WO2019176228A1 - Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method - Google Patents

Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method Download PDF

Info

Publication number
WO2019176228A1
WO2019176228A1 PCT/JP2018/047764 JP2018047764W WO2019176228A1 WO 2019176228 A1 WO2019176228 A1 WO 2019176228A1 JP 2018047764 W JP2018047764 W JP 2018047764W WO 2019176228 A1 WO2019176228 A1 WO 2019176228A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
motor function
function evaluation
subject
measurement data
Prior art date
Application number
PCT/JP2018/047764
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 朝田
年岡 英昭
忍 堀田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020505602A priority Critical patent/JPWO2019176228A1/en
Publication of WO2019176228A1 publication Critical patent/WO2019176228A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present disclosure relates to a motor function evaluation apparatus, a motor function evaluation system, a motor function evaluation program, and a motor function evaluation method.
  • This application claims priority based on Japanese Patent Application No. 2018-045396, which is a Japanese patent application filed on March 13, 2018. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 measures the walking motion of a subject using a three-dimensional acceleration sensor attached to the waist of the subject, and evaluates the motor ability of the subject by analyzing the measurement data. The technology is disclosed.
  • a motor function evaluation apparatus is a motor function evaluation apparatus that evaluates a subject's motor function during a standing stepping motion, and is measured by an acceleration sensor attached to the subject, longitudinal acceleration, left and right A communication unit configured to acquire measurement data of acceleration and vertical acceleration, and a control unit configured to digitize the standing stepping motion based on the measurement data acquired by the communication unit.
  • the motor function evaluation system is a motor function evaluation system that evaluates a subject's motor function during a standing stepping exercise, and is measured by an acceleration sensor attached to the subject and an acceleration sensor. And a motor function evaluation device configured to digitize a standing stepping motion based on measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration.
  • a motor function evaluation program is a program for causing a computer to execute a process of evaluating a motor function of a subject during a standing stepping exercise, and is measured by an acceleration sensor attached to the subject.
  • the computer executes a step of acquiring measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration and a step of digitizing the standing stepping motion based on the acquired measurement data.
  • a motor function evaluation method is a motor function evaluation method for evaluating a motor function of a subject during a standing stepping motion, and is measured by an acceleration sensor attached to the subject, longitudinal acceleration, left and right A step of acquiring measurement data of acceleration and vertical acceleration, and a step of digitizing a standing stepping motion based on the acquired measurement data.
  • FIG. 1 is a diagram schematically showing a configuration of a motor function evaluation system according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating a hardware configuration of the motor function evaluation system according to the embodiment.
  • FIG. 3 is a diagram schematically illustrating a functional configuration of the acceleration sensor according to the embodiment.
  • FIG. 4 is a diagram schematically illustrating a functional configuration of the motor function evaluation apparatus according to the embodiment.
  • FIG. 5 is a flowchart for explaining motor function evaluation executed by the motor function evaluation system according to the embodiment.
  • FIG. 6A is a diagram for explaining the process shown in step S15 of FIG.
  • FIG. 6B is a diagram for explaining the process shown in step S15 of FIG.
  • FIG. 7A is a diagram for explaining the process shown in step S15 of FIG. FIG.
  • FIG. 7B is a diagram for explaining the process shown in step S15 of FIG.
  • FIG. 8 is a diagram for explaining the process shown in step S15 of FIG.
  • FIG. 9 is a diagram illustrating a configuration of a first modification of the motor function evaluation system according to the embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a second modification of the motor function evaluation system according to the embodiment.
  • An object of one aspect of the present disclosure is to provide a motor function evaluation apparatus, a motor function evaluation method and a motor function evaluation program that can quantitatively evaluate a motor function of a subject during a standing stepping exercise, and such a motor function It is providing the motor function evaluation system provided with the evaluation apparatus.
  • a motor function evaluation apparatus e.g., a motor function evaluation method and a motor function evaluation program that can quantitatively evaluate a motor function of a subject during a standing stepping exercise, and such a motor function It is providing the motor function evaluation system provided with the evaluation apparatus.
  • a motor function evaluation apparatus 2 (see FIGS. 1 and 4) is a motor function evaluation apparatus that evaluates a subject's motor function during a standing stepping exercise, and is attached to the subject.
  • the communication unit 40 configured to acquire the measurement data of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration measured by the acceleration sensor 1, and the standing stepping motion based on the measurement data acquired by the communication unit 40
  • a control unit 64 configured to digitize.
  • the motor ability (lower limb balance) of the subject can be quantitatively measured by quantifying the standing stepping motion.
  • the motion function of the subject can be quantitatively evaluated with a simple configuration.
  • the acceleration sensor 1 is mounted
  • control unit 64 is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise.
  • the index is an index indicating at least one of the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability.
  • control unit 64 generates a frequency spectrum by performing frequency analysis on any time waveform of longitudinal acceleration, lateral acceleration, and vertical acceleration. Then, an index indicating the number of steps in a predetermined time is calculated based on the frequency component that is a peak value in the frequency spectrum.
  • the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
  • control unit 64 performs the front-rear based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the front-rear acceleration at a predetermined time. An index indicating the movement of the center of gravity in the direction is calculated.
  • the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
  • control unit 64 is based on the distribution status of the left acceleration amplitude and the right acceleration amplitude in the time waveform of the left and right acceleration in a predetermined time. Then, an index indicating the movement of the center of gravity in the left-right direction is calculated.
  • the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
  • control unit 64 performs vertical movement based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical acceleration at a predetermined time. An index indicating the movement of the center of gravity in the direction is calculated.
  • the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
  • control unit 64 detects the time of a plurality of maximum values appearing in the time waveform of the longitudinal acceleration in a predetermined time, and two continuous maximum values are detected. An index indicating the front-rear stability is calculated based on the variation in the time interval between the two.
  • the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
  • control unit 64 detects the time of a plurality of maximum values appearing in the time waveform of the left and right acceleration in a predetermined time, and two continuous maximum values are detected. An index indicating the left-right stability is calculated based on the variation in the time interval between the two.
  • the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
  • the motor function evaluation device 2 is a motor function evaluation device that evaluates a subject's motor function during a standing stepping exercise, and is an acceleration sensor 1 that is mounted in the midline of the subject's trunk.
  • the communication unit 40 configured to acquire the measurement data of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration measured by the above, and digitizing the standing stepping motion based on the measurement data acquired by the communication unit 40
  • a control unit 64 configured as described above.
  • the control unit 64 is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise.
  • the index is an index indicating at least one of the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability.
  • the control unit 64 generates a frequency spectrum by performing frequency analysis on one of the following time waveforms (a) longitudinal acceleration, lateral acceleration, and vertical acceleration, and is based on a frequency component having a peak value in the frequency spectrum. Calculation of an index indicating the number of steps in a given time; (B) calculation of an index indicating the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the longitudinal acceleration at a predetermined time; (C) calculation of an index indicating the center-of-gravity movement in the left-right direction based on the distribution state of the left acceleration amplitude and the right acceleration amplitude in the time waveform of the left-right acceleration at a predetermined time (D) calculation of an index indicating the center of gravity movement in the vertical direction based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical acceleration at a predetermined time
  • the motor function evaluation apparatus 2 According to the motor function evaluation apparatus 2 according to the above (9), it is possible to quantitatively measure the subject's motor ability (lower limb balance) by digitizing the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
  • a motor function evaluation system 100 (see FIG. 1) is a motor function evaluation system that evaluates a subject's motor function during a standing stepping exercise, and includes an acceleration sensor attached to the subject 1 and a motor function evaluation device 2 configured to digitize a standing stepping motion based on measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by the acceleration sensor 1.
  • the motor function evaluation system 100 it is possible to quantitatively measure the exercise ability (lower limb balance) of the subject by digitizing the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
  • the motor function evaluation apparatus 2 is installed in a communication terminal 80 installed in a subject's house and connected to be communicable with a general-purpose network. (See FIG. 10).
  • a general-purpose network such as a cable television network that has a base in each city
  • a television that is widely used in the home as a communication interface.
  • the user can perform a standing stepping exercise at home and can receive diagnosis from various institutions at home.
  • TV is a medium that elderly people watch daily, and by operating a TV remote control, the motor function can be easily evaluated, and the diagnosis based on the motor function evaluation results can be performed at home. Can be received at.
  • a motor function evaluation program is a program for causing a computer to execute a process of evaluating a motor function of a subject during a standing stepping exercise, and an acceleration sensor attached to the subject (1) causing the computer to execute measurement data of the longitudinal acceleration, lateral acceleration, and vertical acceleration measured by 1 and a step of digitizing the standing stepping motion based on the acquired measurement data.
  • the motor ability (lower limb balance) of the subject can be quantitatively measured by quantifying the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
  • the motor function evaluation method is a motor function evaluation method for evaluating a subject's motor function during a standing stepping exercise, and is measured by the acceleration sensor 1 attached to the subject.
  • the motor function evaluation method it is possible to quantitatively measure the subject's motor ability (lower limb balance) by digitizing the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
  • FIG. 1 is a diagram schematically showing a configuration of a motor function evaluation system 100 according to an embodiment.
  • the motor function evaluation system 100 according to the present embodiment is a system for evaluating the motor function of the subject M.
  • the “motor function” of the subject M is the motor ability of the subject M at the time of walking, and includes balance and agility of the lower limbs.
  • the motor function evaluation system 100 includes an acceleration sensor 1 and a motor function evaluation device 2.
  • the acceleration sensor 1 and the motor function evaluation device 2 communicate with each other wirelessly.
  • the acceleration sensor 1 is connected to the motor function evaluation device 2 in accordance with a short-range wireless communication standard such as Bluetooth (registered trademark) or wireless LAN (Local Area Network) standard. Send and receive data between them.
  • a short-range wireless communication standard such as Bluetooth (registered trademark) or wireless LAN (Local Area Network) standard. Send and receive data between them.
  • the acceleration sensor 1 has a small portable case and is attached to the subject M.
  • the acceleration sensor 1 is worn in the mid-trunk of the subject M.
  • the midline trunk is the trunk as the trunk and means the center of the left and right sides of the body. In the example of FIG. 1, it is worn on the waist of the subject M.
  • the acceleration sensor 1 is mounted in the vicinity of the third lumbar vertebra on the median line where the center of gravity of the subject M is located.
  • the casing of the acceleration sensor 1 is provided with a clip (not shown), and the acceleration sensor 1 is mounted by sandwiching the clip near the center of the waist and back of the belt worn by the subject M.
  • the acceleration sensor 1 is a three-axis acceleration sensor such as a MEMS (Micro Electro Mechanical Systems) sensor.
  • the acceleration sensor 1 measures the acceleration in the left-right direction, the up-down direction, and the front-rear direction while the subject M is moving.
  • the lateral acceleration is referred to as “lateral acceleration”
  • the vertical acceleration is referred to as “vertical acceleration”
  • the longitudinal acceleration is also referred to as “longitudinal acceleration”.
  • the horizontal direction is the X axis
  • the vertical direction is the Y axis
  • the front and back direction is the Z axis.
  • the acceleration sensor 1 outputs the measured triaxial acceleration to the motor function evaluation device 2 as measurement data.
  • the acceleration sensor 1 may be any device as long as it can measure a change in triaxial acceleration during the movement of the subject M. In order to accurately measure the change of the three-axis acceleration during the exercise, it is preferable that the subject M moves while wearing bare feet or shoes.
  • the motor function evaluation device 2 is an electronic device having a wireless communication function, and for example, a personal computer, a tablet terminal, a smartphone, etc. can be applied in addition to a dedicated device.
  • the motor function evaluation apparatus 2 acquires the longitudinal acceleration, the lateral acceleration, and the vertical acceleration during the movement of the subject M based on the measurement data output from the acceleration sensor 1.
  • the motor function evaluation apparatus 2 evaluates the motor function of the subject M based on the acquired temporal changes in the longitudinal acceleration, the lateral acceleration, and the vertical acceleration.
  • FIG. 2 is a diagram schematically illustrating a hardware configuration of the motor function evaluation system 100 according to the embodiment.
  • the acceleration sensor 1 includes a sensor unit 10, a CPU (Central Processing Unit) 12, a storage unit 14, a communication unit 16, a circuit board 18, and a power source 20.
  • a sensor unit 10 As shown in FIG. 2, the acceleration sensor 1 includes a sensor unit 10, a CPU (Central Processing Unit) 12, a storage unit 14, a communication unit 16, a circuit board 18, and a power source 20.
  • CPU Central Processing Unit
  • the sensor unit 10 is a three-axis acceleration sensor, and measures longitudinal acceleration, lateral acceleration, and vertical acceleration generated in the waist of the subject M.
  • the sensor unit 10 outputs an electrical signal indicating the measured acceleration to the CPU 12.
  • the CPU 12 controls the operation of the acceleration sensor 1 by reading a program stored in advance and executing instructions included in the program.
  • the CPU 12 generates measurement data from the acceleration measured by the sensor unit 10 by processing the electrical signal output from the sensor unit 10.
  • the storage unit 14 is configured by, for example, a RAM (Random Access Memory) or the like, and stores setting data, measurement data, and the like for setting various functions of the acceleration sensor 1.
  • a RAM Random Access Memory
  • the communication unit 16 performs modulation / demodulation processing for transmitting and receiving signals via an antenna or the like (not shown) so that the acceleration sensor 1 communicates wirelessly with the motor function evaluation device 2.
  • the communication unit 16 is a communication module including a tuner, a reception intensity calculation circuit, a cyclic redundancy check circuit, a high frequency circuit, and the like.
  • the communication unit 16 performs modulation / demodulation and frequency conversion of a radio signal transmitted / received by the acceleration sensor 1 and gives a reception signal to the CPU 12.
  • the circuit board 18 is housed inside the casing of the acceleration sensor 1 and mounts circuit components constituting the sensor unit 10, the CPU 12, the storage unit 14, and the communication unit 16.
  • the power source 20 is a power storage device including a lithium ion battery.
  • a power switch (not shown) is turned on by a user or the like, power supply to a plurality of circuit components mounted on the circuit board 18 is started.
  • the motor function evaluation device 2 includes a communication unit 40, a CPU 42, a circuit board 44, a power supply 46, a display unit 48, and an operation reception unit 50.
  • the communication unit 40 performs modulation / demodulation processing for transmitting and receiving signals via an antenna or the like so that the motor function evaluation apparatus 2 communicates with other wireless devices including the acceleration sensor 1.
  • the communication unit 40 is a communication module including a tuner, a reception intensity calculation circuit, a cyclic redundancy check circuit, a high frequency circuit, and the like.
  • the communication unit 40 performs modulation / demodulation and frequency conversion of a radio signal transmitted / received by the motor function evaluation apparatus 2 and gives a reception signal to the CPU 42.
  • the CPU42 controls the operation
  • the program includes a motor function evaluation program.
  • the CPU 42 evaluates the motor function of the subject M based on the measurement data transmitted from the communication unit 40 by executing the motor function evaluation program. Further, the CPU 42 can discriminate exercise advice corresponding to the subject M based on the evaluation result of the exercise function. Details of the CPU 42 will be described later.
  • the operation accepting unit 50 accepts user input operations.
  • the operation reception unit 50 outputs a signal indicating the operation content to the CPU 42 in accordance with a user operation.
  • the operation reception unit 50 may be a touch panel provided on the display unit 48, or may be other physical operation keys such as a keyboard.
  • the display unit 48 displays data acting on the five senses such as an image, text, and voice under the control of the CPU 42.
  • the display unit 48 includes, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro-Luminescence) display.
  • the CPU 42 can cause the display unit 48 to display the measurement data transmitted from the communication unit 40, the data indicating the evaluation result of the motor function, and the data indicating the exercise advice by executing the motor function evaluation program. Further, the CPU 42 can accumulate these data in the internal storage device 68.
  • FIG. 3 is a diagram schematically showing a functional configuration of the acceleration sensor 1 according to the embodiment.
  • the acceleration sensor 1 includes a storage unit 22 and a signal processing circuit 24.
  • the storage unit 22 includes a storage device such as a RAM, and stores a program, measurement data, and the like.
  • the signal processing circuit 24 controls each part of the acceleration sensor 1.
  • the signal processing circuit 24 operates according to a program stored in the storage unit 22 and executes various operations including motor function evaluation described later.
  • the signal processing circuit 24 includes a noise removal filter and an A / D (Analog / Digital) converter, and removes noise from the electrical signal output from the sensor unit 10, as shown in FIG. An acceleration signal indicating such acceleration is generated. Further, the signal processing circuit 24 generates measurement data by sampling the generated acceleration signal at a predetermined period.
  • a / D Analog / Digital
  • the sampling period in the signal processing circuit 24 is preferably 1 ms or more and 200 ms or less. This is because when the sampling period is shorter than 1 ms, the calculation load in the signal processing circuit 24 increases and a large-capacity storage unit 22 is required to store measurement data. In addition, if the sampling period is longer than 200 ms, it is difficult to accurately grasp the change in the position of the body center of gravity of the subject accompanying movement. More preferably, the sampling period in the signal processing circuit 24 is about 5 ms.
  • the signal processing circuit 24 outputs the generated measurement data to the communication unit 16.
  • the lower limit of the sampling period is preferably 2 ms or more, and more preferably 5 ms or more.
  • the upper limit of the sampling period is preferably 100 ms or less, more preferably 50 ms or less, and further preferably 20 ms or less.
  • the communication unit 16 includes a radio signal receiving unit 26, a radio signal transmitting unit 28, and a file output unit 30.
  • the wireless signal receiving unit 26 receives an operation instruction from the motor function evaluation apparatus 2 and gives the received operation instruction to the signal processing circuit 24.
  • the operation instruction includes an instruction for designating a storage destination of the measurement data generated by the signal processing circuit 24.
  • the wireless signal transmission unit 28 transmits the measurement data generated by the signal processing circuit 24 to the motor function evaluation device 2.
  • the motor function evaluation device 2 receives the measurement data transmitted from the wireless signal transmission unit 28, the motor function evaluation device 2 stores the measurement data in the storage device 68 (see FIG. 4) inside the device.
  • the signal processing circuit 24 also stores the generated measurement data in the storage unit 14. In response to an operation instruction from the motor function evaluation device 2 (or based on a predetermined setting), the signal processing circuit 24 stores the storage unit 14 inside the acceleration sensor 1 and a storage device (motor function) outside the acceleration sensor 1. One of the storage devices 68) inside the evaluation device 2 is selected and the measurement data is stored.
  • the signal processing circuit 24 transmits the measurement data obtained by the sensor unit 10 to the motor function evaluation apparatus 2 in real time via the wireless signal transmission unit 28. be able to. Therefore, the motor function evaluation apparatus 2 can evaluate the motor function of the subject M in real time based on the received measurement data.
  • the signal processing circuit 24 can store the measurement data in the storage unit 14.
  • the file output unit 30 can transmit the measurement data accumulated in the storage unit 14 to the external storage medium 3.
  • a USB memory or a Memory Stick registered trademark
  • the acceleration sensor 1 stores the measurement data in the storage unit 14, so that it can be stored in the storage unit 14 at a later date. By reading the stored measurement data via the storage medium 3, the motor function of the subject M can be evaluated.
  • the acceleration sensor 1 may be configured to be able to read measurement data via a wired data transmission means such as USB instead of via the storage medium 3.
  • FIG. 4 is a diagram schematically showing a functional configuration of the motor function evaluation apparatus 2 according to the embodiment.
  • the communication unit 40 includes a radio signal receiving unit 60 and a radio signal transmitting unit 62.
  • the wireless signal receiving unit 60 transmits the received measurement data to the CPU 42.
  • the CPU 42 includes a control unit 64 and a storage device 68.
  • the storage device 68 includes, for example, a ROM (Read Only Memory) and a RAM.
  • the ROM stores a program for controlling the motor function evaluation device 2.
  • the program includes a motor function evaluation program.
  • the RAM stores data for setting various functions of the motor function evaluation device 2, measurement data, data indicating the evaluation results of motor functions, data indicating exercise advice, and the like.
  • the control unit 64 includes a processor.
  • the control unit 64 controls the operation of the motor function evaluation device 2 by operating according to a program stored in the storage device 68.
  • the control unit 64 functions as the evaluation unit 70 and the determination unit 72 by operating according to the motor function evaluation program.
  • the evaluation unit 70 evaluates the motor function of the subject M based on the measurement data acquired by the wireless signal reception unit 60. Alternatively, the evaluation unit 70 evaluates the motor function of the subject M based on the measurement data read from the storage medium 3.
  • the evaluation unit 70 calculates an index indicating the motor function of the subject M based on the measurement data.
  • the evaluation unit 70 scores the calculated index, for example, with an ideal value of 10 points (full score). In this way, the motor function of the subject M is quantitatively evaluated by scoring the index. Thereby, the user can grasp
  • the determination unit 72 acquires the evaluation result from the evaluation unit 70 and receives external data input by the user from the operation reception unit 50.
  • the external data includes subject identification information that is information for identifying subject M, and a data threshold list.
  • the subject identification information includes information such as the name, sex, age, height, and weight of the subject M.
  • the data threshold list is threshold data used when discriminating exercise advice.
  • the determination unit 72 determines exercise advice corresponding to the subject M based on the evaluation result of the exercise ability of the subject M by referring to the data threshold list.
  • the control unit 64 causes the display unit 48 to display measurement data, an evaluation result by the evaluation unit 70, and data indicating exercise advice by the determination unit 72.
  • the control unit 64 stores these data in the storage device 68.
  • the subject M is caused to perform a standing stepping exercise for a predetermined time to measure the motor ability (lower limb balance) of the subject M.
  • the standing stepping motion is a periodic motion in which single-leg support (single-leg standing) is alternately repeated in the standing posture.
  • the predetermined time is set to 10 seconds, for example.
  • the motor function of the subject M can be evaluated in a narrow space such as the examination room or the subject's room such as the subject's house.
  • the motor function evaluation device 2 is configured to digitize the standing foot motion of the subject M by analyzing the data measured by the acceleration sensor 1 during the standing foot motion.
  • the digitization of the standing stepping exercise is to calculate an index that quantitatively represents the exercise ability (lower limb balance) of the subject M during the standing stepping exercise.
  • the index indicating the balance and agility of the lower limb includes an index indicating at least one of “the number of steps”, “movement of the center of gravity”, “front / rear stability” and “lateral stability” of the standing stepping motion.
  • the “number of steps” refers to the number of times that the single leg support is repeated within a predetermined time, that is, the number of steps taken within the predetermined time.
  • “Movement of the center of gravity” refers to the movement of the center of gravity of the body accompanying the change of the support leg in the single leg support.
  • Front-back stability refers to the stability of the body center of gravity in the front-rear direction.
  • “Left-right stability” refers to the lateral stability of the body center of gravity.
  • the motor function evaluation system 100 When the motor function is evaluated by the motor function evaluation system 100, first, by turning on the power switches of the acceleration sensor 1 and the motor function evaluation apparatus 2 while the acceleration sensor 1 is mounted in the middle of the trunk of the subject M, Then, the acceleration sensor 1 and the motor function evaluation device 2 are activated.
  • the motor function evaluation device 2 instructs the acceleration sensor 1 to start measurement via the communication unit 40 when the operation reception unit 50 receives an input operation indicating an evaluation start instruction.
  • the acceleration sensor 1 corrects the measurement value of the sensor unit 10 when the subject M is in a stationary state to zero points of longitudinal acceleration, lateral acceleration, and vertical acceleration. Thereby, it is possible to accurately measure the longitudinal acceleration, the lateral acceleration, and the vertical acceleration that occur during the standing stepping motion of the subject M.
  • Subject M performs a stepping exercise in a standing position for a predetermined time (for example, 10 seconds) while wearing bare feet or shoes.
  • the acceleration sensor 1 measures the longitudinal acceleration, the lateral acceleration, and the vertical acceleration during the standing foot exercise of the subject M, and outputs the measurement data to the motor function evaluation device 2 via the communication unit 16.
  • the motor function evaluation device 2 acquires measurement data from a signal output from the acceleration sensor 1.
  • FIG. 5 is a flowchart for explaining motor function evaluation executed by the motor function evaluation system 100 according to the present embodiment.
  • the motor function evaluation device 2 executes the process shown in FIG. 5 through wireless communication with the acceleration sensor 1 by executing a motor function evaluation program.
  • the process of the flowchart shown in FIG. 5 is executed at a constant cycle, for example.
  • step S02 when power supply 20 is turned on and activated in step S01 in a state of being attached to mid-trunk of subject M, in step S02, a signal is sent in step S02.
  • the processing circuit 24 determines whether or not the subject M is in a stationary state based on the output signal of the sensor unit 10. Specifically, when no significant change is observed in each of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration (for example, when the fluctuation range of each acceleration is less than a threshold), the signal processing circuit 24 indicates that the subject M is stationary. It is determined that it is in a state.
  • the signal processing circuit 24 proceeds to step S03, and the measured value of the sensor unit 10 when the subject M is in a stationary state is subjected to the lateral acceleration. Correct to the zero point of vertical acceleration and longitudinal acceleration. When the zero point correction is completed, the sensor unit 10 starts measuring the longitudinal acceleration, the lateral acceleration, and the vertical acceleration generated in the waist of the subject M in step S04. The signal processing circuit 24 converts the acceleration signal output from the sensor unit 10 into measurement data.
  • the subject M is not in a stationary state (NO determination in S02), that is, when the subject M is moving, the process ends.
  • step S05 the signal processing circuit 24 determines whether or not the subject M has started the stepping motion based on the output signal of the sensor unit 10.
  • the signal processing circuit 24 indicates that the subject M starts the stepping motion. judge.
  • step S06 the sensor unit 10 measures the vertical acceleration, the lateral acceleration, and the longitudinal acceleration that occur in the mid-trunk of the subject M during the exercise.
  • the signal processing circuit 24 converts the acceleration signal output from the sensor unit 10 into measurement data.
  • the process ends.
  • step S07 the signal processing circuit 24 determines which of the storage device 68 of the motor function evaluation device 2 and the storage unit 14 of the acceleration sensor 1 is designated as the storage destination of the measurement data.
  • the signal processing circuit 24 proceeds to step S08, and transmits the measurement data to the motor function evaluation device 2 via the communication unit 16 (wireless signal transmission unit 28).
  • the signal processing circuit 24 proceeds to step S ⁇ b> 09 and stores the measurement data in the storage unit 14.
  • step S11 when the power supply 46 is turned on and started in step S11, the control unit 64 determines in step S12 whether or not an input operation indicating a measurement start instruction has been received by the operation reception unit 50. .
  • the process proceeds to step S13, and the communication unit 40 receives the measurement data of the acceleration sensor 1. The received measurement data is sent to the control unit 64.
  • the communication unit 40 further receives external data.
  • the external data includes subject identification information that is information for identifying subject M, and a data threshold list.
  • the subject identification information includes information such as the name, sex, age, height, and weight of the subject M.
  • the data threshold list is used when discriminating exercise advice corresponding to the subject M according to the evaluation result of the motor function.
  • step S15 the control unit 64 digitizes the standing stepping motion of the subject M based on the measurement data transmitted from the acceleration sensor 1. Specifically, the control unit 64 provides an index that quantitatively represents the exercise ability (lower limb balance) of the subject M during the standing stepping exercise based on the time waveform of the acceleration measured during the standing stepping exercise. calculate.
  • step S16 the control unit 64 displays the evaluation result of athletic ability on the display unit 48.
  • step S17 the control unit 64 determines exercise advice corresponding to the subject M based on the evaluation result by referring to the data threshold list.
  • the data threshold list a plurality of thresholds classified by age, sex, etc. are registered for each index.
  • the control unit 64 refers to the data threshold list and sets an appropriate threshold for the subject M based on the subject identification information.
  • control unit 64 determines whether or not the exercise ability of the subject M has decreased by comparing the score of the index calculated in step S15 with the set threshold value.
  • the control unit 64 further determines the degree of decrease in athletic ability based on the difference between the index and the threshold value. And the control part 64 discriminate
  • step S18 the control unit 64 displays the determined exercise advice on the display unit 48.
  • the evaluation result in step S15 and the exercise advice in step S17 are notified to the user through the display unit 48 and stored in the storage device 68 of the motor function evaluation device 2 in association with the measurement data of the subject M.
  • the motor function evaluation device 2 uses the number of steps of the standing stepping exercise as an index that quantitatively represents the balance of the lower limbs of the subject M during the standing stepping exercise based on the measurement data of the acceleration sensor 1. Calculate the center of gravity movement, front-rear stability and left-right stability.
  • FIG. 6A shows an example of a time waveform of the longitudinal acceleration measured during the standing stepping motion of the subject M.
  • the control unit 64 calculates an index indicating the number of steps in the predetermined time based on the time waveform of the longitudinal acceleration in the predetermined time (for example, 10 seconds).
  • FIG. 6B is a frequency spectrum of the time waveform of the longitudinal acceleration shown in FIG. 6A.
  • the frequency spectrum is represented by a data array in which the relationship between the frequency and the intensity of the frequency component is sequentially arranged according to the frequency.
  • the frequency spectrum is represented by a graph with the horizontal axis representing frequency and the vertical axis representing intensity.
  • the control unit 64 can score the calculated number of steps by setting the ideal value of the number of steps in a predetermined time as 10 points.
  • the method of calculating the number of steps in a predetermined time from the time waveform of the longitudinal acceleration has been described.
  • the frequency of the acceleration time waveform can be obtained using the time waveform of the left-right acceleration or the time waveform of the vertical acceleration.
  • the number of steps in a predetermined time can be obtained.
  • FIG. 7A shows an example of a time waveform of the longitudinal acceleration measured during the standing stepping motion of the subject M.
  • the control unit 64 calculates the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the longitudinal acceleration at a predetermined time.
  • FIG. 7B shows a histogram of longitudinal acceleration at a predetermined time generated based on the longitudinal waveform of longitudinal acceleration.
  • the horizontal axis (axis extending in the vertical direction in the drawing) indicates the amplitude of the front acceleration and the rear acceleration
  • the vertical axis (axis extending in the horizontal direction in the drawing) indicates the frequency.
  • the amplitude of the forward acceleration corresponds to the maximum value in the time waveform of the longitudinal acceleration
  • the amplitude of the backward acceleration corresponds to the minimum value in the time waveform of the longitudinal acceleration.
  • the control unit 64 obtains the average value and the standard deviation of the longitudinal acceleration from the longitudinal acceleration histogram shown in FIG. 7B. Then, the control unit 64 calculates the variation coefficient by dividing the standard deviation by the average value.
  • the coefficient of variation is a dimensionless numerical value that indicates the variation in data with respect to the average value of longitudinal acceleration, and is therefore an effective index for relatively evaluating the variation in time waveforms of multiple longitudinal accelerations with different average values. .
  • the control unit 64 can score the calculated variation coefficient using the ideal value of the variation coefficient as 10 points.
  • the method of calculating the index (coefficient of variation) indicating the center of gravity movement in the front-rear direction from the time waveform of the longitudinal acceleration has been described.
  • An index indicating the center-of-gravity movement in the left-right direction can be calculated, and an index indicating the center-of-gravity movement in the vertical direction can be calculated from the time waveform of the vertical acceleration.
  • FIG. 8 shows an example of a time waveform of the longitudinal acceleration measured during the standing stepping motion of the subject M.
  • the control unit 64 calculates an index indicating the longitudinal stability based on the temporal waveform of the longitudinal acceleration at a predetermined time.
  • the control unit 64 detects a plurality of local maximum times appearing in the time waveform of the longitudinal acceleration in a predetermined time.
  • the local maximum value regularly appearing in the time waveform of the longitudinal acceleration usually appears near the time when the sole of the supporting leg in the single leg support is grounded. This is because the center of gravity of the body attenuates backward due to the contact of the soles.
  • by comparing with a time waveform of left and right acceleration it is possible to determine whether the supporting leg is the right leg or the left leg at each local maximum point.
  • the odd-numbered maximum support legs counted from the measurement start time are left legs, and the even-numbered maximum support legs are right legs.
  • the control unit 64 calculates an index indicating front-rear stability based on the variation in the time interval between two consecutive maximum values.
  • time intervals TLn and TLn + 1 correspond to the time for single-leg support when the support leg is the left leg
  • time intervals TRn and TRn + 1 are times for single-leg support when the support leg is the right leg.
  • the two adjacent time intervals TLn and TRn have substantially the same length, but a time difference may occur between the time intervals TLn and TRn as the muscle strength of the lower limbs of the subject M decreases. .
  • the control unit 64 divides the absolute value of the time interval difference (TLn ⁇ TRn) between two adjacent maximum values by the sum of the time intervals of the two maximum values (TLn + TRn). Then, an index indicating front-rear stability is calculated by adding a plurality of division values for a predetermined time. As the absolute value of TLn ⁇ TRn increases, the value of the index indicating the longitudinal stability also increases. The control unit 64 can score the calculated index with the ideal value of the longitudinal stability as 10 points.
  • the control unit 64 calculates an index indicating the left / right stability based on the time waveform of the left / right acceleration at a predetermined time. Specifically, the control unit 64 detects a plurality of local maximum times appearing in the time waveform of the lateral acceleration at a predetermined time. And the control part 64 calculates the parameter
  • the control unit 64 divides the absolute value of the difference (TLn ⁇ TRn) between two adjacent maximum values in the time waveform of the lateral acceleration by the sum of the two time intervals (TLn + TRn). Then, an index indicating the left-right stability is calculated by adding a plurality of division values for a predetermined time.
  • the control unit 64 can score the calculated index with the ideal value of the left / right stability as 10 points.
  • the control unit 64 causes the display unit 48 to display the calculated index as the evaluation result of the exercise ability of the subject M.
  • Each indicator can be displayed on the display unit 48 as a score when the ideal value is 10 points. Thereby, the user or the subject M can quantitatively know which motor function is inferior to what extent by looking at the screen of the display unit 48.
  • the standing stepping motion can be quantified based on the measurement data of the acceleration sensor 1, the exercise ability (lower limb balance) of the subject M is accurately determined. Can be evaluated. Thereby, the fall risk of the subject M can be accurately determined.
  • the motor function evaluation system 100 can be realized by using a normal computer system without using a dedicated system.
  • a program executrcise function evaluation program
  • the program is stored and distributed in a computer-readable recording medium, the program is installed in the computer, and the motor function evaluation process is executed.
  • the motor function evaluation system 100 may be configured.
  • the program may be stored in a server device on a network such as the Internet and downloaded to a computer.
  • FIG. 9 is a diagram illustrating a configuration of a first modification of the motor function evaluation system 100 according to an aspect of the present invention.
  • the motor function evaluation system 100 according to the first modification includes an acceleration sensor 1, a communication device 4, and a server 8.
  • the server 8 is connected to the network 6.
  • the communication device 4 is a terminal used by the subject M, for example, a smartphone.
  • the acceleration sensor 1 and the communication device 4 communicate with each other wirelessly.
  • the acceleration sensor 1 and the communication device 4 are connected in accordance with a short-range wireless communication standard such as Bluetooth (registered trademark).
  • the server 8 holds the measurement data of the acceleration sensor 1 as a database by communicating with the communication device 4.
  • the server 8 includes a storage unit and a control unit (not shown).
  • the storage unit of the server 8 includes a flash memory, a RAM, and the like, and stores programs and various data used by the server 8.
  • the program includes a motor function evaluation program.
  • the various data includes data for managing registered subjects, measurement data acquired for each subject, a data threshold list, and the like.
  • the control unit of the server 8 evaluates the subject's motor function based on the measurement data of the subject stored in the storage unit, and transmits the evaluation result to the communication device 4.
  • the control unit further determines exercise advice corresponding to the subject based on the evaluation result, and transmits the determined exercise advice to the communication device 4.
  • the communication device 4 causes the display unit to display the evaluation result of exercise ability and exercise advice transmitted from the server 8.
  • FIG. 10 is a diagram illustrating a configuration of a second modified example of the motor function evaluation system 100 according to an aspect of the present invention.
  • the motor function evaluation according to the present embodiment is performed using a communication system that performs bidirectional communication between a plurality of devices via a general-purpose network such as the Internet or a cable television (CATV) network.
  • System 100 is implemented.
  • a configuration for realizing the motor function evaluation system 100 using a cable television system will be described.
  • a receiver which is a television receiving terminal as a communication terminal is installed in a room such as a living room of a user who uses cable television.
  • the receiver is, for example, a set top box (STB) 80 provided to the user by a cable television operator.
  • STB set top box
  • the user corresponds to the subject in the motor function evaluation system 100 according to the present embodiment.
  • the motor function evaluation system 100 can be configured by the STB 80 and the acceleration sensor 1, as will be described later.
  • the STB 80 is connected to the CATV network, receives the program content broadcast by the broadcast station or the cable television operator via the CATV network, and displays it on the display device 82.
  • the STB 80 is controlled by an operation signal transmitted from the remote controller 84.
  • the display device 82 is configured by a liquid crystal display, an organic EL display, or the like, and displays program content output from the STB 80.
  • the STB 80 can also record program content in accordance with a user instruction and store the program content in a built-in storage unit or an external storage device.
  • the STB 80 and the display device 82 may be configured as separate bodies, or the STB 80 and the display device 82 may be configured as an integral unit.
  • the STB 80 is communicably connected to the server 90 via a communication network such as the Internet, and can send and receive data to and from the server 90 in both directions.
  • the server includes a server for distributing VOD (Video On Demand) content, a server for storing programs used in the STB 50, and a server for storing diagnostic record data by specialists such as hospitals, research institutions, or nursing care facilities. included.
  • VOD Video On Demand
  • the STB 80 is connected to a mobile terminal 98 such as a tablet owned by the user so as to be capable of wireless communication.
  • the STB 80 transmits program content to the mobile terminal 98 in response to a remote viewing request from the mobile terminal 98.
  • a fixed terminal such as a desktop personal computer may be connected to the STB 80.
  • the STB 80 is further communicably connected to an imaging device 92 such as a camera, a microphone 94 for receiving a user's voice during a call, the acceleration sensor 1 and the like.
  • an imaging device 92 such as a camera
  • a microphone 94 for receiving a user's voice during a call
  • the acceleration sensor 1 and the like.
  • STB 80 communicates with acceleration sensor 1 wirelessly.
  • the STB 80 and the acceleration sensor 1 are connected in accordance with a near field communication standard such as Wi-Fi (registered trademark) or Bluetooth (registered trademark).
  • the STB 80 receives measurement data of the acceleration sensor 1 during the standing stepping motion.
  • STB 80 includes a storage unit and a control unit (not shown).
  • the storage unit of the STB 80 includes a flash memory, a RAM, and the like, and accumulates program content, programs used by the STB 80, and various data.
  • the program includes a motor function evaluation program.
  • the STB 80 can download the motor function evaluation program from the server 90 and store it in the storage unit.
  • the server 90 may manage the upgrade of the motor function evaluation program and deliver the upgraded motor function evaluation program to the STB 80.
  • the various data includes data for managing the user, measurement data of the acceleration sensor 1 acquired during the user's standing stepping exercise, a data threshold list, and the like.
  • the control unit of the STB 80 quantifies the user's standing stepping motion based on the measurement data of the acceleration sensor 1 stored in the storage unit.
  • the control unit calculates an index that quantitatively indicates the user's athletic ability (lower limb balance), and transmits the calculated index to the display device 82.
  • the display device 82 displays the evaluation result of the user's motor function on the display screen.
  • the control unit of the STB 80 can further transmit the evaluation result of the user's motor function to various institutions via the CATV network in response to the operation signal from the remote controller 84.
  • the image capturing device 92 by capturing an image of the standing foot stepping motion by the image capturing device 92, it is also possible to transmit the captured image data together with the evaluation result to various institutions.
  • a research institution such as a hospital, a care facility, a regional comprehensive care service, a bank, and a university is connected to the CATV network. Therefore, the user can transmit the evaluation results of his / her motor function together with his / her identification information to these institutions.
  • an expert doctor or the like refers to the received evaluation result, diagnoses the user's motor function, and transmits the diagnosis result to the user via the CATV network. be able to.
  • the diagnosis result can be notified to the user by displaying the diagnosis result on the display device 82. Further, it is possible to receive diagnosis at home by interacting with a doctor or the like using the imaging device 92 and the microphone 94.
  • a user and various users are communicated via a general-purpose network such as a CATV network having a base in each municipality as a communication interface. Connect with institutions. According to this, the user can perform a standing stepping exercise at home and can receive diagnosis from various institutions at home.
  • television is a medium that is also viewed by elderly people on a daily basis.
  • motor function can be easily evaluated, and diagnosis based on the evaluation result of motor function can be performed. Can be received at home.
  • Appendix 1 A motor function evaluation apparatus for evaluating a subject's motor function during a standing stepping exercise, A communication unit configured to acquire measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and A motor function evaluation apparatus comprising: a control unit configured to digitize a standing stepping exercise based on the measurement data acquired by the communication unit.
  • the control unit is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise,
  • the motor function evaluation apparatus according to appendix 1 wherein the index is an index indicating at least one of the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability.
  • the control unit A frequency spectrum is generated by frequency-analyzing the time waveform of any one of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration,
  • the motor function evaluation apparatus according to attachment 2 wherein an index indicating the number of steps in the predetermined time is calculated based on a frequency component having a peak value in the frequency spectrum.
  • the control unit calculates an index indicating the movement of the center of gravity in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the front-rear acceleration at the predetermined time.
  • the motor function evaluation apparatus described.
  • the control unit calculates an index indicating a lateral center-of-gravity movement based on a distribution state of a left acceleration amplitude and a right acceleration amplitude in the left-right acceleration time waveform at the predetermined time.
  • the motor function evaluation apparatus according to any one of 4.
  • the control unit calculates an index indicating a vertical center-of-gravity movement based on a distribution state of an amplitude of an upper acceleration and an amplitude of a lower acceleration in the time waveform of the vertical acceleration at the predetermined time.
  • the motor function evaluation apparatus according to any one of the above.
  • the control unit Detecting a plurality of local maximum times appearing in the time waveform of the longitudinal acceleration at the predetermined time;
  • the motor function evaluation apparatus according to any one of appendix 2 to appendix 6, wherein the index indicating the front-rear stability is calculated based on a variation in a time interval between two consecutive maximum values.
  • Appendix 8 The control unit Detecting a plurality of local maximum times appearing in the time waveform of the lateral acceleration at the predetermined time, The motor function evaluation apparatus according to any one of appendix 2 to appendix 7, wherein the index indicating the left-right stability is calculated based on a variation in a time interval between two consecutive maximum values.
  • a motor function evaluation apparatus for evaluating a subject's motor function during a standing stepping exercise,
  • a communication unit configured to acquire measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and Based on the measurement data acquired by the communication unit, comprising a control unit configured to digitize the standing stepping motion,
  • the control unit is configured to calculate an index that quantitatively represents the athletic ability of the subject during the standing stepping exercise, and the index includes the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability.
  • Is an index indicating at least one of The control unit generates a frequency spectrum by performing frequency analysis on any one of the following time waveforms among the following longitudinal acceleration, the lateral acceleration, and the vertical acceleration, and a frequency component having a peak value in the frequency spectrum: Based on the above, calculation of an index indicating the number of steps in the predetermined time, (B) calculation of an index indicating the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the longitudinal acceleration at the predetermined time; (C) calculation of an index indicating the lateral movement of the center of gravity based on the distribution state of the amplitude of the left acceleration and the amplitude of the right acceleration in the time waveform of the left and right acceleration at the predetermined time; (D) calculation of an index indicating the vertical center of gravity movement based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical
  • Appendix 11 The motor function evaluation system according to appendix 10, wherein the motor function evaluation apparatus is built in a communication terminal that is communicably connected to a general-purpose network.
  • Appendix 12 A program for causing a computer to execute a process for evaluating a subject's motor function during a standing stepping exercise, Obtaining measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and A motor function evaluation program that causes the computer to execute a step of digitizing a standing stepping motion based on the acquired measurement data.
  • a motor function evaluation method for evaluating a subject's motor function during a standing stepping exercise Obtaining measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and A motor function evaluation method comprising: a step of digitizing a standing stepping motion based on the acquired measurement data.

Abstract

The present motor function evaluation device evaluates a motor function of a subject during standing/stepping exercises. The motor function evaluation device comprises a communication unit which is configured to acquire measurement data for anteroposterior acceleration, lateral acceleration and craniocaudal acceleration, said measurement data having been measured by an acceleration sensor attached to the subject, and a control unit which is configured to digitize the standing/stepping exercises on the basis of the measurement data acquired by the communication unit.

Description

運動機能評価装置、運動機能評価システム、運動機能評価プログラムおよび運動機能評価方法Motor function evaluation apparatus, motor function evaluation system, motor function evaluation program, and motor function evaluation method
 本開示は、運動機能評価装置、運動機能評価システム、運動機能評価プログラムおよび運動機能評価方法に関する。本出願は、2018年3月13日に出願した日本特許出願である特願2018-045396号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a motor function evaluation apparatus, a motor function evaluation system, a motor function evaluation program, and a motor function evaluation method. This application claims priority based on Japanese Patent Application No. 2018-045396, which is a Japanese patent application filed on March 13, 2018. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 特開2008-229266号公報(特許文献1)は、被験者の歩行運動を、被験者の腰部に装着された3次元加速度センサにより測定し、その測定データを解析することで被験者の運動能力を評価する技術を開示している。 Japanese Patent Laid-Open No. 2008-229266 (Patent Document 1) measures the walking motion of a subject using a three-dimensional acceleration sensor attached to the waist of the subject, and evaluates the motor ability of the subject by analyzing the measurement data. The technology is disclosed.
特開2008-229266号公報JP 2008-229266 A
 本開示の一態様に係る運動機能評価装置は、立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、被験者に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部と、通信部により取得された測定データに基づいて、立位足踏み運動を数値化するように構成された制御部とを備える。 A motor function evaluation apparatus according to an aspect of the present disclosure is a motor function evaluation apparatus that evaluates a subject's motor function during a standing stepping motion, and is measured by an acceleration sensor attached to the subject, longitudinal acceleration, left and right A communication unit configured to acquire measurement data of acceleration and vertical acceleration, and a control unit configured to digitize the standing stepping motion based on the measurement data acquired by the communication unit.
 本開示の一態様に係る運動機能評価システムは、立位足踏み運動時における被験者の運動機能を評価する運動機能評価システムであって、被験者に装着された加速度センサと、加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データに基づいて、立位足踏み運動を数値化するように構成された運動機能評価装置とを備える。 The motor function evaluation system according to one aspect of the present disclosure is a motor function evaluation system that evaluates a subject's motor function during a standing stepping exercise, and is measured by an acceleration sensor attached to the subject and an acceleration sensor. And a motor function evaluation device configured to digitize a standing stepping motion based on measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration.
 本開示の一態様に係る運動機能評価プログラムは、コンピュータに、立位足踏み運動時における被験者の運動機能を評価する処理を実行させるためのプログラムであって、被験者に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、取得された測定データに基づいて、立位足踏み運動を数値化するステップとをコンピュータに実行させる。 A motor function evaluation program according to an aspect of the present disclosure is a program for causing a computer to execute a process of evaluating a motor function of a subject during a standing stepping exercise, and is measured by an acceleration sensor attached to the subject. In addition, the computer executes a step of acquiring measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration and a step of digitizing the standing stepping motion based on the acquired measurement data.
 本開示の一態様に係る運動機能評価方法は、立位足踏み運動時における被験者の運動機能を評価する運動機能評価方法であって、被験者に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、取得された測定データに基づいて、立位足踏み運動を数値化するステップとを備える。 A motor function evaluation method according to an aspect of the present disclosure is a motor function evaluation method for evaluating a motor function of a subject during a standing stepping motion, and is measured by an acceleration sensor attached to the subject, longitudinal acceleration, left and right A step of acquiring measurement data of acceleration and vertical acceleration, and a step of digitizing a standing stepping motion based on the acquired measurement data.
図1は、実施の形態に係る運動機能評価システムの構成を概略的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a motor function evaluation system according to an embodiment. 図2は、実施の形態に係る運動機能評価システムのハードウェア構成を概略的に示す図である。FIG. 2 is a diagram schematically illustrating a hardware configuration of the motor function evaluation system according to the embodiment. 図3は、実施の形態に係る加速度センサの機能的構成を概略的に示す図である。FIG. 3 is a diagram schematically illustrating a functional configuration of the acceleration sensor according to the embodiment. 図4は、実施の形態に係る運動機能評価装置の機能的構成を概略的に示す図である。FIG. 4 is a diagram schematically illustrating a functional configuration of the motor function evaluation apparatus according to the embodiment. 図5は、実施の形態に係る運動機能評価システムにより実行される運動機能評価を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining motor function evaluation executed by the motor function evaluation system according to the embodiment. 図6Aは、図5のステップS15に示す処理を説明するための図である。FIG. 6A is a diagram for explaining the process shown in step S15 of FIG. 図6Bは、図5のステップS15に示す処理を説明するための図である。FIG. 6B is a diagram for explaining the process shown in step S15 of FIG. 図7Aは、図5のステップS15に示す処理を説明するための図である。FIG. 7A is a diagram for explaining the process shown in step S15 of FIG. 図7Bは、図5のステップS15に示す処理を説明するための図である。FIG. 7B is a diagram for explaining the process shown in step S15 of FIG. 図8は、図5のステップS15に示す処理を説明するための図である。FIG. 8 is a diagram for explaining the process shown in step S15 of FIG. 図9は、実施の形態に係る運動機能評価システムの第1の変更例の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a first modification of the motor function evaluation system according to the embodiment. 図10は、実施の形態に係る運動機能評価システムの第2の変更例の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a second modification of the motor function evaluation system according to the embodiment.
[本開示が解決しようとする課題]
 本開示の一態様の目的は、立位足踏み運動時における被験者の運動機能を定量的に評価することができる運動機能評価装置、運動機能評価方法および運動機能評価プログラム、ならびに、このような運動機能評価装置を備えた運動機能評価システムを提供することである。
[本開示の効果]
 本開示によれば、簡便な構成で、立位足踏み運動時における被験者の運動能力を定量的に評価することができる。
[Problems to be solved by this disclosure]
An object of one aspect of the present disclosure is to provide a motor function evaluation apparatus, a motor function evaluation method and a motor function evaluation program that can quantitatively evaluate a motor function of a subject during a standing stepping exercise, and such a motor function It is providing the motor function evaluation system provided with the evaluation apparatus.
[Effects of the present disclosure]
According to the present disclosure, it is possible to quantitatively evaluate the exercise ability of a subject during a standing stepping exercise with a simple configuration.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of Embodiment of the Present Disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の一態様に係る運動機能評価装置2(図1および図4参照)は、立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、被験者に装着された加速度センサ1により測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部40と、通信部40により取得された測定データに基づいて、立位足踏み運動を数値化するように構成された制御部64とを備える。 (1) A motor function evaluation apparatus 2 (see FIGS. 1 and 4) according to an aspect of the present disclosure is a motor function evaluation apparatus that evaluates a subject's motor function during a standing stepping exercise, and is attached to the subject. The communication unit 40 configured to acquire the measurement data of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration measured by the acceleration sensor 1, and the standing stepping motion based on the measurement data acquired by the communication unit 40 And a control unit 64 configured to digitize.
 上記(1)に記載の運動機能評価装置2によれば、立位足踏み運動を数値化することで、被験者の運動能力(下肢の平衡性)を定量的に測定することができる。これによれば、被験者の歩行動作を必要としないため、簡便な構成で、被験者の運動機能を定量的に評価することができる。なお、好ましくは、加速度センサ1は被験者の体幹正中に装着される。最も代表的には、加速度センサ1は被験者の体幹正中であって腰部に装着される。 According to the motor function evaluation apparatus 2 described in (1) above, the motor ability (lower limb balance) of the subject can be quantitatively measured by quantifying the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration. In addition, Preferably, the acceleration sensor 1 is mounted | worn with a test subject's trunk. Most typically, the acceleration sensor 1 is worn on the waist of the subject in the middle of the trunk.
 (2)上記(1)に記載の運動機能評価装置2において好ましくは、制御部64は、立位足踏み運動時における被験者の運動能力を定量的に表わす指標を算出するように構成される。指標は、所定時間における歩数、重心移動、前後安定性および左右安定性のうち少なくとも1つを示す指標である。 (2) Preferably, in the motor function evaluation apparatus 2 described in (1) above, the control unit 64 is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise. The index is an index indicating at least one of the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability.
 このようにすると、立位足踏み運動時における被験者の下肢の平衡性を定量的に評価することができる。したがって、被験者の転倒リスクを簡便かつ精度良く判定することが可能となる。 In this way, it is possible to quantitatively evaluate the balance of the lower limb of the subject during the standing stepping exercise. Therefore, it is possible to easily and accurately determine the subject's fall risk.
 (3)上記(2)に記載の運動機能評価装置2において好ましくは、制御部64は、前後加速度、左右加速度および上下加速度のうちいずれかの時間波形を周波数解析することにより周波数スペクトルを生成し、周波数スペクトルにおいてピーク値となる周波数成分に基づいて、所定時間における歩数を示す指標を算出する。 (3) Preferably, in the motor function evaluation apparatus 2 described in (2) above, the control unit 64 generates a frequency spectrum by performing frequency analysis on any time waveform of longitudinal acceleration, lateral acceleration, and vertical acceleration. Then, an index indicating the number of steps in a predetermined time is calculated based on the frequency component that is a peak value in the frequency spectrum.
 このようにすると、立位足踏み運動時における加速度センサ1の測定データから、被験者の下肢の平衡性を定量的に評価することができる。 In this way, the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
 (4)上記(2)に記載の運動機能評価装置2において好ましくは、制御部64は、所定時間における前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいて、前後方向の重心移動を示す指標を算出する。 (4) Preferably, in the motor function evaluation apparatus 2 described in (2) above, the control unit 64 performs the front-rear based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the front-rear acceleration at a predetermined time. An index indicating the movement of the center of gravity in the direction is calculated.
 このようにすると、立位足踏み運動時における加速度センサ1の測定データから、被験者の下肢の平衡性を定量的に評価することができる。 In this way, the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
 (5)上記(2)に記載の運動機能評価装置2において好ましくは、制御部64は、所定時間における左右加速度の時間波形における左方加速度の振幅および右方加速度の振幅の分布状況に基づいて、左右方向の重心移動を示す指標を算出する。 (5) Preferably, in the motor function evaluation apparatus 2 described in (2) above, the control unit 64 is based on the distribution status of the left acceleration amplitude and the right acceleration amplitude in the time waveform of the left and right acceleration in a predetermined time. Then, an index indicating the movement of the center of gravity in the left-right direction is calculated.
 このようにすると、立位足踏み運動時における加速度センサ1の測定データから、被験者の下肢の平衡性を定量的に評価することができる。 In this way, the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
 (6)上記(2)に記載の運動機能評価装置2において好ましくは、制御部64は、所定時間における上下加速度の時間波形における上方加速度の振幅および下方加速度の振幅の分布状況に基づいて、上下方向の重心移動を示す指標を算出する。 (6) Preferably, in the motor function evaluation apparatus 2 described in (2) above, the control unit 64 performs vertical movement based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical acceleration at a predetermined time. An index indicating the movement of the center of gravity in the direction is calculated.
 このようにすると、立位足踏み運動時における加速度センサ1の測定データから、被験者の下肢の平衡性を定量的に評価することができる。 In this way, the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
 (7)上記(2)に記載の運動機能評価装置2において好ましくは、制御部64は、所定時間における前後加速度の時間波形に現われる複数の極大値の時刻を検出し、連続する2つの極大値の間の時間間隔のばらつきに基づいて、前後安定性を示す指標を算出する。 (7) Preferably, in the motor function evaluation apparatus 2 described in (2) above, the control unit 64 detects the time of a plurality of maximum values appearing in the time waveform of the longitudinal acceleration in a predetermined time, and two continuous maximum values are detected. An index indicating the front-rear stability is calculated based on the variation in the time interval between the two.
 このようにすると、立位足踏み運動時における加速度センサ1の測定データから、被験者の下肢の平衡性を定量的に評価することができる。 In this way, the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
 (8)上記(2)に記載の運動機能評価装置2において好ましくは、制御部64は、所定時間における左右加速度の時間波形に現われる複数の極大値の時刻を検出し、連続する2つの極大値の間の時間間隔のばらつきに基づいて、左右安定性を示す指標を算出する。 (8) Preferably, in the motor function evaluation apparatus 2 described in (2) above, the control unit 64 detects the time of a plurality of maximum values appearing in the time waveform of the left and right acceleration in a predetermined time, and two continuous maximum values are detected. An index indicating the left-right stability is calculated based on the variation in the time interval between the two.
 このようにすると、立位足踏み運動時における加速度センサ1の測定データから、被験者の下肢の平衡性を定量的に評価することができる。 In this way, the balance of the lower limb of the subject can be quantitatively evaluated from the measurement data of the acceleration sensor 1 during the standing stepping motion.
 (9)本発明の一態様に係る運動機能評価装置2は、立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、被験者の体幹正中に装着された加速度センサ1により測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部40と、通信部40により取得された測定データに基づいて、立位足踏み運動を数値化するように構成された制御部64とを備える。制御部64は、立位足踏み運動時における被験者の運動能力を定量的に表わす指標を算出するように構成される。指標は、所定時間における歩数、重心移動、前後安定性および左右安定性のうち少なくとも1つを示す指標である。制御部64は、以下の
 (a)前後加速度、左右加速度および上下加速度のうちいずれかの時間波形を周波数解析することにより周波数スペクトルを生成し、周波数スペクトルにおいてピーク値となる周波数成分に基づいた、所定時間における歩数を示す指標の算出、
 (b)所定時間における前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいた、前後方向の重心移動を示す指標の算出、
 (c)所定時間における左右加速度の時間波形における左方加速度の振幅および右方加速度の振幅の分布状況に基づいた、左右方向の重心移動を示す指標の算出、
 (d)所定時間における上下加速度の時間波形における上方加速度の振幅および下方加速度の振幅の分布状況に基づいた、上下方向の重心移動を示す指標の算出、
 (e)所定時間における前後加速度の時間波形に現われる複数の極大値の時刻の検出、および、連続する2つの極大値の間の時間間隔のばらつきに基づいた、前後安定性を示す指標の算出、
 (f)所定時間における左右加速度の時間波形に現われる複数の極大値の時刻の検出、および、連続する2つの極大値の間の時間間隔のばらつきに基づいた、左右安定性を示す指標の算出、
のうちの少なくとも1つを実行する。
(9) The motor function evaluation device 2 according to one aspect of the present invention is a motor function evaluation device that evaluates a subject's motor function during a standing stepping exercise, and is an acceleration sensor 1 that is mounted in the midline of the subject's trunk. The communication unit 40 configured to acquire the measurement data of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration measured by the above, and digitizing the standing stepping motion based on the measurement data acquired by the communication unit 40 And a control unit 64 configured as described above. The control unit 64 is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise. The index is an index indicating at least one of the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability. The control unit 64 generates a frequency spectrum by performing frequency analysis on one of the following time waveforms (a) longitudinal acceleration, lateral acceleration, and vertical acceleration, and is based on a frequency component having a peak value in the frequency spectrum. Calculation of an index indicating the number of steps in a given time;
(B) calculation of an index indicating the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the longitudinal acceleration at a predetermined time;
(C) calculation of an index indicating the center-of-gravity movement in the left-right direction based on the distribution state of the left acceleration amplitude and the right acceleration amplitude in the time waveform of the left-right acceleration at a predetermined time
(D) calculation of an index indicating the center of gravity movement in the vertical direction based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical acceleration at a predetermined time;
(E) detection of time of a plurality of maximum values appearing in a time waveform of longitudinal acceleration at a predetermined time, and calculation of an index indicating front-rear stability based on variations in time intervals between two consecutive maximum values;
(F) calculation of an index indicating left-right stability based on detection of times of a plurality of maximum values appearing in a time waveform of left-right acceleration at a predetermined time, and variation in time intervals between two consecutive maximum values;
Perform at least one of the following:
 上記(9)に係る運動機能評価装置2によれば、立位足踏み運動を数値化することで、被験者の運動能力(下肢の平衡性)を定量的に測定することができる。これによれば、被験者の歩行動作を必要としないため、簡便な構成で、被験者の運動機能を定量的に評価することができる。 According to the motor function evaluation apparatus 2 according to the above (9), it is possible to quantitatively measure the subject's motor ability (lower limb balance) by digitizing the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
 (10)本開示の一態様に係る運動機能評価システム100(図1参照)は、立位足踏み運動時における被験者の運動機能を評価する運動機能評価システムであって、被験者に装着された加速度センサ1と、加速度センサ1により測定された、前後加速度、左右加速度および上下加速度の測定データに基づいて、立位足踏み運動を数値化するように構成された運動機能評価装置2とを備える。 (10) A motor function evaluation system 100 (see FIG. 1) according to one aspect of the present disclosure is a motor function evaluation system that evaluates a subject's motor function during a standing stepping exercise, and includes an acceleration sensor attached to the subject 1 and a motor function evaluation device 2 configured to digitize a standing stepping motion based on measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by the acceleration sensor 1.
 上記(10)に係る運動機能評価システム100によれば、立位足踏み運動を数値化することで、被験者の運動能力(下肢の平衡性)を定量的に測定することができる。これによれば、被験者の歩行動作を必要としないため、簡便な構成で、被験者の運動機能を定量的に評価することができる。 According to the motor function evaluation system 100 according to the above (10), it is possible to quantitatively measure the exercise ability (lower limb balance) of the subject by digitizing the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
 (11)上記(10)に記載の運動機能評価システム100において好ましくは、運動機能評価装置2は、被験者の住宅内に設置され、汎用のネットワークと通信可能に接続された通信端末80に内蔵される(図10参照)。 (11) Preferably, in the motor function evaluation system 100 according to the above (10), the motor function evaluation apparatus 2 is installed in a communication terminal 80 installed in a subject's house and connected to be communicable with a general-purpose network. (See FIG. 10).
 このようにすると、家庭に普及しているテレビを通信インターフェースとして、各市区町村に拠点を持つケーブルテレビ網等の汎用のネットワークを経由して、ユーザと医療施設、介護施設または研究機関等の各種機関とを繋ぐことができる。これによると、ユーザは、在宅で立位足踏み運動を行ない、かつ、在宅で各種機関による診断を受けることができる。特に、テレビは高齢者も日常的に視聴するメディアであり、テレビ用のリモコンを操作することで、簡易に運動機能の評価することができ、かつ、運動機能の評価結果に基づいた診断を在宅で受けることができる。 In this way, a user and a medical facility, a nursing facility, a research institution, or the like via a general-purpose network such as a cable television network that has a base in each city, using a television that is widely used in the home as a communication interface. Connect with institutions. According to this, the user can perform a standing stepping exercise at home and can receive diagnosis from various institutions at home. In particular, TV is a medium that elderly people watch daily, and by operating a TV remote control, the motor function can be easily evaluated, and the diagnosis based on the motor function evaluation results can be performed at home. Can be received at.
 (12)本開示の一態様に係る運動機能評価プログラムは、コンピュータに、立位足踏み運動時における被験者の運動機能を評価する処理を実行させるためのプログラムであって、被験者に装着された加速度センサ1により測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、取得された測定データに基づいて、立位足踏み運動を数値化するステップとをコンピュータに実行させる。 (12) A motor function evaluation program according to an aspect of the present disclosure is a program for causing a computer to execute a process of evaluating a motor function of a subject during a standing stepping exercise, and an acceleration sensor attached to the subject (1) causing the computer to execute measurement data of the longitudinal acceleration, lateral acceleration, and vertical acceleration measured by 1 and a step of digitizing the standing stepping motion based on the acquired measurement data.
 上記(12)に係る運動機能評価プログラムによれば、立位足踏み運動を数値化することで、被験者の運動能力(下肢の平衡性)を定量的に測定することができる。これによれば、被験者の歩行動作を必要としないため、簡便な構成で、被験者の運動機能を定量的に評価することができる。 According to the motor function evaluation program according to (12) above, the motor ability (lower limb balance) of the subject can be quantitatively measured by quantifying the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
 (13)本開示の一態様に係る運動機能評価方法は、立位足踏み運動時における被験者の運動機能を評価する運動機能評価方法であって、被験者に装着された加速度センサ1により測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、取得された測定データに基づいて、立位足踏み運動を数値化するステップとを備える。 (13) The motor function evaluation method according to an aspect of the present disclosure is a motor function evaluation method for evaluating a subject's motor function during a standing stepping exercise, and is measured by the acceleration sensor 1 attached to the subject. A step of acquiring measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration, and a step of digitizing a standing stepping motion based on the acquired measurement data.
 上記(13)に係る運動機能評価方法によれば、立位足踏み運動を数値化することで、被験者の運動能力(下肢の平衡性)を定量的に測定することができる。これによれば、被験者の歩行動作を必要としないため、簡便な構成で、被験者の運動機能を定量的に評価することができる。 According to the motor function evaluation method according to (13) above, it is possible to quantitatively measure the subject's motor ability (lower limb balance) by digitizing the standing stepping motion. According to this, since the walking motion of the subject is not required, the motion function of the subject can be quantitatively evaluated with a simple configuration.
 [本開示の実施形態の詳細]
 以下、本開示の実施の形態について図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照符号を付し、その説明は繰返さない。
[Details of Embodiment of the Present Disclosure]
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (運動機能評価システムの構成)
 図1は、実施の形態に係る運動機能評価システム100の構成を概略的に示す図である。本実施の形態に係る運動機能評価システム100は、被験者Mの運動機能を評価するためのシステムである。本願明細書において、被験者Mの「運動機能」とは、被験者Mの歩行時の運動能力であって、下肢の平衡性や俊敏性を含む。
(Configuration of motor function evaluation system)
FIG. 1 is a diagram schematically showing a configuration of a motor function evaluation system 100 according to an embodiment. The motor function evaluation system 100 according to the present embodiment is a system for evaluating the motor function of the subject M. In the present specification, the “motor function” of the subject M is the motor ability of the subject M at the time of walking, and includes balance and agility of the lower limbs.
 図1に示すように、運動機能評価システム100は、加速度センサ1と、運動機能評価装置2とを備える。加速度センサ1および運動機能評価装置2は、互いに無線通信する。具体的には、加速度センサ1は、運動機能評価装置2と、Bluetooth(登録商標)、無線LAN(Local Area Network)規格等の近距離無線通信の規格に従って接続され、運動機能評価装置2との間でデータを送受信する。 As shown in FIG. 1, the motor function evaluation system 100 includes an acceleration sensor 1 and a motor function evaluation device 2. The acceleration sensor 1 and the motor function evaluation device 2 communicate with each other wirelessly. Specifically, the acceleration sensor 1 is connected to the motor function evaluation device 2 in accordance with a short-range wireless communication standard such as Bluetooth (registered trademark) or wireless LAN (Local Area Network) standard. Send and receive data between them.
 加速度センサ1は、携行可能な小型の筐体を有しており、被験者Mに装着される。好ましくは、加速度センサ1は被験者Mの体幹正中に装着される。体幹正中とは、胴体としての体幹であって、体の左右の中心をいう。図1の例では、被験者Mの腰部に装着される。好ましくは、加速度センサ1は、被験者Mの体重心がある、正中線上の第3腰椎付近に装着される。例えば、加速度センサ1の筐体にはクリップ(図示せず)が設けられており、被験者Mが着用するベルトの腰背部中央付近に当該クリップを挟むことによって、加速度センサ1が装着される。 The acceleration sensor 1 has a small portable case and is attached to the subject M. Preferably, the acceleration sensor 1 is worn in the mid-trunk of the subject M. The midline trunk is the trunk as the trunk and means the center of the left and right sides of the body. In the example of FIG. 1, it is worn on the waist of the subject M. Preferably, the acceleration sensor 1 is mounted in the vicinity of the third lumbar vertebra on the median line where the center of gravity of the subject M is located. For example, the casing of the acceleration sensor 1 is provided with a clip (not shown), and the acceleration sensor 1 is mounted by sandwiching the clip near the center of the waist and back of the belt worn by the subject M.
 加速度センサ1は、MEMS(Micro Electro Mechancal Systems)センサ等の3軸加速度センサである。加速度センサ1は、被験者Mの移動中における左右方向、上下方向および前後方向の加速度を測定する。以下の説明では、左右方向の加速度を「左右加速度」と称し、上下方向の加速度を「上下加速度」と称し、前後方向の加速度を「前後加速度」とも称する。また、被験者Mにとって左右方向をX軸、上下方向をY軸、前後方向をZ軸とする。 The acceleration sensor 1 is a three-axis acceleration sensor such as a MEMS (Micro Electro Mechanical Systems) sensor. The acceleration sensor 1 measures the acceleration in the left-right direction, the up-down direction, and the front-rear direction while the subject M is moving. In the following description, the lateral acceleration is referred to as “lateral acceleration”, the vertical acceleration is referred to as “vertical acceleration”, and the longitudinal acceleration is also referred to as “longitudinal acceleration”. For the subject M, the horizontal direction is the X axis, the vertical direction is the Y axis, and the front and back direction is the Z axis.
 加速度センサ1は、測定した3軸の加速度を測定データとして運動機能評価装置2へ出力する。なお、加速度センサ1は、被験者Mの運動中における3軸の加速度の変化を測定可能な装置であれば、どのような装置であってもよい。運動中における3軸の加速度の変化を正確に測定するため、被験者Mは裸足または靴を履いた状態で移動することが好ましい。 The acceleration sensor 1 outputs the measured triaxial acceleration to the motor function evaluation device 2 as measurement data. The acceleration sensor 1 may be any device as long as it can measure a change in triaxial acceleration during the movement of the subject M. In order to accurately measure the change of the three-axis acceleration during the exercise, it is preferable that the subject M moves while wearing bare feet or shoes.
 運動機能評価装置2は、無線通信機能を有する電子機器であって、専用に構成された装置の他、例えば、パソコン、タブレット端末、スマートフォンなどを適用することができる。運動機能評価装置2は、加速度センサ1が出力する測定データにより、被験者Mの移動中における前後加速度、左右加速度および上下加速度を取得する。運動機能評価装置2は、取得された前後加速度、左右加速度および上下加速度の時間的変化に基づいて、被験者Mの運動機能を評価する。 The motor function evaluation device 2 is an electronic device having a wireless communication function, and for example, a personal computer, a tablet terminal, a smartphone, etc. can be applied in addition to a dedicated device. The motor function evaluation apparatus 2 acquires the longitudinal acceleration, the lateral acceleration, and the vertical acceleration during the movement of the subject M based on the measurement data output from the acceleration sensor 1. The motor function evaluation apparatus 2 evaluates the motor function of the subject M based on the acquired temporal changes in the longitudinal acceleration, the lateral acceleration, and the vertical acceleration.
 (運動機能評価システムのハードウェア構成)
 図2は、実施の形態に係る運動機能評価システム100のハードウェア構成を概略的に示す図である。
(Hardware configuration of motor function evaluation system)
FIG. 2 is a diagram schematically illustrating a hardware configuration of the motor function evaluation system 100 according to the embodiment.
 図2に示すように、加速度センサ1は、センサ部10と、CPU(Central Processing Unit)12と、記憶部14と、通信部16と、回路基板18と、電源20とを含む。 As shown in FIG. 2, the acceleration sensor 1 includes a sensor unit 10, a CPU (Central Processing Unit) 12, a storage unit 14, a communication unit 16, a circuit board 18, and a power source 20.
 センサ部10は、3軸加速度センサであり、被験者Mの腰部に生じる前後加速度、左右加速度および上下加速度を測定する。センサ部10は、測定した加速度を示す電気信号をCPU12へ出力する。 The sensor unit 10 is a three-axis acceleration sensor, and measures longitudinal acceleration, lateral acceleration, and vertical acceleration generated in the waist of the subject M. The sensor unit 10 outputs an electrical signal indicating the measured acceleration to the CPU 12.
 CPU12は、予め記憶されているプログラムを読み込んで、プログラムに含まれる命令を実行することにより、加速度センサ1の動作を制御する。CPU12は、センサ部10から出力された電気信号を処理することにより、センサ部10によって測定された加速度から測定データを生成する。 The CPU 12 controls the operation of the acceleration sensor 1 by reading a program stored in advance and executing instructions included in the program. The CPU 12 generates measurement data from the acceleration measured by the sensor unit 10 by processing the electrical signal output from the sensor unit 10.
 記憶部14は、たとえばRAM(Random Access Memory)等により構成され、加速度センサ1の各種機能を設定するための設定データ、および測定データなどを記憶する。 The storage unit 14 is configured by, for example, a RAM (Random Access Memory) or the like, and stores setting data, measurement data, and the like for setting various functions of the acceleration sensor 1.
 通信部16は、加速度センサ1が運動機能評価装置2と無線通信するため、図示しないアンテナ等を介して信号を送受信するための変復調処理などを行なう。具体的には、通信部16は、チューナ、受信強度算出回路、巡回冗長検査回路、高周波回路などを含む通信モジュールである。通信部16は、加速度センサ1が送受信する無線信号の変復調および周波数変換を行ない、受信信号をCPU12へ与える。 The communication unit 16 performs modulation / demodulation processing for transmitting and receiving signals via an antenna or the like (not shown) so that the acceleration sensor 1 communicates wirelessly with the motor function evaluation device 2. Specifically, the communication unit 16 is a communication module including a tuner, a reception intensity calculation circuit, a cyclic redundancy check circuit, a high frequency circuit, and the like. The communication unit 16 performs modulation / demodulation and frequency conversion of a radio signal transmitted / received by the acceleration sensor 1 and gives a reception signal to the CPU 12.
 回路基板18は、加速度センサ1の筐体内部に収容されており、センサ部10、CPU12、記憶部14および通信部16の各々を構成する回路部品を搭載する。 The circuit board 18 is housed inside the casing of the acceleration sensor 1 and mounts circuit components constituting the sensor unit 10, the CPU 12, the storage unit 14, and the communication unit 16.
 電源20は、リチウムイオン電池等を含む蓄電装置である。ユーザ等により図示しない電源スイッチがオンされると、回路基板18上に搭載される複数の回路部品に対する電力供給を開始する。 The power source 20 is a power storage device including a lithium ion battery. When a power switch (not shown) is turned on by a user or the like, power supply to a plurality of circuit components mounted on the circuit board 18 is started.
 運動機能評価装置2は、通信部40と、CPU42と、回路基板44と、電源46と、表示部48と、操作受付部50とを含む。 The motor function evaluation device 2 includes a communication unit 40, a CPU 42, a circuit board 44, a power supply 46, a display unit 48, and an operation reception unit 50.
 通信部40は、運動機能評価装置2が加速度センサ1を含む他の無線機器と通信するため、アンテナ等を介して信号を送受信するための変復調処理などを行なう。通信部40は、チューナ、受信強度算出回路、巡回冗長検査回路、高周波回路などを含む通信モジュールである。通信部40は、運動機能評価装置2が送受信する無線信号の変復調および周波数変換を行ない、受信信号をCPU42へ与える。 The communication unit 40 performs modulation / demodulation processing for transmitting and receiving signals via an antenna or the like so that the motor function evaluation apparatus 2 communicates with other wireless devices including the acceleration sensor 1. The communication unit 40 is a communication module including a tuner, a reception intensity calculation circuit, a cyclic redundancy check circuit, a high frequency circuit, and the like. The communication unit 40 performs modulation / demodulation and frequency conversion of a radio signal transmitted / received by the motor function evaluation apparatus 2 and gives a reception signal to the CPU 42.
 CPU42は、記憶装置68(図4参照)に記憶されているプログラムを読み込んで、該プログラムに含まれる命令を実行することにより、運動機能評価装置2の動作を制御する。プログラムは運動機能評価プログラムを含む。CPU42は、運動機能評価プログラムを実行することにより、通信部40から送信される測定データに基づいて、被験者Mの運動機能を評価する。CPU42は、さらに、運動機能の評価結果に基づいて、被験者Mに応じた運動アドバイスを判別することができる。CPU42の詳細については後述する。 CPU42 controls the operation | movement of the motor function evaluation apparatus 2 by reading the program memorize | stored in the memory | storage device 68 (refer FIG. 4), and executing the command contained in this program. The program includes a motor function evaluation program. The CPU 42 evaluates the motor function of the subject M based on the measurement data transmitted from the communication unit 40 by executing the motor function evaluation program. Further, the CPU 42 can discriminate exercise advice corresponding to the subject M based on the evaluation result of the exercise function. Details of the CPU 42 will be described later.
 操作受付部50は、ユーザの入力操作を受け付ける。操作受付部50は、ユーザの操作に応じて、操作内容を示す信号をCPU42へ出力する。操作受付部50は、表示部48上に設けられたタッチパネルであってもよいし、キーボード等その他の物理操作キーであってもよい。 The operation accepting unit 50 accepts user input operations. The operation reception unit 50 outputs a signal indicating the operation content to the CPU 42 in accordance with a user operation. The operation reception unit 50 may be a touch panel provided on the display unit 48, or may be other physical operation keys such as a keyboard.
 表示部48は、CPU42の制御に応じて、画像、テキスト、音声など五感に作用するデータを表示する。表示部48は、たとえばLCD(Liquid Crystal Display)や有機EL(Electro-Luminescence)ディスプレイによって構成される。CPU42は、運動機能評価プログラムの実行により、通信部40から送信される測定データ、運動機能の評価結果を示すデータ、および、運動アドバイスを示すデータを表示部48に表示させることができる。また、CPU42は、これらのデータを内部の記憶装置68に蓄積することができる。 The display unit 48 displays data acting on the five senses such as an image, text, and voice under the control of the CPU 42. The display unit 48 includes, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro-Luminescence) display. The CPU 42 can cause the display unit 48 to display the measurement data transmitted from the communication unit 40, the data indicating the evaluation result of the motor function, and the data indicating the exercise advice by executing the motor function evaluation program. Further, the CPU 42 can accumulate these data in the internal storage device 68.
 (加速度センサ1の機能的構成)
 図3は、実施の形態に係る加速度センサ1の機能的構成を概略的に示す図である。図3に示すように、加速度センサ1は、記憶部22および信号処理回路24を含む。記憶部22は、RAM等の記憶装置から構成されており、プログラムおよび測定データ等を記憶する。
(Functional configuration of acceleration sensor 1)
FIG. 3 is a diagram schematically showing a functional configuration of the acceleration sensor 1 according to the embodiment. As shown in FIG. 3, the acceleration sensor 1 includes a storage unit 22 and a signal processing circuit 24. The storage unit 22 includes a storage device such as a RAM, and stores a program, measurement data, and the like.
 信号処理回路24は、加速度センサ1の各部を制御する。信号処理回路24は、記憶部22に記憶されているプログラムに従って動作し、後述する運動機能評価を含む種々の動作を実行する。 The signal processing circuit 24 controls each part of the acceleration sensor 1. The signal processing circuit 24 operates according to a program stored in the storage unit 22 and executes various operations including motor function evaluation described later.
 具体的には、信号処理回路24は、ノイズ除去用のフィルタおよびA/D(Analog/Digital)コンバータを含み、センサ部10から出力された電気信号からノイズを除去することにより、図5に示すような加速度を示す加速度信号を生成する。また、信号処理回路24は、生成した加速度信号を所定周期でサンプリングすることにより、測定データを生成する。 Specifically, the signal processing circuit 24 includes a noise removal filter and an A / D (Analog / Digital) converter, and removes noise from the electrical signal output from the sensor unit 10, as shown in FIG. An acceleration signal indicating such acceleration is generated. Further, the signal processing circuit 24 generates measurement data by sampling the generated acceleration signal at a predetermined period.
 信号処理回路24におけるサンプリング周期は、1ms以上200ms以下とすることが好ましい。サンプリング周期が1msより短くなると、信号処理回路24における演算の負荷が増大するとともに、測定データを記憶するために大容量の記憶部22が必要になるためである。また、サンプリング周期が200msより長くなると、移動に伴う被験者の体重心の位置の変化を正確に捉えることが難しくなるためである。より好ましくは、信号処理回路24におけるサンプリング周期は5ms程度である。信号処理回路24は、生成した測定データを通信部16に出力する。サンプリング周期の下限は2ms以上であることが好ましく、5ms以上であることがより好ましい。サンプリング周期の上限は100ms以下であることが好ましく、50ms以下であることがより好ましく、20ms以下であることがさらに好ましい。 The sampling period in the signal processing circuit 24 is preferably 1 ms or more and 200 ms or less. This is because when the sampling period is shorter than 1 ms, the calculation load in the signal processing circuit 24 increases and a large-capacity storage unit 22 is required to store measurement data. In addition, if the sampling period is longer than 200 ms, it is difficult to accurately grasp the change in the position of the body center of gravity of the subject accompanying movement. More preferably, the sampling period in the signal processing circuit 24 is about 5 ms. The signal processing circuit 24 outputs the generated measurement data to the communication unit 16. The lower limit of the sampling period is preferably 2 ms or more, and more preferably 5 ms or more. The upper limit of the sampling period is preferably 100 ms or less, more preferably 50 ms or less, and further preferably 20 ms or less.
 通信部16は、無線信号受信部26と、無線信号送信部28と、ファイル出力部30とを含む。無線信号受信部26は、運動機能評価装置2から操作指示を受信し、受信した操作指示を信号処理回路24に与える。操作指示には、信号処理回路24により生成された測定データの保存先を指定するための指示が含まれている。 The communication unit 16 includes a radio signal receiving unit 26, a radio signal transmitting unit 28, and a file output unit 30. The wireless signal receiving unit 26 receives an operation instruction from the motor function evaluation apparatus 2 and gives the received operation instruction to the signal processing circuit 24. The operation instruction includes an instruction for designating a storage destination of the measurement data generated by the signal processing circuit 24.
 無線信号送信部28は、信号処理回路24により生成された測定データを運動機能評価装置2へ送信する。運動機能評価装置2は、無線信号送信部28から送信されてきた測定データを受信すると、測定データを装置内部の記憶装置68(図4参照)に記憶させる。 The wireless signal transmission unit 28 transmits the measurement data generated by the signal processing circuit 24 to the motor function evaluation device 2. When the motor function evaluation device 2 receives the measurement data transmitted from the wireless signal transmission unit 28, the motor function evaluation device 2 stores the measurement data in the storage device 68 (see FIG. 4) inside the device.
 信号処理回路24は、また、生成した測定データを記憶部14に格納する。信号処理回路24は、運動機能評価装置2からの操作指示に応じて(あるいは、予め定められた設定に基づいて)、加速度センサ1内部の記憶部14および加速度センサ1外部の記憶装置(運動機能評価装置2内部の記憶装置68)のいずれか一方を選択して、測定データを保存するように構成されている。 The signal processing circuit 24 also stores the generated measurement data in the storage unit 14. In response to an operation instruction from the motor function evaluation device 2 (or based on a predetermined setting), the signal processing circuit 24 stores the storage unit 14 inside the acceleration sensor 1 and a storage device (motor function) outside the acceleration sensor 1. One of the storage devices 68) inside the evaluation device 2 is selected and the measurement data is stored.
 このようにすると、加速度センサ1を用いて運動機能評価を行なう場合、信号処理回路24は、センサ部10による測定データを、無線信号送信部28を介してリアルタイムで運動機能評価装置2へ送信することができる。したがって、運動機能評価装置2は、受信した測定データに基づいて、リアルタイムで被験者Mの運動機能を評価することができる。 Thus, when the motor function evaluation is performed using the acceleration sensor 1, the signal processing circuit 24 transmits the measurement data obtained by the sensor unit 10 to the motor function evaluation apparatus 2 in real time via the wireless signal transmission unit 28. be able to. Therefore, the motor function evaluation apparatus 2 can evaluate the motor function of the subject M in real time based on the received measurement data.
 あるいは、信号処理回路24は、測定データを記憶部14に蓄積しておくことができる。ファイル出力部30は、記憶部14に蓄積されている測定データを外部の記憶媒体3に送信することができる。外部の記憶媒体3は、例えば、USBメモリおよびメモリースティック(登録商標)などを用いることができる。 Alternatively, the signal processing circuit 24 can store the measurement data in the storage unit 14. The file output unit 30 can transmit the measurement data accumulated in the storage unit 14 to the external storage medium 3. For example, a USB memory or a Memory Stick (registered trademark) can be used as the external storage medium 3.
 これによると、加速度センサ1と運動機能評価装置2とが無線通信することが難しい状況であっても、加速度センサ1が測定データを記憶部14に蓄えておくことで、後日、記憶部14に蓄えられた測定データを、記憶媒体3を経由して読み出すことにより、被験者Mの運動機能を評価することができる。なお、加速度センサ1は、記憶媒体3を経由することに代えて、USB等の有線のデータ伝送手段を経由して測定データを読み出せるように構成されていてもよい。 According to this, even if it is difficult for the acceleration sensor 1 and the motor function evaluation device 2 to communicate wirelessly, the acceleration sensor 1 stores the measurement data in the storage unit 14, so that it can be stored in the storage unit 14 at a later date. By reading the stored measurement data via the storage medium 3, the motor function of the subject M can be evaluated. The acceleration sensor 1 may be configured to be able to read measurement data via a wired data transmission means such as USB instead of via the storage medium 3.
 (運動機能評価装置2の機能的構成)
 図4は、実施の形態に係る運動機能評価装置2の機能的構成を概略的に示す図である。
(Functional configuration of motor function evaluation apparatus 2)
FIG. 4 is a diagram schematically showing a functional configuration of the motor function evaluation apparatus 2 according to the embodiment.
 図4に示すように、運動機能評価装置2において、通信部40は、無線信号受信部60および無線信号送信部62を含む。無線信号受信部60は、加速度センサ1から測定データを受信すると、受信した測定データをCPU42に送信する。 As shown in FIG. 4, in the motor function evaluation apparatus 2, the communication unit 40 includes a radio signal receiving unit 60 and a radio signal transmitting unit 62. When receiving the measurement data from the acceleration sensor 1, the wireless signal receiving unit 60 transmits the received measurement data to the CPU 42.
 CPU42は、制御部64および記憶装置68を含む。記憶装置68は、例えば、ROM(Read Only Memory)およびRAMを含む。ROMは、運動機能評価装置2を制御するためのプログラムを記憶する。該プログラムは、運動機能評価プログラムを含む。RAMは、運動機能評価装置2の各種機能を設定するためのデータ、測定データ、運動機能の評価結果を示すデータ、および、運動アドバイスを示すデータなどを記憶する。 The CPU 42 includes a control unit 64 and a storage device 68. The storage device 68 includes, for example, a ROM (Read Only Memory) and a RAM. The ROM stores a program for controlling the motor function evaluation device 2. The program includes a motor function evaluation program. The RAM stores data for setting various functions of the motor function evaluation device 2, measurement data, data indicating the evaluation results of motor functions, data indicating exercise advice, and the like.
 制御部64は、プロセッサから構成される。制御部64は、記憶装置68に記憶されるプログラムに従って動作することにより、運動機能評価装置2の動作を制御する。制御部64は、運動機能評価プログラムに従って動作することにより、評価部70および判別部72としての機能を発揮する。 The control unit 64 includes a processor. The control unit 64 controls the operation of the motor function evaluation device 2 by operating according to a program stored in the storage device 68. The control unit 64 functions as the evaluation unit 70 and the determination unit 72 by operating according to the motor function evaluation program.
 評価部70は、無線信号受信部60により取得された測定データに基づいて、被験者Mの運動機能を評価する。または、評価部70は、記憶媒体3から読み出した測定データに基づいて、被験者Mの運動機能を評価する。 The evaluation unit 70 evaluates the motor function of the subject M based on the measurement data acquired by the wireless signal reception unit 60. Alternatively, the evaluation unit 70 evaluates the motor function of the subject M based on the measurement data read from the storage medium 3.
 評価部70は、測定データに基づいて、被験者Mの運動機能を示す指標を算出する。評価部70は、算出した指標を、例えば理想値を10点(満点)としてスコア化する。このようにして、指標をスコア化することによって被験者Mの運動機能を定量的に評価する。これにより、ユーザは、運動機能がどの程度劣っているのかを定量的に把握することができる。 The evaluation unit 70 calculates an index indicating the motor function of the subject M based on the measurement data. The evaluation unit 70 scores the calculated index, for example, with an ideal value of 10 points (full score). In this way, the motor function of the subject M is quantitatively evaluated by scoring the index. Thereby, the user can grasp | ascertain quantitatively how much the motor function is inferior.
 判別部72は、評価部70からの評価結果を取得するとともに、操作受付部50から、ユーザによって入力された外部データを受け付ける。外部データには、被験者Mを識別する情報である被験者識別情報、およびデータ閾値リストが含まれる。被験者識別情報は、被験者Mの氏名、性別、年齢、身長、体重などの情報を含む。データ閾値リストは、運動アドバイスを判別する際に用いられる閾値のデータである。判別部72は、データ閾値リストを参照することにより、被験者Mの運動能力の評価結果に基づいて、被験者Mに応じた運動アドバイスを判別する。 The determination unit 72 acquires the evaluation result from the evaluation unit 70 and receives external data input by the user from the operation reception unit 50. The external data includes subject identification information that is information for identifying subject M, and a data threshold list. The subject identification information includes information such as the name, sex, age, height, and weight of the subject M. The data threshold list is threshold data used when discriminating exercise advice. The determination unit 72 determines exercise advice corresponding to the subject M based on the evaluation result of the exercise ability of the subject M by referring to the data threshold list.
 制御部64は、測定データ、評価部70による評価結果、および判別部72による運動アドバイスを示すデータを表示部48に表示させる。また制御部64は、これらのデータを記憶装置68に記憶する。 The control unit 64 causes the display unit 48 to display measurement data, an evaluation result by the evaluation unit 70, and data indicating exercise advice by the determination unit 72. The control unit 64 stores these data in the storage device 68.
 (運動機能評価システムの動作)
 次に、本実施の形態に係る運動機能評価システム100の動作について説明する。
(Operation of motor function evaluation system)
Next, the operation of the motor function evaluation system 100 according to the present embodiment will be described.
 本実施の形態では、被験者Mの運動機能の評価の一例として、被験者Mに所定時間、立位足踏み運動を行なわせて、被験者Mの運動能力(下肢の平衡性)を測定するものとする。ここで、立位足踏み運動とは、立位の姿勢で単脚支持(片足立ち)を左右交互に繰り返す周期性のある運動である。所定時間は、例えば10秒間に設定されている。 In the present embodiment, as an example of the evaluation of the motor function of the subject M, the subject M is caused to perform a standing stepping exercise for a predetermined time to measure the motor ability (lower limb balance) of the subject M. Here, the standing stepping motion is a periodic motion in which single-leg support (single-leg standing) is alternately repeated in the standing posture. The predetermined time is set to 10 seconds, for example.
 立位足踏み運動時の被験者Mの下肢の平衡性を測定することで、被験者Mの下肢筋力、バランス能力および体重運動能力といった運動機能を評価することができる。また、被験者Mの歩行動作を必要としないため、診察室または被験者の住宅等の被験者の居室内などの狭いスペースで、被験者Mの運動機能を評価することができる。 By measuring the balance of the lower limbs of the subject M during the standing stepping exercise, it is possible to evaluate motor functions such as the lower limb strength, balance ability, and body weight exercise ability of the subject M. Further, since the walking motion of the subject M is not required, the motor function of the subject M can be evaluated in a narrow space such as the examination room or the subject's room such as the subject's house.
 本実施の形態に係る運動機能評価装置2は、立位足踏み運動時に加速度センサ1により測定されたデータを解析することにより、被験者Mの立位足踏み運動を数値化するように構成される。本実施の形態において、立位足踏み運動の数値化とは、立位足踏み運動時における被験者Mの運動能力(下肢の平衡性)を定量的に表す指標を算出することである。 The motor function evaluation device 2 according to the present embodiment is configured to digitize the standing foot motion of the subject M by analyzing the data measured by the acceleration sensor 1 during the standing foot motion. In the present embodiment, the digitization of the standing stepping exercise is to calculate an index that quantitatively represents the exercise ability (lower limb balance) of the subject M during the standing stepping exercise.
 下肢の平衡性や俊敏性を示す指標には、立位足踏み運動の「歩数」、「重心移動」、「前後安定性」および「左右安定性」の少なくとも1つを示す指標が含まれる。本願明細書において、「歩数」とは、所定時間内に単脚支持が繰り返された回数、すなわち所定時間内の足踏みの回数をいう。「重心移動」とは、単脚支持における支持脚を替えることに伴う体重心の移動をいう。「前後安定性」とは、体重心の前後方向の安定性をいう。「左右安定性」とは、体重心の左右方向の安定性をいう。立位足踏み運動を数値化することで、被験者Mの下肢の平衡性を定量的に測定することができるため、被験者Mの運動機能を定量的に評価することが可能となる。 The index indicating the balance and agility of the lower limb includes an index indicating at least one of “the number of steps”, “movement of the center of gravity”, “front / rear stability” and “lateral stability” of the standing stepping motion. In the present specification, the “number of steps” refers to the number of times that the single leg support is repeated within a predetermined time, that is, the number of steps taken within the predetermined time. “Movement of the center of gravity” refers to the movement of the center of gravity of the body accompanying the change of the support leg in the single leg support. “Front-back stability” refers to the stability of the body center of gravity in the front-rear direction. “Left-right stability” refers to the lateral stability of the body center of gravity. By digitizing the standing stepping motion, the balance of the lower limbs of the subject M can be quantitatively measured, so that the motor function of the subject M can be quantitatively evaluated.
 運動機能評価システム100によって運動機能を評価する場合、最初に、被験者Mの体幹正中に加速度センサ1を装着した状態で加速度センサ1および運動機能評価装置2の各々の電源スイッチをオンすることにより、加速度センサ1および運動機能評価装置2を起動する。 When the motor function is evaluated by the motor function evaluation system 100, first, by turning on the power switches of the acceleration sensor 1 and the motor function evaluation apparatus 2 while the acceleration sensor 1 is mounted in the middle of the trunk of the subject M, Then, the acceleration sensor 1 and the motor function evaluation device 2 are activated.
 運動機能評価装置2は、操作受付部50によって評価開始の指示を示す入力操作を受け付けると、通信部40を介して、加速度センサ1へ測定開始を指示する。加速度センサ1は、被験者Mが静止した状態であるときのセンサ部10の測定値を、前後加速度、左右加速度および上下加速度の零点に補正する。これにより、被験者Mの立位足踏み運動時に生じる前後加速度、左右加速度および上下加速度を精度良く測定することができる。 The motor function evaluation device 2 instructs the acceleration sensor 1 to start measurement via the communication unit 40 when the operation reception unit 50 receives an input operation indicating an evaluation start instruction. The acceleration sensor 1 corrects the measurement value of the sensor unit 10 when the subject M is in a stationary state to zero points of longitudinal acceleration, lateral acceleration, and vertical acceleration. Thereby, it is possible to accurately measure the longitudinal acceleration, the lateral acceleration, and the vertical acceleration that occur during the standing stepping motion of the subject M.
 被験者Mは、裸足もしくは靴を履いた状態で、所定時間(例えば、10秒間)、立位の姿勢で足踏み運動を行なう。加速度センサ1は、被験者Mの立位足踏み運動中における前後加速度、左右加速度および上下加速度を測定し、測定データを通信部16を介して運動機能評価装置2へ出力する。運動機能評価装置2は、加速度センサ1が出力する信号により測定データを取得する。 Subject M performs a stepping exercise in a standing position for a predetermined time (for example, 10 seconds) while wearing bare feet or shoes. The acceleration sensor 1 measures the longitudinal acceleration, the lateral acceleration, and the vertical acceleration during the standing foot exercise of the subject M, and outputs the measurement data to the motor function evaluation device 2 via the communication unit 16. The motor function evaluation device 2 acquires measurement data from a signal output from the acceleration sensor 1.
 図5は、本実施の形態に係る運動機能評価システム100により実行される運動機能評価を説明するためのフローチャートである。運動機能評価装置2は、運動機能評価プログラムを実行することにより、加速度センサ1と無線通信して図5に示す処理を実行する。図5に示すフローチャートの処理は、例えば一定の周期で実行される。 FIG. 5 is a flowchart for explaining motor function evaluation executed by the motor function evaluation system 100 according to the present embodiment. The motor function evaluation device 2 executes the process shown in FIG. 5 through wireless communication with the acceleration sensor 1 by executing a motor function evaluation program. The process of the flowchart shown in FIG. 5 is executed at a constant cycle, for example.
 図2~図5を参照して、加速度センサ1においては、ステップS01により、被験者Mの体幹正中に装着された状態で電源20が投入されて加速度センサ1が起動すると、ステップS02において、信号処理回路24は、センサ部10の出力信号に基づいて、被験者Mが静止状態であるか否かを判定する。具体的には、前後加速度、左右加速度および上下加速度の各々に有意な変化が見られない場合(例えば、各加速度の変動幅が閾値未満である場合)、信号処理回路24は、被験者Mが静止状態であると判定する。 Referring to FIGS. 2 to 5, in acceleration sensor 1, when power supply 20 is turned on and activated in step S01 in a state of being attached to mid-trunk of subject M, in step S02, a signal is sent in step S02. The processing circuit 24 determines whether or not the subject M is in a stationary state based on the output signal of the sensor unit 10. Specifically, when no significant change is observed in each of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration (for example, when the fluctuation range of each acceleration is less than a threshold), the signal processing circuit 24 indicates that the subject M is stationary. It is determined that it is in a state.
 被験者Mが静止状態であると判定されると(S02のYES判定時)、信号処理回路24は、ステップS03に進み、被験者Mが静止状態であるときのセンサ部10の測定値を、左右加速度、上下加速度および前後加速度の零点に補正する。零点補正が完了すると、ステップS04にて、センサ部10は、被験者Mの腰部に生じる前後加速度、左右加速度および上下加速度の測定を開始する。信号処理回路24は、センサ部10が出力する加速度信号を測定データに変換する。一方、被験者Mが静止状態でない場合(S02のNO判定時)、すなわち被験者Mが移動している場合、処理は終了する。 When it is determined that the subject M is in a stationary state (when YES is determined in S02), the signal processing circuit 24 proceeds to step S03, and the measured value of the sensor unit 10 when the subject M is in a stationary state is subjected to the lateral acceleration. Correct to the zero point of vertical acceleration and longitudinal acceleration. When the zero point correction is completed, the sensor unit 10 starts measuring the longitudinal acceleration, the lateral acceleration, and the vertical acceleration generated in the waist of the subject M in step S04. The signal processing circuit 24 converts the acceleration signal output from the sensor unit 10 into measurement data. On the other hand, when the subject M is not in a stationary state (NO determination in S02), that is, when the subject M is moving, the process ends.
 ステップS05において、信号処理回路24は、センサ部10の出力信号に基づいて、被験者Mが足踏み運動を開始したか否かを判定する。前後加速度、左右加速度および上下加速度の少なくとも1つに変化が見られる場合(例えば、少なくとも1つの加速度の変動幅が閾値より大きい場合)、信号処理回路24は、被験者Mが足踏み運動を開始したと判定する。 In step S05, the signal processing circuit 24 determines whether or not the subject M has started the stepping motion based on the output signal of the sensor unit 10. When a change is observed in at least one of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration (for example, when the fluctuation range of at least one acceleration is larger than the threshold value), the signal processing circuit 24 indicates that the subject M starts the stepping motion. judge.
 被験者Mが足踏み運動を開始すると(S05のYES判定時)、ステップS06において、センサ部10は、運動中の被験者Mの体幹正中に生じる上下加速度、左右加速度および前後加速度を測定する。信号処理回路24は、センサ部10が出力する加速度信号を測定データに変換する。一方、被験者Mが足踏み運動を開始していない場合(S05のNO判定時)、処理は終了する。 When the subject M starts the stepping exercise (when YES is determined in S05), in step S06, the sensor unit 10 measures the vertical acceleration, the lateral acceleration, and the longitudinal acceleration that occur in the mid-trunk of the subject M during the exercise. The signal processing circuit 24 converts the acceleration signal output from the sensor unit 10 into measurement data. On the other hand, when the subject M has not started the stepping exercise (NO in S05), the process ends.
 信号処理回路24は、ステップS07において、測定データの保存先として、運動機能評価装置2の記憶装置68および加速度センサ1の記憶部14のいずれが指定されているかを判定する。測定データの保存先が記憶装置68である場合、信号処理回路24は、ステップS08に進み、通信部16(無線信号送信部28)を介して、測定データを運動機能評価装置2へ送信する。 In step S07, the signal processing circuit 24 determines which of the storage device 68 of the motor function evaluation device 2 and the storage unit 14 of the acceleration sensor 1 is designated as the storage destination of the measurement data. When the storage destination of the measurement data is the storage device 68, the signal processing circuit 24 proceeds to step S08, and transmits the measurement data to the motor function evaluation device 2 via the communication unit 16 (wireless signal transmission unit 28).
 一方、測定データの保存先が記憶部14である場合、信号処理回路24は、ステップS09に進み、測定データを記憶部14に記憶する。 On the other hand, when the storage destination of the measurement data is the storage unit 14, the signal processing circuit 24 proceeds to step S <b> 09 and stores the measurement data in the storage unit 14.
 運動機能評価装置2においては、ステップS11において電源46が投入されて起動すると、ステップS12において、制御部64は、操作受付部50によって測定開始の指示を示す入力操作を受け付けたか否かを判定する。測定開始の指示を示す入力操作を受け付けると(S12のYES判定時)、ステップS13に進み、通信部40は、加速度センサ1の測定データを受信する。受信された測定データは制御部64に送られる。 In the motor function evaluation apparatus 2, when the power supply 46 is turned on and started in step S11, the control unit 64 determines in step S12 whether or not an input operation indicating a measurement start instruction has been received by the operation reception unit 50. . When an input operation indicating a measurement start instruction is received (when YES is determined in S12), the process proceeds to step S13, and the communication unit 40 receives the measurement data of the acceleration sensor 1. The received measurement data is sent to the control unit 64.
 ステップS14において、通信部40は、さらに、外部データを受信する。外部データには、被験者Mを識別する情報である被験者識別情報、およびデータ閾値リストが含まれる。被験者識別情報は、被験者Mの氏名、性別、年齢、身長、体重などの情報を含む。データ閾値リストは、運動機能の評価結果に応じて被験者Mに応じた運動アドバイスを判別するときに用いられる。 In step S14, the communication unit 40 further receives external data. The external data includes subject identification information that is information for identifying subject M, and a data threshold list. The subject identification information includes information such as the name, sex, age, height, and weight of the subject M. The data threshold list is used when discriminating exercise advice corresponding to the subject M according to the evaluation result of the motor function.
 ステップS15において、制御部64は、加速度センサ1から送信される測定データに基づいて、被験者Mの立位足踏み運動を数値化する。具体的には、制御部64は、立位足踏み運動時に測定された加速度の時間波形に基づいて、立位足踏み運動時における被験者Mの運動能力(下肢の平衡性)を定量的に表す指標を算出する。 In step S15, the control unit 64 digitizes the standing stepping motion of the subject M based on the measurement data transmitted from the acceleration sensor 1. Specifically, the control unit 64 provides an index that quantitatively represents the exercise ability (lower limb balance) of the subject M during the standing stepping exercise based on the time waveform of the acceleration measured during the standing stepping exercise. calculate.
 ステップS16において、制御部64は、運動能力の評価結果を表示部48に表示する。ステップS17において、制御部64は、データ閾値リストを参照することにより、評価結果に基づいて、被験者Mに応じた運動アドバイスを判別する。データ閾値リストには、指標ごとに、年齢別、性別などで分類された複数の閾値が登録されている。制御部64は、データ閾値リストを参照して、被験者識別情報を基に、被験者Mにとって適当な閾値を設定する。 In step S16, the control unit 64 displays the evaluation result of athletic ability on the display unit 48. In step S17, the control unit 64 determines exercise advice corresponding to the subject M based on the evaluation result by referring to the data threshold list. In the data threshold list, a plurality of thresholds classified by age, sex, etc. are registered for each index. The control unit 64 refers to the data threshold list and sets an appropriate threshold for the subject M based on the subject identification information.
 続いて、制御部64は、ステップS15にて算出した指標のスコアと、設定した閾値とを比較することにより、被験者Mの運動能力が低下しているか否かを判定する。制御部64は、さらに、指標と閾値との差に基づいて運動能力の低下の程度を判定する。そして、制御部64は、運動能力の低下の程度に応じて、被験者Mの運動能力を改善するための運動アドバイスを判別する。 Subsequently, the control unit 64 determines whether or not the exercise ability of the subject M has decreased by comparing the score of the index calculated in step S15 with the set threshold value. The control unit 64 further determines the degree of decrease in athletic ability based on the difference between the index and the threshold value. And the control part 64 discriminate | determines the exercise advice for improving the exercise | movement ability of the test subject M according to the grade of the fall of athletic ability.
 ステップS18において、制御部64は、判別した運動アドバイスを表示部48に表示する。なお、ステップS15における評価結果、およびステップS17における運動アドバイスは、表示部48を通じてユーザに報知されるとともに、被験者Mの測定データと関連付けて、運動機能評価装置2の記憶装置68に記憶される。 In step S18, the control unit 64 displays the determined exercise advice on the display unit 48. The evaluation result in step S15 and the exercise advice in step S17 are notified to the user through the display unit 48 and stored in the storage device 68 of the motor function evaluation device 2 in association with the measurement data of the subject M.
 (立位足踏み運動の数値化)
 次に、図5のステップS15に示す立位足踏み運動を数値化する処理について詳しく説明する。
(Numericalization of standing foot movement)
Next, the process of digitizing the standing stepping motion shown in step S15 of FIG. 5 will be described in detail.
 本実施の形態では、運動機能評価装置2は、加速度センサ1の測定データに基づいて、立位足踏み運動時の被験者Mの下肢の平衡性を定量的に表す指標として、立位足踏み運動の歩数、重心移動、前後安定性および左右安定性を算出する。 In the present embodiment, the motor function evaluation device 2 uses the number of steps of the standing stepping exercise as an index that quantitatively represents the balance of the lower limbs of the subject M during the standing stepping exercise based on the measurement data of the acceleration sensor 1. Calculate the center of gravity movement, front-rear stability and left-right stability.
 以下、歩数、重心移動、前後安定性および左右安定性の各々を示す指標を算出する方法について説明する。 Hereinafter, a method for calculating an index indicating each of the number of steps, movement of the center of gravity, front-rear stability and left-right stability will be described.
 (1)歩数
 図6Aは、被験者Mの立位足踏み運動時に測定された前後加速度の時間波形の一例を示している。制御部64は、所定時間(例えば、10秒間)における前後加速度の時間波形に基づいて、当該所定時間における歩数を示す指標を算出する。
(1) Number of steps FIG. 6A shows an example of a time waveform of the longitudinal acceleration measured during the standing stepping motion of the subject M. The control unit 64 calculates an index indicating the number of steps in the predetermined time based on the time waveform of the longitudinal acceleration in the predetermined time (for example, 10 seconds).
 具体的には、制御部64は、前後加速度の時間波形に対してフーリエ変換を行ない、周波数スペクトルを生成する。図6Bは、図6Aに示す前後加速度の時間波形の周波数スペクトルである。周波数スペクトルは、周波数と周波数成分における強度との関係が、周波数に従って順に配列されたデータ配列によって示される。周波数スペクトルは、横軸を周波数とし、縦軸を強度とするグラフによって表される。 Specifically, the control unit 64 performs a Fourier transform on the time waveform of the longitudinal acceleration and generates a frequency spectrum. FIG. 6B is a frequency spectrum of the time waveform of the longitudinal acceleration shown in FIG. 6A. The frequency spectrum is represented by a data array in which the relationship between the frequency and the intensity of the frequency component is sequentially arranged according to the frequency. The frequency spectrum is represented by a graph with the horizontal axis representing frequency and the vertical axis representing intensity.
 制御部64は、周波数スペクトルにおいてピーク値となる周波数成分(ピーク周波数)に基づいて、所定時間における歩数を示す指標を算出する。ピーク周波数をfpeak[Hz]とすると、1秒間あたりの歩数はfpeakで与えられる。図6Bの例では、fpeak=2Hzであるため、1秒間当たりの歩数は2歩となり、所定時間(10秒間)における歩数は20歩となる。制御部64は、所定時間における歩数の理想値を10点として、算出された歩数をスコア化することができる。 The control unit 64 calculates an index indicating the number of steps in a predetermined time based on a frequency component (peak frequency) that is a peak value in the frequency spectrum. If the peak frequency is fpeak [Hz], the number of steps per second is given by fpeak. In the example of FIG. 6B, since fpeak = 2 Hz, the number of steps per second is 2, and the number of steps in a predetermined time (10 seconds) is 20. The control unit 64 can score the calculated number of steps by setting the ideal value of the number of steps in a predetermined time as 10 points.
 なお、図6Aおよび図6Bでは、前後加速度の時間波形から所定時間における歩数を算出する方法について説明したが、左右加速度の時間波形または上下加速度の時間波形を用いても、加速度の時間波形の周波数スペクトルを生成することにより、所定時間における歩数を求めることができる。 6A and 6B, the method of calculating the number of steps in a predetermined time from the time waveform of the longitudinal acceleration has been described. However, the frequency of the acceleration time waveform can be obtained using the time waveform of the left-right acceleration or the time waveform of the vertical acceleration. By generating a spectrum, the number of steps in a predetermined time can be obtained.
 (2)重心移動
 図7Aは、被験者Mの立位足踏み運動時に測定された前後加速度の時間波形の一例を示している。制御部64は、所定時間における前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいて、前後方向の重心移動を算出する。
(2) Center of Gravity FIG. 7A shows an example of a time waveform of the longitudinal acceleration measured during the standing stepping motion of the subject M. The control unit 64 calculates the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the longitudinal acceleration at a predetermined time.
 図7Bには、前後加速度の時間波形に基づいて生成された、所定時間における前後加速度のヒストグラムが示される。このヒストグラムにおいて、横軸(図面垂直方向に延びる軸)は前方加速度および後方加速度の振幅を示し、縦軸(図面水平方向に延びる軸)は度数を示す。前方加速度の振幅は前後加速度の時間波形における極大値に対応し、後方加速度の振幅は前後加速度の時間波形における極小値に対応する。 FIG. 7B shows a histogram of longitudinal acceleration at a predetermined time generated based on the longitudinal waveform of longitudinal acceleration. In this histogram, the horizontal axis (axis extending in the vertical direction in the drawing) indicates the amplitude of the front acceleration and the rear acceleration, and the vertical axis (axis extending in the horizontal direction in the drawing) indicates the frequency. The amplitude of the forward acceleration corresponds to the maximum value in the time waveform of the longitudinal acceleration, and the amplitude of the backward acceleration corresponds to the minimum value in the time waveform of the longitudinal acceleration.
 制御部64は、図7Bに示す前後加速度のヒストグラムから、前後加速度の平均値およびその標準偏差を求める。そして、制御部64は、標準偏差を平均値で除算することにより、変動係数を算出する。変動係数は、前後加速度の平均値に対するデータのばらつきを示す無次元の数値であるため、平均値が互いに異なる複数の前後加速度の時間波形のばらつきを相対的に評価する際に有効な指標となる。 The control unit 64 obtains the average value and the standard deviation of the longitudinal acceleration from the longitudinal acceleration histogram shown in FIG. 7B. Then, the control unit 64 calculates the variation coefficient by dividing the standard deviation by the average value. The coefficient of variation is a dimensionless numerical value that indicates the variation in data with respect to the average value of longitudinal acceleration, and is therefore an effective index for relatively evaluating the variation in time waveforms of multiple longitudinal accelerations with different average values. .
 ここで、被験者の下肢筋力などが低下すると、足踏み運動において支持脚を交互に替えるときに、体重心が大きく振れるため、前後加速度の平均値に対するデータのばらつきが大きくなる。その結果、変動係数も大きくなる傾向がある。制御部64は、変動係数の理想値を10点として、算出された変動係数をスコア化することができる。 Here, when the muscle strength of the lower limbs of the subject decreases, the body center of gravity swings greatly when the supporting legs are alternately switched in the stepping motion, so that the data variation with respect to the average value of the longitudinal acceleration increases. As a result, the coefficient of variation tends to increase. The control unit 64 can score the calculated variation coefficient using the ideal value of the variation coefficient as 10 points.
 なお、図7Aおよび図7Bでは、前後加速度の時間波形から前後方向の重心移動を示す指標(変動係数)を算出する方法について説明したが、同様の方法を用いることにより、左右加速度の時間波形から左右方向の重心移動を示す指標を算出することができ、上下加速度の時間波形から上下方向の重心移動を示す指標を算出することができる。 7A and 7B, the method of calculating the index (coefficient of variation) indicating the center of gravity movement in the front-rear direction from the time waveform of the longitudinal acceleration has been described. However, by using the same method, An index indicating the center-of-gravity movement in the left-right direction can be calculated, and an index indicating the center-of-gravity movement in the vertical direction can be calculated from the time waveform of the vertical acceleration.
 (3)前後安定性
 図8は、被験者Mの立位足踏み運動時に測定された前後加速度の時間波形の一例を示している。制御部64は、所定時間における前後加速度の時間波形に基づいて、前後安定性示す指標を算出する。
(3) Longitudinal Stability FIG. 8 shows an example of a time waveform of the longitudinal acceleration measured during the standing stepping motion of the subject M. The control unit 64 calculates an index indicating the longitudinal stability based on the temporal waveform of the longitudinal acceleration at a predetermined time.
 具体的には、制御部64は、所定時間における前後加速度の時間波形に現われる複数の極大値の時刻を検出する。前後加速度の時間波形において規則的に現れる極大値は、通常、単脚支持における支持脚の足裏が接地される時刻付近に現れる。これは、足裏の接地によって体重心が後方に減衰することによる。なお、図示しない左右加速度の時間波形と対比することで、各極大点について、支持脚が右脚であるか左脚であるかを判別することができる。図8の例では、測定開始時刻から数えて奇数番目の極大値の支持脚が左脚であり、偶数番目の極大値の支持脚が右脚である。 Specifically, the control unit 64 detects a plurality of local maximum times appearing in the time waveform of the longitudinal acceleration in a predetermined time. The local maximum value regularly appearing in the time waveform of the longitudinal acceleration usually appears near the time when the sole of the supporting leg in the single leg support is grounded. This is because the center of gravity of the body attenuates backward due to the contact of the soles. In addition, by comparing with a time waveform of left and right acceleration (not shown), it is possible to determine whether the supporting leg is the right leg or the left leg at each local maximum point. In the example of FIG. 8, the odd-numbered maximum support legs counted from the measurement start time are left legs, and the even-numbered maximum support legs are right legs.
 制御部64は、連続する2つの極大値の時間間隔のばらつきに基づいて、前後安定性を示す指標を算出する。図8において、時間間隔TLn,TLn+1は、支持脚が左脚であるときの単脚支持の時間に対応し、時間間隔TRn,TRn+1は、支持脚が右脚であるときの単脚支持の時間に対応する。 The control unit 64 calculates an index indicating front-rear stability based on the variation in the time interval between two consecutive maximum values. In FIG. 8, time intervals TLn and TLn + 1 correspond to the time for single-leg support when the support leg is the left leg, and time intervals TRn and TRn + 1 are times for single-leg support when the support leg is the right leg. Corresponding to
 被験者Mの下肢筋力が正常であれば、隣接する2つの時間間隔TLn,TRnはほぼ同じ長さとなるが、被験者Mの下肢筋力が低下するに従い、時間間隔TLnおよびTRnの間に時間差が生じ得る。 If the muscle strength of the lower limbs of the subject M is normal, the two adjacent time intervals TLn and TRn have substantially the same length, but a time difference may occur between the time intervals TLn and TRn as the muscle strength of the lower limbs of the subject M decreases. .
 制御部64は、隣接する2つの極大値の時間間隔の差(TLn-TRn)の絶対値を、当該2つの極大値の時間間隔の和(TLn+TRn)で除算する。そして、所定時間における複数の除算値を足し合わせることにより、前後安定性を示す指標を算出する。TLn-TRnの絶対値が大きくなるに従って、前後安定性を示す指標の値も大きくなる。制御部64は、前後安定性の理想値を10点として、算出した指標をスコア化することができる。 The control unit 64 divides the absolute value of the time interval difference (TLn−TRn) between two adjacent maximum values by the sum of the time intervals of the two maximum values (TLn + TRn). Then, an index indicating front-rear stability is calculated by adding a plurality of division values for a predetermined time. As the absolute value of TLn−TRn increases, the value of the index indicating the longitudinal stability also increases. The control unit 64 can score the calculated index with the ideal value of the longitudinal stability as 10 points.
 (4)左右安定性
 制御部64は、(3)に示した方法を用いて、所定時間における左右加速度の時間波形に基づいて、左右安定性示す指標を算出する。具体的には、制御部64は、所定時間における左右加速度の時間波形に現われる複数の極大値の時刻を検出する。そして、制御部64は、連続する2つの極大値の時間間隔のばらつきに基づいて、左右安定性を示す指標を算出する。(3)前後安定性で説明したように、被験者Mの下肢筋力が低下するに従い、支持脚が左脚のときの時間間隔TLnおよび支持脚が右脚のときの時間間隔TRnの間に時間差が生じ得る。
(4) Left / right stability Using the method shown in (3), the control unit 64 calculates an index indicating the left / right stability based on the time waveform of the left / right acceleration at a predetermined time. Specifically, the control unit 64 detects a plurality of local maximum times appearing in the time waveform of the lateral acceleration at a predetermined time. And the control part 64 calculates the parameter | index which shows left-right stability based on the dispersion | variation in the time interval of two continuous maximum values. (3) As described in the longitudinal stability, as the muscle strength of the lower limbs of the subject M decreases, there is a time difference between the time interval TLn when the supporting leg is the left leg and the time interval TRn when the supporting leg is the right leg. Can occur.
 制御部64は、左右加速度の時間波形において隣接する2つの極大値の時間間隔の差(TLn-TRn)の絶対値を、当該2つの時間間隔の和(TLn+TRn)で除算する。そして、所定時間における複数の除算値を足し合わせることにより、左右安定性を示す指標を算出する。制御部64は、左右安定性の理想値を10点として、算出した指標をスコア化することができる。 The control unit 64 divides the absolute value of the difference (TLn−TRn) between two adjacent maximum values in the time waveform of the lateral acceleration by the sum of the two time intervals (TLn + TRn). Then, an index indicating the left-right stability is calculated by adding a plurality of division values for a predetermined time. The control unit 64 can score the calculated index with the ideal value of the left / right stability as 10 points.
 制御部64は、被験者Mの運動能力の評価結果として、算出した指標を表示部48に表示させる。表示部48には、各指標を、理想値を10点としたときのスコアで表示することができる。これにより、ユーザまたは被験者Mは、表示部48の画面を見ることで、どの運動機能がどの程度劣っているのかを定量的に知ることができる。 The control unit 64 causes the display unit 48 to display the calculated index as the evaluation result of the exercise ability of the subject M. Each indicator can be displayed on the display unit 48 as a score when the ideal value is 10 points. Thereby, the user or the subject M can quantitatively know which motor function is inferior to what extent by looking at the screen of the display unit 48.
 以上説明したように、本実施の形態によれば、加速度センサ1の測定データに基づいて、立位足踏み運動を数値化することができるため、被験者Mの運動能力(下肢の平衡性)を的確に評価することができる。これにより、被験者Mの転倒リスクを精度良く判定することができる。 As described above, according to the present embodiment, since the standing stepping motion can be quantified based on the measurement data of the acceleration sensor 1, the exercise ability (lower limb balance) of the subject M is accurately determined. Can be evaluated. Thereby, the fall risk of the subject M can be accurately determined.
 <運動機能評価システムの変更例>
 上述した実施の形態に係る運動機能評価システム100は、専用のシステムによらず、通常のコンピュータシステムを用いても実現可能である。例えば、上述した運動機能評価処理を実行するためのプログラム(運動機能評価プログラム)をコンピュータ読取可能な記録媒体に格納して配布し、該プログラムをコンピュータにインストールして、運動機能評価処理を実行することによって運動機能評価システム100を構成してもよい。または、インターネット等のネットワーク上のサーバ装置に該プログラムを格納しておき、コンピュータにダウンロードできるようにしてもよい。
<Example of changes in motor function evaluation system>
The motor function evaluation system 100 according to the above-described embodiment can be realized by using a normal computer system without using a dedicated system. For example, a program (exercise function evaluation program) for executing the above-described motor function evaluation process is stored and distributed in a computer-readable recording medium, the program is installed in the computer, and the motor function evaluation process is executed. Thus, the motor function evaluation system 100 may be configured. Alternatively, the program may be stored in a server device on a network such as the Internet and downloaded to a computer.
 図9は、本発明の一態様に係る運動機能評価システム100の第1の変更例の構成を示す図である。図9に示すように、第1の変更例に係る運動機能評価システム100は、加速度センサ1と、通信装置4と、サーバ8とを備える。サーバ8はネットワーク6に接続されている。 FIG. 9 is a diagram illustrating a configuration of a first modification of the motor function evaluation system 100 according to an aspect of the present invention. As shown in FIG. 9, the motor function evaluation system 100 according to the first modification includes an acceleration sensor 1, a communication device 4, and a server 8. The server 8 is connected to the network 6.
 通信装置4は、被験者Mが使用する端末であり、例えば、スマートフォンである。加速度センサ1および通信装置4は、互いに無線通信する。加速度センサ1と通信装置4とは、Bluetooth(登録商標)等の近距離無線通信の規格に従って接続される。 The communication device 4 is a terminal used by the subject M, for example, a smartphone. The acceleration sensor 1 and the communication device 4 communicate with each other wirelessly. The acceleration sensor 1 and the communication device 4 are connected in accordance with a short-range wireless communication standard such as Bluetooth (registered trademark).
 サーバ8は、通信装置4と通信することにより、加速度センサ1の測定データをデータベースとして保持する。サーバ8は、図示しない記憶部および制御部を含む。サーバ8の記憶部は、フラッシュメモリ、RAM等により構成され、サーバ8が使用するプログラムおよび各種データを蓄積する。プログラムには、運動機能評価プログラムが含まれる。各種データには、登録されている被験者を管理するためのデータ、各被験者について取得される測定データ、データ閾値リストなどが含まれる。 The server 8 holds the measurement data of the acceleration sensor 1 as a database by communicating with the communication device 4. The server 8 includes a storage unit and a control unit (not shown). The storage unit of the server 8 includes a flash memory, a RAM, and the like, and stores programs and various data used by the server 8. The program includes a motor function evaluation program. The various data includes data for managing registered subjects, measurement data acquired for each subject, a data threshold list, and the like.
 サーバ8の制御部は、記憶部に記憶される被験者の測定データに基づいて、被験者の運動機能を評価し、評価結果を通信装置4へ送信する。制御部は、さらに、評価結果に基づいて、被験者に応じた運動アドバイスを判別し、判別した運動アドバイスを通信装置4へ送信する。通信装置4は、サーバ8から送信される運動能力の評価結果および運動アドバイスを表示部に表示させる。 The control unit of the server 8 evaluates the subject's motor function based on the measurement data of the subject stored in the storage unit, and transmits the evaluation result to the communication device 4. The control unit further determines exercise advice corresponding to the subject based on the evaluation result, and transmits the determined exercise advice to the communication device 4. The communication device 4 causes the display unit to display the evaluation result of exercise ability and exercise advice transmitted from the server 8.
 図10は、本発明の一態様に係る運動機能評価システム100の第2の変更例の構成を示す図である。第2の変更例においては、インターネット、ケーブルテレビ(CATV)網等の汎用のネットワークを介して複数の機器間で双方向に通信する通信システムを利用して、本実施の形態に係る運動機能評価システム100を実現する。本変更例では、ケーブルテレビシステムを利用して、運動機能評価システム100を実現する構成について説明する。 FIG. 10 is a diagram illustrating a configuration of a second modified example of the motor function evaluation system 100 according to an aspect of the present invention. In the second modification, the motor function evaluation according to the present embodiment is performed using a communication system that performs bidirectional communication between a plurality of devices via a general-purpose network such as the Internet or a cable television (CATV) network. System 100 is implemented. In this modified example, a configuration for realizing the motor function evaluation system 100 using a cable television system will be described.
 図10に示すように、ケーブルテレビシステムにおいて、ケーブルテレビを利用するユーザの居室等の室内には、通信端末としてのテレビ受信端末である受信機が設置されている。受信機は、例えば、ケーブルテレビ事業者がユーザに提供するセットトップボックス(STB)80である。 As shown in FIG. 10, in a cable television system, a receiver which is a television receiving terminal as a communication terminal is installed in a room such as a living room of a user who uses cable television. The receiver is, for example, a set top box (STB) 80 provided to the user by a cable television operator.
 ユーザは、本実施の形態に係る運動機能評価システム100における被験者に相当する。STB80に、本実施の形態に係る運動機能評価装置2の機能を内蔵することで、後述するように、STB80および加速度センサ1により運動機能評価システム100を構成することができる。 The user corresponds to the subject in the motor function evaluation system 100 according to the present embodiment. By incorporating the function of the motor function evaluation apparatus 2 according to the present embodiment into the STB 80, the motor function evaluation system 100 can be configured by the STB 80 and the acceleration sensor 1, as will be described later.
 STB80は、CATV網に接続されており、CATV網を介して、放送局またはケーブルテレビ事業者が放送する番組コンテンツを受信し、表示装置82に表示させる。STB80は、リモコン84から発信される操作信号によって制御される。表示装置82は、液晶ディスプレイまたは有機ELディスプレイ等により構成され、STB80から出力された番組コンテンツを表示する。STB80は、また、ユーザの指示に応じて、番組コンテンツを録画し、内蔵する記憶部または外付けの記憶装置に記憶させることができる。なお、STB80および表示装置82はそれぞれ別体として構成されてもよく、STB80および表示装置82が一体として構成されてもよい。 The STB 80 is connected to the CATV network, receives the program content broadcast by the broadcast station or the cable television operator via the CATV network, and displays it on the display device 82. The STB 80 is controlled by an operation signal transmitted from the remote controller 84. The display device 82 is configured by a liquid crystal display, an organic EL display, or the like, and displays program content output from the STB 80. The STB 80 can also record program content in accordance with a user instruction and store the program content in a built-in storage unit or an external storage device. The STB 80 and the display device 82 may be configured as separate bodies, or the STB 80 and the display device 82 may be configured as an integral unit.
 STB80は、インターネット等の通信網を介してサーバ90と通信可能に接続されており、サーバ90との間で双方向にデータを送受信することができる。サーバには、VOD(Video On Demand)コンテンツ配信用のサーバ、STB50で使用するプログラムの保存用のサーバ、および、病院、研究機関または介護施設等の専門家による診断記録データの保存用のサーバが含まれる。 The STB 80 is communicably connected to the server 90 via a communication network such as the Internet, and can send and receive data to and from the server 90 in both directions. The server includes a server for distributing VOD (Video On Demand) content, a server for storing programs used in the STB 50, and a server for storing diagnostic record data by specialists such as hospitals, research institutions, or nursing care facilities. included.
 STB80は、ユーザが所有するタブレット等の携帯端末98と無線通信可能に接続される。例えば、STB80は、携帯端末98からの遠隔視聴リクエストに応答して、携帯端末98に番組コンテンツを送信する。なお、携帯端末98以外に、デスクトップ型のパーソナルコンピュータなどの固定端末をSTB80に接続してもよい。 The STB 80 is connected to a mobile terminal 98 such as a tablet owned by the user so as to be capable of wireless communication. For example, the STB 80 transmits program content to the mobile terminal 98 in response to a remote viewing request from the mobile terminal 98. In addition to the portable terminal 98, a fixed terminal such as a desktop personal computer may be connected to the STB 80.
 STB80は、さらに、カメラ等の撮像装置92、通話時などにユーザの音声を受け付けるためのマイク94、加速度センサ1等と通信可能に接続される。 The STB 80 is further communicably connected to an imaging device 92 such as a camera, a microphone 94 for receiving a user's voice during a call, the acceleration sensor 1 and the like.
 STB80は、加速度センサ1と互いに無線通信する。STB80と加速度センサ1とは、Wi-Fi(登録商標)またはBluetooth(登録商標)等の近距離無線通信の規格に従って接続される。STB80は、立位足踏み運動時における加速度センサ1の測定データを受信する。 STB 80 communicates with acceleration sensor 1 wirelessly. The STB 80 and the acceleration sensor 1 are connected in accordance with a near field communication standard such as Wi-Fi (registered trademark) or Bluetooth (registered trademark). The STB 80 receives measurement data of the acceleration sensor 1 during the standing stepping motion.
 STB80は、図示しない記憶部および制御部を含む。STB80の記憶部は、フラッシュメモリ、RAM等により構成され、番組コンテンツおよび、STB80が使用するプログラムおよび各種データを蓄積する。プログラムには、運動機能評価プログラムが含まれる。 STB 80 includes a storage unit and a control unit (not shown). The storage unit of the STB 80 includes a flash memory, a RAM, and the like, and accumulates program content, programs used by the STB 80, and various data. The program includes a motor function evaluation program.
 STB80は、運動機能評価プログラムを、サーバ90からダウンロードして、記憶部に記憶させることができる。サーバ90は、運動機能評価プログラムのバージョンアップを管理し、STB80に対して、バージョンアップされた運動機能評価プログラムを配信するようにしてもよい。各種データには、ユーザを管理するためのデータ、ユーザの立位足踏み運動時に取得される加速度センサ1の測定データ、データ閾値リストなどが含まれる。 The STB 80 can download the motor function evaluation program from the server 90 and store it in the storage unit. The server 90 may manage the upgrade of the motor function evaluation program and deliver the upgraded motor function evaluation program to the STB 80. The various data includes data for managing the user, measurement data of the acceleration sensor 1 acquired during the user's standing stepping exercise, a data threshold list, and the like.
 STB80の制御部は、記憶部に記憶される加速度センサ1の測定データに基づいて、ユーザの立位足踏み運動を数値化する。制御部は、ユーザの運動能力(下肢の平衡性)を定量的に示す指標を算出し、算出した指標を表示装置82へ送信する。表示装置82は、ユーザの運動機能の評価結果を表示画面に表示する。 The control unit of the STB 80 quantifies the user's standing stepping motion based on the measurement data of the acceleration sensor 1 stored in the storage unit. The control unit calculates an index that quantitatively indicates the user's athletic ability (lower limb balance), and transmits the calculated index to the display device 82. The display device 82 displays the evaluation result of the user's motor function on the display screen.
 STB80の制御部は、さらに、リモコン84からの操作信号に応答して、ユーザの運動機能の評価結果を、CATV網を介して各種機関に送信することができる。また、立位足踏み運動を行なっている様子を撮像装置92で撮像しておくことで、その撮像データを評価結果とともに各種機関に送信することも可能である。 The control unit of the STB 80 can further transmit the evaluation result of the user's motor function to various institutions via the CATV network in response to the operation signal from the remote controller 84. In addition, by capturing an image of the standing foot stepping motion by the image capturing device 92, it is also possible to transmit the captured image data together with the evaluation result to various institutions.
 図10の例では、CATV網には、病院、介護施設、地域包括ケアサービス、銀行、および大学等の研究機関が接続されている。したがって、ユーザは、これらの機関に対して、自己の識別情報とともに自己の運動機能の評価結果を送信することができる。 In the example of FIG. 10, a research institution such as a hospital, a care facility, a regional comprehensive care service, a bank, and a university is connected to the CATV network. Therefore, the user can transmit the evaluation results of his / her motor function together with his / her identification information to these institutions.
 これによると、例えば、病院または研究機関において、専門家である医師等が、受信した評価結果を参照して、ユーザの運動機能を診断し、診断結果をCATV網を介して、ユーザに送信することができる。ユーザの住宅等の被験者の居室内では、CATV網を介してSTB80が診断結果を受信すると、表示装置82に診断結果を表示することにより、ユーザに診断結果を知らせることができる。また、撮像装置92およびマイク94を用いて、医師等を対話することで、在宅で診断を受けることもできる。 According to this, for example, in a hospital or a research institution, an expert doctor or the like refers to the received evaluation result, diagnoses the user's motor function, and transmits the diagnosis result to the user via the CATV network. be able to. When the STB 80 receives a diagnosis result via the CATV network in a subject's room such as a user's house, the diagnosis result can be notified to the user by displaying the diagnosis result on the display device 82. Further, it is possible to receive diagnosis at home by interacting with a doctor or the like using the imaging device 92 and the microphone 94.
 このように、図10に示す構成例によれば、家庭に普及しているテレビを通信インターフェースとして、各市区町村に拠点を持つCATV網を例とする汎用のネットワークを経由して、ユーザと各種機関とを繋ぐことができる。これによると、ユーザは、在宅で立位足踏み運動を行ない、かつ、在宅で各種機関による診断を受けることができる。特に、テレビは高齢者も日常的に視聴するメディアであり、テレビ用のリモコン84を操作することで、簡易に運動機能の評価することができ、かつ、運動機能の評価結果に基づいた診断を在宅で受けることができる。 As described above, according to the configuration example shown in FIG. 10, a user and various users are communicated via a general-purpose network such as a CATV network having a base in each municipality as a communication interface. Connect with institutions. According to this, the user can perform a standing stepping exercise at home and can receive diagnosis from various institutions at home. In particular, television is a medium that is also viewed by elderly people on a daily basis. By operating a television remote control 84, motor function can be easily evaluated, and diagnosis based on the evaluation result of motor function can be performed. Can be received at home.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 <付記>
 以上の説明は、以下に付記する特徴を含む。
(付記1)
 立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、
 上記被験者の体幹正中に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部と、
 上記通信部により取得された上記測定データに基づいて、立位足踏み運動を数値化するように構成された制御部とを備える、運動機能評価装置。
(付記2)
 上記制御部は、上記立位足踏み運動時における上記被験者の運動能力を定量的に表わす指標を算出するように構成され、
 上記指標は、所定時間における歩数、重心移動、前後安定性および左右安定性のうち少なくとも1つを示す指標である、付記1に記載の運動機能評価装置。
(付記3)
 上記制御部は、
 上記前後加速度、上記左右加速度および上記上下加速度のうちいずれかの時間波形を周波数解析することにより周波数スペクトルを生成し、
 上記周波数スペクトルにおいてピーク値となる周波数成分に基づいて、上記所定時間における歩数を示す指標を算出する、付記2に記載の運動機能評価装置。
(付記4)
 上記制御部は、上記所定時間における上記前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいて、前後方向の重心移動を示す指標を算出する、付記2または付記3に記載の運動機能評価装置。
(付記5)
 上記制御部は、上記所定時間における上記左右加速度の時間波形における左方加速度の振幅および右方加速度の振幅の分布状況に基づいて、左右方向の重心移動を示す指標を算出する、付記2から付記4のいずれか1項に記載の運動機能評価装置。
(付記6)
 上記制御部は、上記所定時間における上記上下加速度の時間波形における上方加速度の振幅および下方加速度の振幅の分布状況に基づいて、上下方向の重心移動を示す指標を算出する、付記2から付記5のいずれか1項に記載の運動機能評価装置。
(付記7)
 上記制御部は、
 上記所定時間における上記前後加速度の時間波形に現われる複数の極大値の時刻を検出し、
 連続する2つの極大値の間の時間間隔のばらつきに基づいて、上記前後安定性を示す指標を算出する、付記2から付記6のいずれか1項に記載の運動機能評価装置。
(付記8)
 上記制御部は、
 上記所定時間における上記左右加速度の時間波形に現われる複数の極大値の時刻を検出し、
 連続する2つの極大値の間の時間間隔のばらつきに基づいて、上記左右安定性を示す指標を算出する、付記2から付記7のいずれか1項に記載の運動機能評価装置。
(付記9)
 立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、
 上記被験者の体幹正中に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部と、
 上記通信部により取得された上記測定データに基づいて、立位足踏み運動を数値化するように構成された制御部とを備え、
 上記制御部は、上記立位足踏み運動時における上記被験者の運動能力を定量的に表わす指標を算出するように構成され、上記指標は、所定時間における歩数、重心移動、前後安定性および左右安定性のうち少なくとも1つを示す指標であり、
 上記制御部は、以下の
 (a)上記前後加速度、上記左右加速度および上記上下加速度のうちいずれかの時間波形を周波数解析することにより周波数スペクトルを生成し、上記周波数スペクトルにおいてピーク値となる周波数成分に基づいて、上記所定時間における歩数を示す指標の算出、
 (b)上記所定時間における上記前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいた、前後方向の重心移動を示す指標の算出、
 (c)上記所定時間における上記左右加速度の時間波形における左方加速度の振幅および右方加速度の振幅の分布状況に基づいた、左右方向の重心移動を示す指標の算出、
 (d)上記所定時間における上記上下加速度の時間波形における上方加速度の振幅および下方加速度の振幅の分布状況に基づいた、上下方向の重心移動を示す指標の算出、
 (e)上記所定時間における上記前後加速度の時間波形に現われる複数の極大値の時刻の検出、および、連続する2つの極大値の間の時間間隔のばらつきに基づいた、上記前後安定性を示す指標の算出、
 (f)上記所定時間における上記左右加速度の時間波形に現われる複数の極大値の時刻の検出、および、連続する2つの極大値の間の時間間隔のばらつきに基づいた、上記左右安定性を示す指標の算出、
のうちの少なくとも1つを実行する、運動機能評価装置。
(付記10)
 立位足踏み運動時における被験者の運動機能を評価する運動機能評価システムであって、
 上記被験者の体幹正中に装着された加速度センサと、
 上記加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データに基づいて、上記立位足踏み運動を数値化するように構成された運動機能評価装置とを備える、運動機能評価システム。
(付記11)
 上記運動機能評価装置は、汎用のネットワークと通信可能に接続された通信端末に内蔵される、付記10に記載の運動機能評価システム。
(付記12)
 コンピュータに、立位足踏み運動時における被験者の運動機能を評価する処理を実行させるためのプログラムであって、
 上記被験者の体幹正中に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、
 取得された上記測定データに基づいて、立位足踏み運動を数値化するステップとを上記コンピュータに実行させる、運動機能評価プログラム。
(付記13)
 立位足踏み運動時における被験者の運動機能を評価する運動機能評価方法であって、
 上記被験者の体幹正中に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、
 取得された上記測定データに基づいて、立位足踏み運動を数値化するステップとを備える、運動機能評価方法。
<Appendix>
The above description includes the following features.
(Appendix 1)
A motor function evaluation apparatus for evaluating a subject's motor function during a standing stepping exercise,
A communication unit configured to acquire measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and
A motor function evaluation apparatus comprising: a control unit configured to digitize a standing stepping exercise based on the measurement data acquired by the communication unit.
(Appendix 2)
The control unit is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise,
The motor function evaluation apparatus according to appendix 1, wherein the index is an index indicating at least one of the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability.
(Appendix 3)
The control unit
A frequency spectrum is generated by frequency-analyzing the time waveform of any one of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration,
The motor function evaluation apparatus according to attachment 2, wherein an index indicating the number of steps in the predetermined time is calculated based on a frequency component having a peak value in the frequency spectrum.
(Appendix 4)
The control unit calculates an index indicating the movement of the center of gravity in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the front-rear acceleration at the predetermined time. The motor function evaluation apparatus described.
(Appendix 5)
The control unit calculates an index indicating a lateral center-of-gravity movement based on a distribution state of a left acceleration amplitude and a right acceleration amplitude in the left-right acceleration time waveform at the predetermined time. The motor function evaluation apparatus according to any one of 4.
(Appendix 6)
The control unit calculates an index indicating a vertical center-of-gravity movement based on a distribution state of an amplitude of an upper acceleration and an amplitude of a lower acceleration in the time waveform of the vertical acceleration at the predetermined time. The motor function evaluation apparatus according to any one of the above.
(Appendix 7)
The control unit
Detecting a plurality of local maximum times appearing in the time waveform of the longitudinal acceleration at the predetermined time;
The motor function evaluation apparatus according to any one of appendix 2 to appendix 6, wherein the index indicating the front-rear stability is calculated based on a variation in a time interval between two consecutive maximum values.
(Appendix 8)
The control unit
Detecting a plurality of local maximum times appearing in the time waveform of the lateral acceleration at the predetermined time,
The motor function evaluation apparatus according to any one of appendix 2 to appendix 7, wherein the index indicating the left-right stability is calculated based on a variation in a time interval between two consecutive maximum values.
(Appendix 9)
A motor function evaluation apparatus for evaluating a subject's motor function during a standing stepping exercise,
A communication unit configured to acquire measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and
Based on the measurement data acquired by the communication unit, comprising a control unit configured to digitize the standing stepping motion,
The control unit is configured to calculate an index that quantitatively represents the athletic ability of the subject during the standing stepping exercise, and the index includes the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability. Is an index indicating at least one of
The control unit generates a frequency spectrum by performing frequency analysis on any one of the following time waveforms among the following longitudinal acceleration, the lateral acceleration, and the vertical acceleration, and a frequency component having a peak value in the frequency spectrum: Based on the above, calculation of an index indicating the number of steps in the predetermined time,
(B) calculation of an index indicating the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the longitudinal acceleration at the predetermined time;
(C) calculation of an index indicating the lateral movement of the center of gravity based on the distribution state of the amplitude of the left acceleration and the amplitude of the right acceleration in the time waveform of the left and right acceleration at the predetermined time;
(D) calculation of an index indicating the vertical center of gravity movement based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical acceleration at the predetermined time;
(E) The index indicating the longitudinal stability based on the detection of the time of a plurality of maximum values appearing in the time waveform of the longitudinal acceleration at the predetermined time and the variation in the time interval between two consecutive maximum values. Calculation of the
(F) An index indicating the left-right stability based on detection of times of a plurality of maximum values appearing in the time waveform of the left-right acceleration at the predetermined time, and variation in time intervals between two consecutive maximum values. Calculation of the
The motor function evaluation apparatus which performs at least 1 of these.
(Appendix 10)
A motor function evaluation system for evaluating a subject's motor function during a standing stepping exercise,
An acceleration sensor mounted in the midline of the subject's trunk,
A motor function evaluation system comprising: a motor function evaluation device configured to digitize the standing stepping motion based on measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by the acceleration sensor.
(Appendix 11)
The motor function evaluation system according to appendix 10, wherein the motor function evaluation apparatus is built in a communication terminal that is communicably connected to a general-purpose network.
(Appendix 12)
A program for causing a computer to execute a process for evaluating a subject's motor function during a standing stepping exercise,
Obtaining measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and
A motor function evaluation program that causes the computer to execute a step of digitizing a standing stepping motion based on the acquired measurement data.
(Appendix 13)
A motor function evaluation method for evaluating a subject's motor function during a standing stepping exercise,
Obtaining measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the midline of the subject's trunk; and
A motor function evaluation method comprising: a step of digitizing a standing stepping motion based on the acquired measurement data.
1 加速度センサ、2 運動機能評価装置、3 記憶媒体、4 通信装置、6 ネットワーク、8,90 サーバ、10 センサ部、12,42 CPU、14,22 記憶部、16,40 通信部、18,44 回路基板、20,46 電源、24 信号処理回路、26,60 無線信号受信部、28,62 無線信号送信部、30 ファイル出力部、48 表示部、50 操作受付部、64 制御部、68 記憶装置、70 評価部、72 判別部、80 STB、82 表示装置、84 リモコン、92 撮像装置、94 マイク、98 携帯端末、100 運動機能評価システム、M 被験者。 1 acceleration sensor, 2 motor function evaluation device, 3 storage medium, 4 communication device, 6 network, 8, 90 server, 10 sensor unit, 12, 42 CPU, 14, 22 storage unit, 16, 40 communication unit, 18, 44 Circuit board, 20, 46 power supply, 24 signal processing circuit, 26, 60 wireless signal receiving unit, 28, 62 wireless signal transmitting unit, 30 file output unit, 48 display unit, 50 operation receiving unit, 64 control unit, 68 storage device 70 evaluation unit, 72 discrimination unit, 80 STB, 82 display device, 84 remote control, 92 imaging device, 94 microphone, 98 mobile terminal, 100 motor function evaluation system, M subject.

Claims (13)

  1.  立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、
     前記被験者に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部と、
     前記通信部により取得された前記測定データに基づいて、立位足踏み運動を数値化するように構成された制御部とを備える、運動機能評価装置。
    A motor function evaluation apparatus for evaluating a subject's motor function during a standing stepping exercise,
    A communication unit configured to acquire measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the subject; and
    A motor function evaluation apparatus comprising: a control unit configured to digitize a standing stepping motion based on the measurement data acquired by the communication unit.
  2.  前記制御部は、前記立位足踏み運動時における前記被験者の運動能力を定量的に表わす指標を算出するように構成され、
     前記指標は、所定時間における歩数、重心移動、前後安定性および左右安定性のうち少なくとも1つを示す指標である、請求項1に記載の運動機能評価装置。
    The control unit is configured to calculate an index that quantitatively represents the athletic ability of the subject during the standing stepping exercise,
    The motor function evaluation device according to claim 1, wherein the index is an index indicating at least one of the number of steps in a predetermined time, movement of the center of gravity, front-rear stability, and left-right stability.
  3.  前記制御部は、
     前記前後加速度、前記左右加速度および前記上下加速度のうちいずれかの時間波形を周波数解析することにより周波数スペクトルを生成し、
     前記周波数スペクトルにおいてピーク値となる周波数成分に基づいて、前記所定時間における歩数を示す指標を算出する、請求項2に記載の運動機能評価装置。
    The controller is
    A frequency spectrum is generated by frequency analysis of the time waveform of any one of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration,
    The motor function evaluation apparatus according to claim 2, wherein an index indicating the number of steps in the predetermined time is calculated based on a frequency component having a peak value in the frequency spectrum.
  4.  前記制御部は、前記所定時間における前記前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいて、前後方向の重心移動を示す指標を算出する、請求項2または請求項3に記載の運動機能評価装置。 The control unit calculates an index indicating a center-of-gravity movement in the front-rear direction based on a distribution state of an amplitude of a front acceleration and an amplitude of a rear acceleration in the time waveform of the longitudinal acceleration at the predetermined time. The motor function evaluation apparatus according to 3.
  5.  前記制御部は、前記所定時間における前記左右加速度の時間波形における左方加速度の振幅および右方加速度の振幅の分布状況に基づいて、左右方向の重心移動を示す指標を算出する、請求項2から請求項4のいずれか1項に記載の運動機能評価装置。 The control unit calculates an index indicating a lateral center-of-gravity movement based on a distribution state of a left acceleration amplitude and a right acceleration amplitude in the left-right acceleration time waveform at the predetermined time. The motor function evaluation apparatus according to claim 4.
  6.  前記制御部は、前記所定時間における前記上下加速度の時間波形における上方加速度の振幅および下方加速度の振幅の分布状況に基づいて、上下方向の重心移動を示す指標を算出する、請求項2から請求項5のいずれか1項に記載の運動機能評価装置。 3. The control unit according to claim 2, wherein the control unit calculates an index indicating a vertical center of gravity movement based on a distribution state of an amplitude of an upper acceleration and an amplitude of a lower acceleration in the time waveform of the vertical acceleration at the predetermined time. The motor function evaluation apparatus according to any one of 5.
  7.  前記制御部は、
     前記所定時間における前記前後加速度の時間波形に現われる複数の極大値の時刻を検出し、
     連続する2つの極大値の間の時間間隔のばらつきに基づいて、前記前後安定性を示す指標を算出する、請求項2から請求項6のいずれか1項に記載の運動機能評価装置。
    The controller is
    Detecting a plurality of local maximum times appearing in the time waveform of the longitudinal acceleration at the predetermined time;
    The motor function evaluation apparatus according to any one of claims 2 to 6, wherein an index indicating the front-rear stability is calculated based on a variation in a time interval between two continuous maximum values.
  8.  前記制御部は、
     前記所定時間における前記左右加速度の時間波形に現われる複数の極大値の時刻を検出し、
     連続する2つの極大値の間の時間間隔のばらつきに基づいて、前記左右安定性を示す指標を算出する、請求項2から請求項7のいずれか1項に記載の運動機能評価装置。
    The controller is
    Detecting the time of a plurality of maximum values appearing in the time waveform of the lateral acceleration at the predetermined time;
    The motor function evaluation apparatus according to claim 2, wherein an index indicating the left-right stability is calculated based on a variation in a time interval between two consecutive maximum values.
  9.  立位足踏み運動時における被験者の運動機能を評価する運動機能評価装置であって、
     前記被験者の体幹正中に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するように構成された通信部と、
     前記通信部により取得された前記測定データに基づいて、立位足踏み運動を数値化するように構成された制御部とを備え、
     前記制御部は、前記立位足踏み運動時における前記被験者の運動能力を定量的に表わす指標を算出するように構成され、前記指標は、所定時間における歩数、重心移動、前後安定性および左右安定性のうち少なくとも1つを示す指標であり、
     前記制御部は、以下の
     (a)前記前後加速度、前記左右加速度および前記上下加速度のうちいずれかの時間波形を周波数解析することにより周波数スペクトルを生成し、前記周波数スペクトルにおいてピーク値となる周波数成分に基づいて、前記所定時間における歩数を示す指標の算出、
     (b)前記所定時間における前記前後加速度の時間波形における前方加速度の振幅および後方加速度の振幅の分布状況に基づいた、前後方向の重心移動を示す指標の算出、
     (c)前記所定時間における前記左右加速度の時間波形における左方加速度の振幅および右方加速度の振幅の分布状況に基づいた、左右方向の重心移動を示す指標の算出、
     (d)前記所定時間における前記上下加速度の時間波形における上方加速度の振幅および下方加速度の振幅の分布状況に基づいた、上下方向の重心移動を示す指標の算出、
     (e)前記所定時間における前記前後加速度の時間波形に現われる複数の極大値の時刻の検出、および、連続する2つの極大値の間の時間間隔のばらつきに基づいた、前記前後安定性を示す指標の算出、
     (f)前記所定時間における前記左右加速度の時間波形に現われる複数の極大値の時刻の検出、および、連続する2つの極大値の間の時間間隔のばらつきに基づいた、前記左右安定性を示す指標の算出、
    のうちの少なくとも1つを実行する、運動機能評価装置。
    A motor function evaluation apparatus for evaluating a subject's motor function during a standing stepping exercise,
    A communication unit configured to acquire measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor mounted in the midline of the subject's trunk;
    Based on the measurement data acquired by the communication unit, comprising a control unit configured to digitize the standing foot stepping motion,
    The control unit is configured to calculate an index that quantitatively represents the exercise ability of the subject during the standing stepping exercise, and the index includes the number of steps in a predetermined time, center of gravity movement, front-rear stability, and left-right stability. Is an index indicating at least one of
    The control unit generates (a) a frequency spectrum by performing frequency analysis on any one of the time waveforms of the longitudinal acceleration, the lateral acceleration, and the vertical acceleration, and a frequency component that becomes a peak value in the frequency spectrum. Based on the calculation of an index indicating the number of steps in the predetermined time,
    (B) calculation of an index indicating the center-of-gravity movement in the front-rear direction based on the distribution state of the amplitude of the front acceleration and the amplitude of the rear acceleration in the time waveform of the front-rear acceleration at the predetermined time;
    (C) calculating an index indicating a lateral center-of-gravity movement based on a distribution situation of an amplitude of a left acceleration and an amplitude of a right acceleration in the time waveform of the lateral acceleration at the predetermined time;
    (D) calculation of an index indicating the vertical center of gravity movement based on the distribution state of the amplitude of the upper acceleration and the amplitude of the lower acceleration in the time waveform of the vertical acceleration at the predetermined time;
    (E) An index indicating the front-rear stability based on detection of times of a plurality of maximum values appearing in the time waveform of the longitudinal acceleration at the predetermined time and variation in time intervals between two consecutive maximum values. Calculation of the
    (F) An index indicating the left-right stability based on detection of times of a plurality of maximum values appearing in the time waveform of the left-right acceleration at the predetermined time, and variation in time intervals between two consecutive maximum values. Calculation of the
    The motor function evaluation apparatus which performs at least 1 of these.
  10.  立位足踏み運動時における被験者の運動機能を評価する運動機能評価システムであって、
     前記被験者に装着された加速度センサと、
     前記加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データに基づいて、前記立位足踏み運動を数値化するように構成された運動機能評価装置とを備える、運動機能評価システム。
    A motor function evaluation system for evaluating a subject's motor function during a standing stepping exercise,
    An acceleration sensor mounted on the subject;
    A motor function evaluation system comprising: a motor function evaluation device configured to digitize the standing stepping motion based on measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by the acceleration sensor.
  11.  前記運動機能評価装置は、汎用のネットワークと通信可能に接続された通信端末に内蔵される、請求項10に記載の運動機能評価システム。 The motor function evaluation system according to claim 10, wherein the motor function evaluation device is built in a communication terminal that is communicably connected to a general-purpose network.
  12.  コンピュータに、立位足踏み運動時における被験者の運動機能を評価する処理を実行させるためのプログラムであって、
     前記被験者に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、
     取得された前記測定データに基づいて、立位足踏み運動を数値化するステップとを前記コンピュータに実行させる、運動機能評価プログラム。
    A program for causing a computer to execute a process for evaluating a subject's motor function during a standing stepping exercise,
    Obtaining measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the subject;
    A motor function evaluation program for causing the computer to execute a step of digitizing a standing stepping motion based on the obtained measurement data.
  13.  立位足踏み運動時における被験者の運動機能を評価する運動機能評価方法であって、
     前記被験者に装着された加速度センサにより測定された、前後加速度、左右加速度および上下加速度の測定データを取得するステップと、
     取得された前記測定データに基づいて、立位足踏み運動を数値化するステップとを備える、運動機能評価方法。
    A motor function evaluation method for evaluating a subject's motor function during a standing stepping exercise,
    Obtaining measurement data of longitudinal acceleration, lateral acceleration, and vertical acceleration measured by an acceleration sensor attached to the subject;
    A motor function evaluation method comprising: quantifying a standing stepping motion based on the acquired measurement data.
PCT/JP2018/047764 2018-03-13 2018-12-26 Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method WO2019176228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020505602A JPWO2019176228A1 (en) 2018-03-13 2018-12-26 Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045396 2018-03-13
JP2018-045396 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176228A1 true WO2019176228A1 (en) 2019-09-19

Family

ID=67907541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047764 WO2019176228A1 (en) 2018-03-13 2018-12-26 Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method

Country Status (3)

Country Link
JP (1) JPWO2019176228A1 (en)
TW (1) TW201939517A (en)
WO (1) WO2019176228A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157465A (en) * 2003-11-20 2005-06-16 Asahi Kasei Electronics Co Ltd Device for computing number of steps
JP2009285269A (en) * 2008-05-30 2009-12-10 Hirofumi Shinozaki Physical observation and analysis method of human body structure abnormality state, and measurement apparatus using the method
US20130054181A1 (en) * 2011-08-23 2013-02-28 Abdelmonaem Lakhzouri Method and apparatus for sensor based pedestrian motion detection in hand-held devices
JP2015177925A (en) * 2014-03-19 2015-10-08 日本電信電話株式会社 Walking support device, gait measurement device, method and programs
WO2016024565A1 (en) * 2014-08-13 2016-02-18 株式会社村田製作所 Motion capture device, motion capture method, movement performance diagnostic method and device worn on body for motion capture
JP2016529065A (en) * 2013-09-05 2016-09-23 クアルコム,インコーポレイテッド Half-step frequency characteristics for reliable motion classification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157465A (en) * 2003-11-20 2005-06-16 Asahi Kasei Electronics Co Ltd Device for computing number of steps
JP2009285269A (en) * 2008-05-30 2009-12-10 Hirofumi Shinozaki Physical observation and analysis method of human body structure abnormality state, and measurement apparatus using the method
US20130054181A1 (en) * 2011-08-23 2013-02-28 Abdelmonaem Lakhzouri Method and apparatus for sensor based pedestrian motion detection in hand-held devices
JP2016529065A (en) * 2013-09-05 2016-09-23 クアルコム,インコーポレイテッド Half-step frequency characteristics for reliable motion classification
JP2015177925A (en) * 2014-03-19 2015-10-08 日本電信電話株式会社 Walking support device, gait measurement device, method and programs
WO2016024565A1 (en) * 2014-08-13 2016-02-18 株式会社村田製作所 Motion capture device, motion capture method, movement performance diagnostic method and device worn on body for motion capture

Also Published As

Publication number Publication date
JPWO2019176228A1 (en) 2021-02-25
TW201939517A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
CN105263411B (en) Fall detection system and method
CN109716443B (en) Motion management method and system using electromyography sensor
US11883183B2 (en) Cognitive function evaluation device, cognitive function evaluation method, and recording medium
JP6332574B1 (en) Movement ability evaluation apparatus, movement ability evaluation system, movement ability evaluation program, and movement ability evaluation method
KR20140015678A (en) Exercise management system using psychosomatic feedback
US20170351825A1 (en) Method and apparatus for quantifying and monitoring the frailty of a subject
CN107961523B (en) Human body training system and intelligent fitness system based on heart rate detection
JP2012502721A (en) Force measuring method and apparatus
JPWO2004026138A1 (en) Body motion evaluation apparatus and body motion evaluation system
JPWO2004014230A1 (en) Equilibrium analysis device, equilibrium analysis method, program thereof, and recording medium
WO2016117387A1 (en) Communication device, program, and system
KR20200032364A (en) The exercise managing method and system
JP2004358229A (en) Physical motion analyzing apparatus and physical motion analyzing system
KR101050280B1 (en) Physiological signal analysis system, and method using the same
JP2009106374A (en) Display system for gait information
Dzhagaryan et al. Smart Button: A wearable system for assessing mobility in elderly
WO2019176228A1 (en) Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method
JP6062889B2 (en) Muscle contraction exercise support system
Ruiz et al. A low-cost and unobtrusive system for fall detection
KR101174729B1 (en) Ubiquitous healthcare system and multi-functional shoes having the same
WO2019176229A1 (en) Motor function evaluation device, motor function evaluation system, motor function evaluation program, and motor function evaluation method
JP6492375B2 (en) Operating method of walking measuring machine
CN112933554B (en) Balance ability rehabilitation training evaluation method and system and related products
US20230094452A1 (en) Measuring physiological characteristics
US11961382B2 (en) Method for operating a hearing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909426

Country of ref document: EP

Kind code of ref document: A1