WO2019176638A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2019176638A1
WO2019176638A1 PCT/JP2019/008556 JP2019008556W WO2019176638A1 WO 2019176638 A1 WO2019176638 A1 WO 2019176638A1 JP 2019008556 W JP2019008556 W JP 2019008556W WO 2019176638 A1 WO2019176638 A1 WO 2019176638A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow rate
channel
fuel cell
flow path
Prior art date
Application number
PCT/JP2019/008556
Other languages
French (fr)
Japanese (ja)
Inventor
佑輝 向原
康弘 長田
康俊 土肥
厚 早坂
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019176638A1 publication Critical patent/WO2019176638A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell system.
  • the fuel cell system includes a fuel cell body that generates electricity by an electrochemical reaction between a fuel gas supplied to an anode and an oxidant gas supplied to a cathode, and steam reforming the raw fuel gas containing hydrocarbon fuel to produce hydrogen.
  • a reformer that generates a fuel gas containing Since the anode off gas discharged from the fuel cell main body contains unused hydrogen fuel, in order to reuse this, for example, a fuel recycling technique for circulating using an ejector is known.
  • Patent Document 1 in a fuel cell system using a solid oxide fuel cell (ie, SOFC), an ejector is provided in a fuel gas supply line from a reformer to an SOFC.
  • SOFC solid oxide fuel cell
  • an ejector is driven by fuel gas emitted from a mass device, and anode off-gas is recirculated from the suction portion of the ejector to the SOFC.
  • the anode off gas is sucked into the ejector via a circulation line provided with a cooler and a condenser, for example, and the separated water is heated and supplied to the reformer.
  • the reformed fuel gas whose total material amount is larger than that of the raw fuel gas is used as the driving flow, so that the volume flow rate of the driving flow is increased to increase the flow velocity, and more anodes are provided.
  • the off-gas can be sucked to increase the fuel circulation rate.
  • This system is configured so that the total amount of reformed gas with an increased total amount of material always passes through the ejector. Therefore, for example, even when the required power generation output is low and the load is low, the anode off-gas is supplied at a high circulation rate. Will suck. In that case, the power of the blower that is driven to feed the raw fuel gas into the ejector becomes relatively large with respect to the power generation output, and the power generation efficiency, that is, the ratio of the power that can be supplied to the outside may rather decrease. There is.
  • the purpose of the present disclosure is to make it possible to adjust the circulation rate of the anode off-gas sucked by the drive flow passing through the ejector, and to reduce the electric power necessary for forming the drive flow according to the power generation output, etc. It is an object of the present invention to provide a fuel cell system that can be used.
  • a fuel cell body that generates electricity by an electrochemical reaction between a fuel gas supplied to the anode and an oxidant gas supplied to the cathode;
  • a reformer that reforms the raw fuel gas to produce the fuel gas;
  • a gas supply passage through which the raw fuel gas supplied to the reformer flows;
  • a gas discharge passage through which anode off-gas discharged from the anode flows;
  • a circulation flow path connecting the gas discharge flow path and the gas supply flow path;
  • An ejector that draws the anode off-gas from the circulation flow path using the raw fuel gas as a driving flow and circulates the gas to the gas supply flow path;
  • a flow rate adjusting unit that adjusts the flow rate of the driving gas that forms at least a part of the raw fuel gas supplied from the raw fuel gas supply source to the gas supply flow path and passes through the ejector to form the driving flow;
  • the fuel cell system includes:
  • the flow rate adjusting unit reduces the flow rate of the drive gas supplied to the ejector out of the raw fuel gas, and the circulation flow rate of the anode off gas sucked by the drive flow ejected from the ejector Make it smaller.
  • power such as a blower which sends drive gas to an ejector
  • the flow rate adjusting unit can increase the flow rate of the driving gas in the ejector, increase the circulation flow rate of the anode off gas, and increase the fuel reuse rate.
  • the circulation rate of the anode off-gas sucked by the drive flow passing through the ejector can be adjusted, and the electric power necessary for forming the drive flow can be reduced according to the power generation output, etc.
  • a fuel cell system capable of performing efficient power generation can be provided.
  • FIG. 1 is a schematic diagram showing the overall configuration of a fuel cell system in Embodiment 1.
  • FIG. 2 is a schematic diagram illustrating the main configuration of the fuel cell system according to Embodiment 1.
  • FIG. 3 is a schematic diagram showing the main configuration of the fuel cell system in Embodiment 1.
  • FIG. 4 is an explanatory diagram of the relationship between load and power generation efficiency in a conventional fuel cell system
  • FIG. 5 is a diagram illustrating the relationship between the power generation output of the fuel cell system and the circulation rate of the anode off gas in the first embodiment.
  • FIG. 6 is a flowchart executed in the control unit of the flow rate adjustment unit of the fuel cell system in the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the blower power and the flow rate and pressure of raw fuel gas in the first embodiment.
  • FIG. 8 is an explanatory diagram showing the relationship between the circulation flow rate of the anode off gas and the fuel utilization rate of the fuel cell system and the blower operating voltage in the first embodiment.
  • FIG. 9 is a time chart showing the process by the flow rate adjustment unit of the fuel cell system and the time variation of the power generation output and the blower power in Embodiment 1.
  • FIG. 10 is a diagram showing the relationship between the flow rate of raw fuel gas, the fuel concentration, and the fuel flow rate in the ejector of the fuel cell system in the first embodiment.
  • FIG. 11 is an overall schematic configuration diagram of a fuel cell system in Embodiment 2
  • FIG. 12 is an overall schematic configuration diagram of a fuel cell system in Embodiment 3
  • FIG. 13 is a time chart showing the process by the flow rate adjustment unit of the fuel cell system and the time variation of the power generation output and the blower power in Embodiment 3.
  • FIG. 14 is an overall schematic configuration diagram of a fuel cell system in Embodiment 4
  • FIG. 15 is an overall schematic configuration diagram of a fuel cell system in Embodiment 5
  • FIG. 16 is a flowchart executed in the control unit of the flow rate adjustment unit of the fuel cell system in Embodiment 5
  • FIG. 17 is an overall schematic configuration diagram of a fuel cell system according to Embodiment 6
  • FIG. 18 is a flowchart executed in the control unit of the flow rate adjustment unit of the fuel cell system according to the sixth embodiment.
  • the fuel cell system 1 of the present embodiment includes a fuel cell main body 2 including an anode 21 and a cathode 22, a reformer 3 that generates fuel gas, and a gas supply channel to the reformer 3. 11, a gas discharge passage 12 through which the anode off-gas flows, a circulation passage 4, an ejector 5, and a flow rate adjustment unit 6.
  • the circulation channel 4 connects the gas discharge channel 12 and the gas supply channel 11, and the ejector 5 sucks the anode off-gas from the circulation channel 4 and circulates it to the gas supply channel 11.
  • the fuel cell system 1 is applied to, for example, a power generation system in a fuel cell vehicle or the like, and supplies power to a load such as a motor or a vehicle auxiliary machine that drives the vehicle.
  • the fuel cell main body 2 has an anode 21 and a cathode 22, and generates power by an electrochemical reaction between a fuel gas supplied to the anode 21 and an oxidant gas supplied to the cathode 22.
  • the fuel cell body 2 is, for example, a solid oxide fuel cell (that is, SOFC), and may be configured as a known cell stack in which a plurality of single cells each having an anode 21 and a cathode 22 disposed on both sides of an electrolyte are stacked. it can. Illustration and description of the detailed configuration of the cell stack are omitted.
  • the reformer 3 reforms the raw fuel gas to generate fuel gas.
  • a gas supply flow path 11 through which raw fuel gas flows is connected to the upstream side of the reformer 3, and raw fuel gas containing fuel and water (for example, water vapor) is supplied.
  • the reformer 3 reacts the raw fuel gas with the reforming catalyst to generate a fuel gas containing hydrogen.
  • the generated fuel gas is supplied to the anode 21 of the fuel cell main body 2 from the fuel gas flow path 16 connected to the downstream side of the reformer 3.
  • An oxidant gas flow path 23 for supplying an oxidant gas (for example, air) to the cathode 22 is connected to the upstream side of the cathode 22 of the fuel cell main body 2.
  • the oxidant gas is supplied from the oxidant gas supply source 24 through the oxidant gas flow path 23 to the cathode 22 and causes a power generation reaction together with the fuel gas supplied from the fuel gas flow path 16 to the anode 21.
  • the electric power generated by the fuel cell main body 2 is taken out of the system through a power line (not shown) and used.
  • a gas discharge passage 12 through which the anode off-gas discharged from the anode 21 flows is connected to the downstream side of the anode 21 of the fuel cell main body 2.
  • a combustor 31 is connected downstream of the gas discharge passage 12 to burn the remaining fuel gas contained in the anode off-gas flowing into the combustor 31.
  • Combustion heat generated in the combustor 31 is used for heating the reformer 3 through a path (not shown), or is introduced into the heat exchanger 25 provided in the oxidant gas flow path 23 to be heat with the oxidant. Used for exchange.
  • One end of the circulation channel 4 is connected to the middle of the gas discharge channel 12, and a part of the anode off gas flows in.
  • the other end of the circulation channel 4 is connected to a gas supply channel 11 via an ejector 5.
  • the upstream end of the gas supply flow path 11 is connected to the ejector 5, and the raw fuel gas supply source 10 as the supply source arranged on the upstream side of the ejector 5 is passed through the ejector 5 or not.
  • the raw fuel gas is supplied to the gas supply passage 11.
  • the ejector 5 is configured such that the raw fuel gas passing through the ejector forms a driving flow, sucks the anode off gas from the circulation channel 4, and circulates it to the gas supply channel 11. .
  • the driving gas that forms the driving flow through the ejector 5 includes at least a part of the raw fuel gas supplied from the raw fuel gas supply source 10.
  • the flow rate of the driving gas can be adjusted by the flow rate adjusting unit 6, and is controlled to an optimal flow rate based on the information of each part of the system taken into the control unit 61.
  • the flow rate adjusting unit 6 connects the driving flow path 13 that connects the raw fuel gas supply source 10 and the ejector 5, and connects the driving flow path 13 and the gas supply flow path 11.
  • a flow rate adjusting valve 15 that adjusts the flow rate of the detour flow that flows through the detour channel 14.
  • the flow rate adjusting valve 15 is, for example, an electric three-way valve having a flow rate adjusting function.
  • An electric blower 7 is provided between the raw fuel gas supply source 10 and the ejector 5.
  • the raw fuel gas supply source 10 supplies a raw fuel gas containing fuel and water to the drive channel 13 using the blower 7.
  • the bypass channel 14 is a branch channel that branches from the drive channel 13 and is connected to the gas supply channel 11, and supplies the raw fuel gas to the gas supply channel 11 without going through the ejector 5.
  • the flow rate adjusting valve 15 is provided at a branch portion from the drive flow path 13 to the bypass flow path 14, and the drive is controlled by the control section 61.
  • the control unit 61 changes the flow rate of the bypass gas that branches to the bypass flow path 14 to form the bypass flow by changing the valve opening of the flow rate adjustment valve 15 and the flow rate of the drive gas that passes through the ejector 5. To change.
  • Various information such as required power from a load (not shown), power generation output of the fuel cell main body 2 and power supplied to the blower 7 is input to the control unit 61, and the flow rate adjusting valve 15 is based on the information. By controlling the valve opening degree, it is possible to adjust the bypass gas and the driving gas to have desired flow rates.
  • the ejector 5 includes a nozzle part 51, a suction part 52, a discharge part 53, and a case 54 in which these parts are accommodated.
  • the case 54 has a substantially cylindrical shape, and the nozzle portion 51 is arranged in a double cylinder shape inside thereof.
  • the nozzle portion 51 has an upstream end protruding from the case 54 serving as an inlet 511 communicating with the driving flow path 13 (see FIG. 1), and a portion located inside the case 54 is formed in a tapered shape so that an outlet at the downstream end is formed.
  • a throttle channel that decreases in diameter toward the portion 512 is formed.
  • the driving gas introduced into the nozzle portion 51 becomes a driving flow whose flow velocity increases toward the downstream end of the nozzle portion 51, and is ejected to the gas supply channel 11 communicating with the outlet portion 512.
  • the suction part 52 is formed in an annular space formed between the inner peripheral surface of the case 54 and the inner peripheral surface of the nozzle part 51 with an inlet 521 from the circulation channel 4 being opened.
  • the end portion on the inlet portion 511 side of the nozzle portion 51 is closed, and an annular outlet portion 522 is formed outside the outlet portion 512 of the nozzle portion 51.
  • An end portion of the outlet portion 522 of the suction portion 52 is formed in a tapered shape that is reduced in diameter toward the outlet portion 512.
  • the discharge part 53 is configured to include an outlet part 512 of the nozzle part 51 and an outlet part 522 of the suction part 52, and a mixed flow in which the driving flow and the suction flow are mixed at the joining part of the outlet parts 512 and 522. Is discharged into the fuel gas supply path 11.
  • the flow rate of the anode off-gas sucked from the circulation flow path 4 to the suction part 52 (hereinafter referred to as a circulation flow rate as appropriate) varies depending on the flow rate of the drive flow (hereinafter referred to as the drive flow rate as appropriate).
  • the circulation flow rate also increases (that is, the increase in the drive flow rate ⁇ the increase in the circulation flow rate). Therefore, by changing the valve opening degree of the flow rate adjusting valve 15 to increase or decrease the drive flow rate.
  • the circulation flow rate can be increased or decreased.
  • the driving gas that forms the driving flow is the raw fuel gas supplied from the raw fuel gas supply source 10 and includes fuel and water (that is, H 2 O).
  • the fuel is, for example, city gas containing hydrocarbon fuel such as CH 4 (ie, CnHm).
  • the raw fuel gas discharged to the fuel gas supply path 11 is steam reformed in the reformer 3 to generate fuel gas.
  • the reaction in the reformer 3 is shown below (ie, Formula 1: steam reforming reaction; Formula 2: shift reaction).
  • Formula 1 CnHm + nH 2 O ⁇ nCO + (m / 2 + n) H 2
  • Formula 2 CO + H 2 O ⁇ CO 2 + H 2
  • a fuel gas containing hydrogen (ie, H 2 ), carbon dioxide (ie, CO 2 ), and water (ie, H 2 O) is supplied from the reformer 3 to the fuel cell body 2.
  • H 2 and CO are consumed by power generation.
  • the anode off-gas containing the remaining H 2 , CO, and H 2 O that has not been consumed is discharged.
  • the gas composition supplied to the reformer 3 changes according to the circulation flow rate.
  • the anode off-gas containing residual fuel can be sucked from the circulation flow path 4 and circulated to the gas supply flow path 11 for reuse.
  • the driving gas passing through the ejector 5 from the driving flow path 13 is set to a desired flow rate, and the remainder is bypassed as a bypass gas. It can be branched to the path 14. Accordingly, it is possible to form a desired drive flow and increase or decrease the circulation flow rate from the circulation flow path 4. Accordingly, the power of the blower 7 for sending drive gas that increases or decreases the circulation flow rate to the ejector 5. Can be increased or decreased.
  • the circulation flow rate can be adjusted to be optimal, and the power generation efficiency can be reduced by preventing the power of the blower 7 from becoming larger than necessary. It can be kept relatively high.
  • the problem in the conventional system will be described with reference to FIG.
  • the fuel required for power generation increases and the power generation output Q increases (that is, see the left figure in FIG. 4).
  • the load is low, the fuel required for power generation decreases and the power generation output Q also decreases (that is, FIG. 4 right figure).
  • the drive power W of the blower 7 for supplying the raw fuel gas to the ejector 5 (hereinafter referred to as the blower power W as appropriate) is as follows. It remains relatively large even at low loads. This is because the amount of water supplied to the fuel is relatively large and the total amount of raw fuel gas is kept relatively large.
  • the ratio of the blower power W to the power generation output Q increases, and the power that can be supplied to the user equipment outside the system excluding the blower power W from the power generation output Q (hereinafter referred to as supply power: Q ⁇ Since W) becomes smaller, the power generation efficiency (ie, QW / fuel) is lowered.
  • the drive power W of the blower 7 can be adjusted by adjusting the circulation rate of the anode off gas. Therefore, for example, when the power generation output is small, the circulation rate is reduced, and the raw fuel gas is diverted to the detour channel 14 to reduce the driving gas. As a result, the amount of pressure increase in the blower 7 can be reduced and standby power can be reduced, so that the blower power W with respect to the power generation output can be reduced, and the reduction in power generation efficiency can be suppressed. On the other hand, when the power generation output is large, the power generation efficiency can be further improved by increasing the circulation rate and supplying the raw fuel gas to the drive channel 13 to increase the drive gas.
  • the drive of the blower 7 can be adjusted by the flow rate adjusting unit 6 so that the blower power W does not become larger than necessary with respect to the power generation output.
  • the increase amount ⁇ Q of the power generation output Q as the power generation output change amount (hereinafter referred to as power generation output increase amount ⁇ Q) is the change amount ⁇ W of the blower power W as the blower power change amount (hereinafter referred to as the blower power increase amount ⁇ W).
  • the raw fuel gas is supplied to the drive flow path 13 to increase the drive gas within a larger range (that is, ⁇ Q> ⁇ W). Thereby, a circulation rate can be enlarged and electric power generation efficiency can be improved.
  • step S1 a blower power increase amount ⁇ W that is a difference between the previous value and the current value of the blower power W is calculated.
  • the blower power increase amount ⁇ W takes a positive value when it is in the increasing direction.
  • the blower power W is generally correlated with the flow rate and pressure of the raw fuel gas passing through the blower 7, and the blower power W increases as the flow rate or pressure increases. Therefore, a map corresponding to the blower 7 to be used is stored in the control unit 61 in advance, and the current value of the blower power W is detected by comparing the flow rate and pressure of the raw fuel gas and comparing the previous value.
  • the blower power increase amount ⁇ W can be calculated by using this.
  • step S2 a power generation output increase amount ⁇ Q that is a difference between the previous value and the current value of the power generation output Q is calculated.
  • the power generation output Q is generally represented by the following formula 3.
  • Q V ⁇ I
  • V operating voltage
  • I current
  • V is a parameter that varies depending on the temperature of the cell stack, the amount of fuel flowing through the cell stack, the composition, and the sweep current I. Become.
  • the relationship between the circulation flow rate or fuel utilization rate and the power generation output Q can be stored in advance in a map or the like, and the power generation output increase amount ⁇ Q can be calculated based on the increase amount of the circulation flow rate or fuel utilization rate. .
  • correction or the like can be performed with reference to the map for the various parameters described above that affect the operating voltage V.
  • the cell stack temperature can be measured with a thermocouple.
  • the amount and composition of fuel flowing through the cell stack can be mapped from the input fuel, the circulating flow rate, the amount of water, and the reforming rate ( ⁇ reformer temperature).
  • a flow meter for measuring the circulation flow rate can be arranged in the circulation channel 4.
  • a plurality of pressure gauges are arranged in the circulation channel 4.
  • a method of calculating based on the pressure drop between any two points of the circulation flow path 4 can also be adopted.
  • the circulation flow rate of the circulation channel 4 can be calculated based on the gas composition of the circulation channel 4.
  • the reformer 3 is supplied with raw fuel gas containing, for example, CH 4 as a fuel.
  • the gas type in Equations 1 and 2 is increased. Of these, the fact that the ratio of CO, CO 2 and CH 4 changes may be used.
  • step S3 it is determined whether the power generation output increase amount ⁇ Q is larger than the blower power increase amount ⁇ W (that is, ⁇ Q> ⁇ W?). If a positive determination is made in step S3, the process proceeds to step S4. If a negative determination is made in step S3, the process proceeds to step S5.
  • step S4 the valve opening degree of the flow rate adjusting valve 15 is changed so that the circulating flow rate increases. That is, the opening of the driving flow path 13 is increased to increase the amount of driving gas, while the opening of the bypass flow path 14 is decreased to decrease the amount of bypass gas that branches.
  • valve opening may be changed so that the change in the flow rate becomes a constant amount, but the degree of change in the flow rate ratio between the driving gas and the bypass gas is determined each time according to the difference between ⁇ Q and ⁇ W. May be. Thereby, for example, the valve opening can be changed so that the difference between ⁇ Q and ⁇ W becomes larger, which is desirable for improving the power generation efficiency.
  • step S5 the valve opening degree of the flow rate adjusting valve 15 is changed so that the detour flow rate increases. That is, the bypass gas branched by increasing the opening of the bypass channel 14 is increased, while the drive gas is decreased by decreasing the opening of the drive channel 13.
  • the passing flow rate passing through the fuel cell body 2 Decreases rapidly and the fuel concentration gradually increases.
  • the fuel flow threshold TH is set so that the power generation voltage does not fall below a predetermined lower limit value. It is preferable to set and adjust the circulation flow rate within a range that is equal to or greater than the threshold TH.
  • step S4 and step S5 when the valve opening degree of the flow rate adjustment valve 15 is changed and the increase process is executed, this process is temporarily ended. In this way, the circulation flow rate from the circulation channel 4 can be adjusted without changing the flow rates of the fuel and water supplied from the raw fuel gas supply source 10 to the gas supply channel 11.
  • the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6.
  • the flow path configuration of the flow rate adjustment unit 6 is different from that of the first embodiment, and the following description will focus on the differences.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the flow rate adjustment unit 6 includes a fuel supply source 10A and a water supply source 10B as supply sources, a drive flow path 13, a bypass flow path 14, and a flow rate adjustment valve 15, and a control unit 61 (not shown).
  • the drive flow path 13 connects the fuel supply source 10 ⁇ / b> A and the ejector 5 via the blower 7, and a water supply flow path 131 reaching the water supply source 10 ⁇ / b> B is connected downstream of the blower 7.
  • the water supply channel 131 is provided with a water pump 132 and a bypass channel 14 branched from the downstream side of the water pump 132, and is connected to the gas supply channel 11.
  • the flow rate adjusting valve 15 is provided at a branch portion between the water supply flow path 131 and the bypass flow path 14, and branches into the water flow rate supplied from the water supply flow path 131 to the drive flow path 13 and the bypass flow path 14. Adjust the ratio of the water flow rate that forms a bypass flow.
  • the water delivered from the water pump 132 may be room temperature water, or may be water vapor by exchanging heat with part of the anode off-gas, for example.
  • the water supplied from the water supply source 10B from the water supply channel 131 merges with the fuel supplied from the fuel supply source 10A to the drive channel 13 to become the raw fuel gas.
  • This raw fuel gas becomes the driving gas as it is, and a driving flow passing through the ejector 5 is formed.
  • the controller 61 changes the valve opening of the flow rate adjustment valve 15 to adjust the flow rate of water that bypasses the water supply flow path 131 to the bypass flow path 14, and the drive flow rate that passes through the ejector 5.
  • the circulation flow rate from the circulation channel 4 can be adjusted.
  • the same effect as in the first embodiment can be obtained. That is, according to the power generation output, the circulation flow rate from the circulation flow path 4 can be increased or decreased to prevent the blower power from increasing more than necessary, and efficient power generation can be performed. Further, in this embodiment, the flow rate adjustment valve 15 is arranged in the water supply flow path 131 and branched to the bypass flow path 14 upstream from joining the drive flow path 13, so that the flow rate adjustment valve 15 is made smaller. Can be reduced.
  • the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, and includes a fuel cell main body 2 including an anode 21 and a cathode 22, and reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6.
  • the flow path configuration of the flow rate adjustment unit 6 is different from that of the first embodiment, and the following description will focus on the differences.
  • the flow rate adjustment unit 6 includes a drive flow path 13 that connects the raw fuel gas supply source 10 and the ejector 5 via the blower 7, a gas introduction flow path 17, a flow rate adjustment valve 18, and a control unit 61 (not shown). .
  • One end of the gas introduction channel 17 is connected to the fuel gas channel 16 on the downstream side of the reformer 3, and the other end is connected to the drive channel 13 on the upstream side of the blower 7.
  • a flow rate adjustment valve 18 is arranged in the middle of the gas introduction flow path 17, and the flow rate of the introduced gas introduced into the drive flow path 13 can be adjusted by changing the valve opening degree.
  • the flow rate adjustment valve 18 is, for example, an electric two-way valve, and the drive is controlled by the control unit 61.
  • the raw fuel gas supplied from the raw fuel gas supply source 10 to the drive flow path 13 becomes the drive gas, and a drive flow passing through the ejector 5 is formed. Furthermore, the fuel gas from the gas introduction flow path 17 can be merged into the drive flow path 13 as the introduction gas, and the drive gas can be increased.
  • the drive flow rate can be increased or decreased by increasing or decreasing the flow rate of the bypass gas that branches from the raw fuel gas. However, as in the present embodiment, the flow rate of the introduction gas that merges with the raw fuel gas is changed. The drive flow rate can also be increased or decreased by increasing or decreasing it.
  • the flow rate adjusting valve 18 can be driven by the controller 61 in the same manner as shown in FIG.
  • the opening degree of the flow rate adjusting valve 18 is adjusted in the range from fully closed to fully open, and accordingly, the passing flow rate of the flow rate adjusting valve 18 increases.
  • the opening degree of the flow rate adjustment valve 18 increases stepwise, and the drive flow rate increases.
  • the gas introduction channel 17 may be configured to be connected to the gas supply channel 11 on the upstream side of the reformer 3 instead of being connected to the fuel gas channel 16 on the downstream side of the reformer 3. .
  • the gas introduced into the gas introduction channel 17 is the raw fuel gas supplied to the gas supply channel 11 or is circulated to the raw fuel gas through the ejector 5 to the gas supply channel 11.
  • the mixed gas is the anode off gas.
  • the same effect as in the first embodiment can be obtained. That is, according to the power generation output, the circulation flow rate from the circulation flow path 4 can be increased or decreased to prevent the blower power from increasing more than necessary, and efficient power generation can be performed. Further, in this embodiment, there is no need to provide a flow path switching means for flow rate adjustment, so that the configuration of the flow rate adjustment valve 18 can be simplified.
  • Embodiment 4 which concerns on a fuel cell system is demonstrated with reference to FIG.
  • the fuel cell system 1 of the present embodiment has the same basic configuration as that of the fourth embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6.
  • the flow path configuration of the flow rate adjusting unit 6 is different from that of the fourth embodiment, and the difference will be mainly described below.
  • the flow rate adjusting unit 6 of this embodiment has a fuel supply source 10A and a water supply source 10B as supply sources.
  • the water supply source 10B is a gas downstream of the ejector 5 by a bypass channel 14.
  • the supply channel 11 is connected.
  • the detour channel 14 is provided with a water pump 132 and sends water at a predetermined flow rate from the water supply source 10 ⁇ / b> B to the gas supply channel 11.
  • the fuel supply source 10 ⁇ / b> A is connected to the drive flow path 13 through the blower 7 and the ejector 5. Further, the drive flow path 13 on the upstream side of the blower 7 and the fuel gas flow path 16 are connected by a gas introduction flow path 17 including a flow rate adjusting valve 18.
  • the flow rate adjustment valve 18 can adjust the flow rate of the fuel gas as the introduction gas introduced into the drive flow path 13 by adjusting the valve opening degree by the control unit 61 (not shown).
  • a driving flow passing through the ejector 5 is formed by the driving gas containing the fuel supplied from the fuel supply source 10A to the driving flow path 13. Furthermore, the fuel gas from the gas introduction channel 17 can be merged into the drive channel 13 as an introduction gas. As a result, the drive flow rate passing through the ejector 5 can be adjusted, and the circulation flow rate of the anode off gas sucked from the circulation flow path 4 can be adjusted.
  • the mixed gas of the drive gas and the anode off gas discharged from the ejector 5 is further mixed with water supplied from the water supply source 10 ⁇ / b> B via the bypass channel 14, and then the reformer. 3 is supplied.
  • the circulation flow rate can be adjusted without changing the flow rates of the fuel and water as the raw fuel gas, and the above embodiment The same effect as 4 can be obtained. That is, according to the power generation output, the circulation flow rate from the circulation flow path 4 can be increased or decreased to prevent the blower power from increasing more than necessary, and efficient power generation can be performed. In addition, since it is not necessary to provide flow path switching means for flow rate adjustment, the configuration of the flow rate adjustment valve 18 can be simplified.
  • the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6.
  • the flow rate adjusting unit 6 includes a drive flow path 13, a bypass flow path 14 (not shown), and a flow rate adjustment valve 15, and is configured to be able to circulate anode off gas from the circulation flow path 4 using the ejector 5. Further, the circulation flow rate measuring means 41 is provided in the circulation flow path 4, and the control unit 61 calculates the calculation result of the blower power increase amount ⁇ W and the power generation output increase amount ⁇ Q, and further determines the circulation flow rate by the circulation flow rate measurement means 41. The circulating flow rate is adjusted based on the measurement result.
  • the circulation flow rate measuring means 41 can be a flow meter for measuring the circulation flow rate in the circulation flow path 4 as described above. In that case, it is desirable to arrange a flow meter in consideration of heat resistance. Further, instead of directly measuring the circulation flow rate, a plurality of pressure gauges are arranged in the circulation flow path 4 to calculate based on the pressure drop between any two points of the circulation flow path 4, or the circulation flow path 4 The circulating flow rate measuring means 41 can also be configured so that the circulating flow rate of is calculated based on the gas composition of the circulating flow path 4.
  • step S11 the blower power increase amount ⁇ W, which is the difference between the previous value and the current value of the blower power W, is calculated. Then, in step S12, the previous value and the current value of the power generation output Q are calculated. The power generation output increase amount ⁇ Q, which is the difference between the two, is calculated.
  • step S14 the valve opening degree of the flow rate adjusting valve 15 is changed so that the circulating flow rate increases. That is, the opening of the driving flow path 13 is increased to increase the amount of driving gas, while the opening of the bypass flow path 14 is decreased to decrease the amount of bypass gas that branches.
  • step S15 the valve opening degree of the flow rate adjusting valve 15 is changed so that the detour flow rate increases. That is, the bypass gas branched by increasing the opening of the bypass channel 14 is increased, while the drive gas is decreased by decreasing the opening of the drive channel 13.
  • Steps S11 to S15 are the same as steps S1 to S5 in FIG. 6 described above, and details thereof are omitted.
  • step S14 when the valve opening degree of the flow rate adjustment valve 15 is changed and the increase process is executed, this process is temporarily terminated.
  • step S16 the process returns to step S14, and the valve opening degree of the flow rate adjusting valve 15 is changed so that the circulating flow rate increases. As a result, the circulation flow rate> 0, so that this process is temporarily terminated.
  • the pressure detection means 62 can be, for example, a pressure gauge disposed in the drive flow path 13. As the flow rate of the drive gas introduced from the drive flow path 13 into the ejector 5 increases, the load applied to the blower 7 increases. Therefore, in order to prevent the blower 7 from being damaged, it is possible to detect the pressure of the driving gas passing through the nozzle portion 51 of the ejector 5 as the blower pressure and adjust the flow rate so that the detection result does not exceed a predetermined value. desirable.
  • step S24 it is determined whether or not the blower pressure is less than the pressure threshold (that is, blower pressure ⁇ pressure threshold?). If an affirmative determination is made in step S24, it is determined that the blower pressure is within the allowable range, the process proceeds to step S25, and the valve opening degree of the flow rate adjustment valve 15 is changed so that the circulation flow rate increases. That is, the opening of the driving flow path 13 is increased to increase the amount of driving gas, while the opening of the bypass flow path 14 is decreased to decrease the amount of bypass gas that branches.
  • the pressure threshold that is, blower pressure ⁇ pressure threshold?

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system (1), provided with: a fuel cell body (2), which generates power by means of a reaction between an oxidant gas fed to a cathode (22) and a fuel gas fed to an anode (21); a reformer (3), which reforms a raw fuel gas and generates the fuel gas; a gas feeding channel (11) for channeling the raw fuel gas fed to the reformer (3); a circulation channel (4) for connecting the gas feeding channel (11) and a gas discharge channel (12) channeling an anode off-gas; an ejector (5) for suctioning the anode off-gas from the circulation channel (4) using the raw fuel gas as a drive flow, and causing the anode off-gas to circulate in the gas feeding channel (11); and a flow rate adjustment unit (6) for adjusting the flow rate of a drive gas, which includes at least some of the raw fuel gas fed from a feeding source (10) of the raw fuel gas to the gas feeding channel (11), and which passes through the ejector (5) and forms a drive flow.

Description

燃料電池システムFuel cell system 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年3月13日に出願された特許出願番号2018-045914号に基づくもので、ここにその記載内容を援用する。 This application is based on Patent Application No. 2018-045914 filed on March 13, 2018, the contents of which are incorporated herein by reference.
 本開示は、燃料電池システムに関する。 This disclosure relates to a fuel cell system.
 燃料電池システムは、アノードに供給される燃料ガスとカソードに供給される酸化剤ガスとの電気化学反応により発電する燃料電池本体と、炭化水素系燃料を含む原燃料ガスを水蒸気改質して水素を含む燃料ガスを生成する改質器を備える。燃料電池本体から排出されるアノードオフガスには未利用の水素燃料が含まれることから、これを再利用するために、例えば、エジェクタを用いて循環させる燃料リサイクル技術が知られている。 The fuel cell system includes a fuel cell body that generates electricity by an electrochemical reaction between a fuel gas supplied to an anode and an oxidant gas supplied to a cathode, and steam reforming the raw fuel gas containing hydrocarbon fuel to produce hydrogen. A reformer that generates a fuel gas containing Since the anode off gas discharged from the fuel cell main body contains unused hydrogen fuel, in order to reuse this, for example, a fuel recycling technique for circulating using an ejector is known.
 特許文献1には、固体酸化物型燃料電池(すなわち、solid oxide fuel cell;以下、SOFC)を用いた燃料電池システムにおいて、改質器からSOFCへの燃料ガス供給ラインにエジェクタを設けて、改質器から出る燃料ガスによってエジェクタを駆動し、エジェクタの吸引部からアノードオフガスをSOFCへ再循環させるシステムが提案されている。アノードオフガスは、例えば、冷却器や凝縮器が設けられた循環ラインを経て、エジェクタに吸引され、分離された水は加熱されて改質器へ供給される。 In Patent Document 1, in a fuel cell system using a solid oxide fuel cell (ie, SOFC), an ejector is provided in a fuel gas supply line from a reformer to an SOFC. There has been proposed a system in which an ejector is driven by fuel gas emitted from a mass device, and anode off-gas is recirculated from the suction portion of the ejector to the SOFC. The anode off gas is sucked into the ejector via a circulation line provided with a cooler and a condenser, for example, and the separated water is heated and supplied to the reformer.
特開2015-43263号公報JP 2015-43263 A
 特許文献1の燃料電池システムでは、原燃料ガスよりも総物質量が増える改質後の燃料ガスを駆動流とすることで、駆動流の体積流量を大きくして流速を高め、より多くのアノードオフガスを吸引可能として、燃料循環率を高めている。 In the fuel cell system of Patent Document 1, the reformed fuel gas whose total material amount is larger than that of the raw fuel gas is used as the driving flow, so that the volume flow rate of the driving flow is increased to increase the flow velocity, and more anodes are provided. The off-gas can be sucked to increase the fuel circulation rate.
 このシステムは、総物質量が増した改質ガスの全量が、常にエジェクタを通過する構成であるために、例えば、要求される発電出力が小さい低負荷時においても、高い循環率でアノードオフガスを吸引することになる。その場合、エジェクタに原燃料ガスを送り込むために駆動されるブロアの電力が、発電出力に対して相対的に大きくなり、発電効率、すなわち、外部へ供給可能な電力の割合が、むしろ低下するおそれがある。 This system is configured so that the total amount of reformed gas with an increased total amount of material always passes through the ejector. Therefore, for example, even when the required power generation output is low and the load is low, the anode off-gas is supplied at a high circulation rate. Will suck. In that case, the power of the blower that is driven to feed the raw fuel gas into the ejector becomes relatively large with respect to the power generation output, and the power generation efficiency, that is, the ratio of the power that can be supplied to the outside may rather decrease. There is.
 本開示の目的は、エジェクタを通過する駆動流によって吸引されるアノードオフガスの循環率を調整可能とし、発電出力等に応じて駆動流の形成に必要な電力を低減可能として、より効率よい発電を行うことができる燃料電池システムを提供しようとするものである。 The purpose of the present disclosure is to make it possible to adjust the circulation rate of the anode off-gas sucked by the drive flow passing through the ejector, and to reduce the electric power necessary for forming the drive flow according to the power generation output, etc. It is an object of the present invention to provide a fuel cell system that can be used.
 本開示の一態様は、
 アノードに供給される燃料ガスと、カソードに供給される酸化剤ガスとの電気化学反応により発電する燃料電池本体と、
 原燃料ガスを改質して上記燃料ガスを生成する改質器と、
 上記改質器に供給される上記原燃料ガスが流れるガス供給流路と、
 上記アノードから排出されるアノードオフガスが流れるガス排出流路と、
 上記ガス排出流路と上記ガス供給流路とを接続する循環流路と、
 上記原燃料ガスを駆動流として上記循環流路から上記アノードオフガスを吸引し、上記ガス供給流路に循環させるエジェクタと、
 上記原燃料ガスの供給源から上記ガス供給流路へ供給される上記原燃料ガスの少なくとも一部を含み上記エジェクタを通過して上記駆動流を形成する駆動ガスの流量を調整する流量調整部と、を備えている、燃料電池システムにある。
One aspect of the present disclosure is:
A fuel cell body that generates electricity by an electrochemical reaction between a fuel gas supplied to the anode and an oxidant gas supplied to the cathode;
A reformer that reforms the raw fuel gas to produce the fuel gas;
A gas supply passage through which the raw fuel gas supplied to the reformer flows;
A gas discharge passage through which anode off-gas discharged from the anode flows;
A circulation flow path connecting the gas discharge flow path and the gas supply flow path;
An ejector that draws the anode off-gas from the circulation flow path using the raw fuel gas as a driving flow and circulates the gas to the gas supply flow path;
A flow rate adjusting unit that adjusts the flow rate of the driving gas that forms at least a part of the raw fuel gas supplied from the raw fuel gas supply source to the gas supply flow path and passes through the ejector to form the driving flow; The fuel cell system includes:
 上記構成において、流量調整部は、例えば、発電出力が小さいときには、原燃料ガスのうちエジェクタへ供給される駆動ガスの流量を小さくし、エジェクタから噴出する駆動流によって吸引されるアノードオフガスの循環流量を小さくする。これにより、駆動ガスをエジェクタへ送り込むブロア等の動力を低減して、消費電力を抑制することができる。一方、発電出力が大きいときには、流量調整部により、エジェクタにおける駆動ガスの流量を大きくして、アノードオフガスの循環流量を大きくし、燃料の再利用率を高めることができる。 In the above configuration, for example, when the power generation output is small, the flow rate adjusting unit reduces the flow rate of the drive gas supplied to the ejector out of the raw fuel gas, and the circulation flow rate of the anode off gas sucked by the drive flow ejected from the ejector Make it smaller. Thereby, power, such as a blower which sends drive gas to an ejector, can be reduced and power consumption can be suppressed. On the other hand, when the power generation output is large, the flow rate adjusting unit can increase the flow rate of the driving gas in the ejector, increase the circulation flow rate of the anode off gas, and increase the fuel reuse rate.
 以上のごとく、上記態様によれば、エジェクタを通過する駆動流によって吸引されるアノードオフガスの循環率を調整可能とし、発電出力等に応じて駆動流の形成に必要な電力を低減可能として、より効率よい発電を行うことができる燃料電池システムを提供することができる。 As described above, according to the above aspect, the circulation rate of the anode off-gas sucked by the drive flow passing through the ejector can be adjusted, and the electric power necessary for forming the drive flow can be reduced according to the power generation output, etc. A fuel cell system capable of performing efficient power generation can be provided.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、燃料電池システムの全体構成を示す概略図であり、 図2は、実施形態1における、燃料電池システムの主要部構成を示す概略図であり、 図3は、実施形態1における、燃料電池システムの要部構成を示す概略図であり、 図4は、従来の燃料電池システムにおける負荷と発電効率の関係の説明図であり、 図5は、実施形態1における、燃料電池システムの発電出力とアノードオフガスの循環率の関係を示す図であり、 図6は、実施形態1における、燃料電池システムの流量調整部の制御部において実行されるフローチャート図であり、 図7は、実施形態1における、ブロア電力と原燃料ガスの流量及び圧力との関係を示す図であり、 図8は、実施形態1における、燃料電池システムのアノードオフガスの循環流量及び燃料利用率とブロア作動電圧との関係を示す説明図であり、 図9は、実施形態1における、燃料電池システムの流量調整部による処理と発電出力及びブロア電力の時間変化を示すタイムチャート図であり、 図10は、実施形態1における、燃料電池システムのエジェクタにおける原燃料ガスの通過流量と燃料濃度及び燃料流量との関係を示す図であり、 図11は、実施形態2における、燃料電池システムの全体概略構成図であり、 図12は、実施形態3における、燃料電池システムの全体概略構成図であり、 図13は、実施形態3における、燃料電池システムの流量調整部による処理と発電出力及びブロア電力の時間変化を示すタイムチャート図であり、 図14は、実施形態4における、燃料電池システムの全体概略構成図であり、 図15は、実施形態5における、燃料電池システムの全体概略構成図であり、 図16は、実施形態5における、燃料電池システムの流量調整部の制御部において実行されるフローチャート図であり、 図17は、実施形態6における、燃料電池システムの全体概略構成図であり、 図18は、実施形態6における、燃料電池システムの流量調整部の制御部において実行されるフローチャート図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic diagram showing the overall configuration of a fuel cell system in Embodiment 1. FIG. 2 is a schematic diagram illustrating the main configuration of the fuel cell system according to Embodiment 1. FIG. 3 is a schematic diagram showing the main configuration of the fuel cell system in Embodiment 1. FIG. 4 is an explanatory diagram of the relationship between load and power generation efficiency in a conventional fuel cell system, FIG. 5 is a diagram illustrating the relationship between the power generation output of the fuel cell system and the circulation rate of the anode off gas in the first embodiment. FIG. 6 is a flowchart executed in the control unit of the flow rate adjustment unit of the fuel cell system in the first embodiment. FIG. 7 is a diagram showing the relationship between the blower power and the flow rate and pressure of raw fuel gas in the first embodiment. FIG. 8 is an explanatory diagram showing the relationship between the circulation flow rate of the anode off gas and the fuel utilization rate of the fuel cell system and the blower operating voltage in the first embodiment. FIG. 9 is a time chart showing the process by the flow rate adjustment unit of the fuel cell system and the time variation of the power generation output and the blower power in Embodiment 1. FIG. 10 is a diagram showing the relationship between the flow rate of raw fuel gas, the fuel concentration, and the fuel flow rate in the ejector of the fuel cell system in the first embodiment. FIG. 11 is an overall schematic configuration diagram of a fuel cell system in Embodiment 2, FIG. 12 is an overall schematic configuration diagram of a fuel cell system in Embodiment 3, FIG. 13 is a time chart showing the process by the flow rate adjustment unit of the fuel cell system and the time variation of the power generation output and the blower power in Embodiment 3. FIG. 14 is an overall schematic configuration diagram of a fuel cell system in Embodiment 4, FIG. 15 is an overall schematic configuration diagram of a fuel cell system in Embodiment 5, FIG. 16 is a flowchart executed in the control unit of the flow rate adjustment unit of the fuel cell system in Embodiment 5, FIG. 17 is an overall schematic configuration diagram of a fuel cell system according to Embodiment 6, FIG. 18 is a flowchart executed in the control unit of the flow rate adjustment unit of the fuel cell system according to the sixth embodiment.
(実施形態1)
 燃料電池システムに係る実施形態1について、図面を参照して説明する。
 図1に示すように、本形態の燃料電池システム1は、アノード21とカソード22を備える燃料電池本体2と、燃料ガスを生成する改質器3と、改質器3へのガス供給流路11と、アノードオフガスが流れるガス排出流路12と、循環流路4と、エジェクタ5と、流量調整部6と、を備えている。循環流路4は、ガス排出流路12とガス供給流路11とを接続し、エジェクタ5は、循環流路4からアノードオフガスを吸引してガス供給流路11に循環させる。燃料電池システム1は、例えば、燃料電池車両等に発電システムに適用されて、車両を駆動するモータや車両補機等の負荷に電力を供給する。
(Embodiment 1)
A first embodiment of the fuel cell system will be described with reference to the drawings.
As shown in FIG. 1, the fuel cell system 1 of the present embodiment includes a fuel cell main body 2 including an anode 21 and a cathode 22, a reformer 3 that generates fuel gas, and a gas supply channel to the reformer 3. 11, a gas discharge passage 12 through which the anode off-gas flows, a circulation passage 4, an ejector 5, and a flow rate adjustment unit 6. The circulation channel 4 connects the gas discharge channel 12 and the gas supply channel 11, and the ejector 5 sucks the anode off-gas from the circulation channel 4 and circulates it to the gas supply channel 11. The fuel cell system 1 is applied to, for example, a power generation system in a fuel cell vehicle or the like, and supplies power to a load such as a motor or a vehicle auxiliary machine that drives the vehicle.
 燃料電池本体2は、アノード21とカソード22とを有し、アノード21に供給される燃料ガスと、カソード22に供給される酸化剤ガスとの電気化学反応により発電する。燃料電池本体2は、例えば、固体酸化物型燃料電池(すなわち、SOFC)であり、電解質の両側にアノード21とカソード22が配置された単セルを複数積層した公知のセルスタックとして構成することができる。セルスタックの詳細構成の図示及び説明は省略する。 The fuel cell main body 2 has an anode 21 and a cathode 22, and generates power by an electrochemical reaction between a fuel gas supplied to the anode 21 and an oxidant gas supplied to the cathode 22. The fuel cell body 2 is, for example, a solid oxide fuel cell (that is, SOFC), and may be configured as a known cell stack in which a plurality of single cells each having an anode 21 and a cathode 22 disposed on both sides of an electrolyte are stacked. it can. Illustration and description of the detailed configuration of the cell stack are omitted.
 改質器3は、原燃料ガスを改質して燃料ガスを生成する。改質器3の上流側には、原燃料ガスが流れるガス供給流路11が接続され、燃料及び水(例えば、水蒸気)を含む原燃料ガスが供給される。改質器3は、原燃料ガスを改質触媒にて反応させて、水素を含む燃料ガスを生成する。生成した燃料ガスは、改質器3の下流側に接続される燃料ガス流路16から、燃料電池本体2のアノード21に供給される。 The reformer 3 reforms the raw fuel gas to generate fuel gas. A gas supply flow path 11 through which raw fuel gas flows is connected to the upstream side of the reformer 3, and raw fuel gas containing fuel and water (for example, water vapor) is supplied. The reformer 3 reacts the raw fuel gas with the reforming catalyst to generate a fuel gas containing hydrogen. The generated fuel gas is supplied to the anode 21 of the fuel cell main body 2 from the fuel gas flow path 16 connected to the downstream side of the reformer 3.
 燃料電池本体2のカソード22の上流側には、酸化剤ガス(例えば、空気)をカソード22に供給するための酸化剤ガス流路23が接続される。酸化剤ガスは、酸化剤ガス供給源24から酸化剤ガス流路23を経てカソード22に供給され、燃料ガス流路16からアノード21に供給される燃料ガスと共に発電反応を生起する。燃料電池本体2にて発電された電力は、図示しない電力線によってシステム外部に取り出されて利用される。 An oxidant gas flow path 23 for supplying an oxidant gas (for example, air) to the cathode 22 is connected to the upstream side of the cathode 22 of the fuel cell main body 2. The oxidant gas is supplied from the oxidant gas supply source 24 through the oxidant gas flow path 23 to the cathode 22 and causes a power generation reaction together with the fuel gas supplied from the fuel gas flow path 16 to the anode 21. The electric power generated by the fuel cell main body 2 is taken out of the system through a power line (not shown) and used.
 燃料電池本体2のアノード21の下流側には、アノード21から排出されるアノードオフガスが流れるガス排出流路12が接続される。ガス排出流路12の下流には、燃焼器31が接続されて、燃焼器31に流入するアノードオフガスに含まれる残余の燃料ガスを燃焼させる。燃焼器31にて発生する燃焼熱は、図示しない経路により改質器3の加熱に供され、又は、酸化剤ガス流路23に設けられる熱交換器25に導入されて、酸化剤との熱交換に利用される。ガス排出流路12の途中には、循環流路4の一端が接続されて、アノードオフガスの一部が流入する。循環流路4の他端はエジェクタ5を介してガス供給流路11に接続されている。 A gas discharge passage 12 through which the anode off-gas discharged from the anode 21 flows is connected to the downstream side of the anode 21 of the fuel cell main body 2. A combustor 31 is connected downstream of the gas discharge passage 12 to burn the remaining fuel gas contained in the anode off-gas flowing into the combustor 31. Combustion heat generated in the combustor 31 is used for heating the reformer 3 through a path (not shown), or is introduced into the heat exchanger 25 provided in the oxidant gas flow path 23 to be heat with the oxidant. Used for exchange. One end of the circulation channel 4 is connected to the middle of the gas discharge channel 12, and a part of the anode off gas flows in. The other end of the circulation channel 4 is connected to a gas supply channel 11 via an ejector 5.
 エジェクタ5には、ガス供給流路11の上流端が接続されており、エジェクタ5の上流側に配置される供給源としての原燃料ガス供給源10から、エジェクタ5を経由して又は経由せずに、ガス供給流路11に原燃料ガスが供給されるようになっている。エジェクタ5は、詳細を後述するように、エジェクタを通過する原燃料ガスが駆動流を形成して、循環流路4からアノードオフガスを吸引し、ガス供給流路11に循環するように構成される。 The upstream end of the gas supply flow path 11 is connected to the ejector 5, and the raw fuel gas supply source 10 as the supply source arranged on the upstream side of the ejector 5 is passed through the ejector 5 or not. In addition, the raw fuel gas is supplied to the gas supply passage 11. As will be described in detail later, the ejector 5 is configured such that the raw fuel gas passing through the ejector forms a driving flow, sucks the anode off gas from the circulation channel 4, and circulates it to the gas supply channel 11. .
 エジェクタ5を通過して駆動流を形成する駆動ガスは、原燃料ガス供給源10から供給される原燃料ガスの少なくとも一部を含む。駆動ガスの流量は、流量調整部6にて調整することができ、制御部61に取り込まれるシステム各部の情報に基づいて、最適な流量に制御される。 The driving gas that forms the driving flow through the ejector 5 includes at least a part of the raw fuel gas supplied from the raw fuel gas supply source 10. The flow rate of the driving gas can be adjusted by the flow rate adjusting unit 6, and is controlled to an optimal flow rate based on the information of each part of the system taken into the control unit 61.
 具体的には、図2に示すように、流量調整部6は、原燃料ガス供給源10とエジェクタ5とを接続する駆動流路13と、駆動流路13とガス供給流路11とを接続する迂回流路14と、迂回流路14を流れる迂回流の流量を調整する流量調整弁15と、を備えて構成することができる。流量調整弁15は、例えば、流量調整機能を有する電動式の三方弁である。 Specifically, as shown in FIG. 2, the flow rate adjusting unit 6 connects the driving flow path 13 that connects the raw fuel gas supply source 10 and the ejector 5, and connects the driving flow path 13 and the gas supply flow path 11. And a flow rate adjusting valve 15 that adjusts the flow rate of the detour flow that flows through the detour channel 14. The flow rate adjusting valve 15 is, for example, an electric three-way valve having a flow rate adjusting function.
 原燃料ガス供給源10とエジェクタ5との間には、電動式のブロア7が設けられる。原燃料ガス供給源10は、燃料及び水を含む原燃料ガスを、ブロア7を用いて駆動流路13に供給する。迂回流路14は、駆動流路13から分岐してガス供給流路11に接続される分岐流路であり、エジェクタ5を経由せずにガス供給流路11に原燃料ガスを供給する。流量調整弁15は、駆動流路13から迂回流路14への分岐部に設けられ、制御部61によって駆動が制御される。 An electric blower 7 is provided between the raw fuel gas supply source 10 and the ejector 5. The raw fuel gas supply source 10 supplies a raw fuel gas containing fuel and water to the drive channel 13 using the blower 7. The bypass channel 14 is a branch channel that branches from the drive channel 13 and is connected to the gas supply channel 11, and supplies the raw fuel gas to the gas supply channel 11 without going through the ejector 5. The flow rate adjusting valve 15 is provided at a branch portion from the drive flow path 13 to the bypass flow path 14, and the drive is controlled by the control section 61.
 制御部61は、流量調整弁15の弁開度を変更することにより、迂回流路14へ分岐して迂回流を形成する迂回ガスの流量と、エジェクタ5を通過する駆動ガスの流量との比率を変更する。制御部61には、図示しない負荷からの要求電力や、それに基づく燃料電池本体2の発電出力、ブロア7への供給電力といった各種情報が入力されており、それら情報に基づいて、流量調整弁15の弁開度を制御することにより、迂回ガス及び駆動ガスが所望の流量となるように調整することができる。 The control unit 61 changes the flow rate of the bypass gas that branches to the bypass flow path 14 to form the bypass flow by changing the valve opening of the flow rate adjustment valve 15 and the flow rate of the drive gas that passes through the ejector 5. To change. Various information such as required power from a load (not shown), power generation output of the fuel cell main body 2 and power supplied to the blower 7 is input to the control unit 61, and the flow rate adjusting valve 15 is based on the information. By controlling the valve opening degree, it is possible to adjust the bypass gas and the driving gas to have desired flow rates.
 図3に示すように、エジェクタ5は、ノズル部51と、吸引部52と、吐出部53と、これら各部が収容されるケース54と、を有する。ケース54は概略円筒状で、その内側にノズル部51が二重筒状に配置されている。ノズル部51は、ケース54から突出する上流端部が駆動流路13(図1参照)に連通する入口部511となり、ケース54内部に位置する部分がテーパ状に形成されて、下流端の出口部512へ向けて縮径する絞り流路を形成している。これにより、ノズル部51に導入される駆動ガスは、ノズル部51の下流端へ向けて流速が高まる駆動流となって、出口部512に連通するガス供給流路11へ噴出する。 As shown in FIG. 3, the ejector 5 includes a nozzle part 51, a suction part 52, a discharge part 53, and a case 54 in which these parts are accommodated. The case 54 has a substantially cylindrical shape, and the nozzle portion 51 is arranged in a double cylinder shape inside thereof. The nozzle portion 51 has an upstream end protruding from the case 54 serving as an inlet 511 communicating with the driving flow path 13 (see FIG. 1), and a portion located inside the case 54 is formed in a tapered shape so that an outlet at the downstream end is formed. A throttle channel that decreases in diameter toward the portion 512 is formed. As a result, the driving gas introduced into the nozzle portion 51 becomes a driving flow whose flow velocity increases toward the downstream end of the nozzle portion 51, and is ejected to the gas supply channel 11 communicating with the outlet portion 512.
 吸引部52は、ケース54の内周面とノズル部51の内周面との間に形成される環状空間に、循環流路4からの入口部521が開口して形成される。吸引部52となる環状空間は、ノズル部51の入口部511側の端部が閉鎖されており、ノズル部51の出口部512の外側に、環状の出口部522が形成される。吸引部52の出口部522の端部は、出口部512へ向けて縮径するテーパ状に形成されている。これにより、ガス供給流路11へ噴出する駆動流によって、循環流路4の入口部521からアノードオフガスが吸引され、出口部512へ向かう吸引流となる。 The suction part 52 is formed in an annular space formed between the inner peripheral surface of the case 54 and the inner peripheral surface of the nozzle part 51 with an inlet 521 from the circulation channel 4 being opened. In the annular space serving as the suction portion 52, the end portion on the inlet portion 511 side of the nozzle portion 51 is closed, and an annular outlet portion 522 is formed outside the outlet portion 512 of the nozzle portion 51. An end portion of the outlet portion 522 of the suction portion 52 is formed in a tapered shape that is reduced in diameter toward the outlet portion 512. As a result, the anode off-gas is sucked from the inlet portion 521 of the circulation flow path 4 by the driving flow ejected to the gas supply flow path 11 and becomes a suction flow toward the outlet section 512.
 吐出部53は、ノズル部51の出口部512と吸引部52の出口部522とを含んで構成され、これら出口部512、522の合流部にて、駆動流と吸引流とが混合した混合流を、燃料ガス供給路11へ吐出する。 The discharge part 53 is configured to include an outlet part 512 of the nozzle part 51 and an outlet part 522 of the suction part 52, and a mixed flow in which the driving flow and the suction flow are mixed at the joining part of the outlet parts 512 and 522. Is discharged into the fuel gas supply path 11.
 循環流路4から吸引部52に吸引されるアノードオフガスの流量(以下、適宜、循環流量と称する)は、駆動流の流量(以下、適宜、駆動流量と称する)に応じて変化する。このとき、駆動流量が増加するほど、循環流量も増加するので(すなわち、駆動流量の増量≒循環流量の増量)、流量調整弁15の弁開度を変更して、駆動流量を増減することにより、循環流量を増減することができる。 The flow rate of the anode off-gas sucked from the circulation flow path 4 to the suction part 52 (hereinafter referred to as a circulation flow rate as appropriate) varies depending on the flow rate of the drive flow (hereinafter referred to as the drive flow rate as appropriate). At this time, as the drive flow rate increases, the circulation flow rate also increases (that is, the increase in the drive flow rate≈the increase in the circulation flow rate). Therefore, by changing the valve opening degree of the flow rate adjusting valve 15 to increase or decrease the drive flow rate. The circulation flow rate can be increased or decreased.
 駆動流を形成する駆動ガスは、本形態では、原燃料ガス供給源10から供給される原燃料ガスであり、燃料と水(すなわち、H2O)を含む。燃料は、例えば、CH4等の炭化水素系燃料(すなわち、CnHm)を含む都市ガス等である。燃料ガス供給路11へ吐出された原燃料ガスは、改質器3において水蒸気改質され、燃料ガスが生成される。
 以下に、改質器3における反応を示す(すなわち、式1:水蒸気改質反応;式2:シフト反応)。
 式1:CnHm+nH2O→nCO+(m/2+n)H2
 式2:CO+H2O→CO2+H2
In this embodiment, the driving gas that forms the driving flow is the raw fuel gas supplied from the raw fuel gas supply source 10 and includes fuel and water (that is, H 2 O). The fuel is, for example, city gas containing hydrocarbon fuel such as CH 4 (ie, CnHm). The raw fuel gas discharged to the fuel gas supply path 11 is steam reformed in the reformer 3 to generate fuel gas.
The reaction in the reformer 3 is shown below (ie, Formula 1: steam reforming reaction; Formula 2: shift reaction).
Formula 1: CnHm + nH 2 O → nCO + (m / 2 + n) H 2
Formula 2: CO + H 2 O → CO 2 + H 2
 これにより、改質器3から、水素(すなわち、H2)、二酸化炭素(すなわち、CO2)、水(すなわち、H2O)を含む燃料ガスが、燃料電池本体2へ供給される。燃料電池本体2では、このうち、H2、COが発電により消費される。燃料電池本体2からは、消費されなかった残余のH2、CO、H2Oを含むアノードオフガスが排出される。
 なお、アノードオフガスが燃料ガス供給路11へ循環されると、その循環流量に応じて、改質器3に供給されるガス組成が変化する。
As a result, a fuel gas containing hydrogen (ie, H 2 ), carbon dioxide (ie, CO 2 ), and water (ie, H 2 O) is supplied from the reformer 3 to the fuel cell body 2. In the fuel cell main body 2, H 2 and CO are consumed by power generation. From the fuel cell main body 2, the anode off-gas containing the remaining H 2 , CO, and H 2 O that has not been consumed is discharged.
When the anode off gas is circulated to the fuel gas supply passage 11, the gas composition supplied to the reformer 3 changes according to the circulation flow rate.
 このように、改質器3の上流にエジェクタ5が配置されることで、循環流路4から残余燃料を含むアノードオフガスを吸引してガス供給流路11へ循環させ、再利用することができる。その際には、流量調整部6によって、改質器3へ供給される原燃料ガスのうち、駆動流路13からエジェクタ5を通過する駆動ガスを所望の流量とし、残りを迂回ガスとして迂回流路14へ分岐させることができる。したがって、所望の駆動流を形成して、循環流路4からの循環流量を増減することが可能になり、これに伴い、循環流量を増減する駆動ガスをエジェクタ5に送り込むためのブロア7の動力を増減することが可能になる。 Thus, by disposing the ejector 5 upstream of the reformer 3, the anode off-gas containing residual fuel can be sucked from the circulation flow path 4 and circulated to the gas supply flow path 11 for reuse. . At that time, of the raw fuel gas supplied to the reformer 3 by the flow rate adjusting unit 6, the driving gas passing through the ejector 5 from the driving flow path 13 is set to a desired flow rate, and the remainder is bypassed as a bypass gas. It can be branched to the path 14. Accordingly, it is possible to form a desired drive flow and increase or decrease the circulation flow rate from the circulation flow path 4. Accordingly, the power of the blower 7 for sending drive gas that increases or decreases the circulation flow rate to the ejector 5. Can be increased or decreased.
 したがって、例えば、負荷からの要求に応じて変化する発電出力に基づいて、循環流量が最適となるように調整することができ、ブロア7の動力が必要以上に大きくならないようにして、発電効率を比較的高く維持することができる。 Therefore, for example, based on the power generation output that changes according to the demand from the load, the circulation flow rate can be adjusted to be optimal, and the power generation efficiency can be reduced by preventing the power of the blower 7 from becoming larger than necessary. It can be kept relatively high.
 ここで、図4により、従来システムにおける課題について説明する。高負荷時には発電に必要な燃料が増加して発電出力Qが増加し(すなわち、図4左図参照)、一方、低負荷時には発電に必要な燃料が減少して発電出力Qも低下する(すなわち、図4右図参照)。ところが、常に原燃料ガスの全量がエジェクタ5に供給される構造であることから、原燃料ガスをエジェクタ5に供給するためのブロア7の駆動電力W(以下、適宜、ブロア電力Wと称する)は、低負荷時においても比較的大きいままとなる。これは、燃料に対して供給される水の量が相対的に多く、原燃料ガスの総量が比較的大きく保たれることによる。
 そのため、低負荷時には、発電出力Qに占めるブロア電力Wの割合が大きくなり、発電出力Qからブロア電力Wを除いたシステム外部のユーザ使用機器等に供給可能な電力(以下、供給電力:Q-W)が小さくなるために、発電効率(すなわち、Q-W/燃料)が低下することになる。
Here, the problem in the conventional system will be described with reference to FIG. When the load is high, the fuel required for power generation increases and the power generation output Q increases (that is, see the left figure in FIG. 4). On the other hand, when the load is low, the fuel required for power generation decreases and the power generation output Q also decreases (that is, FIG. 4 right figure). However, since the entire amount of the raw fuel gas is always supplied to the ejector 5, the drive power W of the blower 7 for supplying the raw fuel gas to the ejector 5 (hereinafter referred to as the blower power W as appropriate) is as follows. It remains relatively large even at low loads. This is because the amount of water supplied to the fuel is relatively large and the total amount of raw fuel gas is kept relatively large.
Therefore, when the load is low, the ratio of the blower power W to the power generation output Q increases, and the power that can be supplied to the user equipment outside the system excluding the blower power W from the power generation output Q (hereinafter referred to as supply power: Q− Since W) becomes smaller, the power generation efficiency (ie, QW / fuel) is lowered.
 これに対して、図5に示すように、本形態の流量調整部6を有する場合には、アノードオフガスの循環率を調整することで、ブロア7の駆動電力Wの調整が可能になる。したがって、例えば、発電出力が小さいときには循環率を小さくし、迂回流路14へ原燃料ガスを迂回させて駆動ガスを減少させる。これにより、ブロア7における昇圧量を小さくして、待機動力を低減することができるので、発電出力に対するブロア電力Wが低減し、発電効率の低下を抑制できる。一方、発電出力が大きいときには循環率を大きくし、原燃料ガスを駆動流路13に供給して駆動ガスを増加させることで、発電効率をより向上させることができる。 On the other hand, as shown in FIG. 5, when the flow rate adjustment unit 6 of this embodiment is provided, the drive power W of the blower 7 can be adjusted by adjusting the circulation rate of the anode off gas. Therefore, for example, when the power generation output is small, the circulation rate is reduced, and the raw fuel gas is diverted to the detour channel 14 to reduce the driving gas. As a result, the amount of pressure increase in the blower 7 can be reduced and standby power can be reduced, so that the blower power W with respect to the power generation output can be reduced, and the reduction in power generation efficiency can be suppressed. On the other hand, when the power generation output is large, the power generation efficiency can be further improved by increasing the circulation rate and supplying the raw fuel gas to the drive channel 13 to increase the drive gas.
 このようにして、発電出力に対してブロア電力Wが必要以上に大きくならないように、流量調整部6によってブロア7の駆動を調整することが可能になる。好適には、発電出力変化量としての発電出力Qの増加量ΔQ(以下、発電出力増加量ΔQ)が、ブロア電力変化量としてのブロア電力Wの変化量ΔW(以下、ブロア電力増加量ΔW)よりも大きくなる範囲で(すなわち、ΔQ>ΔW)、原燃料ガスを駆動流路13に供給して駆動ガスを増加させる。これにより、循環率を大きくして、発電効率を向上させることができる。 In this way, the drive of the blower 7 can be adjusted by the flow rate adjusting unit 6 so that the blower power W does not become larger than necessary with respect to the power generation output. Preferably, the increase amount ΔQ of the power generation output Q as the power generation output change amount (hereinafter referred to as power generation output increase amount ΔQ) is the change amount ΔW of the blower power W as the blower power change amount (hereinafter referred to as the blower power increase amount ΔW). The raw fuel gas is supplied to the drive flow path 13 to increase the drive gas within a larger range (that is, ΔQ> ΔW). Thereby, a circulation rate can be enlarged and electric power generation efficiency can be improved.
 図6に示すフローチャートを用いて、制御部61において実行される処理の一例を説明する。本処理は、例えば、所定の周期で立ち上がり、繰り返し実行される。
 本処理を開始したら、まず、ステップS1において、ブロア電力Wの前回値と今回値との差であるブロア電力増加量ΔWを算出する。ブロア電力増加量ΔWは、増加方向にあるときに正の値となる。
An example of processing executed in the control unit 61 will be described using the flowchart shown in FIG. For example, this process starts up at a predetermined cycle and is repeatedly executed.
When this process is started, first, in step S1, a blower power increase amount ΔW that is a difference between the previous value and the current value of the blower power W is calculated. The blower power increase amount ΔW takes a positive value when it is in the increasing direction.
 図7に示すように、一般に、ブロア電力Wは、ブロア7を通過する原燃料ガスの流量及び圧力と相関があり、流量又は圧力が増加するほどブロア電力Wは大きくなる。したがって、使用するブロア7に対応するマップを予め制御部61に記憶しておき、原燃料ガスの流量及び圧力を検出して比較することで、ブロア電力Wの今回値を検出し、前回値を用いてブロア電力増加量ΔWを算出することができる。 As shown in FIG. 7, the blower power W is generally correlated with the flow rate and pressure of the raw fuel gas passing through the blower 7, and the blower power W increases as the flow rate or pressure increases. Therefore, a map corresponding to the blower 7 to be used is stored in the control unit 61 in advance, and the current value of the blower power W is detected by comparing the flow rate and pressure of the raw fuel gas and comparing the previous value. The blower power increase amount ΔW can be calculated by using this.
 続いて、ステップS2において、発電出力Qの前回値と今回値との差である発電出力増加量ΔQを算出する。
 発電出力Qは、一般に、下記式3で表される。
 式3:Q=V×I
 式3中、V:作動電圧、I:電流
 ここで、電流Iは設定値であり、作動電圧Vは、セルスタックの温度、セルスタックを流れる燃料量、組成、掃引電流Iによって変化するパラメタとなる。
Subsequently, in step S2, a power generation output increase amount ΔQ that is a difference between the previous value and the current value of the power generation output Q is calculated.
The power generation output Q is generally represented by the following formula 3.
Formula 3: Q = V × I
In Equation 3, V: operating voltage, I: current Here, the current I is a set value, and the operating voltage V is a parameter that varies depending on the temperature of the cell stack, the amount of fuel flowing through the cell stack, the composition, and the sweep current I. Become.
 図8に示すように、一般に、循環流量が大きくなるほど、燃料利用率は小さくなり、作動電圧Vは大きくなる。これに伴い、上記式3により、作動電圧Vに比例して発電出力Qが大きくなる。したがって、循環流量又は燃料利用率と発電出力Qとの関係を、予めマップ等に記憶しておき、循環流量又は燃料利用率の増加量に基づいて、発電出力増加量ΔQを算出することができる。その際に、作動電圧Vに影響する上述の各種パラメタに対するマップを参照して、補正等を行うこともできる。例えば、セルスタック温度は熱電対で計測する事ができる。セルスタックを流れる燃料量・組成については、投入燃料、循環流量、水量、改質率(≒改質器温度)からマップ化が可能である。 As shown in FIG. 8, generally, as the circulating flow rate increases, the fuel utilization rate decreases and the operating voltage V increases. Accordingly, the power generation output Q increases in proportion to the operating voltage V according to the above equation 3. Therefore, the relationship between the circulation flow rate or fuel utilization rate and the power generation output Q can be stored in advance in a map or the like, and the power generation output increase amount ΔQ can be calculated based on the increase amount of the circulation flow rate or fuel utilization rate. . At that time, correction or the like can be performed with reference to the map for the various parameters described above that affect the operating voltage V. For example, the cell stack temperature can be measured with a thermocouple. The amount and composition of fuel flowing through the cell stack can be mapped from the input fuel, the circulating flow rate, the amount of water, and the reforming rate (≈ reformer temperature).
 循環流路4の循環流量の算出方法としては、循環流路4に循環流量を計測するための流量計を配置することもできるが、例えば、循環流路4に複数の圧力計を配置して、循環流路4の任意の2点間の圧力降下に基づいて算出する方法を採用することもできる。あるいは、循環流路4の循環流量を、循環流路4のガス組成に基づいて算出することもできる。上述した式1、式2に示したように、改質器3には、例えばCH4を燃料として含む原燃料ガスが供給されており、循環流量が増加すると、式1、式2におけるガス種のうち、CO、CO2、CH4の割合が変化することを利用してもよい。 As a method for calculating the circulation flow rate of the circulation channel 4, a flow meter for measuring the circulation flow rate can be arranged in the circulation channel 4. For example, a plurality of pressure gauges are arranged in the circulation channel 4. A method of calculating based on the pressure drop between any two points of the circulation flow path 4 can also be adopted. Alternatively, the circulation flow rate of the circulation channel 4 can be calculated based on the gas composition of the circulation channel 4. As shown in Equations 1 and 2, the reformer 3 is supplied with raw fuel gas containing, for example, CH 4 as a fuel. When the circulation flow rate is increased, the gas type in Equations 1 and 2 is increased. Of these, the fact that the ratio of CO, CO 2 and CH 4 changes may be used.
 ステップS3では、ブロア電力増加量ΔWよりも発電出力増加量ΔQが大きいか否か(すなわち、ΔQ>ΔW?)を判定する。ステップS3が肯定判定されたら、ステップS4へ進み、ステップS3が否定判定されたら、ステップS5へ進む。 In step S3, it is determined whether the power generation output increase amount ΔQ is larger than the blower power increase amount ΔW (that is, ΔQ> ΔW?). If a positive determination is made in step S3, the process proceeds to step S4. If a negative determination is made in step S3, the process proceeds to step S5.
 ステップS4では、循環流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。すなわち、駆動流路13の開度を大きくして駆動ガスを増量させる一方、迂回流路14の開度を小さくして分岐する迂回ガスを減量させる。 In step S4, the valve opening degree of the flow rate adjusting valve 15 is changed so that the circulating flow rate increases. That is, the opening of the driving flow path 13 is increased to increase the amount of driving gas, while the opening of the bypass flow path 14 is decreased to decrease the amount of bypass gas that branches.
 これにより、図9に示すように、時点A、時点Bにおいて、ΔQ>ΔWとなった場合には、循環流量が増加する方向の流量切替信号が出力され、駆動流路13の流量が増加する。このとき、流量変化が一定量となるように弁開度を変化させてもよいが、ΔQとΔWの差の大きさに応じて、駆動ガスと迂回ガスの流量比の変化度合をその都度決定してもよい。これにより、例えば、ΔQとΔWの差がより大きくなるように、弁開度を変化させることができ、発電効率を向上させるために望ましい。 As a result, as shown in FIG. 9, when ΔQ> ΔW at time point A and time point B, a flow rate switching signal in the direction in which the circulation flow rate increases is output, and the flow rate of the drive flow path 13 increases. . At this time, the valve opening may be changed so that the change in the flow rate becomes a constant amount, but the degree of change in the flow rate ratio between the driving gas and the bypass gas is determined each time according to the difference between ΔQ and ΔW. May be. Thereby, for example, the valve opening can be changed so that the difference between ΔQ and ΔW becomes larger, which is desirable for improving the power generation efficiency.
 一方、ステップS5では、迂回流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。すなわち、迂回流路14の開度を大きくして分岐される迂回ガスを増量させる一方、駆動流路13の開度を小さくして駆動ガスを減量させる。 On the other hand, in step S5, the valve opening degree of the flow rate adjusting valve 15 is changed so that the detour flow rate increases. That is, the bypass gas branched by increasing the opening of the bypass channel 14 is increased, while the drive gas is decreased by decreasing the opening of the drive channel 13.
 図9に示す時点Cにおいて、ΔQ≦ΔWとなった場合には、流量切替信号が出力され、循環流量が増加する方向の流量切替信号が出力される(図中に点線で示す)。これにより、駆動流路13の流量が減少し、迂回流路13の流量が増加するので、ブロア電力Wを低減することができる。ブロア電力W及び発電出力Qの変化がない場合には(図中に実線で示す)、流量切替信号は出力されない。 When ΔQ ≦ ΔW is satisfied at time C shown in FIG. 9, a flow rate switching signal is output, and a flow rate switching signal in the direction in which the circulating flow rate increases is indicated (indicated by a dotted line in the figure). Thereby, since the flow volume of the drive flow path 13 reduces and the flow volume of the detour flow path 13 increases, the blower electric power W can be reduced. When there is no change in the blower power W and the power generation output Q (indicated by a solid line in the figure), the flow rate switching signal is not output.
 なお、図10に示すように、例えば、負荷が急減して発電出力Qが大きく低下したときに、ΔQとΔWの差に基づいて駆動流量を急減させると、燃料電池本体2を通過する通過流量が急減し、燃料濃度が徐々に増加する。その場合、通過流量×燃料濃度で表される燃料流量が急減したときに、発電出力が大きく低下してしまうので、例えば、発電電圧が所定の下限値を下回らないような燃料流量の閾値THを設定し、閾値TH以上となる範囲で、循環流量を調整するのがよい。 As shown in FIG. 10, for example, if the driving flow rate is suddenly reduced based on the difference between ΔQ and ΔW when the load is suddenly reduced and the power generation output Q is greatly reduced, the passing flow rate passing through the fuel cell body 2 Decreases rapidly and the fuel concentration gradually increases. In this case, when the fuel flow rate represented by the passage flow rate x fuel concentration is suddenly reduced, the power generation output is greatly reduced. For example, the fuel flow threshold TH is set so that the power generation voltage does not fall below a predetermined lower limit value. It is preferable to set and adjust the circulation flow rate within a range that is equal to or greater than the threshold TH.
 ステップS4、ステップS5において、流量調整弁15の弁開度を変化させ、増量処理を実行したら、本処理を一旦終了する。
 このようにして、原燃料ガス供給源10からガス供給流路11に供給される燃料及び水の流量を変更することなく、循環流路4からの循環流量を調整可能となる。
In step S4 and step S5, when the valve opening degree of the flow rate adjustment valve 15 is changed and the increase process is executed, this process is temporarily ended.
In this way, the circulation flow rate from the circulation channel 4 can be adjusted without changing the flow rates of the fuel and water supplied from the raw fuel gas supply source 10 to the gas supply channel 11.
(実施形態2)
 燃料電池システムに係る実施形態2について、図11を参照して説明する。
 図11に示すように、本形態の燃料電池システム1は、実施形態1と同様の基本構成を有しており、アノード21とカソード22を備える燃料電池本体2と、燃料ガスを生成する改質器3と、改質器3へのガス供給流路11と、アノードオフガスが流れるガス排出流路12と、循環流路4と、エジェクタ5と、流量調整部6とを備える。実施形態1とは、流量調整部6の流路構成が異なっており、以下、相違点を中心に説明する。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Embodiment 2)
Embodiment 2 according to the fuel cell system will be described with reference to FIG.
As shown in FIG. 11, the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6. The flow path configuration of the flow rate adjustment unit 6 is different from that of the first embodiment, and the following description will focus on the differences.
Of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
 流量調整部6は、供給源としての燃料供給源10A及び水供給源10Bと、駆動流路13と、迂回流路14と、流量調整弁15と、を備えており、図示を略す制御部61によって流量調整弁15の弁開度を調整可能となっている。駆動流路13は、燃料供給源10Aとエジェクタ5とをブロア7を介して接続しており、ブロア7の下流には、水供給源10Bに至る水供給流路131が接続される。水供給流路131には、水ポンプ132が配設されると共に、水ポンプ132の下流から分岐する迂回流路14が設けられて、ガス供給流路11に接続している。 The flow rate adjustment unit 6 includes a fuel supply source 10A and a water supply source 10B as supply sources, a drive flow path 13, a bypass flow path 14, and a flow rate adjustment valve 15, and a control unit 61 (not shown). Thus, the valve opening degree of the flow rate adjusting valve 15 can be adjusted. The drive flow path 13 connects the fuel supply source 10 </ b> A and the ejector 5 via the blower 7, and a water supply flow path 131 reaching the water supply source 10 </ b> B is connected downstream of the blower 7. The water supply channel 131 is provided with a water pump 132 and a bypass channel 14 branched from the downstream side of the water pump 132, and is connected to the gas supply channel 11.
 流量調整弁15は、水供給流路131と迂回流路14との分岐部に設けられて、水供給流路131から駆動流路13へ供給される水流量と、迂回流路14へ分岐して迂回流を形成する水流量の比率を調整する。ここで、水ポンプ132から送出される水は、常温水であってもよいし、例えば、アノードオフガスの一部と熱交換させて水蒸気としてもよい。 The flow rate adjusting valve 15 is provided at a branch portion between the water supply flow path 131 and the bypass flow path 14, and branches into the water flow rate supplied from the water supply flow path 131 to the drive flow path 13 and the bypass flow path 14. Adjust the ratio of the water flow rate that forms a bypass flow. Here, the water delivered from the water pump 132 may be room temperature water, or may be water vapor by exchanging heat with part of the anode off-gas, for example.
 上記構成では、燃料供給源10Aから駆動流路13へ供給される燃料に、水供給源10Bから水供給流路131から供給される水が合流して原燃料ガスとなる。この原燃料ガスがそのまま駆動ガスとなり、エジェクタ5を通過する駆動流が形成される。本形態では、制御部61により、流量調整弁15の弁開度を変化させることで、水供給流路131から迂回流路14へ迂回する水流量を調整して、エジェクタ5を通過する駆動流量を調整し、循環流路4からの循環流量を調整することができる。 In the above configuration, the water supplied from the water supply source 10B from the water supply channel 131 merges with the fuel supplied from the fuel supply source 10A to the drive channel 13 to become the raw fuel gas. This raw fuel gas becomes the driving gas as it is, and a driving flow passing through the ejector 5 is formed. In this embodiment, the controller 61 changes the valve opening of the flow rate adjustment valve 15 to adjust the flow rate of water that bypasses the water supply flow path 131 to the bypass flow path 14, and the drive flow rate that passes through the ejector 5. The circulation flow rate from the circulation channel 4 can be adjusted.
 このようにしても、上記実施形態1と同様の効果が得られる。すなわち、発電出力に応じて、循環流路4からの循環流量を増減し、ブロア電力が必要以上に増加するのを抑制して、効率よい発電を行うことができる。また、本形態では、水供給流路131に流量調整弁15を配置し、駆動流路13へ合流するより上流で迂回流路14へ分岐させているので、流量調整弁15をより小型にすることができ、低コスト化が可能になる。 Even in this case, the same effect as in the first embodiment can be obtained. That is, according to the power generation output, the circulation flow rate from the circulation flow path 4 can be increased or decreased to prevent the blower power from increasing more than necessary, and efficient power generation can be performed. Further, in this embodiment, the flow rate adjustment valve 15 is arranged in the water supply flow path 131 and branched to the bypass flow path 14 upstream from joining the drive flow path 13, so that the flow rate adjustment valve 15 is made smaller. Can be reduced.
(実施形態3)
 燃料電池システムに係る実施形態3について、図12、図13を参照して説明する。
 図12に示すように、本形態の燃料電池システム1は、実施形態1と同様の基本構成を有しており、アノード21とカソード22を備える燃料電池本体2と、燃料ガスを生成する改質器3と、改質器3へのガス供給流路11と、アノードオフガスが流れるガス排出流路12と、循環流路4と、エジェクタ5と、流量調整部6とを備える。実施形態1とは、流量調整部6の流路構成が異なっており、以下、相違点を中心に説明する。
(Embodiment 3)
A third embodiment of the fuel cell system will be described with reference to FIGS.
As shown in FIG. 12, the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, and includes a fuel cell main body 2 including an anode 21 and a cathode 22, and reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6. The flow path configuration of the flow rate adjustment unit 6 is different from that of the first embodiment, and the following description will focus on the differences.
 流量調整部6は、原燃料ガス供給源10とエジェクタ5とをブロア7を介して接続する駆動流路13と、ガス導入流路17と、流量調整弁18と、図示を略す制御部61と、を備える。ガス導入流路17は、一端が、改質器3の下流側の燃料ガス流路16に接続され、他端が、ブロア7の上流側の駆動流路13に接続されて、燃料ガスの一部を、導入ガスとして駆動流路13へ導入する。ガス導入流路17の途中には、流量調整弁18が配置されて、その弁開度を変化させることにより、駆動流路13へ導入される導入ガスの流量を調整可能となっている。流量調整弁18は、例えば、電動式の二方弁であり、制御部61によって駆動が制御される。 The flow rate adjustment unit 6 includes a drive flow path 13 that connects the raw fuel gas supply source 10 and the ejector 5 via the blower 7, a gas introduction flow path 17, a flow rate adjustment valve 18, and a control unit 61 (not shown). . One end of the gas introduction channel 17 is connected to the fuel gas channel 16 on the downstream side of the reformer 3, and the other end is connected to the drive channel 13 on the upstream side of the blower 7. Are introduced into the drive channel 13 as an introduction gas. A flow rate adjustment valve 18 is arranged in the middle of the gas introduction flow path 17, and the flow rate of the introduced gas introduced into the drive flow path 13 can be adjusted by changing the valve opening degree. The flow rate adjustment valve 18 is, for example, an electric two-way valve, and the drive is controlled by the control unit 61.
 上記構成では、原燃料ガス供給源10から駆動流路13へ供給される原燃料ガスが駆動ガスとなり、エジェクタ5を通過する駆動流が形成される。さらに、ガス導入流路17からの燃料ガスを導入ガスとして、駆動流路13へ合流させて、駆動ガスを増量することができる。上記実施形態1、2では、原燃料ガスから分岐する迂回ガスの流量を増減させることで、駆動流量を増減可能としたが、本形態のように、原燃料ガスに合流する導入ガスの流量を増減させることによっても、駆動流量を増減可能である。 In the above configuration, the raw fuel gas supplied from the raw fuel gas supply source 10 to the drive flow path 13 becomes the drive gas, and a drive flow passing through the ejector 5 is formed. Furthermore, the fuel gas from the gas introduction flow path 17 can be merged into the drive flow path 13 as the introduction gas, and the drive gas can be increased. In the first and second embodiments, the drive flow rate can be increased or decreased by increasing or decreasing the flow rate of the bypass gas that branches from the raw fuel gas. However, as in the present embodiment, the flow rate of the introduction gas that merges with the raw fuel gas is changed. The drive flow rate can also be increased or decreased by increasing or decreasing it.
 本形態においても、制御部61により、上記図6に示したのと同様にして、流量調整弁18を駆動することができる。この場合には、図13に示すように、流量調整弁18の開度が、全閉から全開の範囲で調整され、それに伴い、流量調整弁18の通過流量が増加する。例えば、ΔQ>ΔWとなる時点D、時点Eでは、流量調整弁18の開度が段階的に大きくなり、駆動流量が増加する。 Also in the present embodiment, the flow rate adjusting valve 18 can be driven by the controller 61 in the same manner as shown in FIG. In this case, as shown in FIG. 13, the opening degree of the flow rate adjusting valve 18 is adjusted in the range from fully closed to fully open, and accordingly, the passing flow rate of the flow rate adjusting valve 18 increases. For example, at time point D and time point E when ΔQ> ΔW, the opening degree of the flow rate adjustment valve 18 increases stepwise, and the drive flow rate increases.
 一方、時点Eにおいて、ΔQ≦ΔWとなった場合には、流量調整弁18の開度が再び小さくなる。これにより、駆動流路13の流量が減少し、迂回流路14の流量が増加するので、ブロア電力Wを低減することができる。 On the other hand, when ΔQ ≦ ΔW at time point E, the opening degree of the flow rate adjustment valve 18 becomes smaller again. Thereby, since the flow volume of the drive flow path 13 decreases and the flow volume of the detour flow path 14 increases, the blower power W can be reduced.
 ガス導入流路17は、改質器3の下流側の燃料ガス流路16に接続される代わりに、改質器3の上流側のガス供給流路11へ接続される構成であってもよい。その場合には、ガス導入流路17への導入ガスは、ガス供給流路11に供給される原燃料ガスであるか、原燃料ガスに、エジェクタ5を介してガス供給流路11に循環されるアノードオフガスが合流した混合ガスである。 The gas introduction channel 17 may be configured to be connected to the gas supply channel 11 on the upstream side of the reformer 3 instead of being connected to the fuel gas channel 16 on the downstream side of the reformer 3. . In this case, the gas introduced into the gas introduction channel 17 is the raw fuel gas supplied to the gas supply channel 11 or is circulated to the raw fuel gas through the ejector 5 to the gas supply channel 11. The mixed gas is the anode off gas.
 このように、原燃料ガスにエジェクタ5より下流側のガスを導入して、その流量を、流量調整弁18により調整するようにしても、上記実施形態1と同様の効果が得られる。すなわち、発電出力に応じて、循環流路4からの循環流量を増減し、ブロア電力が必要以上に増加するのを抑制して、効率よい発電を行うことができる。また、本形態では、流量調整のために流路切替手段を設ける必要がないので、流量調整弁18の構成をより簡易にできる。 As described above, even when the gas downstream of the ejector 5 is introduced into the raw fuel gas and the flow rate is adjusted by the flow rate adjusting valve 18, the same effect as in the first embodiment can be obtained. That is, according to the power generation output, the circulation flow rate from the circulation flow path 4 can be increased or decreased to prevent the blower power from increasing more than necessary, and efficient power generation can be performed. Further, in this embodiment, there is no need to provide a flow path switching means for flow rate adjustment, so that the configuration of the flow rate adjustment valve 18 can be simplified.
(実施形態4)
 燃料電池システムに係る実施形態4について、図14を参照して説明する。
 図14に示すように、本形態の燃料電池システム1は、実施形態4と同様の基本構成を有しており、アノード21とカソード22を備える燃料電池本体2と、燃料ガスを生成する改質器3と、改質器3へのガス供給流路11と、アノードオフガスが流れるガス排出流路12と、循環流路4と、エジェクタ5と、流量調整部6とを備える。実施形態4とは、流量調整部6の流路構成が異なっており、以下、相違点を中心に説明する。
(Embodiment 4)
Embodiment 4 which concerns on a fuel cell system is demonstrated with reference to FIG.
As shown in FIG. 14, the fuel cell system 1 of the present embodiment has the same basic configuration as that of the fourth embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6. The flow path configuration of the flow rate adjusting unit 6 is different from that of the fourth embodiment, and the difference will be mainly described below.
 本形態の流量調整部6は、供給源としての燃料供給源10Aと水供給源10Bとを有しており、このうちの水供給源10Bは、迂回流路14によって、エジェクタ5の下流のガス供給流路11と接続されている。迂回流路14には、水ポンプ132が設けられて、水供給源10Bからガス供給流路11へ所定の流量の水を送出している。 The flow rate adjusting unit 6 of this embodiment has a fuel supply source 10A and a water supply source 10B as supply sources. Among these, the water supply source 10B is a gas downstream of the ejector 5 by a bypass channel 14. The supply channel 11 is connected. The detour channel 14 is provided with a water pump 132 and sends water at a predetermined flow rate from the water supply source 10 </ b> B to the gas supply channel 11.
 燃料供給源10Aは、ブロア7及びエジェクタ5を介して駆動流路13に接続している。また、ブロア7の上流側の駆動流路13と、燃料ガス流路16とは、流量調整弁18を備えるガス導入流路17によって接続されている。流量調整弁18は、図示しない制御部61によって、その弁開度を調整することにより、駆動流路13に導入される導入ガスとしての燃料ガスの流量が調整可能となっている。 The fuel supply source 10 </ b> A is connected to the drive flow path 13 through the blower 7 and the ejector 5. Further, the drive flow path 13 on the upstream side of the blower 7 and the fuel gas flow path 16 are connected by a gas introduction flow path 17 including a flow rate adjusting valve 18. The flow rate adjustment valve 18 can adjust the flow rate of the fuel gas as the introduction gas introduced into the drive flow path 13 by adjusting the valve opening degree by the control unit 61 (not shown).
 上記構成では、燃料供給源10Aから駆動流路13へ供給される燃料を含む駆動ガスによって、エジェクタ5を通過する駆動流が形成される。さらに、ガス導入流路17からの燃料ガスを導入ガスとして、駆動流路13へ合流させることができる。これにより、エジェクタ5を通過する駆動流量を調整して、循環流路4から吸引されるアノードオフガスの循環流量を調整することができる。ガス供給流路11において、エジェクタ5から吐出される駆動ガスとアノードオフガスとの混合ガスには、水供給源10Bから迂回流路14を経て供給される水がさらに混合された後、改質器3へ供給される。 In the above configuration, a driving flow passing through the ejector 5 is formed by the driving gas containing the fuel supplied from the fuel supply source 10A to the driving flow path 13. Furthermore, the fuel gas from the gas introduction channel 17 can be merged into the drive channel 13 as an introduction gas. As a result, the drive flow rate passing through the ejector 5 can be adjusted, and the circulation flow rate of the anode off gas sucked from the circulation flow path 4 can be adjusted. In the gas supply channel 11, the mixed gas of the drive gas and the anode off gas discharged from the ejector 5 is further mixed with water supplied from the water supply source 10 </ b> B via the bypass channel 14, and then the reformer. 3 is supplied.
 このように、原燃料ガスに含まれる燃料及び水のうち一部、例えば、燃料の全部を駆動流路13へ供給して駆動ガスとし、水の全部を迂回流路14からエジェクタ5より下流側に導入することもできる。そして、駆動ガスにガス導入流路17から導入される燃料ガスの流量を調整することで、原燃料ガスとなる燃料及び水の流量を変更することなく、循環流量を調整可能となり、上記実施形態4と同様の効果が得られる。すなわち、発電出力に応じて、循環流路4からの循環流量を増減し、ブロア電力が必要以上に増加するのを抑制して、効率よい発電を行うことができる。また、流量調整のために流路切替手段を設ける必要がないので、流量調整弁18の構成をより簡易にできる。 In this way, a part of the fuel and water contained in the raw fuel gas, for example, all of the fuel is supplied to the drive flow path 13 to be the drive gas, and all of the water is downstream from the ejector 5 from the bypass flow path 14. Can also be introduced. Then, by adjusting the flow rate of the fuel gas introduced from the gas introduction flow path 17 into the driving gas, the circulation flow rate can be adjusted without changing the flow rates of the fuel and water as the raw fuel gas, and the above embodiment The same effect as 4 can be obtained. That is, according to the power generation output, the circulation flow rate from the circulation flow path 4 can be increased or decreased to prevent the blower power from increasing more than necessary, and efficient power generation can be performed. In addition, since it is not necessary to provide flow path switching means for flow rate adjustment, the configuration of the flow rate adjustment valve 18 can be simplified.
(実施形態5)
 燃料電池システムに係る実施形態5について、図15、図16を参照して説明する。
 図15に示すように、本形態の燃料電池システム1は、実施形態1と同様の基本構成を有しており、アノード21とカソード22を備える燃料電池本体2と、燃料ガスを生成する改質器3と、改質器3へのガス供給流路11と、アノードオフガスが流れるガス排出流路12と、循環流路4と、エジェクタ5と、流量調整部6とを備える。
(Embodiment 5)
A fifth embodiment of the fuel cell system will be described with reference to FIGS. 15 and 16.
As shown in FIG. 15, the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6.
 流量調整部6は、駆動流路13と、図示を略す迂回流路14と、流量調整弁15を備え、エジェクタ5を用いて循環流路4からアノードオフガスを循環可能に構成されている。また、循環流路4に循環流量計測手段41を有しており、制御部61は、ブロア電力増加量ΔW及び発電出力増加量ΔQの算出結果と、さらに、循環流量計測手段41による循環流量の計測結果に基づいて、循環流量を調整する。 The flow rate adjusting unit 6 includes a drive flow path 13, a bypass flow path 14 (not shown), and a flow rate adjustment valve 15, and is configured to be able to circulate anode off gas from the circulation flow path 4 using the ejector 5. Further, the circulation flow rate measuring means 41 is provided in the circulation flow path 4, and the control unit 61 calculates the calculation result of the blower power increase amount ΔW and the power generation output increase amount ΔQ, and further determines the circulation flow rate by the circulation flow rate measurement means 41. The circulating flow rate is adjusted based on the measurement result.
 循環流量計測手段41は、上述したように、例えば、循環流路4に循環流量を計測するための流量計とすることができる。その場合には、耐熱性を考慮して流量計を配置することが望ましい。また、循環流量を直接計測する代わりに、循環流路4に複数の圧力計を配置して、循環流路4の任意の2点間の圧力降下に基づいて算出し、あるいは、循環流路4の循環流量を、循環流路4のガス組成に基づいて算出するように、循環流量計測手段41を構成することもできる。 The circulation flow rate measuring means 41 can be a flow meter for measuring the circulation flow rate in the circulation flow path 4 as described above. In that case, it is desirable to arrange a flow meter in consideration of heat resistance. Further, instead of directly measuring the circulation flow rate, a plurality of pressure gauges are arranged in the circulation flow path 4 to calculate based on the pressure drop between any two points of the circulation flow path 4, or the circulation flow path 4 The circulating flow rate measuring means 41 can also be configured so that the circulating flow rate of is calculated based on the gas composition of the circulating flow path 4.
 図16に示すフローチャートを用いて、制御部61において実行される処理の一例を説明する。本処理は、例えば、所定の周期で立ち上がり、繰り返し実行される。
 本処理を開始したら、まず、ステップS11において、ブロア電力Wの前回値と今回値との差であるブロア電力増加量ΔWを算出し、次いで、ステップS12において、発電出力Qの前回値と今回値との差である発電出力増加量ΔQを算出する。
An example of processing executed in the control unit 61 will be described using the flowchart shown in FIG. For example, this process starts up at a predetermined cycle and is repeatedly executed.
When this process is started, first, in step S11, the blower power increase amount ΔW, which is the difference between the previous value and the current value of the blower power W, is calculated. Then, in step S12, the previous value and the current value of the power generation output Q are calculated. The power generation output increase amount ΔQ, which is the difference between the two, is calculated.
 ステップS13では、ブロア電力増加量ΔWよりも発電出力増加量ΔQが大きいか否か(すなわち、ΔQ>ΔW?)を判定する。ステップS13が肯定判定されたら、ステップS14へ進み、ステップS13が否定判定されたら、ステップS15へ進む。 In step S13, it is determined whether the power generation output increase amount ΔQ is larger than the blower power increase amount ΔW (that is, ΔQ> ΔW?). If a positive determination is made in step S13, the process proceeds to step S14. If a negative determination is made in step S13, the process proceeds to step S15.
 ステップS14では、循環流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。すなわち、駆動流路13の開度を大きくして駆動ガスを増量させる一方、迂回流路14の開度を小さくして分岐する迂回ガスを減量させる。 In step S14, the valve opening degree of the flow rate adjusting valve 15 is changed so that the circulating flow rate increases. That is, the opening of the driving flow path 13 is increased to increase the amount of driving gas, while the opening of the bypass flow path 14 is decreased to decrease the amount of bypass gas that branches.
 一方、ステップS15では、迂回流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。すなわち、迂回流路14の開度を大きくして分岐される迂回ガスを増量させる一方、駆動流路13の開度を小さくして駆動ガスを減量させる。 On the other hand, in step S15, the valve opening degree of the flow rate adjusting valve 15 is changed so that the detour flow rate increases. That is, the bypass gas branched by increasing the opening of the bypass channel 14 is increased, while the drive gas is decreased by decreasing the opening of the drive channel 13.
 ステップS11~S15は、上述した図6におけるステップS1~S5と同様の処理であり、詳細は省略する。ステップS14において、流量調整弁15の弁開度を変化させ、増量処理を実行したら、本処理を一旦終了する。 Steps S11 to S15 are the same as steps S1 to S5 in FIG. 6 described above, and details thereof are omitted. In step S14, when the valve opening degree of the flow rate adjustment valve 15 is changed and the increase process is executed, this process is temporarily terminated.
 ステップS15において、流量調整弁15の弁開度を変化させ、増量処理を実行したら、続いて、ステップS16に進む。ステップS16では、循環流量計測手段41を用いて、循環流量を計測し、循環流量がゼロ以下か否か(すなわち、循環流量≦0?)を判定する。 In step S15, when the opening degree of the flow rate adjustment valve 15 is changed and the increase processing is executed, the process proceeds to step S16. In step S16, the circulating flow rate measuring means 41 is used to measure the circulating flow rate and determine whether or not the circulating flow rate is equal to or less than zero (that is, circulating flow rate ≦ 0?).
 上記図3に示したように、エジェクタ5は、ノズル部51に導入される駆動ガスが駆動流となって噴出するのに伴い、循環流路4からアノードオフガスを吸引する。その場合、循環流量が減少する方向に流量調整弁15を調整することで、駆動流の流速が低下すると、循環流路4において逆流が生じ、駆動ガスが燃料電池本体2を通過せずに燃焼器31に排出されるおそれがある。これを防止するために、循環流量がゼロ以下、すなわち、逆流が生じていないかを判定し、必要に応じて流量調整弁15の弁開度を再調整することが望ましい。 As shown in FIG. 3, the ejector 5 sucks the anode off gas from the circulation flow path 4 as the driving gas introduced into the nozzle portion 51 is ejected as a driving flow. In that case, by adjusting the flow rate adjustment valve 15 in the direction in which the circulation flow rate decreases, when the flow velocity of the drive flow decreases, a reverse flow occurs in the circulation flow channel 4 and the drive gas burns without passing through the fuel cell body 2. There is a risk of being discharged to the vessel 31. In order to prevent this, it is desirable to determine whether the circulating flow rate is equal to or lower than zero, that is, whether a reverse flow has occurred, and readjust the valve opening degree of the flow rate adjusting valve 15 as necessary.
 そこで、ステップS16が肯定判定されたら、ステップS14へ戻り、循環流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。これにより、循環流量>0となるので、その後、本処理を一旦終了する。 Therefore, if an affirmative determination is made in step S16, the process returns to step S14, and the valve opening degree of the flow rate adjusting valve 15 is changed so that the circulating flow rate increases. As a result, the circulation flow rate> 0, so that this process is temporarily terminated.
 ステップS16が否定判定されたら、循環流量>0となっており、逆流のおそれはないと判断して、流量調整を行わずに、本処理を一旦終了する。 If the determination in step S16 is negative, it is determined that the circulation flow rate is> 0 and there is no possibility of backflow, and this processing is temporarily terminated without adjusting the flow rate.
 このようにしても、上記実施形態1と同様の効果が得られ、さらに、循環流路4における逆流が防止されるように制御して、信頼性の高い燃料電池システムとすることができる。 Even in this case, the same effects as those of the first embodiment can be obtained, and furthermore, the fuel cell system can be made highly reliable by controlling so that the backflow in the circulation flow path 4 is prevented.
(実施形態6)
 燃料電池システムに係る実施形態5について、図17、図18を参照して説明する。
 図17に示すように、本形態の燃料電池システム1は、実施形態1と同様の基本構成を有しており、アノード21とカソード22を備える燃料電池本体2と、燃料ガスを生成する改質器3と、改質器3へのガス供給流路11と、アノードオフガスが流れるガス排出流路12と、循環流路4と、エジェクタ5と、流量調整部6とを備える。
(Embodiment 6)
A fifth embodiment of the fuel cell system will be described with reference to FIGS.
As shown in FIG. 17, the fuel cell system 1 of the present embodiment has the same basic configuration as that of the first embodiment, the fuel cell main body 2 including the anode 21 and the cathode 22, and the reforming that generates fuel gas. 3, a gas supply flow path 11 to the reformer 3, a gas discharge flow path 12 through which the anode off gas flows, a circulation flow path 4, an ejector 5, and a flow rate adjustment unit 6.
 流量調整部6は、駆動流路13と、図示を略す迂回流路14と、流量調整弁15を備え、エジェクタ5を用いて循環流路4からアノードオフガスを循環可能に構成されている。また、ブロア圧力を検出するための圧力検知手段62を有しており、制御部61は、ブロア電力増加量ΔW及び発電出力増加量ΔQの算出結果と、さらに、圧力検知手段62の検知結果に基づいて、循環流量を調整する。 The flow rate adjusting unit 6 includes a drive flow path 13, a bypass flow path 14 (not shown), and a flow rate adjustment valve 15, and is configured to be able to circulate anode off gas from the circulation flow path 4 using the ejector 5. Moreover, it has the pressure detection means 62 for detecting a blower pressure, and the control part 61 is further using the calculation result of blower electric power increase amount (DELTA) W and electric power generation output increase amount (DELTA) Q, and also the detection result of the pressure detection means 62. Based on this, the circulation flow rate is adjusted.
 圧力検知手段62は、例えば、駆動流路13に配置された圧力計とすることができる。駆動流路13からエジェクタ5に導入される駆動ガスの流量が増加すると、ブロア7に加わる負荷が大きくなる。そこで、ブロア7の破損等を防止するために、ブロア圧力として、エジェクタ5のノズル部51を通過する駆動ガスの圧力を検知し、検知結果が所定値を超えないように、流量調整することが望ましい。 The pressure detection means 62 can be, for example, a pressure gauge disposed in the drive flow path 13. As the flow rate of the drive gas introduced from the drive flow path 13 into the ejector 5 increases, the load applied to the blower 7 increases. Therefore, in order to prevent the blower 7 from being damaged, it is possible to detect the pressure of the driving gas passing through the nozzle portion 51 of the ejector 5 as the blower pressure and adjust the flow rate so that the detection result does not exceed a predetermined value. desirable.
 図18に示すフローチャートを用いて、制御部61において実行される処理の一例を説明する。本処理は、例えば、所定の周期で立ち上がり、繰り返し実行される。
 本処理を開始したら、まず、ステップS21において、ブロア電力Wの前回値と今回値との差であるブロア電力増加量ΔWを算出し、次いで、ステップS22において、発電出力Qの前回値と今回値との差である発電出力増加量ΔQを算出する。
An example of processing executed in the control unit 61 will be described using the flowchart shown in FIG. For example, this process starts up at a predetermined cycle and is repeatedly executed.
When this process is started, first, in step S21, a blower power increase amount ΔW, which is the difference between the previous value and the current value of the blower power W, is calculated. Then, in step S22, the previous value and the current value of the power generation output Q are calculated. The power generation output increase amount ΔQ, which is the difference between the two, is calculated.
 ステップS23では、ブロア電力増加量ΔWよりも発電出力増加量ΔQが大きいか否か(すなわち、ΔQ>ΔW?)を判定する。ステップS23が肯定判定されたら、ステップS24へ進み、ステップS23が否定判定されたら、ステップS26へ進む。 In step S23, it is determined whether the power generation output increase amount ΔQ is larger than the blower power increase amount ΔW (that is, ΔQ> ΔW?). If a positive determination is made in step S23, the process proceeds to step S24. If a negative determination is made in step S23, the process proceeds to step S26.
 ステップS24では、圧力検知手段62を用いて、ブロア圧力として駆動流路13の圧力を検知し、ブロア圧力を、予め設定した圧力閾値と比較する。圧力閾値は、使用するブロア7に応じて、適宜設定することができる。 In step S24, the pressure of the drive channel 13 is detected as the blower pressure using the pressure detection means 62, and the blower pressure is compared with a preset pressure threshold value. The pressure threshold value can be appropriately set according to the blower 7 to be used.
 そこで、ステップS24では、ブロア圧力が圧力閾値未満か否か(すなわち、ブロア圧力<圧力閾値?)を判定する。ステップS24が肯定判定されたら、ブロア圧力は許容範囲内と判断して、ステップS25へ進み、循環流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。すなわち、駆動流路13の開度を大きくして駆動ガスを増量させる一方、迂回流路14の開度を小さくして分岐する迂回ガスを減量させる。 Therefore, in step S24, it is determined whether or not the blower pressure is less than the pressure threshold (that is, blower pressure <pressure threshold?). If an affirmative determination is made in step S24, it is determined that the blower pressure is within the allowable range, the process proceeds to step S25, and the valve opening degree of the flow rate adjustment valve 15 is changed so that the circulation flow rate increases. That is, the opening of the driving flow path 13 is increased to increase the amount of driving gas, while the opening of the bypass flow path 14 is decreased to decrease the amount of bypass gas that branches.
 ステップS24が否定判定されたら、そのまま、ブロア圧力が許容範囲を超えるおそれがあると判断して、流量調整を実施せずに、本処理を一旦終了する。 If a negative determination is made in step S24, it is determined that the blower pressure may exceed the allowable range as it is, and the present process is temporarily terminated without performing the flow rate adjustment.
 ステップS23が否定判定されて、ステップS26へ進んだ場合には、迂回流量が増量する方向となるように、流量調整弁15の弁開度を変化させる。すなわち、迂回流路14の開度を大きくして分岐される迂回ガスを増量させる一方、駆動流路13の開度を小さくして駆動ガスを減量させる。 When a negative determination is made in step S23 and the process proceeds to step S26, the valve opening of the flow rate adjustment valve 15 is changed so that the detour flow rate increases. That is, the bypass gas branched by increasing the opening of the bypass channel 14 is increased, while the drive gas is decreased by decreasing the opening of the drive channel 13.
 ステップS21~S23、S25~S26は、上述した図6におけるステップS1~S5と同様の処理であり、詳細は省略する。
 ステップS25、ステップS26において、流量調整弁15の弁開度を変化させ、増量処理を実行したら、本処理を一旦終了する。
Steps S21 to S23 and S25 to S26 are the same as steps S1 to S5 in FIG. 6 described above, and details thereof are omitted.
In step S25 and step S26, when the opening degree of the flow rate adjustment valve 15 is changed and the increase process is executed, this process is temporarily ended.
 このようにしても、上記実施形態1と同様の効果が得られ、ブロア7に加わる圧力が圧力閾値を超えないように制御して、信頼性の高い燃料電池システムとすることができる。
 なお、上記実施形態5、6に記載した処理は、上記実施形態2~4の構成にも適用することができる。
Even if it does in this way, the effect similar to the said Embodiment 1 is acquired, and it can control so that the pressure added to the blower 7 may not exceed a pressure threshold value, and it can be set as a reliable fuel cell system.
The processing described in the fifth and sixth embodiments can also be applied to the configurations of the second to fourth embodiments.
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、燃料電池システムは、燃料電池車両に限らず、工業用、家庭用の種々の発電システムへ適用することができる。 The present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the disclosure. For example, the fuel cell system can be applied not only to a fuel cell vehicle but also to various industrial and household power generation systems.

Claims (13)

  1.  アノード(21)に供給される燃料ガスと、カソード(22)に供給される酸化剤ガスとの電気化学反応により発電する燃料電池本体(2)と、
     原燃料ガスを改質して上記燃料ガスを生成する改質器(3)と、
     上記改質器に供給される上記原燃料ガスが流れるガス供給流路(11)と、
     上記アノードから排出されるアノードオフガスが流れるガス排出流路(12)と、
     上記ガス排出流路と上記ガス供給流路とを接続する循環流路(4)と、
     上記原燃料ガスを駆動流として上記循環流路から上記アノードオフガスを吸引し、上記ガス供給流路に循環させるエジェクタ(5)と、
     上記原燃料ガスの供給源(10、10A、10B)から上記ガス供給流路へ供給される上記原燃料ガスの少なくとも一部を含み上記エジェクタを通過して上記駆動流を形成する駆動ガスの流量を調整する流量調整部(6)と、を備えている、燃料電池システム(1)。
    A fuel cell body (2) for generating electric power by an electrochemical reaction between a fuel gas supplied to the anode (21) and an oxidant gas supplied to the cathode (22);
    A reformer (3) for reforming raw fuel gas to generate the fuel gas;
    A gas supply channel (11) through which the raw fuel gas supplied to the reformer flows;
    A gas discharge passage (12) through which the anode off-gas discharged from the anode flows;
    A circulation channel (4) connecting the gas discharge channel and the gas supply channel;
    An ejector (5) for sucking the anode off-gas from the circulation flow path using the raw fuel gas as a driving flow and circulating it to the gas supply flow path;
    The flow rate of the driving gas that forms at least one portion of the raw fuel gas supplied from the raw fuel gas supply source (10, 10A, 10B) to the gas supply flow path and forms the driving flow through the ejector. A fuel cell system (1), comprising a flow rate adjustment unit (6) for adjusting the flow rate.
  2.  上記流量調整部は、上記供給源と上記エジェクタとを接続する駆動流路(13)と、上記駆動流路と上記ガス供給流路とを接続する迂回流路(14)と、上記迂回流路を流れる迂回流の流量を調整する流量調整弁(15)と、を備える、請求項1に記載の燃料電池システム。 The flow rate adjusting unit includes a drive channel (13) that connects the supply source and the ejector, a bypass channel (14) that connects the drive channel and the gas supply channel, and the bypass channel. The fuel cell system according to claim 1, further comprising: a flow rate adjustment valve (15) for adjusting a flow rate of the detour flow that flows through the fuel cell.
  3.  上記原燃料ガスは燃料及び水を含み、上記駆動流路は、上記供給源としての原燃料ガス供給源(10)に接続されると共に、上記迂回流路は、上記駆動流路から分岐して上記ガス供給流路に接続される、請求項2に記載の燃料電池システム。 The raw fuel gas contains fuel and water, the drive flow path is connected to a raw fuel gas supply source (10) as the supply source, and the bypass flow path is branched from the drive flow path. The fuel cell system according to claim 2, wherein the fuel cell system is connected to the gas supply channel.
  4.  上記原燃料ガスは燃料及び水を含み、上記駆動流路は、上記供給源としての燃料供給源(10A)及び水供給源(10B)に接続されると共に、上記迂回流路は、上記水供給源と上記駆動流路とを接続する流路から分岐して上記ガス供給流路に接続される、請求項2に記載の燃料電池システム。 The raw fuel gas contains fuel and water, and the drive channel is connected to a fuel supply source (10A) and a water supply source (10B) as the supply source, and the bypass channel is connected to the water supply source. The fuel cell system according to claim 2, wherein the fuel cell system is branched from a flow path connecting a source and the drive flow path and connected to the gas supply flow path.
  5.  上記流量調整弁は、上記迂回流路への分岐部に設けられる、請求項3又は4に記載の燃料電池システム。 The fuel cell system according to claim 3 or 4, wherein the flow rate adjusting valve is provided at a branch portion to the bypass flow path.
  6.  上記流量調整部は、上記供給源と上記エジェクタとを接続する駆動流路(13)と、上記駆動流路に上記ガス供給流路を流れる上記原燃料ガス又は上記改質器の下流の燃料ガス流路(16)を流れる上記燃料ガスを導入するガス導入流路(17)と、上記ガス導入流路を流れる導入ガスの流量を調整する流量調整弁(18)と、を備える、請求項1に記載の燃料電池システム。 The flow rate adjusting unit includes a drive channel (13) connecting the supply source and the ejector, and the raw fuel gas flowing through the gas supply channel to the drive channel or a fuel gas downstream of the reformer. The gas introduction flow path (17) which introduces the said fuel gas which flows through a flow path (16), and the flow regulating valve (18) which adjusts the flow volume of the introduction gas which flows through the said gas introduction flow path are provided. The fuel cell system described in 1.
  7.  上記原燃料ガスは燃料及び水を含み、上記駆動流路は、上記供給源としての燃料供給源(10A)に接続されると共に、上記供給源としての水供給源(10B)と上記ガス供給流路とを接続する迂回流路(14)と、を備える、請求項6に記載の燃料電池システム。 The raw fuel gas contains fuel and water, and the drive channel is connected to a fuel supply source (10A) as the supply source, and the water supply source (10B) as the supply source and the gas supply flow. The fuel cell system according to claim 6, further comprising a bypass channel (14) connecting the channel.
  8.  上記供給源と上記エジェクタとの間に設けられ、上記エジェクタのノズル部(51)に上記駆動ガスを送り込むブロア(7)を、さらに備えており、
     上記流量調整部は、上記燃料電池本体の発電出力変化量(ΔQ)と、ブロア電力変化量(ΔW)とをそれぞれ検出し、上記発電出力変化量と上記ブロア電力変化量との差(ΔQ-ΔW)がより大きくなるように、上記駆動ガスの流量を調整する制御部(61)を備える、請求項1~7のいずれか1項に記載の燃料電池システム。
    A blower (7) that is provided between the supply source and the ejector and feeds the driving gas into the nozzle portion (51) of the ejector;
    The flow rate adjustment unit detects a power generation output change amount (ΔQ) and a blower power change amount (ΔW) of the fuel cell main body, and a difference (ΔQ−) between the power generation output change amount and the blower power change amount. The fuel cell system according to any one of claims 1 to 7, further comprising a control unit (61) for adjusting a flow rate of the driving gas so that ΔW) becomes larger.
  9.  上記制御部は、上記循環流路を通過する循環流量が、循環流量>0を維持するように、上記駆動ガスの流量を調整する、請求項8に記載の燃料電池システム。 The fuel cell system according to claim 8, wherein the control unit adjusts the flow rate of the driving gas so that the circulation flow rate passing through the circulation flow path maintains a circulation flow rate> 0.
  10.  上記制御部は、上記ノズル部を通過する上記駆動ガスの圧力が、圧力閾値を超えないように、上記駆動ガスの流量を調整する、請求項8又は9に記載の燃料電池システム。 10. The fuel cell system according to claim 8 or 9, wherein the control unit adjusts the flow rate of the driving gas so that the pressure of the driving gas passing through the nozzle unit does not exceed a pressure threshold value.
  11.  上記制御部は、上記発電出力変化量を、上記循環流路の流量に基づいて算出する、請求項8~10のいずれか1項に記載の燃料電池システム。 11. The fuel cell system according to claim 8, wherein the control unit calculates the power generation output change amount based on a flow rate of the circulation flow path.
  12.  上記制御部は、上記循環流路の流量を、上記循環流路の任意の2点間の圧力降下又は上記循環流路のガス組成に基づいて算出する、請求項11に記載の燃料電池システム。 12. The fuel cell system according to claim 11, wherein the control unit calculates the flow rate of the circulation channel based on a pressure drop between any two points of the circulation channel or a gas composition of the circulation channel.
  13.  上記制御部は、上記ブロア電力変化量を、上記ブロアを通過するガスの流量及び圧力に基づいて算出する、請求項8~12のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 8 to 12, wherein the control unit calculates the blower power change amount based on a flow rate and a pressure of a gas passing through the blower.
PCT/JP2019/008556 2018-03-13 2019-03-05 Fuel cell system WO2019176638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045914 2018-03-13
JP2018045914A JP6879237B2 (en) 2018-03-13 2018-03-13 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2019176638A1 true WO2019176638A1 (en) 2019-09-19

Family

ID=67906652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008556 WO2019176638A1 (en) 2018-03-13 2019-03-05 Fuel cell system

Country Status (2)

Country Link
JP (1) JP6879237B2 (en)
WO (1) WO2019176638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021174670A (en) * 2020-04-24 2021-11-01 トヨタ自動車株式会社 Fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024111346A (en) * 2023-02-06 2024-08-19 株式会社アイシン Fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311072A (en) * 2006-05-16 2007-11-29 Acumentrics Corp Fuel cell system and its operation method
JP2013235735A (en) * 2012-05-09 2013-11-21 Denso Corp Fuel cell system
JP2016132592A (en) * 2015-01-20 2016-07-25 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2017076471A (en) * 2015-10-13 2017-04-20 株式会社デンソー Fuel battery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311072A (en) * 2006-05-16 2007-11-29 Acumentrics Corp Fuel cell system and its operation method
JP2013235735A (en) * 2012-05-09 2013-11-21 Denso Corp Fuel cell system
JP2016132592A (en) * 2015-01-20 2016-07-25 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2017076471A (en) * 2015-10-13 2017-04-20 株式会社デンソー Fuel battery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021174670A (en) * 2020-04-24 2021-11-01 トヨタ自動車株式会社 Fuel cell system
JP7238849B2 (en) 2020-04-24 2023-03-14 トヨタ自動車株式会社 fuel cell system

Also Published As

Publication number Publication date
JP6879237B2 (en) 2021-06-02
JP2019160570A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US8795917B2 (en) Fuel cell system with control of the pressure of the reactants within the system
US10581096B2 (en) Fuel cell system
CA2811184C (en) Fuel cell system with intermittent fuel flow modification irrespective of load conditions
JP2004095528A (en) Fuel cell system
WO2009005136A1 (en) Fuel cell system and its current control method
JP5459414B2 (en) Fuel cell system
CN110637386B (en) Fuel cell system
CN101283474B (en) Fuel cell system and its operation method
JP2004192845A (en) Fuel cell system
JP5704228B2 (en) Fuel cell system
WO2013105590A1 (en) Fuel cell system
WO2019176638A1 (en) Fuel cell system
JP5804181B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
WO2013129453A1 (en) Fuel cell system and control method for fuel cell system
JP5915730B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
WO2007116814A1 (en) Fuel cell system and its control method
US20100062295A1 (en) Fuel cell system and air supply method thereof
JP4984435B2 (en) Fuel cell system and control method
KR100786481B1 (en) Method and Apparatus for Controlling Operation of Direct Methanol Fuel Cell System
JP7016025B2 (en) Fuel cell system and its operation method
WO2018212214A1 (en) Fuel cell system
JP2007005170A (en) Fuel cell system
JP5509728B2 (en) Fuel cell system
JP2008004468A (en) Fuel cell power generation system, and its control device and method
JP6358932B2 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767870

Country of ref document: EP

Kind code of ref document: A1