WO2019176646A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2019176646A1
WO2019176646A1 PCT/JP2019/008614 JP2019008614W WO2019176646A1 WO 2019176646 A1 WO2019176646 A1 WO 2019176646A1 JP 2019008614 W JP2019008614 W JP 2019008614W WO 2019176646 A1 WO2019176646 A1 WO 2019176646A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
layer
sealing material
surface protection
Prior art date
Application number
PCT/JP2019/008614
Other languages
French (fr)
Japanese (ja)
Inventor
元彦 杉山
善光 生駒
直樹 栗副
陽介 石井
厚志 福島
辻 雅司
知宏 吉原
剛士 植田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020506422A priority Critical patent/JPWO2019176646A1/en
Publication of WO2019176646A1 publication Critical patent/WO2019176646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell module basically includes a first substrate (surface protective substrate), a first resin layer (sealing material layer), a photoelectric conversion unit, and a second resin layer (sealing material layer). And a second substrate (back surface protection substrate) in this order. That is, the photoelectric conversion unit is protected by covering the front and back surfaces of the photoelectric conversion unit with the first substrate and the first resin layer, and the second resin layer and the second substrate. And in a photoelectric conversion part, a several photovoltaic cell is arranged in matrix form, and adjacent photovoltaic cells are electrically connected by tab wiring. In this manner, for example, the output voltage is increased by electrically connecting the plurality of solar cells with the plurality of tab wirings.
  • a glass substrate has been generally used as a protective substrate for a solar cell module.
  • resin substrates have been used instead of glass substrates for weight reduction.
  • each layer is formed by pressurizing while heating to 100 ° C or more.
  • a method of bonding is common.
  • the surface protection substrate and the back surface protection substrate are made of resin
  • the surface protection substrate and the back surface protection substrate are greatly contracted.
  • the surface protection substrate and the back surface protection substrate are different in material and / or thickness, there is a difference in shrinkage rate, and as a result, there is a problem that the obtained solar cell module warps in a concave shape.
  • Patent Document 1 discloses a method of predicting the warpage of the solar cell module and imparting the warpage in the opposite direction to the warpage. Specifically, Patent Document 1 discloses a method of manufacturing a solar cell module by heating and pressing under vacuum in a state where a transparent plate, a sealing material, and solar cells are stacked. . And in the said manufacturing method, it heats and pressurizes in the state which was warped contrary to the curvature of the solar cell module which is set
  • Patent Document 2 discloses a method of suppressing concave warpage by making the thermal expansion coefficients of the front surface protection substrate and the rear surface protection substrate substantially equal. Specifically, in Patent Document 2, a solar cell, a translucent plastic surface material bonded to the light receiving surface side of the solar cell, and a surface material and a thermal expansion coefficient bonded to the back surface side of the solar cell. Discloses a solar cell module composed of a plastic backing material having substantially the same size.
  • JP 2010-258380 A Japanese Utility Model Publication No. 63-43457
  • the present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the solar cell module which can suppress concave curvature by a simple method.
  • a solar cell module includes, in order from the light-receiving surface side, a resin-made surface protective substrate, a gel polymer layer, a first sealing material layer, , A photoelectric conversion unit, a second sealing material layer, and a back surface protective layer including a low thermal expansion component oriented in one direction.
  • the tensile elastic modulus of the gel polymer layer is smaller than any tensile elastic modulus of the surface protective substrate, the first sealing material layer, and the second sealing material layer.
  • the back surface protective layer has a unidirectional thermal expansion coefficient smaller than that of the surface protective substrate. In the back surface protective layer, the thermal expansion coefficient in one direction is different from the thermal expansion coefficient in the other direction perpendicular to the one direction.
  • the moving body according to the second aspect of the present invention includes a solar cell module.
  • FIG. 1 is a plan view showing the solar cell module according to the first embodiment.
  • FIG. 2 is a schematic view showing a cross section of the solar cell module taken along line II-II in FIG.
  • FIG. 3 is a schematic view showing a cross section of a solar cell module having a form different from that of FIG.
  • Fig.4 (a) is a top view which shows the state which the fiber material extended
  • FIG. 4B is a side view showing a state where the light receiving surface side of the solar cell module is convex.
  • Fig.5 (a) is a top view which shows the state which the fiber material extended
  • FIG. 5B is a side view showing a state where the light receiving surface side of the solar cell module is concave.
  • FIG. 6 is a side view showing a solar cell module using a back surface protective layer having slits.
  • FIG. 7 is a plan view showing a back surface protective layer of the solar cell module shown in FIG.
  • FIG. 8 is a plan view showing another example of the back surface protective layer having slits.
  • FIG. 9 is a plan view showing the solar cell module according to the second embodiment.
  • FIG. 10A is a schematic view showing a cross section of the solar cell module taken along line XA-XA in FIG.
  • FIG. 10B is a schematic view showing a cross section of the solar cell module taken along line XB-XB in FIG.
  • FIG. 10A is a schematic view showing a cross section of the solar cell module taken along line XA-XA in FIG.
  • FIG. 10B is a schematic view showing a cross section of the solar cell module taken along line
  • FIG. 11 is a plan view showing a solar cell module according to the third embodiment.
  • FIG. 12 is a schematic view showing a cross section of the solar cell module taken along line XII-XII in FIG.
  • FIG. 13A is a schematic view showing a cross section of the solar cell module taken along line XIIIA-XIIIA in FIG.
  • FIG. 13B is a schematic view showing a cross section of the solar cell module taken along line XIIIB-XIIIB in FIG.
  • FIG. 14 is a cross-sectional view showing a mode in which convex ribs are provided in the extending portion of the surface protection substrate.
  • FIG. 15 is a schematic view showing a cross section of the solar cell module according to the third embodiment.
  • FIG. 12 is a schematic view showing a cross section of the solar cell module taken along line XII-XII in FIG.
  • FIG. 13A is a schematic view showing a cross section of the solar cell module taken along line XIIIA-XIIIA
  • FIG. 16 is a schematic view showing a cross section of the solar cell module according to the third embodiment.
  • FIG. 17 is a plan view showing a solar cell module according to the fourth embodiment.
  • FIG. 18A is a schematic view showing a cross section of the solar cell module taken along line XVIIIA-XVIIIA in FIG.
  • FIG. 18B is a schematic view showing a cross section of the solar cell module taken along line XVIIIB-XVIIIB in FIG.
  • FIG. 19 is a plan view showing a state in which a frame member is provided around the surface protection substrate in the solar cell module of FIG.
  • FIG. 20A is a schematic view showing a cross section of the solar cell module taken along line XXA-XXA in FIG.
  • FIG. 20B is a schematic view showing a cross section of the solar cell module taken along line XXB-XXB in FIG.
  • FIG. 21A is a schematic diagram showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 21B is a schematic view showing a cross section taken along line XVIIIB-XVIIIB in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 22A is a schematic diagram showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 21A is a schematic diagram showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 22B is a schematic view showing a cross section taken along line XVIIIB-XVIIIB in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 23A is a schematic view showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 23B is a schematic diagram showing a cross section taken along line XVIIIB-XVIIIB in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment.
  • FIG. 24 is a cross-sectional view showing the configuration of the solar cell module according to Example 1-1.
  • FIG. 25 shows the evaluation results of the solar cell module in Example 1-1.
  • FIG.25 (a) is a top view of the back surface protective layer used with the solar cell module.
  • FIG. 25 (b) is a side view showing the result of obtaining the displacement when the solar cell module is cooled along the fiber direction B.
  • FIG. 25 (c) is a side view showing the result of obtaining the displacement when the solar cell module is cooled along the direction C perpendicular to the fiber direction B.
  • FIG. 25 (d) is a graph showing the relationship between the amount of vertical displacement and temperature at the right end of the solar cell module.
  • FIG. 26 shows the evaluation results of the solar cell module in Example 1-2.
  • Fig.26 (a) is a top view of the back surface protective layer used with the solar cell module.
  • FIG.26 (b) is a perspective view which shows the result of having calculated
  • FIG.26 (c) is a graph which shows the relationship between the amount of displacements of the up-down direction in the right end of a solar cell module, and temperature.
  • FIG. 27 shows the evaluation results of the solar cell module in Comparative Example 1.
  • Fig.27 (a) is a top view of the back surface protective layer used with the solar cell module.
  • FIG. 27B is a perspective view showing a result of obtaining a displacement when the solar cell module is cooled.
  • FIG. 27C is a graph showing the relationship between the amount of vertical displacement and temperature at the right end of the solar cell module.
  • FIG. 28 shows the evaluation results of the solar cell module in Example 1-3.
  • FIG. 28A is a side view showing the result of obtaining the displacement when the solar cell module is cooled along the fiber direction B.
  • FIG. 28B shows an enlarged right end in the case where the solar cell module is cooled and deformed.
  • FIG. 29 is a schematic diagram showing the solar cell modules of Example 2 and Comparative Example 2 used in the simulation.
  • 29A is a plan view showing the solar cell module
  • FIG. 29B is a view of the solar cell module of FIG. 29A viewed from the right side
  • FIG. 29C is FIG. It is the figure which looked at the solar cell module of a) from the lower surface.
  • FIG. 30 is a perspective view showing displacement when the solar cell modules of Example 2 and Comparative Example 2 are cooled in the simulation.
  • FIG. 1 is a plan view showing a solar cell module 100 according to the first embodiment.
  • a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100.
  • the z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100.
  • the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG.
  • the negative direction is defined in the direction opposite to the arrow.
  • the main plane disposed on the positive side of the z-axis is a “light-receiving surface”.
  • the main plane disposed on the negative direction side of the z-axis is the “back surface”.
  • the “light receiving surface” means a surface on which light is mainly incident, and the “back surface” means a surface opposite to the light receiving surface.
  • the positive direction side of the z-axis may be referred to as “light-receiving surface side”
  • the negative direction side of the z-axis may be referred to as “back surface side”.
  • the solar cell module 100 has a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14. Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power.
  • the solar battery cell 10 is formed of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphide (InP).
  • the structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG.
  • a plurality of finger electrodes extending in the x direction in parallel to each other and a plurality of finger electrodes extending in the y direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar battery cell 10.
  • two bus bar electrodes are provided. The bus bar electrode connects each of the plurality of finger electrodes.
  • the plurality of solar cells 10 are arranged in a matrix on the xy plane.
  • four solar cells 10 are arranged in the x direction, and five solar cells 10 are arranged in the y direction.
  • the number of the photovoltaic cells 10 arranged in the x direction and the number of the photovoltaic cells 10 arranged in the y direction are not limited to these.
  • the five solar cells 10 arranged side by side in the y direction are connected in series by the tab wiring 12 to form one solar cell string 16.
  • the four solar cells 10 are arranged in the x direction, four solar cell strings 16 extending in the y direction are arranged in parallel in the x direction.
  • the solar cell string 16 refers to a combination of a plurality of solar cells 10 and a plurality of tab wires 12.
  • the tab wiring 12 electrically connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side. That is, the adjacent solar cells 10 are electrically connected to each other by the tab wiring 12.
  • the tab wiring 12 is an elongated metal foil. For example, a copper foil coated with solder or silver is used. Resin is used for connection between the tab wiring 12 and the bus bar electrode. This resin may be either conductive or non-conductive. In the latter case, the tab wiring 12 and the bus bar electrode are electrically connected by direct contact. The tab wiring 12 and the bus bar electrode may be connected by using solder instead of resin.
  • connection wires 14 extend in the x direction on the positive side and the negative side of the y-axis of the solar cell string 16.
  • the connection wiring 14 electrically connects two adjacent solar cell strings 16.
  • each of the solar battery cell 10 and the solar battery string 16 may be a “photoelectric converter”, and a combination of the plurality of solar battery strings 16 and the connection wiring 14 is a “photoelectric converter”. Also good.
  • a frame member (not shown) may be attached to the outer edge of the solar cell module 100. The frame member protects the outer edge of the solar cell module 100 and is used when the solar cell module 100 is installed on a roof or the like.
  • FIG. 2 is a cross-sectional view showing a part of the solar cell module 100 taken along the line II-II in FIG.
  • the solar cell module 100 includes a solar cell string 16 including solar cells 10 and tab wires 12, connection wires 14, a surface protection substrate 20, a gel polymer layer 22, a first sealing material layer 26, and a second seal.
  • a stopper layer 28 and a back surface protective layer 32 are provided. 2 corresponds to the light receiving surface (front surface) side, and the lower side corresponds to the back surface side.
  • the surface protection substrate 20 in order from the light receiving surface side, the surface protection substrate 20, the gel polymer layer 22, the first sealing material layer 26, and the photoelectric conversion unit (solar cell 10, tab wiring 12, The connection wiring 14), the second sealing material layer 28, and the back surface protective layer 32 are laminated.
  • a back surface protective layer 32 is provided on the back surface of the solar cell module 100. As shown in FIG. 2, since the thickness of the back surface protective layer 32 is thinner than that of the front surface protective substrate 20, the back surface protective layer 32 has small rigidity and is easily deformed. In addition, the one-way thermal expansion coefficient of the back surface protection layer 32 is smaller than the thermal expansion coefficient of the front surface protection substrate 20, and the one-way expansion and contraction of the back surface protection layer 32 due to the temperature change is the expansion and contraction of the front surface protection substrate 20. Smaller than.
  • the gel-like polymer layer 22 has a lower tensile elastic modulus than any one of the surface protective substrate 20, the first sealing material layer 26, and the second sealing material layer 28, and has a high flexibility. . Therefore, even when the surface protective substrate 20 expands and contracts due to a temperature change, the lower gel-like polymer layer 22 adjacent to the surface protective substrate 20 has a small tensile elastic modulus, and therefore can follow the expansion and contraction of the surface protective substrate 20. it can.
  • the gel-like polymer layer 22 follows the expansion and contraction, so that the generation of stress due to the expansion and contraction of the surface protective substrate 20 is alleviated.
  • the back surface protective layer 32 has a thermal expansion coefficient in a predetermined direction smaller than that of the front surface protective substrate 20, and is difficult to expand and contract due to a temperature change. Therefore, it is suppressed that either one tends to expand and contract on the front and back of the solar cell module 100, and the balance of stress is maintained. As a result, generation
  • the back surface protective layer 32 is thin, it has a small rigidity and is easily deformed, and therefore has excellent followability to a curved surface shape. Furthermore, by reducing the thickness of the back surface protective layer 32, it is possible to reduce the weight as compared with a substrate-like substrate (back surface protective substrate) equivalent to the surface protective substrate 20.
  • the surface protection substrate 20 is a substrate that is located on the sunlight receiving side of the solar cell module 100 and is made of a transparent resin.
  • the transparent resin constituting the surface protective substrate 20 include polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), and polystyrene (PS). ), At least one selected from the group consisting of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Polycarbonate (PC) is excellent in impact resistance and translucency, and is suitable for protecting the surface of the solar cell module 100.
  • the surface protective substrate 20 may include a hard coat layer made of silicone or acrylic urethane on the surface. Furthermore, the surface protective substrate 20 or the hard coat layer may contain an ultraviolet absorber, a gloss adjusting agent, and an antireflection component.
  • the thickness of the surface protective substrate 20 is not particularly limited, but is preferably 2 mm to 6 mm, and more preferably 3 mm to 5 mm. As will be described later, the thickness of the back surface protective layer 32 is preferably 10% or less of the thickness of the surface protective substrate 20. And the mechanical strength which falls because the thickness of the back surface protective layer 32 is thin is ensured by the surface protective substrate 20 being thick. By setting the thickness of the surface protection substrate 20 in such a range, the solar cell module 100 can be appropriately protected, and incident light can efficiently reach the photoelectric conversion unit (solar cell 10).
  • the tensile elastic modulus of the surface protective substrate 20 is preferably 1.0 GPa to 10.0 GPa, and more preferably 2.3 GPa to 2.5 GPa. By setting the tensile elastic modulus of the surface protection substrate 20 in such a range, the surface of the solar cell module 100 can be appropriately protected.
  • the tensile modulus in the present specification can be measured, for example, according to JIS K7161-1 (Plastics-Determination of tensile properties-Part 1: General rules) as follows.
  • the tensile modulus is a value when the temperature is 23 ⁇ 2 ° C. and the humidity is 50 ⁇ 10%.
  • Et ( ⁇ 2 ⁇ 1) / ( ⁇ 2 ⁇ 1) (1)
  • Et is the tensile modulus (Pa)
  • the total light transmittance of the surface protective substrate 20 is preferably 80% or more, more preferably 90 to 100%. By setting the total light transmittance of the surface protective substrate 20 within this range, light can efficiently reach the photoelectric conversion unit (solar cell 10).
  • the total light transmittance in this specification can be measured by, for example, JIS K7361-1 (Plastic—Test method for total light transmittance of transparent material—Part 1: Single beam method).
  • the thermal expansion coefficient (linear expansion coefficient) of the surface protective substrate 20 is not particularly limited, but can be 40 to 110 ( ⁇ 10 ⁇ 6 K ⁇ 1 ).
  • the thermal expansion coefficient (linear expansion coefficient) in this specification can be measured by JIS K7197: 2012 (linear expansion coefficient test method by thermomechanical analysis of plastics).
  • the gel-like polymer layer 22 is a layer formed of a gel-like polymer rich in flexibility, and is located between the surface protective substrate 20 and the first sealing material layer 26.
  • the gel polymer layer 22 has flexibility, and follows the expansion and contraction when the surface protection substrate 20 expands and contracts. Therefore, it is possible to prevent the stress due to the expansion and contraction of the surface protection substrate 20 from being transmitted to the photoelectric conversion unit. That is, the stress due to the expansion and contraction of the surface protective substrate 20 can be relaxed by the gel-like polymer layer 22.
  • the gel is not particularly limited, but is classified into a gel containing a solvent and a gel not containing a solvent.
  • a hydrogel whose dispersion medium is water or an organogel whose dispersion medium is an organic solvent can be used.
  • a gel containing a solvent it is possible to use either a polymer gel having a number average molecular weight of 10,000 or more, an oligomer gel having a number average molecular weight of 1,000 or more and less than 10,000, or a low molecular gel having a number average molecular weight of less than 1,000. it can.
  • the gel polymer is preferably composed of at least one selected from the group consisting of silicone resin, urethane resin, acrylic resin and styrene resin.
  • the gel-like polymer layer 22 preferably has a thickness of 5 to 70% with respect to the thickness of the surface protective substrate 20, and more preferably has a thickness of 10 to 50%. Since the gel-like polymer layer 22 has such a thickness, stress due to expansion / contraction of the surface protective substrate 20 can be sufficiently relieved.
  • the tensile elastic modulus of the gel polymer layer 22 is preferably 0.1 kPa or more and less than 5 MPa, more preferably 1 kPa or more and 1 MPa or less. When the tensile elastic modulus of the gel polymer layer 22 is in such a range, the stress due to expansion / contraction of the surface protective substrate 20 can be sufficiently relaxed.
  • the total light transmittance of the gel polymer layer 22 is preferably 80% or more, and preferably 90 to 100%. By setting the total light transmittance of the gel polymer layer 22 within this range, light can efficiently reach the photoelectric conversion portion (solar cell 10).
  • the 1st sealing material layer 26 and the 2nd sealing material layer 28 seal a photoelectric conversion part.
  • the first sealing material layer 26 is disposed on the negative direction side (lower side) of the z-axis of the surface protection substrate 20, and the second sealing material layer 28 is the positive direction side of the back surface protection layer 32 on the z-axis. (Upper side).
  • a gel having a tensile modulus of 0.001 MPa to 1 MPa and a loss coefficient of 0.1 to 0.52 is used.
  • a gel for example, at least one selected from the group consisting of silicone gel, acrylic gel, and urethane gel can be used.
  • the tensile modulus is about 0.022 MPa.
  • the loss coefficient is a ratio G ′′ / G ′ between the storage shear modulus (G ′) and the loss shear modulus (G ′′) and is represented by tan ⁇ .
  • the loss factor indicates how much energy the material absorbs when the material deforms. The larger the value of tan ⁇ , the more energy is absorbed. This loss factor is measured by a dynamic viscoelasticity measuring device.
  • the first sealing material layer 26 is formed of a rectangular sheet material having translucency and having a surface with slightly small dimensions in the xy plane of the surface protection substrate 20.
  • the first sealing material layer 26 may be liquid.
  • the second sealing material layer 28 for example, a thermoplastic resin such as a resin film such as EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyral), polyimide, or the like is used.
  • a thermosetting resin may be used.
  • EVA is preferably used.
  • the tensile modulus is 0.01 to 0.25 GPa and the loss factor is about 0.05.
  • the second sealing material layer 28 is formed of a rectangular sheet material having translucency and having a surface having a slightly small size in the xy plane of the surface protection substrate 20.
  • the back surface protective layer 32 which is thin and has low rigidity is provided on the back surface of the solar cell module 100.
  • the second sealing material layer 28 located on the back surface protective layer 32 side is easily affected by stress from the back surface protective layer 32, and there is a concern that the tab wiring 12 may be disconnected. Therefore, in the solar cell module 100, the tensile elastic modulus of the second sealing material layer 28 is preferably larger than the tensile elastic modulus of the first sealing material layer 26.
  • the tensile elastic modulus of the second sealing material layer 28 that is, making it difficult to deform, the tab wiring 12 becomes difficult to displace, and disconnection of the tab wiring 12 due to stress from the back surface protection layer 32 is prevented. Can be suppressed.
  • the solar cell module 100 includes a surface protection substrate 20, a gel polymer layer 22, a first sealing material layer 26, a photoelectric conversion unit, a second sealing material layer 28, and a back surface protection layer 32. ing. However, the solar cell module 100 includes the intermediate layer 24 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. , 30 is preferably included. Moreover, it is preferable that the intermediate layers 24 and 30 are layers whose tensile elastic modulus is larger than any of the first sealing material layer 26 and the second sealing material layer 28.
  • the back surface protective layer 32 is relatively thin, it cannot be said that the mechanical strength is high, and there is a concern that the impact resistance on the back surface side is lowered. That is, there is a concern that the solar battery cell 10 may be damaged due to an impact received on the back side when the solar battery module 100 is transported or installed. Therefore, a medium having a relatively large tensile elastic modulus is provided between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. By providing the layer, impact resistance can be improved.
  • the intermediate layers 24 and 30 are provided both between the gel polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. Is shown.
  • the solar cell module shown in FIG. 3 is different from the configuration shown in FIG. 2 in that the intermediate layers 24 and 30 are provided, but the other configurations are the same. From the viewpoint of improving the strength, it is preferable to provide two intermediate layers 24 and 30 as shown in FIG.
  • the intermediate layer 24 has a tensile elastic modulus larger than any of the first sealing material layer 26 and the second sealing material layer 28. Therefore, even when the surface protection substrate 20 expands and contracts, since the intermediate layer 24 does not follow the expansion and contraction of the surface protection substrate 20, it is possible to suppress the transmission of stress to the photoelectric conversion unit.
  • the thermal expansion coefficients of the intermediate layers 24 and 30 are smaller than the thermal expansion coefficients of the first sealing material layer 26 and the second sealing material layer 28. With such a configuration, even when the surface protection substrate 20 expands and contracts due to a temperature change, the intermediate layers 24 and 30 can relieve stress due to the expansion and contraction of the surface protection substrate 20.
  • the materials constituting the intermediate layers 24 and 30 are polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polycarbonate, polyacetal, acrylic resin, polyamide resin, ABS resin, ACS resin, AES. Examples thereof include resins, ASA resins, and copolymers thereof.
  • the intermediate layers 24 and 30 may be made of fluorine resin such as polyvinyl fluoride (PVF), silicone resin, cellulose, nitrile resin, phenol resin, polyurethane, ionomer, polybutadiene, polybutylene, polymethylpentene, polyvinyl alcohol.
  • the materials constituting the intermediate layers 24 and 30 may be used alone or in combination of two or more. Especially, as a material which comprises the intermediate
  • the intermediate layer 30 positioned between the second sealing material layer 28 and the back surface protective layer 32 preferably has electrical insulation.
  • a conductive base material such as CFRP
  • CFRP conductive base material
  • the occurrence of leakage current may be a problem. Therefore, the leakage current can be insulated by disposing the intermediate layer 30 having electrical insulation between the second sealing material layer 28 and the back surface protective layer 32.
  • the material of the intermediate layer 30 used here it is preferable to use a material having high electrical insulation among the materials of the intermediate layer.
  • the thickness of the intermediate layers 24 and 30 is preferably 1 ⁇ m to 200 ⁇ m, and more preferably 10 ⁇ m to 100 ⁇ m. When the intermediate layer 24 has such a thickness, transmission of stress due to expansion / contraction of the surface protective substrate 20 to the photoelectric conversion unit can be sufficiently suppressed.
  • the thicknesses of the intermediate layers 24 and 30 may be the same or different.
  • the thermal expansion coefficients of the intermediate layers 24 and 30 are preferably 10 to 50 ( ⁇ 10 ⁇ 6 K ⁇ 1 ), and more preferably 15 to 30 ( ⁇ 10 ⁇ 6 K ⁇ 1 ).
  • the thermal expansion coefficient of the intermediate layer 24 is within this range, even when the surface protective substrate 20 expands and contracts due to heat, the expansion and contraction of the intermediate layer 24 is smaller than that of the surface protective substrate 20. Therefore, it can suppress that the stress by the expansion / contraction of the surface protection board
  • substrate 20 is transmitted to a photoelectric conversion part.
  • the total light transmittance of the intermediate layer 24 is preferably 80% or more, and preferably 90 to 100%. By setting the total light transmittance of the intermediate layer 24 within this range, light can efficiently reach the photoelectric conversion unit (solar cell 10).
  • the tensile elastic modulus of the intermediate layers 24 and 30 is preferably 1.0 to 10.0 GPa, and more preferably 2 to 5 GPa. When the tensile elastic modulus of the intermediate layer 24 is within such a range, the stress due to expansion and contraction of the surface protective substrate 20 can be sufficiently relaxed.
  • a film having a water vapor transmission rate of 1.0 g / m 2 ⁇ day or less is formed on at least one of the front and back surfaces of the intermediate layers 24 and 30.
  • the water vapor transmission rate in this specification is determined by, for example, the infrared sensor method stipulated in Appendix B of JIS K7129: 2008 (Plastics-Films and Sheets-Method of determining water vapor transmission rate (instrument measurement method)). Can do.
  • a film having an oxygen permeability of 8.0 ml / m 2 ⁇ day or less is preferably formed on at least one of the front and back surfaces of the intermediate layers 24 and 30.
  • the film provided on the intermediate layers 24 and 30 can be formed by a coating method or a vapor deposition method.
  • the coating provided on the intermediate layers 24 and 30 is preferably composed of an inorganic composite material containing Si and O. Examples of such materials include siloxane compounds, among which polyorganosiloxane is preferable.
  • the back surface protection layer 32 in order to protect the back surface side of the solar cell module 100, the back surface protection layer 32 as a back sheet is provided. And the back surface protective layer 32 has the low thermal expansion component orientated only in one direction. Specifically, as shown in FIG. 4A, the back surface protective layer 32 includes a base material 321 and a fiber material 322 that is provided inside the base material 321 and is a low thermal expansion component.
  • the base material 321 constituting the back protective layer 32 preferably contains a resin, and more preferably consists of a resin.
  • the base material 321 includes an epoxy resin, polyimide (PI), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), polystyrene (PS), polyethylene terephthalate (PET). And at least one selected from the group consisting of polyethylene naphthalate (PEN).
  • PI polyimide
  • PC polymethyl methacrylate
  • PEEK polyether ether ketone
  • PS polystyrene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the low thermal expansion component constituting the back surface protective layer 32 is preferably a material whose one-way thermal expansion coefficient in the back surface protective layer 32 is smaller than the thermal expansion coefficient of the surface protective substrate 20.
  • a fiber material 322 is used as the low thermal expansion component of the back surface protective layer 32.
  • the fiber material 322 is not particularly limited, at least one of an inorganic fiber made of an inorganic material and an organic fiber made of an organic material can be used. For example, at least one selected from the group consisting of carbon fiber, glass fiber, and aramid fiber Is preferably used.
  • the back surface protective layer 32 is preferably made of fiber reinforced plastic (FRP) having a base material 321 and a fiber material 322 which are matrix resins.
  • FRP fiber reinforced plastic
  • the fiber reinforced plastic at least one selected from the group consisting of carbon fiber reinforced plastic (CFRP), glass fiber reinforced plastic (GFRP), and aramid fiber reinforced plastic (AFRP) can be used.
  • CFRP carbon fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • the fiber material 322 which is a low thermal expansion component is oriented only in one direction. Specifically, as illustrated in FIG. 4A, the fiber material 322 included in the base material 321 is oriented along the x direction. Alternatively, the fiber material 322 included in the base material 321 is oriented along the y direction.
  • a UD UniDirection
  • the back surface protective layer 32 has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate 20. That is, when the fiber material 322 is oriented along the x direction, the back surface protective layer 32 has a thermal expansion coefficient in the x direction smaller than that of the surface protective substrate 20. Similarly, when the fiber material 322 is oriented along the y direction, the back surface protective layer 32 has a thermal expansion coefficient in the y direction smaller than that of the surface protective substrate 20.
  • the thermal expansion coefficient in one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction are different from each other. That is, in the back surface protective layer 32, when the fiber material 322 is oriented along the x direction, the thermal expansion coefficient in the x direction and the thermal expansion coefficient in the y direction perpendicular to the x direction are different from each other. Yes. Similarly, in the back surface protective layer 32, when the fiber material 322 is oriented along the y direction, the thermal expansion coefficient in the y direction and the thermal expansion coefficient in the x direction are different from each other.
  • the resin surface protection substrate 20 contracts along both the x direction and the y direction.
  • the back surface protective layer 32 has a thermal expansion coefficient in one direction (x direction or y direction) smaller than that of the surface protective substrate 20, the back surface protective layer 32 is in the one direction. Then, it does not shrink more than the surface protection substrate 20. Further, the back surface protective layer 32 is unlikely to contract in the one direction, but easily contracts in the other direction perpendicular to the one direction.
  • the front surface protection substrate 20 contracts along both the x direction and the y direction, but the back surface protection layer 32 hardly contracts along the x direction or the y direction. Deformation into a concave shape can be suppressed.
  • the solar cell module 100 of the first embodiment may have a curved surface shape in which the light receiving surface side is convex in a room temperature state. And even when such a convex solar cell module 100 is cooled, the front surface protection substrate 20 shrinks along both the x direction and the y direction, but the back surface protection layer 32 extends along the x direction or the y direction. It is hard to shrink. As a result, the convex solar cell module 100 can be maintained in a convex shape without being deformed into a concave shape.
  • the solar cell module 100 when the cross member in which the fiber material 322 is alternately oriented vertically and horizontally is used as the back surface protective layer, the solar cell module 100 is deformed into a concave shape.
  • the cloth material has a small coefficient of thermal expansion in both the x direction and the y direction. Therefore, when the solar cell module using the cloth material as the back surface protection layer is cooled, the surface protection substrate 20 contracts along both the x direction and the y direction, but the back surface protection layer 32 is both in the x direction and the y direction. It is difficult to shrink. As a result, the solar cell module 100a is deformed into a concave shape as shown in FIG.
  • the solar cell module 100 includes, in order from the light receiving surface side, the resin surface protection substrate 20, the gel polymer layer 22, the first sealing material layer 26, the photoelectric conversion unit, and the second sealing. It has the stop material layer 28 and the back surface protective layer 32 provided with the low thermal expansion component orientated in one direction.
  • the tensile elastic modulus of the gel polymer layer 22 is smaller than any tensile elastic modulus of the surface protective substrate 20, the first sealing material layer 26, and the second sealing material layer 28.
  • the back surface protective layer 32 has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate 20. In the back surface protective layer 32, the thermal expansion coefficient in one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction are different from each other.
  • the front surface protective substrate 20 contracts along both the x direction and the y direction, but the back surface protective layer 32 hardly contracts along the x direction or the y direction. Therefore, it is possible to suppress the solar cell module 100 from being deformed into a concave shape.
  • the low thermal expansion component does not need to extend along the x direction which is the short direction or the y direction which is the long direction.
  • the low thermal expansion component may be stretched at a predetermined angle from the x direction or the y direction.
  • the back surface protective layer 32 may improve the reflectance by adding titanium oxide or the like to the base material 321 in order to increase the power generation efficiency on the back surface of the photoelectric conversion unit. Further, the surface of the back surface protective layer 32 may be plated.
  • the difference between the thermal expansion coefficient of the surface protective substrate 20 and the thermal expansion coefficient in the other direction perpendicular to the one direction in the back surface protective layer 32 is preferably as small as possible.
  • the shrinkage rate in the x direction and the y direction of the front surface protection substrate 20 approximates the shrinkage rate in the other direction of the back surface protection layer 32.
  • a shrinkage rate is small.
  • the difference between the thermal expansion coefficient of the surface protective substrate and the thermal expansion coefficient in the other direction in the back surface protective layer is preferably 30 ⁇ 10 ⁇ 6 K ⁇ 1 or less, and is preferably 20 ⁇ 10 ⁇ 6 K ⁇ 1 or less. More preferably, it is 10 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the back surface protection layer 32 includes a base material 321 and a fiber material 322 that is a low thermal expansion component, and the thermal expansion coefficient of the fiber material 322 is smaller than the thermal expansion coefficient of the base material 321.
  • the thermal expansion coefficient of the fiber material 322 is smaller than the thermal expansion coefficient of the base material 321, the thermal expansion coefficient in one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction may be different from each other. it can. As a result, when the solar cell module 100 is cooled, it is suppressed from being deformed into a concave shape.
  • the thickness of the back surface protective layer 32 is not particularly limited, it is preferably 10% or less of the thickness of the surface protective substrate 20, more preferably 5% or less, and further preferably 3% or less.
  • the lower limit of the thickness of the back surface protective layer 32 is preferably 0.8% of the thickness of the surface protective substrate 20.
  • the thickness of the back surface protective layer 32 is 0.5 mm or less.
  • a barrier layer on at least one of the front surface and the back surface of the back surface protective layer 32. That is, in the solar cell module 100 shown in FIG. 2, it is preferable to provide a barrier layer between the second sealing material layer 28 and the back surface protective layer 32. In the solar cell module 100 shown in FIG. 3, it is preferable to provide a barrier layer between the intermediate layer 30 and the back surface protective layer 32. Moreover, it is also preferable to provide a barrier layer on the main surface (back surface) on the negative direction side of the z-axis in the back surface protective layer 32 shown in FIGS.
  • the barrier layer is preferably a layer that suppresses permeation of at least one of oxygen and water vapor.
  • the barrier layer may be a film having a predetermined thickness or a thin film coating.
  • the barrier layer can be made of the same material as the coating provided on the intermediate layers 24 and 30.
  • the UD material When fiber reinforced plastic of UD material is used for the back surface protection layer 32 and the thickness of the back surface protection layer 32 is reduced, the UD material is partially overlapped as necessary to reinforce a desired location. In the layer 32, it is possible to add strength to the characteristics. In addition, when overlapping UD materials, it is necessary to overlap the fibers of the UD materials in the same direction.
  • the back surface protective layer 32 when the thickness of the back surface protective layer 32 is reduced, the back surface protective layer 32 can be bonded while following the shape of the second seal material layer 28, and between the second seal material layer 28 and the back surface protective layer 32. It is possible to make it difficult for air bubbles to be mixed in. For example, even if the surface protection substrate 20 has a curved shape, the back surface protection layer 32 can be bonded to the shape of the surface protection substrate 20 via the second sealing material layer 28. Therefore, the solar cell module 100 having a curved surface shape can be easily manufactured while suppressing the mixing of bubbles. At this time, if the film module is manufactured with the back surface protective layer 32, the second sealing material layer 28, and the intermediate layer 30 bonded together, the film module itself has flexibility. Bonding to 20 can be facilitated. In addition, since the back surface protective layer 32 has high followability, when a curved solar cell module 100 is manufactured by stacking the layers, for example, a local load is not easily applied to the solar cells 10. Damage to the cell 10 can be suppressed.
  • the second sealing material layer 28 can be quickly heated and crosslinked, so that not only the manufacturing time of the solar cell module 100 is shortened, but also the surface protective substrate 20 Thermal deformation can be suppressed.
  • the photoelectric conversion unit has one or more solar cells 10 connected by the tab wiring 12, and the fiber material 322 is oriented in the extending direction of the tab wiring 12 in the back surface protection layer 32.
  • the fiber material 322 is preferably arranged along the y direction that is the extending direction of the tab wiring 12. In this case, since the back surface protection layer 32 is difficult to expand and contract along the y direction, the displacement of the tab wiring 12 is suppressed, and disconnection can be prevented.
  • the photoelectric conversion unit includes one or more solar cells 10 connected by the tab wiring 12.
  • the back surface protective layer 32 can be set as the structure which has at least 1 notch formed over a part or whole of the direction orthogonal to the extension direction of the tab wiring 12.
  • FIG. As described above, the back surface protective layer 32 is preferably arranged so that the orientation direction of the fiber material 322 is the extending direction of the tab wiring 12.
  • the solar cell module 100 has a curved shape that bends along the extending direction of the tab wiring 12 in the configuration, warping and internal stress may occur in the orientation direction of the fiber material 322. Therefore, by providing a cut in the back surface protection layer 32 over a part or the whole in the direction orthogonal to the extending direction of the tab wiring 12, it is possible to suppress the occurrence of warping and internal stress.
  • FIGS. 6 and 7 show a form in which the back surface protective layer 32 is provided with cuts in the entire direction perpendicular to the extending direction of the tab wiring 12. That is, the back protective layer 32 shown in FIGS. 6 and 7 is divided into four by providing three cuts. Thus, since the back surface protective layer 32 is divided, the bending stress is cut off at the cut portion, so that generation of warpage and internal stress can be suppressed.
  • FIG. 8A is a form in which three cuts are provided from one side to the other side of the back surface protective layer 32, and FIG. 8B shows a cut from one side and a cut from the other side on two opposite sides. And three are alternately provided.
  • the other side has not been cut.
  • a cut is provided in a part of the back surface protective layer 32 in a direction orthogonal to the extending direction of the tab wiring 12. That is, unlike the embodiment shown in FIGS. 6 and 7, the back surface protective layer 32 is not completely divided but integrated. 8A and 8B, since the stress for bending is cut off at the cut portion, the occurrence of warpage and internal stress can be suppressed.
  • a cut may be provided in a broken line shape.
  • the solar cell module 100 has one or more solar cells 10 whose photoelectric conversion portions are connected by tab wirings 12, and has a curved surface shape in which the light receiving surface side of the surface protection substrate 20 is convex, and the tab wirings 12 are curved surfaces. It can be set as the structure bent along.
  • the back surface protective layer 32 has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate 20, and the back surface protective layer 32 is perpendicular to the one direction thermal expansion coefficient.
  • the thermal expansion coefficients in other directions are different from each other. Therefore, even if it is a case where the light-receiving surface side of the solar cell module 100 becomes convex, it becomes possible to suppress that the solar cell module 100 deform
  • FIG. 9 is a plan view showing a solar cell module 100A according to the second embodiment.
  • FIG. 10A is a schematic diagram showing a cross section of the solar cell module taken along line XA-XA in FIG. 9, and
  • FIG. 10B is a diagram of the solar cell module taken along line XB-XB in FIG. It is the schematic which shows a cross section.
  • the tab wiring 12 and the connection wiring 14 are omitted.
  • the solar cell module 100 ⁇ / b> A includes a photovoltaic cell 10, a photoelectric conversion unit having a tab wiring 12 and a connection wiring 14, a surface protection substrate 20, and a first sealing material, as in the first embodiment.
  • the layer 26, the second sealing material layer 28, and the back surface protective layer 32 are provided. Therefore, in the solar cell module 100A, in order from the light receiving surface side, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit (solar cell 10, tab wiring 12, connection wiring 14), and second The sealing material layer 28 and the back surface protective layer 32 are laminated.
  • the back surface protective layer 32 can use the fiber reinforced plastic which has a base material (matrix resin) and the fiber material which is provided in the inside of a base material and is a low thermal expansion component.
  • a UD (UniDirection) material in which fiber materials are arranged in one direction or a cloth material in which fiber materials are alternately oriented vertically and horizontally can be used.
  • the base material and fiber material which comprise the back surface protective layer 32 can use the same thing as 1st embodiment.
  • the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protection layer 32 are arranged in this order.
  • a laminate is obtained.
  • each layer is bonded by pressurizing the laminate with heating to 100 ° C. or higher using a mold.
  • the sealing material is heated by heat.
  • the resin may melt and leak from between the front surface protection substrate 20 and the back surface protection layer 32.
  • the mold is contaminated, which may reduce productivity.
  • the area of the back surface protection layer 32 is smaller than the area of the surface protection substrate 20, and the area of the first sealing material layer 26 and the second sealing material The area of the layer 28 is preferably larger.
  • the back surface protection layer 32 is directly bonded to the surface protection substrate 20 so as to cover the end portion 26 a of the first sealing material layer 26 and the end portion 28 a of the second sealing material layer 28 at the periphery of the surface protection substrate 20. It is preferable. That is, as shown in FIGS. 10A and 10B, both the end portion 26 a of the first sealing material layer 26 and the end portion 28 a of the second sealing material layer 28 are covered with the back surface protective layer 32.
  • the back surface protection layer 32 covers the end portion 26a of the first sealing material layer 26 and the end portion 28a of the second sealing material layer 28 over the entire circumference of the solar cell module 100A, and the back surface of the front surface protection substrate 20 with respect to the back surface. It is preferable that the joint portion of the protective layer 32 is formed in an annular shape. In this case, the first sealing material layer 26 and the second sealing material layer 28 are entirely wrapped by the front surface protection substrate 20 and the back surface protection layer 32.
  • substrate 20 and the back surface protection layer 32 may be formed using an adhesive agent, and may be formed by welding of the back surface protection layer 32.
  • the first sealing material layer 26 and the second sealing material layer 28 are heated.
  • the sealing material constituting the first sealing material layer 26 and the second sealing material layer 28 is sealed to protrude outward from between the front surface protection substrate 20 and the rear surface protection layer 32 so as not to interfere with the mold or the like. It is difficult to control the amount of the stop material. For this reason, the protruding shape of the sealing material is not stable, and the appearance of the solar cell module may be deteriorated.
  • the back surface protection layer 32 covers the end portion 26a of the first sealing material layer 26 and the end portion 28a of the second sealing material layer 28 as in this embodiment, such a problem is caused. Occurrence can be prevented. Furthermore, since air and moisture hardly act on the first sealing material layer 26 and the second sealing material layer 28, it is possible to suppress deterioration of the first sealing material layer 26 and the second sealing material layer 28. it can.
  • the area of the back surface protection layer 32 is smaller than the area of the surface protection substrate 20, and the area of the first sealing material layer 26 and the second sealing layer It is larger than the area of the stopping material layer 28.
  • the back surface protection layer 32 is directly bonded to the surface protection substrate 20 so as to cover the end portion 26 a of the first sealing material layer 26 and the end portion 28 a of the second sealing material layer 28 at the periphery of the surface protection substrate 20. ing.
  • the solar cell module 100A includes the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protection layer 32. Yes.
  • the gel-like polymer layer 22 may be interposed between the surface protective substrate 20 and the first sealing material layer 26 as in the first embodiment.
  • the solar cell module 100A includes an intermediate layer 24 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. , 30 may be further included.
  • the solar cell module 100A is formed by laminating the surface protective substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protective layer 32. It can be obtained by applying pressure while heating. In addition, when an excess part exists in the back surface protective layer 32, after manufacturing the solar cell module 100A, the part may be cut and removed.
  • FIG. 11 is a plan view showing a solar cell module 100B according to the third embodiment.
  • FIG. 12 is a cross-sectional view showing a part of the solar cell module 100B along the line XII-XII in FIG.
  • the solar cell module 100 ⁇ / b> B includes a photoelectric conversion unit having a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14.
  • the solar cell module 100 ⁇ / b> B includes a surface protection substrate 20, a first sealing material layer 26, a second sealing material layer 28, and a back surface protection layer 32 in addition to the photoelectric conversion unit.
  • the surface protection substrate 20 corresponds to the light receiving surface (front surface) side, and the lower side corresponds to the back surface side. Therefore, in the solar cell module 100B, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protection layer 32 are stacked in order from the light receiving surface side. Has been.
  • the surface protection substrate 20 is a substrate that is located on the sunlight receiving side of the solar cell module 100B and is made of a resin material having translucency. As a resin material which comprises the surface protection board
  • the thickness of the surface protection substrate 20 is preferably 2 mm to 6 mm, and more preferably 3 mm to 5 mm.
  • the tensile elastic modulus of the surface protective substrate 20 is preferably 1.0 GPa to 10.0 GPa, and more preferably 2.3 GPa to 2.5 GPa.
  • the total light transmittance of the surface protective substrate 20 is preferably 80% or more, and more preferably 90 to 100%.
  • the thermal expansion coefficient (linear expansion coefficient) of the surface protective substrate 20 is preferably 40 to 110 ( ⁇ 10 ⁇ 6 K ⁇ 1 ).
  • the surface protection substrate 20 is preferably convex toward the light receiving side.
  • FIG. 13A is a schematic diagram showing a cross section of the solar cell module taken along line XIIIA-XIIIA in FIG. 11, and FIG. 13B is a diagram of the solar cell module taken along line XIIIB-XIIIB in FIG. It is the schematic which shows a cross section.
  • the tab wiring 12 and the connection wiring 14 are omitted.
  • the surface protection substrate 20 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable.
  • the surface protection substrate 20 is curved so as to be convex toward the light receiving side along the direction of the tab wiring 12 (y direction). Further, the surface protection substrate 20 is preferably curved so as to be convex toward the light receiving side along a direction (x direction) perpendicular to the direction of the tab wiring 12.
  • the first sealing material layer 26 and the second sealing material layer 28 seal the solar battery cell 10.
  • the first sealing material layer 26 is disposed on the negative direction side (lower side) of the z-axis of the surface protection substrate 20, and the second sealing material layer 28 is the positive direction side of the back surface protection layer 32 on the z-axis. (Upper side).
  • first sealing material layer 26 as in the first embodiment, for example, a gel having a tensile modulus of 0.001 MPa to 1 MPa and a loss coefficient of 0.1 to 0.52 can be used.
  • second sealing material layer 28 for example, a thermoplastic resin such as EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyral), polyimide, or the like can be used as in the first embodiment. .
  • a thermosetting resin may be used as the second sealing material layer 28 a thermosetting resin.
  • the first sealing material layer 26 and the second sealing material layer 28 may be formed of the same material.
  • the first sealing material layer 26 and the second sealing material layer 28 are made of gel having a tensile modulus of 0.001 MPa to 1 MPa and a loss coefficient of 0.1 to 0.52. Also good.
  • the first sealing material layer 26 and the second sealing material layer 28 may use thermoplastic resins such as EVA, PVB, and polyimide.
  • the tensile elastic modulus of the second sealing material layer 28 is preferably larger than the tensile elastic modulus of the first sealing material layer 26.
  • the first sealing material layer 26 has a light transmitting property and is formed of a rectangular sheet material having a size smaller than that of the surface protection substrate 20 in the xy plane.
  • the second sealing material layer 28 also has translucency, and is formed of a rectangular sheet material having a size smaller than that of the surface protection substrate 20 in the xy plane.
  • the back surface protective layer 32 is preferably made of a fiber reinforced plastic having a base material (matrix resin) and a fiber material that is provided inside the base material and is a low thermal expansion component.
  • a fiber reinforced plastic As the fiber reinforced plastic, a UD (UniDirection) material in which fiber materials are arranged in one direction or a cloth material in which fiber materials are alternately oriented vertically and horizontally can be used.
  • UD material when using UD material as the back surface protective layer 32, since the UD material is difficult to expand and contract in the fiber direction, the solar cell 10 is damaged or the tab wiring 12 is cut by adjusting the direction in which the UD material is arranged. Can be suppressed.
  • the base material and fiber material which comprise the back surface protective layer 32 can use the same thing as 1st embodiment.
  • the back surface protective layer 32 is preferably convex toward the light receiving side, like the surface protective substrate 20. As shown in FIGS. 13A and 13B, the back surface protective layer 32 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, the back surface protection layer 32 is preferably curved so as to be convex toward the light receiving side along the direction of the tab wiring 12 (y direction). The back surface protective layer 32 is preferably curved so as to be convex toward the light receiving side along a direction (x direction) perpendicular to the direction of the tab wiring 12.
  • the thickness of the back surface protective layer 32 is not particularly limited, it is preferably 10% or less, more preferably 5% or less, and more preferably 3% or less of the thickness of the surface protection substrate 20 as in the first embodiment. More preferably it is.
  • the lower limit of the thickness of the back surface protective layer 32 is preferably 0.8% of the thickness of the surface protective substrate 20.
  • the thickness of the back surface protective layer 32 is 0.5 mm or less.
  • the end portion 26 a of the first sealing material layer 26 and the second sealing material layer 28 are located inside the end portion 20 a of the surface protection substrate 20.
  • the end portion 28a and the end portion 32a of the back surface protective layer 32 are located.
  • the end portion 26 a of the first sealing material layer 26, the end portion 28 a of the second sealing material layer 28, and the back surface protective layer 32 are formed.
  • the end portion 32a is located on the inner side than the end portion 20a of the surface protection substrate 20, that is, on the solar cell 10 side. Thereby, an extending portion 20 b is formed on the outer edge of the surface protection substrate 20.
  • the extending portion 20b formed on the surface protection substrate 20 is formed by extending outward from a joint portion (an end portion 32a of the back surface protection layer 32) with the back surface protection layer 32 in the convex surface protection substrate 20. Has been. And the extension part 20b inclines toward the downward direction (the negative direction side of az axis) from the back surface protective layer 32 in the thickness direction (z direction) of the solar cell module 100B. Further, in the solar cell module 100 ⁇ / b> B, the extending portion 20 b is formed over the entire outer edge of the surface protection substrate 20.
  • the surface protection substrate 20 when manufacturing the solar cell module 100B, first, the surface protection substrate 20, the first sealing material layer 26, the solar cell 10 that is the photoelectric conversion unit, the tab wiring and the connection wiring, and the second A laminated body is obtained by laminating the sealing material layer 28 and the back surface protective layer 32 in this order. Subsequently, each layer is adhere
  • the surface protective substrate 20 is made of a transparent resin, the surface protective substrate 20 contracts greatly when cooled to room temperature after heating. At this time, since the surface protection substrate 20 and the back surface protection layer 32 are different in material and / or thickness, the surface protection substrate 20 and the back surface protection layer 32 have a difference in shrinkage.
  • the front surface protection substrate 20 since the front surface protection substrate 20 is thicker than the back surface protection layer 32, the front surface protection substrate 20 contracts more than the back surface protection layer 32. At this time, the surface protection substrate 20 contracts toward the apex direction of the convex surface protection substrate 20 as indicated by an arrow A in FIG.
  • the extending portion 20 b is provided on the outer edge of the surface protection substrate 20. Since the extending portion 20b serves as a frame for holding the outer edge of the surface protective substrate 20, even if the surface protective substrate 20 contracts toward the apex direction, the surface protective substrate 20 warps in a concave shape. Can be suppressed. Further, as shown in FIGS. 13A and 13B, when the extending portion 20b is inclined downward (in the negative z-axis direction) from the back surface protective layer 32 in the thickness direction. The shrinkage force vector tends to be inclined toward the back surface protective layer 32 side. As a result, the entire solar cell module 100B can be maintained in a convex shape without being deformed into a concave shape.
  • the extending portion 20b is provided on the outer edge of the surface protection substrate 20. Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, the extended portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, so that the entire solar cell module 100B is deformed into a concave shape. Can be suppressed. Further, even when the solar cell module 100B is used in an environment where the high temperature state and the low temperature state are repeated, the solar cell module 100B is deformed into a concave shape at the time of use by providing the extending portion 20b on the outer edge of the surface protection substrate 20. Can be prevented.
  • the length L of the extending portion 20b provided on the outer edge of the surface protective substrate 20 is not particularly limited as long as the entire solar cell module 100B can be prevented from being deformed into a concave shape.
  • the length L between the end portion 20a of the surface protective substrate 20 and the end portion 32a of the back surface protective layer 32 is 1 cm. It is preferably ⁇ 10 cm, more preferably 3 cm to 5 cm.
  • the extended portion 20b of the surface protection substrate 20 may be provided with a convex rib 20c as shown in FIG.
  • the rib 20c is formed so as to protrude downward (on the negative side of the z axis) from the end 20a of the surface protection substrate 20 in the thickness direction (z direction) of the solar cell module 100B.
  • the rib 20c is preferably formed on at least a part of the outer edge of the surface protective substrate 20, and more preferably formed over the entire outer edge of the surface protective substrate 20.
  • the thickness of the rib 20c is preferably equal to the thickness of the surface protection substrate 20 from the viewpoint of productivity. Specifically, the thickness of the rib 20c is preferably 2 mm to 6 mm, and more preferably 3 mm to 5 mm. Further, the height H of the rib 20c is preferably 2 mm to 50 mm, and more preferably 5 mm to 10 mm, from the viewpoint of improving the attachment to a frame member described later.
  • each end of the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 is positioned inside the end portion 20 a of the surface protection substrate 20. It is preferable that the extending portion 20b formed in the above is formed over the entire outer edge of the surface protection substrate. Thereby, since the extension part 20b provided in the whole outer edge of the surface protection board
  • the shape of the surface protection substrate 20 is preferably a substantially rectangular shape having a long side and a short side shorter than the long side. And it forms in the surface protection board
  • the extended portion 20b is preferably formed on the entire long side. That is, when the solar cell module 100B is viewed in a plan view, the extension portion 20b may be formed only on the entire long side or only on the entire short side when it is substantially square. However, it is preferable that the extending portion 20 b is formed on the entire long side of the surface protective substrate 20. Even in this case, since the extending portion 20b plays a role of a frame that holds the outer edge of the surface protection substrate 20, it is possible to suppress the entire solar cell module 100B from being deformed into a concave shape.
  • the outer shape of the solar cell module 100B is preferably substantially rectangular when viewed from above, and can be, for example, rectangular, square, or trapezoidal. Moreover, the solar cell module 100B may be provided with roundness at the corners. Therefore, the shape of the solar cell module 100B does not need to be an accurate quadrangle when viewed in plan.
  • the linear expansion coefficient of the back surface protection layer 32 is preferably smaller than the linear expansion coefficient of the surface protection substrate 20.
  • the back surface protective layer 32 has a smaller thermal expansion than the front surface protective substrate 20. Therefore, even when the back surface protective layer 32 is heated at the time of manufacture, the thermal expansion of the back surface protective layer 32 is suppressed, so that the shape of the back surface protective layer 32 is stabilized, and the solar cell 10, the tab wiring 12, and the connection wiring 14. Breakage can be suppressed.
  • the thermal expansion of the back surface protective layer 32 is suppressed, it is possible to suppress disconnection of the tab wiring 12 and the connection wiring 14 due to thermal shock.
  • the linear expansion coefficient of the back surface protective layer 32 can be adjusted with the addition amount and orientation of the fiber material which is a low thermal expansion component.
  • the solar cell module 100B includes the surface protective substrate 20, the first sealing material layer 26, the solar battery cell 10, the second sealing material layer 28, and the back surface protective layer 32.
  • the gel polymer layer 22 may be interposed between the surface protective substrate 20 and the first sealing material layer 26 as in the first embodiment. Good.
  • the gel polymer layer 22 has flexibility, and follows the expansion and contraction when the surface protection substrate 20 expands and contracts. Therefore, the stress due to the expansion and contraction of the surface protection substrate 20 can be prevented from being transmitted to the solar battery cell 10.
  • the solar cell module 100B includes intermediate layers 24, 30 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. It is preferable to further have. Moreover, it is preferable that the intermediate layers 24 and 30 are layers whose tensile elastic modulus is larger than any of the first sealing material layer 26 and the second sealing material layer 28. An intermediate layer having a relatively large tensile elastic modulus is provided between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. By providing, impact resistance can be improved.
  • the intermediate layers 24 and 30 are provided both between the gel polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. Is shown. From the viewpoint of improving the strength, it is preferable to provide two intermediate layers 24 and 30 as shown in FIG. The intermediate layers 24 and 30 can be the same as those described in the first embodiment.
  • the solar cell module 100B is provided on the photoelectric conversion unit including the plurality of solar cells 10 and the light receiving side where light enters the solar cells 10, and has a light-transmitting first sealing material.
  • Layer 26 The solar cell module is further provided on the light receiving side with respect to the first sealing material layer 26, is made of a translucent resin material, and is further convex toward the light receiving side, A second sealing material layer provided on the side opposite to the light receiving side of the battery cell.
  • the solar cell module 100B further includes a back surface protective layer 32 provided on the second sealing material layer 28 on the side opposite to the solar cells 10.
  • the extended portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, and the entire solar cell module 100B is deformed into a concave shape. This can be suppressed. Moreover, even if the solar cell module 100B is used in an environment in which a high temperature state and a low temperature state are repeated, the extended portion 20b prevents the solar cell module 100B from being deformed into a concave shape during use. Is possible.
  • a frame member (not shown) may be attached to the outer edge of the solar cell module 100B.
  • the frame member protects the end 20a of the surface protection substrate 20 in the solar cell module 100B and is used when the solar cell module 100B is installed on a roof or the like.
  • the extension part 20b provided in the surface protection substrate 20 can function as a connection part with another member.
  • FIG. 17 is a plan view showing a solar cell module 100C according to the fourth embodiment.
  • the solar cell module 100C includes the photovoltaic cell 10, the photoelectric conversion part having the tab wiring 12 and the connection wiring 14, the surface protection substrate 20, the first sealing material layer 26, and the second sealing.
  • a material layer 28 and a back surface protective layer 32 are provided. Therefore, in the solar cell module 100C, in order from the light receiving surface side, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit (solar cell 10, tab wiring 12, connection wiring 14), and second The sealing material layer 28 and the back surface protective layer 32 are laminated.
  • the surface protective substrate 20 is a substrate that is located on the sunlight receiving side of the solar cell module 100C and is made of a resin material having translucency. And like 3rd embodiment, it is preferable that the surface protection board
  • FIGS. 18A and 18B are schematic views showing a cross section of the solar cell module taken along line XVIIIA-XVIIIA in FIG. 17, and FIG. 18B is a diagram of the solar cell module taken along line XVIIIB-XVIIIB in FIG. It is the schematic which shows a cross section.
  • the tab wiring 12 and the connection wiring 14 are omitted.
  • the surface protection substrate 20 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, the surface protection substrate 20 is preferably curved so as to be convex toward the light receiving side along the extending direction (y direction) of the tab wiring 12.
  • the surface protection substrate 20 is preferably curved so as to be convex toward the light receiving side along the direction (x direction) perpendicular to the extending direction of the tab wiring 12. Thereby, even when the solar cell module 100C is cooled and the surface protection substrate 20 contracts along both the x direction and the y direction, the acting force that the surface protection substrate 20 deforms is dispersed, and the solar cell module 100C has a concave shape. Can be prevented from being deformed.
  • the 1st sealing material layer 26 and the 2nd sealing material layer 28 seal the photovoltaic cell 10 similarly to 3rd embodiment.
  • the first sealing material layer 26 is disposed on the negative direction side (lower side) of the z-axis of the surface protection substrate 20, and the second sealing material layer 28 is the positive direction side of the back surface protection layer 32 on the z-axis. (Upper side).
  • a back surface protective layer 32 as a back sheet is provided to protect the back surface side of the solar cell module 100C.
  • the back surface protection layer 32 is preferably convex toward the light receiving side.
  • the back surface protection layer 32 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, the back surface protective layer 32 is preferably curved so as to be convex toward the light receiving side along the extending direction (y direction) of the tab wiring 12.
  • the back surface protective layer 32 is preferably curved so as to be convex toward the light receiving side along a direction (x direction) perpendicular to the extending direction of the tab wiring 12.
  • the back surface protective layer 32 can use the same thing as 3rd embodiment.
  • the end portion 26a of the first sealing material layer 26 and the end portions of the second sealing material layer 28 are located inside the end portion 20a of the surface protection substrate 20.
  • 28a and the end portion 32a of the back surface protective layer 32 are located.
  • the end portion 26 a of the first sealing material layer 26, the end portion 28 a of the second sealing material layer 28, and the back surface protective layer 32 are formed.
  • the end portion 32a is located inside the end portion 20a of the surface protection substrate 20, that is, on the solar cell 10 side.
  • an extending portion 20 b is formed on the outer edge of the surface protection substrate 20.
  • the extending portion 20b formed on the surface protection substrate 20 is formed by extending outward from a joint portion (an end portion 32a of the back surface protection layer 32) with the back surface protection layer 32 in the surface protection substrate 20. . And the extension part 20b inclines toward the downward direction (negative direction side of az axis) from the back surface protective layer 32 in the thickness direction (z direction) of the solar cell module 100C. In the solar cell module 100 ⁇ / b> C, the extending portion 20 b is formed over the entire outer edge of the surface protection substrate 20.
  • the extension formed on the surface protection substrate by the end portions of the first sealing material layer, the second sealing material layer, and the back surface protection layer being located inside the end portion 20a of the surface protection substrate 20.
  • a reinforcing member 21 having a bending strength greater than that of the surface protection substrate is disposed in the existing portion 20b.
  • the reinforcing member 21 is disposed over the entire extending portion 20 b of the surface protection substrate 20, and has a substantially rectangular frame when viewed in plan.
  • a protruding portion 20 d that protrudes downward from the back surface protective layer 32 is formed on the extending portion 20 b of the surface protective substrate 20.
  • the protrusion 20d forms an end 20a and an inner surface 20e parallel to the z-axis, and a flat surface 20f parallel to the xy plane.
  • the reinforcement member 21 is embed
  • the reinforcing member 21 is disposed outside the solar battery cell 10, that is, on the end 20 a side of the surface protection substrate 20 in a plan view. Further, when viewed in plan, the reinforcing member 21 is located on the outer side of the bonding portion (the end portion 32a of the back surface protective layer 32) with the back surface protective layer 32 in the front surface protective substrate 20, that is, on the end portion 20a side of the front surface protective substrate 20. It is preferable that they are arranged.
  • the reinforcing member 21 preferably has a higher bending strength than the surface protection substrate 20. That is, the material constituting the reinforcing member 21 preferably has a higher bending strength than the material constituting the surface protection substrate 20.
  • the bending strength of the surface protective substrate 20 and the reinforcing member 21 can be determined according to JIS K7171: 2016 (Plastics—How to determine bending characteristics).
  • the material constituting the reinforcing member 21 it is preferable to use a material capable of increasing the bending strength as compared with the surface protection substrate 20.
  • a material capable of increasing the bending strength as compared with the surface protection substrate 20.
  • resin and metal can be used as the material constituting the reinforcing member 21.
  • resin which comprises the reinforcement member 21 is not specifically limited, For example, the same resin as the resin which comprises the above-mentioned back surface protective layer 32 can be used.
  • the metal which comprises the reinforcement member 21 is not specifically limited, For example, aluminum or aluminum alloy can be used.
  • fiber reinforced plastic As a material constituting the reinforcing member 21, it is also preferable to use fiber reinforced plastic.
  • the fiber reinforced plastic constituting the reinforcing member 21 the same fiber reinforced plastic as that constituting the back surface protective layer 32 described above can be used.
  • the surface protection substrate 20 when manufacturing the solar cell module 100C, first, the surface protection substrate 20, the first sealing material layer 26, the solar cell 10 as the photoelectric conversion unit, the tab wiring and the connection wiring, and the second A laminated body is obtained by laminating the sealing material layer 28 and the back surface protective layer 32 in this order. Subsequently, each layer is adhere
  • the surface protective substrate 20 since the surface protective substrate 20 is made of a transparent resin, the surface protective substrate 20 contracts greatly when cooled to room temperature after heating. At this time, since the surface protection substrate 20 and the back surface protection layer 32 are different in material and / or thickness, the surface protection substrate 20 and the back surface protection layer 32 have a difference in shrinkage.
  • the front surface protection substrate 20 since the front surface protection substrate 20 is thicker than the back surface protection layer 32, the front surface protection substrate 20 contracts more than the back surface protection layer 32. At this time, the surface protective substrate 20 contracts toward the apex direction of the convex surface protective substrate 20 as indicated by an arrow A in FIG.
  • the extending portion 20b is provided on the outer edge of the surface protection substrate 20, and the reinforcing member 21 having a high bending strength is disposed on the extending portion 20b. Therefore, since the reinforcing member 21 serves as a frame for holding the outer edge of the surface protection substrate 20, even if the surface protection substrate 20 contracts toward the apex direction, the surface protection substrate 20 warps in a concave shape. Can be suppressed. Furthermore, as shown in FIGS. 18A and 18B, when the reinforcing member 21 protrudes downward (in the negative direction of the z axis) from the back surface protective layer 32 in the thickness direction, The shrinkage force vector tends to tilt toward the back surface protective layer 32 side. As a result, the entire solar cell module 100C can be maintained in a convex shape without being deformed into a concave shape.
  • the reinforcing member 21 is provided on the outer edge of the surface protection substrate 20. Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, since the reinforcing member 21 serves as a frame for holding the outer edge of the surface protection substrate 20, the entire solar cell module 100C is deformed into a concave shape. This can be suppressed. Further, even when the solar cell module 100C is used in an environment where the high temperature state and the low temperature state are repeated, by providing the reinforcing member 21 on the outer edge of the surface protection substrate 20, the solar cell module 100C is deformed into a concave shape at the time of use. Can be prevented.
  • the thickness of the extended portion 20 b in the state where the reinforcing member 21 is embedded may be larger than the thickness of the portion other than the extended portion 20 b in the surface protective substrate 20.
  • the extended portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, even if the surface protection substrate 20 contracts toward the apex direction, the surface protection substrate 20 warps in a concave shape. Can be suppressed.
  • the reinforcing member 21 is disposed on the extending portion 20b of the surface protection substrate 20. And as shown in FIG. 18, it is preferable that the reinforcement member 21 is embed
  • the reinforcing member 21 is embedded in the extending portion 20b, it is possible to suppress the reinforcing member 21 from dropping from the surface protection substrate 20 due to poor adhesion. Furthermore, since the reinforcing member 21 is embedded, the number of parts to be assembled at the time of manufacturing the solar cell module 100C is reduced, and thus the manufacturing cost can be suppressed.
  • the reinforcing member 21 is disposed on at least a part of the extending portion 20b of the surface protection substrate 20. However, it is preferable that the reinforcing member 21 is disposed over the entire extending portion 20 b of the surface protection substrate 20. Thereby, since the reinforcement member 21 provided in the whole extension part 20b hold
  • the shape of the surface protection substrate 20 is preferably a substantially rectangular shape having a long side and a short side shorter than the long side. And it is preferable that the reinforcement member 21 is arrange
  • the reinforcing member 21 serves as a frame for holding the outer edge of the surface protection substrate 20, it is possible to suppress the entire solar cell module 100C from being deformed into a concave shape. Further, by disposing the reinforcing member 21 only on the long side of the surface protection substrate 20, it is possible to suppress the deformation to the concave shape with the minimum amount of the reinforcing member 21, and to further reduce the weight and cost. .
  • the outer shape of the solar cell module 100C is preferably substantially rectangular when viewed from above, and can be, for example, rectangular, square, or trapezoidal. Further, the solar cell module 100C may be provided with rounded corners. Therefore, the shape of the solar cell module 100C does not need to be an accurate quadrangle when viewed in plan.
  • a frame member may be attached to the outer edge of the surface protection substrate 20 in the solar cell module 100C.
  • the frame member protects the outer edge of the surface protection substrate 20 in the solar cell module, and is used when the solar cell module is installed on a roof or the like.
  • the surface protective substrate 20 and a frame member such as a moving body to be described later can be joined via the extended portion 20b. . Therefore, the extension part 20b provided in the surface protection substrate 20 can function as a connection part with another member.
  • the solar cell module 100D includes a frame member 40 having a substantially rectangular shape when viewed from above.
  • the frame member 40 is attached to the extending portion 20b of the surface protection substrate 20, and surrounds the end 20a and the flat surface 20f of the surface protection substrate 20.
  • the frame member 40 is attached to the extending portion 20b using attachment means such as an adhesive.
  • the frame member 40 has an L-shaped cross section. That is, the frame member 40 includes a side covering portion 40a that extends in the z direction and covers the end portion 20a of the extending portion 20b, and a positioning portion 40b that protrudes in the x direction or the y direction.
  • a thermoplastic resin such as polycarbonate, vinyl chloride resin, polyester, or ABS resin
  • a thermosetting resin such as phenol resin or polyurethane
  • a rubber material such as nitrile rubber
  • metal materials such as aluminum and steel materials, can also be used.
  • the adhesive layer 41 as an attachment means is interposed between the end portion 20a of the surface protection substrate 20 and the side cover portion 40a, and between the flat surface 20f of the surface protection substrate 20 and the positioning portion 40b, thereby protecting the surface.
  • the substrate 20 and the frame member 40 are fixed.
  • the adhesive layer 41 can include, for example, at least one selected from the group consisting of an epoxy resin, an acrylic resin, a urethane resin, and a silicone resin.
  • it is preferable that the adhesive layer 41 is comprised with resin made into paste form, for example by mixing a solid component with the epoxy resin which added the hardening
  • any resin material that is disposed between the extending portion 20b of the surface protection substrate 20 and the frame member 40 and can bond the extending portion 20b and the frame member 40 can be used. Anything can be used.
  • the frame member 40 can be installed on the outer periphery of the surface protection substrate 20 by utilizing the extending portion 20b of the surface protection substrate 20. Further, by interposing an attachment means such as an adhesive layer 41 between the extended portion 20b of the surface protection substrate 20 and the frame member 40, the sealing property on the back surface side of the back surface protection layer 32 in the solar cell module is enhanced. , Foreign matter can be prevented from entering the back side.
  • the reinforcing member 21 is disposed in the extending portion 20b of the surface protection substrate 20, and the reinforcing member 21 is embedded in the extending portion 20b.
  • the present embodiment is not limited to such an aspect, and the solar cell module 100C can be prevented from warping in a concave shape by disposing the reinforcing member 21 in the extending portion 20b of the surface protection substrate 20. . Therefore, the reinforcing member 21 may be disposed on the extended portion 20 b of the surface protection substrate 20 in a state exposed to the outside of the surface protection substrate 20.
  • the extending portion 20 b of the surface protection substrate 20 extends outward from a joint portion (an end portion 32 a of the back surface protection layer 32) with the back surface protection layer 32 in the surface protection substrate 20. Is formed.
  • the reinforcement member 21 may be fixed to the back surface on the opposite side to the light-receiving surface (front surface) in the extension part 20b. Further, the reinforcing member 21 may be provided so as to protrude downward (in the negative z-axis direction) from the back surface protective layer 32 in the thickness direction (z direction) of the solar cell module 100C. Furthermore, as shown in FIG. 22, the reinforcing member 21 may be fixed to the light receiving surface (surface) in the extending portion 20b. Further, the reinforcing member 21 may be provided so as to protrude toward the upper side of the surface protection substrate 20 (the positive side of the z axis) in the thickness direction (z direction) of the solar cell module 100C.
  • the reinforcing member 21 is disposed on the extending portion 20 b of the surface protection substrate 20, and further on the outer edge side than the joint portion with the back surface protection layer 32 in the surface protection substrate 20. It is preferable that the reinforcing member 21 is in contact.
  • the reinforcing member 21 is firmly held and warped in a concave shape. Can be suppressed.
  • the reinforcing member 21 may be provided on the back surface of the front surface protection substrate 20 so as to straddle the joint portion (the end portion 32a of the back surface protection layer 32) with the back surface protection layer 32 in the front surface protection substrate 20.
  • a part of the reinforcing member 21 is located on the outer edge side of the joint part, and the other part of the reinforcing member 21 is inside the joint part, that is, a solar battery cell. It may be located on the 10 side.
  • the reinforcing member 21 is preferably plate-shaped.
  • the reinforcing member 21 is provided on the back surface of the front surface protection substrate 20 so as to straddle the joint between the front surface protection substrate 20 and the back surface protection layer 32, the extending portion 20 b of the front surface protection substrate 20. It becomes possible to suppress warping in a concave shape.
  • the solar cell module 100 ⁇ / b> C includes the surface protection substrate 20, the first sealing material layer 26, the solar battery cell 10, the second sealing material layer 28, and the back surface protection layer 32.
  • the gel-like polymer layer 22 may be interposed between the surface protective substrate 20 and the first sealing material layer 26 as in the third embodiment.
  • the solar cell module 100C includes the intermediate layer 24 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. , 30 may be further included.
  • the solar cell modules 100C and 100D are provided on the light receiving side on which light is incident on the solar cells 10 and the first sealing material layer 26 having translucency. Is provided.
  • the solar cell modules 100 ⁇ / b> C and 100 ⁇ / b> D are further provided on the light receiving side with respect to the first sealing material layer 26, and the light receiving side in the solar cell 10 and the surface protection substrate 20 made of a translucent resin material And a second sealing material layer 28 provided on the opposite side.
  • the solar cell modules 100C and 100D further include a back surface protective layer 32 provided on the opposite side of the second sealing material layer 28 from the solar cells 10.
  • a reinforcing member 21 having a bending strength greater than that of the surface protective substrate 20 is disposed on the extended portion 20 b of the surface protective substrate 20. Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, the reinforcing member 21 provided on the extending portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, and the entire solar cell module. Can be prevented from being deformed into a concave shape. Moreover, even if the solar cell module 100C is used in an environment in which a high temperature state and a low temperature state are repeated, the solar cell module 100C is deformed into a concave shape during use because the reinforcing member 21 is provided in the extending portion 20b. It becomes possible to prevent this. Further, by using a lightweight material for the reinforcing member 21, it is possible to suppress the warpage of the solar cell module 100C while reducing the weight of the surface protection substrate 20.
  • the solar cell modules 100C and 100D include the solar cell 10, the surface protection substrate 20, the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 as a whole on the light receiving side. It is preferable that it is convex toward the surface.
  • the solar cell module of the present embodiment is not limited to such a shape, and the solar cell 10, the surface protection substrate 20, the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 are provided. It may be flat as a whole. That is, the solar battery cell 10, the surface protection substrate 20, the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 may be parallel to the xy plane as a whole.
  • the moving body of the present embodiment is a moving body that includes the above-described solar cell module.
  • Examples of the moving body include vehicles such as automobiles, trains, ships, and the like.
  • the solar cell module of the present embodiment is mounted on an automobile, it is preferably installed on the upper surface portion of the automobile body such as a bonnet or a roof panel.
  • a current obtained by generating power using the solar cell module of the present embodiment is supplied to an electric device such as a fan or a motor, and is used for driving and controlling the electric device.
  • the solar cell module of the first embodiment will be described in more detail with reference to Example 1, the solar cell module of the first embodiment is not limited thereto.
  • Example 1-1 As shown in FIG. 24, in order from the light receiving surface side, the surface protective substrate 20, the gel polymer layer 22, the first sealing material layer 26, the solar battery cell 10, the second sealing material layer 28, and the back surface protective layer. About the solar cell module which laminated
  • the surface protective substrate 20 was a polycarbonate plate and had a thickness of 2 mm.
  • the gel-like polymer layer 22 was made of silicone gel and had a thickness of 1 mm.
  • ethylene-vinyl acetate copolymer (EVA) was used, and each thickness was 0.6 mm.
  • Solar cell 10 had a thickness of 0.12 mm.
  • the back surface protective layer 32 is made of carbon fiber reinforced plastic (UD material) in which carbon fibers are oriented in one direction and has a thickness of 0.2 mm.
  • Table 1 shows the thermal expansion coefficient and the tensile elastic modulus in the fiber direction B of the carbon fiber and the direction C perpendicular to the fiber direction B shown in FIG.
  • the back surface protective layer 32 is a layer that hardly stretches along the fiber direction B.
  • the thermal expansion coefficient in the fiber direction of the back surface protection layer 32 is smaller than the thermal expansion coefficient of the surface protection substrate 20.
  • FIG. 25 (b) shows the result of obtaining the displacement along the fiber direction B when the solar cell module is cooled.
  • FIG. 25 (c) shows the result of obtaining the displacement when the solar cell module is cooled along the direction C perpendicular to the fiber direction B.
  • the displacement of the right end at the time of fixing the left end of a solar cell module is calculated
  • the solar cell module at 25 ° C. is indicated by a solid line
  • the solar cell module at ⁇ 40 ° C. is indicated by a two-dot chain line.
  • the graph of FIG. 25D shows the relationship between the amount of displacement in the vertical direction (z direction) and the temperature at the right end of the solar cell module.
  • FIG. 25 (b) when the solar cell module is cooled, it can be seen that in the fiber direction B, the right end of the solar cell module is displaced upward. Further, as shown in FIG. 25 (d), it is understood that the right end of the solar cell module is warped upward by about 5 mm when cooled from 25 ° C. to ⁇ 40 ° C.
  • FIG. 25C when the solar cell module is cooled, it can be seen that the right end of the solar cell module is displaced downward in the direction C perpendicular to the fiber direction B. Further, as shown in FIG. 25 (d), it can be seen that when the solar cell module is cooled from 25 ° C. to ⁇ 40 ° C., the right end of the solar cell module is warped downward by about 2.5 mm.
  • the surface protection substrate 20 is contracted, but the back surface protection layer 32 is difficult to contract, and thus the solar cell module is warped upward as a whole.
  • the back surface protective layer 32 contracts when the surface protective substrate 20 contracts, so that the solar cell module is warped downward as a whole.
  • Example 1-2 Three-dimensional evaluation was performed by simulation using the same solar cell module as in Example 1-1. Specifically, the three-dimensional displacement when the solar cell module was cooled was analyzed by simulation. The same analysis software as in Example 1-1 was used. The analysis conditions were set as follows. ⁇ 3D model 1/4 symmetry ⁇ Stress: Static analysis ⁇ Model size: 1m ⁇ 1m -Model shape: Convex shape curved in two axes of R6000-Mesh shape: Tetra secondary element-Boundary condition: Unfixed-Thermal load: 25 ° C to -40 ° C
  • FIG. 26A a UD material in which carbon fibers are oriented in one direction inside the matrix resin was used as the back surface protective layer.
  • FIG.26 (b) and FIG.26 (c) the result of the simulation of such a solar cell module is shown.
  • FIG.26 (b) the displacement of the right end at the time of fixing the left end of a solar cell module is calculated
  • FIG. 26B the solar cell module at 25 ° C. is indicated by a solid line, and the solar cell module at ⁇ 40 ° C. is indicated by a two-dot chain line.
  • the graph in FIG. 26C shows the relationship between the amount of displacement in the vertical direction (z direction) and the temperature at the right end of the solar cell module.
  • FIG. 26 (b) it is understood that when the solar cell module is cooled, the right end of the solar cell module is displaced downward. Further, as shown in FIG. 26 (c), when cooled from 25 ° C. to ⁇ 40 ° C., the right end of the solar cell module is warped by 7 mm or more downward. That is, in the solar cell module of Example 1-2, when the front surface protection substrate 20 contracts, the solar cell module warps downward as a whole because the back surface protective layer 32 also contracts in the direction perpendicular to the carbon fibers. It turns out that it will be in a state.
  • the thermal expansion coefficients in the x direction and the y direction in the back surface protection layer are smaller than the thermal expansion coefficient of the surface protection substrate 20.
  • analysis software and analysis conditions were the same as those in Example 1-2.
  • FIG.27 (b) and 27 (c) show the results of simulation of such a solar cell module.
  • the displacement of the right end at the time of fixing the left end of a solar cell module is calculated
  • the solar cell module at 25 ° C. is indicated by a solid line
  • the solar cell module at ⁇ 40 ° C. is indicated by a two-dot chain line.
  • the graph of FIG. 27C shows the relationship between the amount of displacement in the vertical direction (z direction) and the temperature at the right end of the solar cell module.
  • FIG. 27 (b) when the solar cell module is cooled, it can be seen that the right end of the solar cell module is displaced upward.
  • FIG. 27 (c) when cooled from 25 ° C. to ⁇ 40 ° C., the right end of the solar cell module is warped upward by about 10 mm or more. That is, in the solar cell module of Comparative Example 1, the front surface protection substrate 20 contracts, but the back surface protection layer hardly contracts in both the x direction and the y direction, so that the solar cell module may be warped upward as a whole. I understand.
  • Example 1-3 Using the same solar cell module as in Example 1-1, the followability of the gel polymer layer was evaluated by simulation. Specifically, the displacement of the gel polymer layer when the solar cell module was cooled was analyzed by simulation.
  • the analysis software was the same as in Example 1-1, and the analysis conditions were the same as in Example 1-1.
  • FIG. 28 (a) shows the result of obtaining the displacement when the solar cell module 100 is cooled along the fiber direction B of FIG. 25 (a).
  • FIG. 28B shows an enlarged right end of FIG. 28A when the solar cell module 100 is cooled and deformed.
  • the solar cell module at 25 ° C. is represented by a solid line
  • the solar cell module at ⁇ 40 ° C. is represented by a two-dot chain line.
  • the solar cell module of the third embodiment will be described in more detail with reference to Example 2, but the solar cell module of the third embodiment is not limited thereto.
  • the solar cell module in which the surface protective substrate, the first sealing material layer, the solar battery cell, the second sealing material layer, and the back surface protective layer were laminated in order from the light receiving surface side was evaluated by simulation.
  • a polycarbonate plate was used as the surface protection substrate, and the thickness was 3 mm.
  • ethylene-vinyl acetate copolymer (EVA) was used, and the thickness was 0.6 mm.
  • the solar battery cell had a thickness of 0.12 mm.
  • the back protective layer used was a polyethylene terephthalate sheet and the thickness was 0.1 mm.
  • the extending portion having a length L of 50 mm was formed over the entire outer edge of the surface protective substrate.
  • no extending portion was formed.
  • FIG. 29 schematically shows the solar cell modules of Example 2 and Comparative Example 2. From FIG. 29, the solar cell modules of Example 2 and Comparative Example 2 have a convex shape curved in two axes, and are convex toward the light receiving side.
  • FIG. 30 shows the results of simulation in the solar cell modules of Example 2 and Comparative Example 2.
  • FIG. 30 is a 1 ⁇ 4-symmetrical diagram showing the displacement of the end when the center of the solar cell module is fixed.
  • the solar cell module at 25 ° C. is indicated by a solid line
  • the solar cell module at ⁇ 40 ° C. is indicated by a two-dot chain line.
  • the amount of upward displacement of the solar cell module can be suppressed even when the surface protective substrate is greatly contracted. Therefore, it turns out that it can suppress that the whole solar cell module deform
  • a solar cell module capable of suppressing concave warpage can be obtained by a simple method.

Abstract

A solar cell module (100) includes, in order from the light-receiving surface side, the following: a surface protective substrate (20) made of a resin; a gel-like polymer layer (22); a first sealing material layer (26); a photoelectric conversion unit; a second sealing material layer (28); and a backside protective layer (32) provided with a low heat expansion component aligned in one direction. The tensile elastic modulus of the gel-like polymer layer (22) is smaller than the tensile elastic modulus of any of the surface protective substrate (20), the first sealing material layer (26), and the second sealing material layer (28). The heat expansion coefficient of the backside protective layer (32) in one direction is smaller than the heat expansion coefficient of the surface protective substrate (20). The backside protective layer (32) is configured such that the heat expansion coefficient in the one direction and the heat expansion coefficient in another direction which is perpendicular to the one direction are mutually different.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 太陽電池モジュールは、基本的には、第1の基板(表面保護基板)と、第1の樹脂層(封止材層)と、光電変換部と、第2の樹脂層(封止材層)と、第2の基板(裏面保護基板)と、をこの順に備えた構成となっている。つまり、光電変換部の表裏面を、第1の基板及び第1の樹脂層と、第2の樹脂層及び第2の基板とで覆うことで、光電変換部の保護を図っている。そして、光電変換部において、複数の太陽電池セルはマトリックス状に配列され、隣接する太陽電池セル同士はタブ配線によって電気的に接続される。このように、複数の太陽電池セル同士を複数のタブ配線によって電気的に接続することで、例えば出力電圧を高めるようにしている。 The solar cell module basically includes a first substrate (surface protective substrate), a first resin layer (sealing material layer), a photoelectric conversion unit, and a second resin layer (sealing material layer). And a second substrate (back surface protection substrate) in this order. That is, the photoelectric conversion unit is protected by covering the front and back surfaces of the photoelectric conversion unit with the first substrate and the first resin layer, and the second resin layer and the second substrate. And in a photoelectric conversion part, a several photovoltaic cell is arranged in matrix form, and adjacent photovoltaic cells are electrically connected by tab wiring. In this manner, for example, the output voltage is increased by electrically connecting the plurality of solar cells with the plurality of tab wirings.
 また、太陽電池モジュールの保護基板としては、従来、ガラス基板を用いるのが一般的であった。ただ、近年、軽量化のために、ガラス基板に代わり樹脂基板が用いられるようになってきている。 In addition, conventionally, a glass substrate has been generally used as a protective substrate for a solar cell module. However, in recent years, resin substrates have been used instead of glass substrates for weight reduction.
 上述の太陽電池モジュールの製造方法としては、表面保護基板、封止材層、光電変換部、封止材層及び裏面保護基板を積層した後、100℃以上に加熱しながら加圧することで各層を接着させる方法が一般的である。ただ、表面保護基板及び裏面保護基板が樹脂からなる場合、加熱後に常温まで冷却した際に、表面保護基板及び裏面保護基板が大きく収縮する。このとき、表面保護基板と裏面保護基板は、材料及び/又は厚みが異なることから、収縮率に差が生じ、その結果、得られた太陽電池モジュールが凹状に反ってしまうという問題がある。 As a manufacturing method of the above-mentioned solar cell module, after laminating a surface protection substrate, a sealing material layer, a photoelectric conversion part, a sealing material layer, and a back surface protection substrate, each layer is formed by pressurizing while heating to 100 ° C or more. A method of bonding is common. However, when the surface protection substrate and the back surface protection substrate are made of resin, when the surface protection substrate and the back surface protection substrate are cooled to room temperature after heating, the surface protection substrate and the back surface protection substrate are greatly contracted. At this time, since the surface protection substrate and the back surface protection substrate are different in material and / or thickness, there is a difference in shrinkage rate, and as a result, there is a problem that the obtained solar cell module warps in a concave shape.
 このような問題を解決するために、特許文献1では、太陽電池モジュールの反りを予測して、当該反りと逆方向の反りを付与する方法を開示している。具体的には、特許文献1では、透明板と封止材と太陽電池セルとを積層した状態で、真空下で加熱及び加圧を行って、太陽電池モジュールを製造する方法を開示している。そして、当該製造方法では、加熱後に常温状態に置かれて反りの発生が予測される太陽電池モジュールの反りと逆に反らせた状態で加熱及び加圧を行っている。 In order to solve such a problem, Patent Document 1 discloses a method of predicting the warpage of the solar cell module and imparting the warpage in the opposite direction to the warpage. Specifically, Patent Document 1 discloses a method of manufacturing a solar cell module by heating and pressing under vacuum in a state where a transparent plate, a sealing material, and solar cells are stacked. . And in the said manufacturing method, it heats and pressurizes in the state which was warped contrary to the curvature of the solar cell module which is set | placed at normal temperature after heating and the generation | occurrence | production of curvature is estimated.
 また、特許文献2では、表面保護基板と裏面保護基板の熱膨張係数をほぼ等しくすることで凹状の反りを抑制する方法を開示している。具体的には、特許文献2では、太陽電池セルと、太陽電池セルの受光面側に接着された透光性プラスチック表面材と、太陽電池セルの背面側に接着され、表面材と熱膨張係数がほぼ等しいプラスチック背面材とからなる太陽電池モジュールを開示している。 Patent Document 2 discloses a method of suppressing concave warpage by making the thermal expansion coefficients of the front surface protection substrate and the rear surface protection substrate substantially equal. Specifically, in Patent Document 2, a solar cell, a translucent plastic surface material bonded to the light receiving surface side of the solar cell, and a surface material and a thermal expansion coefficient bonded to the back surface side of the solar cell. Discloses a solar cell module composed of a plastic backing material having substantially the same size.
特開2010-258380号公報JP 2010-258380 A 実開昭63-43457号公報Japanese Utility Model Publication No. 63-43457
 しかしながら、特許文献1の製造方法では、太陽電池モジュールが常温になった際の反り量を予測し、反りを打ち消すための材料や形状を特定する必要があるため、膨大な解析や試行錯誤を行う必要があった。また、特許文献2の太陽電池モジュールでは、表面保護基板及び裏面保護基板に起因する反りは抑制されるが、内部に配置された封止材や太陽電池セルの影響を受けることにより、凹状の反りが発生する恐れがあった。 However, in the manufacturing method of Patent Document 1, it is necessary to predict the amount of warpage when the solar cell module reaches room temperature, and to specify the material and shape for canceling the warpage, so that enormous analysis and trial and error are performed. There was a need. Moreover, in the solar cell module of patent document 2, although the curvature resulting from a surface protection board | substrate and a back surface protection board | substrate is suppressed, by receiving the influence of the sealing material and photovoltaic cell which are arrange | positioned inside, it is a concave curvature. There was a risk of occurrence.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、簡易な方法により凹状の反りを抑制することが可能な太陽電池モジュールを提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective of this invention is providing the solar cell module which can suppress concave curvature by a simple method.
 上記課題を解決するために、本発明の第一の態様に係る太陽電池モジュールは、受光面側から順に、樹脂製の表面保護基板と、ゲル状高分子層と、第1封止材層と、光電変換部と、第2封止材層と、一方向に配向した低熱膨張成分を備える裏面保護層とを有する。ゲル状高分子層の引張弾性率が、表面保護基板、第1封止材層及び第2封止材層のうちのいずれの引張弾性率よりも小さい。裏面保護層は、一方向の熱膨張係数が表面保護基板の熱膨張係数よりも小さい。裏面保護層において、一方向の熱膨張係数と、一方向に垂直な他方向の熱膨張係数とは互いに異なる。 In order to solve the above problems, a solar cell module according to a first aspect of the present invention includes, in order from the light-receiving surface side, a resin-made surface protective substrate, a gel polymer layer, a first sealing material layer, , A photoelectric conversion unit, a second sealing material layer, and a back surface protective layer including a low thermal expansion component oriented in one direction. The tensile elastic modulus of the gel polymer layer is smaller than any tensile elastic modulus of the surface protective substrate, the first sealing material layer, and the second sealing material layer. The back surface protective layer has a unidirectional thermal expansion coefficient smaller than that of the surface protective substrate. In the back surface protective layer, the thermal expansion coefficient in one direction is different from the thermal expansion coefficient in the other direction perpendicular to the one direction.
 本発明の第二の態様に係る移動体は、太陽電池モジュールを具備する。 The moving body according to the second aspect of the present invention includes a solar cell module.
図1は、第一実施形態に係る太陽電池モジュールを示す平面図である。FIG. 1 is a plan view showing the solar cell module according to the first embodiment. 図2は、図1のII-II線に沿った太陽電池モジュールの断面を示す概略図である。FIG. 2 is a schematic view showing a cross section of the solar cell module taken along line II-II in FIG. 図3は、図2とは異なる形態の太陽電池モジュールの断面を示す概略図である。FIG. 3 is a schematic view showing a cross section of a solar cell module having a form different from that of FIG. 図4(a)は、裏面保護層において、繊維材が一方向に延伸した状態を示す平面図である。図4(b)は、太陽電池モジュールの受光面側が凸状となっている状態を示す側面図である。Fig.4 (a) is a top view which shows the state which the fiber material extended | stretched to one direction in the back surface protective layer. FIG. 4B is a side view showing a state where the light receiving surface side of the solar cell module is convex. 図5(a)は、裏面保護層において、繊維材が縦方向及び横方向に延伸した状態を示す平面図である。図5(b)は、太陽電池モジュールの受光面側が凹状となっている状態を示す側面図である。Fig.5 (a) is a top view which shows the state which the fiber material extended | stretched to the vertical direction and the horizontal direction in the back surface protective layer. FIG. 5B is a side view showing a state where the light receiving surface side of the solar cell module is concave. 図6は、スリットを有する裏面保護層を用いた太陽電池モジュールを示す側面図である。FIG. 6 is a side view showing a solar cell module using a back surface protective layer having slits. 図7は、図6に示す太陽電池モジュールの裏面保護層を示す平面図である。FIG. 7 is a plan view showing a back surface protective layer of the solar cell module shown in FIG. 図8は、スリットを有する裏面保護層の他の例を示す平面図である。FIG. 8 is a plan view showing another example of the back surface protective layer having slits. 図9は、第二実施形態に係る太陽電池モジュールを示す平面図である。FIG. 9 is a plan view showing the solar cell module according to the second embodiment. 図10(a)は、図9のXA-XA線に沿った太陽電池モジュールの断面を示す概略図である。図10(b)は、図9のXB-XB線に沿った太陽電池モジュールの断面を示す概略図である。FIG. 10A is a schematic view showing a cross section of the solar cell module taken along line XA-XA in FIG. FIG. 10B is a schematic view showing a cross section of the solar cell module taken along line XB-XB in FIG. 図11は、第三実施形態に係る太陽電池モジュールを示す平面図である。FIG. 11 is a plan view showing a solar cell module according to the third embodiment. 図12は、図11のXII-XII線に沿った太陽電池モジュールの断面を示す概略図である。FIG. 12 is a schematic view showing a cross section of the solar cell module taken along line XII-XII in FIG. 図13(a)は、図11のXIIIA-XIIIA線に沿った太陽電池モジュールの断面を示す概略図である。図13(b)は、図11のXIIIB-XIIIB線に沿った太陽電池モジュールの断面を示す概略図である。FIG. 13A is a schematic view showing a cross section of the solar cell module taken along line XIIIA-XIIIA in FIG. FIG. 13B is a schematic view showing a cross section of the solar cell module taken along line XIIIB-XIIIB in FIG. 図14は、表面保護基板の延在部に凸形状のリブを備えた態様を示す断面図である。FIG. 14 is a cross-sectional view showing a mode in which convex ribs are provided in the extending portion of the surface protection substrate. 図15は、第三実施形態に係る太陽電池モジュールの断面を示す概略図である。FIG. 15 is a schematic view showing a cross section of the solar cell module according to the third embodiment. 図16は、第三実施形態に係る太陽電池モジュールの断面を示す概略図である。FIG. 16 is a schematic view showing a cross section of the solar cell module according to the third embodiment. 図17は、第四実施形態に係る太陽電池モジュールを示す平面図である。FIG. 17 is a plan view showing a solar cell module according to the fourth embodiment. 図18(a)は、図17のXVIIIA-XVIIIA線に沿った太陽電池モジュールの断面を示す概略図である。図18(b)は、図17のXVIIIB-XVIIIB線に沿った太陽電池モジュールの断面を示す概略図である。FIG. 18A is a schematic view showing a cross section of the solar cell module taken along line XVIIIA-XVIIIA in FIG. FIG. 18B is a schematic view showing a cross section of the solar cell module taken along line XVIIIB-XVIIIB in FIG. 図19は、図17の太陽電池モジュールにおける表面保護基板の周囲にフレーム部材を設けた状態を示す平面図である。FIG. 19 is a plan view showing a state in which a frame member is provided around the surface protection substrate in the solar cell module of FIG. 図20(a)は、図19のXXA-XXA線に沿った太陽電池モジュールの断面を示す概略図である。図20(b)は、図19のXXB-XXB線に沿った太陽電池モジュールの断面を示す概略図である。FIG. 20A is a schematic view showing a cross section of the solar cell module taken along line XXA-XXA in FIG. FIG. 20B is a schematic view showing a cross section of the solar cell module taken along line XXB-XXB in FIG. 図21(a)は、第四実施形態に係る太陽電池モジュールの他の例に関し、図17のXVIIIA-XVIIIA線に沿った断面を示す概略図である。図21(b)は、第四実施形態に係る太陽電池モジュールの他の例に関し、図17のXVIIIB-XVIIIB線に沿った断面を示す概略図である。FIG. 21A is a schematic diagram showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment. FIG. 21B is a schematic view showing a cross section taken along line XVIIIB-XVIIIB in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment. 図22(a)は、第四実施形態に係る太陽電池モジュールの他の例に関し、図17のXVIIIA-XVIIIA線に沿った断面を示す概略図である。図22(b)は、第四実施形態に係る太陽電池モジュールの他の例に関し、図17のXVIIIB-XVIIIB線に沿った断面を示す概略図である。FIG. 22A is a schematic diagram showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment. FIG. 22B is a schematic view showing a cross section taken along line XVIIIB-XVIIIB in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment. 図23(a)は、第四実施形態に係る太陽電池モジュールの他の例に関し、図17のXVIIIA-XVIIIA線に沿った断面を示す概略図である。図23(b)は、第四実施形態に係る太陽電池モジュールの他の例に関し、図17のXVIIIB-XVIIIB線に沿った断面を示す概略図である。FIG. 23A is a schematic view showing a cross section taken along line XVIIIA-XVIIIA in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment. FIG. 23B is a schematic diagram showing a cross section taken along line XVIIIB-XVIIIB in FIG. 17, regarding another example of the solar cell module according to the fourth embodiment. 図24は、実施例1-1に係る太陽電池モジュールの構成を示す断面図である。FIG. 24 is a cross-sectional view showing the configuration of the solar cell module according to Example 1-1. 図25は、実施例1-1における太陽電池モジュールの評価結果を示している。図25(a)は、太陽電池モジュールで使用した裏面保護層の平面図である。図25(b)は、太陽電池モジュールを冷却した場合の変位を、繊維方向Bに沿って求めた結果を示す側面図である。図25(c)は、太陽電池モジュールを冷却した場合の変位を、繊維方向Bに垂直な方向Cに沿って求めた結果を示す側面図である。図25(d)は、太陽電池モジュールの右端における上下方向の変位量と温度との関係を示すグラフである。FIG. 25 shows the evaluation results of the solar cell module in Example 1-1. Fig.25 (a) is a top view of the back surface protective layer used with the solar cell module. FIG. 25 (b) is a side view showing the result of obtaining the displacement when the solar cell module is cooled along the fiber direction B. FIG. FIG. 25 (c) is a side view showing the result of obtaining the displacement when the solar cell module is cooled along the direction C perpendicular to the fiber direction B. FIG. 25 (d) is a graph showing the relationship between the amount of vertical displacement and temperature at the right end of the solar cell module. 図26は、実施例1-2における太陽電池モジュールの評価結果を示している。図26(a)は、太陽電池モジュールで使用した裏面保護層の平面図である。図26(b)は、太陽電池モジュールを冷却した場合の変位を求めた結果を示す斜視図である。図26(c)は、太陽電池モジュールの右端における上下方向の変位量と温度との関係を示すグラフである。FIG. 26 shows the evaluation results of the solar cell module in Example 1-2. Fig.26 (a) is a top view of the back surface protective layer used with the solar cell module. FIG.26 (b) is a perspective view which shows the result of having calculated | required the displacement at the time of cooling a solar cell module. FIG.26 (c) is a graph which shows the relationship between the amount of displacements of the up-down direction in the right end of a solar cell module, and temperature. 図27は、比較例1における太陽電池モジュールの評価結果を示している。図27(a)は、太陽電池モジュールで使用した裏面保護層の平面図である。図27(b)は、太陽電池モジュールを冷却した場合の変位を求めた結果を示す斜視図である。図27(c)は、太陽電池モジュールの右端における上下方向の変位量と温度との関係を示すグラフである。FIG. 27 shows the evaluation results of the solar cell module in Comparative Example 1. Fig.27 (a) is a top view of the back surface protective layer used with the solar cell module. FIG. 27B is a perspective view showing a result of obtaining a displacement when the solar cell module is cooled. FIG. 27C is a graph showing the relationship between the amount of vertical displacement and temperature at the right end of the solar cell module. 図28は、実施例1-3における太陽電池モジュールの評価結果を示している。図28(a)は、太陽電池モジュールを冷却した場合の変位を、繊維方向Bに沿って求めた結果を示す側面図である。図28(b)は、太陽電池モジュールを冷却して変形した場合における、右端を拡大して示している。FIG. 28 shows the evaluation results of the solar cell module in Example 1-3. FIG. 28A is a side view showing the result of obtaining the displacement when the solar cell module is cooled along the fiber direction B. FIG. FIG. 28B shows an enlarged right end in the case where the solar cell module is cooled and deformed. 図29は、シミュレーションで用いた実施例2及び比較例2の太陽電池モジュールを示す概略図である。図29(a)は太陽電池モジュールを示す平面図であり、図29(b)は図29(a)の太陽電池モジュールを右側面から見た図であり、図29(c)は図29(a)の太陽電池モジュールを下側面から見た図である。FIG. 29 is a schematic diagram showing the solar cell modules of Example 2 and Comparative Example 2 used in the simulation. 29A is a plan view showing the solar cell module, FIG. 29B is a view of the solar cell module of FIG. 29A viewed from the right side, and FIG. 29C is FIG. It is the figure which looked at the solar cell module of a) from the lower surface. 図30は、シミュレーションにおいて、実施例2及び比較例2の太陽電池モジュールを冷却した場合の変位を示す斜視図である。FIG. 30 is a perspective view showing displacement when the solar cell modules of Example 2 and Comparative Example 2 are cooled in the simulation.
 以下、図面を参照して本実施形態に係る太陽電池モジュールについて説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the solar cell module according to the present embodiment will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
[第一実施形態の太陽電池モジュール]
 図1は、第一実施形態に係る太陽電池モジュール100を示す平面図である。図1に示すように、x軸、y軸、z軸からなる直角座標系が規定される。x軸、y軸は、太陽電池モジュール100の平面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、太陽電池モジュール100の厚み方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。太陽電池モジュール100を形成する2つの主表面であって、かつx-y平面に平行な2つの主表面のうち、z軸の正方向側に配置される主平面が「受光面」であり、z軸の負方向側に配置される主平面が「裏面」である。なお、「受光面」とは光が主に入射する面を意味し、「裏面」とは受光面と反対側の面を意味する。また、z軸の正方向側を「受光面側」とよび、z軸の負方向側を「裏面側」とよぶこともある。
[Solar Cell Module of First Embodiment]
FIG. 1 is a plan view showing a solar cell module 100 according to the first embodiment. As shown in FIG. 1, a rectangular coordinate system composed of an x-axis, a y-axis, and a z-axis is defined. The x axis and the y axis are orthogonal to each other in the plane of the solar cell module 100. The z axis is perpendicular to the x axis and the y axis and extends in the thickness direction of the solar cell module 100. Further, the positive directions of the x-axis, y-axis, and z-axis are each defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow. Of the two main surfaces forming the solar cell module 100 and parallel to the xy plane, the main plane disposed on the positive side of the z-axis is a “light-receiving surface”. The main plane disposed on the negative direction side of the z-axis is the “back surface”. The “light receiving surface” means a surface on which light is mainly incident, and the “back surface” means a surface opposite to the light receiving surface. Further, the positive direction side of the z-axis may be referred to as “light-receiving surface side”, and the negative direction side of the z-axis may be referred to as “back surface side”.
 太陽電池モジュール100は、複数の太陽電池セル10、複数のタブ配線12、複数の接続配線14を有する。複数の太陽電池セル10のそれぞれは、入射する光を吸収して光起電力を発生する。太陽電池セル10は、例えば、結晶シリコン、ガリウム砒素(GaAs)またはインジウム燐(InP)等の半導体材料によって形成される。太陽電池セル10の構造は特に限定されないが、ここでは、一例として、結晶シリコンとアモルファスシリコンとが積層されているとする。図1では省略しているが、各太陽電池セル10の受光面および裏面には、互いに平行にx方向に延びる複数のフィンガー電極と、複数のフィンガー電極に直交するようにy方向に延びる複数、例えば2本のバスバー電極とが備えられる。バスバー電極は、複数のフィンガー電極のそれぞれを接続する。 The solar cell module 100 has a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14. Each of the plurality of solar cells 10 absorbs incident light and generates photovoltaic power. The solar battery cell 10 is formed of a semiconductor material such as crystalline silicon, gallium arsenide (GaAs), or indium phosphide (InP). The structure of the solar battery cell 10 is not particularly limited, but here, as an example, it is assumed that crystalline silicon and amorphous silicon are stacked. Although omitted in FIG. 1, a plurality of finger electrodes extending in the x direction in parallel to each other and a plurality of finger electrodes extending in the y direction so as to be orthogonal to the plurality of finger electrodes are provided on the light receiving surface and the back surface of each solar battery cell 10. For example, two bus bar electrodes are provided. The bus bar electrode connects each of the plurality of finger electrodes.
 複数の太陽電池セル10は、x-y平面上にマトリックス状に配列される。ここでは、x方向に4つの太陽電池セル10が並べられ、y方向に5つの太陽電池セル10が並べられる。なお、x方向に並べられる太陽電池セル10の数と、y方向に並べられる太陽電池セル10の数は、これらに限定されない。y方向に並んで配置される5つの太陽電池セル10は、タブ配線12によって直列に接続され、1つの太陽電池ストリング16が形成される。さらに、上述のように、x方向に4つの太陽電池セル10が並べられるので、y方向に延びた太陽電池ストリング16がx方向に4つ平行に並べられる。なお、太陽電池ストリング16は、複数の太陽電池セル10と複数のタブ配線12との組み合わせをいう。 The plurality of solar cells 10 are arranged in a matrix on the xy plane. Here, four solar cells 10 are arranged in the x direction, and five solar cells 10 are arranged in the y direction. In addition, the number of the photovoltaic cells 10 arranged in the x direction and the number of the photovoltaic cells 10 arranged in the y direction are not limited to these. The five solar cells 10 arranged side by side in the y direction are connected in series by the tab wiring 12 to form one solar cell string 16. Furthermore, as described above, since the four solar cells 10 are arranged in the x direction, four solar cell strings 16 extending in the y direction are arranged in parallel in the x direction. The solar cell string 16 refers to a combination of a plurality of solar cells 10 and a plurality of tab wires 12.
 太陽電池ストリング16を形成するために、タブ配線12は、隣接した太陽電池セル10のうちの一方の受光面側のバスバー電極と、他方の裏面側のバスバー電極とを電気的に接続する。すなわち、隣接した太陽電池セル10は互いにタブ配線12で電気的に接続されている。タブ配線12は、細長い金属箔であり、例えば、銅箔にハンダや銀等をコーティングしたものが用いられる。タブ配線12とバスバー電極との接続には樹脂が使用される。この樹脂は導電性、非導電性いずれでもよい。後者の場合は、タブ配線12とバスバー電極とを直接接触させることで電気的に接続される。また、タブ配線12とバスバー電極との接続は、樹脂ではなくハンダを用いてもよい。 In order to form the solar cell string 16, the tab wiring 12 electrically connects the bus bar electrode on one light receiving surface side of the adjacent solar cells 10 and the bus bar electrode on the other back surface side. That is, the adjacent solar cells 10 are electrically connected to each other by the tab wiring 12. The tab wiring 12 is an elongated metal foil. For example, a copper foil coated with solder or silver is used. Resin is used for connection between the tab wiring 12 and the bus bar electrode. This resin may be either conductive or non-conductive. In the latter case, the tab wiring 12 and the bus bar electrode are electrically connected by direct contact. The tab wiring 12 and the bus bar electrode may be connected by using solder instead of resin.
 さらに、太陽電池ストリング16のy軸の正方向側と負方向側において、複数の接続配線14がx方向に延びている。接続配線14は、隣接した2つの太陽電池ストリング16を電気的に接続する。 Furthermore, a plurality of connection wires 14 extend in the x direction on the positive side and the negative side of the y-axis of the solar cell string 16. The connection wiring 14 electrically connects two adjacent solar cell strings 16.
 以上の構成において、太陽電池セル10、太陽電池ストリング16のそれぞれが「光電変換部」であってもよく、複数の太陽電池ストリング16と接続配線14との組み合わせが「光電変換部」であってもよい。なお、太陽電池モジュール100の外縁には、図示しないフレーム部材が取り付けられてもよい。フレーム部材は、太陽電池モジュール100の外縁を保護すると共に、太陽電池モジュール100を屋根等に設置する際に利用される。 In the above configuration, each of the solar battery cell 10 and the solar battery string 16 may be a “photoelectric converter”, and a combination of the plurality of solar battery strings 16 and the connection wiring 14 is a “photoelectric converter”. Also good. A frame member (not shown) may be attached to the outer edge of the solar cell module 100. The frame member protects the outer edge of the solar cell module 100 and is used when the solar cell module 100 is installed on a roof or the like.
 図2は、図1のII-II線に沿った太陽電池モジュール100の一部を示す断面図である。太陽電池モジュール100は、太陽電池セル10とタブ配線12とを備えた太陽電池ストリング16、接続配線14、表面保護基板20、ゲル状高分子層22、第1封止材層26、第2封止材層28及び裏面保護層32を備えている。なお、図2の上側が受光面(表面)側に相当し、下側が裏面側に相当する。そのため、太陽電池モジュール100では、受光面側から順に、表面保護基板20と、ゲル状高分子層22と、第1封止材層26と、光電変換部(太陽電池セル10、タブ配線12、接続配線14)と、第2封止材層28と、裏面保護層32とが積層されている。 FIG. 2 is a cross-sectional view showing a part of the solar cell module 100 taken along the line II-II in FIG. The solar cell module 100 includes a solar cell string 16 including solar cells 10 and tab wires 12, connection wires 14, a surface protection substrate 20, a gel polymer layer 22, a first sealing material layer 26, and a second seal. A stopper layer 28 and a back surface protective layer 32 are provided. 2 corresponds to the light receiving surface (front surface) side, and the lower side corresponds to the back surface side. Therefore, in the solar cell module 100, in order from the light receiving surface side, the surface protection substrate 20, the gel polymer layer 22, the first sealing material layer 26, and the photoelectric conversion unit (solar cell 10, tab wiring 12, The connection wiring 14), the second sealing material layer 28, and the back surface protective layer 32 are laminated.
 図2に示す構成において、太陽電池モジュール100の裏面には、裏面保護層32が設けられている。図2に示すように、裏面保護層32の厚みは表面保護基板20と比較して薄いため、裏面保護層32は剛性が小さく変形しやすい。その上、裏面保護層32の一方向の熱膨張係数は、表面保護基板20の熱膨張係数よりも小さく、温度変化に起因する裏面保護層32の一方向の伸縮は、表面保護基板20の伸縮より小さい。 2, a back surface protective layer 32 is provided on the back surface of the solar cell module 100. As shown in FIG. 2, since the thickness of the back surface protective layer 32 is thinner than that of the front surface protective substrate 20, the back surface protective layer 32 has small rigidity and is easily deformed. In addition, the one-way thermal expansion coefficient of the back surface protection layer 32 is smaller than the thermal expansion coefficient of the front surface protection substrate 20, and the one-way expansion and contraction of the back surface protection layer 32 due to the temperature change is the expansion and contraction of the front surface protection substrate 20. Smaller than.
 一方、ゲル状高分子層22は、引張弾性率が表面保護基板20、第1封止材層26及び第2封止材層28のうちのいずれの引張弾性率よりも小さく、柔軟性が高い。そのため、温度変化により表面保護基板20が伸縮した場合でも、表面保護基板20に隣接する下層のゲル状高分子層22は引張弾性率が小さいことから、表面保護基板20の伸縮に追従することができる。 On the other hand, the gel-like polymer layer 22 has a lower tensile elastic modulus than any one of the surface protective substrate 20, the first sealing material layer 26, and the second sealing material layer 28, and has a high flexibility. . Therefore, even when the surface protective substrate 20 expands and contracts due to a temperature change, the lower gel-like polymer layer 22 adjacent to the surface protective substrate 20 has a small tensile elastic modulus, and therefore can follow the expansion and contraction of the surface protective substrate 20. it can.
 以上のことから、温度変化により表面保護基板20が伸縮しても、ゲル状高分子層22がその伸縮に追従するため、表面保護基板20の伸縮による応力の発生が緩和される。また、裏面保護層32は、所定方向の熱膨張係数が表面保護基板20よりも小さく、温度変化により伸縮し難い。したがって、太陽電池モジュール100の表裏において、いずれか一方が伸縮しやすいということが抑えられ、応力のバランスが保たれる。ひいては、反りや内部応力の発生を防止することができる。 From the above, even if the surface protective substrate 20 expands and contracts due to temperature change, the gel-like polymer layer 22 follows the expansion and contraction, so that the generation of stress due to the expansion and contraction of the surface protective substrate 20 is alleviated. Further, the back surface protective layer 32 has a thermal expansion coefficient in a predetermined direction smaller than that of the front surface protective substrate 20, and is difficult to expand and contract due to a temperature change. Therefore, it is suppressed that either one tends to expand and contract on the front and back of the solar cell module 100, and the balance of stress is maintained. As a result, generation | occurrence | production of curvature and an internal stress can be prevented.
 また、裏面保護層32は薄いが故に剛性が小さく変形しやすいため、曲面形状に対する追従性に優れる。さらに、裏面保護層32を薄くすることにより、表面保護基板20と同等の基板状のもの(裏面保護基板)と比較して軽量化を図ることができる。 In addition, since the back surface protective layer 32 is thin, it has a small rigidity and is easily deformed, and therefore has excellent followability to a curved surface shape. Furthermore, by reducing the thickness of the back surface protective layer 32, it is possible to reduce the weight as compared with a substrate-like substrate (back surface protective substrate) equivalent to the surface protective substrate 20.
 (表面保護基板)
 表面保護基板20は、太陽電池モジュール100の太陽光の受光側に位置し、透明樹脂から構成される基板である。表面保護基板20を構成する透明樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選ばれる少なくとも一つを用いることができる。これらの中でも、表面保護基板20としては、ポリカーボネート(PC)を用いることが好ましい。ポリカーボネート(PC)は、耐衝撃性および透光性に優れ、太陽電池モジュール100の表面を保護するのに好適である。
(Surface protection substrate)
The surface protection substrate 20 is a substrate that is located on the sunlight receiving side of the solar cell module 100 and is made of a transparent resin. Examples of the transparent resin constituting the surface protective substrate 20 include polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), and polystyrene (PS). ), At least one selected from the group consisting of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Among these, it is preferable to use polycarbonate (PC) as the surface protection substrate 20. Polycarbonate (PC) is excellent in impact resistance and translucency, and is suitable for protecting the surface of the solar cell module 100.
 また、表面保護基板20は、その表面にシリコーン系やアクリルウレタン系などで構成されるハードコート層を含んでもよい。さらに、表面保護基板20又はハードコート層などに紫外線吸収剤や艶調整剤、反射防止成分を含んでもよい。 Further, the surface protective substrate 20 may include a hard coat layer made of silicone or acrylic urethane on the surface. Furthermore, the surface protective substrate 20 or the hard coat layer may contain an ultraviolet absorber, a gloss adjusting agent, and an antireflection component.
 表面保護基板20の厚みは特に限定されないが、2mm~6mmとすることが好ましく、3mm~5mmとすることがより好ましい。後述するように、裏面保護層32の厚みは、表面保護基板20の厚みの10%以下であることが好ましい。そして、裏面保護層32の厚みが薄いが故に低下する機械強度は、表面保護基板20が厚いことで担保されている。表面保護基板20の厚みをこのような範囲とすることによって、太陽電池モジュール100を適切に保護し、入射光を光電変換部(太陽電池セル10)に効率よく到達させることができる。 The thickness of the surface protective substrate 20 is not particularly limited, but is preferably 2 mm to 6 mm, and more preferably 3 mm to 5 mm. As will be described later, the thickness of the back surface protective layer 32 is preferably 10% or less of the thickness of the surface protective substrate 20. And the mechanical strength which falls because the thickness of the back surface protective layer 32 is thin is ensured by the surface protective substrate 20 being thick. By setting the thickness of the surface protection substrate 20 in such a range, the solar cell module 100 can be appropriately protected, and incident light can efficiently reach the photoelectric conversion unit (solar cell 10).
 表面保護基板20の引張弾性率は、1.0GPa~10.0GPaであることが好ましく、2.3GPa~2.5GPaであることがより好ましい。表面保護基板20の引張弾性率をこのような範囲とすることによって、太陽電池モジュール100の表面を適切に保護することができる。なお、本明細書における引張弾性率は、例えば、次のように、JIS K7161-1(プラスチック-引張特性の求め方-第1部:通則)により測定することができる。なお、当該引張弾性率は、温度が23±2℃、湿度が50±10%のときの値をいう。
 Et=(σ2-σ1)/(ε2-ε1) (1)
 上記式(1)において、Etは引張弾性率(Pa)、σ1はひずみε1=0.0005における応力(Pa)、σ2はひずみε2=0.0025における応力(Pa)を示す。
The tensile elastic modulus of the surface protective substrate 20 is preferably 1.0 GPa to 10.0 GPa, and more preferably 2.3 GPa to 2.5 GPa. By setting the tensile elastic modulus of the surface protection substrate 20 in such a range, the surface of the solar cell module 100 can be appropriately protected. The tensile modulus in the present specification can be measured, for example, according to JIS K7161-1 (Plastics-Determination of tensile properties-Part 1: General rules) as follows. The tensile modulus is a value when the temperature is 23 ± 2 ° C. and the humidity is 50 ± 10%.
Et = (σ2−σ1) / (ε2−ε1) (1)
In the above formula (1), Et is the tensile modulus (Pa), σ1 is the stress (Pa) at the strain ε1 = 0.0005, and σ2 is the stress (Pa) at the strain ε2 = 0.0025.
 表面保護基板20の全光線透過率は80%以上であることが好ましく、90~100%であることがより好ましい。表面保護基板20の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部(太陽電池セル10)へ到達させることができる。なお、本明細書における全光線透過率は、例えば、JIS K7361-1(プラスチック-透明材料の全光線透過率の試験方法-第1部:シングルビーム法)により測定することができる。 The total light transmittance of the surface protective substrate 20 is preferably 80% or more, more preferably 90 to 100%. By setting the total light transmittance of the surface protective substrate 20 within this range, light can efficiently reach the photoelectric conversion unit (solar cell 10). The total light transmittance in this specification can be measured by, for example, JIS K7361-1 (Plastic—Test method for total light transmittance of transparent material—Part 1: Single beam method).
 表面保護基板20の熱膨張係数(線膨張係数)は特に限定されないが、40~110(×10-6-1)とすることができる。なお、本明細書における熱膨張係数(線膨張係数)は、JIS K7197:2012(プラスチックの熱機械分析による線膨脹率試験方法)により測定することができる。 The thermal expansion coefficient (linear expansion coefficient) of the surface protective substrate 20 is not particularly limited, but can be 40 to 110 (× 10 −6 K −1 ). In addition, the thermal expansion coefficient (linear expansion coefficient) in this specification can be measured by JIS K7197: 2012 (linear expansion coefficient test method by thermomechanical analysis of plastics).
 (ゲル状高分子層)
 ゲル状高分子層22は、柔軟性に富むゲル状高分子により形成される層であり、表面保護基板20と第1封止材層26との間に位置する。ゲル状高分子層22は柔軟性を有し、表面保護基板20が伸縮したとき、その伸縮に追従する。そのため、光電変換部に対して、表面保護基板20の伸縮による応力が伝わるのを防止することができる。すなわち、表面保護基板20の伸縮による応力は、ゲル状高分子層22により緩和することができる。
(Gel polymer layer)
The gel-like polymer layer 22 is a layer formed of a gel-like polymer rich in flexibility, and is located between the surface protective substrate 20 and the first sealing material layer 26. The gel polymer layer 22 has flexibility, and follows the expansion and contraction when the surface protection substrate 20 expands and contracts. Therefore, it is possible to prevent the stress due to the expansion and contraction of the surface protection substrate 20 from being transmitted to the photoelectric conversion unit. That is, the stress due to the expansion and contraction of the surface protective substrate 20 can be relaxed by the gel-like polymer layer 22.
 ゲル状高分子層22を構成する材料としては、各種ゲルを用いることができる。ゲルは特に限定されないが、溶媒を含有したゲルと溶媒を含有しないゲルに分類される。溶媒を含有したゲルとしては、分散媒が水であるヒドロゲル、又は分散媒が有機溶媒であるオルガノゲルを用いることができる。また、溶媒を含有したゲルとしては、数平均分子量が10000以上の高分子ゲル、数平均分子量が1000以上10000未満のオリゴマーゲル、数平均分子量が1000未満の低分子ゲルのいずれかを用いることができる。ゲル状高分子は、シリコーン樹脂、ウレタン樹脂、アクリル樹脂及びスチレン樹脂からなる群より選ばれる少なくとも一種から構成されることが好ましい。 As the material constituting the gel polymer layer 22, various gels can be used. The gel is not particularly limited, but is classified into a gel containing a solvent and a gel not containing a solvent. As the gel containing a solvent, a hydrogel whose dispersion medium is water or an organogel whose dispersion medium is an organic solvent can be used. Moreover, as a gel containing a solvent, it is possible to use either a polymer gel having a number average molecular weight of 10,000 or more, an oligomer gel having a number average molecular weight of 1,000 or more and less than 10,000, or a low molecular gel having a number average molecular weight of less than 1,000. it can. The gel polymer is preferably composed of at least one selected from the group consisting of silicone resin, urethane resin, acrylic resin and styrene resin.
 ゲル状高分子層22は、表面保護基板20の厚みに対して5~70%の厚みを有することが好ましく、10~50%の厚みを有することがより好ましい。ゲル状高分子層22がこのような厚みを有することで、表面保護基板20の膨張・収縮による応力を十分に緩和することができる。 The gel-like polymer layer 22 preferably has a thickness of 5 to 70% with respect to the thickness of the surface protective substrate 20, and more preferably has a thickness of 10 to 50%. Since the gel-like polymer layer 22 has such a thickness, stress due to expansion / contraction of the surface protective substrate 20 can be sufficiently relieved.
 ゲル状高分子層22の引張弾性率は、0.1kPa以上5MPa未満が好ましく、1kPa以上1MPa以下がより好ましい。ゲル状高分子層22の引張弾性率がこのような範囲であることにより、表面保護基板20の膨張・収縮による応力を十分に緩和することができる。 The tensile elastic modulus of the gel polymer layer 22 is preferably 0.1 kPa or more and less than 5 MPa, more preferably 1 kPa or more and 1 MPa or less. When the tensile elastic modulus of the gel polymer layer 22 is in such a range, the stress due to expansion / contraction of the surface protective substrate 20 can be sufficiently relaxed.
 ゲル状高分子層22の全光線透過率は80%以上であることが好ましく、90~100%であることが好ましい。ゲル状高分子層22の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部(太陽電池セル10)へ到達させることができる。 The total light transmittance of the gel polymer layer 22 is preferably 80% or more, and preferably 90 to 100%. By setting the total light transmittance of the gel polymer layer 22 within this range, light can efficiently reach the photoelectric conversion portion (solar cell 10).
 (第1封止材層、第2封止材層)
 第1封止材層26及び第2封止材層28は、光電変換部を封止する。第1封止材層26は、表面保護基板20のz軸の負方向側(下側)に配置されており、第2封止材層28は、裏面保護層32のz軸の正方向側(上側)に配置されている。
(First sealing material layer, second sealing material layer)
The 1st sealing material layer 26 and the 2nd sealing material layer 28 seal a photoelectric conversion part. The first sealing material layer 26 is disposed on the negative direction side (lower side) of the z-axis of the surface protection substrate 20, and the second sealing material layer 28 is the positive direction side of the back surface protection layer 32 on the z-axis. (Upper side).
 第1封止材層26としては、例えば、引張弾性率が0.001MPa~1MPaであり、損失係数が0.1~0.52であるゲルが使用される。このようなゲルとしては、例えば、シリコーンゲル、アクリルゲル及びウレタンゲルからなる群より選ばれる少なくとも一つを用いることができる。シリコーンゲルについて、引張弾性率は0.022MPa程度である。損失係数は、貯蔵剪断弾性率(G’)と損失剪断弾性率(G”)の比G”/G’であり、tanδで示される。損失係数は、材料が変形する際に材料がどのくらいエネルギーを吸収するかを示しており、tanδの値が大きいほどエネルギーを吸収する。この損失係数は、動的粘弾性測定装置によって測定される。 As the first sealing material layer 26, for example, a gel having a tensile modulus of 0.001 MPa to 1 MPa and a loss coefficient of 0.1 to 0.52 is used. As such a gel, for example, at least one selected from the group consisting of silicone gel, acrylic gel, and urethane gel can be used. For silicone gel, the tensile modulus is about 0.022 MPa. The loss coefficient is a ratio G ″ / G ′ between the storage shear modulus (G ′) and the loss shear modulus (G ″) and is represented by tan δ. The loss factor indicates how much energy the material absorbs when the material deforms. The larger the value of tan δ, the more energy is absorbed. This loss factor is measured by a dynamic viscoelasticity measuring device.
 第1封止材層26は、透光性を有すると共に、表面保護基板20におけるx-y平面において僅かながら小さな寸法の面を有する矩形状のシート材によって形成される。なお、第1封止材層26は、液状であってもよい。 The first sealing material layer 26 is formed of a rectangular sheet material having translucency and having a surface with slightly small dimensions in the xy plane of the surface protection substrate 20. The first sealing material layer 26 may be liquid.
 一方、第2封止材層28としては、例えば、EVA(エチレン-酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の樹脂フィルムのような熱可塑性樹脂が使用される。なお、第2封止材層28としては、熱硬化性樹脂が使用されてもよい。第2封止材層28としては、EVAが使用されることが好ましい。EVAについて、引張弾性率は0.01~0.25GPaであり、損失係数は0.05程度である。 On the other hand, as the second sealing material layer 28, for example, a thermoplastic resin such as a resin film such as EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyral), polyimide, or the like is used. As the second sealing material layer 28, a thermosetting resin may be used. As the second sealing material layer 28, EVA is preferably used. For EVA, the tensile modulus is 0.01 to 0.25 GPa and the loss factor is about 0.05.
 第2封止材層28は、透光性を有すると共に、表面保護基板20におけるx-y平面において僅かながら小さな寸法の面を有する矩形状のシート材によって形成される。 The second sealing material layer 28 is formed of a rectangular sheet material having translucency and having a surface having a slightly small size in the xy plane of the surface protection substrate 20.
 ここで、図2に示すように、太陽電池モジュール100の裏面には、薄く剛性が小さい裏面保護層32が設けられている。裏面保護層32側に位置する第2封止材層28は裏面保護層32からの応力の影響を受けやすく、タブ配線12の断線することが危惧される。そこで、太陽電池モジュール100において、第2封止材層28の引張弾性率が、第1封止材層26の引張弾性率より大きいことが好ましい。このように、第2封止材層28の引張弾性率を大きくする、つまり変形し難くすることで、タブ配線12が変位し難くなり、裏面保護層32からの応力によるタブ配線12の断線を抑制することができる。 Here, as shown in FIG. 2, the back surface protective layer 32 which is thin and has low rigidity is provided on the back surface of the solar cell module 100. The second sealing material layer 28 located on the back surface protective layer 32 side is easily affected by stress from the back surface protective layer 32, and there is a concern that the tab wiring 12 may be disconnected. Therefore, in the solar cell module 100, the tensile elastic modulus of the second sealing material layer 28 is preferably larger than the tensile elastic modulus of the first sealing material layer 26. Thus, by increasing the tensile elastic modulus of the second sealing material layer 28, that is, making it difficult to deform, the tab wiring 12 becomes difficult to displace, and disconnection of the tab wiring 12 due to stress from the back surface protection layer 32 is prevented. Can be suppressed.
 (中間層)
 太陽電池モジュール100は、表面保護基板20と、ゲル状高分子層22と、第1封止材層26と、光電変換部と、第2封止材層28と、裏面保護層32とを備えている。ただ、太陽電池モジュール100は、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の少なくとも一方に、中間層24,30をさらに有することが好ましい。また、中間層24,30は、引張弾性率が第1封止材層26及び第2封止材層28のいずれの引張弾性率よりも大きい層であることが好ましい。
(Middle layer)
The solar cell module 100 includes a surface protection substrate 20, a gel polymer layer 22, a first sealing material layer 26, a photoelectric conversion unit, a second sealing material layer 28, and a back surface protection layer 32. ing. However, the solar cell module 100 includes the intermediate layer 24 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. , 30 is preferably included. Moreover, it is preferable that the intermediate layers 24 and 30 are layers whose tensile elastic modulus is larger than any of the first sealing material layer 26 and the second sealing material layer 28.
 上述の通り、第一実施形態においては、裏面保護層32を相対的に薄くしているため機械強度が高いとは言えず、裏面側の耐衝撃性の低下が危惧される。つまり、太陽電池モジュール100の運搬時や設置時において、裏面側に受ける衝撃により太陽電池セル10が破損することが危惧される。そこで、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の少なくとも一方に、相対的に引張弾性率が大きい中間層を設けることにより、耐衝撃性を向上させることができる。 As described above, in the first embodiment, since the back surface protective layer 32 is relatively thin, it cannot be said that the mechanical strength is high, and there is a concern that the impact resistance on the back surface side is lowered. That is, there is a concern that the solar battery cell 10 may be damaged due to an impact received on the back side when the solar battery module 100 is transported or installed. Therefore, a medium having a relatively large tensile elastic modulus is provided between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. By providing the layer, impact resistance can be improved.
 図3では、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の双方に中間層24,30を設けた態様を示している。なお、図3に示す太陽電池モジュールは、中間層24,30を設けた点において図2に示す形態とは異なるが、それ以外の構成は同じである。また、強度向上の観点から、図3に示すように二層の中間層24,30を設けることが好ましい。 In FIG. 3, the intermediate layers 24 and 30 are provided both between the gel polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. Is shown. The solar cell module shown in FIG. 3 is different from the configuration shown in FIG. 2 in that the intermediate layers 24 and 30 are provided, but the other configurations are the same. From the viewpoint of improving the strength, it is preferable to provide two intermediate layers 24 and 30 as shown in FIG.
 上述のように、中間層24は、引張弾性率が第1封止材層26及び第2封止材層28のいずれの引張弾性率よりも大きいことが好ましい。これにより、表面保護基板20が伸縮した場合でも、中間層24は表面保護基板20の伸縮に追従しないため、光電変換部へ応力が伝わるのを抑制することができる。 As described above, it is preferable that the intermediate layer 24 has a tensile elastic modulus larger than any of the first sealing material layer 26 and the second sealing material layer 28. Thereby, even when the surface protection substrate 20 expands and contracts, since the intermediate layer 24 does not follow the expansion and contraction of the surface protection substrate 20, it is possible to suppress the transmission of stress to the photoelectric conversion unit.
 第一実施形態において、中間層24,30の熱膨張係数は、第1封止材層26及び第2封止材層28のいずれの熱膨張係数よりも小さいことが好ましい。このような構成により、温度変化により表面保護基板20が伸縮した場合でも、中間層24,30が表面保護基板20の伸縮による応力を緩和することができる。 In the first embodiment, it is preferable that the thermal expansion coefficients of the intermediate layers 24 and 30 are smaller than the thermal expansion coefficients of the first sealing material layer 26 and the second sealing material layer 28. With such a configuration, even when the surface protection substrate 20 expands and contracts due to a temperature change, the intermediate layers 24 and 30 can relieve stress due to the expansion and contraction of the surface protection substrate 20.
 中間層24,30を構成する材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアセタール、アクリル樹脂、ポリアミド樹脂、ABS樹脂、ACS樹脂、AES樹脂、ASA樹脂、これらの共重合体が挙げられる。また、中間層24,30を構成する材料としては、ポリフッ化ビニル(PVF)などのフッ素樹脂、シリコーン樹脂、セルロース、ニトリル樹脂、フェノール樹脂、ポリウレタン、アイオノマー、ポリブタジエン、ポリブチレン、ポリメチルペンテン、ポリビニルアルコール、ポリアリレート、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリイミドなどが挙げられる。中間層24,30を構成する材料は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。中でも、中間層24,30を構成する材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリカーボネート、アクリル樹脂が好ましい。また、中間層24,30は、いずれも同じ材料としてもよく、それぞれ異なる材料を用いてもよい。 The materials constituting the intermediate layers 24 and 30 are polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polycarbonate, polyacetal, acrylic resin, polyamide resin, ABS resin, ACS resin, AES. Examples thereof include resins, ASA resins, and copolymers thereof. The intermediate layers 24 and 30 may be made of fluorine resin such as polyvinyl fluoride (PVF), silicone resin, cellulose, nitrile resin, phenol resin, polyurethane, ionomer, polybutadiene, polybutylene, polymethylpentene, polyvinyl alcohol. , Polyarylate, polyether ether ketone, polyether ketone, polyether sulfone, polyimide and the like. The materials constituting the intermediate layers 24 and 30 may be used alone or in combination of two or more. Especially, as a material which comprises the intermediate | middle layers 24 and 30, a polyethylene terephthalate, a polyethylene naphthalate, a polybutylene terephthalate, a polycarbonate, and an acrylic resin are preferable. Further, the intermediate layers 24 and 30 may be made of the same material or different materials.
 本実施形態において、第2封止材層28と裏面保護層32との間に位置する中間層30は、電気絶縁性を有することが好ましい。裏面保護層32の基材として、CFRPなど導電性の基材を用いた場合には、リーク電流の発生が問題となる場合がある。そこで、第2封止材層28と裏面保護層32との間に電気絶縁性を有する中間層30を配置することで、リーク電流を絶縁することが可能となる。ここで使用する中間層30の材料は、上記中間層の材料の中でも電気絶縁性が高いものを用いることが好ましい。 In the present embodiment, the intermediate layer 30 positioned between the second sealing material layer 28 and the back surface protective layer 32 preferably has electrical insulation. When a conductive base material such as CFRP is used as the base material of the back surface protective layer 32, the occurrence of leakage current may be a problem. Therefore, the leakage current can be insulated by disposing the intermediate layer 30 having electrical insulation between the second sealing material layer 28 and the back surface protective layer 32. As the material of the intermediate layer 30 used here, it is preferable to use a material having high electrical insulation among the materials of the intermediate layer.
 中間層24,30の厚みは、1μm~200μmであることが好ましく、10μm~100μmであることがより好ましい。中間層24がこのような厚みを有することにより、表面保護基板20の膨張・収縮による応力の光電変換部への伝達を十分に抑えることができる。なお、中間層24,30の厚みは同じであってもよいし、それぞれ異ならせてもよい。 The thickness of the intermediate layers 24 and 30 is preferably 1 μm to 200 μm, and more preferably 10 μm to 100 μm. When the intermediate layer 24 has such a thickness, transmission of stress due to expansion / contraction of the surface protective substrate 20 to the photoelectric conversion unit can be sufficiently suppressed. The thicknesses of the intermediate layers 24 and 30 may be the same or different.
 中間層24,30の熱膨張係数は、10~50(×10-6-1)であることが好ましく、15~30(×10-6-1)であることがより好ましい。中間層24の熱膨張係数がこの範囲であることにより、表面保護基板20が熱によって伸縮した場合でも、中間層24の伸縮は表面保護基板20よりも小さくなる。そのため、表面保護基板20の伸縮による応力が光電変換部へ伝達することを抑えることができる。 The thermal expansion coefficients of the intermediate layers 24 and 30 are preferably 10 to 50 (× 10 −6 K −1 ), and more preferably 15 to 30 (× 10 −6 K −1 ). When the thermal expansion coefficient of the intermediate layer 24 is within this range, even when the surface protective substrate 20 expands and contracts due to heat, the expansion and contraction of the intermediate layer 24 is smaller than that of the surface protective substrate 20. Therefore, it can suppress that the stress by the expansion / contraction of the surface protection board | substrate 20 is transmitted to a photoelectric conversion part.
 中間層24の全光線透過率は80%以上であることが好ましく、90~100%であることが好ましい。中間層24の全光線透過率をこの範囲とすることにより、光を効率よく光電変換部(太陽電池セル10)へ到達させることができる。 The total light transmittance of the intermediate layer 24 is preferably 80% or more, and preferably 90 to 100%. By setting the total light transmittance of the intermediate layer 24 within this range, light can efficiently reach the photoelectric conversion unit (solar cell 10).
 また、中間層24,30の引張弾性率は、1.0~10.0GPaが好ましく、2~5GPaがより好ましい。中間層24の引張弾性率がこのような範囲であることで、表面保護基板20の伸縮による応力を十分に緩和することができる。 Further, the tensile elastic modulus of the intermediate layers 24 and 30 is preferably 1.0 to 10.0 GPa, and more preferably 2 to 5 GPa. When the tensile elastic modulus of the intermediate layer 24 is within such a range, the stress due to expansion and contraction of the surface protective substrate 20 can be sufficiently relaxed.
 中間層24,30の表面及び裏面の少なくとも一方には、水蒸気透過率が1.0g/m・day以下の皮膜が形成されていることが好ましい。このような皮膜を中間層24,30に形成することで、第1封止材層26及び第2封止材層28への水蒸気の浸入がブロックされ、各封止材層に含まれる封止材の加水分解を抑制することができる。なお、本明細書における水蒸気透過率は、例えば、JIS K7129:2008(プラスチック-フィルム及びシート-水蒸気透過度の求め方(機器測定法))の付属書Bに規定された赤外線センサ法により求めることができる。 It is preferable that a film having a water vapor transmission rate of 1.0 g / m 2 · day or less is formed on at least one of the front and back surfaces of the intermediate layers 24 and 30. By forming such a film on the intermediate layers 24 and 30, the penetration of water vapor into the first sealing material layer 26 and the second sealing material layer 28 is blocked, and the sealing included in each sealing material layer Hydrolysis of the material can be suppressed. The water vapor transmission rate in this specification is determined by, for example, the infrared sensor method stipulated in Appendix B of JIS K7129: 2008 (Plastics-Films and Sheets-Method of determining water vapor transmission rate (instrument measurement method)). Can do.
 中間層24,30の表裏の少なくとも一方には、酸素透過率が8.0ml/m・day以下の皮膜が形成されていることが好ましい。このような皮膜を中間層24,30に形成することで、第1封止材層26及び第2封止材層28への酸素の浸入がブロックされ、各封止材層に含まれる封止材の酸化を抑制することができる。なお、本明細書における酸素透過率は、JIS K7126-1(GC法)により求めることができる。 A film having an oxygen permeability of 8.0 ml / m 2 · day or less is preferably formed on at least one of the front and back surfaces of the intermediate layers 24 and 30. By forming such a film on the intermediate layers 24 and 30, the penetration of oxygen into the first sealing material layer 26 and the second sealing material layer 28 is blocked, and the sealing included in each sealing material layer Oxidation of the material can be suppressed. The oxygen transmission rate in this specification can be determined according to JIS K7126-1 (GC method).
 中間層24,30に設けられる皮膜は、コーティング法又は蒸着法で形成することができる。中間層24,30に設けられる皮膜は、Si及びOを含む無機複合材料から構成されることが好ましい。そのような材料としては、シロキサン化合物などが挙げられ、その中でも、ポリオルガノシロキサンが好ましい。 The film provided on the intermediate layers 24 and 30 can be formed by a coating method or a vapor deposition method. The coating provided on the intermediate layers 24 and 30 is preferably composed of an inorganic composite material containing Si and O. Examples of such materials include siloxane compounds, among which polyorganosiloxane is preferable.
 (裏面保護層)
 第一実施形態では、太陽電池モジュール100の裏面側を保護するために、バックシートとしての裏面保護層32を設けている。そして、裏面保護層32は、一方向にのみ配向した低熱膨張成分を有している。具体的には、図4(a)に示すように、裏面保護層32は、母材321と、母材321の内部に設けられ、低熱膨張成分である繊維材322とを有している。
(Back protection layer)
In 1st embodiment, in order to protect the back surface side of the solar cell module 100, the back surface protection layer 32 as a back sheet is provided. And the back surface protective layer 32 has the low thermal expansion component orientated only in one direction. Specifically, as shown in FIG. 4A, the back surface protective layer 32 includes a base material 321 and a fiber material 322 that is provided inside the base material 321 and is a low thermal expansion component.
 裏面保護層32を構成する母材321は樹脂を含むことが好ましく、樹脂からなることがより好ましい。具体的には、母材321は、エポキシ樹脂、ポリイミド(PI)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)からなる群より選ばれる少なくとも一つを含むことが好ましい。 The base material 321 constituting the back protective layer 32 preferably contains a resin, and more preferably consists of a resin. Specifically, the base material 321 includes an epoxy resin, polyimide (PI), cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), polystyrene (PS), polyethylene terephthalate (PET). And at least one selected from the group consisting of polyethylene naphthalate (PEN).
 裏面保護層32を構成する低熱膨張成分は、裏面保護層32における一方向の熱膨張係数が表面保護基板20の熱膨張係数よりも小さくなるような材料を用いることが好ましい。具体的には、裏面保護層32の低熱膨張成分としては、繊維材322を用いることが好ましい。繊維材322は特に限定されないが、無機材料からなる無機繊維及び有機材料からなる有機繊維の少なくとも一方を用いることができ、例えば、炭素繊維、ガラス繊維及びアラミド繊維からなる群より選ばれる少なくとも一つを用いることが好ましい。 The low thermal expansion component constituting the back surface protective layer 32 is preferably a material whose one-way thermal expansion coefficient in the back surface protective layer 32 is smaller than the thermal expansion coefficient of the surface protective substrate 20. Specifically, it is preferable to use a fiber material 322 as the low thermal expansion component of the back surface protective layer 32. Although the fiber material 322 is not particularly limited, at least one of an inorganic fiber made of an inorganic material and an organic fiber made of an organic material can be used. For example, at least one selected from the group consisting of carbon fiber, glass fiber, and aramid fiber Is preferably used.
 裏面保護層32は、マトリックス樹脂である母材321と繊維材322とを有する繊維強化プラスチック(FRP)を用いることが好ましい。繊維強化プラスチックとしては、炭素繊維強化プラスチック(CFRP)、ガラス繊維強化プラスチック(GFRP)、アラミド繊維強化プラスチック(AFRP)からなる群より選ばれる少なくとも一つを用いることができる。なお、裏面保護層32として炭素繊維強化プラスチックを用いることにより、たわみが生じ難く、軽量な保護層を得ることができる。 The back surface protective layer 32 is preferably made of fiber reinforced plastic (FRP) having a base material 321 and a fiber material 322 which are matrix resins. As the fiber reinforced plastic, at least one selected from the group consisting of carbon fiber reinforced plastic (CFRP), glass fiber reinforced plastic (GFRP), and aramid fiber reinforced plastic (AFRP) can be used. In addition, by using a carbon fiber reinforced plastic as the back surface protective layer 32, it is difficult to bend and a lightweight protective layer can be obtained.
 太陽電池モジュール100において、低熱膨張成分である繊維材322は一方向にのみ配向している。具体的には、図4(a)に示すように、母材321の内部に含まれる繊維材322は、x方向に沿って配向している。または、母材321の内部に含まれる繊維材322は、y方向に沿って配向している。裏面保護層32として、繊維材322が一方向に並んだUD(UniDirection)材を用いることにより、太陽電池モジュールが凹状に反ってしまうことを抑制することが可能となる。 In the solar cell module 100, the fiber material 322 which is a low thermal expansion component is oriented only in one direction. Specifically, as illustrated in FIG. 4A, the fiber material 322 included in the base material 321 is oriented along the x direction. Alternatively, the fiber material 322 included in the base material 321 is oriented along the y direction. By using a UD (UniDirection) material in which the fiber material 322 is aligned in one direction as the back surface protection layer 32, it is possible to suppress the solar cell module from warping in a concave shape.
 詳細に説明すると、太陽電池モジュール100において、裏面保護層32は、一方向の熱膨張係数が表面保護基板20の熱膨張係数よりも小さくなっている。つまり、繊維材322がx方向に沿って配向している場合、裏面保護層32は、x方向の熱膨張係数が表面保護基板20の熱膨張係数よりも小さくなっている。同様に、繊維材322がy方向に沿って配向している場合、裏面保護層32は、y方向の熱膨張係数が表面保護基板20の熱膨張係数よりも小さくなっている。 More specifically, in the solar cell module 100, the back surface protective layer 32 has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate 20. That is, when the fiber material 322 is oriented along the x direction, the back surface protective layer 32 has a thermal expansion coefficient in the x direction smaller than that of the surface protective substrate 20. Similarly, when the fiber material 322 is oriented along the y direction, the back surface protective layer 32 has a thermal expansion coefficient in the y direction smaller than that of the surface protective substrate 20.
 さらに、裏面保護層32において、一方向の熱膨張係数と、一方向に垂直な他方向の熱膨張係数とは互いに異なる構成となっている。つまり、裏面保護層32において、繊維材322がx方向に沿って配向している場合、x方向の熱膨張係数と、x方向に垂直なy方向の熱膨張係数とは互いに異なる構成となっている。同様に、裏面保護層32において、繊維材322がy方向に沿って配向している場合、y方向の熱膨張係数とx方向の熱膨張係数とは互いに異なる構成となっている。 Furthermore, in the back surface protective layer 32, the thermal expansion coefficient in one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction are different from each other. That is, in the back surface protective layer 32, when the fiber material 322 is oriented along the x direction, the thermal expansion coefficient in the x direction and the thermal expansion coefficient in the y direction perpendicular to the x direction are different from each other. Yes. Similarly, in the back surface protective layer 32, when the fiber material 322 is oriented along the y direction, the thermal expansion coefficient in the y direction and the thermal expansion coefficient in the x direction are different from each other.
 このような構成の太陽電池モジュール100を冷却した場合、樹脂製の表面保護基板20は、x方向及びy方向の両方に沿って収縮する。これに対して、裏面保護層32は、一方向(x方向又はy方向)の熱膨張係数が表面保護基板20の熱膨張係数よりも小さくなっているため、裏面保護層32は、当該一方向では表面保護基板20よりも収縮しない。また、裏面保護層32は、当該一方向は収縮し難いが、一方向に垂直な他方向は収縮しやすい。このように、表面保護基板20はx方向及びy方向の両方に沿って収縮するが、裏面保護層32はx方向又はy方向に沿って収縮し難くなっていることにより、太陽電池モジュール100が凹状に変形することを抑制することができる。 When the solar cell module 100 having such a configuration is cooled, the resin surface protection substrate 20 contracts along both the x direction and the y direction. On the other hand, since the back surface protective layer 32 has a thermal expansion coefficient in one direction (x direction or y direction) smaller than that of the surface protective substrate 20, the back surface protective layer 32 is in the one direction. Then, it does not shrink more than the surface protection substrate 20. Further, the back surface protective layer 32 is unlikely to contract in the one direction, but easily contracts in the other direction perpendicular to the one direction. As described above, the front surface protection substrate 20 contracts along both the x direction and the y direction, but the back surface protection layer 32 hardly contracts along the x direction or the y direction. Deformation into a concave shape can be suppressed.
 また、図4(b)に示すように、第一実施形態の太陽電池モジュール100は、常温の状態で受光面側が凸となる曲面形状であってもよい。そして、このような凸状の太陽電池モジュール100を冷却した場合も、表面保護基板20はx方向及びy方向の両方に沿って収縮するが、裏面保護層32はx方向又はy方向に沿って収縮し難い。その結果、凸状の太陽電池モジュール100が凹状に変形することなく、凸状を維持することが可能となる。 Further, as shown in FIG. 4 (b), the solar cell module 100 of the first embodiment may have a curved surface shape in which the light receiving surface side is convex in a room temperature state. And even when such a convex solar cell module 100 is cooled, the front surface protection substrate 20 shrinks along both the x direction and the y direction, but the back surface protection layer 32 extends along the x direction or the y direction. It is hard to shrink. As a result, the convex solar cell module 100 can be maintained in a convex shape without being deformed into a concave shape.
 これに対して、例えば、裏面保護層として、図5(a)に示すように、繊維材322が縦と横に交互に配向したクロス材を用いた場合、太陽電池モジュール100は凹状に変形する可能性が高くなる。つまり、クロス材は、x方向及びy方向の両方とも熱膨張係数が小さい。そのため、裏面保護層としてクロス材を用いた太陽電池モジュールを冷却した場合、表面保護基板20はx方向及びy方向の両方に沿って収縮するが、裏面保護層32はx方向及びy方向の両方とも収縮し難い。その結果、表面保護基板20全体の収縮の影響により、図5(b)に示すように、太陽電池モジュール100aは、凹状に変形してしまう。 On the other hand, for example, as shown in FIG. 5A, when the cross member in which the fiber material 322 is alternately oriented vertically and horizontally is used as the back surface protective layer, the solar cell module 100 is deformed into a concave shape. The possibility increases. That is, the cloth material has a small coefficient of thermal expansion in both the x direction and the y direction. Therefore, when the solar cell module using the cloth material as the back surface protection layer is cooled, the surface protection substrate 20 contracts along both the x direction and the y direction, but the back surface protection layer 32 is both in the x direction and the y direction. It is difficult to shrink. As a result, the solar cell module 100a is deformed into a concave shape as shown in FIG.
 このように、太陽電池モジュール100は、受光面側から順に、樹脂製の表面保護基板20と、ゲル状高分子層22と、第1封止材層26と、光電変換部と、第2封止材層28と、一方向に配向した低熱膨張成分を備える裏面保護層32とを有する。ゲル状高分子層22の引張弾性率が、表面保護基板20、第1封止材層26及び第2封止材層28のうちのいずれの引張弾性率よりも小さい。そして、裏面保護層32は、一方向の熱膨張係数が表面保護基板20の熱膨張係数よりも小さい。また、裏面保護層32において、当該一方向の熱膨張係数と、一方向に垂直な他方向の熱膨張係数とは互いに異なる。その結果、表面保護基板20はx方向及びy方向の両方に沿って収縮するが、裏面保護層32はx方向又はy方向に沿って収縮し難い。そのため、太陽電池モジュール100が凹状に変形することを抑制することが可能となる。 As described above, the solar cell module 100 includes, in order from the light receiving surface side, the resin surface protection substrate 20, the gel polymer layer 22, the first sealing material layer 26, the photoelectric conversion unit, and the second sealing. It has the stop material layer 28 and the back surface protective layer 32 provided with the low thermal expansion component orientated in one direction. The tensile elastic modulus of the gel polymer layer 22 is smaller than any tensile elastic modulus of the surface protective substrate 20, the first sealing material layer 26, and the second sealing material layer 28. The back surface protective layer 32 has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate 20. In the back surface protective layer 32, the thermal expansion coefficient in one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction are different from each other. As a result, the front surface protective substrate 20 contracts along both the x direction and the y direction, but the back surface protective layer 32 hardly contracts along the x direction or the y direction. Therefore, it is possible to suppress the solar cell module 100 from being deformed into a concave shape.
 なお、裏面保護層32において、低熱膨張成分は短手方向であるx方向又は長手方向であるy方向に沿って延伸している必要は無い。例えば、低熱膨張成分は、x方向又はy方向から所定角度傾斜した状態で延伸していてもよい。 In addition, in the back surface protective layer 32, the low thermal expansion component does not need to extend along the x direction which is the short direction or the y direction which is the long direction. For example, the low thermal expansion component may be stretched at a predetermined angle from the x direction or the y direction.
 また、裏面保護層32は、光電変換部の裏面での発電効率を上げるために、母材321に酸化チタンなどを添加し反射率を向上させてもよい。さらに、裏面保護層32の表面にメッキ処理を施してもよい。 Further, the back surface protective layer 32 may improve the reflectance by adding titanium oxide or the like to the base material 321 in order to increase the power generation efficiency on the back surface of the photoelectric conversion unit. Further, the surface of the back surface protective layer 32 may be plated.
 太陽電池モジュール100において、表面保護基板20の熱膨張係数と、裏面保護層32における上記一方向に垂直な他方向の熱膨張係数との差は、可能な限り小さい方が好ましい。この場合、表面保護基板20のx方向及びy方向の収縮率が、裏面保護層32の他方向の収縮率と近似する。そして、上述のように、裏面保護層では、一方向の熱膨張係数が表面保護基板の熱膨張係数よりも小さいため、収縮率が小さい。そのため、太陽電池モジュール100を冷却した際には、表面保護基板20だけでなく、裏面保護層32の他方向も収縮することから、凹状に変形することが抑制される。表面保護基板の熱膨張係数と、裏面保護層における上記他方向の熱膨張係数との差は、30×10-6-1以下であることが好ましく、20×10-6-1以下であることがより好ましく、10×10-6-1以下であることが特に好ましい。 In the solar cell module 100, the difference between the thermal expansion coefficient of the surface protective substrate 20 and the thermal expansion coefficient in the other direction perpendicular to the one direction in the back surface protective layer 32 is preferably as small as possible. In this case, the shrinkage rate in the x direction and the y direction of the front surface protection substrate 20 approximates the shrinkage rate in the other direction of the back surface protection layer 32. And as above-mentioned, in a back surface protective layer, since the thermal expansion coefficient of one direction is smaller than the thermal expansion coefficient of a surface protection board | substrate, a shrinkage rate is small. Therefore, when the solar cell module 100 is cooled, not only the front surface protection substrate 20 but also the other direction of the back surface protection layer 32 contracts, so that deformation into a concave shape is suppressed. The difference between the thermal expansion coefficient of the surface protective substrate and the thermal expansion coefficient in the other direction in the back surface protective layer is preferably 30 × 10 −6 K −1 or less, and is preferably 20 × 10 −6 K −1 or less. More preferably, it is 10 × 10 −6 K −1 or less.
 太陽電池モジュール100において、裏面保護層32が母材321と低熱膨張成分である繊維材322とを有し、繊維材322の熱膨張係数が母材321の熱膨張係数よりも小さいことが好ましい。繊維材322の熱膨張係数が母材321の熱膨張係数よりも小さいことにより、一方向の熱膨張係数と、当該一方向に垂直な他方向の熱膨張係数とが互いに異なる構成とすることができる。その結果、太陽電池モジュール100を冷却した際に凹状に変形することが抑制される。 In the solar cell module 100, it is preferable that the back surface protection layer 32 includes a base material 321 and a fiber material 322 that is a low thermal expansion component, and the thermal expansion coefficient of the fiber material 322 is smaller than the thermal expansion coefficient of the base material 321. When the thermal expansion coefficient of the fiber material 322 is smaller than the thermal expansion coefficient of the base material 321, the thermal expansion coefficient in one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction may be different from each other. it can. As a result, when the solar cell module 100 is cooled, it is suppressed from being deformed into a concave shape.
 裏面保護層32の厚みは特に限定されないが、表面保護基板20の厚みの10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましい。また、裏面保護層32の厚みの下限は、表面保護基板20の厚みの0.8%であることが好ましい。なお、裏面保護層32の厚みは、0.5mm以下であることが好ましい。裏面保護層32の厚みをこのようにすることで、裏面保護層32における内部応力の発生を抑制し、太陽電池モジュール100の軽量化を図ることが可能となる。また、裏面保護層32の厚みが薄い場合、太陽電池モジュール内部のガス抜け性を向上させることができる。例えば、第2封止材層28の材料としてEVAを用いた場合、EVAの分解により酢酸が生じることがあるが、裏面保護層32が薄い場合には、酢酸が外部に発散しやすくなる。 Although the thickness of the back surface protective layer 32 is not particularly limited, it is preferably 10% or less of the thickness of the surface protective substrate 20, more preferably 5% or less, and further preferably 3% or less. In addition, the lower limit of the thickness of the back surface protective layer 32 is preferably 0.8% of the thickness of the surface protective substrate 20. In addition, it is preferable that the thickness of the back surface protective layer 32 is 0.5 mm or less. By making the thickness of the back surface protective layer 32 in this way, it is possible to suppress the generation of internal stress in the back surface protective layer 32 and to reduce the weight of the solar cell module 100. Moreover, when the thickness of the back surface protective layer 32 is thin, the outgassing property inside a solar cell module can be improved. For example, when EVA is used as the material of the second sealing material layer 28, acetic acid may be generated due to the decomposition of EVA. However, when the back surface protective layer 32 is thin, the acetic acid is likely to diffuse to the outside.
 裏面保護層32の表面及び裏面の少なくとも一方には、バリア層を設けることが好ましい。つまり、図2に示す太陽電池モジュール100では、第2封止材層28と裏面保護層32との間にバリア層を設けることが好ましい。図3に示す太陽電池モジュール100では、中間層30と裏面保護層32との間にバリア層を設けることが好ましい。また、図2及び図3に示す裏面保護層32における、z軸の負方向側の主面(裏面)にバリア層を設けることも好ましい。そして、バリア層は、酸素及び水蒸気の少なくとも一方の透過を抑制する層であることが好ましい。このようなバリア層を設けることにより、太陽電池モジュール100の裏面から酸素及び/又は水蒸気が浸入することを抑制し、封止材の劣化を防ぐことが可能となる。なお、バリア層は、所定の厚みを有するフィルムであってもよく、薄膜状のコーティングであってもよい。バリア層は、中間層24,30に設けられる皮膜と同じ材料を用いることができる。 It is preferable to provide a barrier layer on at least one of the front surface and the back surface of the back surface protective layer 32. That is, in the solar cell module 100 shown in FIG. 2, it is preferable to provide a barrier layer between the second sealing material layer 28 and the back surface protective layer 32. In the solar cell module 100 shown in FIG. 3, it is preferable to provide a barrier layer between the intermediate layer 30 and the back surface protective layer 32. Moreover, it is also preferable to provide a barrier layer on the main surface (back surface) on the negative direction side of the z-axis in the back surface protective layer 32 shown in FIGS. The barrier layer is preferably a layer that suppresses permeation of at least one of oxygen and water vapor. By providing such a barrier layer, it is possible to prevent oxygen and / or water vapor from entering from the back surface of the solar cell module 100 and to prevent deterioration of the sealing material. The barrier layer may be a film having a predetermined thickness or a thin film coating. The barrier layer can be made of the same material as the coating provided on the intermediate layers 24 and 30.
 裏面保護層32にUD材の繊維強化プラスチックを用い、裏面保護層32の厚みを薄くした場合、UD材を必要に応じて部分的に重ね合わせることで、所望の箇所を補強するなど、裏面保護層32の中でその特性に強弱をつけることができる。なお、UD材を重ね合わせる場合、UD材の繊維をそれぞれ同じ方向に重ね合わせる必要がある。 When fiber reinforced plastic of UD material is used for the back surface protection layer 32 and the thickness of the back surface protection layer 32 is reduced, the UD material is partially overlapped as necessary to reinforce a desired location. In the layer 32, it is possible to add strength to the characteristics. In addition, when overlapping UD materials, it is necessary to overlap the fibers of the UD materials in the same direction.
 また、裏面保護層32の厚みが薄くなると、第2封止材層28の形状に追従させながら裏面保護層32を貼り合わせることができ、第2封止材層28と裏面保護層32の間に気泡を混入し難くすることができる。例えば、表面保護基板20が曲面を有する形状であっても、第2封止材層28を介して表面保護基板20の形状に適合するように裏面保護層32を貼り合わせることができる。そのため、気泡の混入を抑制しつつ、曲面形状を有する太陽電池モジュール100を容易に製造することができる。なお、この際、裏面保護層32と第2封止材層28と中間層30を貼り合わせた状態でフィルムモジュールが作製されていると、このフィルムモジュール自体が柔軟性を有するため、表面保護基板20への貼り合わせを容易にすることができる。また、裏面保護層32の追従性が高いため、例えば各層を積層して曲面形状の太陽電池モジュール100を製造する場合などに、局所的な荷重が太陽電池セル10などに加わり難いため、太陽電池セル10の破損を抑制することができる。 In addition, when the thickness of the back surface protective layer 32 is reduced, the back surface protective layer 32 can be bonded while following the shape of the second seal material layer 28, and between the second seal material layer 28 and the back surface protective layer 32. It is possible to make it difficult for air bubbles to be mixed in. For example, even if the surface protection substrate 20 has a curved shape, the back surface protection layer 32 can be bonded to the shape of the surface protection substrate 20 via the second sealing material layer 28. Therefore, the solar cell module 100 having a curved surface shape can be easily manufactured while suppressing the mixing of bubbles. At this time, if the film module is manufactured with the back surface protective layer 32, the second sealing material layer 28, and the intermediate layer 30 bonded together, the film module itself has flexibility. Bonding to 20 can be facilitated. In addition, since the back surface protective layer 32 has high followability, when a curved solar cell module 100 is manufactured by stacking the layers, for example, a local load is not easily applied to the solar cells 10. Damage to the cell 10 can be suppressed.
 さらに、裏面保護層32の厚みが薄くなると、第2封止材層28を素早く加熱して架橋することができるため、太陽電池モジュール100の製造時間を短縮するだけでなく、表面保護基板20が熱変形するのを抑制することができる。 Furthermore, when the thickness of the back surface protective layer 32 is reduced, the second sealing material layer 28 can be quickly heated and crosslinked, so that not only the manufacturing time of the solar cell module 100 is shortened, but also the surface protective substrate 20 Thermal deformation can be suppressed.
 太陽電池モジュール100において、光電変換部は、タブ配線12で接続された1以上の太陽電池セル10を有し、裏面保護層32において、繊維材322はタブ配線12の延在方向に配向することが好ましい。具体的には、図1に示す太陽電池モジュール100の場合、繊維材322はタブ配線12の延在方向であるy方向に沿って配設されていることが好ましい。この場合、裏面保護層32は、y方向に沿って伸縮し難くなることから、タブ配線12の変位が抑制され、断線を防止することが可能となる。 In the solar cell module 100, the photoelectric conversion unit has one or more solar cells 10 connected by the tab wiring 12, and the fiber material 322 is oriented in the extending direction of the tab wiring 12 in the back surface protection layer 32. Is preferred. Specifically, in the case of the solar cell module 100 shown in FIG. 1, the fiber material 322 is preferably arranged along the y direction that is the extending direction of the tab wiring 12. In this case, since the back surface protection layer 32 is difficult to expand and contract along the y direction, the displacement of the tab wiring 12 is suppressed, and disconnection can be prevented.
 上述のように、太陽電池モジュール100において、光電変換部は、タブ配線12で接続された1以上の太陽電池セル10を有する。そして、裏面保護層32は、タブ配線12の延在方向と直交する方向の一部又は全体に亘り形成された少なくとも一つの切り込みを有する構成とすることができる。上述の通り、裏面保護層32は、繊維材322の配向方向がタブ配線12の延在方向となるように配置することが好ましい。ただ、その構成において、太陽電池モジュール100をタブ配線12の延在方向に沿って曲げる曲面形状とすると、繊維材322の配向方向で反りや内部応力の発生が危惧される。そこで、裏面保護層32に、タブ配線12の延在方向と直交する方向の一部又は全体に亘り切り込みを設けることで、反りや内部応力の発生を抑えることができる。 As described above, in the solar cell module 100, the photoelectric conversion unit includes one or more solar cells 10 connected by the tab wiring 12. And the back surface protective layer 32 can be set as the structure which has at least 1 notch formed over a part or whole of the direction orthogonal to the extension direction of the tab wiring 12. FIG. As described above, the back surface protective layer 32 is preferably arranged so that the orientation direction of the fiber material 322 is the extending direction of the tab wiring 12. However, if the solar cell module 100 has a curved shape that bends along the extending direction of the tab wiring 12 in the configuration, warping and internal stress may occur in the orientation direction of the fiber material 322. Therefore, by providing a cut in the back surface protection layer 32 over a part or the whole in the direction orthogonal to the extending direction of the tab wiring 12, it is possible to suppress the occurrence of warping and internal stress.
 図6及び図7は、裏面保護層32に、タブ配線12の延在方向と直交する方向の全体に亘り切り込みを設けた形態を示している。すなわち、図6及び図7に示す裏面保護層32には、3つの切り込みを設けて4つに分割している。このように、裏面保護層32が分割されることで、切り込み部分において曲げに対する応力が遮断されるため、反りや内部応力の発生を抑えることができる。 6 and 7 show a form in which the back surface protective layer 32 is provided with cuts in the entire direction perpendicular to the extending direction of the tab wiring 12. That is, the back protective layer 32 shown in FIGS. 6 and 7 is divided into four by providing three cuts. Thus, since the back surface protective layer 32 is divided, the bending stress is cut off at the cut portion, so that generation of warpage and internal stress can be suppressed.
 裏面保護層32に設ける切り込みの形状、長さ又は太さは、上記効果を発揮する限りにおいて特に制限はない。図8(a)は、裏面保護層32の一辺から他辺に向けて切り込みを3つ設けた形態であり、図8(b)は対向する二辺において一辺からの切り込みと他辺からの切り込みとを交互に3つ設けた形態である。なお、図8(a)及び図8(b)の両方とも、他辺には切り込みは達していない。図8(a)及び図8(b)のいずれも、裏面保護層32のタブ配線12の延在方向と直交する方向の一部において切り込みを設けている。つまり、図6及び図7に示す形態とは異なり、裏面保護層32は完全に分割されず一体となっている。そして、図8(a)及び図8(b)のいずれの裏面保護層32も、切り込み部分において曲げに対する応力が遮断されるため、反りや内部応力の発生を抑えることができる。その他、裏面保護層32において、破線状に切り込みを設けてもよい。 The shape, length, and thickness of the cut provided in the back surface protective layer 32 are not particularly limited as long as the above effects are exhibited. FIG. 8A is a form in which three cuts are provided from one side to the other side of the back surface protective layer 32, and FIG. 8B shows a cut from one side and a cut from the other side on two opposite sides. And three are alternately provided. In addition, in both FIG. 8A and FIG. 8B, the other side has not been cut. In both FIG. 8A and FIG. 8B, a cut is provided in a part of the back surface protective layer 32 in a direction orthogonal to the extending direction of the tab wiring 12. That is, unlike the embodiment shown in FIGS. 6 and 7, the back surface protective layer 32 is not completely divided but integrated. 8A and 8B, since the stress for bending is cut off at the cut portion, the occurrence of warpage and internal stress can be suppressed. In addition, in the back surface protective layer 32, a cut may be provided in a broken line shape.
 太陽電池モジュール100は、光電変換部がタブ配線12で接続された1以上の太陽電池セル10を有し、表面保護基板20の受光面側が凸となる曲面形状であって、タブ配線12が曲面に沿って曲げられている構成とすることができる。太陽電池モジュール100において、裏面保護層32は、一方向の熱膨張係数が表面保護基板20の熱膨張係数よりも小さく、裏面保護層32において、当該一方向の熱膨張係数と、一方向に垂直な他方向の熱膨張係数とは互いに異なる構成となっている。そのため、太陽電池モジュール100の受光面側が凸となる場合であっても、太陽電池モジュール100が凹状に変形することを抑制することが可能となる。 The solar cell module 100 has one or more solar cells 10 whose photoelectric conversion portions are connected by tab wirings 12, and has a curved surface shape in which the light receiving surface side of the surface protection substrate 20 is convex, and the tab wirings 12 are curved surfaces. It can be set as the structure bent along. In the solar cell module 100, the back surface protective layer 32 has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate 20, and the back surface protective layer 32 is perpendicular to the one direction thermal expansion coefficient. The thermal expansion coefficients in other directions are different from each other. Therefore, even if it is a case where the light-receiving surface side of the solar cell module 100 becomes convex, it becomes possible to suppress that the solar cell module 100 deform | transforms into a concave shape.
[第二実施形態の太陽電池モジュール]
 次に、第二実施形態に係る太陽電池モジュールについて、図面に基づき詳細に説明する。なお、第一実施形態の太陽電池モジュールと同一構成には同一符号を付し、重複する説明は省略する。
[Solar Cell Module of Second Embodiment]
Next, the solar cell module according to the second embodiment will be described in detail based on the drawings. In addition, the same code | symbol is attached | subjected to the same structure as the solar cell module of 1st embodiment, and the overlapping description is abbreviate | omitted.
 図9は、第二実施形態に係る太陽電池モジュール100Aを示す平面図である。図10(a)は、図9のXA-XA線に沿った太陽電池モジュールの断面を示す概略図であり、図10(b)は、図9のXB-XB線に沿った太陽電池モジュールの断面を示す概略図である。なお、図10(a)及び図10(b)では、タブ配線12及び接続配線14を省略している。 FIG. 9 is a plan view showing a solar cell module 100A according to the second embodiment. FIG. 10A is a schematic diagram showing a cross section of the solar cell module taken along line XA-XA in FIG. 9, and FIG. 10B is a diagram of the solar cell module taken along line XB-XB in FIG. It is the schematic which shows a cross section. In FIG. 10A and FIG. 10B, the tab wiring 12 and the connection wiring 14 are omitted.
 図10に示すように、太陽電池モジュール100Aは、第一実施形態と同様に、太陽電池セル10、タブ配線12及び接続配線14を有する光電変換部、並びに表面保護基板20、第1封止材層26、第2封止材層28及び裏面保護層32を備えている。そのため、太陽電池モジュール100Aでは、受光面側から順に、表面保護基板20と、第1封止材層26と、光電変換部(太陽電池セル10、タブ配線12、接続配線14)と、第2封止材層28と、裏面保護層32とが積層されている。 As shown in FIG. 10, the solar cell module 100 </ b> A includes a photovoltaic cell 10, a photoelectric conversion unit having a tab wiring 12 and a connection wiring 14, a surface protection substrate 20, and a first sealing material, as in the first embodiment. The layer 26, the second sealing material layer 28, and the back surface protective layer 32 are provided. Therefore, in the solar cell module 100A, in order from the light receiving surface side, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit (solar cell 10, tab wiring 12, connection wiring 14), and second The sealing material layer 28 and the back surface protective layer 32 are laminated.
 光電変換部、表面保護基板20、第1封止材層26及び第2封止材層28は、第一実施形態と同じものを使用することができる。また、裏面保護層32は、母材(マトリックス樹脂)と、母材の内部に設けられ、低熱膨張成分である繊維材とを有する繊維強化プラスチックを使用することができる。繊維強化プラスチックとしては、繊維材が一方向に並んだUD(UniDirection)材、又は繊維材が縦と横に交互に配向したクロス材を用いることができる。なお、裏面保護層32を構成する母材及び繊維材は、第一実施形態と同じものを使用することができる。 The same photoelectric conversion part, surface protective substrate 20, first sealing material layer 26 and second sealing material layer 28 as those in the first embodiment can be used. Moreover, the back surface protective layer 32 can use the fiber reinforced plastic which has a base material (matrix resin) and the fiber material which is provided in the inside of a base material and is a low thermal expansion component. As the fiber reinforced plastic, a UD (UniDirection) material in which fiber materials are arranged in one direction or a cloth material in which fiber materials are alternately oriented vertically and horizontally can be used. In addition, the base material and fiber material which comprise the back surface protective layer 32 can use the same thing as 1st embodiment.
 太陽電池モジュールを製造する際には、まず、表面保護基板20と、第1封止材層26と、光電変換部と、第2封止材層28と、裏面保護層32とをこの順で積層することにより、積層体を得る。次いで、金型を用いて、積層体を100℃以上に加熱しながら加圧することで、各層を接着する。このとき、第1封止材層26及び第2封止材層28の面積と裏面保護層32の面積とがほぼ等しい場合、積層体を加熱しながら加圧した際、熱により封止材が溶融して、表面保護基板20と裏面保護層32との間から樹脂が漏れる場合がある。積層体から封止材の樹脂が漏れた場合、金型を汚染してしまいため、生産性が低下する可能性がある。 When manufacturing a solar cell module, first, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protection layer 32 are arranged in this order. By laminating, a laminate is obtained. Next, each layer is bonded by pressurizing the laminate with heating to 100 ° C. or higher using a mold. At this time, when the area of the first sealing material layer 26 and the second sealing material layer 28 and the area of the back surface protective layer 32 are substantially equal, when the laminate is pressed while heating, the sealing material is heated by heat. The resin may melt and leak from between the front surface protection substrate 20 and the back surface protection layer 32. When the resin of the sealing material leaks from the laminate, the mold is contaminated, which may reduce productivity.
 そのため、太陽電池モジュール100Aにおいて、光電変換部を平面視した場合、裏面保護層32の面積は、表面保護基板20の面積よりも小さく、第1封止材層26の面積及び第2封止材層28の面積よりも大きいことが好ましい。そして、裏面保護層32は、表面保護基板20の周縁において、第1封止材層26の端部26a及び第2封止材層28の端部28aを覆って表面保護基板20に直接接合されていることが好ましい。つまり、図10(a)及び図10(b)に示すように、第1封止材層26の端部26a及び第2封止材層28の端部28aは共に、裏面保護層32により覆われていることが好ましい。裏面保護層32は、太陽電池モジュール100Aの全周に亘って第1封止材層26の端部26a及び第2封止材層28の端部28aを覆い、表面保護基板20の裏面に対する裏面保護層32の接合部が環状に形成されることが好ましい。この場合、第1封止材層26及び第2封止材層28の全体が、表面保護基板20及び裏面保護層32により包まれた状態となる。なお、表面保護基板20と裏面保護層32との接合部は、接着剤を用いて形成されてもよく、裏面保護層32の溶着により形成されてもよい。 Therefore, in the solar cell module 100A, when the photoelectric conversion unit is viewed in plan, the area of the back surface protection layer 32 is smaller than the area of the surface protection substrate 20, and the area of the first sealing material layer 26 and the second sealing material The area of the layer 28 is preferably larger. The back surface protection layer 32 is directly bonded to the surface protection substrate 20 so as to cover the end portion 26 a of the first sealing material layer 26 and the end portion 28 a of the second sealing material layer 28 at the periphery of the surface protection substrate 20. It is preferable. That is, as shown in FIGS. 10A and 10B, both the end portion 26 a of the first sealing material layer 26 and the end portion 28 a of the second sealing material layer 28 are covered with the back surface protective layer 32. It is preferable that The back surface protection layer 32 covers the end portion 26a of the first sealing material layer 26 and the end portion 28a of the second sealing material layer 28 over the entire circumference of the solar cell module 100A, and the back surface of the front surface protection substrate 20 with respect to the back surface. It is preferable that the joint portion of the protective layer 32 is formed in an annular shape. In this case, the first sealing material layer 26 and the second sealing material layer 28 are entirely wrapped by the front surface protection substrate 20 and the back surface protection layer 32. In addition, the junction part of the surface protection board | substrate 20 and the back surface protection layer 32 may be formed using an adhesive agent, and may be formed by welding of the back surface protection layer 32. FIG.
 仮に、第1封止材層26の端部26a及び第2封止材層28の端部28aが外部に露出する場合、第1封止材層26及び第2封止材層28が加熱されてタック性を発現したときに、製造設備、モジュール自体、或いは金型を汚すことが想定される。また、第1封止材層26及び第2封止材層28を構成する封止材が、金型等と干渉しないように、表面保護基板20と裏面保護層32の間から外側にはみ出す封止材の量を制御することは困難である。このため、封止材のはみ出し形状が安定せず、太陽電池モジュールの外観不良を招く可能性がある。また、第1封止材層26及び第2封止材層28がはみ出さないように設計した場合には、太陽電池セル10の搭載量が減少することも懸念される。 If the end portion 26a of the first sealing material layer 26 and the end portion 28a of the second sealing material layer 28 are exposed to the outside, the first sealing material layer 26 and the second sealing material layer 28 are heated. When tackiness is exhibited, it is assumed that the manufacturing equipment, the module itself, or the mold is soiled. In addition, the sealing material constituting the first sealing material layer 26 and the second sealing material layer 28 is sealed to protrude outward from between the front surface protection substrate 20 and the rear surface protection layer 32 so as not to interfere with the mold or the like. It is difficult to control the amount of the stop material. For this reason, the protruding shape of the sealing material is not stable, and the appearance of the solar cell module may be deteriorated. Moreover, when it designs so that the 1st sealing material layer 26 and the 2nd sealing material layer 28 may not protrude, we are anxious also about the mounting amount of the photovoltaic cell 10 reducing.
 これに対して、本実施形態のように、裏面保護層32が第1封止材層26の端部26a及び第2封止材層28の端部28aを覆う構造とすれば、かかる不具合の発生を防止することができる。さらに、空気及び水分が第1封止材層26及び第2封止材層28に作用し難くなるため、第1封止材層26及び第2封止材層28の劣化を抑制することができる。 On the other hand, if the back surface protection layer 32 covers the end portion 26a of the first sealing material layer 26 and the end portion 28a of the second sealing material layer 28 as in this embodiment, such a problem is caused. Occurrence can be prevented. Furthermore, since air and moisture hardly act on the first sealing material layer 26 and the second sealing material layer 28, it is possible to suppress deterioration of the first sealing material layer 26 and the second sealing material layer 28. it can.
 このように、太陽電池モジュール100Aにおいて、光電変換部を平面視した場合、裏面保護層32の面積は、表面保護基板20の面積よりも小さく、第1封止材層26の面積及び第2封止材層28の面積よりも大きい。そして、裏面保護層32は、表面保護基板20の周縁において、第1封止材層26の端部26a及び第2封止材層28の端部28aを覆って表面保護基板20に直接接合されている。これにより、表面保護基板20と裏面保護層32との間から樹脂が漏れることを抑制して金型の汚染を防ぐことができるため、太陽電池モジュール100Aの生産性を高めることが可能となる。 Thus, in the solar cell module 100A, when the photoelectric conversion unit is viewed in plan, the area of the back surface protection layer 32 is smaller than the area of the surface protection substrate 20, and the area of the first sealing material layer 26 and the second sealing layer It is larger than the area of the stopping material layer 28. The back surface protection layer 32 is directly bonded to the surface protection substrate 20 so as to cover the end portion 26 a of the first sealing material layer 26 and the end portion 28 a of the second sealing material layer 28 at the periphery of the surface protection substrate 20. ing. Thereby, since leakage of resin from between the front surface protection substrate 20 and the back surface protection layer 32 can be suppressed and contamination of the mold can be prevented, the productivity of the solar cell module 100A can be increased.
 なお、上述のように、太陽電池モジュール100Aは、表面保護基板20と、第1封止材層26と、光電変換部と、第2封止材層28と、裏面保護層32とを備えている。ただ、太陽電池モジュール100Aは、第一実施形態と同様に、表面保護基板20と第1封止材層26との間にゲル状高分子層22を介在させてもよい。また、太陽電池モジュール100Aは、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の少なくとも一方に、中間層24,30をさらに有していてもよい。 As described above, the solar cell module 100A includes the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protection layer 32. Yes. However, in the solar cell module 100A, the gel-like polymer layer 22 may be interposed between the surface protective substrate 20 and the first sealing material layer 26 as in the first embodiment. Further, the solar cell module 100A includes an intermediate layer 24 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. , 30 may be further included.
 上述のように、太陽電池モジュール100Aは、表面保護基板20と、第1封止材層26と、光電変換部と、第2封止材層28と、裏面保護層32とを積層した後に、加熱しながら加圧することで、得ることができる。なお、裏面保護層32に余分な部位が存在する場合には、太陽電池モジュール100Aを製造した後に、当該部位を切断して除去してもよい。 As described above, the solar cell module 100A is formed by laminating the surface protective substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protective layer 32. It can be obtained by applying pressure while heating. In addition, when an excess part exists in the back surface protective layer 32, after manufacturing the solar cell module 100A, the part may be cut and removed.
[第三実施形態の太陽電池モジュール]
 次に、第三実施形態に係る太陽電池モジュールについて、図面に基づき詳細に説明する。なお、第一及び第二実施形態の太陽電池モジュールと同一構成には同一符号を付し、重複する説明は省略する。
[Solar Cell Module of Third Embodiment]
Next, the solar cell module according to the third embodiment will be described in detail based on the drawings. In addition, the same code | symbol is attached | subjected to the same structure as the solar cell module of 1st and 2nd embodiment, and the overlapping description is abbreviate | omitted.
 図11は、第三実施形態に係る太陽電池モジュール100Bを示す平面図である。図12は、図11のXII-XII線に沿った太陽電池モジュール100Bの一部を示す断面図である。太陽電池モジュール100Bは、第一実施形態と同様に、複数の太陽電池セル10、複数のタブ配線12及び複数の接続配線14を有する光電変換部を備える。また、太陽電池モジュール100Bは、光電変換部に加え、表面保護基板20、第1封止材層26、第2封止材層28及び裏面保護層32を備えている。なお、図12の上側が受光面(表面)側に相当し、下側が裏面側に相当する。そのため、太陽電池モジュール100Bでは、受光面側から順に、表面保護基板20と、第1封止材層26と、光電変換部と、第2封止材層28と、裏面保護層32とが積層されている。 FIG. 11 is a plan view showing a solar cell module 100B according to the third embodiment. FIG. 12 is a cross-sectional view showing a part of the solar cell module 100B along the line XII-XII in FIG. Similar to the first embodiment, the solar cell module 100 </ b> B includes a photoelectric conversion unit having a plurality of solar cells 10, a plurality of tab wires 12, and a plurality of connection wires 14. Moreover, the solar cell module 100 </ b> B includes a surface protection substrate 20, a first sealing material layer 26, a second sealing material layer 28, and a back surface protection layer 32 in addition to the photoelectric conversion unit. In addition, the upper side of FIG. 12 corresponds to the light receiving surface (front surface) side, and the lower side corresponds to the back surface side. Therefore, in the solar cell module 100B, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit, the second sealing material layer 28, and the back surface protection layer 32 are stacked in order from the light receiving surface side. Has been.
 (表面保護基板)
 表面保護基板20は、太陽電池モジュール100Bの太陽光の受光側に位置し、透光性を有する樹脂材料から構成される基板である。表面保護基板20を構成する樹脂材料としては、第一実施形態で説明したものと同じものを使用することができる。
(Surface protection substrate)
The surface protection substrate 20 is a substrate that is located on the sunlight receiving side of the solar cell module 100B and is made of a resin material having translucency. As a resin material which comprises the surface protection board | substrate 20, the same thing as what was demonstrated in 1st embodiment can be used.
 第一実施形態と同様に、表面保護基板20の厚みは、2mm~6mmとすることが好ましく、3mm~5mmとすることがより好ましい。表面保護基板20の引張弾性率は、1.0GPa~10.0GPaであることが好ましく、2.3GPa~2.5GPaであることがより好ましい。表面保護基板20の全光線透過率は80%以上であることが好ましく、90~100%であることがより好ましい。また、表面保護基板20の熱膨張係数(線膨張係数)は、40~110(×10-6-1)とすることが好ましい。 Similar to the first embodiment, the thickness of the surface protection substrate 20 is preferably 2 mm to 6 mm, and more preferably 3 mm to 5 mm. The tensile elastic modulus of the surface protective substrate 20 is preferably 1.0 GPa to 10.0 GPa, and more preferably 2.3 GPa to 2.5 GPa. The total light transmittance of the surface protective substrate 20 is preferably 80% or more, and more preferably 90 to 100%. The thermal expansion coefficient (linear expansion coefficient) of the surface protective substrate 20 is preferably 40 to 110 (× 10 −6 K −1 ).
 表面保護基板20は、受光側に向けて凸状であることが好ましい。図13(a)は、図11のXIIIA-XIIIA線に沿った太陽電池モジュールの断面を示す概略図であり、図13(b)は、図11のXIIIB-XIIIB線に沿った太陽電池モジュールの断面を示す概略図である。なお、図13(a)及び図13(b)では、タブ配線12及び接続配線14を省略している。図13(a)及び図13(b)に示すように、表面保護基板20は、受光側(z軸の正方向側)に向けて全体的に凸状となるように湾曲していることが好ましい。つまり、表面保護基板20は、タブ配線12の方向(y方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。また、表面保護基板20は、タブ配線12の方向に垂直な方向(x方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。これにより、太陽電池モジュール100Bを冷却し、表面保護基板20がx方向及びy方向の両方に沿って収縮した場合でも、表面保護基板20が変形する作用力を分散し、太陽電池モジュール100Bが凹状に変形することを抑制することができる。 The surface protection substrate 20 is preferably convex toward the light receiving side. FIG. 13A is a schematic diagram showing a cross section of the solar cell module taken along line XIIIA-XIIIA in FIG. 11, and FIG. 13B is a diagram of the solar cell module taken along line XIIIB-XIIIB in FIG. It is the schematic which shows a cross section. In FIGS. 13A and 13B, the tab wiring 12 and the connection wiring 14 are omitted. As shown in FIGS. 13A and 13B, the surface protection substrate 20 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, it is preferable that the surface protection substrate 20 is curved so as to be convex toward the light receiving side along the direction of the tab wiring 12 (y direction). Further, the surface protection substrate 20 is preferably curved so as to be convex toward the light receiving side along a direction (x direction) perpendicular to the direction of the tab wiring 12. Thereby, even when the solar cell module 100B is cooled and the surface protection substrate 20 contracts along both the x direction and the y direction, the acting force that the surface protection substrate 20 deforms is dispersed, and the solar cell module 100B is concave. Can be prevented from being deformed.
 (第1封止材層、第2封止材層)
 第1封止材層26及び第2封止材層28は、太陽電池セル10を封止する。第1封止材層26は、表面保護基板20のz軸の負方向側(下側)に配置されており、第2封止材層28は、裏面保護層32のz軸の正方向側(上側)に配置されている。
(First sealing material layer, second sealing material layer)
The first sealing material layer 26 and the second sealing material layer 28 seal the solar battery cell 10. The first sealing material layer 26 is disposed on the negative direction side (lower side) of the z-axis of the surface protection substrate 20, and the second sealing material layer 28 is the positive direction side of the back surface protection layer 32 on the z-axis. (Upper side).
 第1封止材層26としては、第一実施形態と同様に、例えば、引張弾性率が0.001MPa~1MPaであり、損失係数が0.1~0.52であるゲルを用いることができる。また、第2封止材層28としては、第一実施形態と同様に、例えば、EVA(エチレン-酢酸ビニル共重合体)、PVB(ポリビニルブチラール)、ポリイミド等の熱可塑性樹脂を用いることができる。なお、第2封止材層28としては、熱硬化性樹脂を使用してもよい。 As the first sealing material layer 26, as in the first embodiment, for example, a gel having a tensile modulus of 0.001 MPa to 1 MPa and a loss coefficient of 0.1 to 0.52 can be used. . As the second sealing material layer 28, for example, a thermoplastic resin such as EVA (ethylene-vinyl acetate copolymer), PVB (polyvinyl butyral), polyimide, or the like can be used as in the first embodiment. . As the second sealing material layer 28, a thermosetting resin may be used.
 第1封止材層26及び第2封止材層28は同じ材料により形成されていてもよい。具体的には、第1封止材層26及び第2封止材層28は、引張弾性率が0.001MPa~1MPaであり、損失係数が0.1~0.52であるゲルを用いてもよい。また、第1封止材層26及び第2封止材層28は、EVA、PVB、ポリイミド等の熱可塑性樹脂を用いてもよい。ただ、第一実施形態と同様に、太陽電池モジュール100Bにおいて、第2封止材層28の引張弾性率は、第1封止材層26の引張弾性率より大きいことが好ましい。 The first sealing material layer 26 and the second sealing material layer 28 may be formed of the same material. Specifically, the first sealing material layer 26 and the second sealing material layer 28 are made of gel having a tensile modulus of 0.001 MPa to 1 MPa and a loss coefficient of 0.1 to 0.52. Also good. The first sealing material layer 26 and the second sealing material layer 28 may use thermoplastic resins such as EVA, PVB, and polyimide. However, as in the first embodiment, in the solar cell module 100 </ b> B, the tensile elastic modulus of the second sealing material layer 28 is preferably larger than the tensile elastic modulus of the first sealing material layer 26.
 第1封止材層26は、透光性を有すると共に、x-y平面において、表面保護基板20よりも小さな寸法である矩形状のシート材によって形成される。また、第2封止材層28も透光性を有すると共に、x-y平面において、表面保護基板20よりも小さな寸法である矩形状のシート材によって形成される。 The first sealing material layer 26 has a light transmitting property and is formed of a rectangular sheet material having a size smaller than that of the surface protection substrate 20 in the xy plane. The second sealing material layer 28 also has translucency, and is formed of a rectangular sheet material having a size smaller than that of the surface protection substrate 20 in the xy plane.
 (裏面保護層)
 裏面保護層32は、その強度を十分に確保するために、母材(マトリックス樹脂)と、母材の内部に設けられ、低熱膨張成分である繊維材とを有する繊維強化プラスチックからなることが好ましい。繊維強化プラスチックとしては、繊維材が一方向に並んだUD(UniDirection)材、又は繊維材が縦と横に交互に配向したクロス材を用いることができる。なお、裏面保護層32としてUD材を用いる場合、UD材は繊維方向に膨張収縮し難いことから、UD材を配置する方向を調整することにより、太陽電池セル10の破損やタブ配線12の切断を抑制することができる。なお、裏面保護層32を構成する母材及び繊維材は、第一実施形態と同じものを使用することができる。
(Back protection layer)
In order to ensure sufficient strength, the back surface protective layer 32 is preferably made of a fiber reinforced plastic having a base material (matrix resin) and a fiber material that is provided inside the base material and is a low thermal expansion component. . As the fiber reinforced plastic, a UD (UniDirection) material in which fiber materials are arranged in one direction or a cloth material in which fiber materials are alternately oriented vertically and horizontally can be used. In addition, when using UD material as the back surface protective layer 32, since the UD material is difficult to expand and contract in the fiber direction, the solar cell 10 is damaged or the tab wiring 12 is cut by adjusting the direction in which the UD material is arranged. Can be suppressed. In addition, the base material and fiber material which comprise the back surface protective layer 32 can use the same thing as 1st embodiment.
 裏面保護層32は、表面保護基板20と同様に、受光側に向けて凸状であることが好ましい。図13(a)及び図13(b)に示すように、裏面保護層32は、受光側(z軸の正方向側)に向けて全体的に凸状となるように湾曲していることが好ましい。つまり、裏面保護層32は、タブ配線12の方向(y方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。また、裏面保護層32は、タブ配線12の方向に垂直な方向(x方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。 The back surface protective layer 32 is preferably convex toward the light receiving side, like the surface protective substrate 20. As shown in FIGS. 13A and 13B, the back surface protective layer 32 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, the back surface protection layer 32 is preferably curved so as to be convex toward the light receiving side along the direction of the tab wiring 12 (y direction). The back surface protective layer 32 is preferably curved so as to be convex toward the light receiving side along a direction (x direction) perpendicular to the direction of the tab wiring 12.
 裏面保護層32の厚みは特に限定されないが、第一実施形態と同様に、表面保護基板20の厚みの10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましい。また、裏面保護層32の厚みの下限は、表面保護基板20の厚みの0.8%であることが好ましい。なお、裏面保護層32の厚みは、0.5mm以下であることが好ましい。 Although the thickness of the back surface protective layer 32 is not particularly limited, it is preferably 10% or less, more preferably 5% or less, and more preferably 3% or less of the thickness of the surface protection substrate 20 as in the first embodiment. More preferably it is. In addition, the lower limit of the thickness of the back surface protective layer 32 is preferably 0.8% of the thickness of the surface protective substrate 20. In addition, it is preferable that the thickness of the back surface protective layer 32 is 0.5 mm or less.
 ここで、太陽電池モジュール100Bにおいて、太陽電池セル10を平面視した場合、表面保護基板20の端部20aより内側に、第1封止材層26の端部26a、第2封止材層28の端部28a及び裏面保護層32の端部32aが位置している。具体的には、図13(a)及び図13(b)に示すように、第1封止材層26の端部26a、第2封止材層28の端部28a及び裏面保護層32の端部32aは、表面保護基板20の端部20aよりも内側、つまり、太陽電池セル10側に位置している。これにより、表面保護基板20の外縁には、延在部20bが形成されている。 Here, in the solar cell module 100 </ b> B, when the solar battery cell 10 is viewed in plan, the end portion 26 a of the first sealing material layer 26 and the second sealing material layer 28 are located inside the end portion 20 a of the surface protection substrate 20. The end portion 28a and the end portion 32a of the back surface protective layer 32 are located. Specifically, as shown in FIGS. 13A and 13B, the end portion 26 a of the first sealing material layer 26, the end portion 28 a of the second sealing material layer 28, and the back surface protective layer 32 are formed. The end portion 32a is located on the inner side than the end portion 20a of the surface protection substrate 20, that is, on the solar cell 10 side. Thereby, an extending portion 20 b is formed on the outer edge of the surface protection substrate 20.
 表面保護基板20に形成された延在部20bは、凸状の表面保護基板20における裏面保護層32との接合部(裏面保護層32の端部32a)から外部に向けて伸長することにより形成されている。そして、延在部20bは、太陽電池モジュール100Bの厚み方向(z方向)において、裏面保護層32から下方(z軸の負方向側)に向かって傾斜している。また、太陽電池モジュール100Bにおいて、延在部20bは、表面保護基板20の外縁全体に亘って形成されている。 The extending portion 20b formed on the surface protection substrate 20 is formed by extending outward from a joint portion (an end portion 32a of the back surface protection layer 32) with the back surface protection layer 32 in the convex surface protection substrate 20. Has been. And the extension part 20b inclines toward the downward direction (the negative direction side of az axis) from the back surface protective layer 32 in the thickness direction (z direction) of the solar cell module 100B. Further, in the solar cell module 100 </ b> B, the extending portion 20 b is formed over the entire outer edge of the surface protection substrate 20.
 ここで、太陽電池モジュール100Bを製造する際には、まず、表面保護基板20と、第1封止材層26と、光電変換部である太陽電池セル10、タブ配線及び接続配線と、第2封止材層28と、裏面保護層32とをこの順で積層することにより、積層体を得る。次いで、積層体を100℃以上に加熱しながら加圧することで、各層を接着する。ただ、上述のように、表面保護基板20は透明樹脂から構成されるため、加熱後に常温まで冷却した際に、表面保護基板20は大きく収縮する。このとき、表面保護基板20と裏面保護層32は材料及び/又は厚みが異なることから、表面保護基板20と裏面保護層32は収縮率に差が生じる。本実施形態では、表面保護基板20は裏面保護層32よりも厚いことから、表面保護基板20は裏面保護層32よりも大きく収縮する。この際、表面保護基板20は、図13の矢印Aのように、凸状の表面保護基板20の頂点方向に向かって収縮する。 Here, when manufacturing the solar cell module 100B, first, the surface protection substrate 20, the first sealing material layer 26, the solar cell 10 that is the photoelectric conversion unit, the tab wiring and the connection wiring, and the second A laminated body is obtained by laminating the sealing material layer 28 and the back surface protective layer 32 in this order. Subsequently, each layer is adhere | attached by pressurizing heating a laminated body to 100 degreeC or more. However, as described above, since the surface protective substrate 20 is made of a transparent resin, the surface protective substrate 20 contracts greatly when cooled to room temperature after heating. At this time, since the surface protection substrate 20 and the back surface protection layer 32 are different in material and / or thickness, the surface protection substrate 20 and the back surface protection layer 32 have a difference in shrinkage. In the present embodiment, since the front surface protection substrate 20 is thicker than the back surface protection layer 32, the front surface protection substrate 20 contracts more than the back surface protection layer 32. At this time, the surface protection substrate 20 contracts toward the apex direction of the convex surface protection substrate 20 as indicated by an arrow A in FIG.
 しかしながら、本実施形態では、表面保護基板20の外縁に延在部20bを設けている。延在部20bが表面保護基板20の外縁を保持するフレームの役割を果たすことから、たとえ表面保護基板20が頂点方向に向かって収縮したとしても、表面保護基板20が凹状に反ってしまうことを抑制することができる。さらに、図13(a)及び図13(b)に示すように、延在部20bが厚み方向において、裏面保護層32から下方(z軸の負方向側)に向かって傾斜している場合には、収縮力のベクトルが裏面保護層32側に傾きやすくなる。その結果、太陽電池モジュール100B全体が凹状に変形することなく、凸状を維持することが可能となる。 However, in this embodiment, the extending portion 20 b is provided on the outer edge of the surface protection substrate 20. Since the extending portion 20b serves as a frame for holding the outer edge of the surface protective substrate 20, even if the surface protective substrate 20 contracts toward the apex direction, the surface protective substrate 20 warps in a concave shape. Can be suppressed. Further, as shown in FIGS. 13A and 13B, when the extending portion 20b is inclined downward (in the negative z-axis direction) from the back surface protective layer 32 in the thickness direction. The shrinkage force vector tends to be inclined toward the back surface protective layer 32 side. As a result, the entire solar cell module 100B can be maintained in a convex shape without being deformed into a concave shape.
 このように、太陽電池モジュール100Bにおいて、表面保護基板20の外縁には延在部20bが設けられている。そのため、製造時の冷却工程において、表面保護基板20が大きく収縮したとしても、延在部20bが表面保護基板20の外縁を保持するフレームの役割を果たすため、太陽電池モジュール100B全体が凹状に変形することを抑制することができる。また、太陽電池モジュール100Bを、高温状態と低温状態とを繰り返す環境で使用したとしても、表面保護基板20の外縁に延在部20bを設けることにより、使用時に太陽電池モジュール100Bが凹状に変形することを防ぐことができる。 Thus, in the solar cell module 100B, the extending portion 20b is provided on the outer edge of the surface protection substrate 20. Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, the extended portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, so that the entire solar cell module 100B is deformed into a concave shape. Can be suppressed. Further, even when the solar cell module 100B is used in an environment where the high temperature state and the low temperature state are repeated, the solar cell module 100B is deformed into a concave shape at the time of use by providing the extending portion 20b on the outer edge of the surface protection substrate 20. Can be prevented.
 表面保護基板20の外縁に設けられた延在部20bの長さLは、太陽電池モジュール100B全体が凹状に変形することを抑制できるならば特に限定されない。ただ、水平方向(x方向及びy方向)において、表面保護基板20の端部20aと裏面保護層32の端部32aとの間の長さL(延在部20bの長さL)は、1cm~10cmであることが好ましく、3cm~5cmであることがより好ましい。これにより、延在部20bが表面保護基板20の外縁を効率的に保持するため、表面保護基板20が凸状の表面保護基板20の頂点方向に向かって収縮したとしても、表面保護基板20が凹状に反ってしまうことを抑制することができる。 The length L of the extending portion 20b provided on the outer edge of the surface protective substrate 20 is not particularly limited as long as the entire solar cell module 100B can be prevented from being deformed into a concave shape. However, in the horizontal direction (x direction and y direction), the length L between the end portion 20a of the surface protective substrate 20 and the end portion 32a of the back surface protective layer 32 (the length L of the extending portion 20b) is 1 cm. It is preferably ˜10 cm, more preferably 3 cm to 5 cm. Thereby, since the extension part 20b efficiently holds the outer edge of the surface protection substrate 20, even if the surface protection substrate 20 contracts toward the apex direction of the convex surface protection substrate 20, the surface protection substrate 20 It can suppress that it warps in a concave shape.
 太陽電池モジュール100Bにおいて、表面保護基板20の延在部20bには、図14に示すように、凸形状のリブ20cを設けてもよい。リブ20cは、太陽電池モジュール100Bの厚み方向(z方向)において、表面保護基板20の端部20aから下方(z軸の負方向側)に向かって突出するように形成されている。このようなリブ20cを設けることによって、太陽電池モジュール100B全体の曲げ剛性を高めることができ、反り返りをさらに抑制することが可能となる。なお、リブ20cは、表面保護基板20の外縁の少なくとも一部に形成されていることが好ましく、表面保護基板20の外縁の全体に亘って形成されていることがより好ましい。 In the solar cell module 100B, the extended portion 20b of the surface protection substrate 20 may be provided with a convex rib 20c as shown in FIG. The rib 20c is formed so as to protrude downward (on the negative side of the z axis) from the end 20a of the surface protection substrate 20 in the thickness direction (z direction) of the solar cell module 100B. By providing such a rib 20c, the bending rigidity of the entire solar cell module 100B can be increased, and warping can be further suppressed. The rib 20c is preferably formed on at least a part of the outer edge of the surface protective substrate 20, and more preferably formed over the entire outer edge of the surface protective substrate 20.
 リブ20cの厚みは、生産性の観点から、表面保護基板20の厚みと同等であることが好ましい。具体的には、リブ20cの厚みは、2mm~6mmとすることが好ましく、3mm~5mmとすることがより好ましい。また、リブ20cの高さHは、後述するフレーム部材への取り付け性を良好にする観点から、2mm~50mmとすることが好ましく、5mm~10mmとすることがより好ましい。 The thickness of the rib 20c is preferably equal to the thickness of the surface protection substrate 20 from the viewpoint of productivity. Specifically, the thickness of the rib 20c is preferably 2 mm to 6 mm, and more preferably 3 mm to 5 mm. Further, the height H of the rib 20c is preferably 2 mm to 50 mm, and more preferably 5 mm to 10 mm, from the viewpoint of improving the attachment to a frame member described later.
 上述のように、表面保護基板20の端部20aより内側に第1封止材層26、第2封止材層28及び裏面保護層32の各端部が位置していることにより表面保護基板に形成された延在部20bは、表面保護基板の外縁全体に亘って形成されていることが好ましい。これにより、表面保護基板20の外縁全体に設けられた延在部20bが表面保護基板20の外縁を保持するため、太陽電池モジュール100B全体が凹状に変形することを抑制することが可能となる。 As described above, each end of the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 is positioned inside the end portion 20 a of the surface protection substrate 20. It is preferable that the extending portion 20b formed in the above is formed over the entire outer edge of the surface protection substrate. Thereby, since the extension part 20b provided in the whole outer edge of the surface protection board | substrate 20 hold | maintains the outer edge of the surface protection board | substrate 20, it becomes possible to suppress that the whole solar cell module 100B deform | transforms into a concave shape.
 なお、光電変換部を平面視した場合、表面保護基板20の形状は、長辺と当該長辺よりも短い短辺とを有する略四角形であることが好ましい。そして、表面保護基板20の端部20aより内側に第1封止材層26、第2封止材層28及び裏面保護層32の各端部が位置していることにより表面保護基板20に形成された延在部20bは、長辺の全体に形成されていることが好ましい。つまり、太陽電池モジュール100Bを平面視した場合に略四角形であるとき、延在部20bは長辺の全体にのみ形成されていてもよく、短辺の全体にのみ形成されていてもよい。ただ、延在部20bは、表面保護基板20の長辺の全体に形成されていることが好ましい。この場合でも、延在部20bが表面保護基板20の外縁を保持するフレームの役割を果たすため、太陽電池モジュール100B全体が凹状に変形することを抑制することができる。 In addition, when the photoelectric conversion part is viewed in plan, the shape of the surface protection substrate 20 is preferably a substantially rectangular shape having a long side and a short side shorter than the long side. And it forms in the surface protection board | substrate 20 because each edge part of the 1st sealing material layer 26, the 2nd sealing material layer 28, and the back surface protection layer 32 is located inside the edge part 20a of the surface protection board | substrate 20. The extended portion 20b is preferably formed on the entire long side. That is, when the solar cell module 100B is viewed in a plan view, the extension portion 20b may be formed only on the entire long side or only on the entire short side when it is substantially square. However, it is preferable that the extending portion 20 b is formed on the entire long side of the surface protective substrate 20. Even in this case, since the extending portion 20b plays a role of a frame that holds the outer edge of the surface protection substrate 20, it is possible to suppress the entire solar cell module 100B from being deformed into a concave shape.
 太陽電池モジュール100Bの外形は、平面視した場合に略四角形であることが好ましく、例えば長方形、正方形又は台形などとすることができる。また、太陽電池モジュール100Bは、角部に丸みを設けてもよい。そのため、太陽電池モジュール100Bの形状は、平面視した場合に正確な四角形である必要はない。 The outer shape of the solar cell module 100B is preferably substantially rectangular when viewed from above, and can be, for example, rectangular, square, or trapezoidal. Moreover, the solar cell module 100B may be provided with roundness at the corners. Therefore, the shape of the solar cell module 100B does not need to be an accurate quadrangle when viewed in plan.
 太陽電池モジュール100Bにおいて、裏面保護層32の線膨張係数は、表面保護基板20の線膨張係数よりも小さいことが好ましい。裏面保護層32の線膨張係数が表面保護基板20よりも小さい場合には、裏面保護層32は表面保護基板20よりも熱膨張が小さくなる。そのため、製造時に裏面保護層32が加熱された場合でも裏面保護層32の熱膨張が抑制されるため、裏面保護層32の形状が安定し、太陽電池セル10、タブ配線12及び接続配線14の破断を抑制することができる。また、裏面保護層32の熱膨張が抑制されることから、熱衝撃によるタブ配線12及び接続配線14の配線切れも抑制することができる。なお、裏面保護層32の線膨張係数は、低熱膨張成分である繊維材の添加量や配向により調整することができる。 In the solar cell module 100B, the linear expansion coefficient of the back surface protection layer 32 is preferably smaller than the linear expansion coefficient of the surface protection substrate 20. When the linear expansion coefficient of the back surface protective layer 32 is smaller than that of the front surface protective substrate 20, the back surface protective layer 32 has a smaller thermal expansion than the front surface protective substrate 20. Therefore, even when the back surface protective layer 32 is heated at the time of manufacture, the thermal expansion of the back surface protective layer 32 is suppressed, so that the shape of the back surface protective layer 32 is stabilized, and the solar cell 10, the tab wiring 12, and the connection wiring 14. Breakage can be suppressed. Moreover, since the thermal expansion of the back surface protective layer 32 is suppressed, it is possible to suppress disconnection of the tab wiring 12 and the connection wiring 14 due to thermal shock. In addition, the linear expansion coefficient of the back surface protective layer 32 can be adjusted with the addition amount and orientation of the fiber material which is a low thermal expansion component.
 (ゲル状高分子層)
 上述のように、太陽電池モジュール100Bは、表面保護基板20と、第1封止材層26と、太陽電池セル10と、第2封止材層28と、裏面保護層32とを備えている。ただ、太陽電池モジュールは、図15に示すように、表面保護基板20と第1封止材層26との間に、第一実施形態と同様に、ゲル状高分子層22を介在させてもよい。ゲル状高分子層22は柔軟性を有し、表面保護基板20が伸縮したとき、その伸縮に追従する。そのため、太陽電池セル10に対して、表面保護基板20の伸縮による応力が伝わるのを防止することができる。
(Gel polymer layer)
As described above, the solar cell module 100B includes the surface protective substrate 20, the first sealing material layer 26, the solar battery cell 10, the second sealing material layer 28, and the back surface protective layer 32. . However, in the solar cell module, as shown in FIG. 15, the gel polymer layer 22 may be interposed between the surface protective substrate 20 and the first sealing material layer 26 as in the first embodiment. Good. The gel polymer layer 22 has flexibility, and follows the expansion and contraction when the surface protection substrate 20 expands and contracts. Therefore, the stress due to the expansion and contraction of the surface protection substrate 20 can be prevented from being transmitted to the solar battery cell 10.
 (中間層)
 太陽電池モジュール100Bは、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の少なくとも一方に、中間層24,30をさらに有することが好ましい。また、中間層24,30は、引張弾性率が第1封止材層26及び第2封止材層28のいずれの引張弾性率よりも大きい層であることが好ましい。ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の少なくとも一方に、相対的に引張弾性率が大きい中間層を設けることにより、耐衝撃性を向上させることができる。
(Middle layer)
The solar cell module 100B includes intermediate layers 24, 30 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. It is preferable to further have. Moreover, it is preferable that the intermediate layers 24 and 30 are layers whose tensile elastic modulus is larger than any of the first sealing material layer 26 and the second sealing material layer 28. An intermediate layer having a relatively large tensile elastic modulus is provided between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. By providing, impact resistance can be improved.
 図16では、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の双方に中間層24,30を設けた態様を示している。なお、強度向上の観点から、図16に示すように二層の中間層24,30を設けることが好ましい。また、中間層24,30は、第一実施形態で説明したものと同じものを使用することができる。 In FIG. 16, the intermediate layers 24 and 30 are provided both between the gel polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. Is shown. From the viewpoint of improving the strength, it is preferable to provide two intermediate layers 24 and 30 as shown in FIG. The intermediate layers 24 and 30 can be the same as those described in the first embodiment.
 このように、太陽電池モジュール100Bは、複数の太陽電池セル10を備える光電変換部と、太陽電池セル10に対して光が入射する受光側に設けられ、透光性を有する第1封止材層26とを備える。太陽電池モジュールは、さらに、第1封止材層26よりも受光側に設けられ、透光性を有する樹脂材料で構成され、さらに受光側に向けて凸状である表面保護基板20と、太陽電池セルにおける受光側とは反対側に設けられる第2封止材層28とを備える。太陽電池モジュール100Bは、さらに、第2封止材層28における太陽電池セル10とは反対側に設けられる裏面保護層32を備える。光電変換部を平面視した場合、表面保護基板20の端部20aより内側に、第1封止材層26、第2封止材層28及び裏面保護層32の各端部が位置している。そのため、製造時の冷却工程において、表面保護基板20が大きく収縮したとしても、延在部20bが表面保護基板20の外縁を保持するフレームの役割を果たし、太陽電池モジュール100B全体が凹状に変形することを抑制することができる。また、太陽電池モジュール100Bを、高温状態と低温状態とを繰り返す環境で使用したとしても、延在部20bが設けられていることにより、使用時に太陽電池モジュール100Bが凹状に変形することを防ぐことが可能となる。 Thus, the solar cell module 100B is provided on the photoelectric conversion unit including the plurality of solar cells 10 and the light receiving side where light enters the solar cells 10, and has a light-transmitting first sealing material. Layer 26. The solar cell module is further provided on the light receiving side with respect to the first sealing material layer 26, is made of a translucent resin material, and is further convex toward the light receiving side, A second sealing material layer provided on the side opposite to the light receiving side of the battery cell. The solar cell module 100B further includes a back surface protective layer 32 provided on the second sealing material layer 28 on the side opposite to the solar cells 10. When the photoelectric conversion unit is viewed in plan, the end portions of the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 are located inside the end portion 20 a of the surface protection substrate 20. . Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, the extended portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, and the entire solar cell module 100B is deformed into a concave shape. This can be suppressed. Moreover, even if the solar cell module 100B is used in an environment in which a high temperature state and a low temperature state are repeated, the extended portion 20b prevents the solar cell module 100B from being deformed into a concave shape during use. Is possible.
 なお、太陽電池モジュール100Bの外縁には、図示しないフレーム部材が取り付けられてもよい。フレーム部材は、太陽電池モジュール100Bにおける表面保護基板20の端部20aを保護すると共に、太陽電池モジュール100Bを屋根等に設置する際に利用される。 A frame member (not shown) may be attached to the outer edge of the solar cell module 100B. The frame member protects the end 20a of the surface protection substrate 20 in the solar cell module 100B and is used when the solar cell module 100B is installed on a roof or the like.
 また、太陽電池モジュール100Bにおいて、表面保護基板20に延在部20bを設けることで、延在部20bを介して、表面保護基板20と、後述する移動体などのフレーム部材とを接合することができる。そのため、表面保護基板20に設けた延在部20bは、他の部材との連結部として機能することができる。 Further, in the solar cell module 100B, by providing the extended portion 20b on the surface protective substrate 20, the surface protective substrate 20 and a frame member such as a moving body to be described later can be joined via the extended portion 20b. it can. Therefore, the extension part 20b provided in the surface protection substrate 20 can function as a connection part with another member.
[第四実施形態の太陽電池モジュール]
 次に、第四実施形態に係る太陽電池モジュールについて、図面に基づき詳細に説明する。なお、第一乃至第三実施形態の太陽電池モジュールと同一構成には同一符号を付し、重複する説明は省略する。
[Solar Cell Module of Fourth Embodiment]
Next, the solar cell module according to the fourth embodiment will be described in detail based on the drawings. In addition, the same code | symbol is attached | subjected to the same structure as the solar cell module of 1st thru | or 3rd embodiment, and the overlapping description is abbreviate | omitted.
 図17は、第四実施形態に係る太陽電池モジュール100Cを示す平面図である。太陽電池モジュール100Cは、第三実施形態と同様に、太陽電池セル10、タブ配線12及び接続配線14を有する光電変換部、並びに表面保護基板20、第1封止材層26、第2封止材層28及び裏面保護層32を備えている。そのため、太陽電池モジュール100Cでは、受光面側から順に、表面保護基板20と、第1封止材層26と、光電変換部(太陽電池セル10、タブ配線12、接続配線14)と、第2封止材層28と、裏面保護層32とが積層されている。 FIG. 17 is a plan view showing a solar cell module 100C according to the fourth embodiment. As in the third embodiment, the solar cell module 100C includes the photovoltaic cell 10, the photoelectric conversion part having the tab wiring 12 and the connection wiring 14, the surface protection substrate 20, the first sealing material layer 26, and the second sealing. A material layer 28 and a back surface protective layer 32 are provided. Therefore, in the solar cell module 100C, in order from the light receiving surface side, the surface protection substrate 20, the first sealing material layer 26, the photoelectric conversion unit (solar cell 10, tab wiring 12, connection wiring 14), and second The sealing material layer 28 and the back surface protective layer 32 are laminated.
 (表面保護基板)
 表面保護基板20は、第三実施形態と同様に、太陽電池モジュール100Cの太陽光の受光側に位置し、透光性を有する樹脂材料から構成される基板である。そして、第三実施形態と同様に、表面保護基板20は、受光側に向けて凸状であることが好ましい。
(Surface protection substrate)
Similar to the third embodiment, the surface protective substrate 20 is a substrate that is located on the sunlight receiving side of the solar cell module 100C and is made of a resin material having translucency. And like 3rd embodiment, it is preferable that the surface protection board | substrate 20 is convex toward the light-receiving side.
 図18(a)は、図17のXVIIIA-XVIIIA線に沿った太陽電池モジュールの断面を示す概略図であり、図18(b)は、図17のXVIIIB-XVIIIB線に沿った太陽電池モジュールの断面を示す概略図である。なお、図18(a)及び図18(b)では、タブ配線12及び接続配線14を省略している。図18(a)及び図18(b)に示すように、表面保護基板20は、受光側(z軸の正方向側)に向けて全体的に凸状となるように湾曲していることが好ましい。つまり、表面保護基板20は、タブ配線12の延在方向(y方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。また、表面保護基板20は、タブ配線12の延在方向に垂直な方向(x方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。これにより、太陽電池モジュール100Cを冷却し、表面保護基板20がx方向及びy方向の両方に沿って収縮した場合でも、表面保護基板20が変形する作用力を分散し、太陽電池モジュール100Cが凹状に変形することを抑制することができる。 18A is a schematic view showing a cross section of the solar cell module taken along line XVIIIA-XVIIIA in FIG. 17, and FIG. 18B is a diagram of the solar cell module taken along line XVIIIB-XVIIIB in FIG. It is the schematic which shows a cross section. In FIGS. 18A and 18B, the tab wiring 12 and the connection wiring 14 are omitted. As shown in FIGS. 18A and 18B, the surface protection substrate 20 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, the surface protection substrate 20 is preferably curved so as to be convex toward the light receiving side along the extending direction (y direction) of the tab wiring 12. Further, the surface protection substrate 20 is preferably curved so as to be convex toward the light receiving side along the direction (x direction) perpendicular to the extending direction of the tab wiring 12. Thereby, even when the solar cell module 100C is cooled and the surface protection substrate 20 contracts along both the x direction and the y direction, the acting force that the surface protection substrate 20 deforms is dispersed, and the solar cell module 100C has a concave shape. Can be prevented from being deformed.
 (第1封止材層、第2封止材層)
 第1封止材層26及び第2封止材層28は、第三実施形態と同様に、太陽電池セル10を封止する。第1封止材層26は、表面保護基板20のz軸の負方向側(下側)に配置されており、第2封止材層28は、裏面保護層32のz軸の正方向側(上側)に配置されている。
(First sealing material layer, second sealing material layer)
The 1st sealing material layer 26 and the 2nd sealing material layer 28 seal the photovoltaic cell 10 similarly to 3rd embodiment. The first sealing material layer 26 is disposed on the negative direction side (lower side) of the z-axis of the surface protection substrate 20, and the second sealing material layer 28 is the positive direction side of the back surface protection layer 32 on the z-axis. (Upper side).
 (裏面保護層)
 本実施形態では、第三実施形態と同様に、太陽電池モジュール100Cの裏面側を保護するために、バックシートとしての裏面保護層32を設けている。裏面保護層32は、表面保護基板20と同様に、受光側に向けて凸状であることが好ましい。図18(a)及び図18(b)に示すように、裏面保護層32は、受光側(z軸の正方向側)に向けて全体的に凸状となるように湾曲していることが好ましい。つまり、裏面保護層32は、タブ配線12の延在方向(y方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。また、裏面保護層32は、タブ配線12の延在方向に垂直な方向(x方向)に沿って、受光側に向けて凸状となるように湾曲していることが好ましい。なお、裏面保護層32は、第三実施形態と同じものを使用することができる。
(Back protection layer)
In the present embodiment, as in the third embodiment, a back surface protective layer 32 as a back sheet is provided to protect the back surface side of the solar cell module 100C. Similarly to the surface protection substrate 20, the back surface protection layer 32 is preferably convex toward the light receiving side. As shown in FIGS. 18A and 18B, the back surface protection layer 32 is curved so as to be generally convex toward the light receiving side (the positive direction side of the z-axis). preferable. That is, the back surface protective layer 32 is preferably curved so as to be convex toward the light receiving side along the extending direction (y direction) of the tab wiring 12. Further, the back surface protective layer 32 is preferably curved so as to be convex toward the light receiving side along a direction (x direction) perpendicular to the extending direction of the tab wiring 12. In addition, the back surface protective layer 32 can use the same thing as 3rd embodiment.
 太陽電池モジュール100Cにおいて、太陽電池セル10を平面視した場合、表面保護基板20の端部20aより内側に、第1封止材層26の端部26a、第2封止材層28の端部28a及び裏面保護層32の端部32aが位置している。具体的には、図18(a)及び図18(b)に示すように、第1封止材層26の端部26a、第2封止材層28の端部28a及び裏面保護層32の端部32aは、表面保護基板20の端部20aより内側、つまり、太陽電池セル10側に位置している。これにより、表面保護基板20の外縁には、延在部20bが形成されている。 In the solar cell module 100C, when the solar battery cell 10 is viewed in plan, the end portion 26a of the first sealing material layer 26 and the end portions of the second sealing material layer 28 are located inside the end portion 20a of the surface protection substrate 20. 28a and the end portion 32a of the back surface protective layer 32 are located. Specifically, as shown in FIGS. 18A and 18B, the end portion 26 a of the first sealing material layer 26, the end portion 28 a of the second sealing material layer 28, and the back surface protective layer 32 are formed. The end portion 32a is located inside the end portion 20a of the surface protection substrate 20, that is, on the solar cell 10 side. Thereby, an extending portion 20 b is formed on the outer edge of the surface protection substrate 20.
 表面保護基板20に形成された延在部20bは、表面保護基板20における裏面保護層32との接合部(裏面保護層32の端部32a)から外部に向けて伸長することにより形成されている。そして、延在部20bは、太陽電池モジュール100Cの厚み方向(z方向)において、裏面保護層32から下方(z軸の負方向側)に向かって傾斜している。また、太陽電池モジュール100Cにおいて、延在部20bは、表面保護基板20の外縁全体に亘って形成されている。 The extending portion 20b formed on the surface protection substrate 20 is formed by extending outward from a joint portion (an end portion 32a of the back surface protection layer 32) with the back surface protection layer 32 in the surface protection substrate 20. . And the extension part 20b inclines toward the downward direction (negative direction side of az axis) from the back surface protective layer 32 in the thickness direction (z direction) of the solar cell module 100C. In the solar cell module 100 </ b> C, the extending portion 20 b is formed over the entire outer edge of the surface protection substrate 20.
 ここで、表面保護基板20の端部20aより内側に第1封止材層、第2封止材層及び裏面保護層の各端部が位置していることにより表面保護基板に形成された延在部20bには、表面保護基板よりも曲げ強さが大きい補強部材21が配置されていることが好ましい。具体的には、図17に示すように、補強部材21は、表面保護基板20の延在部20b全体に亘って配置されており、平面視した場合に略矩形状のフレームとなっている。さらに、図18に示すように、表面保護基板20の延在部20bには、裏面保護層32から下方に向かって突出する突出部20dが形成されている。突出部20dにより、z軸に平行な端部20a及び内面20eと、x-y平面に平行な平坦面20fとが形成されている。そして、突出部20dの内部には補強部材21が埋設されており、補強部材21の断面は略矩形状となっている。 Here, the extension formed on the surface protection substrate by the end portions of the first sealing material layer, the second sealing material layer, and the back surface protection layer being located inside the end portion 20a of the surface protection substrate 20. It is preferable that a reinforcing member 21 having a bending strength greater than that of the surface protection substrate is disposed in the existing portion 20b. Specifically, as shown in FIG. 17, the reinforcing member 21 is disposed over the entire extending portion 20 b of the surface protection substrate 20, and has a substantially rectangular frame when viewed in plan. Further, as shown in FIG. 18, a protruding portion 20 d that protrudes downward from the back surface protective layer 32 is formed on the extending portion 20 b of the surface protective substrate 20. The protrusion 20d forms an end 20a and an inner surface 20e parallel to the z-axis, and a flat surface 20f parallel to the xy plane. And the reinforcement member 21 is embed | buried under the inside of the protrusion part 20d, and the cross section of the reinforcement member 21 is a substantially rectangular shape.
 図17及び図18に示すように、補強部材21は、平面視した場合、太陽電池セル10よりも外側、つまり表面保護基板20の端部20a側に配置されている。また、補強部材21は、平面視した場合、表面保護基板20における裏面保護層32との接合部(裏面保護層32の端部32a)よりも外側、つまり表面保護基板20の端部20a側に配置されていることが好ましい。 As shown in FIGS. 17 and 18, the reinforcing member 21 is disposed outside the solar battery cell 10, that is, on the end 20 a side of the surface protection substrate 20 in a plan view. Further, when viewed in plan, the reinforcing member 21 is located on the outer side of the bonding portion (the end portion 32a of the back surface protective layer 32) with the back surface protective layer 32 in the front surface protective substrate 20, that is, on the end portion 20a side of the front surface protective substrate 20. It is preferable that they are arranged.
 補強部材21は、表面保護基板20よりも曲げ強さが大きいことが好ましい。つまり、補強部材21を構成する材料は、表面保護基板20を構成する材料よりも曲げ強さが大きいことが好ましい。このような剛性の高い補強部材21を表面保護基板20の延在部20bに設けることにより、後述するように、太陽電池モジュール100Cの温度変化により生じる反りを抑制することが可能となる。なお、本明細書において、表面保護基板20及び補強部材21の曲げ強さは、JIS K7171:2016(プラスチック-曲げ特性の求め方)により求めることができる。 The reinforcing member 21 preferably has a higher bending strength than the surface protection substrate 20. That is, the material constituting the reinforcing member 21 preferably has a higher bending strength than the material constituting the surface protection substrate 20. By providing such a highly rigid reinforcing member 21 in the extending portion 20b of the surface protection substrate 20, it is possible to suppress warping caused by a temperature change of the solar cell module 100C, as will be described later. In the present specification, the bending strength of the surface protective substrate 20 and the reinforcing member 21 can be determined according to JIS K7171: 2016 (Plastics—How to determine bending characteristics).
 補強部材21を構成する材料としては、表面保護基板20よりも曲げ強さを高めることが可能な材料を用いることが好ましい。例えば、補強部材21を構成する材料は、樹脂及び金属の少なくとも一方を用いることができる。補強部材21を構成する樹脂は特に限定されないが、例えば上述の裏面保護層32を構成する樹脂と同じものを使用することができる。補強部材21を構成する金属は特に限定されないが、例えばアルミニウム又はアルミニウム合金を使用することができる。補強部材21を構成する材料としては、繊維強化プラスチックを用いることも好ましい。補強部材21を構成する繊維強化プラスチックとしては、上述の裏面保護層32を構成する繊維強化プラスチックと同じものを使用することができる。 As the material constituting the reinforcing member 21, it is preferable to use a material capable of increasing the bending strength as compared with the surface protection substrate 20. For example, at least one of resin and metal can be used as the material constituting the reinforcing member 21. Although resin which comprises the reinforcement member 21 is not specifically limited, For example, the same resin as the resin which comprises the above-mentioned back surface protective layer 32 can be used. Although the metal which comprises the reinforcement member 21 is not specifically limited, For example, aluminum or aluminum alloy can be used. As a material constituting the reinforcing member 21, it is also preferable to use fiber reinforced plastic. As the fiber reinforced plastic constituting the reinforcing member 21, the same fiber reinforced plastic as that constituting the back surface protective layer 32 described above can be used.
 ここで、太陽電池モジュール100Cを製造する際には、まず、表面保護基板20と、第1封止材層26と、光電変換部である太陽電池セル10、タブ配線及び接続配線と、第2封止材層28と、裏面保護層32とをこの順で積層することにより、積層体を得る。次いで、積層体を100℃以上に加熱しながら加圧することで、各層を接着する。ただ、上述のように、表面保護基板20は透明樹脂から構成されるため、加熱後に常温まで冷却した際に、表面保護基板20は大きく収縮する。このとき、表面保護基板20と裏面保護層32は材料及び/又は厚みが異なることから、表面保護基板20と裏面保護層32は収縮率に差が生じる。本実施形態では、表面保護基板20は裏面保護層32よりも厚いことから、表面保護基板20は裏面保護層32よりも大きく収縮する。この際、表面保護基板20は、図18の矢印Aのように、凸状の表面保護基板20の頂点方向に向かって収縮する。 Here, when manufacturing the solar cell module 100C, first, the surface protection substrate 20, the first sealing material layer 26, the solar cell 10 as the photoelectric conversion unit, the tab wiring and the connection wiring, and the second A laminated body is obtained by laminating the sealing material layer 28 and the back surface protective layer 32 in this order. Subsequently, each layer is adhere | attached by pressurizing heating a laminated body to 100 degreeC or more. However, as described above, since the surface protective substrate 20 is made of a transparent resin, the surface protective substrate 20 contracts greatly when cooled to room temperature after heating. At this time, since the surface protection substrate 20 and the back surface protection layer 32 are different in material and / or thickness, the surface protection substrate 20 and the back surface protection layer 32 have a difference in shrinkage. In the present embodiment, since the front surface protection substrate 20 is thicker than the back surface protection layer 32, the front surface protection substrate 20 contracts more than the back surface protection layer 32. At this time, the surface protective substrate 20 contracts toward the apex direction of the convex surface protective substrate 20 as indicated by an arrow A in FIG.
 しかしながら、本実施形態では、表面保護基板20の外縁に延在部20bを設け、さらに延在部20bに、曲げ強さが高い補強部材21を配置している。そのため、補強部材21が表面保護基板20の外縁を保持するフレームの役割を果たすことから、たとえ表面保護基板20が頂点方向に向かって収縮したとしても、表面保護基板20が凹状に反ってしまうことを抑制することができる。さらに、図18(a)及び図18(b)に示すように、補強部材21が厚み方向において、裏面保護層32から下方(z軸の負方向側)に向かって突出している場合には、収縮力のベクトルが裏面保護層32側に傾きやすくなる。その結果、太陽電池モジュール100C全体が凹状に変形することなく、凸状を維持することが可能となる。 However, in this embodiment, the extending portion 20b is provided on the outer edge of the surface protection substrate 20, and the reinforcing member 21 having a high bending strength is disposed on the extending portion 20b. Therefore, since the reinforcing member 21 serves as a frame for holding the outer edge of the surface protection substrate 20, even if the surface protection substrate 20 contracts toward the apex direction, the surface protection substrate 20 warps in a concave shape. Can be suppressed. Furthermore, as shown in FIGS. 18A and 18B, when the reinforcing member 21 protrudes downward (in the negative direction of the z axis) from the back surface protective layer 32 in the thickness direction, The shrinkage force vector tends to tilt toward the back surface protective layer 32 side. As a result, the entire solar cell module 100C can be maintained in a convex shape without being deformed into a concave shape.
 このように、太陽電池モジュール100Cにおいて、表面保護基板20の外縁には補強部材21が設けられている。そのため、製造時の冷却工程において、表面保護基板20が大きく収縮したとしても、補強部材21が表面保護基板20の外縁を保持するフレームの役割を果たすため、太陽電池モジュール100C全体が凹状に変形することを抑制することができる。また、太陽電池モジュール100Cを、高温状態と低温状態とを繰り返す環境で使用したとしても、表面保護基板20の外縁に補強部材21を設けることにより、使用時に太陽電池モジュール100Cが凹状に変形することを防ぐことができる。 Thus, in the solar cell module 100C, the reinforcing member 21 is provided on the outer edge of the surface protection substrate 20. Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, since the reinforcing member 21 serves as a frame for holding the outer edge of the surface protection substrate 20, the entire solar cell module 100C is deformed into a concave shape. This can be suppressed. Further, even when the solar cell module 100C is used in an environment where the high temperature state and the low temperature state are repeated, by providing the reinforcing member 21 on the outer edge of the surface protection substrate 20, the solar cell module 100C is deformed into a concave shape at the time of use. Can be prevented.
 なお、表面保護基板20の厚み方向(z方向)において、補強部材21を埋設した状態の延在部20bの厚みは、表面保護基板20における延在部20b以外の部位の厚みよりも大きいことが好ましい。この場合でも、延在部20bが表面保護基板20の外縁を保持するフレームの役割を果たすため、たとえ表面保護基板20が頂点方向に向かって収縮したとしても、表面保護基板20が凹状に反ってしまうことを抑制することができる。 In addition, in the thickness direction (z direction) of the surface protection substrate 20, the thickness of the extended portion 20 b in the state where the reinforcing member 21 is embedded may be larger than the thickness of the portion other than the extended portion 20 b in the surface protective substrate 20. preferable. Even in this case, since the extended portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, even if the surface protection substrate 20 contracts toward the apex direction, the surface protection substrate 20 warps in a concave shape. Can be suppressed.
 上述のように、太陽電池モジュール100Cにおいて、表面保護基板20の延在部20bには、補強部材21を配置している。そして、図18に示すように、補強部材21は、表面保護基板20の延在部20bに埋設されていることが好ましい。つまり、補強部材21の表面全体が表面保護基板20を構成する樹脂により覆われ、延在部20bの内部に固定されていることが好ましい。補強部材21が延在部20bに埋設されていることにより、補強部材21が金属からなる場合、錆などの補強部材21の劣化を抑制し、長期間に亘り太陽電池モジュール100Cの変形を防ぐことが可能となる。また、補強部材21が延在部20bに埋設されることで、接着不良により表面保護基板20から補強部材21が脱落することを抑制できる。さらに、補強部材21が埋設されることで、太陽電池モジュール100Cの製造時に組み付ける部品点数が削減されるため、製造コストを抑制することが可能となる。 As described above, in the solar cell module 100C, the reinforcing member 21 is disposed on the extending portion 20b of the surface protection substrate 20. And as shown in FIG. 18, it is preferable that the reinforcement member 21 is embed | buried under the extension part 20b of the surface protection board | substrate 20. As shown in FIG. That is, it is preferable that the entire surface of the reinforcing member 21 is covered with the resin constituting the surface protection substrate 20 and fixed inside the extending portion 20b. Since the reinforcing member 21 is embedded in the extending portion 20b, when the reinforcing member 21 is made of metal, deterioration of the reinforcing member 21 such as rust is suppressed, and deformation of the solar cell module 100C is prevented over a long period of time. Is possible. In addition, since the reinforcing member 21 is embedded in the extending portion 20b, it is possible to suppress the reinforcing member 21 from dropping from the surface protection substrate 20 due to poor adhesion. Furthermore, since the reinforcing member 21 is embedded, the number of parts to be assembled at the time of manufacturing the solar cell module 100C is reduced, and thus the manufacturing cost can be suppressed.
 上述のように、太陽電池モジュール100Cにおいて、補強部材21は、表面保護基板20の延在部20bの少なくとも一部に配置されている。ただ、補強部材21は、表面保護基板20の延在部20b全体に亘って配置されていることが好ましい。これにより、延在部20b全体に設けられた補強部材21が表面保護基板20の外縁を強固に保持するため、太陽電池モジュール100C全体が凹状に変形することを抑制することが可能となる。 As described above, in the solar cell module 100C, the reinforcing member 21 is disposed on at least a part of the extending portion 20b of the surface protection substrate 20. However, it is preferable that the reinforcing member 21 is disposed over the entire extending portion 20 b of the surface protection substrate 20. Thereby, since the reinforcement member 21 provided in the whole extension part 20b hold | maintains the outer edge of the surface protection board | substrate 20 firmly, it becomes possible to suppress that the solar cell module 100C whole deform | transforms into a concave shape.
 なお、光電変換部を平面視した場合、表面保護基板20の形状は、長辺と当該長辺よりも短い短辺とを有する略四角形であることが好ましい。そして、補強部材21は、長辺の全体に配置されていることが好ましい。つまり、太陽電池モジュール100Cを平面視した場合に略四角形であるとき、補強部材21は長辺の全体にのみ配置されていてもよく、短辺の全体にのみ配置されていてもよい。ただ、補強部材21は、表面保護基板20の長辺の全体に配置されていることが好ましい。この場合でも、補強部材21が表面保護基板20の外縁を保持するフレームの役割を果たすため、太陽電池モジュール100C全体が凹状に変形することを抑制することができる。また、補強部材21を表面保護基板20の長辺側のみに配置することにより、最小量の補強部材21で凹状への変形を抑制し、さらに軽量化及び低コスト化を図ることが可能となる。 In addition, when the photoelectric conversion part is viewed in plan, the shape of the surface protection substrate 20 is preferably a substantially rectangular shape having a long side and a short side shorter than the long side. And it is preferable that the reinforcement member 21 is arrange | positioned at the whole long side. That is, when the solar cell module 100C is substantially rectangular when viewed in plan, the reinforcing member 21 may be disposed only on the entire long side or may be disposed only on the entire short side. However, the reinforcing member 21 is preferably disposed over the entire long side of the surface protection substrate 20. Even in this case, since the reinforcing member 21 serves as a frame for holding the outer edge of the surface protection substrate 20, it is possible to suppress the entire solar cell module 100C from being deformed into a concave shape. Further, by disposing the reinforcing member 21 only on the long side of the surface protection substrate 20, it is possible to suppress the deformation to the concave shape with the minimum amount of the reinforcing member 21, and to further reduce the weight and cost. .
 太陽電池モジュール100Cの外形は、平面視した場合に略四角形であることが好ましく、例えば長方形、正方形又は台形などとすることができる。また、太陽電池モジュール100Cは、角部に丸みを設けてもよい。そのため、太陽電池モジュール100Cの形状は、平面視した場合に正確な四角形である必要はない。 The outer shape of the solar cell module 100C is preferably substantially rectangular when viewed from above, and can be, for example, rectangular, square, or trapezoidal. Further, the solar cell module 100C may be provided with rounded corners. Therefore, the shape of the solar cell module 100C does not need to be an accurate quadrangle when viewed in plan.
 なお、太陽電池モジュール100Cにおける表面保護基板20の外縁には、フレーム部材が取り付けられてもよい。フレーム部材は、太陽電池モジュールにおける表面保護基板20の外縁を保護すると共に、太陽電池モジュールを屋根等に設置する際に利用される。また、太陽電池モジュールにおいて、表面保護基板20に延在部20bを設けることで、延在部20bを介して、表面保護基板20と、後述する移動体などのフレーム部材とを接合することができる。そのため、表面保護基板20に設けた延在部20bは、他の部材との連結部として機能することができる。 A frame member may be attached to the outer edge of the surface protection substrate 20 in the solar cell module 100C. The frame member protects the outer edge of the surface protection substrate 20 in the solar cell module, and is used when the solar cell module is installed on a roof or the like. Moreover, in the solar cell module, by providing the extended portion 20b on the surface protective substrate 20, the surface protective substrate 20 and a frame member such as a moving body to be described later can be joined via the extended portion 20b. . Therefore, the extension part 20b provided in the surface protection substrate 20 can function as a connection part with another member.
 詳細に説明すると、図19及び図20に示すように、太陽電池モジュール100Dは、平面視した際に略矩形状のフレーム部材40を備えている。フレーム部材40は、表面保護基板20の延在部20bに取り付けられ、表面保護基板20の端部20a及び平坦面20fを取り囲んでいる。フレーム部材40は、接着剤等の取付手段を用いて延在部20bに取り付けられる。 More specifically, as shown in FIGS. 19 and 20, the solar cell module 100D includes a frame member 40 having a substantially rectangular shape when viewed from above. The frame member 40 is attached to the extending portion 20b of the surface protection substrate 20, and surrounds the end 20a and the flat surface 20f of the surface protection substrate 20. The frame member 40 is attached to the extending portion 20b using attachment means such as an adhesive.
 図20(a)及び図20(b)に示すように、フレーム部材40は、断面がL字状の形状を有する。つまり、フレーム部材40は、z方向に延在して延在部20bの端部20aを覆う側方被覆部40aと、x方向又はy方向に突出する位置決め部40bとを有する。 20A and 20B, the frame member 40 has an L-shaped cross section. That is, the frame member 40 includes a side covering portion 40a that extends in the z direction and covers the end portion 20a of the extending portion 20b, and a positioning portion 40b that protrudes in the x direction or the y direction.
 フレーム部材40を構成する材料としては、例えば、ポリカーボネート、塩化ビニル樹脂、ポリエステル、ABS樹脂などの熱可塑性樹脂や、フェノール樹脂やポリウレタンなどの熱硬化性樹脂、ニトリルゴムなどのゴム材料を用いることができる。また、フレーム部材40を構成する材料としては、アルミニウムや鋼材等の金属材料を用いることもできる。 As a material constituting the frame member 40, for example, a thermoplastic resin such as polycarbonate, vinyl chloride resin, polyester, or ABS resin, a thermosetting resin such as phenol resin or polyurethane, or a rubber material such as nitrile rubber is used. it can. Moreover, as a material which comprises the frame member 40, metal materials, such as aluminum and steel materials, can also be used.
 取付手段である接着剤層41は、表面保護基板20の端部20aと側方被覆部40aとの間、及び表面保護基板20の平坦面20fと位置決め部40bとの間に介在し、表面保護基板20とフレーム部材40とを固着している。接着剤層41は、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂及びシリコーン樹脂からなる群より選ばれる少なくとも一つを含むことができる。また、接着剤層41は、例えば、硬化剤を加えたエポキシ樹脂に固形成分を混合することでペースト状とした樹脂で構成されることが好ましい。ただ、接着剤層41としては、表面保護基板20の延在部20bとフレーム部材40との間に配置され、延在部20bとフレーム部材40とを接着することが可能な樹脂材料であれば、如何なるものも使用することができる。 The adhesive layer 41 as an attachment means is interposed between the end portion 20a of the surface protection substrate 20 and the side cover portion 40a, and between the flat surface 20f of the surface protection substrate 20 and the positioning portion 40b, thereby protecting the surface. The substrate 20 and the frame member 40 are fixed. The adhesive layer 41 can include, for example, at least one selected from the group consisting of an epoxy resin, an acrylic resin, a urethane resin, and a silicone resin. Moreover, it is preferable that the adhesive layer 41 is comprised with resin made into paste form, for example by mixing a solid component with the epoxy resin which added the hardening | curing agent. However, as the adhesive layer 41, any resin material that is disposed between the extending portion 20b of the surface protection substrate 20 and the frame member 40 and can bond the extending portion 20b and the frame member 40 can be used. Anything can be used.
 太陽電池モジュール100Dのように、表面保護基板20の延在部20bを活用することで、表面保護基板20の外周にフレーム部材40を設置することができる。さらに、表面保護基板20の延在部20bとフレーム部材40との間に接着剤層41のような取付手段を介在させることで、太陽電池モジュールにおける裏面保護層32の裏面側の密閉性を高め、当該裏面側に異物が混入することを抑制することができる。 As in the solar cell module 100D, the frame member 40 can be installed on the outer periphery of the surface protection substrate 20 by utilizing the extending portion 20b of the surface protection substrate 20. Further, by interposing an attachment means such as an adhesive layer 41 between the extended portion 20b of the surface protection substrate 20 and the frame member 40, the sealing property on the back surface side of the back surface protection layer 32 in the solar cell module is enhanced. , Foreign matter can be prevented from entering the back side.
 太陽電池モジュール100Cでは、図18に示すように、表面保護基板20の延在部20bに補強部材21を配置し、さらに補強部材21は延在部20bに埋設されている態様とすることができる。ただ、本実施形態はこのような態様に限定されず、表面保護基板20の延在部20bに補強部材21を配置することにより、太陽電池モジュール100Cが凹状に反ることを抑制することができる。そのため、補強部材21は、表面保護基板20の外部に露出した状態で、表面保護基板20の延在部20bに配置されていてもよい。 In the solar cell module 100C, as shown in FIG. 18, the reinforcing member 21 is disposed in the extending portion 20b of the surface protection substrate 20, and the reinforcing member 21 is embedded in the extending portion 20b. . However, the present embodiment is not limited to such an aspect, and the solar cell module 100C can be prevented from warping in a concave shape by disposing the reinforcing member 21 in the extending portion 20b of the surface protection substrate 20. . Therefore, the reinforcing member 21 may be disposed on the extended portion 20 b of the surface protection substrate 20 in a state exposed to the outside of the surface protection substrate 20.
 図21に示すように、表面保護基板20の延在部20bは、表面保護基板20における裏面保護層32との接合部(裏面保護層32の端部32a)から外部に向けて伸長することにより形成されている。そして、補強部材21は、延在部20bにおける受光面(表面)とは反対側の裏面に固定されていてもよい。また、補強部材21は、太陽電池モジュール100Cの厚み方向(z方向)において、裏面保護層32から下方(z軸の負方向側)に向かって突出するように設けられていてもよい。さらに、図22に示すように、補強部材21は、延在部20bにおける受光面(表面)に固定されていてもよい。また、補強部材21は、太陽電池モジュール100Cの厚み方向(z方向)において、表面保護基板20の上方(z軸の正方向側)に向かって突出するように設けられていてもよい。 As shown in FIG. 21, the extending portion 20 b of the surface protection substrate 20 extends outward from a joint portion (an end portion 32 a of the back surface protection layer 32) with the back surface protection layer 32 in the surface protection substrate 20. Is formed. And the reinforcement member 21 may be fixed to the back surface on the opposite side to the light-receiving surface (front surface) in the extension part 20b. Further, the reinforcing member 21 may be provided so as to protrude downward (in the negative z-axis direction) from the back surface protective layer 32 in the thickness direction (z direction) of the solar cell module 100C. Furthermore, as shown in FIG. 22, the reinforcing member 21 may be fixed to the light receiving surface (surface) in the extending portion 20b. Further, the reinforcing member 21 may be provided so as to protrude toward the upper side of the surface protection substrate 20 (the positive side of the z axis) in the thickness direction (z direction) of the solar cell module 100C.
 図21及び図22に示すように、表面保護基板20の延在部20bには補強部材21が配置されており、さらに表面保護基板20における裏面保護層32との接合部よりも外縁側に、補強部材21が接触していることが好ましい。このように、太陽電池セル10の設置面として機能する裏面保護層32よりも外縁側に補強部材21を設けることで、表面保護基板20の外縁を強固に保持し、凹状に反ってしまうことを抑制することができる。 As shown in FIGS. 21 and 22, the reinforcing member 21 is disposed on the extending portion 20 b of the surface protection substrate 20, and further on the outer edge side than the joint portion with the back surface protection layer 32 in the surface protection substrate 20. It is preferable that the reinforcing member 21 is in contact. Thus, by providing the reinforcing member 21 on the outer edge side with respect to the back surface protection layer 32 functioning as the installation surface of the solar battery cell 10, the outer edge of the surface protection substrate 20 is firmly held and warped in a concave shape. Can be suppressed.
 ここで、補強部材21は、表面保護基板20における裏面保護層32との接合部(裏面保護層32の端部32a)を跨ぐように、表面保護基板20の裏面に設けられていてもよい。具体的には、図23に示すように、補強部材21の一部分が上記接合部よりも外縁側に位置しており、補強部材21の他の部分が上記接合部よりも内側、つまり太陽電池セル10側に位置していてもよい。この際、補強部材21は、板状であることが好ましい。このように、補強部材21が、表面保護基板20における裏面保護層32との接合部を跨ぐように、表面保護基板20の裏面に設けられている場合でも、表面保護基板20の延在部20bを保持し、凹状に反ってしまうことを抑制することが可能となる。 Here, the reinforcing member 21 may be provided on the back surface of the front surface protection substrate 20 so as to straddle the joint portion (the end portion 32a of the back surface protection layer 32) with the back surface protection layer 32 in the front surface protection substrate 20. Specifically, as shown in FIG. 23, a part of the reinforcing member 21 is located on the outer edge side of the joint part, and the other part of the reinforcing member 21 is inside the joint part, that is, a solar battery cell. It may be located on the 10 side. At this time, the reinforcing member 21 is preferably plate-shaped. Thus, even when the reinforcing member 21 is provided on the back surface of the front surface protection substrate 20 so as to straddle the joint between the front surface protection substrate 20 and the back surface protection layer 32, the extending portion 20 b of the front surface protection substrate 20. It becomes possible to suppress warping in a concave shape.
 上述のように、太陽電池モジュール100Cは、表面保護基板20と、第1封止材層26と、太陽電池セル10と、第2封止材層28と、裏面保護層32とを備えている。ただ、太陽電池モジュール100Cは、第三実施形態と同様に、表面保護基板20と第1封止材層26との間にゲル状高分子層22を介在させてもよい。また、太陽電池モジュール100Cは、ゲル状高分子層22と第1封止材層26との間、及び第2封止材層28と裏面保護層32との間の少なくとも一方に、中間層24,30をさらに有していてもよい。 As described above, the solar cell module 100 </ b> C includes the surface protection substrate 20, the first sealing material layer 26, the solar battery cell 10, the second sealing material layer 28, and the back surface protection layer 32. . However, in the solar cell module 100C, the gel-like polymer layer 22 may be interposed between the surface protective substrate 20 and the first sealing material layer 26 as in the third embodiment. Further, the solar cell module 100C includes the intermediate layer 24 between at least one of the gel-like polymer layer 22 and the first sealing material layer 26 and between the second sealing material layer 28 and the back surface protective layer 32. , 30 may be further included.
 このように、太陽電池モジュール100C,100Dは、複数の太陽電池セル10と、太陽電池セル10に対して光が入射する受光側に設けられ、透光性を有する第1封止材層26とを備える。太陽電池モジュール100C,100Dは、さらに、第1封止材層26よりも受光側に設けられ、透光性を有する樹脂材料で構成されている表面保護基板20と、太陽電池セル10における受光側とは反対側に設けられる第2封止材層28とを備える。太陽電池モジュール100C,100Dは、さらに、第2封止材層28における太陽電池セル10とは反対側に設けられる裏面保護層32を備える。そして、表面保護基板20の延在部20bには、表面保護基板20よりも曲げ強さが大きい補強部材21が配置されている。そのため、製造時の冷却工程において、表面保護基板20が大きく収縮したとしても、延在部20bに設けた補強部材21が表面保護基板20の外縁を保持するフレームの役割を果たし、太陽電池モジュール全体が凹状に変形することを抑制することができる。また、太陽電池モジュール100Cを、高温状態と低温状態とを繰り返す環境で使用したとしても、延在部20bに補強部材21が設けられていることにより、使用時に太陽電池モジュール100Cが凹状に変形することを防ぐことが可能となる。また、補強部材21に軽量な材料を用いることで、表面保護基板20の軽量化を図りつつも、太陽電池モジュール100Cの反りを抑制することが可能となる。 As described above, the solar cell modules 100C and 100D are provided on the light receiving side on which light is incident on the solar cells 10 and the first sealing material layer 26 having translucency. Is provided. The solar cell modules 100 </ b> C and 100 </ b> D are further provided on the light receiving side with respect to the first sealing material layer 26, and the light receiving side in the solar cell 10 and the surface protection substrate 20 made of a translucent resin material And a second sealing material layer 28 provided on the opposite side. The solar cell modules 100C and 100D further include a back surface protective layer 32 provided on the opposite side of the second sealing material layer 28 from the solar cells 10. A reinforcing member 21 having a bending strength greater than that of the surface protective substrate 20 is disposed on the extended portion 20 b of the surface protective substrate 20. Therefore, even if the surface protection substrate 20 is greatly contracted in the cooling process at the time of manufacture, the reinforcing member 21 provided on the extending portion 20b serves as a frame for holding the outer edge of the surface protection substrate 20, and the entire solar cell module. Can be prevented from being deformed into a concave shape. Moreover, even if the solar cell module 100C is used in an environment in which a high temperature state and a low temperature state are repeated, the solar cell module 100C is deformed into a concave shape during use because the reinforcing member 21 is provided in the extending portion 20b. It becomes possible to prevent this. Further, by using a lightweight material for the reinforcing member 21, it is possible to suppress the warpage of the solar cell module 100C while reducing the weight of the surface protection substrate 20.
 なお、太陽電池モジュール100C,100Dは、上述のように、太陽電池セル10、表面保護基板20、第1封止材層26、第2封止材層28及び裏面保護層32が全体として受光側に向けて凸状となっていることが好ましい。ただ、本実施形態の太陽電池モジュールはこのような形状に限定されず、太陽電池セル10、表面保護基板20、第1封止材層26、第2封止材層28及び裏面保護層32が全体として平板状であってもよい。つまり、太陽電池セル10、表面保護基板20、第1封止材層26、第2封止材層28及び裏面保護層32が全体としてx-y平面に平行であってもよい。 In addition, as described above, the solar cell modules 100C and 100D include the solar cell 10, the surface protection substrate 20, the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 as a whole on the light receiving side. It is preferable that it is convex toward the surface. However, the solar cell module of the present embodiment is not limited to such a shape, and the solar cell 10, the surface protection substrate 20, the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 are provided. It may be flat as a whole. That is, the solar battery cell 10, the surface protection substrate 20, the first sealing material layer 26, the second sealing material layer 28, and the back surface protection layer 32 may be parallel to the xy plane as a whole.
[移動体]
 本実施形態の移動体は、上述の太陽電池モジュールを具備する移動体である。当該移動体としては、例えば、自動車等の車両、電車、又は船舶等などが挙げられる。本実施形態の太陽電池モジュールは、自動車に搭載される場合、ボンネットやルーフパネルなどの自動車本体の上面部分に設置されることが好ましい。いずれの移動体も、本実施形態の太陽電池モジュールにより発電して得た電流がファン、モーターなどの電気機器に供給され、当該電気機器の駆動及び制御に使用される。
[Moving object]
The moving body of the present embodiment is a moving body that includes the above-described solar cell module. Examples of the moving body include vehicles such as automobiles, trains, ships, and the like. When the solar cell module of the present embodiment is mounted on an automobile, it is preferably installed on the upper surface portion of the automobile body such as a bonnet or a roof panel. In any of the moving bodies, a current obtained by generating power using the solar cell module of the present embodiment is supplied to an electric device such as a fan or a motor, and is used for driving and controlling the electric device.
 以下、実施例1により第一実施形態の太陽電池モジュールをさらに詳細に説明するが、第一実施形態の太陽電池モジュールはこれらによって限定されるものではない。 Hereinafter, although the solar cell module of the first embodiment will be described in more detail with reference to Example 1, the solar cell module of the first embodiment is not limited thereto.
[実施例1-1]
 図24に示すように、受光面側から順に、表面保護基板20、ゲル状高分子層22、第1封止材層26、太陽電池セル10、第2封止材層28、及び裏面保護層32を積層した太陽電池モジュールについて、シミュレーションにより評価を行った。
[Example 1-1]
As shown in FIG. 24, in order from the light receiving surface side, the surface protective substrate 20, the gel polymer layer 22, the first sealing material layer 26, the solar battery cell 10, the second sealing material layer 28, and the back surface protective layer. About the solar cell module which laminated | stacked 32, it evaluated by simulation.
 なお、表面保護基板20は、ポリカーボネート板を使用し、厚みを2mmとした。ゲル状高分子層22は、シリコーンゲルを使用し、厚みを1mmとした。第1封止材層26及び第2封止材層28は、エチレン-酢酸ビニル共重合体(EVA)を使用し、厚みをそれぞれ0.6mmとした。太陽電池セル10は、厚みを0.12mmとした。裏面保護層32は、炭素繊維が一方向に配向した炭素繊維強化プラスチック(UD材)を使用し、厚みを0.2mmとした。 The surface protective substrate 20 was a polycarbonate plate and had a thickness of 2 mm. The gel-like polymer layer 22 was made of silicone gel and had a thickness of 1 mm. For the first sealing material layer 26 and the second sealing material layer 28, ethylene-vinyl acetate copolymer (EVA) was used, and each thickness was 0.6 mm. Solar cell 10 had a thickness of 0.12 mm. The back surface protective layer 32 is made of carbon fiber reinforced plastic (UD material) in which carbon fibers are oriented in one direction and has a thickness of 0.2 mm.
 ここで、使用した裏面保護層32に関し、図25(a)に示す、炭素繊維の繊維方向B、及び繊維方向Bに垂直な方向Cの、熱膨張係数と引張弾性率を表1に示す。表1に示すように、裏面保護層32における繊維方向Bの熱膨張係数は、垂直な方向Cよりも小さいため、裏面保護層32は繊維方向Bに沿って伸縮し難い層となっている。また、表面保護基板20としてポリカーボネート板を使用しているため、裏面保護層32における繊維方向の熱膨張係数は、表面保護基板20の熱膨張係数よりも小さくなっている。 Here, regarding the back surface protective layer 32 used, Table 1 shows the thermal expansion coefficient and the tensile elastic modulus in the fiber direction B of the carbon fiber and the direction C perpendicular to the fiber direction B shown in FIG. As shown in Table 1, since the thermal expansion coefficient in the fiber direction B of the back surface protective layer 32 is smaller than the vertical direction C, the back surface protective layer 32 is a layer that hardly stretches along the fiber direction B. Further, since a polycarbonate plate is used as the surface protection substrate 20, the thermal expansion coefficient in the fiber direction of the back surface protection layer 32 is smaller than the thermal expansion coefficient of the surface protection substrate 20.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このような太陽電池モジュールを冷却した場合の二次元の変位を、シミュレーションにより解析した。解析ソフトとして、ムラタソフトウェア株式会社製Femtet(登録商標)を用いた。また、解析条件は、次のように設定した。
 ・2Dモデル 1/2対称
 ・ソルバ:応力解析、静解析
 ・モデルサイズ:280mm
 ・メッシュ形状:テトラ2次要素
 ・境界条件:固定無し
 ・熱負荷:25℃から-40℃
The two-dimensional displacement when such a solar cell module was cooled was analyzed by simulation. As analysis software, Femtet (registered trademark) manufactured by Murata Software Co., Ltd. was used. The analysis conditions were set as follows.
2D model 1/2 symmetry ・ Solver: Stress analysis, static analysis ・ Model size: 280mm
・ Mesh shape: Tetra secondary element ・ Boundary condition: Not fixed ・ Heat load: 25 ℃ to -40 ℃
 シミュレーション結果を図25(b),図25(c),図25(d)に示す。図25(b)は、太陽電池モジュールを冷却した場合の変位を、繊維方向Bに沿って求めた結果を示す。図25(c)は、太陽電池モジュールを冷却した場合の変位を、繊維方向Bに垂直な方向Cに沿って求めた結果を示す。なお、図25(b)及び図25(c)では、太陽電池モジュールの左端を固定した場合の右端の変位を求めている。また、図25(b)及び図25(c)では、25℃における太陽電池モジュールを実線で表し、-40℃における太陽電池モジュールを二点鎖線で表している。図25(d)のグラフは、太陽電池モジュールの右端における上下方向(z方向)の変位量と温度との関係を示している。 The simulation results are shown in FIGS. 25 (b), 25 (c), and 25 (d). FIG. 25 (b) shows the result of obtaining the displacement along the fiber direction B when the solar cell module is cooled. FIG. 25 (c) shows the result of obtaining the displacement when the solar cell module is cooled along the direction C perpendicular to the fiber direction B. In addition, in FIG.25 (b) and FIG.25 (c), the displacement of the right end at the time of fixing the left end of a solar cell module is calculated | required. In FIGS. 25B and 25C, the solar cell module at 25 ° C. is indicated by a solid line, and the solar cell module at −40 ° C. is indicated by a two-dot chain line. The graph of FIG. 25D shows the relationship between the amount of displacement in the vertical direction (z direction) and the temperature at the right end of the solar cell module.
 図25(b)に示すように、太陽電池モジュールを冷却した場合、繊維方向Bでは、太陽電池モジュールの右端は上方に向かって変位することが分かる。また、図25(d)に示すように、25℃から-40℃に冷却した場合、太陽電池モジュールの右端は、上方に5mm程度反ることが分かる。これに対して、図25(c)に示すように、太陽電池モジュールを冷却した場合、繊維方向Bに垂直な方向Cでは、太陽電池モジュールの右端は下方に向かって変位することが分かる。また、図25(d)に示すように、25℃から-40℃に冷却した場合、太陽電池モジュールの右端は、下方に2.5mm程度反ることが分かる。 As shown in FIG. 25 (b), when the solar cell module is cooled, it can be seen that in the fiber direction B, the right end of the solar cell module is displaced upward. Further, as shown in FIG. 25 (d), it is understood that the right end of the solar cell module is warped upward by about 5 mm when cooled from 25 ° C. to −40 ° C. On the other hand, as shown in FIG. 25C, when the solar cell module is cooled, it can be seen that the right end of the solar cell module is displaced downward in the direction C perpendicular to the fiber direction B. Further, as shown in FIG. 25 (d), it can be seen that when the solar cell module is cooled from 25 ° C. to −40 ° C., the right end of the solar cell module is warped downward by about 2.5 mm.
 つまり、繊維方向Bでは、表面保護基板20が収縮している反面、裏面保護層32が収縮し難いため、太陽電池モジュールは全体として上方に反る状態となることが分かる。これに対して、繊維方向Bに垂直な方向Cでは、表面保護基板20が収縮した際には裏面保護層32も収縮するため、太陽電池モジュールは全体として下方に反る状態となることが分かる。 That is, in the fiber direction B, the surface protection substrate 20 is contracted, but the back surface protection layer 32 is difficult to contract, and thus the solar cell module is warped upward as a whole. On the other hand, in the direction C perpendicular to the fiber direction B, the back surface protective layer 32 contracts when the surface protective substrate 20 contracts, so that the solar cell module is warped downward as a whole. .
[実施例1-2]
 実施例1-1と同じ太陽電池モジュールを用いて、シミュレーションにより三次元評価を行った。具体的には、太陽電池モジュールを冷却した場合の三次元の変位を、シミュレーションにより解析した。解析ソフトは、実施例1-1と同じものを用いた。また、解析条件は、次のように設定した。
 ・3Dモデル 1/4対称
 ・応力:静解析
 ・モデルサイズ:1m×1m
 ・モデル形状:R6000の2軸に湾曲した凸形状
 ・メッシュ形状:テトラ2次要素
 ・境界条件:固定無し
 ・熱負荷:25℃から-40℃
[Example 1-2]
Three-dimensional evaluation was performed by simulation using the same solar cell module as in Example 1-1. Specifically, the three-dimensional displacement when the solar cell module was cooled was analyzed by simulation. The same analysis software as in Example 1-1 was used. The analysis conditions were set as follows.
3D model 1/4 symmetry ・ Stress: Static analysis ・ Model size: 1m × 1m
-Model shape: Convex shape curved in two axes of R6000-Mesh shape: Tetra secondary element-Boundary condition: Unfixed-Thermal load: 25 ° C to -40 ° C
 本例の太陽電池モジュールでは、図26(a)に示すように、裏面保護層として、炭素繊維がマトリックス樹脂の内部で一方向に配向しているUD材を使用した。そして、図26(b)及び図26(c)では、このような太陽電池モジュールのシミュレーションの結果を示している。なお、図26(b)では、太陽電池モジュールの左端を固定した場合の右端の変位を求めている。また、図26(b)では、25℃における太陽電池モジュールを実線で表し、-40℃における太陽電池モジュールを二点鎖線で表している。図26(c)のグラフは、太陽電池モジュールの右端における上下方向(z方向)の変位量と温度との関係を示している。 In the solar cell module of this example, as shown in FIG. 26A, a UD material in which carbon fibers are oriented in one direction inside the matrix resin was used as the back surface protective layer. And in FIG.26 (b) and FIG.26 (c), the result of the simulation of such a solar cell module is shown. In addition, in FIG.26 (b), the displacement of the right end at the time of fixing the left end of a solar cell module is calculated | required. In FIG. 26B, the solar cell module at 25 ° C. is indicated by a solid line, and the solar cell module at −40 ° C. is indicated by a two-dot chain line. The graph in FIG. 26C shows the relationship between the amount of displacement in the vertical direction (z direction) and the temperature at the right end of the solar cell module.
 図26(b)に示すように、太陽電池モジュールを冷却した場合、太陽電池モジュールの右端は下方に向かって変位することが分かる。また、図26(c)に示すように、25℃から-40℃に冷却した場合、太陽電池モジュールの右端は、下方に向かって7mm以上反ることが分かる。つまり、実施例1-2の太陽電池モジュールは、表面保護基板20が収縮した際には、裏面保護層32における炭素繊維に垂直な方向も収縮するため、太陽電池モジュールは全体として下方に反る状態となることが分かる。 As shown in FIG. 26 (b), it is understood that when the solar cell module is cooled, the right end of the solar cell module is displaced downward. Further, as shown in FIG. 26 (c), when cooled from 25 ° C. to −40 ° C., the right end of the solar cell module is warped by 7 mm or more downward. That is, in the solar cell module of Example 1-2, when the front surface protection substrate 20 contracts, the solar cell module warps downward as a whole because the back surface protective layer 32 also contracts in the direction perpendicular to the carbon fibers. It turns out that it will be in a state.
[比較例1]
 実施例1-2の太陽電池モジュールにおける裏面保護層32をUD材からクロス材に変更したこと以外は、実施例1-2と同様にして、シミュレーションにより三次元評価を行った。具体的には、本例の太陽電池モジュールでは、図27(a)に示すように、裏面保護層として、炭素繊維がマトリックス樹脂の内部で縦と横に交互に配向しているクロス材を使用した。なお、クロス材からなる裏面保護層は、x方向及びy方向の両方とも、熱膨張係数が1×10-6-1であり、引張弾性率が120GPaである。また、表面保護基板20としてポリカーボネート板を使用しているため、裏面保護層におけるx方向及びy方向の熱膨張係数は、表面保護基板20の熱膨張係数よりも小さくなっている。なお、本例において、解析ソフト及び解析条件は、実施例1-2と同じとした。
[Comparative Example 1]
Three-dimensional evaluation was performed by simulation in the same manner as in Example 1-2, except that the back surface protective layer 32 in the solar cell module of Example 1-2 was changed from the UD material to the cloth material. Specifically, in the solar cell module of this example, as shown in FIG. 27 (a), as the back surface protective layer, a cloth material in which carbon fibers are alternately oriented vertically and horizontally inside the matrix resin is used. did. Note that the back surface protective layer made of a cloth material has a thermal expansion coefficient of 1 × 10 −6 K −1 and a tensile elastic modulus of 120 GPa in both the x and y directions. Further, since a polycarbonate plate is used as the surface protection substrate 20, the thermal expansion coefficients in the x direction and the y direction in the back surface protection layer are smaller than the thermal expansion coefficient of the surface protection substrate 20. In this example, analysis software and analysis conditions were the same as those in Example 1-2.
 図27(b)及び図27(c)では、このような太陽電池モジュールのシミュレーションの結果を示している。なお、図27(b)では、太陽電池モジュールの左端を固定した場合の右端の変位を求めている。また、図27(b)では、25℃における太陽電池モジュールを実線で表し、-40℃における太陽電池モジュールを二点鎖線で表している。図27(c)のグラフは、太陽電池モジュールの右端における上下方向(z方向)の変位量と温度との関係を示している。 27 (b) and 27 (c) show the results of simulation of such a solar cell module. In addition, in FIG.27 (b), the displacement of the right end at the time of fixing the left end of a solar cell module is calculated | required. In FIG. 27B, the solar cell module at 25 ° C. is indicated by a solid line, and the solar cell module at −40 ° C. is indicated by a two-dot chain line. The graph of FIG. 27C shows the relationship between the amount of displacement in the vertical direction (z direction) and the temperature at the right end of the solar cell module.
 図27(b)に示すように、太陽電池モジュールを冷却した場合、太陽電池モジュールの右端は上方に向かって変位することが分かる。また、図27(c)に示すように、25℃から-40℃に冷却した場合、太陽電池モジュールの右端は、上方に向かって10mm以上程度反ることが分かる。つまり、比較例1の太陽電池モジュールは、表面保護基板20は収縮するが、裏面保護層はx方向及びy方向とも収縮し難いため、太陽電池モジュールは全体として上方に反る状態となることが分かる。 As shown in FIG. 27 (b), when the solar cell module is cooled, it can be seen that the right end of the solar cell module is displaced upward. In addition, as shown in FIG. 27 (c), when cooled from 25 ° C. to −40 ° C., the right end of the solar cell module is warped upward by about 10 mm or more. That is, in the solar cell module of Comparative Example 1, the front surface protection substrate 20 contracts, but the back surface protection layer hardly contracts in both the x direction and the y direction, so that the solar cell module may be warped upward as a whole. I understand.
[実施例1-3]
 実施例1-1と同じ太陽電池モジュールを用いて、シミュレーションにより、ゲル状高分子層の追従性を評価した。具体的には、太陽電池モジュールを冷却した場合におけるゲル状高分子層の変位を、シミュレーションにより解析した。解析ソフトは実施例1-1と同じものを用い、解析条件も実施例1-1と同じとした。
[Example 1-3]
Using the same solar cell module as in Example 1-1, the followability of the gel polymer layer was evaluated by simulation. Specifically, the displacement of the gel polymer layer when the solar cell module was cooled was analyzed by simulation. The analysis software was the same as in Example 1-1, and the analysis conditions were the same as in Example 1-1.
 図28(a)は、太陽電池モジュール100を冷却した場合の変位を、図25(a)の繊維方向Bに沿って求めた結果を示す。図28(b)は、太陽電池モジュール100を冷却して変形した場合における、図28(a)の右端を拡大して示している。なお、図28(a)及び図28(b)では、25℃における太陽電池モジュールを実線で表し、-40℃における太陽電池モジュールを二点鎖線で表している。 FIG. 28 (a) shows the result of obtaining the displacement when the solar cell module 100 is cooled along the fiber direction B of FIG. 25 (a). FIG. 28B shows an enlarged right end of FIG. 28A when the solar cell module 100 is cooled and deformed. In FIGS. 28A and 28B, the solar cell module at 25 ° C. is represented by a solid line, and the solar cell module at −40 ° C. is represented by a two-dot chain line.
 図28(a)に示すように、太陽電池モジュール100を冷却した場合、繊維方向Bでは、表面保護基板20が収縮している反面、裏面保護層32が収縮し難いため、太陽電池モジュールは全体として上方に反る状態となることが分かる。そして、図28(b)に示すように、表面保護基板20が収縮した場合でも、下層のゲル状高分子層22は引張弾性率が小さいため、表面保護基板20の収縮に追従できることが分かる。そのため、光電変換部に対して、表面保護基板20の伸縮による応力が伝わるのを防止でき、さらに、太陽電池モジュール全体の反り(変形)を抑制できることも分かる。 As shown in FIG. 28A, when the solar cell module 100 is cooled, in the fiber direction B, the front surface protection substrate 20 is contracted, but the back surface protection layer 32 is difficult to contract. As shown in FIG. And as shown in FIG.28 (b), even when the surface protection board | substrate 20 shrink | contracts, since the lower gel-like polymer layer 22 has a small tensile elasticity modulus, it turns out that it can follow the shrinkage | contraction of the surface protection board | substrate 20. FIG. Therefore, it can be understood that stress due to expansion and contraction of the surface protection substrate 20 can be prevented from being transmitted to the photoelectric conversion unit, and further, warpage (deformation) of the entire solar cell module can be suppressed.
 以下、実施例2により第三実施形態の太陽電池モジュールをさらに詳細に説明するが、第三実施形態の太陽電池モジュールはこれらによって限定されるものではない。 Hereinafter, the solar cell module of the third embodiment will be described in more detail with reference to Example 2, but the solar cell module of the third embodiment is not limited thereto.
 受光面側から順に、表面保護基板、第1封止材層、太陽電池セル、第2封止材層及び裏面保護層を積層した太陽電池モジュールについて、シミュレーションにより評価を行った。この際、表面保護基板は、ポリカーボネート板を使用し、厚みを3mmとした。第1封止材層及び第2封止材層は、エチレン-酢酸ビニル共重合体(EVA)を使用し、厚みをそれぞれ0.6mmとした。太陽電池セルは、厚みを0.12mmとした。裏面保護層は、ポリエチレンテレフタレートシートを使用し、厚みを0.1mmとした。 The solar cell module in which the surface protective substrate, the first sealing material layer, the solar battery cell, the second sealing material layer, and the back surface protective layer were laminated in order from the light receiving surface side was evaluated by simulation. At this time, a polycarbonate plate was used as the surface protection substrate, and the thickness was 3 mm. For the first sealing material layer and the second sealing material layer, ethylene-vinyl acetate copolymer (EVA) was used, and the thickness was 0.6 mm. The solar battery cell had a thickness of 0.12 mm. The back protective layer used was a polyethylene terephthalate sheet and the thickness was 0.1 mm.
 そして、実施例2の太陽電池モジュールでは、表面保護基板の外縁全体に亘って、長さLが50mmの延在部を形成した。これに対して、比較例2の太陽電池モジュールでは、延在部を形成しないようにした。 And in the solar cell module of Example 2, the extending portion having a length L of 50 mm was formed over the entire outer edge of the surface protective substrate. On the other hand, in the solar cell module of Comparative Example 2, no extending portion was formed.
 次に、実施例2及び比較例2の太陽電池モジュールを冷却した場合の三次元の変位を、シミュレーションにより解析した。解析ソフトとして、ムラタソフトウェア株式会社製Femtet(登録商標)を用いた。また、解析条件は、次のように設定した。
 ・3Dモデル 1/4対称
 ・応力:静解析
 ・モデルサイズ:1.1m×1.1m(図29参照)
 ・モデル形状:R3000とR5000の2軸に湾曲した凸形状(図29参照)
 ・メッシュ形状:テトラ2次要素
 ・境界条件:固定無し
 ・熱負荷:25℃から-40℃
Next, the three-dimensional displacement when the solar cell modules of Example 2 and Comparative Example 2 were cooled was analyzed by simulation. As analysis software, Femtet (registered trademark) manufactured by Murata Software Co., Ltd. was used. The analysis conditions were set as follows.
3D model 1/4 symmetry ・ Stress: Static analysis ・ Model size: 1.1 m × 1.1 m (see FIG. 29)
Model shape: convex shape curved in two axes, R3000 and R5000 (see FIG. 29)
・ Mesh shape: Tetra secondary element ・ Boundary condition: Not fixed ・ Heat load: 25 ℃ to -40 ℃
 図29は、実施例2及び比較例2の太陽電池モジュールを概略的に示している。図29より、実施例2及び比較例2の太陽電池モジュールは、2軸に湾曲した凸形状を有しており、受光側に向けて凸形状となっている。 FIG. 29 schematically shows the solar cell modules of Example 2 and Comparative Example 2. From FIG. 29, the solar cell modules of Example 2 and Comparative Example 2 have a convex shape curved in two axes, and are convex toward the light receiving side.
 図30は、実施例2及び比較例2の太陽電池モジュールにおけるシミュレーションの結果を示している。また、図30は1/4対称の図面であり、太陽電池モジュールの中央を固定した場合の端部の変位を示している。なお、図30では、25℃における太陽電池モジュールを実線で表し、-40℃における太陽電池モジュールを二点鎖線で表している。 FIG. 30 shows the results of simulation in the solar cell modules of Example 2 and Comparative Example 2. FIG. 30 is a ¼-symmetrical diagram showing the displacement of the end when the center of the solar cell module is fixed. In FIG. 30, the solar cell module at 25 ° C. is indicated by a solid line, and the solar cell module at −40 ° C. is indicated by a two-dot chain line.
 図30に示すように、太陽電池モジュールを冷却した場合、太陽電池モジュールの端部は上方に向かって変位することが分かる。つまり、実施例2及び比較例2の太陽電池モジュールでは、表面保護基板として厚みが3mmのポリカーボネート板を使用し、裏面保護層として、厚みが0.1mmのポリエチレンテレフタレート板を使用している。そのため、厚みが大きい表面保護基板は温度が低下することにより大きく収縮し、太陽電池モジュールは全体として上方に反ることが分かる。 As shown in FIG. 30, when the solar cell module is cooled, it can be seen that the end of the solar cell module is displaced upward. That is, in the solar cell modules of Example 2 and Comparative Example 2, a polycarbonate plate having a thickness of 3 mm is used as the surface protective substrate, and a polyethylene terephthalate plate having a thickness of 0.1 mm is used as the back surface protective layer. Therefore, it can be seen that the surface protective substrate having a large thickness contracts greatly as the temperature decreases, and the solar cell module warps upward as a whole.
 そして、シミュレーションの結果、実施例2の太陽電池モジュールでは、25℃から-40℃に冷却した場合、太陽電池モジュールの端部は、上方に向かって50mm反る結果となった。これに対し、比較例2の太陽電池モジュールでは、25℃から-40℃に冷却した場合、太陽電池モジュールの端部は、上方に向かって145mm反る結果となった。 As a result of the simulation, when the solar cell module of Example 2 was cooled from 25 ° C. to −40 ° C., the end portion of the solar cell module warped upward by 50 mm. On the other hand, in the solar cell module of Comparative Example 2, when cooled from 25 ° C. to −40 ° C., the end of the solar cell module warped upward by 145 mm.
 このように、表面保護基板の外縁に延在部を設けることにより、表面保護基板が大きく収縮した場合でも、太陽電池モジュールの上方への変位量を抑制できる。そのため、太陽電池モジュール全体が凹状に変形することを抑制できることが分かる。 As described above, by providing the extending portion on the outer edge of the surface protective substrate, the amount of upward displacement of the solar cell module can be suppressed even when the surface protective substrate is greatly contracted. Therefore, it turns out that it can suppress that the whole solar cell module deform | transforms into a concave shape.
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As described above, the contents of the present embodiment have been described according to the examples. However, the present embodiment is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible. is there.
 特願2018-045106号(出願日:2018年3月13日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2018-045106 (filing date: March 13, 2018) are incorporated herein by reference.
 本開示によれば、簡易な方法により凹状の反りを抑制することが可能な太陽電池モジュールを得ることができる。 According to the present disclosure, a solar cell module capable of suppressing concave warpage can be obtained by a simple method.
 10 太陽電池セル
 12 タブ配線
 20 表面保護基板
 20a 表面保護基板の端部
 20b 延在部
 21 補強部材
 22 ゲル状高分子層
 24 中間層
 26 第1封止材層
 26a 第1封止材層の端部
 28 第2封止材層
 28a 第2封止材層の端部
 30 中間層
 32 裏面保護層
 32a 裏面保護層の端部
 100,100A,100B,100C,100D 太陽電池モジュール
 321 母材
 322 繊維材
DESCRIPTION OF SYMBOLS 10 Solar cell 12 Tab wiring 20 Surface protection board 20a End part of surface protection board 20b Extension part 21 Reinforcement member 22 Gel-like polymer layer 24 Intermediate | middle layer 26 1st sealing material layer 26a End of 1st sealing material layer Part 28 Second sealing material layer 28a End part of second sealing material layer 30 Intermediate layer 32 Back surface protective layer 32a End part of back surface protective layer 100, 100A, 100B, 100C, 100D Solar cell module 321 Base material 322 Fiber material

Claims (20)

  1.  受光面側から順に、樹脂製の表面保護基板と、ゲル状高分子層と、第1封止材層と、光電変換部と、第2封止材層と、一方向に配向した低熱膨張成分を備える裏面保護層とを有し、
     前記ゲル状高分子層の引張弾性率が、前記表面保護基板、前記第1封止材層及び前記第2封止材層のうちのいずれの引張弾性率よりも小さく、
     前記裏面保護層は、前記一方向の熱膨張係数が前記表面保護基板の熱膨張係数よりも小さく、
     前記裏面保護層において、前記一方向の熱膨張係数と、前記一方向に垂直な他方向の熱膨張係数とは互いに異なる、太陽電池モジュール。
    In order from the light receiving surface side, a resin surface protective substrate, a gel polymer layer, a first sealing material layer, a photoelectric conversion part, a second sealing material layer, and a low thermal expansion component oriented in one direction. A back surface protective layer comprising:
    The tensile elastic modulus of the gel polymer layer is smaller than any tensile elastic modulus of the surface protective substrate, the first sealing material layer, and the second sealing material layer,
    The back protective layer has a thermal expansion coefficient in one direction smaller than that of the surface protective substrate,
    The solar cell module in which the thermal expansion coefficient in the one direction and the thermal expansion coefficient in the other direction perpendicular to the one direction are different from each other in the back surface protective layer.
  2.  前記表面保護基板の熱膨張係数と、前記裏面保護層における前記他方向の熱膨張係数との差が、30×10-6-1以下である、請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein a difference between a thermal expansion coefficient of the surface protective substrate and a thermal expansion coefficient in the other direction of the back surface protective layer is 30 × 10 −6 K −1 or less.
  3.  前記裏面保護層が母材と前記低熱膨張成分である繊維材とを有し、
     前記繊維材の熱膨張係数が前記母材の熱膨張係数よりも小さく、
     前記裏面保護層の厚みが0.5mm以下である、請求項1又は2に記載の太陽電池モジュール。
    The back surface protective layer has a base material and a fiber material that is the low thermal expansion component,
    The thermal expansion coefficient of the fiber material is smaller than the thermal expansion coefficient of the base material,
    The solar cell module of Claim 1 or 2 whose thickness of the said back surface protective layer is 0.5 mm or less.
  4.  前記光電変換部は、タブ配線で接続された1以上の太陽電池セルを有し、
     前記裏面保護層において、前記繊維材は前記タブ配線の延在方向に配向する、請求項3に記載の太陽電池モジュール。
    The photoelectric conversion unit has one or more solar cells connected by tab wiring,
    The solar cell module according to claim 3, wherein in the back surface protective layer, the fiber material is oriented in an extending direction of the tab wiring.
  5.  前記ゲル状高分子層と前記第1封止材層との間、及び前記第2封止材層と前記裏面保護層との間の少なくとも一方に、引張弾性率が前記第1封止材層及び前記第2封止材層のいずれの引張弾性率よりも大きい中間層をさらに有する、請求項1乃至4のいずれか一項に記載の太陽電池モジュール。 The first sealing material layer has a tensile modulus of elasticity between at least one of the gel-like polymer layer and the first sealing material layer and between the second sealing material layer and the back surface protective layer. And the solar cell module as described in any one of Claims 1 thru | or 4 which further has an intermediate | middle layer larger than any tensile elasticity modulus of a said 2nd sealing material layer.
  6.  前記中間層の熱膨張係数が、前記第1封止材層及び前記第2封止材層のいずれの熱膨張係数よりも小さい、請求項5に記載の太陽電池モジュール。 The solar cell module according to claim 5, wherein a thermal expansion coefficient of the intermediate layer is smaller than a thermal expansion coefficient of either the first sealing material layer or the second sealing material layer.
  7.  前記第2封止材層と前記裏面保護層との間に位置する前記中間層が、電気絶縁性を有する請求項5又は6に記載の太陽電池モジュール。 The solar cell module according to claim 5 or 6, wherein the intermediate layer located between the second sealing material layer and the back surface protective layer has electrical insulation.
  8.  前記光電変換部は、タブ配線で接続された1以上の太陽電池セルを有し、
     前記裏面保護層は、前記タブ配線の延在方向と直交する方向の一部又は全体に亘り形成された少なくとも一つの切り込みを有する、請求項1乃至7のいずれか一項に記載の太陽電池モジュール。
    The photoelectric conversion unit has one or more solar cells connected by tab wiring,
    The solar cell module according to any one of claims 1 to 7, wherein the back surface protective layer has at least one cut formed in a part or the whole of a direction orthogonal to the extending direction of the tab wiring. .
  9.  前記光電変換部は、タブ配線で接続された1以上の太陽電池セルを有し、
     前記表面保護基板の受光面側が凸となる曲面形状であって、前記タブ配線が前記曲面形状に沿って曲げられている、請求項1乃至8のいずれか一項に記載の太陽電池モジュール。
    The photoelectric conversion unit has one or more solar cells connected by tab wiring,
    The solar cell module according to any one of claims 1 to 8, wherein the light-receiving surface side of the surface protection substrate has a curved surface shape that is convex, and the tab wiring is bent along the curved surface shape.
  10.  前記裏面保護層は、前記表面保護基板の周縁において、前記第1封止材層の端部及び第2封止材層の端部を覆って前記表面保護基板に直接接合している、請求項1乃至9のいずれか一項に記載の太陽電池モジュール。 The said back surface protective layer covers the edge part of the 1st sealing material layer and the edge part of the 2nd sealing material layer in the peripheral edge of the surface protection board, and is directly joined to the surface protection board. The solar cell module according to any one of 1 to 9.
  11.  前記光電変換部を平面視した場合、前記裏面保護層の面積は、前記表面保護基板の面積よりも小さく、前記第1封止材層の面積及び第2封止材層の面積よりも大きい、請求項1乃至10のいずれか一項に記載の太陽電池モジュール。 When the photoelectric conversion unit is viewed in plan, the area of the back surface protective layer is smaller than the area of the surface protective substrate, and larger than the areas of the first sealing material layer and the second sealing material layer, The solar cell module as described in any one of Claims 1 thru | or 10.
  12.  前記光電変換部を平面視した場合、前記表面保護基板の端部より内側に、前記第1封止材層、前記第2封止材層及び前記裏面保護層の各端部が位置している、請求項1に記載の太陽電池モジュール。 When the photoelectric conversion unit is viewed in plan, the respective end portions of the first sealing material layer, the second sealing material layer, and the back surface protection layer are located inside the end portion of the surface protection substrate. The solar cell module according to claim 1.
  13.  前記表面保護基板の端部より内側に前記第1封止材層、前記第2封止材層及び前記裏面保護層の各端部が位置していることにより前記表面保護基板に形成された延在部は、前記表面保護基板の外縁全体に亘って形成されている、請求項12に記載の太陽電池モジュール。 An extension formed on the surface protection substrate by positioning each end of the first sealing material layer, the second sealing material layer, and the back surface protection layer inside the edge of the surface protection substrate. The solar cell module according to claim 12, wherein the existing portion is formed over the entire outer edge of the surface protection substrate.
  14.  前記光電変換部を平面視した場合、前記表面保護基板の形状は、長辺と前記長辺よりも短い短辺とを有する略四角形であり、
     前記表面保護基板の端部より内側に前記第1封止材層、前記第2封止材層及び前記裏面保護層の各端部が位置していることにより前記表面保護基板に形成された延在部は、前記長辺の全体に形成されている、請求項12に記載の太陽電池モジュール。
    When the photoelectric conversion unit is viewed in plan, the shape of the surface protection substrate is a substantially quadrilateral having a long side and a short side shorter than the long side,
    An extension formed on the surface protection substrate by positioning each end of the first sealing material layer, the second sealing material layer, and the back surface protection layer inside the edge of the surface protection substrate. The solar cell module according to claim 12, wherein the existing portion is formed over the entire long side.
  15.  前記表面保護基板の端部より内側に前記第1封止材層、前記第2封止材層及び前記裏面保護層の各端部が位置していることにより前記表面保護基板に形成された延在部には、前記表面保護基板よりも曲げ強さが大きい補強部材が配置されている、請求項12に記載の太陽電池モジュール。 An extension formed on the surface protection substrate by positioning each end of the first sealing material layer, the second sealing material layer, and the back surface protection layer inside the edge of the surface protection substrate. The solar cell module according to claim 12, wherein a reinforcing member having a bending strength greater than that of the surface protection substrate is disposed in the existing portion.
  16.  前記表面保護基板における前記裏面保護層との接合部よりも外縁側に、前記補強部材が接触している、請求項15に記載の太陽電池モジュール。 The solar cell module according to claim 15, wherein the reinforcing member is in contact with an outer edge side of a joint portion of the front surface protective substrate with the back surface protective layer.
  17.  前記補強部材は、前記表面保護基板の延在部に埋設されている、請求項15又は16に記載の太陽電池モジュール。 The solar cell module according to claim 15 or 16, wherein the reinforcing member is embedded in an extending portion of the surface protection substrate.
  18.  前記補強部材は、前記表面保護基板の延在部全体に亘って配置されている、請求項15乃至17のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 15 to 17, wherein the reinforcing member is disposed over the entire extending portion of the surface protection substrate.
  19.  前記光電変換部を平面視した場合、前記表面保護基板の形状は、長辺と前記長辺よりも短い短辺とを有する略四角形であり、
     前記補強部材は、前記長辺の全体に配置されている、請求項15乃至18のいずれか一項に記載の太陽電池モジュール。
    When the photoelectric conversion unit is viewed in plan, the shape of the surface protection substrate is a substantially quadrilateral having a long side and a short side shorter than the long side,
    The solar cell module according to any one of claims 15 to 18, wherein the reinforcing member is disposed over the entire long side.
  20.  請求項1乃至19のいずれか一項に記載の太陽電池モジュールを具備する移動体。 A moving body comprising the solar cell module according to any one of claims 1 to 19.
PCT/JP2019/008614 2018-03-13 2019-03-05 Solar cell module WO2019176646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506422A JPWO2019176646A1 (en) 2018-03-13 2019-03-05 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045106 2018-03-13
JP2018-045106 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176646A1 true WO2019176646A1 (en) 2019-09-19

Family

ID=67907769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008614 WO2019176646A1 (en) 2018-03-13 2019-03-05 Solar cell module

Country Status (2)

Country Link
JP (1) JPWO2019176646A1 (en)
WO (1) WO2019176646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276537A1 (en) * 2021-06-29 2023-01-05 株式会社カネカ Solar cell module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225772A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Solar cell module
WO2012115154A1 (en) * 2011-02-23 2012-08-30 三菱レイヨン株式会社 Solar cell module
JP2014096511A (en) * 2012-11-12 2014-05-22 Panasonic Corp Solar cell module
KR20160032616A (en) * 2014-09-16 2016-03-24 엘지전자 주식회사 Solar cell module and back sheet used for the same
JP2017011085A (en) * 2015-06-22 2017-01-12 株式会社豊田自動織機 solar panel
JP2017073466A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 On-vehicle solar battery module
WO2017098728A1 (en) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225772A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Solar cell module
WO2012115154A1 (en) * 2011-02-23 2012-08-30 三菱レイヨン株式会社 Solar cell module
JP2014096511A (en) * 2012-11-12 2014-05-22 Panasonic Corp Solar cell module
KR20160032616A (en) * 2014-09-16 2016-03-24 엘지전자 주식회사 Solar cell module and back sheet used for the same
JP2017011085A (en) * 2015-06-22 2017-01-12 株式会社豊田自動織機 solar panel
JP2017073466A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 On-vehicle solar battery module
WO2017098728A1 (en) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276537A1 (en) * 2021-06-29 2023-01-05 株式会社カネカ Solar cell module

Also Published As

Publication number Publication date
JPWO2019176646A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP6395020B1 (en) Solar cell module
JP5176268B2 (en) Solar cell module
WO2018110582A1 (en) Solar cell module
KR20100133962A (en) Solar cell system with encapsulant
JP5506295B2 (en) Solar cell module and manufacturing method thereof
WO2019176646A1 (en) Solar cell module
JP6057113B1 (en) Solar cell module and manufacturing method thereof
JP2015195297A (en) solar cell module
WO2018150794A1 (en) Solar cell module
JP6655828B2 (en) Solar cell module
KR101959545B1 (en) The Photovoltaic modules which utilize patterned glass and have power generation fuctions and enhanced esthetics
JP6735472B2 (en) Solar cell module
JP2016152333A (en) Solar batty module
JP2007311651A (en) Apparatus and method for vacuum laminate
WO2017150045A1 (en) Solar cell module
WO2019031378A1 (en) Solar cell module and intermediate product of solar cell module
JP2019140301A (en) Solar cell module and manufacturing method thereof
JP2018107254A (en) Solar cell module
JP2011198886A (en) Solar battery module, and method of manufacturing the same
WO2017145663A1 (en) Solar cell module
JP7377692B2 (en) solar module
JP2021506213A (en) Manufacture of condensing submodules with heat dissipation material
WO2019087802A1 (en) Solar cell module
JP2016197613A (en) solar panel
JP2022074785A (en) Roof material-integrated solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767056

Country of ref document: EP

Kind code of ref document: A1