit 14, the abnormality determination unit 31 reads and determines a predetermined value from the storage unit 14. *
  • the abnormality display unit 32 displays that an abnormality has occurred in order to notify the user of the abnormality based on a command from the abnormality determination unit 31.
  • the abnormality display part 32 may be visually recognized, and may be audibly recognized. The latter is, for example, a buzzer that issues an alarm. *
  • the control device of the machine tool 1 may further include a stop unit that stops the operation of the machine tool 1 when the abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1. For example, when the difference between the measured value and the estimated value exceeds a predetermined value, the abnormality determination unit 31 sends a command to stop the operation of the machine tool 1 to the stop unit. The stop unit stops the operation of the machine tool 1 based on a command from the abnormality determination unit 31.
  • control device of the machine tool 1 may perform control so that the abnormality detection system performs an on operation and an off operation. For example, the control device turns off the abnormality detection system in the initial stage, and turns on the abnormality detection system after entering the steady stage.
  • the above-described wear amount estimation method estimates in the second embodiment from the relational expression specified for the tool having the same specifications as the operating tool 2 in the first embodiment.
  • the wear amount with respect to the elapsed time of the operating tool 2 is estimated from the equation 2 acquired by the unit 15 (step S10).
  • the wear amount of the operating tool 2 is measured (step S21).
  • step S22 it is determined whether or not the difference between the wear amount estimated by the wear amount estimation system and the wear amount measured for the tool of the same specification is within a predetermined value (step S22). If it is determined in step S22 that the value is within the predetermined value, the process proceeds to step S23. In step S23, since there is no abnormality in the machine tool, the machining with the same tool 2 is continued. On the other hand, if it is determined in step S21 that the predetermined value is exceeded, the process proceeds to step S24. In step S24, it is determined that an abnormality has occurred in the machine tool 1.
  • the measurement unit 11 measures a plurality of wear amounts with respect to the elapsed time from the machining start time of the tool 2 (step S51).
  • the measurement unit 11 measures the wear amount of the operating tool 2 (step S53). *
  • step S54 it is determined whether or not the difference between the wear amount estimated in step S52 and the wear amount measured in step S53 is within a predetermined value (step S54). If it is determined in step S54 that the value is within the predetermined value, the process proceeds to step S55. In step S55, since there is no abnormality in the machine tool 1, machining by the operating tool 2 is continued. On the other hand, if it is determined in step S54 that the predetermined value is exceeded, the process proceeds to step S56. In step S56, it is determined that an abnormality has occurred in the machine tool 1. *
  • step S56 If it is determined in step S56 that an abnormality has occurred in the machine tool 1, the abnormality display unit 32 displays that an abnormality has occurred. Accordingly, the user can know that an abnormality has occurred in the machine tool 1. Therefore, the user can examine the cause of the abnormality.
  • step S51 the shape of the workpiece of 10 to 50 points is measured, and the amount of wear of the tool with respect to the elapsed time is obtained.
  • step S52 A and ⁇ are calculated by the calculation unit 12 based on the measured values of 10 to 50 points, and a relational expression is acquired.
  • step S53 the shape of the two workpieces is measured to determine the amount of wear of the tool with respect to the elapsed time.
  • step S54 the difference between the wear amount estimated from the abnormality determination unit 31 and the relational expression acquired in step S52 and the one wear amount measured in step S53 is the relationship acquired in step S52. It is determined whether or not the wear amount estimated from the equation is within twice the difference between the previous wear amount measured in step S53.
  • the abnormality determination unit 13 determines that an abnormality has occurred in the machine tool 1 when the subsequent difference exceeds twice the previous difference. *
  • step S51 the shape of the workpiece of 10 to 50 points is measured, and the amount of wear of the tool with respect to the elapsed time is obtained.
  • step S52 A and ⁇ are calculated by the calculation unit 12 based on the measured values of 10 to 50 points, and a relational expression is acquired.
  • step S53 the shape of the workpiece of 10 to 50 points is measured, and the amount of wear of the tool with respect to the elapsed time is obtained.
  • the calculation unit 12 calculates A and ⁇ , and acquires a new relational expression.
  • step S54 the abnormality determination unit 31 determines whether or not the difference between the relational expressions acquired in steps S52 and S53 is within a predetermined range.
  • the abnormality detection system and the abnormality detection method according to the present embodiment do not apply the acquired relational expression to another tool, but determine an abnormality of the machine tool 1 including the tool 2 for which the relational expression is calculated. Is. *
  • the wear amount estimation system 10 described above since the wear amount estimation system 10 described above is provided, the accuracy of the estimated wear amount can be improved and the wear amount can be easily increased. Can be estimated. Since the abnormality is determined based on the difference between the estimated wear amount and the measured wear amount, the accuracy of determining the abnormality can be improved in the machine tool 1 that uses the tool 2 of the same specification, and the abnormality of the machine tool 1 can be detected. Easy to judge. Moreover, since the abnormality which arose in the machine tool 1 can be detected at an early stage, defective products can be reduced.
  • the control device of the machine tool 1 includes a life detection system 40 as shown in FIG.
  • the life detection system 40 is a system that detects the life of the tool 2 in the machine tool 1 shown in FIG. Tools reach the end of their lives due to significant changes in dimensions due to wear, wrinkling on the machined surface, tool breakage, and the like.
  • the life detection system 40 of this embodiment detects the change point from the steady stage to the end stage in FIG. 2 as the life of the tool 2 at an early stage. *
  • the life detection system 40 includes the above-described wear amount estimation system 10, a measurement unit, a life determination unit 41, a life display unit 42, and a notification unit 43.
  • the wear amount estimation system 10 determines a relational expression between the elapsed time and the wear amount for tools having the same specification. *
  • the measurement unit After determining the relational expression, the measurement unit measures the wear amount. Specifically, a measurement part measures the shape of the workpiece after a process, and calculates the wear amount of the tool 2 in operation
  • the measurement unit of the present embodiment is also used as the measurement unit 11 of the wear amount estimation system. Note that the measurement unit may be provided separately from the measurement unit 11 of the wear amount estimation system. *
  • the life determination unit 41 determines that the life of the tool 2 has been reached when the relational expression calculated by measuring the wear amount of the tool 2 having the same specification changes from the relational expression estimated by the wear amount estimation system 10.
  • the calculation unit 12 of the wear amount estimation system 10 calculates a relational expression from a plurality of latest measured values of the tool 2 in operation, and whether the life determination unit 41 changes the shape of the relational expression. Judge whether or not.
  • the number of the most recent measurement values can be arbitrarily selected, may be constant, or may vary with elapsed time or stage.
  • the number of the latest measured values for calculating the relational expression is preferably 20 to 40 points. In this case, the accuracy of determining the life can be further improved.
  • the life determination unit 41 sends a command for displaying that the life has been reached to the life display unit 42. *
  • the lifetime determination part 41 acquires a measured value by the measurement part 11, it is preferable to calculate a relational expression with the calculation part 12, and to determine whether a relational expression changes. In this case, the life of the tool 2 can be detected early.
  • the life determination unit 41 It may be determined that the lifetime is reached.
  • the predetermined value determined as the life can be arbitrarily set. For example, the predetermined value can be set small in consideration of the safety factor. *
  • the present inventor has found that ⁇ in the initial stage and the steady stage shown in FIG. 2 is less than 1, and ⁇ after reaching the lifetime exceeds 1. For this reason, when ⁇ exceeds 1, the life determination unit 41 of the present embodiment determines that the life of the tool has been reached. In this case, the accuracy of determining the life can be further improved.
  • FIG. 21 shows measured values of the amount of wear of the tool with respect to time, relational expression 1 acquired by the calculation unit 12 at time 200, and relational expression 2 acquired by the calculation unit 12 at time 260.
  • Relational expressions 1 and 2 are calculated from the latest 30 measured values. Specifically, the calculation was performed using measurement points at times 171 to 200 in relational expression 1 and at times 231 to 260 in relational expression 2. In the relational expression 2, ⁇ exceeds 1.
  • the shape of the relational expression 2 changes with respect to the relational expression 1. For this reason, the life determination unit determines that the tool life has been reached at time 260. *
  • FIG. 22 shows the calculated A and ⁇ for the same measurement values as in FIG. As shown in FIG. 22, the life determination unit 41 monitors the calculated ⁇ , and determines that the life of the tool 2 has been reached when ⁇ exceeds 1. *
  • the life display unit 42 displays that the life has been reached based on a command from the life determination unit 41.
  • the life display unit 42 may be visually recognized or audibly recognized. Further, the life display unit 42 may be used as the abnormality display unit 32 or may be arranged separately. *
  • the life detection system 40 includes a notification unit 43 that notifies in advance that the life is near.
  • the notification unit 43 notifies that the life is near, measures such as increasing the measurement frequency can be taken, so that the use of a tool that has exceeded the life can be suppressed.
  • the notification part of this Embodiment notifies that a lifetime is near from two viewpoints.
  • the notification unit 43 from one viewpoint notifies that the lifetime is near when ⁇ calculated from the measurement value exceeds the maximum value of less than 1 in the initial stage. Specifically, the calculation unit 12 calculates ⁇ from a plurality of latest measured values, and the notification unit 43 determines whether the calculated ⁇ exceeds a maximum value less than 1 in the initial stage. When ⁇ exceeds the maximum value of less than 1 in the initial stage, a command is sent to the display unit to issue an alarm in order to inform that the tool 2 in operation is near the end of its life. *
  • the inventor has found that ⁇ in the initial stage is larger than ⁇ in the stationary stage. As described above, the present inventor has specified that noise is present when ⁇ is 1 or more in the initial stage. Furthermore, the present inventor has found that the lifetime is near when the maximum value of ⁇ less than 1 is measured in the initial stage in the absence of noise and then the value exceeding the maximum value is measured. For this reason, the notification unit 43 can predict the life by specifying the maximum value excluding noise in the initial stage and notifying that the life is near when the maximum value is exceeded in the steady stage. *
  • the notifying unit reads out the life data from the storage unit 14 that stores the life data of the tool of the same specification, and notifies the life time of the tool of the same specification.
  • the storage unit 14 of the wear amount estimation system 10 stores life data of a plurality of tools having the same specification.
  • the notification unit 43 reads a plurality of lifetime data from the storage unit 14, selects the shortest lifetime, and notifies that the lifetime is near when the selected shortest time is reached.
  • the notification unit performs control by reading the storage unit 14, but the function of the notification unit can arbitrarily select an on operation and an off operation.
  • the storage unit 14 preferably stores a plurality of life data. Further, the life data may be stored in the storage unit 14 every time the life of the tool in operation is reached. *
  • the tool life data may be the life data of the same specification tool of one specific machine tool, or the life data of the same specification tool attached to another machine tool of the same specification.
  • the storage unit 14 may classify and store life data of a plurality of tools having the same specification of one specific machine tool and a relational expression of tools of the same specification of another machine tool having the same specification. “Machine tools with the same specifications” are machine tools that produce the same workpiece by the same operation. *
  • movement is determined by the wear amount estimation method mentioned above (step S10).
  • a plurality of wear amounts of the operating tool 2 are measured (step S21).
  • the calculation unit 12 calculates a relational expression between the machining time and the wear amount for the tool 2 in operation (step S31).
  • step S32 it is determined whether or not the relational expression of the tool 2 in operation has changed from the relational expression determined by the wear amount estimation method (step S32). If it is determined in step S32 that there is no change, the process proceeds to step S33. In step S33, since the tool 2 has not reached its end of life, machining with the same tool 2 is continued. On the other hand, if it is determined that the change has occurred in step S32, the process proceeds to step S34. In step S34, it is determined that the life of the tool 2 has been reached. *
  • step S34 If it is determined in step S34 that the operating tool 2 has reached the end of its life, the life display unit 42 displays that the tool has reached its end of life. Thereby, the user can know that the tool 2 in operation has reached the end of its life. Therefore, the user replaces the tool 2 with a new one having the same specification. *
  • the life detection system 40 and the life detection method of the present embodiment do not apply the acquired relational expression to another tool, but determine the life of the tool 2 for which the relational expression is calculated.
  • the life detection system 40 and the life detection method of the present embodiment since the wear amount estimation system 10 described above is provided, the life can be determined by changing the relational expression. Therefore, regardless of the amount of data in the storage unit 14, in the machine tool 1 that uses the tool 2 of the same specification, the accuracy of determining the life of the tool 2 can be improved, and the martyrdom of the tool 2 can be easily determined. Moreover, since the life of the tool 2 can be detected at an early stage, defective products can be reduced by replacing the tool 2 that has reached the end of its life. Moreover, since the tool 2 can be used until the end of its life, it is advantageous in terms of cost. *
  • the life detection system 40, the machine tool 1, and the life detection method of the present embodiment can further improve the accuracy of determining the life.
  • the machine tool 1 includes a wear amount estimation system 10, a correction system 20, an abnormality detection system 30, and a life detection system 40, as shown in FIG.
  • the machine tool of the present invention is not particularly limited as long as it includes a wear amount estimation system, and may include any one or two of a correction system, an abnormality detection system, and a life detection system.
  • FIG. 13 shows data measured for nine tools having the same specifications.
  • region A an abnormality occurred in the tool 4.
  • region B the machine tool 1 was stopped. *
  • FIG. 14 shows a result of extracting the measurement values that are operating normally, except for the measurement points where the abnormality occurred, as in regions A and B, from FIG. *
  • the time at which each tool is changed is set to 0 as the machining start time, and the vertical axis is inverted, as shown in FIG.
  • the relational expression shown in FIG. 15 is a geometric mean of nine relational expressions.
  • Machine tool 2 Tool 3: Support unit 4: Placement unit 5: Placement unit 5: Workpiece 10: Wear amount estimation system 11: Measurement unit 12: Calculation unit 13: Average calculation unit 14: Storage unit 15: Estimation unit 20: Correction system 21: Correction unit 30: Abnormality detection system 31: Abnormality determination unit 32: Abnormality display unit 40: Lifetime detection system 41: Lifetime determination unit 42: Lifetime display unit 43: Notification unit

Abstract

[Problem] To provide a wear amount estimation system, a correction system, a fault detection system, a service life detection system, and a machine tool and wear amount estimation method for improving the accuracy of the estimated wear amount of a tool. [Solution] This wear amount estimation system is a system for estimating the amount of wear of a tool in a machine tool whereby workpieces having the same specifications are repetitively machined using the tool under the same conditions, wherein said system comprises a calculation unit that calculates A and α in a relational expression expressed by, e.g., W = Atα, where W is the amount of wear of the tool from the start of machining with the tool, t is the elapsed time, and A and α (< 1) are constants, the calculation being made on the basis of a plurality of measured values of the amount of wear of the tool with respect to the time elapsed from the start of machining with the tool.

Description

摩耗量推定システム、補正システム、異常検知システム、寿命検知システム、工作機械及び摩耗量推定方法、工作機械及び異常検知方法、工作機械及び寿命検知方法Wear amount estimation system, correction system, abnormality detection system, life detection system, machine tool and wear amount estimation method, machine tool and abnormality detection method, machine tool and life detection method
本発明は、摩耗量推定システム、補正システム、異常検知システム、寿命検知システム、工作機械及び摩耗量推定方法、工作機械及び異常検知方法、工作機械及び寿命検知方法に関する。 The present invention relates to a wear amount estimation system, a correction system, an abnormality detection system, a life detection system, a machine tool and a wear amount estimation method, a machine tool and an abnormality detection method, a machine tool, and a life detection method.
工具を用いて、同一仕様の被加工物を、工具の摩耗量を補正して、同一条件で繰り返し加工する工作機械が知られている。このような工作機械は、例えば、特開平8-132332号公報(特許文献1)に開示されている。また、このような工作機械の工具の摩耗量の推定方法は、例えば、国際公開第00/12260号(特許文献2)に開示されている。また、工作機械は、使用する工具の摩耗の状態を確認して、寿命を予測する。このような技術は、例えば、国際公開第00/12260号(特許文献3)に開示されている。  There is known a machine tool that uses a tool to repeatedly process a workpiece having the same specification under the same conditions while correcting the amount of wear of the tool. Such a machine tool is disclosed, for example, in JP-A-8-132332 (Patent Document 1). A method for estimating the wear amount of a tool of such a machine tool is disclosed in, for example, International Publication No. 00/12260 (Patent Document 2). Further, the machine tool predicts the life by confirming the state of wear of the tool used. Such a technique is disclosed in, for example, International Publication No. 00/12260 (Patent Document 3). *
特許文献1には、工具の作用面を検出する位置を少なくとも3回測定して、基準位置と測定位置とのずれ量を測定時刻とともに記憶し、ずれ量と測定時刻との関係に基づいて時刻とずれ量との関係を示す曲線の関数を求めた後、曲線の関数と現在時刻とに基づいてずれ量を求めて工具の指令位置を補正するようにした工作機械における位置ずれ補正方法が開示されている。  In Patent Document 1, the position where the working surface of the tool is detected is measured at least three times, the deviation amount between the reference position and the measurement position is stored together with the measurement time, and the time is determined based on the relationship between the deviation amount and the measurement time. Disclosed is a method for correcting misalignment in a machine tool in which a function of a curve indicating the relationship between the amount of misalignment and the amount of misalignment is obtained and then the misalignment is obtained based on the function of the curve and the current time to correct the command position of the tool. Has been. *
特許文献2には、工具切削長と工具摩耗量とを関連づけた工具摩耗データベースを作成する工程と、工具摩耗データベースを用いて、実加工する前に、当該加工を行ったときの工具摩耗量を推定する工程と、を備える工具摩耗量推定方法が開示されている。また、推定された工具摩耗量と工具寿命データベースとを比較して、実加工の許可を与える工程と、を備える工具使用判定方法が開示されている。 Patent Document 2 describes a process for creating a tool wear database that associates a tool cutting length and a tool wear amount, and a tool wear amount when the machining is performed before actual machining using the tool wear database. A tool wear amount estimation method comprising: an estimation step. Further, a tool usage determination method is provided that includes a step of comparing the estimated amount of tool wear and a tool life database and giving permission for actual machining.
特開平8-132332号公報JP-A-8-132332 国際公開第00/12260号International Publication No. 00/12260
特許文献1には、ずれ量を推定する曲線の関数は、測定した点を滑らかに結ぶことにより求めることが記載されている。曲線の関数は多く存在するので、求められた曲線の関数は不正確になる恐れがある。求められた曲線の関数が不正確であると、工具の摩耗量を推定する精度が悪くなる。この場合、工具の指令位置を正確に補正できない。 Patent Document 1 describes that a curve function for estimating a deviation amount is obtained by smoothly connecting measured points. Since there are many curve functions, the obtained curve function may be inaccurate. If the obtained curve function is inaccurate, the accuracy of estimating the wear amount of the tool is deteriorated. In this case, the command position of the tool cannot be corrected accurately.
 特許文献2の方法において、摩耗量を推定するためには、工具摩耗データベースの工具切削長と同じタイミングで摩耗量を測定する必要がある。このため、作業員の負担が大きい。 In the method of Patent Document 2, in order to estimate the wear amount, it is necessary to measure the wear amount at the same timing as the tool cutting length in the tool wear database. For this reason, the burden of a worker is large.
本発明は、上記問題点に鑑み、推定される工具の摩耗量の精度を向上し、工具の摩耗量を容易に推定する摩耗量推定システム、補正システム、異常検知システム、寿命検知システム、工作機械及び摩耗量推定方法を提供する。 In view of the above problems, the present invention improves the accuracy of the estimated tool wear amount and easily estimates the tool wear amount, correction system, abnormality detection system, life detection system, machine tool And a wear amount estimation method.
上記特許文献1の工作機械では、加工中に異常が発生することは想定されていない。工作機械に何らかの異常が発生した状態で、位置ずれを補正しても、加工物は不良品となってしまう。 In the machine tool of the above-mentioned patent document 1, it is not assumed that an abnormality occurs during machining. Even if the misalignment is corrected in a state where some abnormality has occurred in the machine tool, the workpiece becomes defective.
本発明は、上記問題点に鑑み、不良品を低減することを目的とする、異常検知システム、工作機械及び異常検知方法を提供する。 In view of the above-described problems, the present invention provides an abnormality detection system, a machine tool, and an abnormality detection method for reducing defective products.
上記特許文献2の方法では、工具摩耗データベース及び工具寿命データベースに、十分なデータがない場合には、寿命を判定する精度が悪いという問題がある。  The method of Patent Document 2 has a problem in that the accuracy of determining the life is poor when there is not enough data in the tool wear database and the tool life database. *
本発明は、上記問題点に鑑み、寿命を判定する精度を向上する、寿命検知システム、工作機械及び寿命検知方法を提供する。 In view of the above problems, the present invention provides a life detection system, a machine tool, and a life detection method that improve the accuracy of determining the life.
本発明の第1の観点からの摩耗量推定システムは、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、工具の摩耗量を推定するシステムであって、工具の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、工具の加工開始時点からの摩耗量をW、経過時間をt、定数をA及びα(<1)としたときに、W=Atαで表される関係式のA及びαを算出する算出部を備える。  A wear amount estimation system according to a first aspect of the present invention is a system for estimating the amount of wear of a tool in a machine tool that repeatedly processes a workpiece having the same specifications under the same conditions using a tool. When the amount of wear from the machining start time of the tool is W, the elapsed time is t, and the constants are A and α (<1) , W = At α , a calculation unit for calculating A and α of the relational expression represented by:
本発明の第2の観点からの摩耗量推定方法は、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、工具の摩耗量を推定する方法であって、工具の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、工具の加工開始時点からの摩耗量をW、経過時間をtとしたときに、W=Atαで表される関係式のA及びαを算出する工程を備える。 A wear amount estimation method according to a second aspect of the present invention is a method for estimating a wear amount of a tool in a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool, Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time, the relationship represented by W = At α where W is the wear amount from the machining start time of the tool and t is the elapsed time. Calculating A and α in the equation.
 本発明の第3の観点からの摩耗量推定システムは、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、工具の摩耗量を推定するシステムであって、工具の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、工具の加工開始時点からの摩耗量をW、経過時間をt、測定値から算出された定数をA、A、α、αとしたときに、W=Aα1(t≦T)・・・(式1)、W=Aα2(T<t)・・・(式2)で表された複数の同一仕様の工具のデータを有する記憶部と、同一仕様の加工中の工具について、式1を算出する算出部と、記憶部から、算出部で算出されたA及びαに最も近いデータを読み出して、読み出したデータの式2を
加工中の工具の式2と推定する推定部と、を備える。
A wear amount estimation system according to a third aspect of the present invention is a system for estimating a wear amount of a tool in a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool, Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time, the wear amount from the machining start time of the tool is W, the elapsed time is t, and constants calculated from the measured values are A 1 and A 2. , Α 1 , α 2 , W = A 1 t α1 (t ≦ T 0 ) (Equation 1), W = A 2 t α2 (T 0 <t) (Equation 2) A storage unit having data of a plurality of tools of the same specification represented by the above, a calculation unit that calculates Formula 1 for a tool being processed of the same specification, and A 1 and α calculated by the calculation unit from the storage unit Read the data closest to 1 and use the read data formula 2 as the machining tool formula 2 And an estimation unit for estimating.
 本発明の第4の観点からの摩耗量推定方法は、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、工具の摩耗量を推定する方法であって、工具の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、工具の加工開始時点からの摩耗量をW、経過時間をt、測定値から算出された定数A、A、α(<1)、α(<1)としたときに、W=Aα1(t≦T)・・・(式1)、W=Aα2(T<t)・・・(式2)で表された複数の同一仕様の工具のデータを有する記憶部を準備する工程と、同一仕様の加工中の工具について、式1を算出する工程と
、記憶部から、算出されたA及びαに最も近いデータを読み出して、データのA及びαを加工中の工具の式2と推定する工程と、を備える。
A wear amount estimation method according to a fourth aspect of the present invention is a method for estimating a wear amount of a tool in a machine tool that repeatedly processes a workpiece having the same specifications under the same conditions using a tool, Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time, the wear amount from the machining start time of the tool is W, the elapsed time is t, and constants A 1 , A 2 calculated from the measured values, When α 1 (<1) and α 2 (<1), W = A 1 t α1 (t ≦ T 0 ) (Equation 1), W = A 2 t α2 (T 0 <t) ... a step of preparing a storage unit having data of a plurality of tools of the same specification represented by (Equation 2), a step of calculating Equation 1 for a tool being processed of the same specification, and a storage unit, reads the calculated closest data a 1 and alpha 1 was, during processing the a 2 and alpha 2 of the data And a step of estimating the formula 2 fixings, the.
本発明の第5の観点からの異常検知システムは、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械の異常検知システムであって、工具の加工開始時点からの経過時間に対する工具の摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する算出部と、関係式から推定される摩耗量と、算出後に測定された摩耗量との差が所定値を超えると、工作機械に異常が生じたと判定する判定部と、を備える。  An abnormality detection system according to a fifth aspect of the present invention is an abnormality detection system for a machine tool that uses a tool to repeatedly process a workpiece having the same specifications under the same conditions, and the process from the start of machining the tool. Calculates the amount of tool wear over time and calculates a relational expression between the machining time and the amount of wear, and the difference between the amount of wear estimated from the relational expression and the amount of wear measured after the calculation is predetermined. And a determination unit that determines that an abnormality has occurred in the machine tool when the value is exceeded. *
本発明の第6の観点からの異常検知方法は、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械の異常検知方法であって、工具の加工開始時点からの経過時間に対する工具の摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する工程と、関係式から推定される摩耗量と、算出後に測定された摩耗量との差が所定値を超えると、工作機械に異常が生じたと判定する工程と、を備える。  An abnormality detection method according to a sixth aspect of the present invention is an abnormality detection method for a machine tool in which a workpiece having the same specifications is repeatedly processed using the tool under the same conditions, and the process has started since the tool was started. The difference between the process of calculating the relationship between the machining time and the amount of wear by measuring the amount of wear of the tool with respect to time and the amount of wear estimated from the relationship and the amount of wear measured after the calculation is a predetermined value. And a step of determining that an abnormality has occurred in the machine tool. *
本発明の第7の観点からの寿命検知システムは、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、工具の寿命を検知するシステムであって、工具の加工開始時点からの経過時間に対する摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する算出部と、算出後の摩耗量の測定によって、関係式が変化すると、工具の寿命に達したと判定する判定部と、を備える。  A life detection system according to a seventh aspect of the present invention is a system for detecting the life of a tool in a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool. If the relational expression changes due to the calculation unit that calculates the relationship between the machining time and the amount of wear by measuring the amount of wear relative to the elapsed time from the start time, and the calculated amount of wear, the tool life will be reduced. And a determination unit that determines that it has been reached. *
本発明の第8の観点からの寿命検知方法は、工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械の工具の寿命を検知する方法であって、工具の加工開始時点からの経過時間に対する摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する工程と、算出後の摩耗量の測定によって、関係式が変化すると、工具の寿命に達したと判定する工程と、を備える。 A life detection method according to an eighth aspect of the present invention is a method for detecting the life of a tool of a machine tool that uses a tool to repeatedly process a workpiece of the same specification under the same conditions, and starts machining the tool. The tool life is reached when the relational expression changes due to the process of calculating the relational expression between the machining time and the wear amount by measuring multiple wear amounts with respect to the elapsed time from the time point and the calculation of the wear amount after the calculation. And a step of determining.
以上説明したように、本発明は、推定される工具の摩耗量の精度を向上し、工具の摩耗量を容易に推定する摩耗量推定システム、補正システム、異常検知システム、寿命検知システム、工作機械及び摩耗量推定方法を提供することができる。  As described above, the present invention improves the accuracy of the estimated tool wear amount and easily estimates the tool wear amount, correction system, abnormality detection system, life detection system, and machine tool. In addition, a wear amount estimation method can be provided. *
本発明は、不良品を低減することを目的とする、異常検知システム、工作機械及び異常検知方法を提供することができる。  The present invention can provide an abnormality detection system, a machine tool, and an abnormality detection method for the purpose of reducing defective products. *
本発明は、寿命を判定する精度を向上する、寿命検知システム、工作機械及び寿命検知方法を提供することができる。 The present invention can provide a life detection system, a machine tool, and a life detection method that improve the accuracy of determining the life.
図1は、実施の形態における工作機械の模式図である。FIG. 1 is a schematic diagram of a machine tool in the embodiment. 図2は、実施の形態における工具の経過時間に対する摩耗量を示す図である。FIG. 2 is a diagram illustrating the wear amount with respect to the elapsed time of the tool in the embodiment. 図3は、第1実施形態における工作機械の制御構成を示すブロック図である。FIG. 3 is a block diagram illustrating a control configuration of the machine tool according to the first embodiment. 図4は、第1実施形態における摩耗量推定方法を示すフローチャートである。FIG. 4 is a flowchart showing a wear amount estimation method according to the first embodiment. 図5は、実施の形態における補正方法を示すフローチャートである。FIG. 5 is a flowchart illustrating a correction method according to the embodiment. 図6は、実施の形態における摩耗量推定システムで特定された関係式と、動作中の工具の測定値とを示す図である。FIG. 6 is a diagram illustrating a relational expression specified by the wear amount estimation system in the embodiment and measured values of the tool in operation. 図7は、実施の形態における誤差指標のパラメータを説明するための図である。FIG. 7 is a diagram for explaining parameters of the error index in the embodiment. 図8は、実施の形態における誤差指標を説明するための図である。FIG. 8 is a diagram for explaining an error index in the embodiment. 図9は、実施の形態における別の誤差指標を説明するための図である。FIG. 9 is a diagram for explaining another error index in the embodiment. 図10は、実施の形態におけるさらに別の誤差指標を説明するための図である。FIG. 10 is a diagram for explaining still another error index in the embodiment. 図11は、実施の形態における異常検知方法を示すフローチャートである。FIG. 11 is a flowchart illustrating an abnormality detection method according to the embodiment. 図12は、実施の形態における寿命検知方法を示すフローチャートである。FIG. 12 is a flowchart illustrating a life detection method in the embodiment. 図13は、実施例における工具の摩耗量を示す図である。FIG. 13 is a diagram showing the amount of wear of the tool in the example. 図14は、図13において正常なデータを抽出した図である。FIG. 14 is a diagram in which normal data is extracted from FIG. 図15は、実施例における工具の経過時間に対する摩耗量を示す図である。FIG. 15 is a diagram illustrating the wear amount with respect to the elapsed time of the tool in the example. 図16は、第2実施形態における工作機械の制御構成を示すブロック図である。FIG. 16 is a block diagram illustrating a control configuration of the machine tool according to the second embodiment. 図17は、第2実施形態における関係式を説明するための図である。FIG. 17 is a diagram for explaining a relational expression in the second embodiment. 図18は、第2実施形態における記憶部に記憶されるデータである。FIG. 18 shows data stored in the storage unit in the second embodiment. 図19は、第2実施形態における摩耗量推定方法を示すフローチャートである。FIG. 19 is a flowchart illustrating a wear amount estimation method according to the second embodiment. 図20は、別実施形態における異常検知方法を示すフローチャートである。FIG. 20 is a flowchart illustrating an abnormality detection method according to another embodiment. 図21は、実施の形態における工具の測定値と、2つの関係式とを示す図である。FIG. 21 is a diagram showing measured values of the tool and two relational expressions in the embodiment. 図22は、実施の形態における工具の測定値と、A及びαの値とを示す図である。FIG. 22 is a diagram illustrating the measured values of the tool and the values of A and α in the embodiment.
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. *
図1~図12及び図16~図22を参照して、本発明の一実施の形態である摩耗量推定システム、補正システム、異常検知システム、寿命検知システム、工作機械及び摩耗量推定方法、工作機械及び異常検知方法、工作機械及び寿命検知方法について説明する。  1 to 12 and 16 to 22, a wear amount estimation system, a correction system, an abnormality detection system, a life detection system, a machine tool, a wear amount estimation method, and a machine tool according to an embodiment of the present invention. A machine, an abnormality detection method, a machine tool, and a life detection method will be described. *
(工作機械) 図1に示すように、工作機械1は、工具2を用いて、同一仕様の被加工物5を同一条件で繰り返し加工する。これにより、被加工物を同じ形状の加工物に加工することができる。  (Machine Tool) As shown in FIG. 1, the machine tool 1 uses a tool 2 to repeatedly process a workpiece 5 having the same specifications under the same conditions. Thereby, the workpiece can be processed into a workpiece having the same shape. *
「同一仕様の被加工物」とは、製造された条件が同一の被加工物である。なお、被加工物の材料は、特に限定されず、金属であってもよく、金属以外の材料であってもよい。「同一条件で繰り返し加工する」とは、複数の被加工物のそれぞれが同じ形状に加工されるために同じ条件で加工されることを意味する。  “Workpieces with the same specifications” are workpieces with the same manufactured conditions. In addition, the material of a workpiece is not specifically limited, A metal may be sufficient and materials other than a metal may be sufficient. “Repeatedly processing under the same conditions” means that the plurality of workpieces are processed under the same conditions because they are processed into the same shape. *
工作機械1は、工具2と、支持部3と、載置部4と、を備える。工具2は、被加工物5を加工する。加工する方法は、特に限定されず、例えば切削加工などである。支持部3は、工具2を支持する。支持部3は、左右(x軸)方向、前後(y軸)方向、及び上下(z軸)方向に移動可能である。支持部3の移動によって、工具2の位置を移動できる。載置部4は、被加工物5を載置する。なお、支持部3は、載置部4に載置された被加工物5に対して、相対的に移動する。このため、載置部4が左右方向、前後方向及び上下方向に移動可能であってもよい。  The machine tool 1 includes a tool 2, a support portion 3, and a placement portion 4. The tool 2 processes the workpiece 5. The method of processing is not specifically limited, For example, it is a cutting process. The support part 3 supports the tool 2. The support portion 3 is movable in the left-right (x-axis) direction, the front-rear (y-axis) direction, and the up-down (z-axis) direction. The position of the tool 2 can be moved by moving the support part 3. The placement unit 4 places the workpiece 5 thereon. The support unit 3 moves relative to the workpiece 5 placed on the placement unit 4. For this reason, the mounting part 4 may be movable in the left-right direction, the front-back direction, and the up-down direction. *
工作機械1は、NC(numerical control)工作機械であり、工作機械1の動作を制御する数値制御装置をさらに備える。制御装置は、被加工物に対する工具2の経路など加工に必要な作業の工程を、対応する数値情報で指令する。  The machine tool 1 is an NC (numerical control) machine tool, and further includes a numerical control device that controls the operation of the machine tool 1. The control device instructs a work process necessary for machining such as a path of the tool 2 with respect to the workpiece with corresponding numerical information. *
工作機械1の動作を続けると、工具2による被加工物5の加工によって、工具2は摩耗する。また、工作機械1の動作中、工具2が寿命に達したり、破損したりする。このように、同じ形状の加工物に加工できない時には、同一仕様の別の工具2に交換する。「同一仕様の工具」とは、製造された条件が同一の工具である。  When the operation of the machine tool 1 is continued, the tool 2 is worn by the processing of the workpiece 5 by the tool 2. Further, during the operation of the machine tool 1, the tool 2 reaches the end of its life or is damaged. Thus, when it cannot process into the workpiece of the same shape, it exchanges for another tool 2 of the same specification. “Tools with the same specifications” are tools with the same manufactured conditions. *
(摩耗量推定システム:第1実施形態) <摩耗量推定システムの構成:第1実施形態> 図3に示すように、工作機械1の制御装置は、摩耗量推定システム10を備える。摩耗量推定システムは、図1に示す工作機械において、工具2の摩耗量を推定するシステムである。  (Wear Amount Estimation System: First Embodiment) <Configuration of Wear Amount Estimation System: First Embodiment> As shown in FIG. 3, the control device of the machine tool 1 includes a wear amount estimation system 10. The wear amount estimation system is a system for estimating the wear amount of the tool 2 in the machine tool shown in FIG. *
図3に示すように、摩耗量推定システム10は、測定部11と、算出部12と、平均算出部13と、記憶部14と、を備える。算出部12及び平均算出部13を含む制御部は、例えば、CPU(Central Processing Unit)などの演算処理装置により実現される。記憶部14は、例えば、フラッシュメモリなどの不揮発性記憶装置により実現される。  As shown in FIG. 3, the wear amount estimation system 10 includes a measurement unit 11, a calculation unit 12, an average calculation unit 13, and a storage unit 14. The control unit including the calculation unit 12 and the average calculation unit 13 is realized by an arithmetic processing device such as a CPU (Central Processing Unit). The storage unit 14 is realized by, for example, a nonvolatile storage device such as a flash memory. *
測定部11は、工具2の加工開始時点からの経過時間における摩耗量を測定する。測定部11は、工具の加工面の摩耗量を測定してもよく、加工物の形状を測定することにより工具の摩耗量を求めてもよい。本実施の形態の測定部は、例えば、工具2による加工後の加工物を空気マイクロメータで測定して、工具2の摩耗量を求める。 The measuring unit 11 measures the amount of wear in the elapsed time from the machining start time of the tool 2. The measuring unit 11 may measure the wear amount of the machined surface of the tool, or may obtain the wear amount of the tool by measuring the shape of the workpiece. The measurement part of this Embodiment calculates | requires the wear amount of the tool 2 by measuring the workpiece after the process with the tool 2 with an air micrometer, for example.
算出部12は、工具2の加工開始時点からの経過時間に対する工具2の摩耗量の複数の測定値から、加工時間と摩耗量との関係式を算出する。具体的には、算出部12は、動作中の工具2について、測定部11で測定した複数の測定値に基づいて、加工時間と摩耗量との関係式を算出する。  The calculation unit 12 calculates a relational expression between the machining time and the wear amount from a plurality of measured values of the wear amount of the tool 2 with respect to the elapsed time from the machining start time of the tool 2. Specifically, the calculation unit 12 calculates a relational expression between the machining time and the wear amount based on a plurality of measurement values measured by the measurement unit 11 for the tool 2 in operation. *
算出部12は、工具2の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、工具2の加工開始時点からの摩耗量をW、経過時間をt、定数をA及びα(<1)としたときに、W=Atαで表される関係式のA及びαを算出する。これにより、工具の摩耗量を表す関係式を決定する。  Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time of the tool 2, the calculation unit 12 sets the wear amount from the machining start time of the tool 2 to W, the elapsed time to t, the constants to A and α. (<1) and the on time, to calculate the W = at relation represented by alpha a and alpha. As a result, a relational expression representing the wear amount of the tool is determined.
本実施の形態では、算出部12は、A及びαを算出して関係式を決定するために、1つの工具2について少なくとも2以上の測定値を用いる。算出部12は、加工開始時点からの全ての加工物を測定した測定値を用いてもよく、加工開始時点からの一部の加工物を測定した測定値を用いてもよく、後述する初期段階(図2参照)の加工物を測定した測定値のみを用いてもよい。  In the present embodiment, the calculation unit 12 uses at least two measured values for one tool 2 in order to calculate A and α and determine a relational expression. The calculation unit 12 may use measurement values obtained by measuring all the workpieces from the machining start time point, or may use measurement values obtained by measuring a part of the workpieces from the machining start time point. You may use only the measured value which measured the workpiece of (refer FIG. 2). *
1つの工具2についてA及びαを算出部12が算出することによって、1つの関係式を取得できる。算出部12は、動作中の工具のA及びαを算出してもよく、動作中の工具と別の同一仕様の工具のA及びαを算出してもよい。同一仕様の工具は、1つの工作機械に取り付けられた工具であってもよく、別の同一仕様の工作機械に取り付けられた工具であってもよい。「同一仕様の工作機械」とは、同一の操作によって同一の加工物を製造する工作機械である。  When the calculation unit 12 calculates A and α for one tool 2, one relational expression can be acquired. The calculation unit 12 may calculate A and α of the tool in operation, or may calculate A and α of a tool having the same specification as that of the tool being operated. The tool of the same specification may be a tool attached to one machine tool, or may be a tool attached to another machine tool of the same specification. “Machine tools with the same specifications” are machine tools that produce the same workpiece by the same operation. *
ここで、関係式について図2を参照して説明する。工具2の加工開始時点からの経過時間tに対する摩耗量Wは、図2に示すモデルで表現できる。工具の摩耗時期は、加工開始時点からの経過時間に対して、摩耗量がW以下の初期段階(0<t≦t)、摩耗量がWを超えてW以下の定常段階(t<t≦t)、及び摩耗量がWを超える末期段階(t<t)がある。初期段階は、摩耗量変化の大きい状態である。定常段階は、摩耗量変化が小さくなり安定した状態である。末期段階は、急速に摩耗量が大きくなり、寿命に達する状態である。  Here, the relational expression will be described with reference to FIG. The wear amount W with respect to the elapsed time t from the machining start time of the tool 2 can be expressed by the model shown in FIG. The wear time of the tool is an initial stage (0 <t ≦ t 0 ) in which the wear amount is W 1 or less with respect to the elapsed time from the start of machining, and a steady stage in which the wear amount exceeds W 1 and is W 2 or less ( t 0 <t ≦ t 1 ), and there is an end stage (t 1 <t) where the amount of wear exceeds W 2 . The initial stage is a state where the amount of wear changes greatly. The steady stage is a stable state in which the change in wear amount is small. The final stage is a state where the amount of wear rapidly increases and reaches the end of its life.
工具2が寿命に達するまでの初期段階及び定常段階(0<t≦t)においては、W=Atα(0<α<1)の関係式で表される。このため、異なる時間に対する摩耗量の測定値が2以上あると、A及びαを算出できるので、関係式を決定できる。  In an initial stage and a steady stage (0 <t ≦ t 1 ) until the tool 2 reaches the end of its life, it is expressed by a relational expression of W = At α (0 <α <1). For this reason, if there are two or more measured values of the wear amount for different times, A and α can be calculated, so that the relational expression can be determined.
経過時間tは、新たな同一仕様の工具を設置して加工を開始した時点を0として、加工を継続中において経過した時間である。この経過時間tは、1つの被加工物5を加工する時間が同じであり、同じペースで連続して加工することを意味する。経過時間tは、工具の交換に要する時間などを含まない。このため、経過時間tと加工数とは、比例する。つまり、工具2の加工開始時点からの摩耗量をW、加工数をx、定数をA’及びα’(<1)としたときに、W=A’xα’で表すこともできる。このように、被加工物及び加工条件が同一であれば、工具の摩耗量は経過時間t、つまり、加工数に依存する。  The elapsed time t is the time that has elapsed while the machining has been continued, with the time when machining is started after installing a new tool having the same specification as 0. This elapsed time t means that the time for processing one workpiece 5 is the same and is continuously processed at the same pace. The elapsed time t does not include time required for tool replacement. For this reason, the elapsed time t and the number of processes are proportional. In other words, the wear amount from the machining start point of the tool 2 W, the machining number x, a constant when the A 'and α'(<1), may be expressed by W = A'x α '. Thus, if the workpiece and the machining conditions are the same, the amount of wear of the tool depends on the elapsed time t, that is, the number of machining.
記憶部14は、算出部12で推定した関係式を記憶する。本実施の形態の記憶部14は、複数の同一仕様の工具2のそれぞれについて、算出部12で取得した関係式を記憶する。つまり、記憶部14は、同一仕様の工具2について、複数の関係式を記憶する。複数の同一仕様の工具2は、1つの特定の工作機械の工具であってもよく、別の同一仕様の工作機械に取り付けられた工具であってもよい。また、記憶部14は、1つの特定の工作機械の同一仕様の複数の工具の関係式と、別の同一仕様の工作機械の同一仕様の工具の関係式とを分類して記憶してもよい。  The storage unit 14 stores the relational expression estimated by the calculation unit 12. The storage unit 14 of the present embodiment stores the relational expression acquired by the calculation unit 12 for each of a plurality of tools 2 having the same specification. That is, the storage unit 14 stores a plurality of relational expressions for the tool 2 having the same specification. The plurality of tools 2 of the same specification may be a tool of one specific machine tool, or may be a tool attached to another machine tool of the same specification. Further, the storage unit 14 may classify and store a relational expression of a plurality of tools having the same specification of one specific machine tool and a relational expression of tools having the same specification of another machine tool having the same specification. . *
本発明者は、αが1以上の場合はノイズであることを特定した。初期段階ではαが1以上と算出される場合があるが、記憶部14は、αが1以上の関係式を含まない。このため、記憶部14にエラーとなる式が記憶されることを防止できる。  The inventor has specified that when α is 1 or more, it is noise. Although α may be calculated as 1 or more in the initial stage, the storage unit 14 does not include a relational expression where α is 1 or more. For this reason, it is possible to prevent the error expression from being stored in the storage unit 14. *
平均算出部13は、記憶部14から複数の関係式を読み出して、複数の関係式の平均を算出する。平均算出部13により、同一仕様の工具の複数の関係式の平均を算出できるので、摩耗量を推定する関係式の信頼性を向上できる。  The average calculation unit 13 reads a plurality of relational expressions from the storage unit 14 and calculates an average of the plurality of relational expressions. Since the average calculation unit 13 can calculate the average of a plurality of relational expressions of tools having the same specification, the reliability of the relational expression for estimating the wear amount can be improved. *
平均を算出する手段は特に限定されないが、平均算出部13は、複数の関係式の相乗平均(幾何平均)を算出することが好ましい。相乗平均は、下記の数式1で算出される。この場合、推定される摩耗量の精度をより向上できるとともに、関係式の特定が容易である。具体的には、平均算出部は、数式1を、下記の数式2のように変形させて、複数の関係式の相乗平均を算出する。  Means for calculating the average is not particularly limited, but it is preferable that the average calculation unit 13 calculates a geometric mean of a plurality of relational expressions. The geometric mean is calculated by the following formula 1. In this case, the accuracy of the estimated wear amount can be further improved and the relational expression can be easily specified. Specifically, the average calculation unit deforms Equation 1 as Equation 2 below, and calculates a geometric average of a plurality of relational expressions. *
<数式1>
Figure JPOXMLDOC01-appb-I000001
<Formula 1>
Figure JPOXMLDOC01-appb-I000001
<数式2>
Figure JPOXMLDOC01-appb-I000002
<Formula 2>
Figure JPOXMLDOC01-appb-I000002
なお、平均を算出する方法は、特に限定されない。平均算出部13は、例えば下記の数式3で表される相加平均(算術平均)を算出してもよい。  The method for calculating the average is not particularly limited. The average calculator 13 may calculate an arithmetic average (arithmetic average) represented by, for example, Equation 3 below. *
<数式3>
Figure JPOXMLDOC01-appb-I000003
<Formula 3>
Figure JPOXMLDOC01-appb-I000003
(摩耗量推定システム:第2実施形態) <摩耗量推定システムの構成:第2実施形態> 図16に示すように、工作機械1の制御装置は、摩耗量推定システム10を備える。摩耗量推定システム10は、図1に示す工作機械において、工具2の摩耗量を推定するシステムである。  (Wear Amount Estimation System: Second Embodiment) <Configuration of Wear Amount Estimation System: Second Embodiment> As shown in FIG. 16, the control device of the machine tool 1 includes a wear amount estimation system 10. The wear amount estimation system 10 is a system for estimating the wear amount of the tool 2 in the machine tool shown in FIG. *
図16に示すように、摩耗量推定システム10は、記憶部14と、測定部11と、算出部12と、推定部15と、を備える。記憶部14は、例えば、フラッシュメモリなどの不揮発性記憶装置により実現される。算出部12及び推定部15を含む制御部は、例えば、CPU(Central Processing Unit)などの演算処理装置により実現される。  As shown in FIG. 16, the wear amount estimation system 10 includes a storage unit 14, a measurement unit 11, a calculation unit 12, and an estimation unit 15. The storage unit 14 is realized by, for example, a nonvolatile storage device such as a flash memory. The control unit including the calculation unit 12 and the estimation unit 15 is realized by an arithmetic processing device such as a CPU (Central Processing Unit), for example. *
記憶部14は、W=Aα1(t≦T)・・・(式1)、及び、W=Aα2(T<t)・・・(式2)で表された複数の同一仕様の工具のデータを有する。複数の同一仕様の工具2は、1つの特定の工作機械の工具であってもよく、別の同一仕様の工作機械に取り付けられた工具であってもよい。「同一仕様の工作機械」とは、同一の操作によって同一の加工物を製造する工作機械である。また、記憶部14は、1つの特定の工作機械の同一仕様の複数の工具の関係式と、別の同一仕様の工作機械の同一仕様の工具の関係式とを分類して記憶してもよい。  The storage unit 14 is expressed by W = A 1 t α1 (t ≦ T 0 ) (Equation 1) and W = A 2 t α2 (T 0 <t) (Equation 2). It has data on multiple tools with the same specifications. The plurality of tools 2 of the same specification may be a tool of one specific machine tool, or may be a tool attached to another machine tool of the same specification. “Machine tools with the same specifications” are machine tools that produce the same workpiece by the same operation. Further, the storage unit 14 may classify and store a relational expression of a plurality of tools having the same specification of one specific machine tool and a relational expression of tools having the same specification of another machine tool having the same specification. .
記憶部14は、1つの工具について、図2に示す関係式W=Atαにおいて、Tを境界とした複数の測定値から、A及びαをそれぞれ求めることにより取得した式1及び式2を記憶する。式1は、時間Tまでの時間に対する摩耗量を測定した複数の測定値から算出される。式2は、時間Tを超えた後の時間に対する摩耗量を測定した複数の測定値から算出される。式1は初期段階での関係式であり、式2は定常段階での関係式であることが好ましい。つまり、Tは、図2に示す初期段階と定常段階との境界の時間t(T=t)であることが好ましい。また、式2は、図2におけるtまでの測定値により算出されることが好ましい。  The storage unit 14 uses Formula 1 and Formula 2 obtained by obtaining A and α from a plurality of measured values with T 0 as a boundary in the relational expression W = At α shown in FIG. 2 for one tool. Remember. Equation 1 is calculated from a plurality of measured values obtained by measuring the wear amount with respect to time up to time T 0 . Expression 2 is calculated from a plurality of measured values obtained by measuring the wear amount with respect to the time after the time T 0 is exceeded. Expression 1 is a relational expression at an initial stage, and expression 2 is preferably a relational expression at a stationary stage. That is, T 0 is preferably the time t 0 (T 0 = t 0 ) at the boundary between the initial stage and the steady stage shown in FIG. Further, Equation 2 is preferably calculated by measurements up t 1 in FIG.
なお、Tは、任意に設定することが可能である。Tは、式1及び式2の精度を考慮して、測定数に基づいて設定されてもよい。  Note that T 0 can be set arbitrarily. T 0 may be set based on the number of measurements in consideration of the accuracy of Equation 1 and Equation 2.
例え
ば図17に示すように、同一仕様の工具I~IIIに関する関係式を取得した場合、記憶部14は、図18に示すように、工具I~IIIのそれぞれについて、式1のA及びαと、式2のA及びαと、を記憶する。なお、図18には数値は記載していないが、実際には取得した数値をデータとして記憶する。 
For example, as shown in FIG. 17, when the relational expressions related to the tools I to III having the same specifications are acquired, the storage unit 14 stores A 1 and α in Expression 1 for each of the tools I to III as shown in FIG. 1, and a 2 and alpha 2 of formula 2, storing. In addition, although the numerical value is not described in FIG. 18, the acquired numerical value is actually stored as data.
α及びαは、特に限定されないが、1未満であることが好ましい。本発明者は、αが1以上の場合はノイズであることを特定した。初期段階ではαが1以上と算出される場合があるので、記憶部14は、αが1以上の関係式を含まない。このため、記憶部14にエラーとなる式が記憶されることを防止できる。  α 1 and α 2 are not particularly limited, but are preferably less than 1. The inventor has specified that when α is 1 or more, it is noise. Since α may be calculated as 1 or more in the initial stage, the storage unit 14 does not include a relational expression where α is 1 or more. For this reason, it is possible to prevent the error expression from being stored in the storage unit 14.
本実施の形態の記憶部14は、α>αを満たすデータのみを有する。本発明者は、初期段階ではαが大きく、初期段階から定常段階に移行するとαが小さくなることを見出した。このため、記憶部がα>αを満たす正確なデータのみを有するので、摩耗量を推定する精度を向上できる。  The storage unit 14 of the present embodiment has only data that satisfies α 1 > α 2 . The present inventor has found that α is large in the initial stage, and that α decreases as the stage shifts from the initial stage to the steady stage. For this reason, since the storage unit has only accurate data satisfying α 1 > α 2 , it is possible to improve the accuracy of estimating the wear amount.
測定部11は、動作中の工具2の加工開始時点からの経過時間における摩耗量を測定する。測定部11は、工具2の加工面の摩耗量を測定してもよく、加工物の形状を測定することにより工具2の摩耗量を求めてもよい。本実施の形態の測定部11は、例えば、工具2による加工後の加工物を空気マイクロメータで測定して、工具2の摩耗量を求める。  The measuring unit 11 measures the amount of wear in the elapsed time from the start of machining of the tool 2 in operation. The measuring unit 11 may measure the amount of wear on the machined surface of the tool 2 or may obtain the amount of wear on the tool 2 by measuring the shape of the workpiece. The measurement part 11 of this Embodiment calculates | requires the abrasion loss of the tool 2 by measuring the workpiece after the process with the tool 2 with an air micrometer, for example. *
算出部12は、同一仕様の加工(動作)中の工具2について、式1を算出する。つまり、算出部12は、時間Tまでの複数の測定値に基づいて、W=Aα1で表される関係式のA及びαを算出する。これにより、工具の摩耗量を表す式1を決定する。  The calculation unit 12 calculates Formula 1 for the tool 2 during machining (operation) with the same specifications. That is, the calculation unit 12 calculates A 1 and α 1 of the relational expression represented by W = A 1 t α1 based on a plurality of measurement values up to time T 0 . Thereby, Formula 1 showing the amount of wear of a tool is determined.
算出部12は、A及びαを算出して式1を決定するために、1つの工具2について少なくとも2以上の測定値を用いる。算出部12は、加工開始時点から時間Tまでの全ての加工物を測定した測定値を用いてもよく、加工開始時点から時間Tまでの一部の加工物を測定した測定値を用いてもよい。算出部12は、初期段階の測定値のみを用いてA及びαを算出することが好ましい。  The calculation unit 12 uses at least two or more measurement values for one tool 2 in order to calculate A 1 and α 1 and determine Equation 1. Calculator 12 may use a measurement value measured for all workpieces from the machining start point to the time T 0, using the measurements of the part of the workpiece was measured from the machining start point to the time T 0 May be. It is preferable that the calculation unit 12 calculates A 1 and α 1 using only the initial measurement values.
推定部15は、記憶部14から、算出部12で算出されたA及びαに最も近いデータを読み出して、読み出したデータの式2を加工中の工具の式2と推定する。算出部12で初期段階の式1を算出した場合、推定部15により定常段階の式2を取得できる。推定部15で式2を取得することによって、時間Tを超える経過時間に対する摩耗量を推定できる。  The estimation unit 15 reads data closest to A 1 and α 1 calculated by the calculation unit 12 from the storage unit 14 and estimates Formula 2 of the read data as Formula 2 of the tool being processed. When the calculation unit 12 calculates the initial-stage equation 1, the estimation unit 15 can acquire the normal-stage equation 2. By obtaining the equation 2 at the estimator 15 can estimate the wear amount with respect to the elapsed time exceeds the time T 0.
推定部15は、記憶部14のデータの中から、算出部12で算出されたA及びαに最も近いデータを選択する手段は特に限定されないが、例えば、下記の数式4または数式5で表される誤差指標値が最小になるデータを選択する。  The estimation unit 15 is not particularly limited to a method of selecting data closest to A 1 and α 1 calculated by the calculation unit 12 from the data in the storage unit 14. Data that minimizes the error index value represented is selected.
時間Tまでn点測定されており、i番目の測定時刻をs、累積補正量(摩耗量)をw、記憶部14に記憶された式1をW=Aα1とすると、誤差指標値Eは、下記の数式4で表される。  N points are measured until time T 0 , where the i-th measurement time is s i , the cumulative correction amount (wear amount) is w i , and Equation 1 stored in the storage unit 14 is W = A 1 t α1 . error index value E 1 is expressed by equation 4 below.
<数式4>
Figure JPOXMLDOC01-appb-I000004
<Formula 4>
Figure JPOXMLDOC01-appb-I000004
上記数式4は、各測定点における記憶部14の式との平均二乗誤差である。  Equation 4 is a mean square error with respect to the equation of the storage unit 14 at each measurement point. *
また、動作中の工具のデータから算出された式1をW=A’tα1’とすると、誤差指標値Eは、下記の数式5で表される。  Further, when Equation 1 calculated from the data of the tool in operation is W = A 1 't α1' , the error index value E 2 is expressed by Equation 5 below.
<数式5>
Figure JPOXMLDOC01-appb-I000005
<Formula 5>
Figure JPOXMLDOC01-appb-I000005
上記数式5は、数式4を連続的に捉えたもので、測定中のデータについても考慮している。  The above formula 5 is obtained by continuously capturing the formula 4 and considers the data being measured. *
なお、摩耗量推定システム10は、加工中の工具の時間Tを超える時間に対する摩耗量を測定する測定部11と、この測定値に基づいて式2を算出する算出部12と、算出部12により取得した式1及び式2をさらに記憶する記憶部14と、を備えてもよい。この場合には、記憶部14に蓄積されるデータが増加するので、同一仕様の工具2を備える同一仕様の工作機械1の摩耗量推定システム10において、精度を向上できる。 The wear amount estimation system 10 includes a measurement unit 11 that measures the wear amount with respect to a time exceeding the time T 0 of the tool being processed, a calculation unit 12 that calculates Formula 2 based on this measurement value, and a calculation unit 12. And a storage unit 14 that further stores Formula 1 and Formula 2 obtained by the above. In this case, since the data accumulated in the storage unit 14 increases, the accuracy can be improved in the wear amount estimation system 10 of the machine tool 1 having the same specification including the tool 2 having the same specification.
<摩耗量推定方法:第1実施形態> 続いて、図4を参照して、第1実施形態での摩耗量推定方法について説明する。本実施の形態の摩耗量推定方法は、W=Atαで表される関係式を決定し、関係式から工具の摩耗量を推定する。  <Abrasion Amount Estimation Method: First Embodiment> Next, a wear amount estimation method in the first embodiment will be described with reference to FIG. In the wear amount estimation method of the present embodiment, a relational expression represented by W = At α is determined, and the wear amount of the tool is estimated from the relational expression.
まず、測定部11により、工具2の加工開始時点からの経過時間に対する摩耗量を複数測定する(ステップS1)。  First, the measurement unit 11 measures a plurality of wear amounts with respect to the elapsed time from the machining start time of the tool 2 (step S1). *
次に、算出部12により、複数の測定値に基づいて、W=Atαで表される関係式のA及びα(<1)を算出する(ステップS2)。これにより、1つの工具についての関係式W=Atαを取得できる。取得した関係式を記憶部14に記憶する(ステップS3)。  Next, the calculation unit 12 calculates A and α (<1) of the relational expression represented by W = At α based on the plurality of measurement values (step S2). Thereby, the relational expression W = At α for one tool can be acquired. The acquired relational expression is stored in the storage unit 14 (step S3).
次に、別の同一仕様の工具2について、ステップS1~S3を実施する。これにより、複数の同一仕様の工具2のそれぞれについて、関係式を記憶部14に記憶できる。  Next, steps S1 to S3 are performed for another tool 2 having the same specification. Thereby, a relational expression can be memorize | stored in the memory | storage part 14 about each of the some tool 2 of the same specification. *
次に、記憶部14から複数の関係式を読み出して、平均算出部13により、複数の関係式の平均を算出する(ステップS4)。この工程(S4)では、複数の関係式の相乗平均を算出することが好ましい。  Next, a plurality of relational expressions are read from the storage unit 14, and the average of the plurality of relational expressions is calculated by the average calculation unit 13 (step S4). In this step (S4), it is preferable to calculate a geometric mean of a plurality of relational expressions. *
以上のステップS1~S4を実施することにより、同一仕様の工具について、加工開始時点からの経過時間に対する摩耗量を表す関係式を決定できる。このため、動作中の同一仕様の工具2について、加工開始時点からの経過時間に対する摩耗量を推定できる。  By performing the above steps S1 to S4, it is possible to determine a relational expression representing the wear amount with respect to the elapsed time from the machining start time for the tools having the same specifications. For this reason, the wear amount with respect to the elapsed time from the machining start time can be estimated for the tool 2 having the same specification in operation. *
なお、ステップS3及びS4は省略されてもよい。この場合、動作中の工具2についてステップS1及びS2を実施することによってA及びαを演算して関係式を取得し、関係式から摩耗量を推定する。また、ステップS4が省略されることで、記憶部14に記憶されている1つの工具の関係式を読み出して、関係式から摩耗量を推定してもよい。  Note that steps S3 and S4 may be omitted. In this case, by executing steps S1 and S2 for the tool 2 in operation, A and α are calculated to obtain a relational expression, and the wear amount is estimated from the relational expression. Further, by omitting step S4, the relational expression of one tool stored in the storage unit 14 may be read and the wear amount may be estimated from the relational expression. *
以上説明したように、本実施の形態の摩耗量推定システム及び摩耗量推定方法によれば、経過時間tと摩耗量Wとの関係の基本となる式がW=Atαであることを見出した。このため、算出部12でA及びαを算出することによって、工具の経過時間に対する摩耗量の式を特定できる。したがって、本実施の形態の摩耗量推定システム及び摩耗量推定方法は、推定される工具の摩耗量の精度を向上できる。   As described above, according to the wear amount estimation system and the wear amount estimation method of the present embodiment, it has been found that the basic formula of the relationship between the elapsed time t and the wear amount W is W = At α . . For this reason, by calculating A and α by the calculation unit 12, it is possible to specify an expression of the wear amount with respect to the elapsed time of the tool. Therefore, the wear amount estimation system and the wear amount estimation method of the present embodiment can improve the accuracy of the estimated tool wear amount.
<摩耗量推定方法:第2実施形態> 続いて、図19を参照して、第2実施形態での摩耗量推定方法について説明する。本実施の形態の摩耗量推定方法は、W=Atαで表される関係式から工具の摩耗量を推定する。  <Abrasion Amount Estimation Method: Second Embodiment> Next, a wear amount estimation method according to the second embodiment will be described with reference to FIG. In the wear amount estimation method of the present embodiment, the wear amount of the tool is estimated from the relational expression represented by W = At α .
まず、式1及び式2で表された複数の同一仕様の工具のデータを有する記憶部14を準備する(ステップS41)。  First, the memory | storage part 14 which has the data of the several tool of the same specification represented by Formula 1 and Formula 2 is prepared (step S41). *
次に、測定部11により、動作中の工具2の加工開始時点からの経過時間に対する摩耗量を複数測定する(ステップS42)。このステップS42では、時間Tまでに摩耗量を測定することによって、時間Tまでの複数の測定値を得る。  Next, the measurement unit 11 measures a plurality of wear amounts with respect to the elapsed time from the machining start time of the operating tool 2 (step S42). In step S42, by measuring the wear amount by time T 0, obtaining a plurality of measurements up time T 0.
次に、算出部12により、複数の測定値に基づいて、W=Aα1のA及びαを算出する(ステップS43)。これにより、動作中の工具2についての式1を取得できる。なお、動作中の工具2の式1は、初期段階の前半の測定値に基づいて算出されてもよい。  Next, the calculation unit 12 calculates A 1 and α 1 of W = A 1 t α1 based on the plurality of measurement values (step S43). Thereby, Formula 1 about the tool 2 in operation | movement can be acquired. In addition, Formula 1 of the tool 2 in operation may be calculated based on the measured values in the first half of the initial stage.
次に、記憶部14から、算出部12で算出されたA及びαに最も近いデータを読み出して、データのA及びαを加工中の工具の式2と推定する(ステップS44)。これにより、動作中の工具についての式2を取得できる。  Next, data closest to A 1 and α 1 calculated by the calculation unit 12 is read from the storage unit 14, and the data A 2 and α 2 are estimated as Formula 2 of the tool being processed (step S 44). . Thereby, Formula 2 about the tool in operation can be acquired.
以上のステップS41~S44を実施することにより、動作中の工具2について、加工開始時点からの経過時間に対する摩耗量を表す関係式である式2を決定できる。このため、動作中の工具2について、加工開始時点からの経過時間に対する摩耗量を推定できる。  By performing the above steps S41 to S44, it is possible to determine the relational expression 2 representing the amount of wear with respect to the elapsed time from the machining start time for the tool 2 in operation. For this reason, about the tool 2 in operation | movement, the wear amount with respect to the elapsed time from a process start time can be estimated. *
以上説明したように、本実施の形態の摩耗量推定システム及び摩耗量推定方法は、記憶部14から、算出部12で算出されたA及びαに最も近いデータを読み出して、推定部15で加工中の工具の式2と推定する。  As described above, the wear amount estimation system and the wear amount estimation method according to the present embodiment reads data closest to A 1 and α 1 calculated by the calculation unit 12 from the storage unit 14, and estimates the estimation unit 15. Thus, it is estimated as Formula 2 of the tool being processed.
本発明者は、鋭意研究の結果、加工開始時点からの経過時間tと、工具2の摩耗量Wとの関係を式1及び式2で表すことを見出した。このように経過時間と摩耗量との関係の基本の式を見出したので、T経過前の任意のタイミングで加工中の工具2の摩耗量を測定することで式1を特定できる。この加工中の工具2の式1と、記憶部14の式1とを比較して、最も近いデータを読み出すことで、式2を推定できる。つまり、従来は、各測定点で比較する必要があったのに対して、本実施の形態では式で比較できるので、測定するタイミングに依存されない。したがって、工具の経過時間に対する摩耗量の式を容易に取得できるので、工具の摩耗量を容易に推定することができる。  As a result of intensive studies, the present inventor has found that the relationship between the elapsed time t from the start of machining and the wear amount W of the tool 2 is expressed by Equations 1 and 2. Thus, since the basic formula of the relationship between the elapsed time and the wear amount has been found, the formula 1 can be specified by measuring the wear amount of the tool 2 being processed at an arbitrary timing before T 0 has elapsed. The expression 2 can be estimated by comparing the expression 1 of the tool 2 being processed and the expression 1 of the storage unit 14 and reading the closest data. That is, in the past, it has been necessary to compare at each measurement point, but in the present embodiment, the comparison can be made by an equation, and thus does not depend on the measurement timing. Therefore, since the expression of the wear amount with respect to the elapsed time of the tool can be easily obtained, the wear amount of the tool can be easily estimated.
なお、本実施の形態では、Tは初期段階と定常段階との境界近傍として、1つの工具について式1及び式2からなる関係式を記憶部14に記憶する。本発明の摩耗量推定システム10及び摩耗量推定方法は、例えば、3つ以上の式からなる関係式を記憶する記憶部14を備えてもよい。式が3つの場合には、記憶部は、W=Aα1(t≦T)・・・(式1)、W=Aα2(T<t≦T)・・・(式2)、W=Aα3(T<t)・・・(式3)、で表された複数の同一仕様の工具のデータを有する。例えば、時間Tが初期段階と定常段階との境界である。推定部15は、式1または式2から式3を推定してもよく、式1から式2及び式3を推定してもよい。 In the present embodiment, T 0 is stored in the storage unit 14 as a relational expression consisting of Expression 1 and Expression 2 for one tool, in the vicinity of the boundary between the initial stage and the steady stage. The wear amount estimation system 10 and the wear amount estimation method of the present invention may include, for example, a storage unit 14 that stores a relational expression including three or more expressions. In the case where there are three equations, the storage unit W = A 1 t α1 (t ≦ T 0 ) (Equation 1), W = A 2 t α2 (T 0 <t ≦ T 1 ). (Equation 2), W = A 3 t α3 (T 1 <t) (Equation 3). For example, time T 1 is the boundary between the initial stage and the steady stage. The estimation unit 15 may estimate Formula 3 from Formula 1 or Formula 2, or may estimate Formula 2 and Formula 3 from Formula 1.
(補正システム) <補正システムの構成> 工作機械1の制御装置は、図3に示すように、補正システム20を備える。補正システム20は、図1に示す工作機械1において、被加工物5が同じ形状に加工されるために、工具2の摩耗量に応じて工具2の位置を補正するシステムである。  (Correction System) <Configuration of Correction System> The control device of the machine tool 1 includes a correction system 20 as shown in FIG. The correction system 20 is a system that corrects the position of the tool 2 in accordance with the amount of wear of the tool 2 in order to process the workpiece 5 into the same shape in the machine tool 1 shown in FIG. *
補正システム20は、上述した摩耗量推定システム10と、補正部21と、を備える。摩耗量推定システム10は、第1実施形態においては同一仕様の工具2の関係式から、第2実施形態においては推定部15で取得した式2から、動作中の工具2の加工開始時点からの経過時間に対する摩耗量を推定する。  The correction system 20 includes the wear amount estimation system 10 and the correction unit 21 described above. The wear amount estimation system 10 is based on the relational expression of the tool 2 having the same specification in the first embodiment, and from the expression 2 acquired by the estimation unit 15 in the second embodiment, from the machining start time of the operating tool 2. Estimate the amount of wear with respect to elapsed time. *
補正部21は、推定された摩耗量に基づいて、動作中の工具2の位置を補正する。具体的には、補正部21は、推定された摩耗量に基づいて、動作中の工具2を支持する支持部3の位置の補正量を算出し、支持部3に補正指令を送る。なお、補正部21は、周知技術を採用可能である。  The correction unit 21 corrects the position of the operating tool 2 based on the estimated wear amount. Specifically, the correction unit 21 calculates a correction amount of the position of the support unit 3 that supports the operating tool 2 based on the estimated wear amount, and sends a correction command to the support unit 3. The correction unit 21 can employ a known technique. *
<補正方法> 図5に示すように、上述した摩耗量推定方法によって取得した関係式から、動作中の工具2の経過時間に対する摩耗量を推定する(ステップS10)。  <Correction Method> As shown in FIG. 5, the wear amount with respect to the elapsed time of the operating tool 2 is estimated from the relational expression acquired by the above-described wear amount estimation method (step S10). *
 次に、補正部21において、推定された摩耗量に応じて、支持部3の位置の補正量を算出する(ステップS11)。次いで、補正量に基づいて支持部3の位置を変更するように、支持部3の位置決め手段に補正指令を送る。これにより、支持部3の位置を補正できるので、摩耗量に応じて工具2の位置を補正できる(ステップS12)。  Next, the correction unit 21 calculates a correction amount of the position of the support unit 3 according to the estimated wear amount (step S11). Next, a correction command is sent to the positioning means of the support unit 3 so as to change the position of the support unit 3 based on the correction amount. Thereby, since the position of the support part 3 can be corrected, the position of the tool 2 can be corrected according to the amount of wear (step S12). *
以上説明したように、本実施の形態の補正システム20及び補正方法によれば、上述した摩耗量推定システム10を備えるので、推定される摩耗量の精度を向上できる。したがって、同一仕様の工具2を用いて加工する工作機械1において、工具2の位置を補正する精度を向上できる。また、工具2の摩耗量を容易に推定できる。したがって、工作機械1において、工具2の位置を容易に補正できる。  As described above, according to the correction system 20 and the correction method of the present embodiment, since the wear amount estimation system 10 described above is provided, the accuracy of the estimated wear amount can be improved. Therefore, the accuracy of correcting the position of the tool 2 can be improved in the machine tool 1 that uses the tool 2 having the same specification. Further, the wear amount of the tool 2 can be easily estimated. Therefore, in the machine tool 1, the position of the tool 2 can be easily corrected. *
また、摩耗量推定システムで関係式を同定することで、工具2の使用期間全般に渡って摩耗量を推定できるので、一定時間ごとの測定を省略できる。したがって、補正するための作業工数を削減できるので、人件費の削減もできる。  In addition, by identifying the relational expression with the wear amount estimation system, the wear amount can be estimated over the entire use period of the tool 2, so measurement at regular intervals can be omitted. Therefore, since the number of work steps for correction can be reduced, labor costs can also be reduced. *
(異常検知システム) <異常検知システムの構成> 工作機械1の制御装置は、図3に示すように、異常検知システム30を備える。異常検知システム30は、図1に示す工作機械1において、工作機械1の異常を検知するシステムである。工作機械1の異常は、工具2の異常、冷却水の供給の不具合などを含む。  (Abnormality Detection System) <Configuration of Abnormality Detection System> The control device of the machine tool 1 includes an abnormality detection system 30 as shown in FIG. The abnormality detection system 30 is a system that detects an abnormality of the machine tool 1 in the machine tool 1 shown in FIG. The abnormality of the machine tool 1 includes an abnormality of the tool 2 and a failure in supplying cooling water. *
異常検知システム30は、上述した摩耗量推定システム10と、測定部と、異常判定部31と、異常表示部32と、を備える。摩耗量推定システム10は、第1実施形態においては取得した同一仕様の工具に関する関係式から、第2実施形態においては推定部15で取得した式2から、動作中の工具2の加工開始時点からの経過時間に対する摩耗量を推定する。  The abnormality detection system 30 includes the above-described wear amount estimation system 10, a measurement unit, an abnormality determination unit 31, and an abnormality display unit 32. In the first embodiment, the wear amount estimation system 10 is obtained from the relational expression related to the tool of the same specification acquired in the first embodiment, and from the expression 2 acquired by the estimation unit 15 in the second embodiment, from the processing start time of the operating tool 2. The amount of wear with respect to the elapsed time is estimated. *
摩耗量の推定後に、測定部は、摩耗量を測定する。具体的には、測定部は、加工後の加工物の形状を測定して、動作中の工具2の摩耗量を算出する。本実施の形態の測定部は、摩耗量推定システム10の測定部11と兼用する。なお、異常検知システムの測定部は、摩耗量推定システムの測定部11と別に設けられてもよい。  After estimating the wear amount, the measurement unit measures the wear amount. Specifically, a measurement part measures the shape of the workpiece after a process, and calculates the wear amount of the tool 2 in operation | movement. The measurement unit of the present embodiment is also used as the measurement unit 11 of the wear amount estimation system 10. Note that the measurement unit of the abnormality detection system may be provided separately from the measurement unit 11 of the wear amount estimation system. *
異常判定部31は、摩耗量推定システム10で推定される摩耗量と、同一仕様の工具2について測定された摩耗量との差が所定値を超えると、工作機械1に異常が生じたと判定する。本実施の形態では、異常判定部31は、測定値と推定値との差を算出して、差が所定値を超えると、異常表示部32に異常を表示する指令を送る。  The abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1 when the difference between the wear amount estimated by the wear amount estimation system 10 and the wear amount measured for the tool 2 having the same specification exceeds a predetermined value. . In the present embodiment, the abnormality determination unit 31 calculates a difference between the measured value and the estimated value, and sends a command to display an abnormality on the abnormality display unit 32 when the difference exceeds a predetermined value. *
測定値と推定値との差は、摩耗量推定システム10で取得した関係式から推定される摩耗量と、測定した摩耗量との差でもよく、摩耗量推定システム10で取得した関係式と、測定により算出した関係式との差でもよい。  The difference between the measured value and the estimated value may be the difference between the wear amount estimated from the relational expression acquired by the wear amount estimation system 10 and the measured wear amount. The relational expression acquired by the wear amount estimation system 10; It may be a difference from the relational expression calculated by measurement. *
異常と判定する所定値は、任意に設定することができる。例えば、安全率を考慮して、所定値を小さく設定することも可能である。なお、異常と判定する所定値は、複数あってもよい。  The predetermined value determined as abnormal can be set arbitrarily. For example, the predetermined value can be set small in consideration of the safety factor. There may be a plurality of predetermined values that are determined to be abnormal. *
具体例として、図6に、摩耗量推定システムで取得した関係式と、動作中の工具の摩耗量の測定値とを示す。図6では、経過時間190で、推定される摩耗量と測定値との差が大きい。異常判定部31は、経過時間190で、差が所定値より大きいと判定する。  As a specific example, FIG. 6 shows a relational expression acquired by the wear amount estimation system and a measured value of the wear amount of the operating tool. In FIG. 6, at the elapsed time 190, the difference between the estimated wear amount and the measured value is large. The abnormality determination unit 31 determines that the difference is greater than a predetermined value at the elapsed time 190. *
ここで、異常と判定する所定値について、説明する。図7に示すように、摩耗量推定システム10によって、経過時間sまでの測定値によって推定された関係式をW(s|t)とする。測定時刻sにおける誤差指標をE(s)とすると、例えば、下記の数式6~8の3つの式で表される。なお、数式7~8において、i番目の測定点における測定時刻をs、摩耗量をWとする。  Here, the predetermined value determined as abnormal will be described. As shown in FIG. 7, the relational expression estimated by the wear amount estimation system 10 based on the measured values up to the elapsed time s is W (s n | t). If the error index at the measurement time s n is E (s n ), for example, it is expressed by the following three formulas 6 to 8. Note that, in Equation 7-8, the measurement time in the i-th measurement point s i, the wear amount and W i.
<数式6>
Figure JPOXMLDOC01-appb-I000006
<Formula 6>
Figure JPOXMLDOC01-appb-I000006
上記数式6は、測定時刻sまでの関係式のt=sにおける誤差である。  Equation 6 above is an error in t = s n of the relational expression up to the measurement time s n .
<数式7>
Figure JPOXMLDOC01-appb-I000007
<Formula 7>
Figure JPOXMLDOC01-appb-I000007
上記数式7は、測定時刻sまでの関係式と測定時刻sn-1までの関係式の間の誤差を見るもので、各測定点における平均二乗誤差である。  The above Equation 7, in which view the error between the relational expression between relation to the measurement time s n to the measurement time s n-1, a mean square error at each measurement point.
<数式8>
Figure JPOXMLDOC01-appb-I000008
<Formula 8>
Figure JPOXMLDOC01-appb-I000008
上記数式8は、数式7の平均二乗誤差を連続的に捉えたものである。  Equation 8 above captures the mean square error of Equation 7 continuously. *
前の測定時刻sn-1における誤差指標E(sn-1)を求め、その変化率であるR(s)=E(s)/E(sn-1)を算出する。R(s)が0.5以上1.5以下の場合には、所定値以内であり、R(s)が0.5未満または1.5を超える場合には、所定値を超える。  An error index E (s n−1 ) at the previous measurement time s n−1 is obtained, and the rate of change R (s n ) = E (s n ) / E (s n−1 ) is calculated. When R (s n ) is 0.5 or more and 1.5 or less, it is within a predetermined value, and when R (s n ) is less than 0.5 or exceeds 1.5, it exceeds the predetermined value.
誤差指標E(s)~E(s)から演算されるR(s)を図8~図10に示す。なお、図8~図10の一番上の摩耗量の測定値は、図6と同じである。図8~図10に示すように、経過時間190で、R(s)が1.5を超える。  R (s n ) calculated from the error indexes E 1 (s n ) to E 3 (s n ) are shown in FIGS. The measured values of the top wear amount in FIGS. 8 to 10 are the same as those in FIG. As shown in FIGS. 8 to 10, R (s n ) exceeds 1.5 at the elapsed time 190.
異常判定部31は、R(s)が1.5を超えるタイミングで、工作機械1に異常が発生したと判定する。なお、初期段階は、R(s)を正確に判断できない場合があるので、異常判定部31は、定常段階において、R(s)が1.5を超える場合及び0.5未満の場合に、測定値と推定値との差が所定値を超えると判定してもよい。  The abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1 at a timing when R (s n ) exceeds 1.5. In addition, since R (s n ) may not be accurately determined in the initial stage, the abnormality determination unit 31 may use the case where R (s n ) exceeds 1.5 or less than 0.5 in the steady stage. In addition, it may be determined that the difference between the measured value and the estimated value exceeds a predetermined value.
異常判定部31は、上記誤差指標と異なる手段で異常を判定してもよい。本発明者は、初期段階では関係式のαが大きく、初期段階から定常段階に移行するとαが小さくなることを見出した。この知見を利用して、本実施の形態の異常判定部31は、定常段階で測定されたαが、初期段階のαよりも大きいと、工作機械1に異常が生じたと判定することが好ましい。この場合、異常を判定する精度をより向上できる。初期段階でαを複数算出する場合には、初期段階のαは、初期段階における1未満の最大値としてもよい。  The abnormality determination unit 31 may determine abnormality by means different from the error index. The present inventor has found that α in the relational expression is large in the initial stage, and that α decreases as the stage shifts from the initial stage to the steady stage. Using this knowledge, it is preferable that the abnormality determination unit 31 of the present embodiment determines that an abnormality has occurred in the machine tool 1 when α measured in the steady stage is larger than α in the initial stage. In this case, the accuracy of determining an abnormality can be further improved. When a plurality of α are calculated in the initial stage, α in the initial stage may be a maximum value less than 1 in the initial stage. *
また、本発明者は、αが1以上の場合はノイズであることを特定した。このため、異常判定部31は、定常段階で測定されたαが、初期段階の1未満のαよりも大きいと、工作機械1に異常が生じたと判定することがより好ましい。  In addition, the inventor has specified that when α is 1 or more, it is noise. For this reason, it is more preferable that the abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1 when α measured in the steady stage is larger than α less than 1 in the initial stage. *
また、同一仕様の工具について異常が発生したときのデータに基づいて、異常と判断する所定値を設定してもよい。工具を交換して複数のデータを蓄積するために、異常検知システム30は、異常と判断された所定値を記憶する記憶部14をさらに備えてもよい。複数のデータがある場合には、所定値は、平均値であってもよく、最小値であってもよい。異常検知システム30が記憶部14を備える場合、異常判定部31は、記憶部14から所定値を読み出して、判定する。  Also, a predetermined value that is determined to be abnormal may be set based on data when an abnormality has occurred for tools of the same specification. In order to exchange a tool and accumulate a plurality of data, the abnormality detection system 30 may further include a storage unit 14 that stores a predetermined value determined to be abnormal. When there are a plurality of data, the predetermined value may be an average value or a minimum value. When the abnormality detection system 30 includes the storage unit 14, the abnormality determination unit 31 reads and determines a predetermined value from the storage unit 14. *
異常表示部32は、異常判定部31からの指令に基づき、使用者に異常を知らせるために、異常が発生したことを表示する。なお、異常表示部32は、視覚的に認識されるものでもよく、聴覚的に認識されるものでもよい。後者は、例えば、警報を発するブザー等である。  The abnormality display unit 32 displays that an abnormality has occurred in order to notify the user of the abnormality based on a command from the abnormality determination unit 31. In addition, the abnormality display part 32 may be visually recognized, and may be audibly recognized. The latter is, for example, a buzzer that issues an alarm. *
工作機械1の制御装置は、異常判定部31により工作機械1に異常が生じたと判定されると、工作機械1の動作を停止する停止部をさらに備えてもよい。例えば、異常判定部31は、測定値と推定値との差が所定値を超えると、停止部に、工作機械1の動作を停止する指令を送る。停止部は、異常判定部31からの指令に基づき、工作機械1の動作を停止する。  The control device of the machine tool 1 may further include a stop unit that stops the operation of the machine tool 1 when the abnormality determination unit 31 determines that an abnormality has occurred in the machine tool 1. For example, when the difference between the measured value and the estimated value exceeds a predetermined value, the abnormality determination unit 31 sends a command to stop the operation of the machine tool 1 to the stop unit. The stop unit stops the operation of the machine tool 1 based on a command from the abnormality determination unit 31. *
また、工作機械1の制御装置は、異常検知システムがオン動作とオフ動作とをするように制御してもよい。例えば、制御装置は、初期段階では異常検知システムをオフ動作し、定常段階に入ってから異常検知システムをオン動作する。  Further, the control device of the machine tool 1 may perform control so that the abnormality detection system performs an on operation and an off operation. For example, the control device turns off the abnormality detection system in the initial stage, and turns on the abnormality detection system after entering the steady stage. *
<異常検知方法> 図11に示すように、上述した摩耗量推定方法によって、第1実施形態においては動作中の工具2と同一仕様の工具について特定した関係式から、第2実施形態においては推定部15で取得した式2から、動作中の工具2の経過時間に対する摩耗量を推定する(ステップS10)。次に、動作中の工具2の摩耗量を測定する(ステップS21)。  <Abnormality Detection Method> As shown in FIG. 11, the above-described wear amount estimation method estimates in the second embodiment from the relational expression specified for the tool having the same specifications as the operating tool 2 in the first embodiment. The wear amount with respect to the elapsed time of the operating tool 2 is estimated from the equation 2 acquired by the unit 15 (step S10). Next, the wear amount of the operating tool 2 is measured (step S21). *
次に、摩耗量推定システムで推定される摩耗量と、同一仕様の工具について測定された摩耗量との差が所定値以内であるか否かを判断する(ステップS22)。ステップS22で所定値以内であると判断すると、ステップS23に移行する。ステップS23では、工作機械に異常がないので、同じ工具2による加工を続行する。一方、ステップS21で所定値を超えると判断すると、ステップS24に移行する。ステップS24では、工作機械1に異常が生じたと判定する。 Next, it is determined whether or not the difference between the wear amount estimated by the wear amount estimation system and the wear amount measured for the tool of the same specification is within a predetermined value (step S22). If it is determined in step S22 that the value is within the predetermined value, the process proceeds to step S23. In step S23, since there is no abnormality in the machine tool, the machining with the same tool 2 is continued. On the other hand, if it is determined in step S21 that the predetermined value is exceeded, the process proceeds to step S24. In step S24, it is determined that an abnormality has occurred in the machine tool 1.
(異常検知方法) 続いて、主に図20を参照して、異常検知方法の別実施形態について説明する。  (Abnormality Detection Method) Next, another embodiment of the abnormality detection method will be described mainly with reference to FIG. *
まず、測定部11により、工具2の加工開始時点からの経過時間に対する摩耗量を複数測定する(ステップS51)。  First, the measurement unit 11 measures a plurality of wear amounts with respect to the elapsed time from the machining start time of the tool 2 (step S51). *
次に、算出部12により、複数の測定値に基づいて、W=Atαで表される関係式のA及びα(<1)を算出する(ステップS52)。これにより、動作中の工具2についての関係式W=Atαを取得できる。このため、動作中の工具2について、加工開始時点からの経過時間に対する摩耗量を推定できる。  Next, the calculation unit 12 calculates A and α (<1) of the relational expression represented by W = At α based on the plurality of measurement values (step S52). Thereby, the relational expression W = At α for the tool 2 in operation can be acquired. For this reason, about the tool 2 in operation | movement, the wear amount with respect to the elapsed time from a process start time can be estimated.
次に、測定部11により、動作中の工具2の摩耗量を測定する(ステップS53)。  Next, the measurement unit 11 measures the wear amount of the operating tool 2 (step S53). *
次に、ステップS52で推定される摩耗量と、ステップS53で測定された摩耗量との差が所定値以内であるか否かを判断する(ステップS54)。ステップS54で所定値以内であると判断すると、ステップS55に移行する。ステップS55では、工作機械1に異常がないので、動作中の工具2による加工を続行する。一方、ステップS54で所定値を超えると判断すると、ステップS56に移行する。ステップS56では、工作機械1に異常が生じたと判定する。  Next, it is determined whether or not the difference between the wear amount estimated in step S52 and the wear amount measured in step S53 is within a predetermined value (step S54). If it is determined in step S54 that the value is within the predetermined value, the process proceeds to step S55. In step S55, since there is no abnormality in the machine tool 1, machining by the operating tool 2 is continued. On the other hand, if it is determined in step S54 that the predetermined value is exceeded, the process proceeds to step S56. In step S56, it is determined that an abnormality has occurred in the machine tool 1. *
ステップS56で工作機械1に異常が生じたと判定されると、異常表示部32に、異常が発生したことを表示する。これによって、使用者は、工作機械1に異常が発生したことを知ることができる。したがって、使用者は、異常の原因を検討することができる。  If it is determined in step S56 that an abnormality has occurred in the machine tool 1, the abnormality display unit 32 displays that an abnormality has occurred. Accordingly, the user can know that an abnormality has occurred in the machine tool 1. Therefore, the user can examine the cause of the abnormality. *
ここで、異常検知方法の一例を挙げる。ステップS51において、10~50点の加工物の形状を測定して、経過時間に対する工具の摩耗量を求める。次に、ステップS52において、10~50点の測定値に基づいて、算出部12でA及びαを算出して、関係式を取得する。その後、ステップS53において、2点の加工物の形状を測定して、経過時間に対する工具の摩耗量を求める。次に、ステップS54において、異常判定部31、ステップS52で取得した関係式から推定される摩耗量と、ステップS53で測定された後の1つの摩耗量との差が、ステップS52で取得した関係式から推定される摩耗量と、ステップS53で測定された前の1つの摩耗量との差の2倍以内か否かを判定する。異常判定部13は、前の差に対して、後の差が2倍を超えると、工作機械1に異常が生じたと判定する。  Here, an example of an abnormality detection method is given. In step S51, the shape of the workpiece of 10 to 50 points is measured, and the amount of wear of the tool with respect to the elapsed time is obtained. Next, in step S52, A and α are calculated by the calculation unit 12 based on the measured values of 10 to 50 points, and a relational expression is acquired. Thereafter, in step S53, the shape of the two workpieces is measured to determine the amount of wear of the tool with respect to the elapsed time. Next, in step S54, the difference between the wear amount estimated from the abnormality determination unit 31 and the relational expression acquired in step S52 and the one wear amount measured in step S53 is the relationship acquired in step S52. It is determined whether or not the wear amount estimated from the equation is within twice the difference between the previous wear amount measured in step S53. The abnormality determination unit 13 determines that an abnormality has occurred in the machine tool 1 when the subsequent difference exceeds twice the previous difference. *
また、異常検知方法の別の一例を挙げる
。ステップS51において、10~50点の加工物の形状を測定して、経過時間に対する工具の摩耗量を求める。次に、ステップS52において、10~50点の測定値に基づいて、算出部12でA及びαを算出して、関係式を取得する。その後、ステップS53において、10~50点の加工物の形状を測定して、経過時間に対する工具の摩耗量を求める。ステップS53で得られた測定値に基づいて算出部12でA及びαを算出して、新たな関係式を取得する。次に、ステップS54において、異常判定部31で、ステップS52とステップS53とで取得した関係式との差が所定内か否かを判断する。 
Another example of the abnormality detection method is given. In step S51, the shape of the workpiece of 10 to 50 points is measured, and the amount of wear of the tool with respect to the elapsed time is obtained. Next, in step S52, A and α are calculated by the calculation unit 12 based on the measured values of 10 to 50 points, and a relational expression is acquired. Thereafter, in step S53, the shape of the workpiece of 10 to 50 points is measured, and the amount of wear of the tool with respect to the elapsed time is obtained. Based on the measurement value obtained in step S53, the calculation unit 12 calculates A and α, and acquires a new relational expression. Next, in step S54, the abnormality determination unit 31 determines whether or not the difference between the relational expressions acquired in steps S52 and S53 is within a predetermined range.
このように、本実施の形態の異常検知システム及び異常検知方法は、取得した関係式を別の工具に適用するものではなく、関係式を算出した工具2を備える工作機械1の異常を判定するものである。  As described above, the abnormality detection system and the abnormality detection method according to the present embodiment do not apply the acquired relational expression to another tool, but determine an abnormality of the machine tool 1 including the tool 2 for which the relational expression is calculated. Is. *
以上説明したように、本実施の形態の異常検知システム30及び異常検知方法によれば、上述した摩耗量推定システム10を備えるので、推定される摩耗量の精度を向上でき、摩耗量を容易に推定できる。推定される摩耗量と測定した摩耗量との差で異常を判断するので、同一仕様の工具2を用いて加工する工作機械1において、異常を判定する精度を向上でき、工作機械1の異常を容易に判定できる。また、工作機械1に生じた異常を早期に検知できるので、不良品を低減できる。 As described above, according to the abnormality detection system 30 and the abnormality detection method of the present embodiment, since the wear amount estimation system 10 described above is provided, the accuracy of the estimated wear amount can be improved and the wear amount can be easily increased. Can be estimated. Since the abnormality is determined based on the difference between the estimated wear amount and the measured wear amount, the accuracy of determining the abnormality can be improved in the machine tool 1 that uses the tool 2 of the same specification, and the abnormality of the machine tool 1 can be detected. Easy to judge. Moreover, since the abnormality which arose in the machine tool 1 can be detected at an early stage, defective products can be reduced.
本実施の形態では、算出部12で算出する関係式がW=Atαである場合について説明した。本発明者は、鋭意研究の結果、加工開始時点からの経過時間tと、工具の摩耗量Wとの関係をW=Atαで表すことができることを見出した。このため、算出部12は、測定値に基づいて、W=AtαのA及びαを算出することが好ましい。この場合、推定される摩耗量の精度を高めることができる。したがって、本実施の形態の異常検知システム30、工作機械1及び異常検知方法は、異常を判定する精度を向上できる。  In the present embodiment, the case where the relational expression calculated by the calculation unit 12 is W = At α has been described. As a result of intensive studies, the present inventors have found that the relationship between the elapsed time t from the start of machining and the amount of tool wear W can be expressed as W = At α . For this reason, it is preferable that the calculation part 12 calculates A and (alpha) of W = At ( alpha) based on a measured value. In this case, the accuracy of the estimated wear amount can be increased. Therefore, the abnormality detection system 30, the machine tool 1, and the abnormality detection method of the present embodiment can improve the accuracy of determining an abnormality.
なお、本発明における加工時間と摩耗量との関係式はW=Atαに限定されるものではない。  In the present invention, the relational expression between the processing time and the amount of wear is not limited to W = At α .
(寿命検知システム) <寿命検知システムの構成> 工作機械1の制御装置は、図3に示すように、寿命検知システム40を備える。寿命検知システム40は、図1に示す工作機械1において、工具2の寿命を検知するシステムである。工具は、摩耗により寸法が著しく変化すること、加工面に毟れが発生すること、工具の破損などにより、寿命に達する。本実施の形態の寿命検知システム40は、図2における定常段階から末期段階への変化点を工具2の寿命として、早期に検知する。  (Life Detection System) <Configuration of Life Detection System> The control device of the machine tool 1 includes a life detection system 40 as shown in FIG. The life detection system 40 is a system that detects the life of the tool 2 in the machine tool 1 shown in FIG. Tools reach the end of their lives due to significant changes in dimensions due to wear, wrinkling on the machined surface, tool breakage, and the like. The life detection system 40 of this embodiment detects the change point from the steady stage to the end stage in FIG. 2 as the life of the tool 2 at an early stage. *
寿命検知システム40は、上述した摩耗量推定システム10と、測定部と、寿命判定部41と、寿命表示部42と、通知部43と、を備える。摩耗量推定システム10は、同一仕様の工具について、経過時間と摩耗量との関係式を決定する。  The life detection system 40 includes the above-described wear amount estimation system 10, a measurement unit, a life determination unit 41, a life display unit 42, and a notification unit 43. The wear amount estimation system 10 determines a relational expression between the elapsed time and the wear amount for tools having the same specification. *
関係式の決定後に、測定部は、摩耗量を測定する。具体的には、測定部は、加工後の加工物の形状を測定して、動作中の工具2の摩耗量を算出する。本実施の形態の測定部は、摩耗量推定システムの測定部11と兼用する。なお、測定部は、摩耗量推定システムの測定部11と別に設けられてもよい。  After determining the relational expression, the measurement unit measures the wear amount. Specifically, a measurement part measures the shape of the workpiece after a process, and calculates the wear amount of the tool 2 in operation | movement. The measurement unit of the present embodiment is also used as the measurement unit 11 of the wear amount estimation system. Note that the measurement unit may be provided separately from the measurement unit 11 of the wear amount estimation system. *
寿命判定部41は、同一仕様の工具2の摩耗量の測定によって算出される関係式が、摩耗量推定システム10で推定される関係式から変化すると、工具2の寿命に達したと判定する。「関係式が変化する」とは、関係式で表されるグラフの形状が変わることを意味し、多少の係数が変化するものは含まれない。具体的には、図2に示すように、末期段階の関係式は、W=Atα(α<1)で表すことができない形状であるので、関係式が変化する。  The life determination unit 41 determines that the life of the tool 2 has been reached when the relational expression calculated by measuring the wear amount of the tool 2 having the same specification changes from the relational expression estimated by the wear amount estimation system 10. “The relational expression changes” means that the shape of the graph represented by the relational expression changes, and does not include those in which some coefficients change. Specifically, as shown in FIG. 2, the relational expression at the end stage is a shape that cannot be expressed by W = At α (α <1), and therefore the relational expression changes.
本実施の形態では、摩耗量推定システム10の算出部12が、動作中の工具2の直近の複数の測定値から関係式を算出し、寿命判定部41が、関係式の形状が変化するか否かを判断する。直近の複数の測定値の数は、任意に選択でき、一定であってもよく、経過時間または段階によって変えてもよい。関係式を算出する直近の測定値の数は、20~40点であることが好ましい。この場合、寿命を判定する精度をより向上できる。寿命判定部41は、関係式が変化したと判断すると、寿命表示部42に寿命に達したことを表示する指令を送る。  In the present embodiment, the calculation unit 12 of the wear amount estimation system 10 calculates a relational expression from a plurality of latest measured values of the tool 2 in operation, and whether the life determination unit 41 changes the shape of the relational expression. Judge whether or not. The number of the most recent measurement values can be arbitrarily selected, may be constant, or may vary with elapsed time or stage. The number of the latest measured values for calculating the relational expression is preferably 20 to 40 points. In this case, the accuracy of determining the life can be further improved. When it is determined that the relational expression has changed, the life determination unit 41 sends a command for displaying that the life has been reached to the life display unit 42. *
なお、寿命判定部41は、測定部11により測定値を取得する度に、算出部12で関係式を算出して、関係式が変化するか否かを判定することが好ましい。この場合、工具2の寿命を早期に検知できる。  In addition, whenever the lifetime determination part 41 acquires a measured value by the measurement part 11, it is preferable to calculate a relational expression with the calculation part 12, and to determine whether a relational expression changes. In this case, the life of the tool 2 can be detected early. *
寿命判定部41は、摩耗量推定システム10で特定された関係式から推定される摩耗量と、動作中の工具2について測定された摩耗量との差が所定値を超えるときに、工具2の寿命であると判定してもよい。寿命と判定する所定値は、任意に設定することができる。例えば、安全率を考慮して、所定値を小さく設定することも可能である。  When the difference between the wear amount estimated from the relational expression specified by the wear amount estimation system 10 and the wear amount measured for the tool 2 in operation exceeds a predetermined value, the life determination unit 41 It may be determined that the lifetime is reached. The predetermined value determined as the life can be arbitrarily set. For example, the predetermined value can be set small in consideration of the safety factor. *
また、本発明者は、図2に示す初期段階及び定常段階のαは1未満であり、寿命に達した後のαは1を超えることを見出した。このため、本実施の形態の寿命判定部41は、αが1を超えると、工具の寿命に達したと判断する。この場合、寿命を判定する精度をより向上できる。  Further, the present inventor has found that α in the initial stage and the steady stage shown in FIG. 2 is less than 1, and α after reaching the lifetime exceeds 1. For this reason, when α exceeds 1, the life determination unit 41 of the present embodiment determines that the life of the tool has been reached. In this case, the accuracy of determining the life can be further improved. *
ここで、具体例として、図21及び図22を示して説明する。図21は、時間に対する工具の摩耗量の測定値と、時間200において算出部12によって取得した関係式1と、時間260において算出部12によって取得した関係式2とを示す。関係式1及び2は、直近の30点の測定値から算出したものである。具体的には、関係式1では時間171~200、関係式2では時間231~260の測定点を用いて算出した。なお、関係式2のαは、1を超える。図21では、関係式1に対して、関係式2の形状は変化する。このため、寿命判定部は、時間260で工具の寿命に達したと判定する。  Here, as a specific example, FIG. 21 and FIG. 22 will be described. FIG. 21 shows measured values of the amount of wear of the tool with respect to time, relational expression 1 acquired by the calculation unit 12 at time 200, and relational expression 2 acquired by the calculation unit 12 at time 260. Relational expressions 1 and 2 are calculated from the latest 30 measured values. Specifically, the calculation was performed using measurement points at times 171 to 200 in relational expression 1 and at times 231 to 260 in relational expression 2. In the relational expression 2, α exceeds 1. In FIG. 21, the shape of the relational expression 2 changes with respect to the relational expression 1. For this reason, the life determination unit determines that the tool life has been reached at time 260. *
図22は、図21と同じ測定値に対して、算出したA及びαを示す。図22に示すように、寿命判定部41は、算出されたαを監視し、αが1を超えたときに、工具2の寿命に達したと判定する。  FIG. 22 shows the calculated A and α for the same measurement values as in FIG. As shown in FIG. 22, the life determination unit 41 monitors the calculated α, and determines that the life of the tool 2 has been reached when α exceeds 1. *
寿命表示部42は、寿命判定部41からの指令に基づき、寿命に達したことを表示する。寿命表示部42は、視覚的に認識されるものでもよく、聴覚的に認識されるものでもよい。また、寿命表示部42は、異常表示部32と兼用してもよく、別に配置されてもよい。  The life display unit 42 displays that the life has been reached based on a command from the life determination unit 41. The life display unit 42 may be visually recognized or audibly recognized. Further, the life display unit 42 may be used as the abnormality display unit 32 or may be arranged separately. *
工具2の寿命は、予測しにくく、急に到達することに本発明者は着目した。そこで、寿命検知システム40は、寿命が近いことを予め知らせる通知部43を含む。通知部43により寿命が近いことが通知されると、測定頻度を増やすなどの対策をとることができるので、寿命を超えた工具を使用することを抑制できる。本実施の形態の通知部は、2つの観点から寿命が近いことを通知する。  The inventor of the present invention paid attention to the fact that the life of the tool 2 is difficult to predict and reaches suddenly. Therefore, the life detection system 40 includes a notification unit 43 that notifies in advance that the life is near. When the notification unit 43 notifies that the life is near, measures such as increasing the measurement frequency can be taken, so that the use of a tool that has exceeded the life can be suppressed. The notification part of this Embodiment notifies that a lifetime is near from two viewpoints. *
1つの観点からの通知部43は、測定値から算出したαが、初期段階における1未満の最大値を超えると、寿命が近いことを通知する。具体的には、算出部12は、直近の複数の測定値からαを算出し、通知部43は、算出されたαが初期段階において1未満の最大値を超えるか否かを判断する。αが初期段階の1未満の最大値を超える場合には、動作中の工具2の寿命が近いことを知らせるために、警報を発するように表示部に指令を送る。  The notification unit 43 from one viewpoint notifies that the lifetime is near when α calculated from the measurement value exceeds the maximum value of less than 1 in the initial stage. Specifically, the calculation unit 12 calculates α from a plurality of latest measured values, and the notification unit 43 determines whether the calculated α exceeds a maximum value less than 1 in the initial stage. When α exceeds the maximum value of less than 1 in the initial stage, a command is sent to the display unit to issue an alarm in order to inform that the tool 2 in operation is near the end of its life. *
本発明者は、初期段階のαは、定常段階のαよりも大きいことを見出した。上述したように、本発明者は、初期段階においてαが1以上の場合はノイズであることを特定した。さらに、本発明者は、初期段階にノイズがない状態でαの1未満の最大値が測定された後、その最大値を超える値が測定された場合に、寿命が近いことを突き止めた。このため、通知部43は、初期段階においてノイズを除いた最大値を特定し、定常段階においてその最大値を超えるときに、寿命が近いことを通知することで、寿命の予測ができる。  The inventor has found that α in the initial stage is larger than α in the stationary stage. As described above, the present inventor has specified that noise is present when α is 1 or more in the initial stage. Furthermore, the present inventor has found that the lifetime is near when the maximum value of α less than 1 is measured in the initial stage in the absence of noise and then the value exceeding the maximum value is measured. For this reason, the notification unit 43 can predict the life by specifying the maximum value excluding noise in the initial stage and notifying that the life is near when the maximum value is exceeded in the steady stage. *
また、別の観点の通知部は、同一仕様の工具の寿命データを記憶する記憶部14から寿命データを読み出して、同一仕様の工具の寿命の時間を通知する。本実施の形態では、摩耗量推定システム10の記憶部14は、複数の同一仕様の工具の寿命データを記憶する。通知部43は、記憶部14から複数の寿命データを読み出して、最短の寿命を選択して、選択した最短の時間になると、寿命が近いことを通知する。なお、この通知部は、記憶部14を読み出した制御をするが、この通知部の機能は、オン動作及びオフ動作を任意に選択できる。 Further, the notifying unit according to another aspect reads out the life data from the storage unit 14 that stores the life data of the tool of the same specification, and notifies the life time of the tool of the same specification. In the present embodiment, the storage unit 14 of the wear amount estimation system 10 stores life data of a plurality of tools having the same specification. The notification unit 43 reads a plurality of lifetime data from the storage unit 14, selects the shortest lifetime, and notifies that the lifetime is near when the selected shortest time is reached. The notification unit performs control by reading the storage unit 14, but the function of the notification unit can arbitrarily select an on operation and an off operation.
記憶部14は、複数の寿命データを記憶することが好ましい。また、動作中の工具の寿命に達する度に、寿命データを記憶部14に記憶させてもよい。  The storage unit 14 preferably stores a plurality of life data. Further, the life data may be stored in the storage unit 14 every time the life of the tool in operation is reached. *
工具の寿命データは、1つの特定の工作機械の同一仕様の工具の寿命データであってもよく、別の同一仕様の工作機械に取り付けられた同一仕様の工具の寿命データであってもよい。記憶部14は、1つの特定の工作機械の同一仕様の複数の工具の寿命データと、別の同一仕様の工作機械の同一仕様の工具の関係式とを分類して記憶してもよい。「同一仕様の工作機械」とは、同一の操作によって同一の加工物を製造する工作機械である。  The tool life data may be the life data of the same specification tool of one specific machine tool, or the life data of the same specification tool attached to another machine tool of the same specification. The storage unit 14 may classify and store life data of a plurality of tools having the same specification of one specific machine tool and a relational expression of tools of the same specification of another machine tool having the same specification. “Machine tools with the same specifications” are machine tools that produce the same workpiece by the same operation. *
<寿命検知方法> 図12に示すように、上述した摩耗量推定方法によって、動作中の工具2と同一仕様の工具についての関係式を決定する(ステップS10)。次に、動作中の工具2の摩耗量を複数測定する(ステップS21)。その後、算出部12で、動作中の工具2について、加工時間と摩耗量との関係式を算出する(ステップS31)。  <Life detection method> As shown in FIG. 12, the relational expression about the tool of the same specification as the tool 2 in operation | movement is determined by the wear amount estimation method mentioned above (step S10). Next, a plurality of wear amounts of the operating tool 2 are measured (step S21). Thereafter, the calculation unit 12 calculates a relational expression between the machining time and the wear amount for the tool 2 in operation (step S31). *
次に、動作中の工具2の関係式が、摩耗量推定方法で決定された関係式から変化したか否かを判断する(ステップS32)。ステップS32で変化していないと判断すると、ステップS33に移行する。ステップS33では、工具2の寿命に達してないので、同じ工具2による加工を続行する。一方、ステップS32で変化したと判断すると、ステップS34に移行する。ステップS34では、工具2の寿命に達したと判定する。  Next, it is determined whether or not the relational expression of the tool 2 in operation has changed from the relational expression determined by the wear amount estimation method (step S32). If it is determined in step S32 that there is no change, the process proceeds to step S33. In step S33, since the tool 2 has not reached its end of life, machining with the same tool 2 is continued. On the other hand, if it is determined that the change has occurred in step S32, the process proceeds to step S34. In step S34, it is determined that the life of the tool 2 has been reached. *
ステップS34で動作中の工具2が寿命に達したと判定されると、寿命表示部42に、工具の寿命に達したことを表示する。これによって、使用者は、動作中の工具2が寿命に達したことを知ることができる。したがって、使用者は、新たな同一仕様の工具2に取り替える。  If it is determined in step S34 that the operating tool 2 has reached the end of its life, the life display unit 42 displays that the tool has reached its end of life. Thereby, the user can know that the tool 2 in operation has reached the end of its life. Therefore, the user replaces the tool 2 with a new one having the same specification. *
このように、本実施の形態の寿命検知システム40及び寿命検知方法は、取得した関係式を別の工具に適用するものではなく、関係式を算出した工具2の寿命を判定するものである。  As described above, the life detection system 40 and the life detection method of the present embodiment do not apply the acquired relational expression to another tool, but determine the life of the tool 2 for which the relational expression is calculated. *
以上説明したように、本実施の形態の寿命検知システム40及び寿命検知方法によれば、上述した摩耗量推定システム10を備えるので、関係式の変化で寿命を判定できる。したがって、記憶部14のデータ量に関わらず、同一仕様の工具2を用いて加工する工作機械1において、工具2の寿命を判定する精度を向上でき、工具2の儒教を容易に判定できる。また、工具2の寿命を早期に検知できるので、寿命に達した工具2を交換することによって、不良品を低減できる。また、寿命に達するまで工具2を使用できるので、コスト面においても有利である。  As described above, according to the life detection system 40 and the life detection method of the present embodiment, since the wear amount estimation system 10 described above is provided, the life can be determined by changing the relational expression. Therefore, regardless of the amount of data in the storage unit 14, in the machine tool 1 that uses the tool 2 of the same specification, the accuracy of determining the life of the tool 2 can be improved, and the martyrdom of the tool 2 can be easily determined. Moreover, since the life of the tool 2 can be detected at an early stage, defective products can be reduced by replacing the tool 2 that has reached the end of its life. Moreover, since the tool 2 can be used until the end of its life, it is advantageous in terms of cost. *
本実施の形態では、算出部12で算出する関係式がW=Atαである場合について説明した。本発明者は、鋭意研究の結果、加工開始時点からの経過時間tと、工具の摩耗量Wとの関係をW=Atαで表すことができることを見出した。このため、算出部12は、測定値に基づいて、W=AtαのA及びαを算出することが好ましい。この関係式を用いる場合、推定される摩耗量の精度を高めることができる。したがって、本実施の形態の寿命検知システム40、工作機械1及び寿命検知方法は、寿命を判定する精度をより向上できる。  In the present embodiment, the case where the relational expression calculated by the calculation unit 12 is W = At α has been described. As a result of intensive studies, the present inventors have found that the relationship between the elapsed time t from the start of machining and the amount of tool wear W can be expressed as W = At α . For this reason, it is preferable that the calculation part 12 calculates A and (alpha) of W = At ( alpha) based on a measured value. When this relational expression is used, the accuracy of the estimated wear amount can be increased. Therefore, the life detection system 40, the machine tool 1, and the life detection method of the present embodiment can further improve the accuracy of determining the life.
なお、本発明における加工時間と摩耗量との関係式はW=Atαに限定されるものではない。  In the present invention, the relational expression between the processing time and the amount of wear is not limited to W = At α .
ここで、本実施の形態の工作機械1は、図3に示すように、摩耗
量推定システム10、補正システム20、異常検知システム30、及び寿命検知システム40を備える。本発明の工作機械は、摩耗量推定システムを備えていれば特に限定されず、補正システム、異常検知システム及び寿命検知システムのいずれか1つまたは2つを備えていてもよい。
Here, the machine tool 1 according to the present embodiment includes a wear amount estimation system 10, a correction system 20, an abnormality detection system 30, and a life detection system 40, as shown in FIG. The machine tool of the present invention is not particularly limited as long as it includes a wear amount estimation system, and may include any one or two of a correction system, an abnormality detection system, and a life detection system.
本実施例では、工具の加工開始時点からの経過時間tと、摩耗量Wとの関係式について説明する。  In the present embodiment, a relational expression between the elapsed time t from the start of machining the tool and the wear amount W will be described. *
まず、1つの工作機械1において、工具2を用いて、同一仕様の金属の被加工物5を同一条件で繰り返し加工し、摩耗量を測定した。9個の同一仕様の工具について測定したデータを図13に示す。図13において、領域Aでは、工具4に異常が発生した。領域Bでは、工作機械1を停止した。  First, in one machine tool 1, the work piece 5 of the same specification was repeatedly processed under the same conditions using the tool 2, and the amount of wear was measured. FIG. 13 shows data measured for nine tools having the same specifications. In FIG. 13, in region A, an abnormality occurred in the tool 4. In region B, the machine tool 1 was stopped. *
図13から、領域A及びBのように、異常が生じた測定点を除いて、正常に動作している測定値を抜き出したものを図14に示す。  FIG. 14 shows a result of extracting the measurement values that are operating normally, except for the measurement points where the abnormality occurred, as in regions A and B, from FIG. *
次に、図14において、各工具を交換した時点を加工開始時点として0に揃え、縦軸を反転したものを図15に示す。本発明者は、図15で表すデータを蓄積し、鋭意研究した結果、工具の加工開始時点からの経過時間tと摩耗量Wとの関係を、W=Atα(A及びα(<1)は定数)の関係式で表すことができることを見出した。なお、図15に示す関係式は、9個の関係式の相乗平均を求めたものである。  Next, in FIG. 14, the time at which each tool is changed is set to 0 as the machining start time, and the vertical axis is inverted, as shown in FIG. As a result of accumulating the data shown in FIG. 15 and earnestly researching, the present inventor found that the relationship between the elapsed time t and the wear amount W from the machining start time of the tool is W = At α (A and α (<1) Was found to be represented by a constant). Note that the relational expression shown in FIG. 15 is a geometric mean of nine relational expressions.
以上のように、経過時間と摩耗量との関係の基本となる式を特定するために本発明者が鋭意研究した結果、W=Atαという関係式を見出した。本発明の摩耗量推定システム、補正システム、異常検知システム、寿命検知システム、工作機械及び摩耗量推定方法、工作機械及び異常検知方法、工作機械及び寿命検知方法は、見出した関係式を用いて、工具2の摩耗量を推定するので、推定される工具の摩耗量の精度を向上できる。なお、本発明における加工時間と摩耗量との関係式はW=Atαに限定されるものではない。  As described above, as a result of intensive research conducted by the present inventor in order to specify a formula that is the basis of the relationship between the elapsed time and the amount of wear, a relational formula of W = At α was found. Wear amount estimation system, correction system, abnormality detection system, life detection system, machine tool and wear amount estimation method, machine tool and abnormality detection method, machine tool and life detection method of the present invention, using the found relational expression, Since the wear amount of the tool 2 is estimated, the accuracy of the estimated wear amount of the tool can be improved. In the present invention, the relational expression between the processing time and the amount of wear is not limited to W = At α .
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1    :工作機械2    :工具3    :支持部4    :載置部5    :被加工物10   :摩耗量推定システム11   :測定部12   :算出部13   :平均算出部14   :記憶部15   :推定部20   :補正システム21   :補正部30   :異常検知システム31   :異常判定部32   :異常表示部40   :寿命検知システム41   :寿命判定部42   :寿命表示部43   :通知部 1: Machine tool 2: Tool 3: Support unit 4: Placement unit 5: Placement unit 5: Workpiece 10: Wear amount estimation system 11: Measurement unit 12: Calculation unit 13: Average calculation unit 14: Storage unit 15: Estimation unit 20: Correction system 21: Correction unit 30: Abnormality detection system 31: Abnormality determination unit 32: Abnormality display unit 40: Lifetime detection system 41: Lifetime determination unit 42: Lifetime display unit 43: Notification unit

Claims (28)

  1. 工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、前記工具の摩耗量を推定するシステムであって、 前記工具の加工開始時点からの経過時間に対する前記工具の摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する算出部を備える、摩耗量推定システム。 A system for estimating the amount of wear of a tool in a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool, the wear of the tool with respect to the elapsed time from the machining start time of the tool A wear amount estimation system including a calculation unit that measures a plurality of amounts and calculates a relational expression between a machining time and a wear amount.
  2. 前記算出部において、前記工具の加工開始時点からの摩耗量をW、経過時間をt、定数をA及びα(<1)としたときに、W=Atαで表される関係式のA及びαを算出する、請求項1に記載の摩耗量推定システム。 In the calculation unit, when the wear amount from the machining start time of the tool is W, the elapsed time is t, and the constants are A and α (<1), A and α in the relational expression represented by W = Atα The wear amount estimation system according to claim 1, wherein the wear amount is calculated.
  3. 複数の同一仕様の前記工具のそれぞれについて、前記算出部で特定した前記関係式を記憶する記憶部と、
     前記記憶部から複数の前記関係式を読み出して、複数の前記関係式の平均を算出する平均算出部と、
    をさらに備える、請求項2に記載の摩耗量推定システム。
    For each of the plurality of tools of the same specification, a storage unit that stores the relational expression specified by the calculation unit;
    An average calculation unit that reads a plurality of the relational expressions from the storage unit and calculates an average of the plurality of relational expressions;
    The wear amount estimation system according to claim 2, further comprising:
  4. 前記平均算出部は、複数の前記関係式の相乗平均を算出する、請求項3に記載の摩耗量推定システム。 The wear amount estimation system according to claim 3, wherein the average calculation unit calculates a geometric average of a plurality of the relational expressions.
  5. 請求項2~4のいずれか1項に記載の摩耗量推定システムと、
     前記摩耗量推定システムで推定された摩耗量に基づいて、同一仕様の前記工具の位置を補正する補正部と、
    を備える、補正システム。
    The wear amount estimation system according to any one of claims 2 to 4,
    Based on the wear amount estimated by the wear amount estimation system, a correction unit for correcting the position of the tool of the same specification,
    A correction system comprising:
  6. 請求項3~4のいずれか1項に記載の摩耗量推定システムと、
     前記摩耗量推定システムで推定される摩耗量と、同一仕様の前記工具について測定された摩耗量との差が所定値を超えると、前記工作機械に異常が生じたと判定する判定部と、
    を備える、異常検知システム。
    The wear amount estimation system according to any one of claims 3 to 4,
    A determination unit that determines that an abnormality has occurred in the machine tool when a difference between a wear amount estimated by the wear amount estimation system and a wear amount measured for the tool of the same specification exceeds a predetermined value;
    An abnormality detection system comprising:
  7. 請求項3~4のいずれか1項に記載の摩耗量推定システムと、
     同一仕様の前記工具の摩耗量の測定によって算出される関係式が、前記摩耗量推定システムで推定される前記関係式から変化すると、前記工具の寿命に達したと判定する判定部と、
    を備える、寿命検知システム。
    The wear amount estimation system according to any one of claims 3 to 4,
    When the relational expression calculated by measuring the amount of wear of the tool of the same specification changes from the relational expression estimated by the wear amount estimation system, a determination unit that determines that the tool life has been reached,
    A life detection system comprising:
  8. 請求項2~4のいずれか1項に記載の摩耗量推定システムと、
     前記被加工物を加工する前記工具と、
     前記被加工物を載置する載置部と、
    を備える、工作機械。
    The wear amount estimation system according to any one of claims 2 to 4,
    The tool for processing the workpiece;
    A placement section for placing the workpiece;
    A machine tool.
  9. 工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、
    前記工具の摩耗量を推定する方法であって、
     前記工具の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、前記工具の加工開始時点からの摩耗量をW、経過時間をtとしたときに、W=Atαで表される関係式のA及びα(<1)を算出する工程を備える、摩耗量推定方法。
    In machine tools that repeatedly process workpieces with the same specifications under the same conditions using tools,
    A method for estimating the amount of wear of the tool,
    Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time of the tool, where W is the wear amount from the machining start time of the tool and t is the elapsed time, W = Atα. A wear amount estimation method comprising a step of calculating A and α (<1) of the relational expression.
  10. 測定値から算出された定数をA1、A2、α1、α2としたときに、
    W=A1tα1(t≦T0)・・・(式1)
    W=A2tα2(T0<t)・・・(式2)
    で表された複数の同一仕様の前記工具のデータを有する記憶部と、
     同一仕様の加工中の前記工具について、前記式1を算出する算出部と、
     前記記憶部から、前記算出部で算出されたA1及びα1に最も近い前記データを読み出して、読み出したデータの前記式2を前記加工中の工具の式2と推定する推定部と、
    をさらに備える、請求項2に記載の摩耗量推定システム。
    When the constants calculated from the measured values are A1, A2, α1, and α2,
    W = A1tα1 (t ≦ T0) (Formula 1)
    W = A2tα2 (T0 <t) (Expression 2)
    A storage unit having data of a plurality of the same specifications represented by
    For the tool being machined with the same specification, a calculation unit for calculating Formula 1;
    An estimation unit that reads out the data closest to A1 and α1 calculated by the calculation unit from the storage unit, and estimates the equation 2 of the read data as the equation 2 of the tool being processed;
    The wear amount estimation system according to claim 2, further comprising:
  11. α1及びα2は、1未満である、請求項10に記載の摩耗量推定システム。 The wear amount estimation system according to claim 10, wherein α1 and α2 are less than one.
  12. 前記記憶部は、α1>α2を満たす前記データのみを有する、請求項10または11に記載の摩耗量推定システム。 The wear amount estimation system according to claim 10 or 11, wherein the storage unit has only the data satisfying α1> α2.
  13. 請求項10~12のいずれか1項に記載の摩耗量推定システムと、
     前記摩耗量推定システムで推定された摩耗量に基づいて、前記加工中の工具の位置を補正する補正部と、
    を備える、補正システム。
    The wear amount estimation system according to any one of claims 10 to 12,
    Based on the wear amount estimated by the wear amount estimation system, a correction unit for correcting the position of the tool being processed,
    A correction system comprising:
  14. 請求項10~12のいずれか1項に記載の摩耗量推定システムと、
     前記摩耗量推定システムで推定される摩耗量と、前記加工中の工具について測定された
    摩耗量との差が所定値を超えると、前記工作機械に異常が生じたと判定する判定部と、
    を備える、異常検知システム。
    The wear amount estimation system according to any one of claims 10 to 12,
    A determination unit that determines that an abnormality has occurred in the machine tool when a difference between a wear amount estimated by the wear amount estimation system and a wear amount measured for the tool being processed exceeds a predetermined value;
    An abnormality detection system comprising:
  15. 請求項10~12のいずれか1項に記載の摩耗量推定システムと、
     前記加工中の工具の摩耗量の測定によって算出される式2が、前記摩耗量推定システム
    で推定される前記式2から変化すると、前記工具の寿命に達したと判定する判定部と、
    を備える、寿命検知システム。
    The wear amount estimation system according to any one of claims 10 to 12,
    A determination unit that determines that the tool has reached the end of its life when Equation 2 calculated by measuring the amount of wear of the tool during machining changes from Equation 2 estimated by the wear amount estimation system;
    A life detection system comprising:
  16.  工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械において、
    前記工具の摩耗量を推定する方法であって、
     前記工具の加工開始時点からの経過時間に対する摩耗量の複数の測定値に基づいて、前記工具の加工開始時点からの摩耗量をW、経過時間をt、測定値から算出された定数A1、A2、α1(<1)、α2(<1)としたときに、
    W=A1tα1(t≦T0)・・・(式1)
    W=A2tα2(T0<t)・・・(式2)
    で表された複数の同一仕様の前記工具のデータを有する記憶部を準備する工程と、
     同一仕様の加工中の前記工具について、前記式1を算出する工程と、
     前記記憶部から、算出されたA1及びα1に最も近い前記データを読み出して、前記データのA2及びα2を前記加工中の工具の式2と推定する工程と、
    を備える、摩耗量推定方法。
    In machine tools that repeatedly process workpieces with the same specifications under the same conditions using tools,
    A method for estimating the amount of wear of the tool,
    Based on a plurality of measured values of the wear amount with respect to the elapsed time from the machining start time of the tool, the wear amount from the machining start time of the tool is W, the elapsed time is t, and constants A1 and A2 calculated from the measured values , Α1 (<1), α2 (<1),
    W = A1tα1 (t ≦ T0) (Formula 1)
    W = A2tα2 (T0 <t) (Expression 2)
    Preparing a storage unit having data of a plurality of the same specification tools represented by
    Calculating the formula 1 for the tool being machined with the same specifications;
    Reading the data closest to the calculated A1 and α1 from the storage unit, and estimating A2 and α2 of the data as Formula 2 of the tool being processed;
    A wear amount estimation method comprising:
  17. 請求項1に記載の摩耗量推定システムと、
     前記摩耗量推定システムで推定される摩耗量と、同一仕様の前記工具について測定された摩耗量との差が所定値を超えると、前記工作機械に異常が生じたと判定する判定部と、
    を備える、異常検知システム。
    The wear amount estimation system according to claim 1;
    A determination unit that determines that an abnormality has occurred in the machine tool when a difference between a wear amount estimated by the wear amount estimation system and a wear amount measured for the tool of the same specification exceeds a predetermined value;
    An abnormality detection system comprising:
  18. 前記関係式は、前記工具の加工開始時点からの摩耗量をW、経過時間をt、定数をA及びα(<1)としたときに、W=Atαで表され、
     前記算出部は、測定値に基づいて、前記式のA及びαを算出する、請求項17に記載の異常検知システム。
    The relational expression is expressed as W = Atα, where W is a wear amount from the machining start time of the tool, t is an elapsed time, and A and α (<1) are constants.
    The abnormality detection system according to claim 17, wherein the calculation unit calculates A and α of the equation based on measurement values.
  19. 前記判定部は、摩耗量が所定値を超える定常段階で測定されたαが、摩耗量が所定値以下の初期段階のαよりも大きいと、前記工作機械に異常が生じたと判定する、請求項18に記載の異常検知システム。 The determination unit determines that an abnormality has occurred in the machine tool when α measured at a steady stage where the wear amount exceeds a predetermined value is larger than α at an initial stage where the wear amount is equal to or less than a predetermined value. 18. The abnormality detection system according to 18.
  20. 請求項17~19のいずれか1項に記載の異常検知システムと、
     前記被加工物を加工する前記工具と、
     前記被加工物を載置する載置部と、
    を備える、工作機械。
    An abnormality detection system according to any one of claims 17 to 19,
    The tool for processing the workpiece;
    A placement section for placing the workpiece;
    A machine tool.
  21. 工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械の異常検知方法であって、
     前記工具の加工開始時点からの経過時間に対する前記工具の摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する工程と、
     前記関係式から推定される摩耗量と、算出後に測定された摩耗量との差が所定値を超えると、前記工作機械に異常が生じたと判定する工程と、
    を備える、異常検知方法。
    A machine tool abnormality detection method for repeatedly processing a workpiece of the same specification under the same conditions using a tool,
    Measuring a plurality of wear amounts of the tool with respect to the elapsed time from the processing start time of the tool, and calculating a relational expression between the processing time and the wear amount;
    A step of determining that an abnormality has occurred in the machine tool when a difference between a wear amount estimated from the relational expression and a wear amount measured after the calculation exceeds a predetermined value;
    An abnormality detection method comprising:
  22. 請求項1に記載の摩耗量推定システムと、
     同一仕様の前記工具の摩耗量の測定によって算出される関係式が、前記摩耗量推定システムで推定される前記関係式から変化すると、前記工具の寿命に達したと判定する判定部と、
    を備える、寿命検知システム。
    The wear amount estimation system according to claim 1;
    When the relational expression calculated by measuring the amount of wear of the tool of the same specification changes from the relational expression estimated by the wear amount estimation system, a determination unit that determines that the tool life has been reached,
    A life detection system comprising:
  23. 前記関係式は、前記工具の加工開始時点からの摩耗量をW、経過時間をt、定数をA及びα(<1)としたときに、W=Atαで表され、
     前記算出部は、測定値に基づいて、前記式のA及びαを算出する、請求項22に記載の寿命検知システム。
    The relational expression is expressed as W = Atα, where W is the amount of wear from the machining start time of the tool, t is the elapsed time, and A and α (<1) are constants.
    The lifetime detection system according to claim 22, wherein the calculation unit calculates A and α of the formula based on measurement values.
  24. 前記判定部は、αが1を超えると、前記工具の寿命に達したと判断する、請求項23に記載の寿命検知システム。 The life detection system according to claim 23, wherein the determination unit determines that the life of the tool has been reached when α exceeds 1.
  25. αが初期段階における1未満の最大値を超えると、寿命が近いことを通知する通知部をさらに備える、請求項23または24に記載の寿命検知システム。 The lifetime detection system according to claim 23 or 24, further comprising a notification unit that notifies that the lifetime is near when α exceeds a maximum value of less than 1 in the initial stage.
  26. 同一仕様の前記工具の寿命データを記憶する記憶部と、
     前記記憶部から寿命データを読み出して、同一仕様の前記工具の寿命の時間を通知する通知部と、
    をさらに備える、請求項22~25のいずれか1項に記載の寿命検知システム。
    A storage unit for storing life data of the tool of the same specification;
    Read the life data from the storage unit, a notification unit for notifying the life time of the tool of the same specification,
    The life detection system according to any one of claims 22 to 25, further comprising:
  27. 請求項22~26のいずれか1項に記載の寿命検知システムと、
     前記被加工物を加工する前記工具と、
     前記被加工物を載置する載置部と、
    を備える、工作機械。
    A life detection system according to any one of claims 22 to 26;
    The tool for processing the workpiece;
    A placement section for placing the workpiece;
    A machine tool.
  28. 工具を用いて、同一仕様の被加工物を同一条件で繰り返し加工する工作機械の前記工具の寿命を検知する方法であって、
     前記工具の加工開始時点からの経過時間に対する摩耗量を複数測定して、加工時間と摩耗量との関係式を算出する工程と、
     算出後の摩耗量の測定によって、前記関係式が変化すると、前記工具の寿命に達したと判定する工程と、
    を備える、寿命検知方法。
    A method of detecting the tool life of a machine tool that repeatedly processes a workpiece of the same specification under the same conditions using a tool,
    Measuring a plurality of wear amounts with respect to the elapsed time from the machining start time of the tool, and calculating a relational expression between the machining time and the wear amount;
    A step of determining that the life of the tool has been reached when the relational expression is changed by measuring the wear amount after calculation;
    A life detection method comprising:
PCT/JP2019/009337 2018-03-13 2019-03-08 Wear amount estimation system, correction system, fault detection system, service life detection system, machine tool and wear amount estimation method, machine tool and fault detection method, and machine tool and service life detection method WO2019176773A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-045936 2018-03-13
JP2018-045938 2018-03-13
JP2018-045939 2018-03-13
JP2018045936 2018-03-13
JP2018045937 2018-03-13
JP2018-045937 2018-03-13
JP2018045939 2018-03-13
JP2018045938 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176773A1 true WO2019176773A1 (en) 2019-09-19

Family

ID=67907910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009337 WO2019176773A1 (en) 2018-03-13 2019-03-08 Wear amount estimation system, correction system, fault detection system, service life detection system, machine tool and wear amount estimation method, machine tool and fault detection method, and machine tool and service life detection method

Country Status (1)

Country Link
WO (1) WO2019176773A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166790A1 (en) * 2020-02-17 2021-08-26 京セラ株式会社 Wear amount estimation model creation method, wear amount estimation method, wear amount estimation model creation device, wear amount estimation model creation program, wear amount estimation device, and wear amount estimation program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143093A (en) * 1992-11-09 1994-05-24 Fanuc Ltd Abrasion correction method
JP2003019643A (en) * 2001-07-06 2003-01-21 Mitsubishi Materials Corp Machining condition detector, method terefor, recording medium, and program
JP2006309304A (en) * 2005-04-26 2006-11-09 Sumitomo Denko Shoketsu Gokin Kk Machining method for sintered material capable of correcting abrasion of tool
JP2008221454A (en) * 2007-02-15 2008-09-25 Kobe Steel Ltd Tool wear predicting method, tool wear predicting program, and tool wear predicting system
JP2010247264A (en) * 2009-04-15 2010-11-04 Jtekt Corp Cutting method
JP2011045988A (en) * 2009-08-28 2011-03-10 Fuji Mach Mfg Co Ltd Working position correction device and method for cutting tool
JP2012208921A (en) * 2011-03-17 2012-10-25 Hitachi Ltd Nc program generation method and cutting processing method
KR20130072026A (en) * 2011-12-21 2013-07-01 현대위아 주식회사 Tool abrasion automatic correction device for machine tool and method thereof
JP2017049656A (en) * 2015-08-31 2017-03-09 ファナック株式会社 Machining system with machining accuracy maintaining function
JP2017205826A (en) * 2016-05-17 2017-11-24 株式会社リコー Information processor, information processing method, and information processing system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143093A (en) * 1992-11-09 1994-05-24 Fanuc Ltd Abrasion correction method
JP2003019643A (en) * 2001-07-06 2003-01-21 Mitsubishi Materials Corp Machining condition detector, method terefor, recording medium, and program
JP2006309304A (en) * 2005-04-26 2006-11-09 Sumitomo Denko Shoketsu Gokin Kk Machining method for sintered material capable of correcting abrasion of tool
JP2008221454A (en) * 2007-02-15 2008-09-25 Kobe Steel Ltd Tool wear predicting method, tool wear predicting program, and tool wear predicting system
JP2010247264A (en) * 2009-04-15 2010-11-04 Jtekt Corp Cutting method
JP2011045988A (en) * 2009-08-28 2011-03-10 Fuji Mach Mfg Co Ltd Working position correction device and method for cutting tool
JP2012208921A (en) * 2011-03-17 2012-10-25 Hitachi Ltd Nc program generation method and cutting processing method
KR20130072026A (en) * 2011-12-21 2013-07-01 현대위아 주식회사 Tool abrasion automatic correction device for machine tool and method thereof
JP2017049656A (en) * 2015-08-31 2017-03-09 ファナック株式会社 Machining system with machining accuracy maintaining function
JP2017205826A (en) * 2016-05-17 2017-11-24 株式会社リコー Information processor, information processing method, and information processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166790A1 (en) * 2020-02-17 2021-08-26 京セラ株式会社 Wear amount estimation model creation method, wear amount estimation method, wear amount estimation model creation device, wear amount estimation model creation program, wear amount estimation device, and wear amount estimation program
JP7466623B2 (en) 2020-02-17 2024-04-12 京セラ株式会社 Wear amount estimation model creation method, wear amount estimation method, wear amount estimation model creation device, wear amount estimation model creation program, wear amount estimation device, and wear amount estimation program

Similar Documents

Publication Publication Date Title
CN106475854B (en) Machining system with machining precision maintaining function
US20200356069A1 (en) Machine tool management system
JP6180018B2 (en) Gear inspection device
JP6730337B2 (en) Abnormality discrimination device, program, abnormality discrimination system, and abnormality discrimination method
US10204769B2 (en) Wire electric discharge machine
JP4103029B2 (en) Process monitoring method
JP4441735B2 (en) Process monitoring method for cycle operation processing machine
US20140291300A1 (en) Spot welding system including spot welding gun
US20200089191A1 (en) Method for monitoring cutting-tool abrasion
KR20180116361A (en) Automatic transformation device and conversion method of thermal displacement correction parameters of a machine tool
JP6299184B2 (en) Machine tool and machining control method in machine tool
WO2019176773A1 (en) Wear amount estimation system, correction system, fault detection system, service life detection system, machine tool and wear amount estimation method, machine tool and fault detection method, and machine tool and service life detection method
KR101314498B1 (en) Tool abrasion automatic correction device for machine tool and method thereof
JP7196473B2 (en) Amount of wear estimation system, correction system, anomaly detection system, life detection system, machine tool, and method of estimating amount of wear
JP2021053772A (en) Tool abrasion diagnostic device for machine tool
US11774228B2 (en) Method and apparatus for testing workpieces
US20200159184A1 (en) Parameter setting device, system, and parameter setting method
JP2005022052A (en) Method and device for detecting abnormality and service life of working tool
JP2019130627A (en) Thermal displacement correction device and machine learning device
JP7091984B2 (en) Correction system, machine tool and correction method
JP2013082019A (en) Deburring method
JP2018141740A (en) Facility diagnosis device and facility diagnosis method
CN107255997B (en) Machine tool motion compensation method based on temperature detection
JP6549650B2 (en) Machine tool management system
KR102080473B1 (en) Diagnostic device and diagnostic method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP