WO2019176368A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
WO2019176368A1
WO2019176368A1 PCT/JP2019/003781 JP2019003781W WO2019176368A1 WO 2019176368 A1 WO2019176368 A1 WO 2019176368A1 JP 2019003781 W JP2019003781 W JP 2019003781W WO 2019176368 A1 WO2019176368 A1 WO 2019176368A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
battery
control unit
charging
Prior art date
Application number
PCT/JP2019/003781
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 英樹
井戸 寛
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176368A1 publication Critical patent/WO2019176368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present invention relates to a power transmission device.
  • a wireless power feeding system that feeds power wirelessly from a power transmitting device provided on the ground side to a power receiving device provided on the vehicle side is being realized.
  • a wireless power feeding technique using magnetic field resonance or magnetic field induction has attracted attention.
  • magnetic field induction a magnetic field (magnetic flux) is generated by flowing an alternating current through a coil provided in a ground-side power transmission device, and this magnetic field is received by a coil provided in a vehicle-side power receiving device to generate an alternating current.
  • magnetic resonance is the same as magnetic field induction in that a coil is provided in each of the power transmission device and the power reception device, but by matching the frequency of the current flowing in the coil of the power transmission device with the resonance frequency of the coil of the power reception device, Resonance is generated between the power transmission device and the power reception device.
  • the coil of the power transmission device and the coil of the power reception device are magnetically coupled to achieve highly efficient wireless power feeding.
  • Patent Document 1 discloses a power supply stand that has an in-vehicle battery and supplies electric power to the in-vehicle battery of a vehicle that travels by an electric drive unit that uses the in-vehicle battery as a power source, and is charged by a commercial power source.
  • a power failure detection means for detecting a power failure of a commercial power supply, a power supply mode for supplying power to the in-vehicle battery, a normal power supply mode for supplying power to the in-vehicle battery mainly using a commercial power supply, and the power storage unit
  • First switching means for switching to a power failure power supply mode for feeding power to a vehicle-mounted battery, and control means for switching the first switching means to the power failure power supply mode when a power failure is detected by the power failure detection means.
  • a power supply stand is disclosed.
  • the power transmission device is a power transmission device that feeds power to a power reception device having a battery, receives identification information from the power reception device, and determines whether or not charging has been performed previously.
  • the first determination unit determines that the charging has been performed before
  • the first power transmission process is performed on the power receiving device
  • the power receiving device And a power transmission control unit that executes the power transmission process 2.
  • a charging process can be performed according to the presence or absence of charging results.
  • FIG. 1 is a diagram illustrating a configuration of a wireless power feeding system according to an embodiment of the present invention. It is a figure which shows the structural example of the power receiving apparatus which concerns on one Embodiment of this invention. It is a figure which shows the temperature characteristic of the internal resistance in a battery. It is a figure which shows an example of the relationship between SOC of a battery, and OCV. It is a figure which shows the time change of the charging current in intermittent charge. It is a flowchart showing operation
  • FIG. 1 is a diagram showing a configuration of a wireless power feeding system 1 according to an embodiment of the present invention.
  • a wireless power feeding system 1 shown in FIG. 1 is used in wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side near the vehicle and a vehicle side device.
  • the vehicle-side devices are the power receiving device 200, the battery 300, the load 400, and the battery monitoring device 500 that are respectively mounted on the vehicle.
  • FIG. 1 shows only one vehicle-side device, the power transmission device 100 can be used in combination with various vehicle-side devices.
  • the power transmission device 100 includes a power transmission control unit 110, a communication unit 120, an AC power source 130, a power conversion unit 140, a storage unit 150, and a primary coil L1.
  • the power transmission control unit 110 controls the power transmission apparatus 100 as a whole by controlling the operations of the communication unit 120 and the power conversion unit 140.
  • the communication unit 120 performs wireless communication with the communication unit 220 included in the power receiving device 200 under the control of the power transmission control unit 110.
  • Various information necessary for wireless power feeding is exchanged between the power transmitting apparatus 100 and the power receiving apparatus 200 by wireless communication between the communication unit 120 and the communication unit 120.
  • information such as the frequency of the alternating current flowing through the primary coil L1, that is, the frequency of the alternating magnetic field emitted from the primary coil L1, is transmitted from the communication unit 120 to the communication unit 220.
  • information such as the state of charge (SOC) and deterioration state of battery 300 and the allowable current during charging is transmitted from communication unit 220 to communication unit 120.
  • SOC state of charge
  • AC power supply 130 is a commercial power supply, for example, and supplies predetermined AC power to the power conversion unit 140.
  • the power conversion unit 140 outputs an alternating current having a predetermined frequency and current value to the primary coil L ⁇ b> 1 using the alternating current power supplied from the alternating current power supply 130 under the control of the power transmission control unit 110.
  • Primary coil L1 is installed on the ground side located under the vehicle, and emits an alternating magnetic field corresponding to the alternating current flowing from power conversion unit 140 toward the vehicle. Thereby, wireless power feeding to the vehicle is performed.
  • the storage unit 150 is a non-volatile readable / writable storage device such as a flash memory.
  • the storage unit 150 stores an ID of the power receiving apparatus 200 that has been charged before and a maximum capacity Qmax described later in association with each other. The ID of the power receiving device 200 will be described later.
  • the power transmission control unit 110 writes the ID and the maximum capacity Qmax of the new power receiving device 200 in the storage unit 150, and the power transmission control unit 110 is written in the storage unit 150, that is, the power receiving device 200 stored in the storage unit 150. ID and maximum capacity Qmax are read.
  • the power receiving apparatus 200 includes a power reception control unit 210, a communication unit 220, an alternating current detection unit 230, a drive control unit 240, a power conversion unit 250, a secondary coil L2, a resonance coil Lx, and a resonance capacitor Cx.
  • the resonance coil Lx and the resonance capacitor Cx are connected to the secondary coil L2, and constitute a resonance circuit together with the secondary coil L2.
  • the resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2 and the resonance coil Lx and the capacitance value of the resonance capacitor Cx.
  • the resonant coil Lx and the resonant capacitor Cx may each be composed of a plurality of elements. Further, part or all of the resonance coil Lx may be substituted by the inductance of the secondary coil L2.
  • the power reception control unit 210 controls the power reception apparatus 200 as a whole by controlling the operations of the communication unit 220 and the drive control unit 240.
  • the communication unit 220 performs wireless communication with the communication unit 120 included in the power transmission device 100 under the control of the power reception control unit 210, and stores various types of information as described above exchanged between the power transmission device 100 and the power reception device 200. Send and receive.
  • Information such as the frequency of the alternating current flowing through the primary coil L1 received by the communication unit 220 is output from the communication unit 220 to the power reception control unit 210.
  • the power reception control unit 210 includes a nonvolatile storage device (not shown) such as a flash memory. This storage device stores the ID of the power receiving device 200. The ID is unique to each power receiving apparatus 200, and it is desirable that the value changes when the battery 300 is replaced.
  • the power reception control unit 210 uses a combination of the identification information of the power reception device 200 and the identification information of the battery 300 as the ID of the power reception device 200.
  • the identification information of the power receiving device 200 is, for example, the manufacturing number of the power receiving device 200 or the MAC address of the communication unit 220, and the identification information of the battery 300 is, for example, the manufacturing number of the battery 300.
  • the alternating current detection unit 230 detects the alternating current flowing through the resonance circuit including the secondary coil L2 when the secondary coil L2 receives the alternating magnetic field emitted from the primary coil L1. Then, an AC voltage whose frequency and amplitude change according to the detected AC current is generated and output to the drive control unit 240.
  • the drive control unit 240 can acquire the frequency and magnitude of the alternating current flowing through the resonance circuit based on the alternating voltage input from the alternating current detection unit 230.
  • the drive control unit 240 controls the switching operations of the plurality of switching elements included in the power conversion unit 250 under the control of the power reception control unit 210. At this time, the drive control unit 240 changes the timing of the switching operation of each switching element based on the alternating current flowing through the resonance circuit detected by the alternating current detection unit 230. A specific method for changing the timing of the switching operation will be described later.
  • the power conversion unit 250 has a plurality of switching elements, and controls the AC current flowing through the resonance circuit and rectifies by switching each of the plurality of switching elements, thereby converting AC power to DC power. Do.
  • the power conversion unit 250 is connected to a chargeable / dischargeable battery 300, and the battery 300 is charged using DC power output from the power conversion unit 250. Note that a smoothing capacitor C0 for smoothing an input voltage to the battery 300 is connected between the power conversion unit 250 and the battery 300.
  • a load 400 is connected to the battery 300.
  • the load 400 provides various functions related to the operation of the vehicle using the DC power charged in the battery 300.
  • the load 400 includes, for example, an AC motor for driving a vehicle, an inverter that converts DC power of the battery 300 into AC power, and supplies the AC power to the AC motor.
  • the battery monitoring device 500 includes a sensor and a nonvolatile storage device.
  • the battery monitoring device 500 is connected to the battery 300 and measures various information of the battery 300 using a sensor.
  • the battery monitoring device 500 measures the voltage, temperature, and internal resistance of the battery 300 and outputs the measured values to the drive control unit 240.
  • the drive control unit 240 transmits the measurement value input from the battery monitoring device 500 to the power reception control unit 210 and further transmits the measured value to the power transmission device 100 via the communication unit 220.
  • the battery monitoring apparatus 500 may directly output the measurement value to the power reception control unit 210. That is, the route through which the measurement value measured by the battery monitoring device 500 is transmitted to the power reception control unit 210 is arbitrary, and the measurement value may be transmitted to the power reception control unit 210 and finally transmitted to the power transmission device 100.
  • the battery monitoring device 500 stores the reference internal resistance value R0 and the maximum capacity Qmax as parameters indicating the deterioration state of the battery 300.
  • the reference internal resistance value R0 is an internal resistance value of the battery 300 at a reference temperature, for example, 25 degrees Celsius.
  • the internal resistance of the battery 300 increases and decreases under the influence of temperature, but even if the influence of temperature is excluded, the internal resistance value increases due to deterioration.
  • the maximum capacity Qmax is the maximum power capacity that can be stored in the battery 300 at a certain time.
  • the maximum capacity Qmax takes a maximum value when the battery 300 is manufactured, and decreases due to deterioration. In other words, the maximum capacity Qmax is a parameter indicating the deterioration of the battery 300.
  • the change in the maximum capacity Qmax is gradual, and the change in the time when charging is completed once can be ignored.
  • a variable (hereinafter, current amount) Qnow indicating the power capacity currently stored in the battery 300 is defined.
  • the current amount Qnow increases / decreases due to charging / discharging.
  • the maximum value of Qnow is Qmax.
  • the battery monitoring device 500 records the measured internal resistance as the reference internal resistance value R0 when the measured temperature of the battery 300 is the reference temperature, and then measures it after a predetermined time, for example, one week or more has elapsed since recording. When the temperature of the battery 300 is the reference temperature, the measured internal resistance value is stored as a new reference internal resistance value R0.
  • the battery monitoring device 500 records, that is, updates, the maximum capacity Qmax transmitted from the power transmission device 100 as a new value, as will be described later. However, the power receiving apparatus 200 may further update the value of the maximum capacity Qmax by other means.
  • FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200 according to an embodiment of the present invention.
  • the alternating current detection unit 230 is configured using, for example, a transformer Tr.
  • a transformer Tr When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1 is linked to the secondary coil L2, an electromotive force is generated in the secondary coil L2, and an alternating current i flows through the resonance circuit including the secondary coil L2.
  • this alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr.
  • the alternating current detection part 230 can detect the alternating current i.
  • the AC current detection unit 230 may be configured by using a device other than the transformer Tr as long as the AC current i flowing through the resonance circuit can be detected.
  • the power conversion unit 250 includes two MOS transistors (MOSFETs) Q1 and Q2 connected in series.
  • the MOS transistors Q1 and Q2 perform a switching operation for switching between the source and the drain from the conductive state to the disconnected state or from the disconnected state to the conductive state in accordance with the gate drive signal from the drive control unit 240.
  • the MOS transistor Q1 can function as an upper arm switching element
  • the MOS transistor Q2 can function as a lower arm switching element.
  • a resonance circuit including the secondary coil L2 is connected to the connection point O between the MOS transistors Q1 and Q2 and the source terminal of the MOS transistor Q2. Therefore, the AC current i flowing through the resonance circuit can be controlled and rectified by switching the MOS transistors Q1 and Q2 at appropriate timings.
  • the drive control unit 240 includes a voltage acquisition unit 241, a drive signal generation unit 243, and a gate drive circuit 244.
  • the voltage acquisition unit 241 acquires the AC voltage Vg output from the AC current detection unit 230 (transformer Tr) and outputs the AC voltage Vg to the drive signal generation unit 243.
  • the drive signal generation unit 243 receives the basic drive signal Sr from the power reception control unit 210 in addition to the AC voltage Vg acquired by the voltage acquisition unit 241.
  • the basic drive signal Sr is an AC signal that is output from the drive control unit 240 to the power conversion unit 250 and is a source of a gate drive signal that controls the switching operation of the MOS transistors Q1 and Q2, and the frequency thereof is the primary power transmission device 100. It is determined according to the frequency of the current flowing through the coil L1. Specifically, when the communication unit 220 receives information representing the frequency f of the alternating current flowing through the primary coil L1 of the power transmission device 100 from the communication unit 120, the communication unit 220 outputs the information to the power reception control unit 210.
  • the power reception control unit 210 When the information on the frequency f is input from the communication unit 220, the power reception control unit 210 generates a basic drive signal Sr corresponding to the frequency f and outputs it to the drive control unit 240.
  • the basic drive signal Sr is, for example, a combination of two rectangular waves corresponding to the MOS transistors Q1 and Q2, respectively, and has an H level corresponding to ON (conducting state) and an L level corresponding to OFF (disconnected state). Are alternately repeated at the frequency f. However, a predetermined protection period is provided between the H levels of the two rectangular waves so that the MOS transistors Q1 and Q2 are not turned on simultaneously.
  • the drive signal generation unit 243 adjusts the phase of the basic drive signal Sr input from the power reception control unit 210 based on the AC voltage Vg input from the power reception control unit 210, and generates the charge drive signal Sc. Then, the generated charge drive signal Sc is output to the gate drive circuit 244.
  • the gate drive circuit 244 outputs a gate drive signal based on the charge drive signal Sc input from the drive signal generation unit 243 to the gate terminals of the MOS transistors Q1 and Q2, respectively, and causes the MOS transistors Q1 and Q2 to perform a switching operation.
  • the MOS transistors Q1 and Q2 function as switching elements, respectively, and control of the alternating current i flowing in the resonance circuit according to the alternating magnetic field emitted from the primary coil L1, or the alternating current power to the direct current power. Conversion to
  • the power receiving device 200 of the present embodiment can charge the battery 300 by receiving wireless power feeding from the power transmitting device 100 by performing the operation described above.
  • FIG. 3 is a diagram showing the temperature characteristics of the internal resistance in the battery 300, that is, the relationship between the temperature T of the battery 300 and the magnification of the internal resistance.
  • the above-mentioned reference temperature of 25 degrees is set as a reference, that is, 1 time.
  • the internal resistance of the battery 300 increases as the temperature decreases. And it is 5 times at 0 degrees, 10 times at -10 degrees, and 20 times at -25 degrees.
  • the internal resistance Rx at 25 degrees of a certain battery 300 is 1 m ⁇
  • the temperature of the battery 300 decreases to ⁇ 25 degrees the internal resistance Rx is 20 times 20 m ⁇ .
  • K (T) the temperature characteristic of the internal resistance
  • FIG. 4 is a diagram illustrating an example of the relationship between the SOC and the OCV of the battery 300.
  • the SOC shown on the horizontal axis changes from 0% to 100%, the change in the OCV shown on the vertical axis will be described. Since FIG. 4 shows the change tendency as an example, specific numerical values of OCV are not shown.
  • the OCV increases monotonously with the increase in SOC, but the gain, that is, the rate at which the OCV increases with respect to the increase in SOC is not constant.
  • the gain of SOC less than 20% and SOC 80% or more is large, and OCV hardly changes in the range of SOC of 20% to 80%.
  • a region where the gain is high and the SOC is high that is, a region where the SOC in the example shown in FIG. 4 is 80% or more is referred to as a “high gain region”.
  • FIG. 5 is a diagram illustrating a change in charging current with time in intermittent charging.
  • a certain current ia is applied for a time ton, then interrupted for a time toff, and applied again for a time ton.
  • the following repeats this.
  • the time ton and the time toff can be set arbitrarily, but in the present embodiment, the lengths of both are the same. That is, the time intervals from t0 to t9 shown in FIG. 5 are equal.
  • the power supplied to the battery 300 from time t0 to time t1 is represented by the product of current and time. Therefore, if an arbitrary timing between time t1 and time t2 is time t100, and an arbitrary timing between time t7 and time t8 is time t200, electric power P supplied to battery 300 from time t100 to time t200 Is 3 ⁇ (ia ⁇ ton).
  • Equation 1 A method for evaluating deterioration performed by the power transmission control unit 110 will be described.
  • SOC Qnow / Qmax (1) Therefore, considering the influence when the current amount Qnow is changed in Equation 1, if the change amount of the current amount Qnow is expressed by ⁇ Qnow and the change amount of the SOC is expressed by ⁇ SOC, Equation 2 is obtained.
  • ⁇ SOC ⁇ Qnow / Qmax (2)
  • ⁇ Qnow is 3 ⁇ (ia ⁇ ton) as described above.
  • the OCV is measured at each of time t100 and time t200, and ⁇ SOC is calculated from the known SOC-OCV correlation diagram shown in FIG. 4 and the increment of OCV, that is, ⁇ OCV. That is, since the values of the two variables shown on the right side of Equation 3 are obtained, the maximum capacity Qmax can be calculated. As described above, the maximum capacity Qmax is a parameter indicating the deterioration of the battery 300.
  • the power transmitting apparatus 100 determines whether or not the power receiving device 200 to be connected is the first connection. In other words, the power transmitting apparatus 100 determines whether or not the connected power receiving apparatus 200 has a history of charging to full charge using the power transmitting apparatus 100 previously. When it is determined that the battery has been fully charged before, control is performed so that more current flows than in the first connection.
  • the first connection is referred to as “initial connection”, and the second and subsequent connections are referred to as “repeat connection”.
  • the power transmission apparatus 100 uses constant current charging, that is, CC charging, and constant voltage charging, that is, CV charging in combination. As described above, since the power transmission device 100 changes the control method depending on whether or not it is the initial connection, the power transmission device 100 has the following four charging modes. That is, CC charging at the first connection, CV charging at the first connection, CC charging at the repeat connection, and CV power reception at the repeat connection. Below, the electric current in each charge is demonstrated. When the amount of current is determined in each charging mode, power transmission device 100 generates an AC magnetic field so that battery 300 is charged with the current in power receiving device 200.
  • the power transmission device 100 performs three operations according to the temperature of the battery 300 in CC charging at the time of initial connection. First, when the temperature of the battery 300 is higher than a predetermined threshold Tz, for example, 0 degrees, the battery 300 is charged with the rated current of the power transmission device 100. Second, when the temperature of the battery 300 is equal to or lower than a predetermined threshold Tz, but is lower than a predetermined threshold Tzz, for example, higher than ⁇ 20 degrees, the battery 300 is charged at 20 to 30% of the rated current. Third, charging is not performed when the temperature of the battery 300 is equal to or lower than a predetermined threshold value Tzz. In this case, it waits for the temperature of the battery 300 to rise.
  • a predetermined threshold Tz for example, 0 degrees
  • the current Icv supplied to the battery 300 is expressed by the following Equation 4 in CV charging at the time of the initial connection.
  • Icv (Vmax ⁇ OCVm) / Rcell (4)
  • Vmax is a predetermined target voltage at the end of charging
  • OCVm is the highest voltage among the non-energized voltages of a plurality of cells constituting the battery 300
  • Rcell is the resistance value of the cell with the highest non-conductive voltage.
  • the OCVm and Rcell are measured by the battery monitoring device 500 and transmitted to the power transmission device 100 by communication.
  • the power transmission device 100 performs intermittent charging as shown in FIG. 5 in CV charging at the time of initial connection, and further evaluates deterioration, that is, calculates the maximum capacity Qmax.
  • the value of Icv shown in Equation 4 is used instead of Ia shown in FIG.
  • the time ton and the time toff are, for example, 10 seconds.
  • the power transmission device 100 performs three operations according to the temperature of the battery 300 in CC charging with repeat connection.
  • a predetermined threshold Tz for example, 0 degrees
  • the battery 300 is charged with the rated current of the power transmission device 100.
  • the temperature of the battery 300 is equal to or lower than a predetermined threshold Tz but is higher than a threshold Tzr determined by the degree of deterioration of the battery 300
  • the battery 300 is charged with Imax represented by the following formula 5.
  • charging is not performed when the temperature of the battery 300 is equal to or lower than the threshold value Tzr. In this case, it waits for the temperature of the battery 300 to rise.
  • Vb is the voltage of the battery 300 when energized
  • OCV is the voltage of the battery 300 when not energized
  • R0 is the aforementioned reference internal resistance value
  • K (T) is a function indicating the aforementioned temperature characteristics.
  • the power transmission device 100 performs CV charging for repeat connection in the same manner as CV charging for the initial connection.
  • FIG. 6 is a flowchart showing the operation of the power transmission control unit 110.
  • the power receiving apparatus 200 may transmit an ID to the power transmitting apparatus 100 based on its own determination, or the power receiving apparatus 200 may transmit an ID to the power transmitting apparatus 100 in response to a transmission command from the power transmitting apparatus 100.
  • the power transmission control unit 110 determines whether or not the received ID of the power receiving device 200 is stored in the storage unit 150. When determining that the received ID of the power receiving device 200 is stored in the storage unit 150, the power transmission control unit 110 proceeds to S302, and when determining that the ID of the power receiving device 200 is not stored in the storage unit 150. The process proceeds to S321. In S302, the power transmission control unit 110 acquires the current SOC from the power receiving apparatus 200, and determines whether the SOC is less than 80%. The power transmission control unit 110 proceeds to S303 when determining that the SOC is less than 80%, and proceeds to S311 when determining that the SOC is 80% or more.
  • the power transmission control unit 110 acquires the deterioration information, that is, the reference internal resistance value R0 from the power receiving device 200. This deterioration information is used in S306 and S307 described later.
  • the power transmission control unit 110 acquires the battery temperature T from the power receiving device 200.
  • the power transmission control unit 110 determines whether or not the battery temperature T acquired in S304 is lower than a predetermined temperature threshold Tz, for example, 0 degrees. The power transmission control unit 110 proceeds to S306 when determining that the battery temperature T is lower than the temperature threshold Tz, and proceeds to S308 when determining that the battery temperature T is equal to or higher than the temperature threshold Tz.
  • the power transmission control unit 110 determines whether charging is possible from the deterioration information acquired in S303 and the battery temperature T acquired in S304. Specifically, when R0 / K (T) is smaller than a predetermined threshold value Rz, it is determined that charging is possible, and when it is greater than or equal to the threshold value Rz, it is determined that charging is impossible. The power transmission control unit 110 proceeds to S307 when determining that charging is possible, and returns to S304 when determining that charging is impossible. In the case of returning from S306 to S304, it is expected that the battery temperature T will rise with the passage of time and the judgment in S305 or S306 will change. In step S307, the power transmission control unit 110 performs CC charging for repeat connection using the above-described equation 5, and proceeds to step S309.
  • the power transmission control unit 110 acquires the current SOC from the power receiving apparatus 200, and determines whether the SOC is less than 80%.
  • the power transmission control unit 110 returns to S304 when it is determined that the SOC is less than 80%, and proceeds to S311 when it is determined that the SOC is 80% or more.
  • the power transmission control unit 110 performs repeat connection CV charging using Equation 4 described above and proceeds to S ⁇ b> 312.
  • the power transmission control unit 110 acquires the current SOC from the power receiving apparatus 200, and determines whether or not the SOC is 100%.
  • the power transmission control unit 110 proceeds to S313 when determining that the SOC is 100%, and returns to S311 when determining that the SOC is less than 100%.
  • the power transmission control unit 110 calculates the value of the maximum capacity Qmax stored in the storage unit 150 and associated with the identification information of the power receiving apparatus 200 that has completed charging in S311. The value is updated to the value, and the process shown in FIG. 6 ends.
  • the power transmission control unit 110 executes the processing from S321 onward. Note that the processes of S321, S322, S333, S325, S326, and S328 are the same as the processes of S302, S304, S305, S308, S309, and S312 and will not be described in detail.
  • the power transmission control unit 110 proceeds to S322 if an affirmative determination is made, and proceeds to S327 if a negative determination is made.
  • S323 to be executed next to S322 the power transmission control unit 110 proceeds to S323A when making an affirmative determination, and proceeds to S325 when making a negative determination.
  • the power transmission control unit 110 returns to S322 when determining that the battery temperature T is lower than the temperature threshold Tzz, and proceeds to S324 when determining that the battery temperature T is equal to or higher than the temperature threshold Tzz.
  • the power transmission control unit 110 performs CC charging at the first connection, that is, constant current charging at 20 to 30% of the rated current.
  • the power transmission control unit 110 returns to S322 when making an affirmative decision, and proceeds to S327 when making a negative decision.
  • the power transmission control unit 110 performs CV charging for the first connection using the above-described Equation 4, and proceeds to S328. The detailed operation in S327 is as described above.
  • the power transmission control unit 110 proceeds to S329 if an affirmative determination is made, and returns to S327 if a negative determination is made.
  • the power transmission control unit 110 records the identification information of the power receiving apparatus 200 in association with the value of the maximum capacity Qmax calculated in S327 in the storage unit 150, and ends the process illustrated in FIG.
  • 80% which is the criterion in S309 and S326, is a numerical value showing an example of the high gain region, and it is desirable to set appropriately according to the characteristics of each battery 30. Further, when the power transmission control unit 110 ends the process illustrated in FIG. 6, the power reception device 200 transmits the calculated value of the maximum capacity Qmax to the power reception device 200, and causes the battery monitoring device 500 to record this.
  • the power transmission device 100 supplies power to the power reception device 200 including the battery 300.
  • the power transmitting apparatus 100 receives the identification information from the power receiving apparatus 200, and performs the process of S301 in FIG. 6 to determine whether or not charging has been performed previously.
  • power transmission control unit 110 determines that charging has been performed in the past (S301: YES)
  • power transmission device 200 performs the processes of S302 to S313. If the power transmission control unit 110 determines that charging has not been performed before (S301: NO), the power transmission control unit 110 executes the processes of S321 to S329 on the power receiving device 200. Therefore, the power transmission device 100 can perform different charging processes depending on whether charging has been performed before the power receiving device 200.
  • the power transmission device 100 can perform appropriate charging based on the results of charging. It may be difficult to judge the individual difference between the products of the battery 300 and the problems caused by the combination with the power transmission device 100, so-called compatibility problems, unless they are connected and actually charged. Therefore, different processes can be performed by different charging processes between the power receiving apparatus 200 having a track record of charging and the power receiving apparatus 200 having no track record of charging.
  • the amount of power transmitted in the second power transmission process is smaller than the amount of power transmitted in the first power transmission process. Therefore, the amount of power transmission can be controlled according to the performance of charging.
  • the power transmission device 100 records the identification information of the power receiving device 200 that has completed power transmission in the storage unit 150 as the power receiving device 200 that has been charged before (S313 in FIG. 6). , S329).
  • the power transmission control unit 110 calculates the deterioration state of the battery 300 (S311, S327).
  • the power transmission control unit 110 records the identification information of the power receiving device 200 in the storage unit 150 in association with the maximum capacity Qmax representing the battery deterioration state calculated by the power transmission control unit 110.
  • the storage unit 150 is stored in the power transmission device 100.
  • the storage unit 150 may be shared by a plurality of power transmission devices 100.
  • the power transmission devices 100 that are physically adjacent to each other may be shared only with each other, or may be shared by a large number of power transmission devices 100 that are installed in different places and connected by a communication network such as the Internet. Good.
  • the power transmission device 100 sharing the storage unit 150 may be limited to the power transmission device 100 having the same hardware configuration or software configuration, or the storage unit 150 if at least one of the hardware configuration and the software configuration is common. May be shared.
  • each power transmission apparatus 100 may be individually provided with a storage unit 150, and information stored in each power transmission apparatus 100 may be transmitted to each other.
  • the power transmission control unit 110 may perform any of the following abnormal processes. Good. As described above, the maximum capacity Qmax takes a maximum value at the time of manufacture and decreases due to deterioration. In addition, the timing at which the maximum capacity Qmax recorded in the power transmitting apparatus 100 is calculated is estimated to be before the timing at which the maximum capacity Qmax of the power receiving apparatus 200 held by the power receiving apparatus 200 is calculated.
  • the power receiving apparatus 200 has more opportunities to update the value of the maximum capacity Qmax, and when the power transmitting apparatus 100 updates the value of the maximum capacity Qmax, the value is also transmitted to the power receiving apparatus 200. Therefore, the power receiving device 200 is updated at least at the same timing as the power transmitting device 100.
  • the power transmission control unit 110 performs any one of the following first to third abnormality processes. You may perform the process similar to the time of the first connection as a 1st abnormality process. This is because there is a contradiction in the value of the maximum capacity Qmax transmitted by the power receiving device 200, and the value of the reference internal resistance value R0 is not reliable. As the second abnormality process, charging may be performed using only a smaller current than that at the first connection. This is because the battery 300 may be calculated as if the maximum capacity Qmax has increased due to an abnormality. As the third abnormality process, charging may not be performed. This is to maximize safety.
  • the power transmission device 100 and the power reception device 200 perform power feeding wirelessly using an alternating magnetic field.
  • the power transmission device 100 and the power reception device 200 may perform power supply by wire.
  • the power transmission control unit 110, the power reception control unit 210, and the drive control unit 240 may be realized by software executed by a microcomputer or the like, or by hardware such as FPGA (Field-Programmable Gate Array). May be. These may be used in combination.
  • FPGA Field-Programmable Gate Array
  • the wireless power feeding system 1 used for wireless power feeding to a vehicle such as an electric vehicle has been described.
  • the present invention is not limited to wireless power feeding to a vehicle, but is applied to a wireless power feeding system for other uses. May be.
  • wireless power supply system 100 power transmission device 110 power transmission control unit 130 AC power supply 140 power conversion unit 150 storage unit 200 power reception device 210 power reception control unit 240 drive control unit 250 power conversion unit 300 battery 500 battery monitoring device Qnow current amount Qmax maximum capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention enables a charging process to be performed in accordance with the presence/absence of charging records. This power transmission device for feeding power to a power reception device having a battery is provided with: an initial charge determination unit which receives identification information from the power reception device and determines whether or not said power reception device has been charged in the past; and a power transmission control unit which, in the case when the initial charge determination unit determines that charging has taken place in the past, executes a first power transmission process with respect to the power reception device, and, in the case when the initial charge determination unit determines that charging has not taken place in the past, executes a second power transmission process with respect to the power reception device.

Description

送電装置Power transmission equipment
 本発明は、送電装置に関する。 The present invention relates to a power transmission device.
 近年、電気自動車等において、地上側に設けられた送電装置から車両側に設けられた受電装置に対して無線により給電を行う無線給電システムが実現されつつある。こうした無線給電システムでは、磁界共振や磁界誘導を利用した無線給電技術が注目されている。磁界誘導とは、地上側の送電装置に設けられたコイルに交流電流を流すことで磁界(磁束)を発生し、この磁界を車両側の受電装置に設けられたコイルで受けて交流電流を生じさせることにより、送電装置から受電装置への無線給電を実現するものである。一方、磁界共振とは、送電装置と受電装置にそれぞれコイルを設ける点は磁界誘導と同じであるが、送電装置のコイルに流れる電流の周波数を受電装置のコイルの共振周波数に一致させることにより、送電装置と受電装置の間に共振を生じさせる。これにより、送電装置のコイルと受電装置のコイルを磁気的に結合し、高効率の無線給電を実現している。 In recent years, in an electric vehicle or the like, a wireless power feeding system that feeds power wirelessly from a power transmitting device provided on the ground side to a power receiving device provided on the vehicle side is being realized. In such a wireless power feeding system, a wireless power feeding technique using magnetic field resonance or magnetic field induction has attracted attention. In magnetic field induction, a magnetic field (magnetic flux) is generated by flowing an alternating current through a coil provided in a ground-side power transmission device, and this magnetic field is received by a coil provided in a vehicle-side power receiving device to generate an alternating current. By doing so, wireless power feeding from the power transmitting device to the power receiving device is realized. On the other hand, magnetic resonance is the same as magnetic field induction in that a coil is provided in each of the power transmission device and the power reception device, but by matching the frequency of the current flowing in the coil of the power transmission device with the resonance frequency of the coil of the power reception device, Resonance is generated between the power transmission device and the power reception device. As a result, the coil of the power transmission device and the coil of the power reception device are magnetically coupled to achieve highly efficient wireless power feeding.
 上述した無線給電技術に関して、下記の特許文献1が知られている。特許文献1には、車載バッテリを有し当該車載バッテリを電源とした電気的駆動手段により走行する車両の前記車載バッテリに対して電力を供給する給電スタンドであって、商用電源によって充電される蓄電部と、商用電源の停電を検出する停電検出手段と、前記車載バッテリへ電力を供給する給電モードを、主として商用電源を供給電源として前記車載バッテリに給電する通常給電モードと、前記蓄電部から前記車載バッテリに給電する停電給電モードとに切換える第1切換手段と、前記停電検出手段により停電が検出された場合に、前記第1切換手段を前記停電給電モードに切換える制御手段とを備えることを特徴とする給電スタンドが開示されている。 Regarding the wireless power feeding technology described above, the following Patent Document 1 is known. Patent Document 1 discloses a power supply stand that has an in-vehicle battery and supplies electric power to the in-vehicle battery of a vehicle that travels by an electric drive unit that uses the in-vehicle battery as a power source, and is charged by a commercial power source. A power failure detection means for detecting a power failure of a commercial power supply, a power supply mode for supplying power to the in-vehicle battery, a normal power supply mode for supplying power to the in-vehicle battery mainly using a commercial power supply, and the power storage unit First switching means for switching to a power failure power supply mode for feeding power to a vehicle-mounted battery, and control means for switching the first switching means to the power failure power supply mode when a power failure is detected by the power failure detection means. A power supply stand is disclosed.
特開2012-50291公報JP 2012-50291 A
 送電装置と受電装置の組み合わせは無数に存在するので、充電の制御手法に改善の余地がある。 Since there are countless combinations of power transmission devices and power reception devices, there is room for improvement in the charging control method.
 本発明の第1の態様による送電装置は、電池を有する受電装置に給電する送電装置であって、前記受電装置から識別情報を受信し、従前に充電を行ったか否かを判断する初回判別部と、前記初回判別部が従前に充電を行ったと判断すると、前記受電装置に第1の送電処理を実行し、前記初回判別部が従前に充電を行っていないと判断すると、前記受電装置に第2の送電処理を実行する送電制御部とを備える。 The power transmission device according to the first aspect of the present invention is a power transmission device that feeds power to a power reception device having a battery, receives identification information from the power reception device, and determines whether or not charging has been performed previously. When the first determination unit determines that the charging has been performed before, the first power transmission process is performed on the power receiving device, and when the first determination unit determines that the charging is not performed before, the power receiving device And a power transmission control unit that executes the power transmission process 2.
 本発明によれば、充電実績の有無に応じた充電処理ができる。 According to the present invention, a charging process can be performed according to the presence or absence of charging results.
本発明の一実施形態に係る無線給電システムの構成を示す図である。1 is a diagram illustrating a configuration of a wireless power feeding system according to an embodiment of the present invention. 本発明の一実施形態に係る受電装置の構成例を示す図である。It is a figure which shows the structural example of the power receiving apparatus which concerns on one Embodiment of this invention. 電池における内部抵抗の温度特性を示す図である。It is a figure which shows the temperature characteristic of the internal resistance in a battery. 電池のSOCとOCVの関係の一例を示す図である。It is a figure which shows an example of the relationship between SOC of a battery, and OCV. 間欠充電における充電電流の時間変化を示す図である。It is a figure which shows the time change of the charging current in intermittent charge. 送電制御部の動作を表すフローチャートである。It is a flowchart showing operation | movement of a power transmission control part.
 以下、図面を参照して、本発明に係る受電装置の実施の形態について説明する。 Hereinafter, embodiments of a power receiving device according to the present invention will be described with reference to the drawings.
(無線給電システム1の構成)
 図1は、本発明の一実施形態に係る無線給電システム1の構成を示す図である。図1に示す無線給電システム1は、電気自動車等の車両への無線給電において利用されるものであり、車両付近の地上側に設置された送電装置100と、車両側装置とを有する。車両側装置とは、車両にそれぞれ搭載された受電装置200、電池300、負荷400、および電池監視装置500である。図1ではある1つの車両側装置のみを示しているが、送電装置100は様々な車両側装置と組み合わせて使用できる。
(Configuration of wireless power feeding system 1)
FIG. 1 is a diagram showing a configuration of a wireless power feeding system 1 according to an embodiment of the present invention. A wireless power feeding system 1 shown in FIG. 1 is used in wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side near the vehicle and a vehicle side device. The vehicle-side devices are the power receiving device 200, the battery 300, the load 400, and the battery monitoring device 500 that are respectively mounted on the vehicle. Although FIG. 1 shows only one vehicle-side device, the power transmission device 100 can be used in combination with various vehicle-side devices.
 送電装置100は、送電制御部110、通信部120、交流電源130、電力変換部140、記憶部150および一次コイルL1を備える。送電制御部110は、通信部120および電力変換部140の動作を制御することで、送電装置100全体の制御を行う。 The power transmission device 100 includes a power transmission control unit 110, a communication unit 120, an AC power source 130, a power conversion unit 140, a storage unit 150, and a primary coil L1. The power transmission control unit 110 controls the power transmission apparatus 100 as a whole by controlling the operations of the communication unit 120 and the power conversion unit 140.
 通信部120は、送電制御部110の制御により、受電装置200が備える通信部220との間で無線通信を行う。この通信部120と通信部120の無線通信により、無線給電の際に必要な各種情報が送電装置100と受電装置200の間で交換される。たとえば、一次コイルL1に流れる交流電流の周波数、すなわち一次コイルL1から放出される交流磁界の周波数等の情報が、通信部120から通信部220に送信される。また、電池300の充電状態(SOC)や劣化状態、充電時の許容電流等の情報が、通信部220から通信部120に送信される。 The communication unit 120 performs wireless communication with the communication unit 220 included in the power receiving device 200 under the control of the power transmission control unit 110. Various information necessary for wireless power feeding is exchanged between the power transmitting apparatus 100 and the power receiving apparatus 200 by wireless communication between the communication unit 120 and the communication unit 120. For example, information such as the frequency of the alternating current flowing through the primary coil L1, that is, the frequency of the alternating magnetic field emitted from the primary coil L1, is transmitted from the communication unit 120 to the communication unit 220. In addition, information such as the state of charge (SOC) and deterioration state of battery 300 and the allowable current during charging is transmitted from communication unit 220 to communication unit 120.
 交流電源130は、たとえば商用電源であり、所定の交流電力を電力変換部140に供給する。電力変換部140は、送電制御部110の制御により、交流電源130から供給された交流電力を用いて所定の周波数および電流値の交流電流を一次コイルL1に出力する。一次コイルL1は、車両の下に位置する地上側に設置されており、電力変換部140から流される交流電流に応じた交流磁界を車両に向けて空中に放出する。これにより、車両への無線給電を行う。 AC power supply 130 is a commercial power supply, for example, and supplies predetermined AC power to the power conversion unit 140. The power conversion unit 140 outputs an alternating current having a predetermined frequency and current value to the primary coil L <b> 1 using the alternating current power supplied from the alternating current power supply 130 under the control of the power transmission control unit 110. Primary coil L1 is installed on the ground side located under the vehicle, and emits an alternating magnetic field corresponding to the alternating current flowing from power conversion unit 140 toward the vehicle. Thereby, wireless power feeding to the vehicle is performed.
 記憶部150は不揮発性の読み書き可能な記憶装置、たとえばフラッシュメモリである。記憶部150には、従前に充電を行った受電装置200のIDと、後述する最大容量Qmaxが関連付けて格納される。受電装置200のIDについては後述する。送電制御部110が記憶部150に新たな受電装置200のIDと最大容量Qmaxを書き込み、送電制御部110が記憶部150に書き込まれている、すなわち記憶部150に格納されている受電装置200のIDと最大容量Qmaxを読み込む。 The storage unit 150 is a non-volatile readable / writable storage device such as a flash memory. The storage unit 150 stores an ID of the power receiving apparatus 200 that has been charged before and a maximum capacity Qmax described later in association with each other. The ID of the power receiving device 200 will be described later. The power transmission control unit 110 writes the ID and the maximum capacity Qmax of the new power receiving device 200 in the storage unit 150, and the power transmission control unit 110 is written in the storage unit 150, that is, the power receiving device 200 stored in the storage unit 150. ID and maximum capacity Qmax are read.
 受電装置200は、受電制御部210、通信部220、交流電流検出部230、駆動制御部240、電力変換部250、二次コイルL2、共振コイルLxおよび共振コンデンサCxを備える。共振コイルLxおよび共振コンデンサCxは、二次コイルL2に接続されており、二次コイルL2とともに共振回路を構成する。この共振回路の共振周波数は、二次コイルL2および共振コイルLxがそれぞれ有するインダクタンスと、共振コンデンサCxが有する静電容量値とに応じて決定される。なお、共振コイルLxおよび共振コンデンサCxはそれぞれ複数の素子により構成されていてもよい。また、共振コイルLxの一部または全部を二次コイルL2のインダクタンスで代用してもよい。 The power receiving apparatus 200 includes a power reception control unit 210, a communication unit 220, an alternating current detection unit 230, a drive control unit 240, a power conversion unit 250, a secondary coil L2, a resonance coil Lx, and a resonance capacitor Cx. The resonance coil Lx and the resonance capacitor Cx are connected to the secondary coil L2, and constitute a resonance circuit together with the secondary coil L2. The resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2 and the resonance coil Lx and the capacitance value of the resonance capacitor Cx. Note that the resonant coil Lx and the resonant capacitor Cx may each be composed of a plurality of elements. Further, part or all of the resonance coil Lx may be substituted by the inductance of the secondary coil L2.
 受電制御部210は、通信部220および駆動制御部240の動作を制御することで、受電装置200全体の制御を行う。通信部220は、受電制御部210の制御により、送電装置100が備える通信部120との間で無線通信を行い、送電装置100と受電装置200の間で交換される前述のような各種情報を送受信する。通信部220が受信した一次コイルL1に流れる交流電流の周波数等の情報は、通信部220から受電制御部210に出力される。 The power reception control unit 210 controls the power reception apparatus 200 as a whole by controlling the operations of the communication unit 220 and the drive control unit 240. The communication unit 220 performs wireless communication with the communication unit 120 included in the power transmission device 100 under the control of the power reception control unit 210, and stores various types of information as described above exchanged between the power transmission device 100 and the power reception device 200. Send and receive. Information such as the frequency of the alternating current flowing through the primary coil L1 received by the communication unit 220 is output from the communication unit 220 to the power reception control unit 210.
 受電制御部210は、不図示の不揮発性の記憶装置、たとえばフラッシュメモリを備える。この記憶装置には、受電装置200のIDが格納される。IDはそれぞれの受電装置200に固有のものであり、電池300が交換されると値が変化することが望ましい。たとえば受電制御部210は、受電装置200の識別情報と電池300の識別情報とを組み合わせたものを受電装置200のIDとする。受電装置200の識別情報とはたとえば受電装置200の製造番号や通信部220のMACアドレスであり、電池300の識別情報とはたとえば電池300の製造番号である。 The power reception control unit 210 includes a nonvolatile storage device (not shown) such as a flash memory. This storage device stores the ID of the power receiving device 200. The ID is unique to each power receiving apparatus 200, and it is desirable that the value changes when the battery 300 is replaced. For example, the power reception control unit 210 uses a combination of the identification information of the power reception device 200 and the identification information of the battery 300 as the ID of the power reception device 200. The identification information of the power receiving device 200 is, for example, the manufacturing number of the power receiving device 200 or the MAC address of the communication unit 220, and the identification information of the battery 300 is, for example, the manufacturing number of the battery 300.
 交流電流検出部230は、一次コイルL1から放出された交流磁界を二次コイルL2が受けることで二次コイルL2を含む共振回路に流れる交流電流を検出する。そして、検出した交流電流に応じて周波数と振幅がそれぞれ変化する交流電圧を発生させ、駆動制御部240に出力する。駆動制御部240は、交流電流検出部230から入力された交流電圧に基づいて、共振回路に流れる交流電流の周波数や大きさを取得することができる。 The alternating current detection unit 230 detects the alternating current flowing through the resonance circuit including the secondary coil L2 when the secondary coil L2 receives the alternating magnetic field emitted from the primary coil L1. Then, an AC voltage whose frequency and amplitude change according to the detected AC current is generated and output to the drive control unit 240. The drive control unit 240 can acquire the frequency and magnitude of the alternating current flowing through the resonance circuit based on the alternating voltage input from the alternating current detection unit 230.
 駆動制御部240は、受電制御部210の制御により、電力変換部250が有する複数のスイッチング素子のスイッチング動作を制御する。このとき駆動制御部240は、交流電流検出部230が検出した共振回路に流れる交流電流に基づいて、各スイッチング素子のスイッチング動作のタイミングを変化させる。なお、スイッチング動作のタイミングを変化させる具体的な方法は後述する。 The drive control unit 240 controls the switching operations of the plurality of switching elements included in the power conversion unit 250 under the control of the power reception control unit 210. At this time, the drive control unit 240 changes the timing of the switching operation of each switching element based on the alternating current flowing through the resonance circuit detected by the alternating current detection unit 230. A specific method for changing the timing of the switching operation will be described later.
 電力変換部250は、複数のスイッチング素子を有しており、複数のスイッチング素子をそれぞれスイッチング動作させることで、共振回路に流れる交流電流を制御するとともに整流し、交流電力から直流電力への変換を行う。電力変換部250には充放電可能な電池300が接続されており、電力変換部250から出力される直流電力を用いて電池300が充電される。なお、電力変換部250と電池300の間には、電池300への入力電圧を平滑化するための平滑コンデンサC0が接続されている。 The power conversion unit 250 has a plurality of switching elements, and controls the AC current flowing through the resonance circuit and rectifies by switching each of the plurality of switching elements, thereby converting AC power to DC power. Do. The power conversion unit 250 is connected to a chargeable / dischargeable battery 300, and the battery 300 is charged using DC power output from the power conversion unit 250. Note that a smoothing capacitor C0 for smoothing an input voltage to the battery 300 is connected between the power conversion unit 250 and the battery 300.
 電池300には、負荷400が接続される。負荷400は、電池300に充電された直流電力を利用して、車両の動作に関する様々な機能を提供する。負荷400には、たとえば車両駆動用の交流モータや、電池300の直流電力を交流電力に変換して交流モータに供給するインバータなどが含まれる。 A load 400 is connected to the battery 300. The load 400 provides various functions related to the operation of the vehicle using the DC power charged in the battery 300. The load 400 includes, for example, an AC motor for driving a vehicle, an inverter that converts DC power of the battery 300 into AC power, and supplies the AC power to the AC motor.
 電池監視装置500は、センサと不揮発性の記憶装置を備える。電池監視装置500は電池300と接続されており、センサを用いて電池300の様々な情報を測定する。たとえば電池監視装置500は、電池300の電圧、温度、および内部抵抗を測定して測定値を駆動制御部240に出力する。駆動制御部240は、電池監視装置500から入力された測定値を受電制御部210に伝達し、さらに通信部220を経由して送電装置100に送信される。ただし電池監視装置500は測定値を受電制御部210に直接出力してもよい。すなわち電池監視装置500が測定した測定値が受電制御部210に伝達される経路は任意であり、測定値が受電制御部210まで伝達され、最終的に送電装置100まで伝達されればよい。 The battery monitoring device 500 includes a sensor and a nonvolatile storage device. The battery monitoring device 500 is connected to the battery 300 and measures various information of the battery 300 using a sensor. For example, the battery monitoring device 500 measures the voltage, temperature, and internal resistance of the battery 300 and outputs the measured values to the drive control unit 240. The drive control unit 240 transmits the measurement value input from the battery monitoring device 500 to the power reception control unit 210 and further transmits the measured value to the power transmission device 100 via the communication unit 220. However, the battery monitoring apparatus 500 may directly output the measurement value to the power reception control unit 210. That is, the route through which the measurement value measured by the battery monitoring device 500 is transmitted to the power reception control unit 210 is arbitrary, and the measurement value may be transmitted to the power reception control unit 210 and finally transmitted to the power transmission device 100.
 また電池監視装置500は、電池300の劣化状態を示すパラメータとして、基準内部抵抗値R0および最大容量Qmaxを記憶する。基準内部抵抗値R0とは、基準温度、たとえば摂氏25度における電池300の内部抵抗値である。電池300の内部抵抗は温度の影響を受けて増減するが、温度の影響を除外しても劣化により内部抵抗値が上昇する。最大容量Qmaxとは、ある時点における電池300に蓄積可能な最大の電力容量である。最大容量Qmaxは電池300の製造時に最大値をとり、劣化により減少する。換言すると最大容量Qmaxは、電池300の劣化を示すパラメータである。ただし最大容量Qmaxの変化は緩やかであり、充電が一度完了する程度の時間における変化は無視できる。 Further, the battery monitoring device 500 stores the reference internal resistance value R0 and the maximum capacity Qmax as parameters indicating the deterioration state of the battery 300. The reference internal resistance value R0 is an internal resistance value of the battery 300 at a reference temperature, for example, 25 degrees Celsius. The internal resistance of the battery 300 increases and decreases under the influence of temperature, but even if the influence of temperature is excluded, the internal resistance value increases due to deterioration. The maximum capacity Qmax is the maximum power capacity that can be stored in the battery 300 at a certain time. The maximum capacity Qmax takes a maximum value when the battery 300 is manufactured, and decreases due to deterioration. In other words, the maximum capacity Qmax is a parameter indicating the deterioration of the battery 300. However, the change in the maximum capacity Qmax is gradual, and the change in the time when charging is completed once can be ignored.
 ここで、電池300に現在蓄積されている電力容量を示す変数(以下、現在量)Qnowを定義する。現在量Qnowは充放電により増減する。またQnowの最大値はQmaxである。電池監視装置500は、測定した電池300の温度が基準温度の場合に、測定した内部抵抗を基準内部抵抗値R0として記録し、記録から所定の時間、たとえば1週間以上経過すると、次に測定した電池300の温度が基準温度の場合に、測定した内部抵抗値を新たな基準内部抵抗値R0として保存する。また電池監視装置500は、後述するように送電装置100から伝達された最大容量Qmaxを新たな値として記録、すなわち更新する。ただし受電装置200は、他の手段でさらに最大容量Qmaxの値を更新してもよい。 Here, a variable (hereinafter, current amount) Qnow indicating the power capacity currently stored in the battery 300 is defined. The current amount Qnow increases / decreases due to charging / discharging. The maximum value of Qnow is Qmax. The battery monitoring device 500 records the measured internal resistance as the reference internal resistance value R0 when the measured temperature of the battery 300 is the reference temperature, and then measures it after a predetermined time, for example, one week or more has elapsed since recording. When the temperature of the battery 300 is the reference temperature, the measured internal resistance value is stored as a new reference internal resistance value R0. The battery monitoring device 500 records, that is, updates, the maximum capacity Qmax transmitted from the power transmission device 100 as a new value, as will be described later. However, the power receiving apparatus 200 may further update the value of the maximum capacity Qmax by other means.
(受電装置200の詳細)
 図1の無線給電システム1のうち、受電装置200の詳細について説明する。図2は、本発明の一実施形態に係る受電装置200の構成例を示す図である。
(Details of power receiving device 200)
Details of the power receiving device 200 in the wireless power feeding system 1 of FIG. 1 will be described. FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200 according to an embodiment of the present invention.
 図2に示すように、交流電流検出部230は、たとえばトランスTrを用いて構成される。一次コイルL1から放出された交流磁界による磁束が二次コイルL2と鎖交すると、二次コイルL2に起電力が生じ、二次コイルL2を含む共振回路に交流電流iが流れる。この交流電流iがトランスTrの一次コイルに流れると、トランスTrの二次コイルの両端に、交流電流iに応じて周波数と振幅がそれぞれ変化する交流電圧Vgが発生する。これにより、交流電流検出部230は交流電流iの検出を行うことができる。なお、共振回路に流れる交流電流iを検出できるものであれば、トランスTr以外のものを用いて交流電流検出部230を構成してもよい。 As shown in FIG. 2, the alternating current detection unit 230 is configured using, for example, a transformer Tr. When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1 is linked to the secondary coil L2, an electromotive force is generated in the secondary coil L2, and an alternating current i flows through the resonance circuit including the secondary coil L2. When this alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr. Thereby, the alternating current detection part 230 can detect the alternating current i. Note that the AC current detection unit 230 may be configured by using a device other than the transformer Tr as long as the AC current i flowing through the resonance circuit can be detected.
 電力変換部250は、直列接続された2つのMOSトランジスタ(MOSFET)Q1、Q2を有する。MOSトランジスタQ1、Q2は、駆動制御部240からのゲート駆動信号に応じて、ソース-ドレイン間を導通状態から切断状態へ、または切断状態から導通状態へと切り替えるスイッチング動作をそれぞれ行う。このスイッチング動作により、MOSトランジスタQ1を上アームのスイッチング素子として機能させるとともに、MOSトランジスタQ2を下アームのスイッチング素子として機能させることができる。MOSトランジスタQ1、Q2間の接続点Oと、MOSトランジスタQ2のソース端子には、二次コイルL2を含む共振回路がそれぞれ接続されている。そのため、MOSトランジスタQ1、Q2をそれぞれ適切なタイミングでスイッチング動作させることで、共振回路に流れる交流電流iの制御および整流を行うことができる。 The power conversion unit 250 includes two MOS transistors (MOSFETs) Q1 and Q2 connected in series. The MOS transistors Q1 and Q2 perform a switching operation for switching between the source and the drain from the conductive state to the disconnected state or from the disconnected state to the conductive state in accordance with the gate drive signal from the drive control unit 240. By this switching operation, the MOS transistor Q1 can function as an upper arm switching element, and the MOS transistor Q2 can function as a lower arm switching element. A resonance circuit including the secondary coil L2 is connected to the connection point O between the MOS transistors Q1 and Q2 and the source terminal of the MOS transistor Q2. Therefore, the AC current i flowing through the resonance circuit can be controlled and rectified by switching the MOS transistors Q1 and Q2 at appropriate timings.
 なお、図2では2つのMOSトランジスタQ1、Q2をスイッチング素子として用いたハーフブリッジ構成の電力変換部250を例示したが、4つのMOSトランジスタをスイッチング素子として用いたフルブリッジ構成の電力変換部250としてもよい。以下では図2に示したハーフブリッジ構成の電力変換部250による動作例を説明するが、フルブリッジ構成とした場合でも基本的な動作は同様である。 2 exemplifies the power conversion unit 250 having a half-bridge configuration using two MOS transistors Q1 and Q2 as switching elements, but as a power conversion unit 250 having a full-bridge configuration using four MOS transistors as switching elements. Also good. In the following, an example of operation by the power converter 250 having the half-bridge configuration shown in FIG. 2 will be described, but the basic operation is the same even when the full-bridge configuration is used.
 駆動制御部240は、電圧取得部241、駆動信号生成部243およびゲート駆動回路244を有する。 The drive control unit 240 includes a voltage acquisition unit 241, a drive signal generation unit 243, and a gate drive circuit 244.
 電圧取得部241は、交流電流検出部230(トランスTr)から出力される交流電圧Vgを取得し、駆動信号生成部243に出力する。 The voltage acquisition unit 241 acquires the AC voltage Vg output from the AC current detection unit 230 (transformer Tr) and outputs the AC voltage Vg to the drive signal generation unit 243.
 駆動信号生成部243には、電圧取得部241が取得した交流電圧Vgに加えて、受電制御部210から基本駆動信号Srが入力される。基本駆動信号Srは、駆動制御部240から電力変換部250に出力されてMOSトランジスタQ1、Q2のスイッチング動作を制御するゲート駆動信号の元となる交流信号であり、その周波数は送電装置100の一次コイルL1に流れる電流の周波数に応じて決定される。具体的には、通信部220は、送電装置100の一次コイルL1に流れる交流電流の周波数fを表す情報を通信部120から受信すると、これを受電制御部210に出力する。受電制御部210は、通信部220から周波数fの情報が入力されると、この周波数fに応じた基本駆動信号Srを生成し、駆動制御部240に出力する。なお、基本駆動信号Srは、たとえばMOSトランジスタQ1、Q2にそれぞれ対応する2つの矩形波の組み合わせであり、オン(導通状態)に対応するHレベルと、オフ(切断状態)に対応するLレベルとが、周波数fで交互に繰り返される。ただし、MOSトランジスタQ1とQ2が同時にオンとならないように、2つの矩形波におけるHレベルの間には所定の保護期間が設けられる。 The drive signal generation unit 243 receives the basic drive signal Sr from the power reception control unit 210 in addition to the AC voltage Vg acquired by the voltage acquisition unit 241. The basic drive signal Sr is an AC signal that is output from the drive control unit 240 to the power conversion unit 250 and is a source of a gate drive signal that controls the switching operation of the MOS transistors Q1 and Q2, and the frequency thereof is the primary power transmission device 100. It is determined according to the frequency of the current flowing through the coil L1. Specifically, when the communication unit 220 receives information representing the frequency f of the alternating current flowing through the primary coil L1 of the power transmission device 100 from the communication unit 120, the communication unit 220 outputs the information to the power reception control unit 210. When the information on the frequency f is input from the communication unit 220, the power reception control unit 210 generates a basic drive signal Sr corresponding to the frequency f and outputs it to the drive control unit 240. The basic drive signal Sr is, for example, a combination of two rectangular waves corresponding to the MOS transistors Q1 and Q2, respectively, and has an H level corresponding to ON (conducting state) and an L level corresponding to OFF (disconnected state). Are alternately repeated at the frequency f. However, a predetermined protection period is provided between the H levels of the two rectangular waves so that the MOS transistors Q1 and Q2 are not turned on simultaneously.
 駆動信号生成部243は、受電制御部210から入力された交流電圧Vgに基づいて、受電制御部210から入力された基本駆動信号Srの位相を調整し、充電駆動信号Scを生成する。そして、生成した充電駆動信号Scをゲート駆動回路244に出力する。 The drive signal generation unit 243 adjusts the phase of the basic drive signal Sr input from the power reception control unit 210 based on the AC voltage Vg input from the power reception control unit 210, and generates the charge drive signal Sc. Then, the generated charge drive signal Sc is output to the gate drive circuit 244.
 ゲート駆動回路244は、駆動信号生成部243から入力された充電駆動信号Scに基づくゲート駆動信号をMOSトランジスタQ1、Q2のゲート端子へそれぞれ出力し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させる。これにより、電力変換部250において、MOSトランジスタQ1、Q2がスイッチング素子としてそれぞれ機能し、一次コイルL1から放出された交流磁界に応じて共振回路に流れる交流電流iの制御や、交流電力から直流電力への変換が行われる。 The gate drive circuit 244 outputs a gate drive signal based on the charge drive signal Sc input from the drive signal generation unit 243 to the gate terminals of the MOS transistors Q1 and Q2, respectively, and causes the MOS transistors Q1 and Q2 to perform a switching operation. Thus, in the power conversion unit 250, the MOS transistors Q1 and Q2 function as switching elements, respectively, and control of the alternating current i flowing in the resonance circuit according to the alternating magnetic field emitted from the primary coil L1, or the alternating current power to the direct current power. Conversion to
 本実施形態の受電装置200は、以上説明したような動作を行うことにより、送電装置100から無線給電を受けて電池300を充電することができる。 The power receiving device 200 of the present embodiment can charge the battery 300 by receiving wireless power feeding from the power transmitting device 100 by performing the operation described above.
(温度特性)
 図3は、電池300における内部抵抗の温度特性、すなわち電池300の温度Tと内部抵抗の倍率との関係を示す図である。ただし図3では前述の基準温度である25度を基準、すなわち1倍としている。図3に示すように、電池300の内部抵抗は、温度が低いほど倍率が高くなる。そして0度では5倍、-10度では10倍、-25度では20倍になる。たとえばある電池300の25度での内部抵抗Rxが1mΩの場合に、電池300の温度が-25度に下がると内部抵抗Rxは20倍の20mΩとなる。以下では、内部抵抗の温度特性を関数K(T)と表す。すなわち前述の例ではK(-25)=20である。
(Temperature characteristics)
FIG. 3 is a diagram showing the temperature characteristics of the internal resistance in the battery 300, that is, the relationship between the temperature T of the battery 300 and the magnification of the internal resistance. However, in FIG. 3, the above-mentioned reference temperature of 25 degrees is set as a reference, that is, 1 time. As shown in FIG. 3, the internal resistance of the battery 300 increases as the temperature decreases. And it is 5 times at 0 degrees, 10 times at -10 degrees, and 20 times at -25 degrees. For example, when the internal resistance Rx at 25 degrees of a certain battery 300 is 1 mΩ, when the temperature of the battery 300 decreases to −25 degrees, the internal resistance Rx is 20 times 20 mΩ. Hereinafter, the temperature characteristic of the internal resistance is expressed as a function K (T). That is, in the above example, K (−25) = 20.
(SOCとOCVの関係)
 図4は、電池300のSOCとOCVの関係の一例を示す図である。横軸に示すSOCが0%から100%まで変化する際に、縦軸に示すOCVの変化を説明する。なお図4は変化の傾向を一例として示すものなので、OCVの具体的な数値は記載していない。SOCの増加とともにOCVは単調増加するが、そのゲイン、すなわちSOCの増加に対するOCVが増加する割合は一定ではない。たとえば図4に示す例では、SOC20%未満およびSOC80%以上のゲインが大きく、SOCが20%から80%の範囲ではOCVはほとんど変化しない。本実施の形態ではゲインが大きく、かつSOCが高い領域、すなわち図4に示す例におけるSOCが80%以上の領域を「ハイゲイン領域」と呼ぶ。
(Relationship between SOC and OCV)
FIG. 4 is a diagram illustrating an example of the relationship between the SOC and the OCV of the battery 300. When the SOC shown on the horizontal axis changes from 0% to 100%, the change in the OCV shown on the vertical axis will be described. Since FIG. 4 shows the change tendency as an example, specific numerical values of OCV are not shown. The OCV increases monotonously with the increase in SOC, but the gain, that is, the rate at which the OCV increases with respect to the increase in SOC is not constant. For example, in the example shown in FIG. 4, the gain of SOC less than 20% and SOC 80% or more is large, and OCV hardly changes in the range of SOC of 20% to 80%. In the present embodiment, a region where the gain is high and the SOC is high, that is, a region where the SOC in the example shown in FIG. 4 is 80% or more is referred to as a “high gain region”.
(間欠充電)
 図5は、間欠充電における充電電流の時間変化を示す図である。本実施の形態における間欠充電は図5に示すように、ある一定の電流iaを時間tonだけ印加し、次に時間toffだけ中断し、再び時間tonだけ印加する。以下はこれを繰り返す。時間tonと時間toffは任意に設定できるが、本実施の形態では両者の長さを同一とする。すなわち図5に示すt0~t9のそれぞれの時間間隔は等しい。
(Intermittent charging)
FIG. 5 is a diagram illustrating a change in charging current with time in intermittent charging. In the intermittent charging in this embodiment, as shown in FIG. 5, a certain current ia is applied for a time ton, then interrupted for a time toff, and applied again for a time ton. The following repeats this. The time ton and the time toff can be set arbitrarily, but in the present embodiment, the lengths of both are the same. That is, the time intervals from t0 to t9 shown in FIG. 5 are equal.
 時刻t0から時刻t1までに電池300に供給される電力は、電流と時間の積で表される。そのため、時刻t1と時刻t2の間の任意のタイミングを時刻t100とし、時刻t7と時刻t8の間の任意のタイミングを時刻t200とすると、時刻t100から時刻t200までに電池300に供給される電力Pは、3×(ia×ton)である。 The power supplied to the battery 300 from time t0 to time t1 is represented by the product of current and time. Therefore, if an arbitrary timing between time t1 and time t2 is time t100, and an arbitrary timing between time t7 and time t8 is time t200, electric power P supplied to battery 300 from time t100 to time t200 Is 3 × (ia × ton).
(劣化の評価)
 送電制御部110が行う劣化の評価方法を説明する。SOC、現在量Qnow、および最大容量Qmaxの関係は式1に示すとおりである。
  SOC=Qnow/Qmax・・・(1)
 そのため式1において現在量Qnowの変化した際の影響を考え、現在量Qnowの変化分をΔQnow、SOCの変化分をΔSOCで表すと、式2に示すものになる。
  ΔSOC=ΔQnow/Qmax・・・(2)
(Evaluation of deterioration)
A method for evaluating deterioration performed by the power transmission control unit 110 will be described. The relationship among the SOC, the current amount Qnow, and the maximum capacity Qmax is as shown in Equation 1.
SOC = Qnow / Qmax (1)
Therefore, considering the influence when the current amount Qnow is changed in Equation 1, if the change amount of the current amount Qnow is expressed by ΔQnow and the change amount of the SOC is expressed by ΔSOC, Equation 2 is obtained.
ΔSOC = ΔQnow / Qmax (2)
 ここで式2を変形し、最大容量Qmaxが単独で左辺に来るようにすると、式3に示すものになる。
  Qmax=ΔQnow/ΔSOC・・・(3)
Here, when Expression 2 is modified so that the maximum capacity Qmax is singly on the left side, Expression 3 is obtained.
Qmax = ΔQnow / ΔSOC (3)
 たとえば図5に示すような電流を流して間欠充電を行っている場合に、時刻t100と時刻t200の差分を評価すれば、ΔQnowは、前述のとおり3×(ia×ton)である。また、時刻t100と時刻t200のそれぞれにおいてOCVを測定し、図4に示す既知のSOC-OCV相関図とOCVの増分、すなわちΔOCVからΔSOCを算出する。すなわち、式3の右辺に示す二つの変数の値が得られるので、最大容量Qmaxが算出できる。前述のように最大容量Qmaxは電池300の劣化を示すパラメータである。 For example, when intermittent charging is performed by supplying a current as shown in FIG. 5, if the difference between time t100 and time t200 is evaluated, ΔQnow is 3 × (ia × ton) as described above. Further, the OCV is measured at each of time t100 and time t200, and ΔSOC is calculated from the known SOC-OCV correlation diagram shown in FIG. 4 and the increment of OCV, that is, ΔOCV. That is, since the values of the two variables shown on the right side of Equation 3 are obtained, the maximum capacity Qmax can be calculated. As described above, the maximum capacity Qmax is a parameter indicating the deterioration of the battery 300.
(充電の概要)
 送電装置100にとって、接続された受電装置200が規格どおりに制作されているか、また何らかの不具合が存在するか否かを判断することは容易ではない。特に、特定の送電装置100と受電装置200の組み合わせだけで不具合が発生することもあるため、事前に確認することは困難である。そこで送電装置100は、接続される受電装置200が初回の接続であるか否かを判断する。換言すると送電装置100は、接続された受電装置200が、従前にその送電装置100を用いて満充電まで充電した実績があるか否かを判断する。そして従前に満充電まで充電したと判断する場合は、初回の接続に比べてより多くの電流を流すように制御する。以下では、初回の接続を「初回接続」と呼び、2回目以降の接続を「リピート接続」と呼ぶ。
(Overview of charging)
It is not easy for the power transmitting apparatus 100 to determine whether the connected power receiving apparatus 200 is produced according to the standard and whether there is any problem. In particular, since a problem may occur only with a specific combination of the power transmission device 100 and the power reception device 200, it is difficult to confirm in advance. Therefore, the power transmission device 100 determines whether or not the power receiving device 200 to be connected is the first connection. In other words, the power transmitting apparatus 100 determines whether or not the connected power receiving apparatus 200 has a history of charging to full charge using the power transmitting apparatus 100 previously. When it is determined that the battery has been fully charged before, control is performed so that more current flows than in the first connection. Hereinafter, the first connection is referred to as “initial connection”, and the second and subsequent connections are referred to as “repeat connection”.
 送電装置100は、定電流充電、すなわちCC充電と、定電圧充電、すなわちCV充電とを併用する。前述のとおり送電装置100は、初回接続か否かで制御方法を変更するので、送電装置100は以下の4つの充電モードを有する。すなわち、初回接続時のCC充電、初回接続時のCV充電、リピート接続のCC充電、リピート接続のCV受電である。以下ではそれぞれの充電における電流について説明する。それぞれの充電モードにおいて電流量が決定されると、送電装置100は受電装置200においてその電流で電池300の充電が行われるように交流磁界を発生させる。 The power transmission apparatus 100 uses constant current charging, that is, CC charging, and constant voltage charging, that is, CV charging in combination. As described above, since the power transmission device 100 changes the control method depending on whether or not it is the initial connection, the power transmission device 100 has the following four charging modes. That is, CC charging at the first connection, CV charging at the first connection, CC charging at the repeat connection, and CV power reception at the repeat connection. Below, the electric current in each charge is demonstrated. When the amount of current is determined in each charging mode, power transmission device 100 generates an AC magnetic field so that battery 300 is charged with the current in power receiving device 200.
(初回接続時のCC充電)
 送電装置100は、初回接続時のCC充電では、電池300の温度に応じて3つの動作を行う。第1に電池300の温度が所定の閾値Tz、たとえば0度よりも高い場合は送電装置100の定格電流で充電する。第2に電池300の温度が所定の閾値Tz以下であるが、より低い所定の閾値Tzz、たとえば―20度よりも高い場合は、定格電流の2~3割で充電する。第3に電池300の温度が所定の閾値Tzz以下の場合は、充電を行わない。この場合は電池300の温度が上昇するのを待つことになる。
(CC charge at first connection)
The power transmission device 100 performs three operations according to the temperature of the battery 300 in CC charging at the time of initial connection. First, when the temperature of the battery 300 is higher than a predetermined threshold Tz, for example, 0 degrees, the battery 300 is charged with the rated current of the power transmission device 100. Second, when the temperature of the battery 300 is equal to or lower than a predetermined threshold Tz, but is lower than a predetermined threshold Tzz, for example, higher than −20 degrees, the battery 300 is charged at 20 to 30% of the rated current. Third, charging is not performed when the temperature of the battery 300 is equal to or lower than a predetermined threshold value Tzz. In this case, it waits for the temperature of the battery 300 to rise.
(初回接続時のCV充電)
 送電装置100は、初回接続時のCV充電では、電池300に供給する電流Icvは次の式4により表される。
  Icv=(Vmax-OCVm)/Rcell・・・(4)
 ただし、Vmaxはあらかじめ定められた充電終了の目標電圧、OCVmは電池300を構成する複数のセルの無通電電圧のうち最も高い電圧、Rcellは無通電電圧が最も高いセルの抵抗値である。なおOCVmやRcellは、電池監視装置500が測定して通信により送電装置100に伝達される。
(CV charge at the first connection)
In the power transmission device 100, the current Icv supplied to the battery 300 is expressed by the following Equation 4 in CV charging at the time of the initial connection.
Icv = (Vmax−OCVm) / Rcell (4)
However, Vmax is a predetermined target voltage at the end of charging, OCVm is the highest voltage among the non-energized voltages of a plurality of cells constituting the battery 300, and Rcell is the resistance value of the cell with the highest non-conductive voltage. The OCVm and Rcell are measured by the battery monitoring device 500 and transmitted to the power transmission device 100 by communication.
 送電装置100は、初回接続時のCV充電では、図5に示したような間欠充電を行い、さらに劣化の評価、すなわち最大容量Qmaxの算出を行う。ただし図5に示すIaの代わりに式4に示したIcvの値を用いる。時間tonと時間toffは、たとえば10秒である。 The power transmission device 100 performs intermittent charging as shown in FIG. 5 in CV charging at the time of initial connection, and further evaluates deterioration, that is, calculates the maximum capacity Qmax. However, the value of Icv shown in Equation 4 is used instead of Ia shown in FIG. The time ton and the time toff are, for example, 10 seconds.
(リピート接続のCC充電)  
 送電装置100は、リピート接続のCC充電では、電池300の温度に応じて3つの動作を行う。第1に電池300の温度が所定の閾値Tz、たとえば0度よりも高い場合は送電装置100の定格電流で充電する。第2に電池300の温度が所定の閾値Tz以下であるが、電池300の劣化の度合いにより定まる閾値Tzrよりも高い場合は、以下の式5で表されるImaxで充電する。第3に電池300の温度が閾値Tzr以下の場合は、充電を行わない。この場合は電池300の温度が上昇するのを待つことになる。
  Imax=(Vb-OCV)/(R0・K(T))・・・(5)
 ただしVbは通電時の電池300の電圧、OCVは無通電時の電池300の電圧、R0は前述の基準内部抵抗値、K(T)は前述の温度特性を示す関数である。
(CC charging with repeat connection)
The power transmission device 100 performs three operations according to the temperature of the battery 300 in CC charging with repeat connection. First, when the temperature of the battery 300 is higher than a predetermined threshold Tz, for example, 0 degrees, the battery 300 is charged with the rated current of the power transmission device 100. Secondly, when the temperature of the battery 300 is equal to or lower than a predetermined threshold Tz but is higher than a threshold Tzr determined by the degree of deterioration of the battery 300, the battery 300 is charged with Imax represented by the following formula 5. Thirdly, charging is not performed when the temperature of the battery 300 is equal to or lower than the threshold value Tzr. In this case, it waits for the temperature of the battery 300 to rise.
Imax = (Vb−OCV) / (R0 · K (T)) (5)
However, Vb is the voltage of the battery 300 when energized, OCV is the voltage of the battery 300 when not energized, R0 is the aforementioned reference internal resistance value, and K (T) is a function indicating the aforementioned temperature characteristics.
(リピート接続のCV受電)
 送電装置100は、リピート接続のCV充電は、初回接続時のCV充電と同様に行う。
(CV power reception with repeat connection)
The power transmission device 100 performs CV charging for repeat connection in the same manner as CV charging for the initial connection.
(フローチャート)
 図6は、送電制御部110の動作を表すフローチャートである。受電装置200から送電装置100に受電装置200のIDが送信されると、図6に示す処理が開示される。なお受電装置200は自らの判断で送電装置100にIDを送信してもよいし、受電装置200は送電装置100から送信指令を受けて送電装置100にIDを送信してもよい。
(flowchart)
FIG. 6 is a flowchart showing the operation of the power transmission control unit 110. When the ID of the power receiving device 200 is transmitted from the power receiving device 200 to the power transmitting device 100, the processing illustrated in FIG. 6 is disclosed. The power receiving apparatus 200 may transmit an ID to the power transmitting apparatus 100 based on its own determination, or the power receiving apparatus 200 may transmit an ID to the power transmitting apparatus 100 in response to a transmission command from the power transmitting apparatus 100.
 S301では送電制御部110は、受信した受電装置200のIDが記憶部150に格納されているか否かを判断する。送電制御部110は、受信した受電装置200のIDが記憶部150に格納されていると判断する場合はS302に進み、受電装置200のIDが記憶部150に格納されていないと判断する場合はS321に進む。S302では送電制御部110は、受電装置200から現在のSOCを取得し、そのSOCが80%未満であるか否かを判断する。送電制御部110は、SOCが80%未満であると判断する場合はS303に進み、SOCが80%以上であると判断する場合はS311に進む。 In S301, the power transmission control unit 110 determines whether or not the received ID of the power receiving device 200 is stored in the storage unit 150. When determining that the received ID of the power receiving device 200 is stored in the storage unit 150, the power transmission control unit 110 proceeds to S302, and when determining that the ID of the power receiving device 200 is not stored in the storage unit 150. The process proceeds to S321. In S302, the power transmission control unit 110 acquires the current SOC from the power receiving apparatus 200, and determines whether the SOC is less than 80%. The power transmission control unit 110 proceeds to S303 when determining that the SOC is less than 80%, and proceeds to S311 when determining that the SOC is 80% or more.
 S303では送電制御部110は、受電装置200から劣化情報、すなわち基準内部抵抗値R0を取得する。なおこの劣化情報は、後述するS306およびS307において使用される。続くS304では送電制御部110は、受電装置200から電池温度Tを取得する。続くS305では送電制御部110は、S304において取得した電池温度Tが所定の温度閾値Tz、たとえば0度よりも低いか否かを判断する。送電制御部110は、電池温度Tが温度閾値Tzよりも低いと判断する場合はS306に進み、電池温度Tが温度閾値Tz以上であると判断する場合はS308に進む。 In S303, the power transmission control unit 110 acquires the deterioration information, that is, the reference internal resistance value R0 from the power receiving device 200. This deterioration information is used in S306 and S307 described later. In subsequent S <b> 304, the power transmission control unit 110 acquires the battery temperature T from the power receiving device 200. In subsequent S305, the power transmission control unit 110 determines whether or not the battery temperature T acquired in S304 is lower than a predetermined temperature threshold Tz, for example, 0 degrees. The power transmission control unit 110 proceeds to S306 when determining that the battery temperature T is lower than the temperature threshold Tz, and proceeds to S308 when determining that the battery temperature T is equal to or higher than the temperature threshold Tz.
 S306では送電制御部110は、S303において取得した劣化情報とS304において取得した電池温度Tから、充電が可能か否かを判断する。具体的には、R0/K(T)が所定の閾値Rzよりも小さい場合は充電可能と判断し、閾値Rz以上の場合には充電不可と判断する。送電制御部110は、充電可能と判断する場合はS307に進み、充電が不可能と判断する場合はS304に戻る。なおS306からS304に戻る場合は、時間の経過により電池温度Tが上昇してS305またはS306の判断が変化することを期待している。S307では送電制御部110は、前述の式5を用いたリピート接続のCC充電を行いS309に進む。 In S306, the power transmission control unit 110 determines whether charging is possible from the deterioration information acquired in S303 and the battery temperature T acquired in S304. Specifically, when R0 / K (T) is smaller than a predetermined threshold value Rz, it is determined that charging is possible, and when it is greater than or equal to the threshold value Rz, it is determined that charging is impossible. The power transmission control unit 110 proceeds to S307 when determining that charging is possible, and returns to S304 when determining that charging is impossible. In the case of returning from S306 to S304, it is expected that the battery temperature T will rise with the passage of time and the judgment in S305 or S306 will change. In step S307, the power transmission control unit 110 performs CC charging for repeat connection using the above-described equation 5, and proceeds to step S309.
 S309では送電制御部110は、受電装置200から現在のSOCを取得し、そのSOCが80%未満であるか否かを判断する。送電制御部110は、SOCが80%未満であると判断する場合はS304に戻り、SOCが80%以上であると判断する場合はS311に進む。S311では送電制御部110は、前述の式4を用いるリピート接続のCV充電を行いS312に進む。S312では送電制御部110は、受電装置200から現在のSOCを取得し、そのSOCが100%であるか否かを判断する。送電制御部110はSOCが100%であると判断する場合はS313に進み、SOCが100%未満であると判断する場合はS311に戻る。S313では送電制御部110は、記憶部150に格納されている最大容量Qmaxの値であって、充電を完了した受電装置200の識別情報に関連付けられている最大容量Qmaxの値をS311において算出した値に更新して、図6に示す処理を終了する。 In S309, the power transmission control unit 110 acquires the current SOC from the power receiving apparatus 200, and determines whether the SOC is less than 80%. The power transmission control unit 110 returns to S304 when it is determined that the SOC is less than 80%, and proceeds to S311 when it is determined that the SOC is 80% or more. In S <b> 311, the power transmission control unit 110 performs repeat connection CV charging using Equation 4 described above and proceeds to S <b> 312. In S312, the power transmission control unit 110 acquires the current SOC from the power receiving apparatus 200, and determines whether or not the SOC is 100%. The power transmission control unit 110 proceeds to S313 when determining that the SOC is 100%, and returns to S311 when determining that the SOC is less than 100%. In S313, the power transmission control unit 110 calculates the value of the maximum capacity Qmax stored in the storage unit 150 and associated with the identification information of the power receiving apparatus 200 that has completed charging in S311. The value is updated to the value, and the process shown in FIG. 6 ends.
 S301において否定判断されると送電制御部110はS321以下の処理を実行する。なおS321、S322、S333、S325、S326、S328の処理のそれぞれは、S302、S304、S305、S308、S309、S312の処理と同一なので詳細な説明は省略する。S321では送電制御部110は、肯定判断する場合はS322に進み、否定判断する場合はS327に進む。S322の次に実行されるS323では送電制御部110は、肯定判断する場合はS323Aに進み、否定判断する場合はS325に進む。S323Aでは送電制御部110は、電池温度Tが温度閾値Tzzよりも低いと判断する場合はS322に戻り、電池温度Tが温度閾値Tzz以上であると判断する場合はS324に進む。S324では送電制御部110は、初回接続時のCC充電、すなわち定格電流の2~3割で定電流充電を行う。 If a negative determination is made in S301, the power transmission control unit 110 executes the processing from S321 onward. Note that the processes of S321, S322, S333, S325, S326, and S328 are the same as the processes of S302, S304, S305, S308, S309, and S312 and will not be described in detail. In S321, the power transmission control unit 110 proceeds to S322 if an affirmative determination is made, and proceeds to S327 if a negative determination is made. In S323 to be executed next to S322, the power transmission control unit 110 proceeds to S323A when making an affirmative determination, and proceeds to S325 when making a negative determination. In S323A, the power transmission control unit 110 returns to S322 when determining that the battery temperature T is lower than the temperature threshold Tzz, and proceeds to S324 when determining that the battery temperature T is equal to or higher than the temperature threshold Tzz. In S324, the power transmission control unit 110 performs CC charging at the first connection, that is, constant current charging at 20 to 30% of the rated current.
 S324またはS325の次に実行されるS326では送電制御部110は、肯定判断する場合はS322に戻り、否定判断する場合はS327に進む。S327では送電制御部110は、前述の式4を用いる初回接続のCV充電を行いS328に進む。S327における詳細な動作は上述したとおりである。S328では送電制御部110は、肯定判断する場合はS329に進み、否定判断する場合はS327に戻る。S329では送電制御部110は、記憶部150に受電装置200の識別情報とS327において算出した最大容量Qmaxの値を関連付けて記録し、図6に示す処理を終了する。 In S326 executed after S324 or S325, the power transmission control unit 110 returns to S322 when making an affirmative decision, and proceeds to S327 when making a negative decision. In S327, the power transmission control unit 110 performs CV charging for the first connection using the above-described Equation 4, and proceeds to S328. The detailed operation in S327 is as described above. In S328, the power transmission control unit 110 proceeds to S329 if an affirmative determination is made, and returns to S327 if a negative determination is made. In S329, the power transmission control unit 110 records the identification information of the power receiving apparatus 200 in association with the value of the maximum capacity Qmax calculated in S327 in the storage unit 150, and ends the process illustrated in FIG.
 なお、S309およびS326における判断基準である80%は、ハイゲイン領域の一例を示した数値であり、電池30ごとの特性に合わせて適切に設定することが望ましい。また送電制御部110は、図6に示す処理を終了する際に、受電装置200に算出した最大容量Qmaxの値を伝達し、受電装置200はこれを電池監視装置500に記録させる。 Note that 80%, which is the criterion in S309 and S326, is a numerical value showing an example of the high gain region, and it is desirable to set appropriately according to the characteristics of each battery 30. Further, when the power transmission control unit 110 ends the process illustrated in FIG. 6, the power reception device 200 transmits the calculated value of the maximum capacity Qmax to the power reception device 200, and causes the battery monitoring device 500 to record this.
 上述した実施の形態によれば、次の作用効果が得られる。
(1)送電装置100は、電池300を有する受電装置200に給電する。送電装置100は、受電装置200から識別情報を受信し、従前に充電を行ったか否かを判断する図6のS301の処理を行う。また送電制御部110は、従前に充電を行ったと判断すると(S301:YES)、受電装置200にS302~S313の処理を実行する。送電制御部110は、従前に充電を行っていないと判断すると(S301:NO)、受電装置200にS321~S329の処理を実行する。そのため送電装置100は、受電装置200に従前に充電を行ったか否かで異なる充電処理を行うことができる。換言すると送電装置100は、充電の実績に基づき適切な充電を行うことができる。電池300の製品の個体差や、送電装置100との組み合わせにより生じる不具合、いわゆる相性問題は、接続して実際に充電を行わなければ判断が難しいことがある。そのため、充電の実績がある受電装置200と充電の実績がない受電装置200とでは充電処理を異ならせることで、それぞれ適切な処理が可能となる。
According to the embodiment described above, the following operational effects can be obtained.
(1) The power transmission device 100 supplies power to the power reception device 200 including the battery 300. The power transmitting apparatus 100 receives the identification information from the power receiving apparatus 200, and performs the process of S301 in FIG. 6 to determine whether or not charging has been performed previously. When power transmission control unit 110 determines that charging has been performed in the past (S301: YES), power transmission device 200 performs the processes of S302 to S313. If the power transmission control unit 110 determines that charging has not been performed before (S301: NO), the power transmission control unit 110 executes the processes of S321 to S329 on the power receiving device 200. Therefore, the power transmission device 100 can perform different charging processes depending on whether charging has been performed before the power receiving device 200. In other words, the power transmission device 100 can perform appropriate charging based on the results of charging. It may be difficult to judge the individual difference between the products of the battery 300 and the problems caused by the combination with the power transmission device 100, so-called compatibility problems, unless they are connected and actually charged. Therefore, different processes can be performed by different charging processes between the power receiving apparatus 200 having a track record of charging and the power receiving apparatus 200 having no track record of charging.
(2)送電制御部110は、従前に充電を行っていると判断する場合は、電池300の劣化および電池300の温度を考慮し(図6のS302~S313)、従前に充電を行っていないと判断する場合は、電池300の温度を考慮する。充電の実績がない電池300では、その劣化状態を受電装置200から伝達されても、送電装置100はその情報を無条件に信頼して使用することに疑問がある。そのため、充電の実績がない場合は受電装置200から伝達された電池300の劣化を考慮せずに送電を行うことが望ましい。 (2) When the power transmission control unit 110 determines that charging has been performed in the past, the deterioration of the battery 300 and the temperature of the battery 300 are taken into consideration (S302 to S313 in FIG. 6), and charging has not been performed in the past. Is determined, the temperature of the battery 300 is taken into consideration. In the battery 300 having no record of charging, even if the deterioration state is transmitted from the power receiving device 200, there is a question that the power transmitting device 100 uses the information unconditionally and reliably. Therefore, when there is no record of charging, it is desirable to perform power transmission without considering deterioration of the battery 300 transmitted from the power receiving device 200.
(3)第2の送電処理において送電される送電量は、第1の送電処理において送電される送電量よりも少ない。そのため、充電の実績に応じて送電量を制御できる。 (3) The amount of power transmitted in the second power transmission process is smaller than the amount of power transmitted in the first power transmission process. Therefore, the amount of power transmission can be controlled according to the performance of charging.
(4)送電装置100は、受電装置200への送電が完了すると、送電が完了した受電装置200の識別情報を従前に充電を行った受電装置200として記憶部150に記録する(図6のS313、S329)。 (4) When power transmission to the power receiving device 200 is completed, the power transmission device 100 records the identification information of the power receiving device 200 that has completed power transmission in the storage unit 150 as the power receiving device 200 that has been charged before (S313 in FIG. 6). , S329).
(5)送電制御部110は、電池300の劣化状態を算出する(S311、S327)。送電制御部110は、受電装置200の識別情報を送電制御部110が算出した電池の劣化状態を表す最大容量Qmaxと関連付けて記憶部150に記録する。 (5) The power transmission control unit 110 calculates the deterioration state of the battery 300 (S311, S327). The power transmission control unit 110 records the identification information of the power receiving device 200 in the storage unit 150 in association with the maximum capacity Qmax representing the battery deterioration state calculated by the power transmission control unit 110.
(変形例1)
 上述した実施の形態では、記憶部150は送電装置100に格納された。しかし記憶部150は複数の送電装置100で共有してもよい。この場合に、物理的に隣接して設置された送電装置100同士だけで共有してもよいし、異なる場所に設置されインターネットなどの通信網により接続される多数の送電装置100で共有してもよい。なお記憶部150を共有する送電装置100は、ハードウエア構成やソフトウエア構成が同一の送電装置100に限定してもよいし、ハードウエア構成およびソフトウエア構成の少なくとも一方が共通すれば記憶部150を共有してもよい。さらに、それぞれの送電装置100が個別に記憶部150を備え、さらにそれぞれの送電装置100に格納される情報を相互に伝達してもよい。
(Modification 1)
In the embodiment described above, the storage unit 150 is stored in the power transmission device 100. However, the storage unit 150 may be shared by a plurality of power transmission devices 100. In this case, the power transmission devices 100 that are physically adjacent to each other may be shared only with each other, or may be shared by a large number of power transmission devices 100 that are installed in different places and connected by a communication network such as the Internet. Good. The power transmission device 100 sharing the storage unit 150 may be limited to the power transmission device 100 having the same hardware configuration or software configuration, or the storage unit 150 if at least one of the hardware configuration and the software configuration is common. May be shared. Furthermore, each power transmission apparatus 100 may be individually provided with a storage unit 150, and information stored in each power transmission apparatus 100 may be transmitted to each other.
(変形例2)
 送電制御部110は、受電装置200から伝達された最大容量Qmaxの値が記憶部150に格納されている最大容量Qmaxと矛盾すると判断する場合は、以下に示すいずれかの異常処理を行ってもよい。前述のとおり、最大容量Qmaxは製造時に最大値をとり、劣化により減少する。また、送電装置100に記録されている最大容量Qmaxが算出されたタイミングは、受電装置200が保持しているその受電装置200の最大容量Qmaxが算出されたタイミング以前であると推測される。なぜならば、受電装置200の方が最大容量Qmaxの値を更新する機会が頻繁にあり、送電装置100が最大容量Qmaxの値を更新した際には受電装置200にもその値を伝達しているので、受電装置200は少なくとも送電装置100と同じタイミングで更新しているからである。
(Modification 2)
If the power transmission control unit 110 determines that the value of the maximum capacity Qmax transmitted from the power receiving device 200 is inconsistent with the maximum capacity Qmax stored in the storage unit 150, the power transmission control unit 110 may perform any of the following abnormal processes. Good. As described above, the maximum capacity Qmax takes a maximum value at the time of manufacture and decreases due to deterioration. In addition, the timing at which the maximum capacity Qmax recorded in the power transmitting apparatus 100 is calculated is estimated to be before the timing at which the maximum capacity Qmax of the power receiving apparatus 200 held by the power receiving apparatus 200 is calculated. This is because the power receiving apparatus 200 has more opportunities to update the value of the maximum capacity Qmax, and when the power transmitting apparatus 100 updates the value of the maximum capacity Qmax, the value is also transmitted to the power receiving apparatus 200. Therefore, the power receiving device 200 is updated at least at the same timing as the power transmitting device 100.
 送電制御部110は、以下の第1~第3のいずれかの異常処理を行う。第1の異常処理として初回接続時と同様の処理を行ってもよい。受電装置200が伝達した最大容量Qmaxの値に矛盾があり、基準内部抵抗値R0の値も信頼ができないからである。第2の異常処理として、初回接続時よりもさらに小さな電流しか用いずに充電してもよい。電池300に異常があるために最大容量Qmaxが増加したように算出された可能性があるからである。第3の異常処理として、充電を行わなくてもよい。安全性を最大限に考慮するためである。 The power transmission control unit 110 performs any one of the following first to third abnormality processes. You may perform the process similar to the time of the first connection as a 1st abnormality process. This is because there is a contradiction in the value of the maximum capacity Qmax transmitted by the power receiving device 200, and the value of the reference internal resistance value R0 is not reliable. As the second abnormality process, charging may be performed using only a smaller current than that at the first connection. This is because the battery 300 may be calculated as if the maximum capacity Qmax has increased due to an abnormality. As the third abnormality process, charging may not be performed. This is to maximize safety.
(変形例3)
 上述した実施の形態では、送電装置100と受電装置200は、交流磁界を利用して無線で給電を行った。しかし送電装置100と受電装置200は有線で給電を行ってもよい。
(Modification 3)
In the above-described embodiment, the power transmission device 100 and the power reception device 200 perform power feeding wirelessly using an alternating magnetic field. However, the power transmission device 100 and the power reception device 200 may perform power supply by wire.
 なお、送電制御部110、受電制御部210、および駆動制御部240は、マイクロコンピュータ等で実行されるソフトウェアにより実現してもよいし、FPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。 The power transmission control unit 110, the power reception control unit 210, and the drive control unit 240 may be realized by software executed by a microcomputer or the like, or by hardware such as FPGA (Field-Programmable Gate Array). May be. These may be used in combination.
 上記実施形態では、電気自動車等の車両への無線給電において利用される無線給電システム1を説明したが、車両への無線給電用に限らず、他の用途の無線給電システムに本発明を適用してもよい。 In the above-described embodiment, the wireless power feeding system 1 used for wireless power feeding to a vehicle such as an electric vehicle has been described. However, the present invention is not limited to wireless power feeding to a vehicle, but is applied to a wireless power feeding system for other uses. May be.
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiment and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Moreover, although various embodiment and the modification were demonstrated above, this invention is not limited to these content. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 1 無線給電システム
100 送電装置
110 送電制御部
130 交流電源
140 電力変換部
150 記憶部
200 受電装置
210 受電制御部
240 駆動制御部
250 電力変換部
300 電池
500 電池監視装置
Qnow 現在量
Qmax 最大容量
1 wireless power supply system 100 power transmission device 110 power transmission control unit 130 AC power supply 140 power conversion unit 150 storage unit 200 power reception device 210 power reception control unit 240 drive control unit 250 power conversion unit 300 battery 500 battery monitoring device Qnow current amount Qmax maximum capacity

Claims (6)

  1.  電池を有する受電装置に給電する送電装置であって、
     前記受電装置から識別情報を受信し、従前に充電を行ったか否かを判断する初回判別部と、
     前記初回判別部が従前に充電を行ったと判断すると、前記受電装置に第1の送電処理を実行し、前記初回判別部が従前に充電を行っていないと判断すると、前記受電装置に第2の送電処理を実行する送電制御部とを備える送電装置。
    A power transmission device for supplying power to a power receiving device having a battery,
    Receiving the identification information from the power receiving device, an initial determination unit for determining whether or not charging has been performed previously;
    When the first determination unit determines that the charging has been performed before, the first power transmission process is performed on the power receiving device, and when the first determination unit determines that the charging is not performed before, the power receiving device receives the second power transmission process. A power transmission device comprising: a power transmission control unit that executes power transmission processing.
  2.  請求項1に記載の送電装置において、
     前記送電制御部は、前記第1の送電処理では、前記電池の劣化および前記電池の温度を考慮し、前記第2の送電処理では、前記電池の温度を考慮する送電装置。
    The power transmission device according to claim 1,
    The power transmission control unit takes into account the battery degradation and the battery temperature in the first power transmission process, and considers the battery temperature in the second power transmission process.
  3.  請求項1に記載の送電装置において、
     前記第2の送電処理において送電される送電量は、前記第1の送電処理において送電される送電量よりも少ない送電装置。
    The power transmission device according to claim 1,
    A power transmission device in which a power transmission amount transmitted in the second power transmission process is smaller than a power transmission amount transmitted in the first power transmission process.
  4.  請求項1に記載の送電装置において、
     前記受電装置への送電が完了すると、送電が完了した前記受電装置の識別情報を従前に充電を行った前記受電装置として記録する記録部をさらに備える送電装置。
    The power transmission device according to claim 1,
    A power transmission device further comprising a recording unit that records the identification information of the power receiving device that has completed power transmission as the power receiving device that has been charged before power transmission to the power receiving device is completed.
  5.  請求項4に記載の送電装置において、
     前記送電制御部は、前記電池の劣化状態を算出し、
     前記記録部は、前記受電装置の識別情報を前記送電制御部が算出した前記電池の劣化状態と関連付けて記録する送電装置。
    The power transmission device according to claim 4,
    The power transmission control unit calculates a deterioration state of the battery,
    The recording unit is a power transmission device that records the identification information of the power receiving device in association with the deterioration state of the battery calculated by the power transmission control unit.
  6.  請求項1に記載の送電装置において、
     前記送電制御部は、前記初回判別部が従前に充電を行ったと判断すると、前記受電装置から受信した前記電池の劣化情報と、従前に記録した前記電池の劣化情報とを比較し、前記受電装置から受信した前記電池の劣化情報の方が劣化の程度が軽度な場合に、前記受電装置に前記第2の送電処理よりも送電量が少ない第3の送電処理を実行する送電装置。
      
    The power transmission device according to claim 1,
    When the power transmission control unit determines that the initial determination unit has previously performed charging, the power transmission control unit compares the battery deterioration information received from the power receiving device with the battery deterioration information previously recorded, and the power receiving device The power transmission device that executes a third power transmission process in which the amount of power transmitted to the power receiving device is smaller than that of the second power transmission process when the deterioration information of the battery received from the battery is less severe.
PCT/JP2019/003781 2018-03-14 2019-02-04 Power transmission device WO2019176368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046615A JP2021083135A (en) 2018-03-14 2018-03-14 Power transmission device
JP2018-046615 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176368A1 true WO2019176368A1 (en) 2019-09-19

Family

ID=67907667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003781 WO2019176368A1 (en) 2018-03-14 2019-02-04 Power transmission device

Country Status (2)

Country Link
JP (1) JP2021083135A (en)
WO (1) WO2019176368A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239261A (en) * 2011-05-10 2012-12-06 Canon Inc Charger, charging system, and program
WO2017159780A1 (en) * 2016-03-17 2017-09-21 日本電気株式会社 Vehicle charging system, parking lot system, and charging method for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239261A (en) * 2011-05-10 2012-12-06 Canon Inc Charger, charging system, and program
WO2017159780A1 (en) * 2016-03-17 2017-09-21 日本電気株式会社 Vehicle charging system, parking lot system, and charging method for vehicle

Also Published As

Publication number Publication date
JP2021083135A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US10439441B2 (en) Power receiving device and wireless power transmission system
EP2730007B1 (en) Energy receiver, detection method and power transmission system
JP6132890B2 (en) Charging equipment
JP5409855B2 (en) Contactless power supply / reception device
EP3185262B1 (en) Wireless power transfer method, apparatus and system
US10931133B2 (en) Wireless power receiving device, wireless power transmission system, and short-circuit monitoring device
EP3306781A1 (en) Wireless power transmission system and method for driving same
RU2621682C1 (en) Wireless power supply system and wireless power reception device
JP2012070614A (en) Transmission device and power transmission system
JP2013123306A (en) Non-contact power transmission apparatus
CN109391043B (en) Wireless power receiving apparatus
US9634636B2 (en) Non-contact power transmission device
CN110212649A (en) Wireless power transfer control
CN105027385A (en) Power supply device and non-contact power supply system
JP2013158188A (en) Power transmission system
JP2014124019A (en) Wireless power transmission system
KR102396628B1 (en) Transmission system for contactless energy transmission
WO2019176368A1 (en) Power transmission device
US20220181910A1 (en) Power receiving device, movable unit, and wireless power transmission system
CN104821637A (en) Non-contact electric power transmission system and charging station
CN109969008B (en) Mutual inductance estimation method and system based on AC/DC converter multi-source wireless charging
JP2021083137A (en) Charge control device
WO2019176375A1 (en) Power transmission device, power reception device, and wireless power feed system
WO2024062758A1 (en) Power feeding device
JP2020156307A (en) Non-contact power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP