WO2019176750A1 - Method for quantifying dialkyl ketones in oil and fat - Google Patents

Method for quantifying dialkyl ketones in oil and fat Download PDF

Info

Publication number
WO2019176750A1
WO2019176750A1 PCT/JP2019/009221 JP2019009221W WO2019176750A1 WO 2019176750 A1 WO2019176750 A1 WO 2019176750A1 JP 2019009221 W JP2019009221 W JP 2019009221W WO 2019176750 A1 WO2019176750 A1 WO 2019176750A1
Authority
WO
WIPO (PCT)
Prior art keywords
oils
fats
daks
quantifying
supercritical fluid
Prior art date
Application number
PCT/JP2019/009221
Other languages
French (fr)
Japanese (ja)
Inventor
功典 阿部
峰子 伊藤
賢博 村野
Original Assignee
日清オイリオグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清オイリオグループ株式会社 filed Critical 日清オイリオグループ株式会社
Publication of WO2019176750A1 publication Critical patent/WO2019176750A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a method for quantifying dialkyl ketones in fats and oils.
  • transesterification method as a method for modifying fats and oils (especially edible oil).
  • DAKs dialkyl ketones
  • the amount of DAKs is large, it is removed by molecular distillation or the like.
  • the manufacturing method of the fats and oils in which DAKs were reduced is known (patent document 1).
  • the present inventors have found that DAKs can be quantified with high accuracy by quantifying fats and oils by supercritical fluid chromatography, and have completed the present invention. That is, the present invention relates to the following.
  • [1] A method for quantifying dialkyl ketones in fats and oils, comprising the step of quantifying fats and oils by supercritical fluid chromatography.
  • [2] The quantification method according to [1], wherein the fats and oils subjected to the step of quantification by supercritical fluid chromatography are transesterification products of fats and oils using an alkali catalyst.
  • a method for producing fats and oils by transesterification reaction including a step of quantifying dialkyl ketone in the fats and oils after the transesterification reaction according to the method described in [1] or [2].
  • a production method characterized by determining purification conditions and / or blending conditions after the process based on the quantified amount of dialkyl ketone.
  • DAKs in fats and oils can be accurately quantified.
  • Oil is not particularly limited, and examples thereof include vegetable oils and animal fats, and vegetable oils are preferable.
  • vegetable oils include canola oil, palm oil, and the like, and transesterified oils thereof. Transesterified oils are preferable.
  • fats and oils edible fats and oils are preferable.
  • this embodiment is not particularly limited, it can be suitably used for fats and oils that are “the transesterification product of fats and oils using an alkali catalyst”.
  • the “transesterification of fats and oils using an alkali catalyst” those used in the field of fats and oils can be used without particular limitation.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • the conditions for the transesterification reaction those generally used in the transesterification reaction of fats and oils can be adopted without particular limitation.
  • the method for quantifying dialkyl ketones in fats and oils of the present embodiment includes a step of quantifying by supercritical fluid chromatography.
  • “supercritical fluid chromatography” is a kind of column chromatography also called SFC, which uses a supercritical fluid as a mobile phase.
  • Supercritical fluid chromatography uses a subcritical fluid or supercritical fluid, which has the characteristics of low viscosity and high diffusivity, as the mobile phase, so that the resolution and resolution can be improved compared to liquid chromatography (HPLC) using a liquid as the mobile phase. Detectability can be improved.
  • the “mobile phase” of supercritical fluid chromatography is not particularly limited, and for example, carbon dioxide in a liquefied state, a subcritical state, or a supercritical state can be used. These may be used alone as the mobile phase, but in addition to this, it is preferable to use an organic solvent (modifier) in combination. This is because by changing the concentration of the modifier, it is possible to adjust the melting power and holding strength of DAKs in the fats and oils. Although it does not specifically limit as a modifier, Organic solvents, such as methanol, ethanol, isopropanol, acetonitrile, a dichloromethane, can be used. As the “stationary phase” of supercritical fluid chromatography, a stationary phase used in liquid chromatography can be used.
  • a reverse phase column As an example, as the “stationary phase” of supercritical fluid chromatography, a reverse phase column, a normal phase column, an ion exchange resin column, a size exclusion column, or the like can be used.
  • examples of the reverse phase column include those obtained by bonding an octadecyl group, an octyl group, a butyl group, a phenyl group, a cyanopropyl group or the like to a base material containing a polymer such as silica gel or polymethacrylate.
  • the normal phase column examples include silica gel or a base material containing silica gel bonded with an aminopropyl group, a cyanopropyl group, a diol group, a carbamoyl group, or the like. From the viewpoint of improving the detection amount of DAKs, it is preferable to use a reverse phase column.
  • a cation exchange resin and an anion exchange resin are used.
  • a column in which a quaternary ammonium group, a diethylaminoethyl group, or the like is bonded to a base material containing a polymer can be given.
  • An example of the size exclusion column is a column in which a propyldiol group is bonded to a base material containing silica gel.
  • the “detector” of supercritical fluid chromatography is not particularly limited. For example, an ultraviolet / visible absorbance detector, a diode array detector, a mass spectrometer, a circular dichroism detector, or the like is used. Can do. As the conditions for supercritical fluid chromatography, those used for extraction of fats and oils can be employed without any particular limitation.
  • the saponification step is not particularly limited, but an alkaline aqueous solution or an alkaline alcohol solution can be used.
  • an alcohol solution such as sodium hydroxide or potassium hydroxide can be used.
  • methanol, ethanol, propanol, butanol or the like can be used, and water can also be included.
  • the saponification temperature is preferably 30 to 120 ° C, more preferably 70 to 100 ° C.
  • the liquid phase extraction is not particularly limited to this, but an organic solvent that is difficult to dissolve in water, for example, ether, hexane, heptane, octane, petroleum ether, benzene, toluene, xylene, dichloromethane or the like is used.
  • a component soluble in an organic solvent can be extracted.
  • an organic solvent having a boiling point of 100 ° C. or lower is preferable so that the extracted components can be concentrated.
  • the organic solvent is distilled.
  • the solid phase extraction is not particularly limited, but an aminopropyl group and silica gel or graphite carbon can be used as a carrier, and hexane, chloroform or the like can be used as a solvent. .
  • DAKs dialkylketones contained in fats and oils
  • DAKs include compounds represented by the general formula (1): R 1 C (O) R 2 (wherein R 1 and R 2 are independently a C 1 to C 24 alkyl group).
  • Specific examples include 9-heptadecanone (a compound in which R 1 and R 2 are C 8 alkyl groups in the general formula (1)), 10-nonadecanone, 11-heneicosanone, 14-heptacosanone, 16-hentriacontanone. And 18-pentatriacontanone, and other DAKs can be quantified.
  • the method includes the step of quantifying the dialkyl ketone in the fat and oil after the transesterification reaction according to the method described in the above ⁇ Method for quantifying dialkyl ketone in fats and oils>.
  • the purification conditions after the process are determined based on the quantified amount of dialkyl ketone.
  • the quantitative determination step may be after transesterification, and may be performed before the purification step or in the middle of the purification step.
  • step of refining the transesterified oil at least one of neutralization with an acidic substance of an alkali catalyst or washing with water, deoxidation, decolorization, deodorization, fractionation, etc. is carried out, but it may be performed before or after any or during the process.
  • the amount of DAKs when the amount of DAKs is large, the amount of DAKs can be reduced by additionally performing a step of washing with an acidic liquid. When washing with an acidic liquid, it is preferable to wash with water and deodorize thereafter.
  • DAKs can be removed by additionally performing a distillation step with high vacuum such as short-step distillation. If the amount of DAKs is small (or does not exist), it can be chosen not to perform these steps.
  • a lot with a large amount of DAKs and a lot with a small amount can be combined to keep the amount of DAKs within a certain standard.
  • you have multiple oil tanks with different amounts of DAKs if you measure DAKs before or during refining, you can predict the amount of DAKs in the refined oil and introduce it to the appropriate product tank after refining. It is preferable because the amount of DAKs in each product tank can be suppressed.
  • Example 1 Quantitative analysis of DAKs in fats and oils (1) (Sample preparation) Using the oil and fat sample prepared in advance so as to contain a predetermined amount of DAKs, the quantitative method of the present embodiment was evaluated. Specifically, samples 1 to 6 prepared by adding various DAKs standard reagents to palm oil (Nisshin Oilio Group Co., Ltd.) not containing DAKs so as to have the blending amounts shown in Table 1 were used.
  • each sample was subjected to the following pretreatment to prepare an analytical sample.
  • Preprocessing 100 mg of a sample and 1 mL of chloroform were added to a volumetric flask, and further acetone was added to prepare a 10 mL sample as a whole, which was used as each analysis sample.
  • Supercritical fluid chromatography conditions Supercritical fluid chromatography system: Nexera UC (manufactured by Shimadzu Corporation) Column: Shimadzu Shim-pack UC-RP Length 15 mm x Inner diameter 21 mm Particle size 3 ⁇ m (octadecyl group and polar functional group) Mobile phase: Supercritical fluid CO 2 (flow rate: 0.36 mL / min) Modifier: methanol (flow rate: 0.04 mL / min) and methanol containing 0.1% ammonium formate (flow rate: 0.1 mL / min) Detector: LC-MS / MS Injection volume: 5 ⁇ L Standard substance: chloroform solution of dialkyl ketone reagent (blending amount: 50 ppm (mass basis))
  • Mass spectrometric conditions Mass spectrometer: liquid chromatograph mass spectrometer LCMS-8050 (manufactured by Shimadzu Corporation) Ionization mode: ESI Interface temperature: 400 ° C Heating gas flow rate: 12L / min Nebulizer gas flow rate: 2.5 L / min Desolvation gas temperature: 250 ° C Heat block temperature: 400 ° C Dry-in gas flow rate: 5 L / min
  • the amount of DAKs was calculated by comparing the peak of each sample with the peak of the standard sample. The results are shown in Table 2.
  • the recovery rates in Table 2 are values when the amount of DAKs (mass basis) in the sample before being subjected to the quantitative method is 100%.
  • Example 2 Quantitative analysis of DAKs in fats and oils (2) (Sample preparation) Using the oil and fat sample prepared in advance so as to contain a predetermined amount of DAKs, the quantitative method of the present embodiment was evaluated. Specifically, samples 6 to 10 prepared by adding various DAKs standard reagents to the blending amounts shown in Table 3 to palm oil not containing DAKs (manufactured by Nisshin Oilio Group Co., Ltd.) were used.
  • each sample was subjected to the following pretreatment to prepare an analytical sample.
  • Preprocessing 100 mg of a sample and 10 mL of 1N potassium hydroxide / ethanol were added to a test tube and refluxed at 80 ° C. for 40 minutes for saponification decomposition. Thereafter, the temperature was lowered to room temperature (20 ° C.), and neutralized by adding 2.5 mL of a saturated aqueous citric acid solution and 1.0 mL of water. Next, 5 mL of hexane was added and shaken, and the upper layer was used as an analysis sample.
  • the supercritical fluid chromatography operation is the same as in Example 1 above.
  • the amount of DAKs was calculated by comparing the peak of each sample with the peak of the standard sample. The results are shown in Table 4.
  • the recovery rates in Table 4 are values when the amount of DAKs (mass basis) in the sample before being subjected to the quantification method is 100%.
  • the present invention can be used in the oil and fat field.

Abstract

The present invention addresses the problem of providing a means for accurately quantifying dialkyl ketones in oils and fats. The present invention is a quantification method that includes a step for subjecting oils and fats to supercritical fluid chromatography.

Description

油脂中のジアルキルケトンの定量方法Determination of dialkyl ketones in fats and oils
 本発明は、油脂中のジアルキルケトンの定量方法に関する。 The present invention relates to a method for quantifying dialkyl ketones in fats and oils.
 油脂(特に食用油)の改質方法としてエステル交換方法がある。触媒としてアルカリを用いるケミカルエステル交換方法では、改質された油脂の他、ジアルキルケトン(以下、「DAKs」ともいう)が副産物として生成する。DAKs量が多い場合、分子蒸留等により除去される。
 また、DAKsが低減された油脂の製造方法が知られている(特許文献1)。
There is a transesterification method as a method for modifying fats and oils (especially edible oil). In the chemical transesterification method using an alkali as a catalyst, dialkyl ketones (hereinafter also referred to as “DAKs”) are produced as by-products in addition to the modified fats and oils. When the amount of DAKs is large, it is removed by molecular distillation or the like.
Moreover, the manufacturing method of the fats and oils in which DAKs were reduced is known (patent document 1).
特開2012-224797号公報JP 2012-224797 A
 エステル交換反応条件の決定、エステル交換反応後のDAKs除去の要否の判断や、DAKsの新たな除去方法の開発にあたっては、油脂中のDAKsを正確に定量する必要がある。
 しかし、ガスクロマトグラフィー(GC)へそのまま適用して定量分析を試みると、前記反応生成物中に含まれる植物ステロール類が、GCにおいてDAKsと同様の挙動を示し、DAKsの正確な定量を妨げることを本発明者らは初めて見いだした。そのため、ガスクロマトグラフィーを用いて、より高い精度の分析を行う場合、前処理が必要になり、煩雑な操作が必要であった。また、かなり低いDAKs量の油脂を分析する場合、より高精度の分析が必要であった。
In determining transesterification reaction conditions, determining whether DAKs should be removed after transesterification, and developing a new method for removing DAKs, it is necessary to accurately quantify DAKs in fats and oils.
However, when it is applied to gas chromatography (GC) as it is and quantitative analysis is attempted, plant sterols contained in the reaction product exhibit the same behavior as DAKs in GC, and prevent accurate quantification of DAKs. The present inventors found for the first time. Therefore, when performing analysis with higher accuracy using gas chromatography, pretreatment is required and complicated operations are required. In addition, when analyzing fats and oils with a considerably low amount of DAKs, more accurate analysis is required.
 本発明者らは、上記課題を解決するために鋭意検討した結果、油脂を超臨界流体クロマトグラフィーで定量することで、DAKsを高精度で定量できることを見いだし、本発明を完成させるに至った。すなわち、本発明は下記に関するものである。
〔1〕油脂を超臨界流体クロマトグラフィーで定量する工程、を含むことを特徴とする、油脂中のジアルキルケトンの定量方法。
〔2〕超臨界流体クロマトグラフィーで定量する工程に供される油脂が、アルカリ触媒を用いた油脂のエステル交換反応生成物である、前記〔1〕に記載の定量方法。
〔3〕エステル交換反応により油脂を製造する方法であって、 前記エステル交換反応後の油脂中のジアルキルケトンを、前記〔1〕又は〔2〕に記載の方法に従い定量する工程を含み、定量する工程後の精製条件及び/又はブレンド条件を、定量されたジアルキルケトン量に基づいて決定する、ことを特徴とする製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that DAKs can be quantified with high accuracy by quantifying fats and oils by supercritical fluid chromatography, and have completed the present invention. That is, the present invention relates to the following.
[1] A method for quantifying dialkyl ketones in fats and oils, comprising the step of quantifying fats and oils by supercritical fluid chromatography.
[2] The quantification method according to [1], wherein the fats and oils subjected to the step of quantification by supercritical fluid chromatography are transesterification products of fats and oils using an alkali catalyst.
[3] A method for producing fats and oils by transesterification reaction, including a step of quantifying dialkyl ketone in the fats and oils after the transesterification reaction according to the method described in [1] or [2]. A production method characterized by determining purification conditions and / or blending conditions after the process based on the quantified amount of dialkyl ketone.
 後述の実施例で示されるように、本発明の方法によると、油脂(特に、油脂のエステル交換反応生成物)中のDAKsを正確に定量することができる。 As shown in Examples described later, according to the method of the present invention, DAKs in fats and oils (particularly, products of transesterification of fats and oils) can be accurately quantified.
 「油脂」は特に限定されないが、例えば植物性油脂や動物性油脂が挙げられるが、植物性油脂が好ましい。
 植物性油脂としては、キャノーラ油や、パーム油等やこれらのエステル交換油が挙げられ、エステル交換油が好ましい。
 また、油脂としては食用油脂が好ましい。
“Oil” is not particularly limited, and examples thereof include vegetable oils and animal fats, and vegetable oils are preferable.
Examples of vegetable oils include canola oil, palm oil, and the like, and transesterified oils thereof. Transesterified oils are preferable.
Moreover, as fats and oils, edible fats and oils are preferable.
 本実施の形態は、特に限定されるものではないが、「アルカリ触媒を用いた油脂のエステル交換反応生成物」である油脂に対して好適に用いることができる。
 「アルカリ触媒を用いた油脂のエステル交換反応」は、油脂製造分野で用いられているものを特に制限なく用いることができる。
 アルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムや炭酸カリウム等が挙げられる。
 エステル交換反応の条件は、油脂のエステル交換反応で一般的に用いられているものを特に制限なく採用することができる。
Although this embodiment is not particularly limited, it can be suitably used for fats and oils that are “the transesterification product of fats and oils using an alkali catalyst”.
As the “transesterification of fats and oils using an alkali catalyst”, those used in the field of fats and oils can be used without particular limitation.
Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
As the conditions for the transesterification reaction, those generally used in the transesterification reaction of fats and oils can be adopted without particular limitation.
<油脂中のジアルキルケトンの定量方法>
 本実施の形態の油脂中のジアルキルケトンの定量方法は、超臨界流体クロマトグラフィーで定量する工程、を含む。
 ここで、「超臨界流体クロマトグラフィー」とは、SFCとも呼ばれるカラムクロマトグラフィーの一種であり、移動相に超臨界流体を用いるものをいう。超臨界流体クロマトグラフィーでは、低粘度で拡散性が高いという特性を有する亜臨界流体や超臨界流体を移動相として用いることで、移動相に液体を用いる液体クロマトグラフィー(HPLC)に比べ、分解能や検出能を向上することができる。
 超臨界流体クロマトグラフィーの「移動相」としては、特に限定されるものではないが、例えば、液化状態、亜臨界状態、又は、超臨界状態の二酸化炭素を用いることができる。移動相としては、これらを単独で用いることもできるが、これに加えて、有機溶媒(モディファイヤー)を併用することが好ましい。モディファイヤーの濃度を変えることで、油脂中のDAKsの溶出力や保持の強さを調整することができるからである。モディファイヤーとしては、特に限定されるものではないが、メタノール、エタノール、イソプロパノール、アセトニトリル、ジクロロメタン等の有機溶媒を用いることができる。
 超臨界流体クロマトグラフィーの「固定相」としては、液体クロマトグラフィーに用いられる固定相を使用することができる。一例として、超臨界流体クロマトグラフィーの「固定相」としては、逆相カラムや順相カラム、イオン交換樹脂カラム、サイズ排除カラム等を用いることができる。ここで、逆相カラムとしては、例えば、シリカゲル又はポリメタクリレート等の高分子を含む基材に、オクタデシル基、オクチル基、ブチル基、フェニル基、シアノプロピル基等を結合したものが挙げられる。順相カラムとしては、例えば、シリカゲルやシリカゲルを含む基材にアミノプロピル基、シアノプロピル基、ジオール基、カルバモイル基等を結合したものが挙げられる。DAKsの検出量を向上する観点から、逆相カラムを用いることが好ましい。イオン交換樹脂カラムとしては、陽イオン交換樹脂および陰イオン交換樹脂が用いられるが、例えば、高分子を含む基材に、第4級アンモニウム基やジエチルアミノエチル基等を結合したものが挙げられる。サイズ排除カラムとしては、例えば、シリカゲルを含む基材に、プロピルジオール基を結合させたものが挙げられる。
 超臨界流体クロマトグラフィーの「検出器」としては、特に限定されるものではないが、例えば、紫外/可視吸光度検出器、ダイオードアレイ検出器、質量分析計、円二色性検出器等を用いることができる。
 超臨界流体クロマトグラフィーの条件は、油脂の抽出に用いられているものを特に制限なく採用することができる。
<Quantitative determination method of dialkyl ketone in fats and oils>
The method for quantifying dialkyl ketones in fats and oils of the present embodiment includes a step of quantifying by supercritical fluid chromatography.
Here, “supercritical fluid chromatography” is a kind of column chromatography also called SFC, which uses a supercritical fluid as a mobile phase. Supercritical fluid chromatography uses a subcritical fluid or supercritical fluid, which has the characteristics of low viscosity and high diffusivity, as the mobile phase, so that the resolution and resolution can be improved compared to liquid chromatography (HPLC) using a liquid as the mobile phase. Detectability can be improved.
The “mobile phase” of supercritical fluid chromatography is not particularly limited, and for example, carbon dioxide in a liquefied state, a subcritical state, or a supercritical state can be used. These may be used alone as the mobile phase, but in addition to this, it is preferable to use an organic solvent (modifier) in combination. This is because by changing the concentration of the modifier, it is possible to adjust the melting power and holding strength of DAKs in the fats and oils. Although it does not specifically limit as a modifier, Organic solvents, such as methanol, ethanol, isopropanol, acetonitrile, a dichloromethane, can be used.
As the “stationary phase” of supercritical fluid chromatography, a stationary phase used in liquid chromatography can be used. As an example, as the “stationary phase” of supercritical fluid chromatography, a reverse phase column, a normal phase column, an ion exchange resin column, a size exclusion column, or the like can be used. Here, examples of the reverse phase column include those obtained by bonding an octadecyl group, an octyl group, a butyl group, a phenyl group, a cyanopropyl group or the like to a base material containing a polymer such as silica gel or polymethacrylate. Examples of the normal phase column include silica gel or a base material containing silica gel bonded with an aminopropyl group, a cyanopropyl group, a diol group, a carbamoyl group, or the like. From the viewpoint of improving the detection amount of DAKs, it is preferable to use a reverse phase column. As the ion exchange resin column, a cation exchange resin and an anion exchange resin are used. For example, a column in which a quaternary ammonium group, a diethylaminoethyl group, or the like is bonded to a base material containing a polymer can be given. An example of the size exclusion column is a column in which a propyldiol group is bonded to a base material containing silica gel.
The “detector” of supercritical fluid chromatography is not particularly limited. For example, an ultraviolet / visible absorbance detector, a diode array detector, a mass spectrometer, a circular dichroism detector, or the like is used. Can do.
As the conditions for supercritical fluid chromatography, those used for extraction of fats and oils can be employed without any particular limitation.
 超臨界流体クロマトグラフィーに先立ち、油脂をけん化工程、及び/又は、抽出工程(例えば、液相抽出、及び/又は、固相抽出)等の前処理に付すると、DAKsの定量性をより高めることができるので好ましい。
 前処理の各条件は、油脂の抽出に用いられているものを特に制限なく採用することができる。
 例えば、けん化工程としては、特にこれに限定されるものではないが、アルカリ性の水溶液、あるいはアルカリ性のアルコール溶液を用いることができ、例えば、水酸化ナトリウム、水酸化カリウム等のアルコール溶液を用いることが好ましい。アルコール溶液は、メタノール、エタノール、プロパノール、ブタノール等を用いることができ、水を含むこともできる。けん化温度は、30~120℃が好ましく、70~100℃がより好ましい。
 また、液相抽出としては、特にこれに限定されるものではないが、水に溶解しにくい有機溶媒、例えば、エーテル、ヘキサン、ヘプタン、オクタン、石油エーテル、ベンゼン、トルエン、キシレン、ジクロロメタン等を用いて、有機溶媒に可溶な成分を抽出することができる。その後、抽出された成分を濃縮することができるように、沸点が100℃以下の有機溶媒が好ましい。
 さらに、液相抽出後に、有機相のアルカリを除去するために、水洗を行うことが好ましい。
 さらにまた、液相抽出後及び/又は水洗後に、DAKsの濃度を高めるために、濃縮することが好ましい。濃縮方法としては、特に限定するものではないが、無水硫酸ナトリウム、塩化カルシウム、モレキュラーシーブ等の乾燥剤で乾燥させた後、有機溶媒を蒸留することが挙げられる。
 一方、固相抽出としては、特にこれに限定されるものではないが、担体として、アミノプロピル基、及び、シリカゲル又はグラファイトカーボン等を使用し、溶媒として、ヘキサンやクロロホルム等を使用することができる。
Prior to supercritical fluid chromatography, if oils and fats are subjected to pretreatment such as a saponification step and / or an extraction step (for example, liquid phase extraction and / or solid phase extraction), the quantification of DAKs is further enhanced. Is preferable.
What is used for extraction of fats and oils can be employ | adopted for each condition of pretreatment without a restriction | limiting in particular.
For example, the saponification step is not particularly limited, but an alkaline aqueous solution or an alkaline alcohol solution can be used. For example, an alcohol solution such as sodium hydroxide or potassium hydroxide can be used. preferable. As the alcohol solution, methanol, ethanol, propanol, butanol or the like can be used, and water can also be included. The saponification temperature is preferably 30 to 120 ° C, more preferably 70 to 100 ° C.
The liquid phase extraction is not particularly limited to this, but an organic solvent that is difficult to dissolve in water, for example, ether, hexane, heptane, octane, petroleum ether, benzene, toluene, xylene, dichloromethane or the like is used. Thus, a component soluble in an organic solvent can be extracted. Thereafter, an organic solvent having a boiling point of 100 ° C. or lower is preferable so that the extracted components can be concentrated.
Furthermore, it is preferable to perform water washing after the liquid phase extraction in order to remove the alkali in the organic phase.
Furthermore, after the liquid phase extraction and / or after washing with water, it is preferable to concentrate in order to increase the concentration of DAKs. Although it does not specifically limit as a concentration method, After drying with desiccants, such as an anhydrous sodium sulfate, a calcium chloride, a molecular sieve, the organic solvent is distilled.
On the other hand, the solid phase extraction is not particularly limited, but an aminopropyl group and silica gel or graphite carbon can be used as a carrier, and hexane, chloroform or the like can be used as a solvent. .
 本実施の形態では、油脂中に含まれる多種のジアルキルケトン(Dialkylketones: DAKs)を定量することができる。
 DAKsとしては、一般式(1):RC(O)R(式中、R及びRは独立してC~C24のアルキル基である)で表される化合物が挙げられる。具体例としては、9-ヘプタデカノン(一般式(1)中、R及びRがCのアルキル基である化合物)、10-ノナデカノン、11-ヘンエイコサノン、14-ヘプタコサノン、16-ヘントリアコンタノンや、18-ペンタトリアコンタノン等が挙げられるが、他のDAKsも定量可能である。
In the present embodiment, various types of dialkylketones (DAKs) contained in fats and oils can be quantified.
Examples of DAKs include compounds represented by the general formula (1): R 1 C (O) R 2 (wherein R 1 and R 2 are independently a C 1 to C 24 alkyl group). . Specific examples include 9-heptadecanone (a compound in which R 1 and R 2 are C 8 alkyl groups in the general formula (1)), 10-nonadecanone, 11-heneicosanone, 14-heptacosanone, 16-hentriacontanone. And 18-pentatriacontanone, and other DAKs can be quantified.
<エステル交換反応により油脂を製造する方法>
 本発明のエステル交換反応により油脂を製造する方法において、エステル交換反応後の油脂中のジアルキルケトンを、前記<油脂中のジアルキルケトンの定量方法>に記載の方法に従い定量する工程を含み、定量する工程後の精製条件を、定量されたジアルキルケトン量に基づいて決定する。
 本発明において、定量する工程は、エステル交換後であればよく、精製工程の前、あるいは精製工程の途中でもよい。エステル交換油の精製工程は、アルカリ触媒の酸性物質との中和あるいは水洗、脱酸、脱色、脱臭、分別等の一つ以上が行われるが、いずれの前後、あるいは工程中でもよい。
<Method for producing fats and oils by transesterification>
In the method for producing fats and oils by the transesterification reaction of the present invention, the method includes the step of quantifying the dialkyl ketone in the fat and oil after the transesterification reaction according to the method described in the above <Method for quantifying dialkyl ketone in fats and oils>. The purification conditions after the process are determined based on the quantified amount of dialkyl ketone.
In the present invention, the quantitative determination step may be after transesterification, and may be performed before the purification step or in the middle of the purification step. In the step of refining the transesterified oil, at least one of neutralization with an acidic substance of an alkali catalyst or washing with water, deoxidation, decolorization, deodorization, fractionation, etc. is carried out, but it may be performed before or after any or during the process.
 例えば、DAKs量が多い場合、酸性の液で洗浄する工程を追加で行うことで、DAKs量を低減することができる。酸性の液で洗浄する場合、その後、水洗、脱臭することが好ましい。また、短工程蒸留等の高真空化での蒸留工程を追加で行うことで、DAKsを除去することができる。DAKs量が少ない(あるいは存在しない)場合、これらの工程を行わないことを選択することができる。 For example, when the amount of DAKs is large, the amount of DAKs can be reduced by additionally performing a step of washing with an acidic liquid. When washing with an acidic liquid, it is preferable to wash with water and deodorize thereafter. In addition, DAKs can be removed by additionally performing a distillation step with high vacuum such as short-step distillation. If the amount of DAKs is small (or does not exist), it can be chosen not to perform these steps.
 また、複数のエステル交換油をブレンドする場合、DAKs量が多いロットと少ないロットを組わせて、一定の規格内のDAKs量に抑えることができる。特に、複数のDAKs量が異なる油脂の製品タンクを有している場合、精製前、あるいは精製途中でDAKsを測定すれば、精製油のDAKs量が予測でき、適切な製品タンクに精製後に導入でき、各製品タンクのDAKs量を抑えることができるので好ましい。 Also, when blending a plurality of transesterified oils, a lot with a large amount of DAKs and a lot with a small amount can be combined to keep the amount of DAKs within a certain standard. In particular, if you have multiple oil tanks with different amounts of DAKs, if you measure DAKs before or during refining, you can predict the amount of DAKs in the refined oil and introduce it to the appropriate product tank after refining. It is preferable because the amount of DAKs in each product tank can be suppressed.
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[実施例1]:油脂中のDAKsの定量分析(1)
(サンプル調製)
 所定量のDAKsを含むように予め調製した油脂サンプルを用いて、本実施の形態の定量方法を評価した。具体的には、DAKsを含まないパーム油(日清オイリオグループ株式会社製)へ各種DAKs標準試薬を表1の配合量となるように添加して調製したサンプル1~6を使用した。
[Example 1]: Quantitative analysis of DAKs in fats and oils (1)
(Sample preparation)
Using the oil and fat sample prepared in advance so as to contain a predetermined amount of DAKs, the quantitative method of the present embodiment was evaluated. Specifically, samples 1 to 6 prepared by adding various DAKs standard reagents to palm oil (Nisshin Oilio Group Co., Ltd.) not containing DAKs so as to have the blending amounts shown in Table 1 were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 超臨界流体クロマトグラフィー装置に供する前に、各サンプルを、下記の前処理に付して分析用試料を作成した。
(前処理)
 サンプル100mgとクロロホルム1mLとをメスフラスコに加え、さらにアセトンを加えて全体で10mLの試料を調整し、各分析試料とした。
Before being subjected to the supercritical fluid chromatography apparatus, each sample was subjected to the following pretreatment to prepare an analytical sample.
(Preprocessing)
100 mg of a sample and 1 mL of chloroform were added to a volumetric flask, and further acetone was added to prepare a 10 mL sample as a whole, which was used as each analysis sample.
(超臨界流体クロマトグラフィー操作)
 各分析試料を、下記条件下での超臨界流体クロマトグラフィー装置へ供した。
(Supercritical fluid chromatography operation)
Each analytical sample was subjected to a supercritical fluid chromatography apparatus under the following conditions.
(超臨界流体クロマトグラフィー条件)
  超臨界流体クロマトグラフィー装置:Nexera UC (島津製作所社製)
  カラム:島津製作所製Shim-pack UC-RP 長さ15mm×内径21mm 粒子径3μm(オクタデシル基および極性官能基)
  移動相:超臨界流体CO (流量:0.36mL/min)
  モディファイヤー:メタノール(流量:0,04mL/min)、及び、0.1%ギ酸アンモニウムを含むメタノール(流量:0.1mL/min)
  検出器:LC-MS/MS
  注入量:5μL
  標準物質:ジアルキルケトン試薬のクロロホルム溶液(配合量:50ppm(質量基準))
(Supercritical fluid chromatography conditions)
Supercritical fluid chromatography system: Nexera UC (manufactured by Shimadzu Corporation)
Column: Shimadzu Shim-pack UC-RP Length 15 mm x Inner diameter 21 mm Particle size 3 μm (octadecyl group and polar functional group)
Mobile phase: Supercritical fluid CO 2 (flow rate: 0.36 mL / min)
Modifier: methanol (flow rate: 0.04 mL / min) and methanol containing 0.1% ammonium formate (flow rate: 0.1 mL / min)
Detector: LC-MS / MS
Injection volume: 5 μL
Standard substance: chloroform solution of dialkyl ketone reagent (blending amount: 50 ppm (mass basis))
(質量分析条件)
 質量分析装置:液体クロマトグラフ質量分析計LCMS-8050(島津製作所製)
 イオン化モード:ESI
 インターフェース温度:400℃
 ヒーティングガス流量:12L/min
 ネブライザーガス流量:2.5L/min
 Desolvationガス温度:250℃
 ヒートブロック温度:400℃
 ドライインガス流量:5L/min
(Mass spectrometric conditions)
Mass spectrometer: liquid chromatograph mass spectrometer LCMS-8050 (manufactured by Shimadzu Corporation)
Ionization mode: ESI
Interface temperature: 400 ° C
Heating gas flow rate: 12L / min
Nebulizer gas flow rate: 2.5 L / min
Desolvation gas temperature: 250 ° C
Heat block temperature: 400 ° C
Dry-in gas flow rate: 5 L / min
 各サンプルのピークと標準サンプルのピークとを比較することで、DAKs量を算出した。結果を表2に示す。表2の回収率は、定量方法に供する前のサンプル中のDAKs量(質量基準)を100%とした場合の値である。 The amount of DAKs was calculated by comparing the peak of each sample with the peak of the standard sample. The results are shown in Table 2. The recovery rates in Table 2 are values when the amount of DAKs (mass basis) in the sample before being subjected to the quantitative method is 100%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 前記の定量方法では、定量前のサンプル中のDAKs量に対して100~108%という高い回収率でDAKsが検出された。
 分析誤差(本実施例において、100%±10%)を考慮すると、この結果は、本実施例の方法によって油脂中のDAKsを正確に定量できることを示すものである。
In the above quantification method, DAKs were detected at a high recovery rate of 100 to 108% with respect to the amount of DAKs in the sample before quantification.
Considering the analysis error (in this example, 100% ± 10%), this result shows that DAKs in fats and oils can be accurately quantified by the method of this example.
[実施例2]:油脂中のDAKsの定量分析(2)
(サンプル調製)
 所定量のDAKsを含むように予め調製した油脂サンプルを用いて、本実施の定量方法を評価した。具体的には、DAKsを含まないパーム油(日清オイリオグループ株式会社製)へ各種DAKs標準試薬を表3の配合量となるように添加して調製したサンプル6~10を使用した。
[Example 2]: Quantitative analysis of DAKs in fats and oils (2)
(Sample preparation)
Using the oil and fat sample prepared in advance so as to contain a predetermined amount of DAKs, the quantitative method of the present embodiment was evaluated. Specifically, samples 6 to 10 prepared by adding various DAKs standard reagents to the blending amounts shown in Table 3 to palm oil not containing DAKs (manufactured by Nisshin Oilio Group Co., Ltd.) were used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 超臨界流体クロマトグラフィー装置に供する前に、各サンプルを、下記の前処理に付して分析用試料を作成した。
(前処理)
 サンプル100mgと1N 水酸化カリウム/エタノール10mLとを試験管に加え、80℃で40分還流させて、けん化分解を行った。その後、室温(20℃)まで降温し、飽和クエン酸水溶液2.5mLと水1.0mLを加え中和した。次いで、ヘキサン5mLを加え、振とうして、上層を分析試料とした。
 超臨界流体クロマトグラフィー操作は前述の実施例1と同様である。
 各サンプルのピークと標準サンプルのピークとを比較することで、DAKs量を算出した。結果を表4に示す。表4の回収率は、定量方法に供する前のサンプル中のDAKs量(質量基準)を100%とした場合の値である。
Before being subjected to the supercritical fluid chromatography apparatus, each sample was subjected to the following pretreatment to prepare an analytical sample.
(Preprocessing)
100 mg of a sample and 10 mL of 1N potassium hydroxide / ethanol were added to a test tube and refluxed at 80 ° C. for 40 minutes for saponification decomposition. Thereafter, the temperature was lowered to room temperature (20 ° C.), and neutralized by adding 2.5 mL of a saturated aqueous citric acid solution and 1.0 mL of water. Next, 5 mL of hexane was added and shaken, and the upper layer was used as an analysis sample.
The supercritical fluid chromatography operation is the same as in Example 1 above.
The amount of DAKs was calculated by comparing the peak of each sample with the peak of the standard sample. The results are shown in Table 4. The recovery rates in Table 4 are values when the amount of DAKs (mass basis) in the sample before being subjected to the quantification method is 100%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 前記の定量方法では、定量前のサンプル中のDAKs量に対して99~107%という高い回収率でDAKsが検出された。
 分析誤差(本実施例において、100%±10%)を考慮すると、この結果は本実施例の方法によって油脂中のDAKsを正確に定量できることを示すものである。
In the above quantification method, DAKs were detected at a high recovery rate of 99 to 107% with respect to the amount of DAKs in the sample before quantification.
Considering an analysis error (100% ± 10% in this example), this result shows that DAKs in fats and oils can be accurately quantified by the method of this example.
 本発明は、油脂分野で利用することができる。 The present invention can be used in the oil and fat field.

Claims (3)

  1.  油脂を超臨界流体クロマトグラフィーで定量する工程、
    を含むことを特徴とする、油脂中のジアルキルケトンの定量方法。
    A process for quantifying fats and oils by supercritical fluid chromatography,
    A method for quantifying dialkyl ketones in fats and oils, comprising:
  2.  超臨界流体クロマトグラフィーで定量する工程に供される油脂が、アルカリ触媒を用いた油脂のエステル交換反応生成物である、請求項1に記載の定量方法。 The quantification method according to claim 1, wherein the fats and oils subjected to the step of quantification by supercritical fluid chromatography is a transesterification product of the fats and oils using an alkali catalyst.
  3.  エステル交換反応により油脂を製造する方法であって、
     前記エステル交換反応後の油脂中のジアルキルケトンを、請求項1又は2に記載の方法に従い定量する工程を含み、
     定量する工程後の精製条件及び/又はブレンド条件を、定量されたジアルキルケトン量に基づいて決定する、ことを特徴とする製造方法。
    A method for producing fats and oils by transesterification reaction,
    A step of quantifying the dialkyl ketone in the oil and fat after the transesterification reaction according to the method according to claim 1,
    A production method characterized by determining purification conditions and / or blending conditions after the quantifying step based on the quantified amount of dialkyl ketone.
PCT/JP2019/009221 2018-03-12 2019-03-08 Method for quantifying dialkyl ketones in oil and fat WO2019176750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-044702 2018-03-12
JP2018044702A JP6991677B2 (en) 2018-03-12 2018-03-12 Quantitative method of dialkyl ketone in fats and oils

Publications (1)

Publication Number Publication Date
WO2019176750A1 true WO2019176750A1 (en) 2019-09-19

Family

ID=67907782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009221 WO2019176750A1 (en) 2018-03-12 2019-03-08 Method for quantifying dialkyl ketones in oil and fat

Country Status (2)

Country Link
JP (1) JP6991677B2 (en)
WO (1) WO2019176750A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117561443A (en) 2021-07-05 2024-02-13 不二制油集团控股株式会社 Method for separating and quantifying saturated body and unsaturated body of dialkyl ketone

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250186A (en) * 2012-06-01 2013-12-12 Fuji Oil Co Ltd Method for separating or measuring 3-mono chloropropane-1,2-diol fatty acid esters in edible oil and fat using supercritical fluid chromatography
JP2014002082A (en) * 2012-06-20 2014-01-09 Chikuno Shokuhin Kogyo Kk Quantitative method of volatile organic compound
JP2016538879A (en) * 2013-10-28 2016-12-15 トータリー ナチュラル ソリューションズ リミテッド Fractionation method, flavor products and beer products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250186A (en) * 2012-06-01 2013-12-12 Fuji Oil Co Ltd Method for separating or measuring 3-mono chloropropane-1,2-diol fatty acid esters in edible oil and fat using supercritical fluid chromatography
JP2014002082A (en) * 2012-06-20 2014-01-09 Chikuno Shokuhin Kogyo Kk Quantitative method of volatile organic compound
JP2016538879A (en) * 2013-10-28 2016-12-15 トータリー ナチュラル ソリューションズ リミテッド Fractionation method, flavor products and beer products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CERT A. ET AL.: "Chromatographic analysis of minor constituents in vegetable oils", JOURNAL OF CHROMATOGRAPHY A, vol. 881, 2000, pages 131 - 148, XP004200135, doi:10.1016/S0021-9673(00)00389-7 *
HORI KATSUHITO ET AL.: "High-throughput and sensitive analysis of 3-monochloropropane-1,2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem mass spectrometry", JOURNAL OF CHROMATOGRAPHY A, vol. 1250, 2012, pages 99 - 104, XP028426692, doi:10.1016/j.chroma.2012.06.017 *

Also Published As

Publication number Publication date
JP2019158536A (en) 2019-09-19
JP6991677B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
Farajzadeh et al. Derivatization and microextraction methods for determination of organic compounds by gas chromatography
Torbati et al. Simultaneous derivatization and air–assisted liquid–liquid microextraction based on solidification of lighter than water deep eutectic solvent followed by gas chromatography–mass spectrometry: An efficient and rapid method for trace analysis of aromatic amines in aqueous samples
Gjelstad et al. Parallel artificial liquid membrane extraction: micro-scale liquid–liquid–liquid extraction in the 96-well format
Ribeiro et al. Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: An overview
Herbst-Johnstone et al. Ethyl propiolate derivatisation for the analysis of varietal thiols in wine
Silveira et al. Rapid, sensitive and simultaneous determination of 16 endocrine-disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS)
Lahaie et al. Elimination of LC–MS/MS matrix effect due to phospholipids using specific solid-phase extraction elution conditions
Hori et al. High-throughput and sensitive analysis of 3-monochloropropane-1, 2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem mass spectrometry
Vallecillos et al. Fully automated determination of macrocyclic musk fragrances in wastewater by microextraction by packed sorbents and large volume injection gas chromatography–mass spectrometry
US9146219B2 (en) Sensitive method for measuring cis-diol containing compounds in plasma using 2D-LC-MS/MS
Blumhorst et al. Direct determination of glycidyl esters of fatty acids in vegetable oils by LC–MS
Rigano et al. The retention index approach in liquid chromatography: an historical review and recent advances
Deng et al. Development of gas chromatography–mass spectrometry following headspace single-drop microextraction and simultaneous derivatization for fast determination of short-chain aliphatic amines in water samples
Ye et al. Rapid analysis of aldehydes by simultaneous microextraction and derivatization followed by GC‐MS
Kaur et al. Simple and rapid determination of phthalates using microextraction by packed sorbent and gas chromatography with mass spectrometry quantification in cold drink and cosmetic samples
CN109839449B (en) Method for separating phenolic compounds in diesel oil by solid phase extraction
Brito et al. Determining methamphetamine in urine by molecularly imprinted polymer assisted paper spray ionization mass spectrometry
Freitas et al. A simple emulsification-assisted extraction method for the GC–MS/SIM analysis of wine markers of aging and oxidation: application for studying micro-oxygenation in Madeira Wine
WO2019176750A1 (en) Method for quantifying dialkyl ketones in oil and fat
Pozo et al. Multiresidue pesticide analysis of fruits by ultra-performance liquid chromatography tandem mass spectrometry
Souihi et al. MultiConditionRT: Predicting liquid chromatography retention time for emerging contaminants for a wide range of eluent compositions and stationary phases
JP7134644B2 (en) Determination method of dialkyl ketone in fats and oils
CN107422053B (en) Method for detecting trichloroacetic acid in cosmetics by liquid chromatography-mass spectrometry
Zhang et al. Simultaneous determination of NOGE-related and BADGE-related compounds in canned food by ultra-performance liquid chromatography–tandem mass spectrometry
Elmongy et al. Online post-column solvent assisted and direct solvent-assisted electrospray ionization for chiral analysis of propranolol enantiomers in plasma samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767063

Country of ref document: EP

Kind code of ref document: A1