JP6991677B2 - Quantitative method of dialkyl ketone in fats and oils - Google Patents

Quantitative method of dialkyl ketone in fats and oils Download PDF

Info

Publication number
JP6991677B2
JP6991677B2 JP2018044702A JP2018044702A JP6991677B2 JP 6991677 B2 JP6991677 B2 JP 6991677B2 JP 2018044702 A JP2018044702 A JP 2018044702A JP 2018044702 A JP2018044702 A JP 2018044702A JP 6991677 B2 JP6991677 B2 JP 6991677B2
Authority
JP
Japan
Prior art keywords
oils
fats
daks
supercritical fluid
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044702A
Other languages
Japanese (ja)
Other versions
JP2019158536A (en
Inventor
功典 阿部
峰子 伊藤
賢博 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oillio Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oillio Group Ltd filed Critical Nisshin Oillio Group Ltd
Priority to JP2018044702A priority Critical patent/JP6991677B2/en
Priority to PCT/JP2019/009221 priority patent/WO2019176750A1/en
Publication of JP2019158536A publication Critical patent/JP2019158536A/en
Application granted granted Critical
Publication of JP6991677B2 publication Critical patent/JP6991677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Description

本発明は、油脂中のジアルキルケトンの定量方法に関する。 The present invention relates to a method for quantifying dialkyl ketones in fats and oils.

油脂(特に食用油)の改質方法としてエステル交換方法がある。触媒としてアルカリを用いるケミカルエステル交換方法では、改質された油脂の他、ジアルキルケトン(以下、「DAKs」ともいう)が副産物として生成する。DAKs量が多い場合、分子蒸留等により除去される。
また、DAKsが低減された油脂の製造方法が知られている(特許文献1)。
There is a transesterification method as a method for reforming fats and oils (particularly edible oil). In the chemical transesterification method using an alkali as a catalyst, dialkyl ketones (hereinafter, also referred to as “DAKs”) are produced as by-products in addition to the modified fats and oils. If the amount of DAKs is large, it is removed by molecular distillation or the like.
Further, a method for producing fats and oils with reduced DAKs is known (Patent Document 1).

特開2012-224797号公報Japanese Unexamined Patent Publication No. 2012-224797

エステル交換反応条件の決定、エステル交換反応後のDAKs除去の要否の判断や、DAKsの新たな除去方法の開発にあたっては、油脂中のDAKsを正確に定量する必要がある。
しかし、ガスクロマトグラフィー(GC)へそのまま適用して定量分析を試みると、前記反応生成物中に含まれる植物ステロール類が、GCにおいてDAKsと同様の挙動を示し、DAKsの正確な定量を妨げることを本発明者らは初めて見いだした。そのため、ガスクロマトグラフィーを用いて、より高い精度の分析を行う場合、前処理が必要になり、煩雑な操作が必要であった。また、かなり低いDAKs量の油脂を分析する場合、より高精度の分析が必要であった。
In determining the conditions of the transesterification reaction, determining the necessity of removing DAKs after the transesterification reaction, and developing a new method for removing DAKs, it is necessary to accurately quantify DAKs in fats and oils.
However, when a quantitative analysis is attempted by applying it to gas chromatography (GC) as it is, the plant sterols contained in the reaction product behave in the same manner as DAKs in GC, which hinders accurate quantification of DAKs. The present inventors have found for the first time. Therefore, when performing analysis with higher accuracy using gas chromatography, pretreatment is required and complicated operations are required. In addition, when analyzing fats and oils with a considerably low amount of DAKs, more accurate analysis was required.

本発明者らは、上記課題を解決するために鋭意検討した結果、油脂を超臨界流体クロマトグラフィーで定量することで、DAKsを高精度で定量できることを見いだし、本発明を完成させるに至った。すなわち、本発明は下記に関するものである。
〔1〕油脂を超臨界流体クロマトグラフィーで定量する工程、を含むことを特徴とする、油脂中のジアルキルケトンの定量方法。
〔2〕超臨界流体クロマトグラフィーで定量する工程に供される油脂が、アルカリ触媒を用いた油脂のエステル交換反応生成物である、前記〔1〕に記載の定量方法。
〔3〕エステル交換反応により油脂を製造する方法であって、 前記エステル交換反応後の油脂中のジアルキルケトンを、前記〔1〕又は〔2〕に記載の方法に従い定量する工程を含み、定量する工程後の精製条件及び/又はブレンド条件を、定量されたジアルキルケトン量に基づいて決定する、ことを特徴とする製造方法。
As a result of diligent studies to solve the above problems, the present inventors have found that DAKs can be quantified with high accuracy by quantifying fats and oils by supercritical fluid chromatography, and have completed the present invention. That is, the present invention relates to the following.
[1] A method for quantifying dialkyl ketones in fats and oils, which comprises a step of quantifying fats and oils by supercritical fluid chromatography.
[2] The quantification method according to the above [1], wherein the fat or oil used in the step of quantification by supercritical fluid chromatography is a transesterification reaction product of the fat or oil using an alkali catalyst.
[3] A method for producing a fat or oil by a transesterification reaction, which comprises a step of quantifying the dialkyl ketone in the fat or oil after the transesterification reaction according to the method according to the above [1] or [2]. A production method comprising determining post-step purification conditions and / or blending conditions based on a quantified amount of dialkyl ketone.

後述の実施例で示されるように、本発明の方法によると、油脂(特に、油脂のエステル交換反応生成物)中のDAKsを正確に定量することができる。 As shown in Examples described later, according to the method of the present invention, DAKs in fats and oils (particularly, transesterification reaction products of fats and oils) can be accurately quantified.

「油脂」は特に限定されないが、例えば植物性油脂や動物性油脂が挙げられるが、植物性油脂が好ましい。
植物性油脂としては、キャノーラ油や、パーム油等やこれらのエステル交換油が挙げられ、エステル交換油が好ましい。
また、油脂としては食用油脂が好ましい。
The "fat and oil" is not particularly limited, and examples thereof include vegetable fats and oils and animal fats and oils, but vegetable fats and oils are preferable.
Examples of vegetable oils and fats include canola oil, palm oil and the like, and transesterified oils thereof, and transesterified oil is preferable.
Further, as the fat and oil, edible fat and oil are preferable.

本実施の形態は、特に限定されるものではないが、「アルカリ触媒を用いた油脂のエステル交換反応生成物」である油脂に対して好適に用いることができる。
「アルカリ触媒を用いた油脂のエステル交換反応」は、油脂製造分野で用いられているものを特に制限なく用いることができる。
アルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムや炭酸カリウム等が挙げられる。
エステル交換反応の条件は、油脂のエステル交換反応で一般的に用いられているものを特に制限なく採用することができる。
The present embodiment is not particularly limited, but can be suitably used for fats and oils that are "transesterification reaction products of fats and oils using an alkali catalyst".
As the "transesterification reaction of fats and oils using an alkali catalyst", those used in the field of fats and oils production can be used without particular limitation.
Examples of the alkaline catalyst include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like.
As the conditions of the transesterification reaction, those generally used in the transesterification reaction of fats and oils can be adopted without particular limitation.

<油脂中のジアルキルケトンの定量方法>
本実施の形態の油脂中のジアルキルケトンの定量方法は、超臨界流体クロマトグラフィーで定量する工程、を含む。
ここで、「超臨界流体クロマトグラフィー」とは、SFCとも呼ばれるカラムクロマトグラフィーの一種であり、移動相に超臨界流体を用いるものをいう。超臨界流体クロマトグラフィーでは、低粘度で拡散性が高いという特性を有する亜臨界流体や超臨界流体を移動相として用いることで、移動相に液体を用いる液体クロマトグラフィー(HPLC)に比べ、分解能や検出能を向上することができる。
超臨界流体クロマトグラフィーの「移動相」としては、特に限定されるものではないが、例えば、液化状態、亜臨界状態、又は、超臨界状態の二酸化炭素を用いることができる。移動相としては、これらを単独で用いることもできるが、これに加えて、有機溶媒(モディファイヤー)を併用することが好ましい。モディファイヤーの濃度を変えることで、油脂中のDAKsの溶出力や保持の強さを調整することができるからである。モディファイヤーとしては、特に限定されるものではないが、メタノール、エタノール、イソプロパノール、アセトニトリル、ジクロロメタン等の有機溶媒を用いることができる。
超臨界流体クロマトグラフィーの「固定相」としては、液体クロマトグラフィーに用いられる固定相を使用することができる。一例として、超臨界流体クロマトグラフィーの「固定相」としては、逆相カラムや順相カラム、イオン交換樹脂カラム、サイズ排除カラム等を用いることができる。ここで、逆相カラムとしては、例えば、シリカゲル又はポリメタクリレート等の高分子を含む基材に、オクタデシル基、オクチル基、ブチル基、フェニル基、シアノプロピル基等を結合したものが挙げられる。順相カラムとしては、例えば、シリカゲルやシリカゲルを含む基材にアミノプロピル基、シアノプロピル基、ジオール基、カルバモイル基等を結合したものが挙げられる。DAKsの検出量を向上する観点から、逆相カラムを用いることが好ましい。イオン交換樹脂カラムとしては、陽イオン交換樹脂および陰イオン交換樹脂が用いられるが、例えば、高分子を含む基材に、第4級アンモニウム基やジエチルアミノエチル基等を結合したものが挙げられる。サイズ排除カラムとしては、例えば、シリカゲルを含む基材に、プロピルジオール基を結合させたものが挙げられる。
超臨界流体クロマトグラフィーの「検出器」としては、特に限定されるものではないが、例えば、紫外/可視吸光度検出器、ダイオードアレイ検出器、質量分析計、円二色性検出器等を用いることができる。
超臨界流体クロマトグラフィーの条件は、油脂の抽出に用いられているものを特に制限なく採用することができる。
<Method for quantifying dialkyl ketones in fats and oils>
The method for quantifying dialkyl ketones in fats and oils according to the present embodiment includes a step of quantifying by supercritical fluid chromatography.
Here, "supercritical fluid chromatography" is a kind of column chromatography also called SFC, and refers to one using a supercritical fluid as a mobile phase. In supercritical fluid chromatography, subcritical fluids and supercritical fluids, which have the characteristics of low viscosity and high diffusivity, are used as mobile phases, resulting in higher resolution and higher resolution than liquid chromatography (HPLC), which uses a liquid as the mobile phase. The detectability can be improved.
The "mobile phase" of supercritical fluid chromatography is not particularly limited, and for example, carbon dioxide in a liquefied state, a subcritical state, or a supercritical state can be used. As the mobile phase, these can be used alone, but in addition to this, it is preferable to use an organic solvent (modifier) in combination. This is because the elution output and retention strength of DAKs in fats and oils can be adjusted by changing the concentration of the modifier. The modifier is not particularly limited, but an organic solvent such as methanol, ethanol, isopropanol, acetonitrile, or dichloromethane can be used.
As the "stationary phase" of supercritical fluid chromatography, the stationary phase used for liquid chromatography can be used. As an example, as the "fixed phase" of supercritical fluid chromatography, a reverse phase column, a normal phase column, an ion exchange resin column, a size exclusion column and the like can be used. Here, examples of the reverse phase column include those in which an octadecyl group, an octyl group, a butyl group, a phenyl group, a cyanopropyl group and the like are bonded to a substrate containing a polymer such as silica gel or polymethacrylate. Examples of the normal phase column include those in which an aminopropyl group, a cyanopropyl group, a diol group, a carbamoyl group and the like are bonded to a base material containing silica gel or silica gel. From the viewpoint of improving the detection amount of DAKs, it is preferable to use a reverse phase column. As the ion exchange resin column, a cation exchange resin and an anion exchange resin are used, and examples thereof include those in which a quaternary ammonium group, a diethylaminoethyl group, or the like is bonded to a substrate containing a polymer. Examples of the size exclusion column include those in which a propyldiol group is bonded to a substrate containing silica gel.
The "detector" for supercritical fluid chromatography is not particularly limited, but for example, an ultraviolet / visible absorbance detector, a diode array detector, a mass analyzer, a circular dichroism detector, or the like may be used. Can be done.
As the conditions of supercritical fluid chromatography, those used for the extraction of fats and oils can be adopted without particular limitation.

超臨界流体クロマトグラフィーに先立ち、油脂をけん化工程、及び/又は、抽出工程(例えば、液相抽出、及び/又は、固相抽出)等の前処理に付すると、DAKsの定量性をより高めることができるので好ましい。
前処理の各条件は、油脂の抽出に用いられているものを特に制限なく採用することができる。
例えば、けん化工程としては、特にこれに限定されるものではないが、アルカリ性の水溶液、あるいはアルカリ性のアルコール溶液を用いることができ、例えば、水酸化ナトリウム、水酸化カリウム等のアルコール溶液を用いることが好ましい。アルコール溶液は、メタノール、エタノール、プロパノール、ブタノール等を用いることができ、水を含むこともできる。けん化温度は、30~120℃が好ましく、70~100℃がより好ましい。
また、液相抽出としては、特にこれに限定されるものではないが、水に溶解しにくい有機溶媒、例えば、エーテル、ヘキサン、ヘプタン、オクタン、石油エーテル、ベンゼン、トルエン、キシレン、ジクロロメタン等を用いて、有機溶媒に可溶な成分を抽出することができる。その後、抽出された成分を濃縮することができるように、沸点が100℃以下の有機溶媒が好ましい。
さらに、液相抽出後に、有機相のアルカリを除去するために、水洗を行うことが好ましい。
さらにまた、液相抽出後及び/又は水洗後に、DAKsの濃度を高めるために、濃縮することが好ましい。濃縮方法としては、特に限定するものではないが、無水硫酸ナトリウム、塩化カルシウム、モレキュラーシーブ等の乾燥剤で乾燥させた後、有機溶媒を蒸留することが挙げられる。
一方、固相抽出としては、特にこれに限定されるものではないが、担体として、アミノプロピル基、及び、シリカゲル又はグラファイトカーボン等を使用し、溶媒として、ヘキサンやクロロホルム等を使用することができる。
Prior to supercritical fluid chromatography, fats and oils are subjected to pretreatment such as a saponification step and / or an extraction step (for example, liquid phase extraction and / or solid phase extraction) to further enhance the quantitativeness of DAKs. It is preferable because it can be used.
As each condition of the pretreatment, those used for the extraction of fats and oils can be adopted without particular limitation.
For example, the saponification step is not particularly limited to this, but an alkaline aqueous solution or an alkaline alcohol solution can be used, and for example, an alcohol solution such as sodium hydroxide or potassium hydroxide can be used. preferable. As the alcohol solution, methanol, ethanol, propanol, butanol and the like can be used, and water can also be contained. The saponification temperature is preferably 30 to 120 ° C, more preferably 70 to 100 ° C.
The liquid phase extraction is not particularly limited to this, but an organic solvent that is difficult to dissolve in water, for example, ether, hexane, heptane, octane, petroleum ether, benzene, toluene, xylene, dichloromethane or the like is used. Therefore, a component soluble in an organic solvent can be extracted. Then, an organic solvent having a boiling point of 100 ° C. or lower is preferable so that the extracted components can be concentrated.
Further, after the liquid phase extraction, it is preferable to perform washing with water in order to remove the alkali of the organic phase.
Furthermore, after liquid phase extraction and / or after washing with water, it is preferable to concentrate in order to increase the concentration of DAKs. The concentration method is not particularly limited, and examples thereof include drying with a desiccant such as anhydrous sodium sulfate, calcium chloride, and molecular sieve, and then distilling an organic solvent.
On the other hand, the solid-phase extraction is not particularly limited to this, but an aminopropyl group, silica gel, graphite carbon or the like can be used as the carrier, and hexane, chloroform or the like can be used as the solvent. ..

本実施の形態では、油脂中に含まれる多種のジアルキルケトン(Dialkylketones: DAKs)を定量することができる。
DAKsとしては、一般式(1):RC(O)R(式中、R及びRは独立してC~C24のアルキル基である)で表される化合物が挙げられる。具体例としては、9-ヘプタデカノン(一般式(1)中、R及びRがCのアルキル基である化合物)、10-ノナデカノン、11-ヘンエイコサノン、14-ヘプタコサノン、16-ヘントリアコンタノンや、18-ペンタトリアコンタノン等が挙げられるが、他のDAKsも定量可能である。
In this embodiment, various dialkylketones (DAKs) contained in fats and oils can be quantified.
Examples of DAKs include compounds represented by the general formula (1): R 1 C (O) R 2 (in the formula, R 1 and R 2 are independently alkyl groups of C 1 to C 24 ). .. Specific examples include 9-heptadecanone (a compound in which R1 and R2 are alkyl groups of C8 in the general formula (1)), 10-nonadecanone, 11-heneicosanone, 14-heptacosanone, and 16-hentoria-contanone. , 18-Pentatoria Contanone, etc., but other DAKs can also be quantified.

<エステル交換反応により油脂を製造する方法>
本発明のエステル交換反応により油脂を製造する方法において、エステル交換反応後の油脂中のジアルキルケトンを、前記<油脂中のジアルキルケトンの定量方法>に記載の方法に従い定量する工程を含み、定量する工程後の精製条件を、定量されたジアルキルケトン量に基づいて決定する。
本発明において、定量する工程は、エステル交換後であればよく、精製工程の前、あるいは精製工程の途中でもよい。エステル交換油の精製工程は、アルカリ触媒の酸性物質との中和あるいは水洗、脱酸、脱色、脱臭、分別等の一つ以上が行われるが、いずれの前後、あるいは工程中でもよい。
<Method of producing fats and oils by transesterification reaction>
In the method for producing fats and oils by the transesterification reaction of the present invention, a step of quantifying the dialkylketone in the fats and oils after the transesterification reaction according to the method described in the above <Method for quantifying dialkylketone in fats and oils> is included and quantified. Post-step purification conditions are determined based on the quantified amount of dialkylketone.
In the present invention, the quantification step may be performed after transesterification, before the purification step, or during the purification step. The process of refining the transesterified oil may be one or more such as neutralization of the alkaline catalyst with an acidic substance, washing with water, deoxidation, decolorization, deodorization, separation, etc., but it may be before, after, or during the process.

例えば、DAKs量が多い場合、酸性の液で洗浄する工程を追加で行うことで、DAKs量を低減することができる。酸性の液で洗浄する場合、その後、水洗、脱臭することが好ましい。また、短工程蒸留等の高真空化での蒸留工程を追加で行うことで、DAKsを除去することができる。DAKs量が少ない(あるいは存在しない)場合、これらの工程を行わないことを選択することができる。 For example, when the amount of DAKs is large, the amount of DAKs can be reduced by additionally performing a step of washing with an acidic liquid. When washing with an acidic liquid, it is preferable to wash with water and then deodorize. In addition, DAKs can be removed by additionally performing a distillation step with high vacuum such as short-step distillation. If the amount of DAKs is small (or non-existent), you can choose not to perform these steps.

また、複数のエステル交換油をブレンドする場合、DAKs量が多いロットと少ないロットを組わせて、一定の規格内のDAKs量に抑えることができる。特に、複数のDAKs量が異なる油脂の製品タンクを有している場合、精製前、あるいは精製途中でDAKsを測定すれば、精製油のDAKs量が予測でき、適切な製品タンクに精製後に導入でき、各製品タンクのDAKs量を抑えることができるので好ましい。 Further, when a plurality of transesterified oils are blended, a lot having a large amount of DAKs and a lot having a small amount of DAKs can be combined to keep the amount of DAKs within a certain standard. In particular, if you have multiple product tanks of oils and fats with different amounts of DAKS, you can predict the amount of DAKS of refined oil by measuring DAKs before or during refining, and you can introduce it into an appropriate product tank after refining. , It is preferable because the amount of DAKs in each product tank can be suppressed.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

[実施例1]:油脂中のDAKsの定量分析(1)
(サンプル調製)
所定量のDAKsを含むように予め調製した油脂サンプルを用いて、本実施の形態の定量方法を評価した。具体的には、DAKsを含まないパーム油(日清オイリオグループ株式会社製)へ各種DAKs標準試薬を表1の配合量となるように添加して調製したサンプル1~6を使用した。
[Example 1]: Quantitative analysis of DAKs in fats and oils (1)
(Sample preparation)
The quantification method of the present embodiment was evaluated using a fat sample prepared in advance so as to contain a predetermined amount of DAKs. Specifically, Samples 1 to 6 prepared by adding various DAKs standard reagents to palm oil (manufactured by Nisshin Oillio Group Co., Ltd.) containing no DAKs so as to have the blending amounts shown in Table 1 were used.

Figure 0006991677000001
Figure 0006991677000001

超臨界流体クロマトグラフィー装置に供する前に、各サンプルを、下記の前処理に付して分析用試料を作成した。
(前処理)
サンプル100mgとクロロホルム1mLとをメスフラスコに加え、さらにアセトンを加えて全体で10mLの試料を調整し、各分析試料とした。
Each sample was subjected to the following pretreatment to prepare a sample for analysis before being subjected to a supercritical fluid chromatography apparatus.
(Preprocessing)
100 mg of the sample and 1 mL of chloroform were added to the measuring flask, and acetone was further added to prepare a total of 10 mL of the sample, which was used as each analysis sample.

(超臨界流体クロマトグラフィー操作)
各分析試料を、下記条件下での超臨界流体クロマトグラフィー装置へ供した。
(Supercritical fluid chromatography operation)
Each analytical sample was subjected to a supercritical fluid chromatography apparatus under the following conditions.

(超臨界流体クロマトグラフィー条件)
超臨界流体クロマトグラフィー装置:Nexera UC (島津製作所社製)
カラム:島津製作所製Shim-pack UC-RP 長さ15mm×内径21mm 粒子径3μm(オクタデシル基および極性官能基)
移動相:超臨界流体CO (流量:0.36mL/min)
モディファイヤー:メタノール(流量:0,04mL/min)、及び、0.1%ギ酸アンモニウムを含むメタノール(流量:0.1mL/min)
検出器:LC-MS/MS
注入量:5μL
標準物質:ジアルキルケトン試薬のクロロホルム溶液(配合量:50ppm(質量基準))
(Supercritical fluid chromatography conditions)
Supercritical fluid chromatography device: Nexus UC (manufactured by Shimadzu Corporation)
Column: Shimadzu Shima-pack UC-RP Length 15 mm x Inner diameter 21 mm Particle diameter 3 μm (octadecyl group and polar functional group)
Mobile phase: Supercritical fluid CO 2 (Flow rate: 0.36 mL / min)
Modifier: Methanol (flow rate: 0.04 mL / min) and methanol containing 0.1% ammonium formate (flow rate: 0.1 mL / min).
Detector: LC-MS / MS
Injection volume: 5 μL
Standard substance: Chloroform solution of dialkyl ketone reagent (blending amount: 50 ppm (mass standard))

(質量分析条件)
質量分析装置:液体クロマトグラフ質量分析計LCMS-8050(島津製作所製)
イオン化モード:ESI
インターフェース温度:400℃
ヒーティングガス流量:12L/min
ネブライザーガス流量:2.5L/min
Desolvationガス温度:250℃
ヒートブロック温度:400℃
ドライインガス流量:5L/min
(Mass spectrometry conditions)
Mass spectrometer: Liquid chromatograph mass spectrometer LCMS-8050 (manufactured by Shimadzu Corporation)
Ionization mode: ESI
Interface temperature: 400 ° C
Heating gas flow rate: 12 L / min
Nebulizer gas flow rate: 2.5 L / min
Desolution gas temperature: 250 ° C
Heat block temperature: 400 ° C
Dry ingas flow rate: 5 L / min

各サンプルのピークと標準サンプルのピークとを比較することで、DAKs量を算出した。結果を表2に示す。表2の回収率は、定量方法に供する前のサンプル中のDAKs量(質量基準)を100%とした場合の値である。 The amount of DAKs was calculated by comparing the peak of each sample with the peak of the standard sample. The results are shown in Table 2. The recovery rate in Table 2 is a value when the amount of DAKs (based on mass) in the sample before being subjected to the quantification method is 100%.

Figure 0006991677000002
Figure 0006991677000002

前記の定量方法では、定量前のサンプル中のDAKs量に対して100~108%という高い回収率でDAKsが検出された。
分析誤差(本実施例において、100%±10%)を考慮すると、この結果は、本実施例の方法によって油脂中のDAKsを正確に定量できることを示すものである。
In the above quantification method, DAKs were detected with a high recovery rate of 100 to 108% with respect to the amount of DAKs in the sample before quantification.
Considering the analysis error (100% ± 10% in this example), this result shows that the method of this example can accurately quantify DAKs in fats and oils.

[実施例2]:油脂中のDAKsの定量分析(2)
(サンプル調製)
所定量のDAKsを含むように予め調製した油脂サンプルを用いて、本実施の定量方法を評価した。具体的には、DAKsを含まないパーム油(日清オイリオグループ株式会社製)へ各種DAKs標準試薬を表3の配合量となるように添加して調製したサンプル6~10を使用した。
[Example 2]: Quantitative analysis of DAKs in fats and oils (2)
(Sample preparation)
The quantification method of this practice was evaluated using a fat sample prepared in advance so as to contain a predetermined amount of DAKs. Specifically, Samples 6 to 10 prepared by adding various DAKs standard reagents to palm oil (manufactured by Nisshin Oillio Group Co., Ltd.) containing no DAKs so as to have the blending amounts shown in Table 3 were used.

Figure 0006991677000003
Figure 0006991677000003

超臨界流体クロマトグラフィー装置に供する前に、各サンプルを、下記の前処理に付して分析用試料を作成した。
(前処理)
サンプル100mgと1N 水酸化カリウム/エタノール10mLとを試験管に加え、80℃で40分還流させて、けん化分解を行った。その後、室温(20℃)まで降温し、飽和クエン酸水溶液2.5mLと水1.0mLを加え中和した。次いで、ヘキサン5mLを加え、振とうして、上層を分析試料とした。
超臨界流体クロマトグラフィー操作は前述の実施例1と同様である。
各サンプルのピークと標準サンプルのピークとを比較することで、DAKs量を算出した。結果を表4に示す。表4の回収率は、定量方法に供する前のサンプル中のDAKs量(質量基準)を100%とした場合の値である。
Each sample was subjected to the following pretreatment to prepare a sample for analysis before being subjected to a supercritical fluid chromatography apparatus.
(Preprocessing)
100 mg of a sample and 10 mL of 1N potassium hydroxide / ethanol were added to a test tube and refluxed at 80 ° C. for 40 minutes for saponification decomposition. Then, the temperature was lowered to room temperature (20 ° C.), and 2.5 mL of saturated citric acid aqueous solution and 1.0 mL of water were added for neutralization. Then, 5 mL of hexane was added and shaken to use the upper layer as an analysis sample.
The supercritical fluid chromatography operation is the same as in Example 1 described above.
The amount of DAKs was calculated by comparing the peak of each sample with the peak of the standard sample. The results are shown in Table 4. The recovery rate in Table 4 is a value when the amount of DAKs (based on mass) in the sample before being subjected to the quantification method is 100%.

Figure 0006991677000004
Figure 0006991677000004

前記の定量方法では、定量前のサンプル中のDAKs量に対して99~107%という高い回収率でDAKsが検出された。
分析誤差(本実施例において、100%±10%)を考慮すると、この結果は本実施例の方法によって油脂中のDAKsを正確に定量できることを示すものである。
In the above quantification method, DAKs were detected with a high recovery rate of 99 to 107% with respect to the amount of DAKs in the sample before quantification.
Considering the analysis error (100% ± 10% in this example), this result shows that DAKs in fats and oils can be accurately quantified by the method of this example.

本発明は、油脂分野で利用することができる。 The present invention can be used in the field of fats and oils.

Claims (2)

エステル交換反応により油脂を製造する方法であって、
前記エステル交換反応後の油脂中のジアルキルケトンを、超臨界流体クロマトグラフィーで定量する工程を含み、
定量する工程後の精製条件及び/又はブレンド条件を、定量されたジアルキルケトン量に基づいて決定する、ことを特徴とする製造方法。
It is a method of producing fats and oils by transesterification reaction.
The step of quantifying the dialkyl ketone in the fat and oil after the transesterification reaction by supercritical fluid chromatography is included.
A production method comprising determining the purification conditions and / or blending conditions after the quantification step based on the quantified amount of dialkyl ketone.
前記油脂が、アルカリ触媒を用いた油脂のエステル交換反応生成物である、請求項1に記載の製造方法。The production method according to claim 1, wherein the fat and oil is a transesterification reaction product of the fat and oil using an alkaline catalyst.
JP2018044702A 2018-03-12 2018-03-12 Quantitative method of dialkyl ketone in fats and oils Active JP6991677B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018044702A JP6991677B2 (en) 2018-03-12 2018-03-12 Quantitative method of dialkyl ketone in fats and oils
PCT/JP2019/009221 WO2019176750A1 (en) 2018-03-12 2019-03-08 Method for quantifying dialkyl ketones in oil and fat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044702A JP6991677B2 (en) 2018-03-12 2018-03-12 Quantitative method of dialkyl ketone in fats and oils

Publications (2)

Publication Number Publication Date
JP2019158536A JP2019158536A (en) 2019-09-19
JP6991677B2 true JP6991677B2 (en) 2022-01-12

Family

ID=67907782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044702A Active JP6991677B2 (en) 2018-03-12 2018-03-12 Quantitative method of dialkyl ketone in fats and oils

Country Status (2)

Country Link
JP (1) JP6991677B2 (en)
WO (1) WO2019176750A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117561443A (en) 2021-07-05 2024-02-13 不二制油集团控股株式会社 Method for separating and quantifying saturated body and unsaturated body of dialkyl ketone

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250186A (en) 2012-06-01 2013-12-12 Fuji Oil Co Ltd Method for separating or measuring 3-mono chloropropane-1,2-diol fatty acid esters in edible oil and fat using supercritical fluid chromatography
JP2014002082A (en) 2012-06-20 2014-01-09 Chikuno Shokuhin Kogyo Kk Quantitative method of volatile organic compound
JP2016538879A (en) 2013-10-28 2016-12-15 トータリー ナチュラル ソリューションズ リミテッド Fractionation method, flavor products and beer products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250186A (en) 2012-06-01 2013-12-12 Fuji Oil Co Ltd Method for separating or measuring 3-mono chloropropane-1,2-diol fatty acid esters in edible oil and fat using supercritical fluid chromatography
JP2014002082A (en) 2012-06-20 2014-01-09 Chikuno Shokuhin Kogyo Kk Quantitative method of volatile organic compound
JP2016538879A (en) 2013-10-28 2016-12-15 トータリー ナチュラル ソリューションズ リミテッド Fractionation method, flavor products and beer products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. Cert et al.,Chromatographic analysis of minor constituents in vegetable oils,Journal of Chromatography A,,2000年,881,131-148
Katsuhito Horia et al.,High-throughput and sensitive analysis of 3-monochloropropane-1,2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem massspectrometry,Journal of Chromatography A,2012年,1250,99-104

Also Published As

Publication number Publication date
JP2019158536A (en) 2019-09-19
WO2019176750A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
Farajzadeh et al. Derivatization and microextraction methods for determination of organic compounds by gas chromatography
Torbati et al. Simultaneous derivatization and air–assisted liquid–liquid microextraction based on solidification of lighter than water deep eutectic solvent followed by gas chromatography–mass spectrometry: An efficient and rapid method for trace analysis of aromatic amines in aqueous samples
Mogaddam et al. Headspace mode of liquid phase microextraction: A review
de Caland et al. Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography
Gjelstad et al. Parallel artificial liquid membrane extraction: micro-scale liquid–liquid–liquid extraction in the 96-well format
Sajid et al. “Green” nature of the process of derivatization in analytical sample preparation
Yang et al. Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography–mass spectrometry
de Jong et al. Current status and future developments of LC-MS/MS in clinical chemistry for quantification of biogenic amines
Herbst-Johnstone et al. Ethyl propiolate derivatisation for the analysis of varietal thiols in wine
Liu et al. Simultaneous determination of total fatty acid esters of chloropropanols in edible oils by gas chromatography–mass spectrometry with solid-supported liquid–liquid extraction
Li et al. Simultaneous determination of biogenic amines and estrogens in foodstuff by an improved HPLC method combining with fluorescence labeling
Hori et al. High-throughput and sensitive analysis of 3-monochloropropane-1, 2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem mass spectrometry
CN109839448B (en) Solid phase extraction column and method for separating phenolic compounds in diesel oil by solid phase extraction
Olariu et al. Sample preparation for trace analysis by chromatographic methods
Steenbergen et al. Direct analysis of intact glycidyl fatty acid esters in edible oils using gas chromatography–mass spectrometry
Christie STRUCTURAL ANALYSIS OF FATTY {KIDS
CN109839449B (en) Method for separating phenolic compounds in diesel oil by solid phase extraction
JP6991677B2 (en) Quantitative method of dialkyl ketone in fats and oils
JP7134644B2 (en) Determination method of dialkyl ketone in fats and oils
Hara et al. Development of a preparation method to produce a single sample that can be applied to both LC–MS/MS and GC–MS for the screening of postmortem specimens
Radin The hydroxy fatty acids: Isolation, structure determination, quantitation
CN107525706A (en) A kind of method of n-alkane in SPE removing oil product
RU2626601C1 (en) Method of quantitative determination of n-diphenylnitrosamine in meat samples of food production by method of chromatography-mass-spectrometry
JP2019196948A (en) Method for analyzing triglyceride, sorting methods of fats and oils, and method for producing triglyceride
EP3783358B1 (en) Method for analyzing triglyceride, method for separating oil and fat, and method for manufacturing triglyceride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150