WO2019176148A1 - Alloy powder for electrode, and alkaline storage battery negative electrode and alkaline storage battery using same - Google Patents

Alloy powder for electrode, and alkaline storage battery negative electrode and alkaline storage battery using same Download PDF

Info

Publication number
WO2019176148A1
WO2019176148A1 PCT/JP2018/036628 JP2018036628W WO2019176148A1 WO 2019176148 A1 WO2019176148 A1 WO 2019176148A1 JP 2018036628 W JP2018036628 W JP 2018036628W WO 2019176148 A1 WO2019176148 A1 WO 2019176148A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ratio
hydrogen storage
negative electrode
alloy
Prior art date
Application number
PCT/JP2018/036628
Other languages
French (fr)
Japanese (ja)
Inventor
徹 川勝
大山 秀明
後藤 浩之
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019176148A1 publication Critical patent/WO2019176148A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an electrode alloy powder containing a hydrogen storage alloy, an alkaline storage battery negative electrode and an alkaline storage battery using the same.
  • An alkaline storage battery (nickel metal hydride storage battery) using a negative electrode containing a hydrogen storage alloy as a negative electrode active material has been attracting attention as an alternative to a dry battery and a power source for an electric vehicle or the like.
  • the hydrogen storage alloy generally includes an element having a high hydrogen affinity and an element having a low hydrogen affinity.
  • an alloy having a crystal structure such as AB 5 type (for example, CaCu 5 type), AB 3 type (for example, CeNi 3 type), or AB 2 type (for example, MgCu 2 type) is used. It has been. In these crystal structures, an element having high hydrogen affinity tends to be located at the A site, and an element having low hydrogen affinity tends to be located at the B site.
  • Patent Document 1 and Patent Document 2 propose a hydrogen storage electrode including a hydrogen storage alloy including a rare earth element, Ni, and another element as a hydrogen storage electrode having a large discharge capacity.
  • One aspect of the present disclosure includes particles of a hydrogen storage alloy,
  • the particles include an agglomerated part in which nickel is agglomerated,
  • the hydrogen storage alloy includes element L, element E, Ni, and element M,
  • the element L is a periodic table group 3 element
  • the element E is a periodic table group 2 element
  • the element M is at least one selected from the group consisting of elements of the 4th to 6th periods (except for Ni) of the 4th to 14th groups of the periodic table, and Al, and Including Ag and Sn
  • the ratio x of Ni and the ratio y of element M with respect to the total of element L and element E relate to electrode alloy powder satisfying 2.50 ⁇ x + y ⁇ 4.50.
  • Another aspect of the present disclosure relates to an alkaline storage battery negative electrode including the electrode alloy powder as a negative electrode active material.
  • Still another aspect of the present disclosure relates to an alkaline storage battery including a positive electrode, the negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte.
  • the electrode alloy powder includes particles of a hydrogen storage alloy. This particle includes an agglomerated part in which nickel is agglomerated.
  • the hydrogen storage alloy includes an element L, an element E, Ni, and an element M.
  • Element L is a periodic table group 3 element.
  • Element E is a periodic table group 2 element.
  • the element M is at least one selected from the group consisting of elements of the 4th to 6th periods (except for Ni) and Al of the 4th to 14th groups of the periodic table, and Ag. And Sn.
  • the ratio x of Ni and the ratio y of element M with respect to the total of element L and element E satisfy 2.50 ⁇ x + y ⁇ 4.50.
  • x + y is a ratio of an element mainly located at the B site to an element mainly located at the A site, and is generally called a B / A ratio.
  • the hydrogen storage alloy having a B / A ratio of 2.50 or more and 4.50 or less has an AB 3 type crystal structure as a main crystal structure, and is sometimes called an AB 3 type hydrogen storage alloy.
  • particles of a hydrogen storage alloy having an agglomerated part (hereinafter also referred to as a Ni agglomerated part) in which nickel is aggregated and having the above composition (in particular, including Ag and Sn) are used.
  • a Ni agglomerated part in which nickel is aggregated and having the above composition (in particular, including Ag and Sn)
  • release of hydrogen at the time of discharge from a hydrogen storage alloy can be performed smoothly. Therefore, high discharge performance (or output performance) at low temperatures can be ensured without increasing the reaction area.
  • the fall of lifetime performance can be suppressed by the increase in the reaction area of a hydrogen storage alloy being suppressed. Therefore, both life performance and discharge performance at a low temperature can be achieved.
  • the detailed mechanism that can achieve both the life performance and the discharge performance at low temperature is not clear, it is presumed mainly due to the following reasons.
  • the Ni agglomerated part is formed by surface-treating the hydrogen storage alloy particles.
  • the hydrogen storage alloy particles contain Ag, Ag tends to segregate on the surface of the particles during the surface treatment. Therefore, particularly at the surface of the hydrogen storage alloy particles and in the vicinity thereof, a large amount of hydrogen is retained during charging due to the interaction between Ag and Sn. Hydrogen retained on the surface of such alloy particles and in the vicinity thereof is easily released during discharge even in a low temperature environment.
  • the Ni agglomerated part is a magnetic substance cluster (magnetic substance) containing metallic nickel as a main component, has a catalytic action in diffusion of hydrogen, and has high conductivity. Due to this catalytic action and the Ni agglomerated part and the high conductivity of Ag, the hydrogen retained on the surface of the hydrogen storage alloy by Ag and Sn and in the vicinity thereof is more likely to be released during discharge even in a low temperature environment. The diffusion rate of hydrogen from inside the particles is also increased. Therefore, when hydrogen held on the surface of the alloy particles and the vicinity thereof is released during the discharge, hydrogen is successively supplied from the inside of the alloy particles to the surface of the alloy particles and the vicinity thereof, and the discharge reaction occurs smoothly. . That is, the release of hydrogen held on the surface of the alloy particles and in the vicinity thereof triggers the release of hydrogen from the alloy particles during discharge. Therefore, hydrogen release during discharge can proceed smoothly even in a low temperature environment.
  • the hydrogen storage alloy having an AB 3 type crystal structure has a relatively high capacity, but is easily deteriorated by elution of constituent elements, and it is difficult to ensure high life performance.
  • the alloy particles contain Sn, thereby suppressing the pulverization of the alloy particles and increasing the reaction area. Is suppressed.
  • oxidation resistance improves by containing Ag.
  • high hydrogen storage capacity and smooth hydrogen release described above can ensure high discharge performance at low temperatures without increasing the reaction area, and can also ensure high life performance. .
  • the discharge performance at low temperatures is often evaluated at temperatures up to about ⁇ 20 ° C., but in recent years, high discharge performance is being demanded even at temperatures below ⁇ 20 ° C.
  • hydrogen discharge during discharge can proceed smoothly as described above, so that high discharge performance can be ensured even at temperatures lower than ⁇ 20 ° C. (eg, about ⁇ 30 ° C.).
  • 50% or more of the crystal structure may be an AB 3 type crystal structure, and 70% or more may be an AB 3 type crystal structure.
  • the ratio is mainly 50% or more when the ratio of the locations showing the AB 3 type crystal structure is 50% or more. It is assumed that the crystal structure has an AB 3 type crystal structure.
  • grains which measure a crystal structure may be one, it is preferable to measure a crystal structure about several particle
  • the AB 3 type crystal structure portion may have the above composition.
  • the crystal structure of the hydrogen storage alloy can be evaluated by X-ray diffraction.
  • the ratio of elements in the hydrogen storage alloy is the atomic ratio of each element contained in the hydrogen storage alloy.
  • the Ni ratio x is the ratio of the number of Ni element atoms to the total number of element L and element E atoms in a hydrogen storage alloy (particularly at least part of the AB 3 type crystal structure).
  • the ratio of other elements is the same as that of Ni.
  • the hydrogen storage alloy particles have Ni agglomerated parts.
  • the Ni agglomerated part is a magnetic substance cluster (magnetic substance) whose main component is metallic nickel.
  • metallic nickel segregates on the surface or surface layer of the hydrogen storage alloy and aggregates to form magnetic clusters.
  • the metallic nickel is aggregated in a crystalline form and / or an amorphous form.
  • the magnetic substance cluster functions as a catalyst for a hydrogen transfer reaction (including a hydrogen diffusion reaction) by the hydrogen storage alloy.
  • the hydrogen storage alloy contains element L, element E, Ni and element M as essential components. In the hydrogen storage alloy, it is sufficient that at least a portion having an AB 3 type crystal structure contains these essential components.
  • the hydrogen storage alloy may contain other elements as optional components.
  • Element L is a periodic table group 3 element.
  • the Group 3 elements of the periodic table include Sc, Y, lanthanoid elements, and actinoid elements.
  • Lanthanoid elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Examples of actinoid elements include Ac, Th, Pa, and Np.
  • the element L may contain one of these elements or a combination of two or more.
  • the element L preferably includes at least one selected from the group consisting of Sc, Y, and a lanthanoid element, and particularly preferably includes at least one selected from the group consisting of Y and a lanthanoid element. When the element L contains Sc and / or a lanthanoid element, a high capacity is easily obtained. From the viewpoint of improving the corrosion resistance, the element L preferably contains Y.
  • Element E is a periodic table group 2 element.
  • the element E may contain 1 type of periodic table group 2 element, and may contain it in combination of 2 or more types.
  • the element E preferably contains at least Mg.
  • Mg easily elutes and tends to cause deterioration of the hydrogen storage alloy particles. According to the present disclosure, high discharge performance at a low temperature can be ensured without increasing the reaction area. Therefore, even when the hydrogen storage alloy particles contain Mg, deterioration of the hydrogen storage alloy particles can be suppressed. Therefore, the improvement effect of the hydrogen occlusion amount by Mg can be enjoyed effectively.
  • the ratio x of Ni to the total of the elements L and E is preferably 3.0 or more. From the viewpoint of further increasing the capacity, the ratio x is more preferably 3.20 or more, further preferably 3.25 or more, and may be 3.30 or more. The upper limit of the ratio x may be determined so that x + y corresponding to the B / A ratio falls within the range described later.
  • the element M is at least one selected from the group consisting of elements in the 4th to 6th periods (except for Ni) of the 4th to 14th groups of the periodic table, and Al.
  • Examples of Group 4 elements of the periodic table include Ti, Zr, Hf, and Rf.
  • Examples of the Group 12 element include Zn.
  • Examples of the Group 13 element include Ga and In in addition to Al.
  • Examples of the Group 14 element include Ge and Sn.
  • examples of the transition metal element include V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Pd, Pt, Cu, Ag, and Au.
  • the elements M at least one selected from the group consisting of Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Cu, Ag, Zn, Al, Ga, In, Ge, and Sn Is preferred.
  • the hydrogen storage alloy contains these elements M, it is possible to suppress the formation of significant crystal defects accompanying the storage and release of hydrogen, and it is easy to obtain high charge / discharge characteristics and to reduce costs.
  • x + y is in such a range, it is easier to achieve both life performance and low-temperature discharge performance. Further, high reaction activity and high capacity can be ensured. From the viewpoint of easily ensuring a higher capacity, it is more preferable that x + y is 3.80 or less or 3.75 or less.
  • the element M includes at least Ag and Sn.
  • the ratio y1 of Ag to the total of the elements L and E is preferably 0.010 or more, more preferably 0.012 or more, and further preferably 0.015 or more.
  • the ratio y1 is 0.045 or less, preferably 0.040 or less, more preferably 0.037 or less or 0.035 or less.
  • the ratio y1 is in such a range, excessive segregation of Ag is suppressed and the ratio of Sn is easily adjusted appropriately, so that the effect of suppressing an increase in reaction area can be enhanced.
  • the ratio of the ratio y2 of Sn to the total of element L and element E to y1 is preferably 0.30 or more, preferably 0.40 or more, and 0.70 or more. It may be. y2 / y1 is preferably 3.0 or less, more preferably 2.4 or less, and may be 1.5 or less. When y2 / y1 is in such a range, the balance between the life performance and the discharge performance at a low temperature can be easily improved. These lower limit values and upper limit values can be arbitrarily combined.
  • the total of y1 and y2 is preferably 0.070 or less, but from the viewpoint of securing a higher capacity, 0.060 or less is preferable, and 0.050 or less is more preferable.
  • the element M preferably contains at least Ag, Sn, and Al.
  • the element M contains Al, it is easy to lower the hydrogen equilibrium pressure and easily obtain a high hydrogen storage capacity, but Al is easy to elute and easily deteriorates the hydrogen storage alloy particles.
  • high discharge performance at a low temperature can be ensured without increasing the reaction area. Therefore, even when the hydrogen storage alloy particles contain Al, deterioration of the hydrogen storage alloy particles can be suppressed. Therefore, the effect of improving the hydrogen storage amount by Al can be enjoyed effectively.
  • the ratio y3 of Al to the total of the elements L and E is, for example, 0.01 or more, and preferably 0.03 or more.
  • y3 is in such a range, the hydrogen equilibrium pressure is likely to be lowered, and a high hydrogen storage capacity is easily obtained.
  • y3 is, for example, 0.30 or less, and preferably 0.10 or less.
  • the average particle size of the hydrogen storage alloy particles is, for example, preferably 15 ⁇ m or more and 60 ⁇ m or less, and more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the average particle diameter means a median diameter (D 50 ) in a volume-based particle size distribution measured by a laser diffraction / scattering particle size distribution measuring device or the like.
  • the electrode alloy powder is, for example, (I) Step A of forming an alloy from simple elements constituting the hydrogen storage alloy, (Ii) Step B for granulating the alloy obtained in Step A, and (iii) Step C for activating the granular material obtained in Step B.
  • an alloy can be formed from simple constituent components by using a known alloying method.
  • the alloying method include a plasma arc melting method, a high frequency melting (die casting) method, a mechanical alloying method (mechanical alloy method), a mechanical milling method, and / or a rapid solidification method (specifically, a metal material).
  • a thin band crushing method, a gas spray splat method, a melt extraction method, and / or a rotating electrode method can be used. These methods may be used alone or a plurality of methods may be combined.
  • step A simple substances of the respective constituent elements are mixed, and the resulting mixture can be alloyed by the above method or the like.
  • the mixture may be melted by heating to alloy the constituent elements.
  • a plasma arc melting method, a high frequency melting (die casting) method, and a rapid solidification method are suitable.
  • the rapid solidification method and the mechanical alloying method may be combined.
  • a hydrogen storage alloy can be obtained by pouring a molten alloy onto a rotating disk or cooling roll and solidifying it by rapid cooling.
  • step A when mixing each elemental element alone, the atomic ratio, mass ratio, etc. of each element are adjusted so that the hydrogen storage alloy has a desired composition.
  • the molten alloy is solidified prior to granulation in step B.
  • Solidification of the alloy can be performed by supplying the molten alloy to a mold or the like as necessary, and cooling in the mold. From the viewpoint of increasing the dispersibility of the constituent elements in the alloy, the supply rate and the like may be appropriately adjusted.
  • the solidified alloy may be heated (annealed) as necessary. By performing the heat treatment, the dispersibility of the constituent elements in the hydrogen storage alloy can be easily adjusted, the degree of elution and / or segregation of the constituent elements can be easily controlled, and the hydrogen storage alloy can be easily activated.
  • the heating is not particularly limited, and can be performed, for example, at a temperature of 900 to 1100 ° C. in an atmosphere of an inert gas such as argon.
  • step B the alloy obtained in step A is granulated.
  • the granulation of the alloy can be performed by wet pulverization, dry pulverization, or the like, and these may be combined.
  • the pulverization can be performed by a ball mill or the like.
  • the solidified alloy is pulverized using a liquid medium such as water.
  • the alloy particles obtained in the process B may be referred to as a raw material powder for the electrode alloy powder.
  • Step C the pulverized product (raw material powder) can be activated by bringing the pulverized product into contact with an alkali or an acid.
  • the activity may be performed by either a liquid phase method or a gas phase method.
  • the activation may be performed under heating (for example, under heating at 100 ° C. or higher) as necessary.
  • the alkali or acid is preferably used as an aqueous solution.
  • the contact between the aqueous solution of alkali or acid and the raw material powder is, for example, immersing the raw material powder in the aqueous solution, adding the raw material powder into the aqueous solution, stirring, or spraying the aqueous solution onto the raw material powder. Can be done.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and / or lithium hydroxide can be used.
  • sodium hydroxide and / or potassium hydroxide are preferably used.
  • the acid include organic acids such as acetic acid.
  • inorganic acids such as carbonic acid and hydrochloric acid may be used.
  • the concentration of alkali or acid in the aqueous solution is, for example, 5 mass% or more and 50 mass% or less.
  • the obtained alloy powder may be washed with water.
  • the water washing is preferably finished after the pH of the water used for washing becomes 9 or less.
  • the alloy powder after the activation treatment is usually dried.
  • the electrode alloy powder according to an embodiment of the present disclosure can be obtained through such a process.
  • the obtained alloy powder can achieve both life performance and discharge performance in a low temperature environment. Therefore, the electrode alloy powder is suitable for use as a negative electrode active material of an alkaline storage battery.
  • the alkaline storage battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte.
  • the negative electrode contains the above-mentioned electrode alloy powder as a negative electrode active material.
  • the negative electrode is not particularly limited as long as it includes the above-described electrode alloy powder as a negative electrode active material, and other constituent elements known in the alkaline storage battery can be used.
  • the negative electrode may include a core material and a negative electrode active material attached to the core material.
  • a negative electrode can be formed by attaching a negative electrode paste containing at least a negative electrode active material to a core material.
  • the negative electrode core material known materials can be used, and examples thereof include a porous or non-porous substrate formed of stainless steel, nickel or an alloy thereof.
  • the core material is a porous substrate, the active material may be filled in the pores of the core material.
  • the negative electrode paste usually contains a dispersion medium, and a known component used for the negative electrode, for example, a conductive agent, a binder, and / or a thickener may be added as necessary.
  • a known component used for the negative electrode for example, a conductive agent, a binder, and / or a thickener may be added as necessary.
  • the negative electrode can be formed, for example, by applying a negative electrode paste to the core, removing the dispersion medium by drying, and compressing (or rolling).
  • the dispersion medium a known medium such as water, an organic medium, or a mixed medium thereof can be used.
  • the conductive agent is not particularly limited as long as it is a material having electronic conductivity. Examples thereof include graphite (natural graphite, artificial graphite, etc.), carbon black, conductive fibers, and / or organic conductive materials.
  • the amount of the conductive agent is, for example, 0.01 to 50 parts by mass, preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
  • the conductive agent may be added to the negative electrode paste and mixed with other components.
  • the surface of the electrode alloy powder may be coated with a conductive agent in advance.
  • a resin material for example, a rubber-like material such as styrene-butadiene copolymer rubber (SBR), a polyolefin resin, a fluororesin such as polyvinylidene fluoride, and / or an acrylic resin (including its Na ion crosslinked product) And the like.
  • SBR styrene-butadiene copolymer rubber
  • a fluororesin such as polyvinylidene fluoride
  • acrylic resin including its Na ion crosslinked product
  • the amount of the binder is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
  • thickener examples include cellulose derivatives such as carboxymethyl cellulose (CMC) and modified products thereof (including salts such as Na salt), polyvinyl alcohol, and / or polyethylene oxide.
  • CMC carboxymethyl cellulose
  • modified products thereof including salts such as Na salt
  • polyvinyl alcohol examples include polyvinyl alcohol, and / or polyethylene oxide.
  • the amount of the thickener is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
  • the positive electrode may include a core material and an active material or an active material layer attached to the core material.
  • the positive electrode may be an electrode obtained by sintering active material powder.
  • the positive electrode can be formed, for example, by attaching a positive electrode paste containing at least a positive electrode active material to the core material. More specifically, the positive electrode can be formed by applying a positive electrode paste to a core material, removing the dispersion medium by drying, and compressing (or rolling).
  • the positive electrode core material known materials can be used, and examples thereof include a nickel foam, and a porous substrate formed of nickel or a nickel alloy such as a sintered nickel plate.
  • the positive electrode active material for example, a nickel compound such as nickel hydroxide and / or nickel oxyhydroxide is used.
  • the positive electrode paste usually contains a dispersion medium, and a known component used for the positive electrode, such as a conductive agent, a binder, and / or a thickener, may be added as necessary.
  • a known component used for the positive electrode such as a conductive agent, a binder, and / or a thickener
  • the dispersion medium, the conductive agent, the binder, the thickener, and the amounts thereof can be selected from the same or range as in the case of the negative electrode paste.
  • the conductive agent conductive cobalt oxide such as cobalt hydroxide and / or ⁇ -type cobalt oxyhydroxide may be used.
  • the positive electrode paste may contain, as an additive, a metal compound (oxide, and / or hydroxide) such as zinc oxide and / or zinc hydroxide.
  • separator As a separator, the well-known thing used for an alkaline storage battery, for example, a microporous film, a nonwoven fabric, or these laminated bodies, etc. can be used.
  • the material of the microporous film or the nonwoven fabric include polyolefin resins such as polyethylene and polypropylene, fluorine resins, and / or polyamide resins. From the viewpoint of high decomposition resistance to an alkaline electrolyte, it is preferable to use a separator made of polyolefin resin.
  • hydrophilic group into a separator formed of a highly hydrophobic material such as a polyolefin resin by a hydrophilic treatment.
  • hydrophilic treatment include corona discharge treatment, plasma treatment, and sulfonation treatment.
  • the separator may have been subjected to one kind of treatment among these hydrophilization treatments, or may be obtained by combining two or more kinds of treatments.
  • the separator is preferably at least partially sulfonated.
  • the degree of sulfonation of a separator (such as a resin separator) may be, for example, 1 ⁇ 10 ⁇ 3 to 4.3 ⁇ 10 ⁇ 3 .
  • the degree of sulfonation of a separator (such as a resin separator) is represented by the ratio of sulfur atoms to carbon atoms contained in the separator.
  • the thickness of the separator can be appropriately selected from a range of 10 ⁇ m to 300 ⁇ m, for example.
  • the separator preferably has a non-woven structure.
  • Examples of the separator having a nonwoven fabric structure include a nonwoven fabric or a laminate of a nonwoven fabric and a microporous membrane.
  • Alkaline electrolyte As the alkaline electrolyte, for example, an aqueous solution containing an alkali is used.
  • alkali include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide, and sodium hydroxide. These can be used individually by 1 type or in combination of 2 or more types.
  • the electrolytic solution contains an anion and a cation from which alkali is dissociated.
  • a hydroxide ion is preferable.
  • the cation include sodium ion, potassium ion, and lithium ion.
  • the electrolytic solution may contain one or more of these cations.
  • the electrolytic solution may contain an alkali that has not been dissociated.
  • the alkaline electrolyte preferably contains sodium ions.
  • the alkaline electrolyte may contain sodium ions and potassium ions and / or lithium ions.
  • alkaline electrolyte containing sodium ion and potassium ion is used, high ion conductivity can be secured while suppressing deterioration of life performance at high temperature by suppressing deterioration of hydrogen storage alloy.
  • the discharge performance can be further improved.
  • the concentration of sodium ions in the alkaline electrolyte is, for example, 3.5 mol / L or more, preferably 3.7 mol / L or more, and more preferably 4.0 mol / L or more.
  • the sodium ion concentration in the alkaline electrolyte is, for example, 5.5 mol / L or less, and preferably 5.0 mol / L or less.
  • the sodium ion concentration is in such a range, the effect of suppressing a decrease in discharge performance under a cold environment is further enhanced.
  • the concentration ratio of sodium ions to potassium ions is, for example, 1.0 or more, and preferably 1.1 or more.
  • Na / K is, for example, 1.5 or less, and more preferably 1.3 or less.
  • the specific gravity of the alkaline electrolyte is, for example, 1.03 to 1.55, preferably 1.11 to 1.32.
  • FIG. 1 is a longitudinal sectional view schematically showing the structure of an alkaline storage battery according to an embodiment of the present disclosure.
  • the alkaline storage battery includes a bottomed cylindrical battery case 4 also serving as a negative electrode terminal, an electrode group housed in the battery case 4 and an alkaline electrolyte (not shown). In the electrode group, the negative electrode 1, the positive electrode 2, and the separator 3 interposed therebetween are spirally wound.
  • a sealing plate 7 including a safety valve 6 is disposed in the opening of the battery case 4 via an insulating gasket 8, and the alkaline storage battery is hermetically sealed by caulking the opening end of the battery case 4 inward.
  • the sealing plate 7 also serves as a positive electrode terminal, and is electrically connected to the positive electrode 2 via the positive electrode lead 9.
  • an electrode group is accommodated in a battery case 4, an alkaline electrolyte is injected, a sealing plate 7 is disposed in an opening of the battery case 4 via an insulating gasket 8, and the battery case 4 Can be obtained by caulking and sealing.
  • the negative electrode 1 of the electrode group and the battery case 4 are electrically connected via a negative electrode current collector plate disposed between the electrode group and the inner bottom surface of the battery case 4.
  • the positive electrode 2 of the electrode group and the sealing plate 7 are electrically connected via the positive electrode lead 9.
  • Examples 1 to 7 and Comparative Examples 1 to 8 (1) Preparation of raw material powder The simple substance of each element shown in Table 1 was mixed in the ratio which becomes a coefficient ratio shown in Table 1, and it fuse
  • a sintered positive electrode having a capacity of 1500 mAh obtained by filling a positive electrode core material composed of a porous sintered substrate with a positive electrode mixture was prepared.
  • the positive electrode mixture comprises about 90 parts by mass of Ni (OH) 2 (positive electrode active material), about 6 parts by mass of Zn (OH) 2 as an additive, and about 4 parts by mass of Co (OH) 2 as a conductive agent.
  • An exposed portion of the core material that does not hold an active material having a width of 35 mm was provided at one end portion along the longitudinal direction of the positive electrode core material.
  • an alkaline storage battery (nickel metal hydride storage battery) having a nominal capacity of 1500 mAh and a size of 4 / 5A as shown in FIG. 1 was prepared.
  • the positive electrode 2 and the negative electrode 1 were wound through a separator 3 to produce a cylindrical electrode plate group.
  • the exposed portion of the positive electrode core material and the exposed portion of the negative electrode core material were exposed on the opposite end surfaces.
  • a separator 3 a sulfonated polypropylene nonwoven fabric (thickness: 100 ⁇ m) was used.
  • a positive electrode lead 9 was welded to the end face of the electrode plate group from which the positive electrode core material was exposed.
  • the negative electrode current collector plate was welded to the end face of the electrode plate group where the negative electrode core material was exposed.
  • the sealing plate 7 and the positive electrode 2 were electrically connected through the positive electrode lead 9. Thereafter, the negative electrode current collector plate was turned downward, and the electrode plate group was accommodated in a battery case 4 formed of a cylindrical bottomed can.
  • the negative electrode lead connected to the negative electrode current collector plate was welded to the bottom of the battery case 4. After the electrolyte solution was injected into the battery case 4, the opening of the battery case 4 was sealed with a sealing plate 7 having a gasket 8 on the periphery, thereby completing an alkaline storage battery.
  • an alkaline aqueous solution (specific gravity: 1.23) in which sodium hydroxide and potassium hydroxide were dissolved in water as an alkali was used as the electrolytic solution.
  • each evaluation result is represented by a ratio (%) when the evaluation result of Example 1 is set to 100.
  • (A) Low temperature discharge performance and (b) lifetime performance are evaluated based on the internal resistance of the battery, respectively, and a smaller value means better performance.
  • (c) high temperature charging efficiency and (d) room temperature discharge capacity indicate that the larger the value, the higher the performance.
  • a discharge and charge test was performed by discharging at a current of 300 mA in a 20 ° C. atmosphere until the voltage reached 1.0 V, and then charging for 16 hours at a current of 150 mA.
  • pulse charge / discharge was performed under the following conditions (i) to (iv) in an atmosphere of ⁇ 10 ° C., and the internal resistance was calculated from the voltage drop after 10 seconds of discharge.
  • the internal resistance was calculated from the four current values under these conditions and the voltage drop after 10 seconds of discharge.
  • Discharge Discharge until the voltage reaches 1.0 V at a current of 300 mA.
  • Charging Charging at a current of 150 mA for 16 hours in an atmosphere at 20 ° C., then left for 1 hour.
  • Discharge Discharge at 20 ° C atmosphere at 300 mA current until the voltage reaches 1.0V.
  • Discharge Discharge at 20 ° C atmosphere at 300 mA current until the voltage reaches 1.0V.
  • an alkaline storage battery was prepared and evaluated in the same manner as in Example 1.
  • Example 1 (1) single elements of each element shown in Table 1 were mixed at a ratio such that the coefficient ratio shown in Table 1 was obtained, and raw material powder was obtained in the same manner as in Example 1. Using the obtained raw material powder as it was, a negative electrode was produced according to (3).
  • Hydrogen storage alloy material powder composition formula: L 1-alpha can be represented by E alpha Ni x M y, no Ni agglomeration unit.
  • an alkaline storage battery was prepared and evaluated in the same manner as in Example 1.
  • Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 to 13 together with the composition of the hydrogen storage alloy.
  • Examples 1 to 7 are A1 to A7, and Comparative Examples 1 to 13 are B1 to B13.
  • the low temperature discharge performance and / or the life performance are low in the comparative example, whereas the low temperature discharge performance and the life performance are compatible in the embodiment.
  • Examples 8-10 As shown in Table 2, a raw material powder was obtained in the same manner as in Example 2 except that x + y (B / A ratio) was changed by changing the Ni ratio x. When the crystal structure of the hydrogen storage alloy was confirmed by X-ray diffraction, it was confirmed that it had an AB 3 type crystal structure. A negative electrode and an alkaline storage battery were produced and evaluated in the same manner as in Example 2 except that the obtained raw material powder was used.
  • Examples 8 to 10 are shown in Table 2 together with the composition of the hydrogen storage alloy. Examples 8 to 10 are A8 to A10. Table 2 also shows the results of A1 and A2.
  • the B / A ratio is preferably 3.20 or more.
  • the high temperature discharge capacity was higher when the B / A ratio was smaller than 3.90, compared to when the B / A ratio was 3.90.
  • the B / A ratio is preferably 3.80 or less.
  • Examples 11-14 An alkaline storage battery was produced and evaluated in the same manner as in Example 2 except that the sodium ion concentration and the Na / K ratio in the alkaline electrolyte were changed as shown in Table 3.
  • Examples 11 to 14 are A11 to A14. Table 3 also shows the results of A1 and A2.
  • the sodium ion concentration is preferably 4.0 mol / L or more. Moreover, it is preferable that Na / K ratio is 1.1 or more.
  • the electrode alloy powder, the negative electrode for an alkaline storage battery, and the alkaline storage battery according to the present disclosure are excellent in discharge performance in a low temperature environment and in life performance. Therefore, for example, it is suitable for use as a power source for various electronic devices, transportation devices, power storage devices, and / or for an auxiliary power source or an emergency power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

This alloy powder for an electrode contains particles of a hydrogen storage alloy, wherein the particles include an aggregation portion in which nickel is aggregated. The hydrogen storage alloy contains an element L, an element E, Ni, and an element M. The element L is a Group-3 element in the periodic table, the element E is a Group-2 element in the periodic table, and the element M is at least one selected from the group consisting of Al and elements (exclusive of Ni) in the 4th to 6th periods of each of Groups 4 to 14 in the periodic table, and also contains Ag and Sn. With respect to the total of the elements L and E, the ratio x of Ni and the ratio y of the element M satisfy 2.50≤x+y≤4.50.

Description

電極用合金粉末、それを用いたアルカリ蓄電池用負極およびアルカリ蓄電池Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
 本開示は、水素吸蔵合金を含む電極用合金粉末、それを用いたアルカリ蓄電池用負極およびアルカリ蓄電池に関する。 The present disclosure relates to an electrode alloy powder containing a hydrogen storage alloy, an alkaline storage battery negative electrode and an alkaline storage battery using the same.
 負極活物質として水素吸蔵合金を含む負極を用いるアルカリ蓄電池(ニッケル水素蓄電池)は、例えば、乾電池の代替品、および電気自動車などの動力電源として注目を集めている。 An alkaline storage battery (nickel metal hydride storage battery) using a negative electrode containing a hydrogen storage alloy as a negative electrode active material has been attracting attention as an alternative to a dry battery and a power source for an electric vehicle or the like.
 水素吸蔵合金は、一般に、水素親和性の高い元素および水素親和性の低い元素を含む。水素吸蔵合金としては、例えば、AB5型(例えば、CaCu5型)、AB3型(例えば、CeNi3型)、またはAB2型(例えば、MgCu2型)などの結晶構造を有するものが用いられている。これらの結晶構造において、水素親和性の高い元素はAサイトに位置し易く、水素親和性の低い元素はBサイトに位置し易い傾向がある。 The hydrogen storage alloy generally includes an element having a high hydrogen affinity and an element having a low hydrogen affinity. As the hydrogen storage alloy, for example, an alloy having a crystal structure such as AB 5 type (for example, CaCu 5 type), AB 3 type (for example, CeNi 3 type), or AB 2 type (for example, MgCu 2 type) is used. It has been. In these crystal structures, an element having high hydrogen affinity tends to be located at the A site, and an element having low hydrogen affinity tends to be located at the B site.
 アルカリ蓄電池の電池特性を向上させるために、水素吸蔵合金粉末の性能を最適化する試みがなされている。例えば、特許文献1および特許文献2では、大きな放電容量を有する水素吸蔵電極として、希土類元素と、Niと、他の元素とを含む水素吸蔵合金を含むものが提案されている。 Attempts have been made to optimize the performance of the hydrogen storage alloy powder in order to improve the battery characteristics of alkaline storage batteries. For example, Patent Document 1 and Patent Document 2 propose a hydrogen storage electrode including a hydrogen storage alloy including a rare earth element, Ni, and another element as a hydrogen storage electrode having a large discharge capacity.
特開平10-321223号公報Japanese Patent Laid-Open No. 10-32223 特開2014-88619号公報JP 2014-88619 A
 アルカリ蓄電池の用途の拡大に伴って、低温における高い放電性能が求められる場合がある。低温における放電性能を高めるには、一般に、水素吸蔵合金の反応面積を大きくして低温における反応性を高める必要がある。しかし、反応面積を大きくすると、水素吸蔵合金の劣化が進行し易くなり、寿命が短くなる。そのため、水素吸蔵合金を用いるアルカリ蓄電池において、寿命性能と低温における放電性能とを両立することは難しい。 As the use of alkaline storage batteries expands, high discharge performance at low temperatures may be required. In order to enhance the discharge performance at low temperatures, it is generally necessary to increase the reactivity at low temperatures by increasing the reaction area of the hydrogen storage alloy. However, when the reaction area is increased, the deterioration of the hydrogen storage alloy tends to proceed and the life is shortened. Therefore, it is difficult to achieve both life performance and low temperature discharge performance in an alkaline storage battery using a hydrogen storage alloy.
 本開示の一局面は、水素吸蔵合金の粒子を含み、
 前記粒子は、ニッケルが凝集した凝集部を備え、
 前記水素吸蔵合金は、元素L、元素E、Ni、および元素Mを含み、
 前記元素Lは、周期表第3族元素であり、
 前記元素Eは、周期表第2族元素であり、
 前記元素Mは、周期表第4族~第14族のそれぞれの第4周期~第6周期の元素(ただし、Niを除く)、およびAlからなる群より選択される少なくとも一種であり、かつ、AgとSnとを含み、
 前記元素Lと前記元素Eの合計に対する、Niの比xと、前記元素Mの比yとは、2.50≦x+y≦4.50を充足する、電極用合金粉末に関する。
One aspect of the present disclosure includes particles of a hydrogen storage alloy,
The particles include an agglomerated part in which nickel is agglomerated,
The hydrogen storage alloy includes element L, element E, Ni, and element M,
The element L is a periodic table group 3 element,
The element E is a periodic table group 2 element,
The element M is at least one selected from the group consisting of elements of the 4th to 6th periods (except for Ni) of the 4th to 14th groups of the periodic table, and Al, and Including Ag and Sn,
The ratio x of Ni and the ratio y of element M with respect to the total of element L and element E relate to electrode alloy powder satisfying 2.50 ≦ x + y ≦ 4.50.
 本開示の他の局面は、上記電極用合金粉末を、負極活物質として含むアルカリ蓄電池用負極に関する。 Another aspect of the present disclosure relates to an alkaline storage battery negative electrode including the electrode alloy powder as a negative electrode active material.
 本開示のさらに他の局面は、正極と、上記負極と、前記正極および前記負極の間に介在するセパレータと、アルカリ電解液とを具備する、アルカリ蓄電池に関する。 Still another aspect of the present disclosure relates to an alkaline storage battery including a positive electrode, the negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte.
 アルカリ蓄電池において、寿命性能と低温における放電性能とを両立できる。 In alkaline storage batteries, both life performance and low temperature discharge performance can be achieved.
本開示の一実施形態に係るアルカリ蓄電池の構造を模式的に示す縦断面図である。It is a longitudinal section showing the structure of the alkaline storage battery concerning one embodiment of this indication typically.
 [電極用合金粉末]
 本開示の一局面に係る電極用合金粉末は、水素吸蔵合金の粒子を含む。この粒子は、ニッケルが凝集した凝集部を備える。水素吸蔵合金は、元素L、元素E、Ni、および元素Mを含む。元素Lは、周期表第3族元素である。元素Eは、周期表第2族元素である。元素Mは、周期表第4族~第14族のそれぞれの第4周期~第6周期の元素(ただし、Niを除く)、およびAlからなる群より選択される少なくとも一種であり、かつ、AgとSnとを含む。そして、元素Lと元素Eの合計に対する、Niの比xと、元素Mの比yとは、2.50≦x+y≦4.50を充足する。
[Alloy powder for electrodes]
The electrode alloy powder according to one aspect of the present disclosure includes particles of a hydrogen storage alloy. This particle includes an agglomerated part in which nickel is agglomerated. The hydrogen storage alloy includes an element L, an element E, Ni, and an element M. Element L is a periodic table group 3 element. Element E is a periodic table group 2 element. The element M is at least one selected from the group consisting of elements of the 4th to 6th periods (except for Ni) and Al of the 4th to 14th groups of the periodic table, and Ag. And Sn. The ratio x of Ni and the ratio y of element M with respect to the total of element L and element E satisfy 2.50 ≦ x + y ≦ 4.50.
 水素吸蔵合金の上記組成において、x+yは、主にAサイトに位置する元素に対する主にBサイトに位置する元素の比であり、一般に、B/A比と呼ばれるものである。このB/A比が2.50以上4.50以下である水素吸蔵合金は、主たる結晶構造としてAB型結晶構造を有するものであり、AB型水素吸蔵合金と呼ばれることもある。 In the above composition of the hydrogen storage alloy, x + y is a ratio of an element mainly located at the B site to an element mainly located at the A site, and is generally called a B / A ratio. The hydrogen storage alloy having a B / A ratio of 2.50 or more and 4.50 or less has an AB 3 type crystal structure as a main crystal structure, and is sometimes called an AB 3 type hydrogen storage alloy.
 アルカリ蓄電池の低温における放電性能を高めるには、一般に、水素吸蔵合金粒子の反応面積を大きくして低温における反応性を高める必要がある。しかし、反応面積を大きくすると、水素吸蔵合金粒子の劣化が進行し易くなるため、電池の寿命性能が低下する。 In order to enhance the discharge performance of alkaline storage batteries at low temperatures, it is generally necessary to increase the reaction area of hydrogen storage alloy particles to increase the reactivity at low temperatures. However, when the reaction area is increased, the deterioration of the hydrogen storage alloy particles easily progresses, so that the life performance of the battery decreases.
 本実施形態では、ニッケルが凝集した凝集部(以下、Ni凝集部とも言う)を備え、上記の組成を有する(特に、AgとSnとを含む)水素吸蔵合金の粒子を用いる。これにより、高い反応活性を確保することができるとともに、水素吸蔵合金からの放電時の水素の放出をスムーズに行うことができる。そのため、反応面積を高めることなく、低温における高い放電性能(または出力性能)を確保することができる。また、水素吸蔵合金の反応面積の増大が抑制されることで、寿命性能の低下を抑制できる。よって、寿命性能と、低温における放電性能とを両立することができる。寿命性能と低温における放電性能とが両立できる詳細な機構は定かではないが、主に次のような理由によるものと推測される。 In this embodiment, particles of a hydrogen storage alloy having an agglomerated part (hereinafter also referred to as a Ni agglomerated part) in which nickel is aggregated and having the above composition (in particular, including Ag and Sn) are used. Thereby, while being able to ensure high reaction activity, the discharge | release of hydrogen at the time of discharge from a hydrogen storage alloy can be performed smoothly. Therefore, high discharge performance (or output performance) at low temperatures can be ensured without increasing the reaction area. Moreover, the fall of lifetime performance can be suppressed by the increase in the reaction area of a hydrogen storage alloy being suppressed. Therefore, both life performance and discharge performance at a low temperature can be achieved. Although the detailed mechanism that can achieve both the life performance and the discharge performance at low temperature is not clear, it is presumed mainly due to the following reasons.
 AgおよびSnは、それぞれ、水素化物を形成し易いため、水素を保持し易い。特に、Agの近くに存在するSnは、Agの高い導電性の影響で、水素化物をさらに形成し易くなる。そして、Agは、Agの近くに存在するSnと相互作用することで水素をさらに保持し易くなる。Ni凝集部は、水素吸蔵合金粒子を表面処理することにより形成される。水素吸蔵合金粒子がAgを含むと、表面処理の際に、Agが粒子の表面に偏析し易い。そのため、特に、水素吸蔵合金粒子の表面およびその近傍では、AgとSnとの相互作用により、充電時に多くの水素が保持されることになる。このような合金粒子の表面およびその近傍に保持された水素は、低温環境下でも放電時に放出され易い。また、Ni凝集部は、金属ニッケルを主成分とする磁性体クラスタ(磁性体)であり、水素の拡散において触媒作用を有するとともに、高い導電性を有する。この触媒作用と、Ni凝集部およびAgの高い導電性とにより、AgおよびSnにより水素吸蔵合金の表面およびその近傍に保持された水素が、低温環境下でも放電時にさらに放出され易くなるとともに、合金粒子内部からの水素の拡散速度も高まる。そのため、放電時に、合金粒子の表面およびその近傍に保持されていた水素が放出されると、合金粒子の内部から水素が次々に合金粒子の表面およびその近傍に供給され、放電反応がスムーズに起こる。つまり、合金粒子の表面およびその近傍に保持されていた水素の放出が、放電時の合金粒子からの水素の放出のトリガーとなる。よって、低温環境下でも放電時の水素放出をスムーズに進行させることができる。 Since Ag and Sn each easily form a hydride, they easily hold hydrogen. In particular, Sn present in the vicinity of Ag is more likely to form a hydride due to the high conductivity of Ag. And Ag becomes easier to hold | maintain hydrogen by interacting with Sn which exists near Ag. The Ni agglomerated part is formed by surface-treating the hydrogen storage alloy particles. When the hydrogen storage alloy particles contain Ag, Ag tends to segregate on the surface of the particles during the surface treatment. Therefore, particularly at the surface of the hydrogen storage alloy particles and in the vicinity thereof, a large amount of hydrogen is retained during charging due to the interaction between Ag and Sn. Hydrogen retained on the surface of such alloy particles and in the vicinity thereof is easily released during discharge even in a low temperature environment. The Ni agglomerated part is a magnetic substance cluster (magnetic substance) containing metallic nickel as a main component, has a catalytic action in diffusion of hydrogen, and has high conductivity. Due to this catalytic action and the Ni agglomerated part and the high conductivity of Ag, the hydrogen retained on the surface of the hydrogen storage alloy by Ag and Sn and in the vicinity thereof is more likely to be released during discharge even in a low temperature environment. The diffusion rate of hydrogen from inside the particles is also increased. Therefore, when hydrogen held on the surface of the alloy particles and the vicinity thereof is released during the discharge, hydrogen is successively supplied from the inside of the alloy particles to the surface of the alloy particles and the vicinity thereof, and the discharge reaction occurs smoothly. . That is, the release of hydrogen held on the surface of the alloy particles and in the vicinity thereof triggers the release of hydrogen from the alloy particles during discharge. Therefore, hydrogen release during discharge can proceed smoothly even in a low temperature environment.
 また、AB型結晶構造を有する水素吸蔵合金は、比較的高容量であるが、構成元素の溶出により劣化しやすく、高い寿命性能を確保することが難しい。本開示では、このような劣化し易いAB型結晶構造を含む水素吸蔵合金を用いるにも拘わらず、合金粒子がSnを含むことで、合金粒子の微粉化を抑制して、反応面積の増加が抑制される。また、Agを含むことで、耐酸化性が向上する。これらの効果に加えて、高い水素吸蔵能と上記のスムーズな水素放出とにより、反応面積を増加させることなく低温における高い放電性能を確保することができるとともに、高い寿命性能を確保することができる。 In addition, the hydrogen storage alloy having an AB 3 type crystal structure has a relatively high capacity, but is easily deteriorated by elution of constituent elements, and it is difficult to ensure high life performance. In the present disclosure, although the hydrogen storage alloy including the AB 3 type crystal structure that easily deteriorates is used, the alloy particles contain Sn, thereby suppressing the pulverization of the alloy particles and increasing the reaction area. Is suppressed. Moreover, oxidation resistance improves by containing Ag. In addition to these effects, high hydrogen storage capacity and smooth hydrogen release described above can ensure high discharge performance at low temperatures without increasing the reaction area, and can also ensure high life performance. .
 低温下における放電性能は、-20℃程度までの温度で評価されることが多いが、近年-20℃を下回る温度でも高い放電性能が求められつつある。本開示では、上記のように放電時の水素放出をスムーズに進行させることができるため、-20℃を下回る温度(例えば、-30℃程度)でも高い放電性能を確保することができる。 The discharge performance at low temperatures is often evaluated at temperatures up to about −20 ° C., but in recent years, high discharge performance is being demanded even at temperatures below −20 ° C. In the present disclosure, hydrogen discharge during discharge can proceed smoothly as described above, so that high discharge performance can be ensured even at temperatures lower than −20 ° C. (eg, about −30 ° C.).
 なお、水素吸蔵合金は、結晶構造の50%以上がAB型結晶構造であればよく、70%以上がAB型結晶構造であってもよい。水素吸蔵合金粒子の断面および/または表面の任意の複数箇所(例えば、10箇所)について結晶構造を測定する場合に、AB型結晶構造を示す箇所の比率が50%以上である場合に、主たる結晶構造がAB型結晶構造を有するものとする。なお、結晶構造を測定する粒子は、1つであってもよいが、任意に選択した複数の粒子について結晶構造を測定することが好ましい。本開示では、水素吸蔵合金粒子において、AB型結晶構造の部分が上記のような組成であればよい。水素吸蔵合金の結晶構造は、X線回折により評価できる。 Note that in the hydrogen storage alloy, 50% or more of the crystal structure may be an AB 3 type crystal structure, and 70% or more may be an AB 3 type crystal structure. When the crystal structure is measured at any of a plurality of locations (for example, 10 locations) on the cross section and / or the surface of the hydrogen storage alloy particles, the ratio is mainly 50% or more when the ratio of the locations showing the AB 3 type crystal structure is 50% or more. It is assumed that the crystal structure has an AB 3 type crystal structure. In addition, although the particle | grains which measure a crystal structure may be one, it is preferable to measure a crystal structure about several particle | grains selected arbitrarily. In the present disclosure, in the hydrogen storage alloy particles, the AB 3 type crystal structure portion may have the above composition. The crystal structure of the hydrogen storage alloy can be evaluated by X-ray diffraction.
 本開示において、水素吸蔵合金における元素の比は、水素吸蔵合金に含まれる各元素の原子比である。例えば、Niの比xは、水素吸蔵合金(特に、少なくともAB型結晶構造の部分)における元素Lと元素Eとの原子数の合計に対する、Ni元素の原子数の比である。他の元素の比についてもNiの場合に準じる。 In the present disclosure, the ratio of elements in the hydrogen storage alloy is the atomic ratio of each element contained in the hydrogen storage alloy. For example, the Ni ratio x is the ratio of the number of Ni element atoms to the total number of element L and element E atoms in a hydrogen storage alloy (particularly at least part of the AB 3 type crystal structure). The ratio of other elements is the same as that of Ni.
 以下、電極用合金粉末についてより詳細に説明する。 Hereinafter, the electrode alloy powder will be described in more detail.
 水素吸蔵合金粒子は、Ni凝集部を有する。Ni凝集部は、金属ニッケルを主成分とする磁性体クラスタ(磁性体)である。金属ニッケルは、例えば、水素吸蔵合金の表面または表層部に偏析し、凝集して、磁性体クラスタを形成している。磁性体クラスタにおいて、金属ニッケルは、結晶質の形態および/または非晶質の形態で凝集している。磁性体クラスタは、水素吸蔵合金による水素の授受反応(水素の拡散反応を含む)の触媒として機能する。 The hydrogen storage alloy particles have Ni agglomerated parts. The Ni agglomerated part is a magnetic substance cluster (magnetic substance) whose main component is metallic nickel. For example, metallic nickel segregates on the surface or surface layer of the hydrogen storage alloy and aggregates to form magnetic clusters. In the magnetic substance cluster, the metallic nickel is aggregated in a crystalline form and / or an amorphous form. The magnetic substance cluster functions as a catalyst for a hydrogen transfer reaction (including a hydrogen diffusion reaction) by the hydrogen storage alloy.
 水素吸蔵合金は、必須成分として、元素L、元素E、Niおよび元素Mを含んでいる。水素吸蔵合金は、少なくともAB型の結晶構造を有する部分が、これらの必須成分を含んでいればよい。水素吸蔵合金は、任意成分として、他の元素を含んでもよい。 The hydrogen storage alloy contains element L, element E, Ni and element M as essential components. In the hydrogen storage alloy, it is sufficient that at least a portion having an AB 3 type crystal structure contains these essential components. The hydrogen storage alloy may contain other elements as optional components.
 元素Lは、周期表第3族元素である。周期表第3族元素には、Sc、Y、ランタノイド元素、およびアクチノイド元素が含まれる。ランタノイド元素には、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuが含まれる。アクチノイド元素としては、例えば、Ac、Th、Pa、およびNpなどが挙げられる。元素Lは、これらの元素を一種含んでもよく、二種以上組み合わせて含んでもよい。元素Lは、Sc、Y、およびランタノイド元素からなる群より選択される少なくとも一種を含むことが好ましく、特に、Yおよびランタノイド元素からなる群より選択される少なくとも一種を含むことが好ましい。元素LがScおよび/またはランタノイド元素を含む場合、高容量が得られ易い。耐食性を高める観点からは、元素LがYを含むことが好ましい。 Element L is a periodic table group 3 element. The Group 3 elements of the periodic table include Sc, Y, lanthanoid elements, and actinoid elements. Lanthanoid elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Examples of actinoid elements include Ac, Th, Pa, and Np. The element L may contain one of these elements or a combination of two or more. The element L preferably includes at least one selected from the group consisting of Sc, Y, and a lanthanoid element, and particularly preferably includes at least one selected from the group consisting of Y and a lanthanoid element. When the element L contains Sc and / or a lanthanoid element, a high capacity is easily obtained. From the viewpoint of improving the corrosion resistance, the element L preferably contains Y.
 元素Eは、周期表第2族元素である。周期表第2族元素としては、Mg、Ca、SrおよびBaが好ましい。元素Eは、周期表第2族元素を一種含んでもよく、二種以上組み合わせて含んでもよい。水素吸蔵合金粒子が元素Eを含むことで、水素に対する活性度が増し、水素吸蔵量を高め易い。より高い水素吸蔵量を確保する観点からは、元素Eは、少なくともMgを含むことが好ましい。一方で、Mgは、溶出し易く、水素吸蔵合金粒子の劣化を招き易い。本開示によれば、反応面積を増加させることなく、低温における高い放電性能を確保できるため、水素吸蔵合金粒子がMgを含む場合でも、水素吸蔵合金粒子の劣化を抑制することができる。そのため、Mgによる水素吸蔵量の向上効果を効果的に享受することができる。 Element E is a periodic table group 2 element. As the Group 2 element of the periodic table, Mg, Ca, Sr and Ba are preferable. The element E may contain 1 type of periodic table group 2 element, and may contain it in combination of 2 or more types. When the hydrogen storage alloy particles contain the element E, the activity with respect to hydrogen is increased, and the hydrogen storage amount is easily increased. From the viewpoint of securing a higher hydrogen storage amount, the element E preferably contains at least Mg. On the other hand, Mg easily elutes and tends to cause deterioration of the hydrogen storage alloy particles. According to the present disclosure, high discharge performance at a low temperature can be ensured without increasing the reaction area. Therefore, even when the hydrogen storage alloy particles contain Mg, deterioration of the hydrogen storage alloy particles can be suppressed. Therefore, the improvement effect of the hydrogen occlusion amount by Mg can be enjoyed effectively.
 Ni凝集部を確保しながらも、高容量が得られやすい観点から、元素Lと元素Eの合計に対するNiの比xは、3.0以上であることが好ましい。さらなる高容量化の観点からは、比xは、3.20以上であることがより好ましく、3.25以上であることがさらに好ましく、3.30以上であってもよい。比xの上限は、B/A比に相当するx+yが後述の範囲となるように決定すればよい。 From the viewpoint of easily obtaining a high capacity while securing the Ni agglomerated part, the ratio x of Ni to the total of the elements L and E is preferably 3.0 or more. From the viewpoint of further increasing the capacity, the ratio x is more preferably 3.20 or more, further preferably 3.25 or more, and may be 3.30 or more. The upper limit of the ratio x may be determined so that x + y corresponding to the B / A ratio falls within the range described later.
 元素Mは、周期表第4族~第14族のそれぞれの第4周期~第6周期の元素(ただし、Niを除く)、およびAlからなる群より選択される少なくとも一種である。周期表第4族元素としては、Ti、Zr、HfおよびRfが挙げられる。第12族元素としては、Znなどが例示でき、第13族元素としては、Alに加え、Ga、Inなどが例示できる。第14族元素としては、Ge、Snなどが例示できる。元素Mのうち、遷移金属元素としては、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Pd、Pt、Cu、Ag、Auなどが例示できる。元素Mのうち、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Cu、Ag、Zn、Al、Ga、In、Ge、およびSnからなる群より選択される少なくとも一種が好ましい。水素吸蔵合金がこれらの元素Mを含む場合、水素の吸蔵および放出に伴って、顕著な結晶欠陥が生成するのを抑制できるとともに、高い充放電特性が得られ易く、コストを低減し易い。 The element M is at least one selected from the group consisting of elements in the 4th to 6th periods (except for Ni) of the 4th to 14th groups of the periodic table, and Al. Examples of Group 4 elements of the periodic table include Ti, Zr, Hf, and Rf. Examples of the Group 12 element include Zn. Examples of the Group 13 element include Ga and In in addition to Al. Examples of the Group 14 element include Ge and Sn. Among the elements M, examples of the transition metal element include V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Pd, Pt, Cu, Ag, and Au. Among the elements M, at least one selected from the group consisting of Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Cu, Ag, Zn, Al, Ga, In, Ge, and Sn Is preferred. When the hydrogen storage alloy contains these elements M, it is possible to suppress the formation of significant crystal defects accompanying the storage and release of hydrogen, and it is easy to obtain high charge / discharge characteristics and to reduce costs.
 水素吸蔵合金において、元素Lおよび元素Eは、Aサイトに位置し易く、Niおよび元素Mは、Bサイトに位置し易い。元素Lと元素Eの合計に対するNiの比xおよび元素Mの比yの合計:x+y(=B/A比)は、2.50以上であり、3.20以上であることが好ましく、3.30以上または.3.35以上であることがさらに好ましい。x+y(=B/A比)は、4.50以下であり、3.90以下であることが好ましい。x+yが、このような範囲である場合、寿命性能と低温における放電性能とをさらに両立し易い。また、高い反応活性と高い容量とを確保することができる。より高い容量を確保し易い観点からは、x+yが3.80以下または3.75以下であることがさらに好ましい。これらの下限値と上限値とは任意に組み合わせることができる。 In the hydrogen storage alloy, element L and element E are likely to be located at the A site, and Ni and element M are likely to be located at the B site. 2. The ratio x of Ni to the sum of element L and element E and the ratio y of element M: x + y (= B / A ratio) is 2.50 or more, preferably 3.20 or more. 30 or more or. More preferably, it is 3.35 or more. x + y (= B / A ratio) is 4.50 or less, and preferably 3.90 or less. When x + y is in such a range, it is easier to achieve both life performance and low-temperature discharge performance. Further, high reaction activity and high capacity can be ensured. From the viewpoint of easily ensuring a higher capacity, it is more preferable that x + y is 3.80 or less or 3.75 or less. These lower limit values and upper limit values can be arbitrarily combined.
 本開示によれば、元素Mは、少なくともAgとSnとを含む。AgとSnとNi凝集部とを組み合わせることで、上述のように、反応面積の増加を抑制しながらも、低温における高い放電性能を確保できるとともに、高い寿命性能を得ることができる。 According to the present disclosure, the element M includes at least Ag and Sn. By combining Ag, Sn, and Ni agglomerated part, as described above, high discharge performance at a low temperature can be secured and high life performance can be obtained while suppressing an increase in reaction area.
 元素Lと元素Eの合計に対する、Agの比y1は、0.010以上であることが好ましく、0.012以上であることがより好ましく、0.015以上であることがさらに好ましい。比y1がこのような範囲である場合、水素化物が形成され易く、高い導電性を確保し易いため、低温における放電性能をさらに高めることができる。比y1は、0.045以下であり、0.040以下が好ましく、0.037以下または0.035以下がさらに好ましい。比y1がこのような範囲である場合、Agの過度な偏析が抑制されるとともに、Snの比を適度に調節し易いため、反応面積の増加を抑制する効果を高めることができる。これらの下限値と上限値とは任意に組み合わせることができる。 The ratio y1 of Ag to the total of the elements L and E is preferably 0.010 or more, more preferably 0.012 or more, and further preferably 0.015 or more. When the ratio y1 is in such a range, a hydride is easily formed and high conductivity is easily secured, so that the discharge performance at a low temperature can be further enhanced. The ratio y1 is 0.045 or less, preferably 0.040 or less, more preferably 0.037 or less or 0.035 or less. When the ratio y1 is in such a range, excessive segregation of Ag is suppressed and the ratio of Sn is easily adjusted appropriately, so that the effect of suppressing an increase in reaction area can be enhanced. These lower limit values and upper limit values can be arbitrarily combined.
 元素Lと元素Eの合計に対する、Snの比y2の、y1に対する比(=y2/y1)は、0.30以上であることが好ましく、0.40以上であることが好ましく、0.70以上であってもよい。y2/y1は、3.0以下であることが好ましく、2.4以下がより好ましく、1.5以下であってもよい。y2/y1がこのような範囲である場合、寿命性能と低温における放電性能とのバランスを高め易くなる。これらの下限値と上限値とは任意に組み合わせることができる。 The ratio of the ratio y2 of Sn to the total of element L and element E to y1 (= y2 / y1) is preferably 0.30 or more, preferably 0.40 or more, and 0.70 or more. It may be. y2 / y1 is preferably 3.0 or less, more preferably 2.4 or less, and may be 1.5 or less. When y2 / y1 is in such a range, the balance between the life performance and the discharge performance at a low temperature can be easily improved. These lower limit values and upper limit values can be arbitrarily combined.
 y1とy2との合計は、0.070以下であることが好ましいが、より高い容量を確保する観点からは、0.060以下が好ましく、0.050以下がさらに好ましい。 The total of y1 and y2 is preferably 0.070 or less, but from the viewpoint of securing a higher capacity, 0.060 or less is preferable, and 0.050 or less is more preferable.
 元素Mは、少なくとも、AgとSnとAlとを含むことが好ましい。元素MがAlを含む場合、水素平衡圧を低下させ易く、高い水素吸蔵能が得られ易いが、Alは、溶出し易く、水素吸蔵合金粒子の劣化を招き易い。本開示によれば、反応面積を増加させることなく、低温における高い放電性能を確保できるため、水素吸蔵合金粒子がAlを含む場合でも、水素吸蔵合金粒子の劣化を抑制することができる。そのため、Alによる水素吸蔵量の向上効果を効果的に享受することができる。 The element M preferably contains at least Ag, Sn, and Al. When the element M contains Al, it is easy to lower the hydrogen equilibrium pressure and easily obtain a high hydrogen storage capacity, but Al is easy to elute and easily deteriorates the hydrogen storage alloy particles. According to the present disclosure, high discharge performance at a low temperature can be ensured without increasing the reaction area. Therefore, even when the hydrogen storage alloy particles contain Al, deterioration of the hydrogen storage alloy particles can be suppressed. Therefore, the effect of improving the hydrogen storage amount by Al can be enjoyed effectively.
 元素Mが、Alを含む場合、元素Lと元素Eの合計に対するAlの比y3は、例えば、0.01以上であり、好ましくは0.03以上である。y3がこのような範囲である場合、水素平衡圧を低下させ易く、高い水素吸蔵能が得られ易い。水素吸蔵合金粒子の劣化が抑制され易い観点からは、y3は、例えば、0.30以下であり、0.10以下であることが好ましい。これらの下限値と上限値とは任意に組み合わせることができる。 When the element M includes Al, the ratio y3 of Al to the total of the elements L and E is, for example, 0.01 or more, and preferably 0.03 or more. When y3 is in such a range, the hydrogen equilibrium pressure is likely to be lowered, and a high hydrogen storage capacity is easily obtained. From the viewpoint of easily suppressing the deterioration of the hydrogen storage alloy particles, y3 is, for example, 0.30 or less, and preferably 0.10 or less. These lower limit values and upper limit values can be arbitrarily combined.
 寿命性能および/または高容量の観点からは、水素吸蔵合金粒子の平均粒子径は、例えば、15μm以上60μm以下であることが好ましく、20μm以上50μm以下であることがより好ましい。 From the viewpoint of life performance and / or high capacity, the average particle size of the hydrogen storage alloy particles is, for example, preferably 15 μm or more and 60 μm or less, and more preferably 20 μm or more and 50 μm or less.
 なお、本開示において、平均粒子径とは、レーザ回折散乱式粒度分布測定装置などにより測定される体積基準の粒度分布におけるメディアン径(D50)を意味する。 In the present disclosure, the average particle diameter means a median diameter (D 50 ) in a volume-based particle size distribution measured by a laser diffraction / scattering particle size distribution measuring device or the like.
 電極用合金粉末は、例えば、
 (i)水素吸蔵合金の構成元素の単体から合金を形成する工程A、
 (ii)工程Aで得られた合金を粒状化する工程B、および
 (iii)工程Bで得られた粒状物を活性化処理する工程Cを経ることにより得ることができる。
The electrode alloy powder is, for example,
(I) Step A of forming an alloy from simple elements constituting the hydrogen storage alloy,
(Ii) Step B for granulating the alloy obtained in Step A, and (iii) Step C for activating the granular material obtained in Step B.
 (i)工程A(合金化工程)
 工程Aでは、例えば、公知の合金化方法を利用することにより、構成成分の単体から合金を形成できる。合金化方法としては、例えば、プラズマアーク溶融法、高周波溶融(金型鋳造)法、メカニカルアロイング法(機械合金法)、メカニカルミリング法、および/または急冷凝固法(具体的には、金属材料活用事典(産業調査会、1999)などに記載されているロールスピニング法、メルトドラッグ法、直接鋳造圧延法、回転液中紡糸法、スプレイフォーミング法、ガスアトマイズ法、湿式噴霧法、スプラット法、急冷凝固薄帯粉砕法、ガス噴霧スプラット法、メルトエクストラクション法、および/または回転電極法など)を用いることができる。これらの方法は、単独で用いてもよく、複数の方法を組み合わせてもよい。
(I) Process A (alloying process)
In step A, for example, an alloy can be formed from simple constituent components by using a known alloying method. Examples of the alloying method include a plasma arc melting method, a high frequency melting (die casting) method, a mechanical alloying method (mechanical alloy method), a mechanical milling method, and / or a rapid solidification method (specifically, a metal material). Roll spinning method, melt drag method, direct casting and rolling method, spinning solution spinning method, spray forming method, gas atomization method, wet spraying method, splat method, rapid solidification described in application literature (Industry Research Committee, 1999) A thin band crushing method, a gas spray splat method, a melt extraction method, and / or a rotating electrode method can be used. These methods may be used alone or a plurality of methods may be combined.
 工程Aでは、各構成元素の単体を混合し、得られた混合物を、上記の方法などにより合金化することができる。混合物を、加熱により溶融して、構成元素を合金化してもよい。このような合金化には、例えば、プラズマアーク溶融法、高周波溶融(金型鋳造)法、急冷凝固法(回転ディスク法、単ロール法、ツインロール法など)が適している。また、急冷凝固法とメカニカルアロイング法とを組み合わせてもよい。急冷凝固法では、溶融させた合金を、回転している円盤や冷却ロールに注ぎ、急冷させることにより固化させることにより水素吸蔵合金を得ることができる。 In step A, simple substances of the respective constituent elements are mixed, and the resulting mixture can be alloyed by the above method or the like. The mixture may be melted by heating to alloy the constituent elements. For such alloying, for example, a plasma arc melting method, a high frequency melting (die casting) method, and a rapid solidification method (rotating disk method, single roll method, twin roll method, etc.) are suitable. Further, the rapid solidification method and the mechanical alloying method may be combined. In the rapid solidification method, a hydrogen storage alloy can be obtained by pouring a molten alloy onto a rotating disk or cooling roll and solidifying it by rapid cooling.
 工程Aにおいて、各構成元素の単体を混合する際には、水素吸蔵合金が所望の組成となるように、各単体の原子比、質量比などを調整する。 In step A, when mixing each elemental element alone, the atomic ratio, mass ratio, etc. of each element are adjusted so that the hydrogen storage alloy has a desired composition.
 溶融状態の合金は、工程Bでの粒状化に先立って固化される。合金の固化は、溶融状態の合金を、必要に応じて鋳型などに供給し、鋳型内で冷却することにより行うことができる。合金中での構成元素の分散性を高める観点から、供給速度などを適宜調整してもよい。 The molten alloy is solidified prior to granulation in step B. Solidification of the alloy can be performed by supplying the molten alloy to a mold or the like as necessary, and cooling in the mold. From the viewpoint of increasing the dispersibility of the constituent elements in the alloy, the supply rate and the like may be appropriately adjusted.
 固化された合金は、必要に応じて、加熱(アニーリング)処理してもよい。加熱処理を行うことにより、水素吸蔵合金中での構成元素の分散性を調整し易くなり、構成元素の溶出および/または偏析の程度を制御し易くなるとともに、水素吸蔵合金を活性化し易くなる。 The solidified alloy may be heated (annealed) as necessary. By performing the heat treatment, the dispersibility of the constituent elements in the hydrogen storage alloy can be easily adjusted, the degree of elution and / or segregation of the constituent elements can be easily controlled, and the hydrogen storage alloy can be easily activated.
 加熱は、特に制限されず、例えば、900~1100℃の温度で、アルゴンなどの不活性ガスの雰囲気下で行うことができる。 The heating is not particularly limited, and can be performed, for example, at a temperature of 900 to 1100 ° C. in an atmosphere of an inert gas such as argon.
 (ii)工程B(粒状化工程)
 工程Bでは、工程Aで得られた合金を粒状化する。合金の粒状化は、湿式粉砕、または乾式粉砕などにより行うことができ、これらを組み合わせてもよい。粉砕は、ボールミルなどにより行うことができる。湿式粉砕では、水などの液体媒体を用いて固化された合金を粉砕する。なお、得られた粒子は、必要に応じて分級してもよい。
(Ii) Process B (granulation process)
In step B, the alloy obtained in step A is granulated. The granulation of the alloy can be performed by wet pulverization, dry pulverization, or the like, and these may be combined. The pulverization can be performed by a ball mill or the like. In the wet pulverization, the solidified alloy is pulverized using a liquid medium such as water. In addition, you may classify the obtained particle | grains as needed.
 工程Bで得られる合金粒子を、電極用合金粉末の原料粉末と称する場合がある。 The alloy particles obtained in the process B may be referred to as a raw material powder for the electrode alloy powder.
 (iii)工程C(活性化工程)
 工程Cにおいて、粉砕物(原料粉末)の活性化は、粉砕物を、アルカリまたは酸と接触させることにより行うことができる。活性は、液相法および気相法のいずれで行ってもよい。活性化は、必要に応じて、加熱下(例えば、100℃以上の加熱下)で行ってもよい。アルカリや酸は、水溶液として用いることが好ましい。アルカリや酸の水溶液と原料粉末との接触は、例えば、水溶液中に、原料粉末を浸漬させたり、水溶液中に原料粉末を添加して、撹拌したり、または水溶液を原料粉末に噴霧したりすることにより行うことができる。
(Iii) Process C (activation process)
In Step C, the pulverized product (raw material powder) can be activated by bringing the pulverized product into contact with an alkali or an acid. The activity may be performed by either a liquid phase method or a gas phase method. The activation may be performed under heating (for example, under heating at 100 ° C. or higher) as necessary. The alkali or acid is preferably used as an aqueous solution. The contact between the aqueous solution of alkali or acid and the raw material powder is, for example, immersing the raw material powder in the aqueous solution, adding the raw material powder into the aqueous solution, stirring, or spraying the aqueous solution onto the raw material powder. Can be done.
 アルカリとしては、例えば、水酸化カリウム、水酸化ナトリウム、および/または水酸化リチウムなどのアルカリ金属水酸化物などが使用できる。これらのうち、水酸化ナトリウムおよび/または水酸化カリウムなどを用いることが好ましい。酸としては、例えば、酢酸などの有機酸が挙げられる。また、炭酸、塩酸などの無機酸を用いてもよい。 As the alkali, for example, alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and / or lithium hydroxide can be used. Of these, sodium hydroxide and / or potassium hydroxide are preferably used. Examples of the acid include organic acids such as acetic acid. In addition, inorganic acids such as carbonic acid and hydrochloric acid may be used.
 活性化の効率、生産性、および/または工程の再現性などの観点から、水溶液中のアルカリまたは酸の濃度は、例えば、5質量%以上50質量%以下である。 From the viewpoint of activation efficiency, productivity, and / or process reproducibility, the concentration of alkali or acid in the aqueous solution is, for example, 5 mass% or more and 50 mass% or less.
 アルカリや酸による活性化処理の後、得られる合金粉末を水洗してもよい。合金粉末の表面に不純物が残存するのを低減するため、水洗は洗浄に用いた水のpHが9以下になってから終了することが好ましい。 After the activation treatment with alkali or acid, the obtained alloy powder may be washed with water. In order to reduce the remaining impurities on the surface of the alloy powder, the water washing is preferably finished after the pH of the water used for washing becomes 9 or less.
 活性化処理後の合金粉末は、通常、乾燥される。 The alloy powder after the activation treatment is usually dried.
 本開示の一実施形態に係る電極用合金粉末は、このような工程を経ることにより得ることができる。得られる合金粉末は、寿命性能と、低温環境下における放電性能とを両立できる。そのため、電極用合金粉末は、アルカリ蓄電池の負極活物質として使用するのに適している。 The electrode alloy powder according to an embodiment of the present disclosure can be obtained through such a process. The obtained alloy powder can achieve both life performance and discharge performance in a low temperature environment. Therefore, the electrode alloy powder is suitable for use as a negative electrode active material of an alkaline storage battery.
 (アルカリ蓄電池)
 アルカリ蓄電池は、正極と、負極と、正極および負極の間に介在するセパレータと、アルカリ電解液とを具備する。
(Alkaline battery)
The alkaline storage battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte.
 負極は、上記の電極用合金粉末を、負極活物質として含む。 The negative electrode contains the above-mentioned electrode alloy powder as a negative electrode active material.
 以下に、アルカリ蓄電池の構成要素をより具体的に説明する。 Hereinafter, the components of the alkaline storage battery will be described in more detail.
 (負極)
 負極は、上記の電極用合金粉末を負極活物質として含む限り特に制限されず、他の構成要素としては、アルカリ蓄電池において使用される公知のものが使用できる。
(Negative electrode)
The negative electrode is not particularly limited as long as it includes the above-described electrode alloy powder as a negative electrode active material, and other constituent elements known in the alkaline storage battery can be used.
 負極は、芯材と、芯材に付着した負極活物質とを含んでもよい。このような負極は、芯材に、少なくとも負極活物質を含む負極ペーストを付着させることにより形成できる。 The negative electrode may include a core material and a negative electrode active material attached to the core material. Such a negative electrode can be formed by attaching a negative electrode paste containing at least a negative electrode active material to a core material.
 負極芯材としては、公知のものが使用でき、ステンレス鋼、ニッケルまたはその合金などで形成された多孔性または無孔の基板が例示できる。芯材が多孔性基板の場合、活物質は、芯材の空孔に充填されていてもよい。 As the negative electrode core material, known materials can be used, and examples thereof include a porous or non-porous substrate formed of stainless steel, nickel or an alloy thereof. When the core material is a porous substrate, the active material may be filled in the pores of the core material.
 負極ペーストには、通常、分散媒が含まれ、必要に応じて、負極に使用される公知の成分、例えば、導電剤、結着剤、および/または増粘剤などを添加してもよい。 The negative electrode paste usually contains a dispersion medium, and a known component used for the negative electrode, for example, a conductive agent, a binder, and / or a thickener may be added as necessary.
 負極は、例えば、芯材に負極ペーストを塗布した後、乾燥により分散媒を除去し、圧縮(または圧延)することにより形成できる。 The negative electrode can be formed, for example, by applying a negative electrode paste to the core, removing the dispersion medium by drying, and compressing (or rolling).
 分散媒としては、公知の媒体、例えば、水、有機媒体、またはこれらの混合媒体などが使用できる。 As the dispersion medium, a known medium such as water, an organic medium, or a mixed medium thereof can be used.
 導電剤としては、電子伝導性を有する材料であれば特に限定されない。例えば、黒鉛(天然黒鉛、人造黒鉛など)、カ-ボンブラック、導電性繊維、および/または有機導電性材料などが例示できる。 The conductive agent is not particularly limited as long as it is a material having electronic conductivity. Examples thereof include graphite (natural graphite, artificial graphite, etc.), carbon black, conductive fibers, and / or organic conductive materials.
 導電剤の量は、電極用合金粉末100質量部に対して、例えば、0.01~50質量部、好ましくは0.1~30質量部である。 The amount of the conductive agent is, for example, 0.01 to 50 parts by mass, preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
 導電剤は、負極ペーストに添加し、他の成分とともに混合して用いてもよい。また、電極用合金粉末の表面に、導電剤を予め被覆させてもよい。 The conductive agent may be added to the negative electrode paste and mixed with other components. The surface of the electrode alloy powder may be coated with a conductive agent in advance.
 結着剤としては、樹脂材料、例えば、スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料、ポリオレフィン樹脂、ポリフッ化ビニリデンなどのフッ素樹脂、および/またはアクリル樹脂(そのNaイオン架橋体も含む)などが例示できる。 As the binder, a resin material, for example, a rubber-like material such as styrene-butadiene copolymer rubber (SBR), a polyolefin resin, a fluororesin such as polyvinylidene fluoride, and / or an acrylic resin (including its Na ion crosslinked product) And the like.
 結着剤の量は、電極用合金粉末100質量部に対して、例えば、0.01~10質量部、好ましくは0.05~5質量部である。 The amount of the binder is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)などのセルロース誘導体、ポリビニルアルコール、および/またはポリエチレンオキサイドなどが挙げられる。 Examples of the thickener include cellulose derivatives such as carboxymethyl cellulose (CMC) and modified products thereof (including salts such as Na salt), polyvinyl alcohol, and / or polyethylene oxide.
 増粘剤の量は、電極用合金粉末100質量部に対して、例えば、0.01~10質量部、好ましくは0.05~5質量部である。 The amount of the thickener is, for example, 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the electrode alloy powder.
 (正極)
 正極は、芯材と、これに付着した活物質または活物質層とを含んでもよい。また、正極は、活物質粉末を焼結した電極であってもよい。
(Positive electrode)
The positive electrode may include a core material and an active material or an active material layer attached to the core material. The positive electrode may be an electrode obtained by sintering active material powder.
 正極は、例えば、芯材に少なくとも正極活物質を含む正極ペーストを付着させることにより形成できる。より具体的には、正極は、芯材に正極ペーストを塗布した後、乾燥により分散媒を除去し、圧縮(または圧延)することにより形成できる。 The positive electrode can be formed, for example, by attaching a positive electrode paste containing at least a positive electrode active material to the core material. More specifically, the positive electrode can be formed by applying a positive electrode paste to a core material, removing the dispersion medium by drying, and compressing (or rolling).
 正極芯材としては、公知のものが使用でき、ニッケル発泡体、および焼結ニッケル板などのニッケルまたはニッケル合金などで形成された多孔性基板が例示できる。 As the positive electrode core material, known materials can be used, and examples thereof include a nickel foam, and a porous substrate formed of nickel or a nickel alloy such as a sintered nickel plate.
 正極活物質としては、例えば、水酸化ニッケル、および/またはオキシ水酸化ニッケルなどのニッケル化合物が使用される。 As the positive electrode active material, for example, a nickel compound such as nickel hydroxide and / or nickel oxyhydroxide is used.
 正極ペーストには、通常、分散媒が含まれ、必要に応じて、正極に使用される公知の成分、例えば、導電剤、結着剤、および/または増粘剤などを添加してもよい。分散媒、導電剤、結着剤および増粘剤、ならびにこれらの量としては、それぞれ、負極ペーストの場合と同様のものまたは範囲から選択できる。導電剤としては、水酸化コバルト、および/またはγ型のオキシ水酸化コバルトなどの導電性のコバルト酸化物を用いてもよい。また、正極ペーストは、添加剤として、酸化亜鉛、および/または水酸化亜鉛などの金属化合物(酸化物、および/または水酸化物など)などを含んでもよい。 The positive electrode paste usually contains a dispersion medium, and a known component used for the positive electrode, such as a conductive agent, a binder, and / or a thickener, may be added as necessary. The dispersion medium, the conductive agent, the binder, the thickener, and the amounts thereof can be selected from the same or range as in the case of the negative electrode paste. As the conductive agent, conductive cobalt oxide such as cobalt hydroxide and / or γ-type cobalt oxyhydroxide may be used. Further, the positive electrode paste may contain, as an additive, a metal compound (oxide, and / or hydroxide) such as zinc oxide and / or zinc hydroxide.
 (セパレータ)
 セパレータとしては、アルカリ蓄電池に使用される公知のもの、例えば、微多孔膜、不織布、またはこれらの積層体などが使用できる。微多孔膜または不織布の材質としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、および/またはポリアミド樹脂などが例示できる。アルカリ電解液に対する耐分解性が高い点からは、ポリオレフィン樹脂製のセパレータを用いることが好ましい。
(Separator)
As a separator, the well-known thing used for an alkaline storage battery, for example, a microporous film, a nonwoven fabric, or these laminated bodies, etc. can be used. Examples of the material of the microporous film or the nonwoven fabric include polyolefin resins such as polyethylene and polypropylene, fluorine resins, and / or polyamide resins. From the viewpoint of high decomposition resistance to an alkaline electrolyte, it is preferable to use a separator made of polyolefin resin.
 ポリオレフィン樹脂などの疎水性の高い材料で形成されたセパレータには、親水化処理により、親水性基を導入しておくことが好ましい。親水化処理としては、コロナ放電処理、プラズマ処理、およびスルホン化処理などが例示できる。セパレータは、これらの親水化処理のうち一種の処理を行ったものでもよく、また、二種以上の処理を組み合わせて行ったものであってもよい。 It is preferable to introduce a hydrophilic group into a separator formed of a highly hydrophobic material such as a polyolefin resin by a hydrophilic treatment. Examples of the hydrophilic treatment include corona discharge treatment, plasma treatment, and sulfonation treatment. The separator may have been subjected to one kind of treatment among these hydrophilization treatments, or may be obtained by combining two or more kinds of treatments.
 セパレータは、少なくとも一部がスルホン化されていることが好ましい。セパレータ(樹脂製のセパレータなど)のスルホン化度は、例えば、1×10-3~4.3×10-3であってもよい。なお、セパレータ(樹脂製のセパレータなど)のスルホン化度は、セパレータ中に含まれる炭素原子に対する硫黄原子の比率で表される。 The separator is preferably at least partially sulfonated. The degree of sulfonation of a separator (such as a resin separator) may be, for example, 1 × 10 −3 to 4.3 × 10 −3 . The degree of sulfonation of a separator (such as a resin separator) is represented by the ratio of sulfur atoms to carbon atoms contained in the separator.
 セパレータの厚さは、例えば、10μm以上300μm以下の範囲から適宜選択できる。 The thickness of the separator can be appropriately selected from a range of 10 μm to 300 μm, for example.
 セパレータは、不織布構造を有することが好ましい。不織布構造を有するセパレータとしては、不織布、または不織布と微多孔膜との積層体が例示できる。 The separator preferably has a non-woven structure. Examples of the separator having a nonwoven fabric structure include a nonwoven fabric or a laminate of a nonwoven fabric and a microporous membrane.
 (アルカリ電解液)
 アルカリ電解液としては、例えば、アルカリを含む水溶液が使用される。アルカリとしては、水酸化リチウム、水酸化カリウム、および水酸化ナトリウムなどのアルカリ金属水酸化物が例示できる。これらは、一種を単独でまたは二種以上を組み合わせて使用できる。
(Alkaline electrolyte)
As the alkaline electrolyte, for example, an aqueous solution containing an alkali is used. Examples of the alkali include alkali metal hydroxides such as lithium hydroxide, potassium hydroxide, and sodium hydroxide. These can be used individually by 1 type or in combination of 2 or more types.
 電解液は、アルカリが解離したアニオンとカチオンとを含む。アニオンとしては、水酸化物イオンが好ましい。カチオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられる。電解液は、これらのカチオンを一種含んでもよく、二種以上含んでもよい。電解液には、解離していないアルカリが含まれていてもよい。 The electrolytic solution contains an anion and a cation from which alkali is dissociated. As the anion, a hydroxide ion is preferable. Examples of the cation include sodium ion, potassium ion, and lithium ion. The electrolytic solution may contain one or more of these cations. The electrolytic solution may contain an alkali that has not been dissociated.
 水素吸蔵合金の劣化抑制効果をさらに高めて、高温における寿命性能の低下を抑制する観点から、アルカリ電解液は、ナトリウムイオンを含むことが好ましい。アルカリ電解液は、ナトリウムイオンと、カリウムイオンおよび/またはリチウムイオンとを含んでもよい。ナトリウムイオンとカリウムイオンとを含むアルカリ電解液を用いると、水素吸蔵合金の劣化を抑制することで、高温における寿命性能の低下を抑制しながらも、高いイオン伝導性を確保できるため、低温環境下における放電性能をさらに高めることができる。 From the viewpoint of further enhancing the deterioration suppressing effect of the hydrogen storage alloy and suppressing the decrease in life performance at high temperatures, the alkaline electrolyte preferably contains sodium ions. The alkaline electrolyte may contain sodium ions and potassium ions and / or lithium ions. When alkaline electrolyte containing sodium ion and potassium ion is used, high ion conductivity can be secured while suppressing deterioration of life performance at high temperature by suppressing deterioration of hydrogen storage alloy. The discharge performance can be further improved.
 アルカリ電解液中のナトリウムイオンの濃度は、例えば、3.5mol/L以上であり、3.7mol/L以上が好ましく、4.0mol/L以上がさらに好ましい。ナトリウムイオン濃度がこのような範囲である場合、適度なイオン伝導性を確保できるとともに、水素吸蔵合金の劣化を抑制する効果がさらに高まる。アルカリ電解液中のナトリウムイオン濃度は、例えば、5.5mol/L以下であり、5.0mol/L以下が好ましい。ナトリウムイオン濃度がこのような範囲である場合、冷温環境下での放電性能の低下を抑制する効果がさらに高まる。これらの下限値と上限値とは任意に組み合わせることができる。なお、アルカリ電解液に未解離のナトリウムイオン源が含まれる場合、上記の濃度は、未解離のナトリウムイオン源と解離状態のナトリウムイオンとの濃度の合計とする。 The concentration of sodium ions in the alkaline electrolyte is, for example, 3.5 mol / L or more, preferably 3.7 mol / L or more, and more preferably 4.0 mol / L or more. When the sodium ion concentration is in such a range, moderate ion conductivity can be secured and the effect of suppressing the deterioration of the hydrogen storage alloy is further enhanced. The sodium ion concentration in the alkaline electrolyte is, for example, 5.5 mol / L or less, and preferably 5.0 mol / L or less. When the sodium ion concentration is in such a range, the effect of suppressing a decrease in discharge performance under a cold environment is further enhanced. These lower limit values and upper limit values can be arbitrarily combined. When the undissociated sodium ion source is included in the alkaline electrolyte, the above concentration is the sum of the concentrations of the undissociated sodium ion source and dissociated sodium ions.
 アルカリ電解液がナトリウムイオンとカリウムイオンとを含む場合、ナトリウムイオンの、カリウムイオンに対する濃度比(=Na/K)は、例えば、1.0以上であり、1.1以上が好ましい。Na/Kは、例えば、1.5以下であり、1.3以下がより好ましい。これらの下限値と上限値とは任意に組み合わせることができる。Na/Kがこのような範囲である場合、低温環境下における高い放電性能を確保しながらも、高温における高い寿命性能を確保することができる。なお、アルカリ電解液に未解離のカリウムイオン源が含まれる場合、カリウムイオンの濃度を、未解離のカリウムイオン源と解離状態のカリウムイオンとの濃度の合計とする。 When the alkaline electrolyte contains sodium ions and potassium ions, the concentration ratio of sodium ions to potassium ions (= Na / K) is, for example, 1.0 or more, and preferably 1.1 or more. Na / K is, for example, 1.5 or less, and more preferably 1.3 or less. These lower limit values and upper limit values can be arbitrarily combined. When Na / K is in such a range, it is possible to ensure high life performance at high temperatures while ensuring high discharge performance in a low temperature environment. When the undissociated potassium ion source is included in the alkaline electrolyte, the concentration of potassium ions is the sum of the concentrations of the undissociated potassium ion source and the dissociated potassium ions.
 アルカリ電解液の比重は、例えば、1.03~1.55、好ましくは1.11~1.32である。 The specific gravity of the alkaline electrolyte is, for example, 1.03 to 1.55, preferably 1.11 to 1.32.
 アルカリ蓄電池の構成を、図1を参照しながら以下に説明する。図1は、本開示の一実施形態に係るアルカリ蓄電池の構造を模式的に示す縦断面図である。アルカリ蓄電池は、負極端子を兼ねる有底円筒型の電池ケース4と、電池ケース4内に収容された電極群および図示しないアルカリ電解液とを含む。電極群では、負極1と、正極2と、これらの間に介在するセパレータ3とが、渦巻き状に巻回されている。電池ケース4の開口部には、絶縁ガスケット8を介して、安全弁6を備える封口板7が配置され、電池ケース4の開口端部が内側にかしめられることにより、アルカリ蓄電池が密閉されている。封口板7は、正極端子を兼ねており、正極リード9を介して、正極2と電気的に接続されている。 The configuration of the alkaline storage battery will be described below with reference to FIG. FIG. 1 is a longitudinal sectional view schematically showing the structure of an alkaline storage battery according to an embodiment of the present disclosure. The alkaline storage battery includes a bottomed cylindrical battery case 4 also serving as a negative electrode terminal, an electrode group housed in the battery case 4 and an alkaline electrolyte (not shown). In the electrode group, the negative electrode 1, the positive electrode 2, and the separator 3 interposed therebetween are spirally wound. A sealing plate 7 including a safety valve 6 is disposed in the opening of the battery case 4 via an insulating gasket 8, and the alkaline storage battery is hermetically sealed by caulking the opening end of the battery case 4 inward. The sealing plate 7 also serves as a positive electrode terminal, and is electrically connected to the positive electrode 2 via the positive electrode lead 9.
 このようなアルカリ蓄電池は、電極群を、電池ケース4内に収容し、アルカリ電解液を注液し、電池ケース4の開口部に絶縁ガスケット8を介して封口板7を配置し、電池ケース4の開口端部を、かしめ封口することにより得ることができる。このとき、電極群の負極1と、電池ケース4とは、電極群と電池ケース4の内底面との間に配置された負極集電板を介して電気的に接続させる。また、電極群の正極2と、封口板7とは、正極リード9を介して電気的に接続させる。 In such an alkaline storage battery, an electrode group is accommodated in a battery case 4, an alkaline electrolyte is injected, a sealing plate 7 is disposed in an opening of the battery case 4 via an insulating gasket 8, and the battery case 4 Can be obtained by caulking and sealing. At this time, the negative electrode 1 of the electrode group and the battery case 4 are electrically connected via a negative electrode current collector plate disposed between the electrode group and the inner bottom surface of the battery case 4. Further, the positive electrode 2 of the electrode group and the sealing plate 7 are electrically connected via the positive electrode lead 9.
 [実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
[Example]
Hereinafter, although this indication is explained concretely based on an example and a comparative example, this indication is not limited to the following examples.
 実施例1~7および比較例1~8
 (1)原料粉末の作製
 表1に示す各元素の単体を、表1に示す係数比となるような割合で混合し、高周波溶解炉で溶融した。溶融した金属を、鋳型へ流し込み、インゴットを作製した。得られたインゴットを、アルゴン雰囲気下、1060℃で10時間加熱した。加熱後のインゴットを、粗粒子に粉砕した。得られた粗粒子を、湿式ボールミルを用いて水の存在下で粉砕し、湿潤状態でメッシュ径が75μmの篩でふるい、平均粒子径20μmの水素吸蔵合金粒子を含む原料粉末を得た。
Examples 1 to 7 and Comparative Examples 1 to 8
(1) Preparation of raw material powder The simple substance of each element shown in Table 1 was mixed in the ratio which becomes a coefficient ratio shown in Table 1, and it fuse | melted with the high frequency melting furnace. The molten metal was poured into a mold to produce an ingot. The obtained ingot was heated at 1060 ° C. for 10 hours under an argon atmosphere. The heated ingot was pulverized into coarse particles. The obtained coarse particles were pulverized in the presence of water using a wet ball mill and sieved with a sieve having a mesh size of 75 μm in a wet state to obtain a raw material powder containing hydrogen storage alloy particles having an average particle size of 20 μm.
 (2)電極用合金粉末の作製
 上記(1)で得られた原料粉末と、水酸化ナトリウムを40質量%の濃度で含む温度が100℃のアルカリ水溶液とを混合し、50分間撹拌を続けた。得られた粉末を回収し、温水で洗浄し、脱水後、乾燥した。洗浄は、使用後の温水のpHが9以下になるまで行った。その結果、Ni凝集部を有する電極用合金粉末を得た。電極用合金粉末の水素吸蔵合金は、組成式:L1-ααNiで表すことができる。水素吸蔵合金の結晶構造をX線回折により確認したところ、AB3型の結晶構造を有することが確認された。
(2) Production of electrode alloy powder The raw material powder obtained in (1) above was mixed with an aqueous alkali solution containing 100% by mass of sodium hydroxide at a concentration of 40% by mass, and stirring was continued for 50 minutes. . The obtained powder was collected, washed with warm water, dehydrated and dried. Washing was performed until the pH of the hot water after use was 9 or less. As a result, an electrode alloy powder having a Ni agglomerated part was obtained. Hydrogen storage alloy electrode alloy powder composition formula can be expressed by L 1-α E α Ni x M y. When the crystal structure of the hydrogen storage alloy was confirmed by X-ray diffraction, it was confirmed that it had an AB 3 type crystal structure.
 (3)負極の作製
 上記(2)で得られた電極用合金粉末100質量部に対して、CMC(エーテル化度0.7、重合度1600)0.15質量部、アセチレンブラック0.3質量部およびSBR0.7質量部を加え、さらに水を添加して練合することにより、負極ペーストを調製した。得られた負極ペーストを、ニッケルメッキを施した鉄製パンチングメタル(厚み60μm、孔径1mm、開孔率42%)からなる芯材の両面に塗布した。ペーストの塗膜は、乾燥後、芯材とともにローラでプレスした。こうして、厚み0.4mm、幅35mm、容量2200mAhの負極を得た。負極の長手方向に沿う一端部には、芯材の露出部を設けた。
(3) Production of negative electrode 0.15 parts by mass of CMC (degree of etherification 0.7, degree of polymerization 1600), 0.3 parts by mass of acetylene black with respect to 100 parts by mass of the electrode alloy powder obtained in (2) above And 0.7 parts by mass of SBR were added, and water was further added and kneaded to prepare a negative electrode paste. The obtained negative electrode paste was applied to both surfaces of a core material made of nickel-plated iron punching metal (thickness 60 μm, hole diameter 1 mm, hole area ratio 42%). The coating film of the paste was pressed with a roller together with the core material after drying. Thus, a negative electrode having a thickness of 0.4 mm, a width of 35 mm, and a capacity of 2200 mAh was obtained. An exposed portion of the core material was provided at one end portion along the longitudinal direction of the negative electrode.
 (4)正極の作製
 多孔性焼結基板からなる正極芯材に、正極合剤を充填させて得られた容量1500mAhの焼結式正極を準備した。正極合剤は、約90質量部のNi(OH)2(正極活物質)、添加剤として約6質量部のZn(OH)2、および導電剤として約4質量部のCo(OH)2を含む。正極芯材の長手方向に沿う一方の端部には、幅35mmの活物質を保持しない芯材の露出部を設けた。
(4) Production of positive electrode A sintered positive electrode having a capacity of 1500 mAh obtained by filling a positive electrode core material composed of a porous sintered substrate with a positive electrode mixture was prepared. The positive electrode mixture comprises about 90 parts by mass of Ni (OH) 2 (positive electrode active material), about 6 parts by mass of Zn (OH) 2 as an additive, and about 4 parts by mass of Co (OH) 2 as a conductive agent. Including. An exposed portion of the core material that does not hold an active material having a width of 35 mm was provided at one end portion along the longitudinal direction of the positive electrode core material.
 (5)アルカリ蓄電池の作製
 上記で得られた負極および正極を用いて、図1に示すような4/5Aサイズで公称容量1500mAhのアルカリ蓄電池(ニッケル水素蓄電池)を作製した。具体的には、正極2と負極1とを、セパレータ3を介して捲回し、円柱状の極板群を作製した。極板群では、正極芯材の露出部と、負極芯材の露出部とを、それぞれ反対側の端面に露出させた。セパレータ3には、スルホン化処理したポリプロピレン製の不織布(厚み100μm)を用いた。正極芯材が露出する極板群の端面には正極リード9を溶接した。
(5) Preparation of alkaline storage battery Using the negative electrode and positive electrode obtained above, an alkaline storage battery (nickel metal hydride storage battery) having a nominal capacity of 1500 mAh and a size of 4 / 5A as shown in FIG. 1 was prepared. Specifically, the positive electrode 2 and the negative electrode 1 were wound through a separator 3 to produce a cylindrical electrode plate group. In the electrode plate group, the exposed portion of the positive electrode core material and the exposed portion of the negative electrode core material were exposed on the opposite end surfaces. For the separator 3, a sulfonated polypropylene nonwoven fabric (thickness: 100 μm) was used. A positive electrode lead 9 was welded to the end face of the electrode plate group from which the positive electrode core material was exposed.
 負極芯材が露出する極板群の端面には、負極集電板を溶接した。正極リード9を介して封口板7と正極2とを電気的に接続させた。その後、負極集電板を下方にして、極板群を円筒形の有底缶からなる電池ケース4に収容した。負極集電板と接続された負極リードを、電池ケース4の底部と溶接した。電池ケース4に電解液を注液した後、周縁にガスケット8を具備する封口板7で、電池ケース4の開口部を封口し、アルカリ蓄電池を完成させた。 The negative electrode current collector plate was welded to the end face of the electrode plate group where the negative electrode core material was exposed. The sealing plate 7 and the positive electrode 2 were electrically connected through the positive electrode lead 9. Thereafter, the negative electrode current collector plate was turned downward, and the electrode plate group was accommodated in a battery case 4 formed of a cylindrical bottomed can. The negative electrode lead connected to the negative electrode current collector plate was welded to the bottom of the battery case 4. After the electrolyte solution was injected into the battery case 4, the opening of the battery case 4 was sealed with a sealing plate 7 having a gasket 8 on the periphery, thereby completing an alkaline storage battery.
 なお、電解液には、アルカリとして水酸化ナトリウムおよび水酸化カリウムを水に溶解させたアルカリ水溶液(比重:1.23)を用いた。アルカリ水溶液中のナトリウムイオン濃度は、4.0mol/Lであり、カリウムイオンに対するナトリウムイオンの濃度(=Na/K)は、1.10とした。 Note that an alkaline aqueous solution (specific gravity: 1.23) in which sodium hydroxide and potassium hydroxide were dissolved in water as an alkali was used as the electrolytic solution. The sodium ion concentration in the alkaline aqueous solution was 4.0 mol / L, and the concentration of sodium ions with respect to potassium ions (= Na / K) was 1.10.
 (6)評価
 アルカリ蓄電池は、充放電(温度:20℃、充電条件:150mAで16時間、放電条件:300mAで5時間)することにより活性化させた後、以下の(a)~(d)の評価を行った。
(6) Evaluation After the alkaline storage battery was activated by charging / discharging (temperature: 20 ° C., charging condition: 150 mA for 16 hours, discharging condition: 300 mA for 5 hours), the following (a) to (d) Was evaluated.
 なお、各評価結果は、実施例1の評価結果を100としたときの比率(%)で表す。(a)低温放電性能および(b)寿命性能は、それぞれ、電池の内部抵抗に基づいて評価しており、値が小さい方が性能に優れることを意味する。一方、(c)高温充電効率および(d)常温放電容量は、値が大きいほど性能が高いことを示す。 In addition, each evaluation result is represented by a ratio (%) when the evaluation result of Example 1 is set to 100. (A) Low temperature discharge performance and (b) lifetime performance are evaluated based on the internal resistance of the battery, respectively, and a smaller value means better performance. On the other hand, (c) high temperature charging efficiency and (d) room temperature discharge capacity indicate that the larger the value, the higher the performance.
 (a)低温環境下における放電性能(低温放電性能)
 低温環境下における放電性能の指標として、電池の内部抵抗を用い、以下の手順で評価を行った。
(A) Discharge performance in a low temperature environment (low temperature discharge performance)
Evaluation was performed according to the following procedure using the internal resistance of the battery as an index of discharge performance in a low temperature environment.
 20℃雰囲気下、300mAの電流で、電圧が1.0Vに達するまで放電し、次いで、150mAの電流で16時間充電することにより、放電および充電試験を行った。 A discharge and charge test was performed by discharging at a current of 300 mA in a 20 ° C. atmosphere until the voltage reached 1.0 V, and then charging for 16 hours at a current of 150 mA.
 その後、-10℃雰囲気下で、以下の(i)~(iv)のそれぞれの条件で、パルス充放電を行い、放電10秒後の電圧降下から内部抵抗を算出した。
(i)放電:750mAの電流で20秒パルス放電し、5分放電を休止、充電:750mAの電流で20秒パルス充電し、5分充電を休止。
(ii)放電:1500mAの電流で20秒パルス放電し、5分放電を休止、充電:1500mAの電流で20秒パルス充電し、5分充電を休止。
(iii)放電:3000mAの電流で20秒パルス放電し、5分放電を休止、充電:3000mAの電流で20秒パルス充電し、5分充電を休止。
(iv)放電:4500mAの電流で20秒パルス放電し、5分放電を休止、充電:4500mAの電流で20秒パルス充電し、5分充電を休止。
Thereafter, pulse charge / discharge was performed under the following conditions (i) to (iv) in an atmosphere of −10 ° C., and the internal resistance was calculated from the voltage drop after 10 seconds of discharge.
(I) Discharge: Pulse discharge for 20 seconds at a current of 750 mA, pause for 5 minutes, charge: Pulse charge for 20 seconds at a current of 750 mA, and pause for 5 minutes.
(Ii) Discharge: pulse discharge for 20 seconds at a current of 1500 mA, pause for 5 minutes of discharge, charge: pulse charge for 20 seconds at a current of 1500 mA, and pause for 5 minutes of charge.
(Iii) Discharge: Pulse discharge for 20 seconds at a current of 3000 mA, pause for 5 minutes, Charge: Pulse charge for 20 seconds at a current of 3000 mA, and pause for 5 minutes.
(Iv) Discharge: pulse discharge for 20 seconds at a current of 4500 mA, pause for 5 minutes, charge: pulse charge for 20 seconds at a current of 4500 mA, pause for 5 minutes.
 これらの条件の4つの電流値と放電10秒後の電圧降下から内部抵抗を算出した。 The internal resistance was calculated from the four current values under these conditions and the voltage drop after 10 seconds of discharge.
 (b)寿命性能
 70℃雰囲気下、以下に示す条件で、トリクル充電を行った後、放電を実施した。
(B) Lifetime performance Trickle charging was performed under the following conditions in an atmosphere at 70 ° C., and then discharging was performed.
 トリクル充電:75mAの電流で60日間充電。 Trickle charge: Charge for 60 days at 75 mA current.
 放電:300mAの電流で電圧が1.0Vに達するまで放電。 Discharge: Discharge until the voltage reaches 1.0 V at a current of 300 mA.
 このトリクル充電と放電とを3回繰り返し、寿命試験とした。その後、上記(a)と同様の(i)~(iv)の条件で内部抵抗試験を実施し、寿命試験後の内部抵抗を求めた。 This trickle charge and discharge were repeated three times to make a life test. Thereafter, an internal resistance test was performed under the same conditions (i) to (iv) as in (a) above, and the internal resistance after the life test was determined.
 (c)高温充電効率
 以下に示す常温充放電試験と高温充電試験を実施し、常温充放電試験の放電容量に対する高温充電試験の放電容量の比を高温充電効率として求めた。
(C) High temperature charge efficiency The room temperature charge / discharge test and the high temperature charge test shown below were performed, and the ratio of the discharge capacity of the high temperature charge test to the discharge capacity of the room temperature charge / discharge test was determined as the high temperature charge efficiency.
 (常温充放電試験)
 20℃雰囲気下、以下の条件で充放電を行った。
(Normal temperature charge / discharge test)
Charge and discharge were performed under the following conditions in an atmosphere of 20 ° C.
 充電:20℃雰囲気下、150mAの電流で16時間充電し、その後1時間放置。 Charging: Charging at a current of 150 mA for 16 hours in an atmosphere at 20 ° C., then left for 1 hour.
 放電:20℃雰囲気下、300mAの電流で電圧が1.0Vに達するまで放電。 Discharge: Discharge at 20 ° C atmosphere at 300 mA current until the voltage reaches 1.0V.
 (高温充電試験)
 充電:60℃雰囲気下、150mAの電流で16時間充電し、その後20℃雰囲気下で3時間放置。
(High temperature charge test)
Charging: Charging for 16 hours at a current of 150 mA in a 60 ° C. atmosphere, and then leaving it for 3 hours in a 20 ° C. atmosphere.
 放電:20℃雰囲気下、300mAの電流で電圧が1.0Vに達するまで放電。 Discharge: Discharge at 20 ° C atmosphere at 300 mA current until the voltage reaches 1.0V.
 (d)常温放電容量
 上記(c)で示した常温充放電試験の放電容量を常温放電容量とした。
(D) Room temperature discharge capacity The discharge capacity of the room temperature charge / discharge test shown in (c) above was defined as room temperature discharge capacity.
 比較例9
 実施例2の(1)で得られた原料粉末をそのまま用いて、(3)により負極を作製した。原料粉末の水素吸蔵合金は、組成式:L1-ααNiで表すことができ、Ni凝集部を有さない。水素吸蔵合金の結晶構造をX線回折により確認したところ、AB3型の結晶構造を有することが確認された。
Comparative Example 9
Using the raw material powder obtained in (1) of Example 2 as it was, a negative electrode was produced in (3). Hydrogen storage alloy material powder composition formula: L 1-alpha can be represented by E alpha Ni x M y, no Ni agglomeration unit. When the crystal structure of the hydrogen storage alloy was confirmed by X-ray diffraction, it was confirmed that it had an AB 3 type crystal structure.
 得られた負極を用いる以外は、実施例1と同様にアルカリ蓄電池を作製し、評価を行った。 Except for using the obtained negative electrode, an alkaline storage battery was prepared and evaluated in the same manner as in Example 1.
 比較例10~13
 実施例1の(1)において、表1に示す各元素の単体を、表1に示す係数比となるような割合で混合し、実施例1の場合と同様に原料粉末を得た。得られた原料粉末をそのまま用いて、(3)により負極を作製した。原料粉末の水素吸蔵合金は、組成式:L1-ααNiで表すことができ、Ni凝集部を有さない。
Comparative Examples 10-13
In Example 1 (1), single elements of each element shown in Table 1 were mixed at a ratio such that the coefficient ratio shown in Table 1 was obtained, and raw material powder was obtained in the same manner as in Example 1. Using the obtained raw material powder as it was, a negative electrode was produced according to (3). Hydrogen storage alloy material powder composition formula: L 1-alpha can be represented by E alpha Ni x M y, no Ni agglomeration unit.
 得られた負極を用いる以外は、実施例1と同様にアルカリ蓄電池を作製し、評価を行った。 Except for using the obtained negative electrode, an alkaline storage battery was prepared and evaluated in the same manner as in Example 1.
 実施例1~7および比較例1~13の結果を水素吸蔵合金の組成とともに表1に示す。実施例1~7は、A1~A7であり、比較例1~13は、B1~B13である。 Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 to 13 together with the composition of the hydrogen storage alloy. Examples 1 to 7 are A1 to A7, and Comparative Examples 1 to 13 are B1 to B13.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、比較例では、低温放電性能および/または寿命性能が低いのに対し、実施例では、低温放電性能および寿命性能を両立できている。 As shown in Table 1, the low temperature discharge performance and / or the life performance are low in the comparative example, whereas the low temperature discharge performance and the life performance are compatible in the embodiment.
 AgおよびSnを用いないB1と比べたとき、Snを用いないB3~B5における寿命性能の向上効果は、16~22%であり、Agを用いないB6~B8における寿命性能の向上効果は、2~12%である。これらの結果からは、AgとSnとを用いたときの寿命性能の向上効果は、18~34%程度と類推される。しかし、実際にA1~A7では、B3~B5と、B6~B8とから類推されるよりも遙かに(B1に比べて、45~52%も)寿命性能が向上している。また、AgおよびSnを用いる場合でも、Ni凝集部を有さない場合には、低温放電性能および寿命性能ともに大きく低下している。従来の合金組成であるB10~B13でも、低温放電性能および寿命性能とも低くなっている。 Compared with B1 that does not use Ag and Sn, the improvement effect of the life performance in B3 to B5 that does not use Sn is 16 to 22%, and the improvement effect of the life performance in B6 to B8 that does not use Ag is 2%. ~ 12%. From these results, it is estimated that the effect of improving the life performance when Ag and Sn are used is about 18 to 34%. However, in A1 to A7, the life performance is far improved (as much as 45 to 52% compared to B1) compared with B3 to B5 and B6 to B8. Even when Ag and Sn are used, both the low-temperature discharge performance and the life performance are greatly deteriorated when there is no Ni aggregation portion. Even in conventional alloy compositions B10 to B13, both the low temperature discharge performance and the life performance are low.
 実施例8~10
 表2に示すように、Niの比xを変更することで、x+y(B/A比)を変更したこと以外は、実施例2と同様に原料粉末を得た。水素吸蔵合金の結晶構造をX線回折により確認したところ、AB3型の結晶構造を有することが確認された。得られた原料粉末を用いたこと以外は、実施例2と同様にして負極およびアルカリ蓄電池を作製し、評価を行った。
Examples 8-10
As shown in Table 2, a raw material powder was obtained in the same manner as in Example 2 except that x + y (B / A ratio) was changed by changing the Ni ratio x. When the crystal structure of the hydrogen storage alloy was confirmed by X-ray diffraction, it was confirmed that it had an AB 3 type crystal structure. A negative electrode and an alkaline storage battery were produced and evaluated in the same manner as in Example 2 except that the obtained raw material powder was used.
 実施例8~10の結果を水素吸蔵合金の組成とともに表2に示す。実施例8~10は、A8~A10である。表2には、A1およびA2の結果も合わせて示す。 The results of Examples 8 to 10 are shown in Table 2 together with the composition of the hydrogen storage alloy. Examples 8 to 10 are A8 to A10. Table 2 also shows the results of A1 and A2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、B/A比(x+y)が3.10の場合に比べて、3.10より大きい場合が低温放電性能および寿命性能が高く、高温放電容量も高くなった。B/A比は、3.20以上が好ましい。また、B/A比が3.90の場合に比べて、3.90より小さい場合が、高温放電容量が高くなった。B/A比は3.80以下が好ましい。 As shown in Table 2, when the B / A ratio (x + y) is greater than 3.10, the case where the B / A ratio is greater than 3.10 has higher low temperature discharge performance and life performance, and the high temperature discharge capacity is also higher. The B / A ratio is preferably 3.20 or more. In addition, the high temperature discharge capacity was higher when the B / A ratio was smaller than 3.90, compared to when the B / A ratio was 3.90. The B / A ratio is preferably 3.80 or less.
 実施例11~14
 アルカリ電解液中のナトリウムイオンの濃度およびNa/K比を表3に示すように変更した以外は、実施例2と同様にアルカリ蓄電池を作製し、評価を行った。
Examples 11-14
An alkaline storage battery was produced and evaluated in the same manner as in Example 2 except that the sodium ion concentration and the Na / K ratio in the alkaline electrolyte were changed as shown in Table 3.
 実施例11~14の結果を表3に示す。実施例11~14は、A11~A14である。表3には、A1およびA2の結果も合わせて示す。 The results of Examples 11 to 14 are shown in Table 3. Examples 11 to 14 are A11 to A14. Table 3 also shows the results of A1 and A2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、アルカリ電解液中のナトリウムイオン濃度および/またはNa/K比が大きくなると、高温充電効率および高温放電容量が向上する。ナトリウムイオン濃度は、4.0mol/L以上が好ましい。また、Na/K比は、1.1以上であることが好ましい。 As shown in Table 3, when the sodium ion concentration and / or the Na / K ratio in the alkaline electrolyte is increased, the high temperature charge efficiency and the high temperature discharge capacity are improved. The sodium ion concentration is preferably 4.0 mol / L or more. Moreover, it is preferable that Na / K ratio is 1.1 or more.
 本開示に係る電極用合金粉末、アルカリ蓄電池用負極およびアルカリ蓄電池は、低温環境下における放電性能に優れるとともに、寿命性能にも優れる。そのため、例えば、各種電子機器、輸送機器、蓄電機器などの電源に使用したり、および/または補助電源または非常電源に使用したりするのに適している。 The electrode alloy powder, the negative electrode for an alkaline storage battery, and the alkaline storage battery according to the present disclosure are excellent in discharge performance in a low temperature environment and in life performance. Therefore, for example, it is suitable for use as a power source for various electronic devices, transportation devices, power storage devices, and / or for an auxiliary power source or an emergency power source.
 1 負極
 2 正極
 3 セパレータ
 4 電池ケース
 6 安全弁
 7 封口板
 8 絶縁ガスケット
 9 正極集電板
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Battery case 6 Safety valve 7 Sealing plate 8 Insulating gasket 9 Positive electrode current collecting plate

Claims (11)

  1.  水素吸蔵合金の粒子を含み、
     前記粒子は、ニッケルが凝集した凝集部を備え、
     前記水素吸蔵合金は、元素L、元素E、Ni、および元素Mを含み、
     前記元素Lは、周期表第3族元素であり、
     前記元素Eは、周期表第2族元素であり、
     前記元素Mは、周期表第4族~第14族のそれぞれの第4周期~第6周期の元素(ただし、Niを除く)、およびAlからなる群より選択される少なくとも一種であり、かつ、AgとSnとを含み、
     前記元素Lと前記元素Eの合計に対する、Niの比xと、前記元素Mの比yとは、2.50≦x+y≦4.50を充足する、電極用合金粉末。
    Including particles of hydrogen storage alloy,
    The particles include an agglomerated part in which nickel is agglomerated,
    The hydrogen storage alloy includes element L, element E, Ni, and element M,
    The element L is a periodic table group 3 element,
    The element E is a periodic table group 2 element,
    The element M is at least one selected from the group consisting of elements of the 4th to 6th periods (except for Ni) of the 4th to 14th groups of the periodic table, and Al, and Including Ag and Sn,
    The alloy powder for an electrode, wherein the ratio x of Ni and the ratio y of the element M with respect to the total of the element L and the element E satisfies 2.50 ≦ x + y ≦ 4.50.
  2.  前記xおよび前記yは、3.20≦x+yを充足する、請求項1に記載の電極用合金粉末。 2. The electrode alloy powder according to claim 1, wherein the x and the y satisfy 3.20 ≦ x + y.
  3.  前記xおよび前記yは、x+y≦3.80を充足する、請求項1または2に記載の電極用合金粉末。 The alloy powder for electrodes according to claim 1 or 2, wherein x and y satisfy x + y≤3.80.
  4.  前記元素Lと前記元素Eの合計に対する、Agの比y1は、0.010以上0.040以下である、請求項1~3のいずれか1項に記載の電極用合金粉末。 The alloy powder for an electrode according to any one of claims 1 to 3, wherein a ratio y1 of Ag with respect to a total of the element L and the element E is 0.010 or more and 0.040 or less.
  5.  前記元素Lと前記元素Eの合計に対する、Snの比は、y2であり、
     y1に対するy2の比は、0.40以上2.4以下である、請求項4に記載の電極用合金粉末。
    The ratio of Sn to the total of the element L and the element E is y2,
    The electrode alloy powder according to claim 4, wherein a ratio of y2 to y1 is 0.40 or more and 2.4 or less.
  6.  前記元素Eは、少なくともMgを含む、請求項1~5のいずれか1項に記載の電極用合金粉末。 6. The electrode alloy powder according to claim 1, wherein the element E includes at least Mg.
  7.  前記元素Mは、少なくとも、Ag、SnおよびAlを含む、請求項1~6のいずれか1項に記載の電極用合金粉末。 The electrode alloy powder according to any one of claims 1 to 6, wherein the element M contains at least Ag, Sn, and Al.
  8.  請求項1~7のいずれか1項に記載の電極用合金粉末を、負極活物質として含むアルカリ蓄電池用負極。 A negative electrode for an alkaline storage battery comprising the electrode alloy powder according to any one of claims 1 to 7 as a negative electrode active material.
  9.  正極と、請求項8に記載の負極と、前記正極および前記負極の間に介在するセパレータと、アルカリ電解液とを具備する、アルカリ蓄電池。 An alkaline storage battery comprising: a positive electrode; a negative electrode according to claim 8; a separator interposed between the positive electrode and the negative electrode; and an alkaline electrolyte.
  10.  前記アルカリ電解液は、ナトリウムイオンを含み、
     前記アルカリ電解液中の前記ナトリウムイオンの濃度は4.0mol/L以上である、請求項9に記載のアルカリ蓄電池。
    The alkaline electrolyte contains sodium ions,
    The alkaline storage battery according to claim 9, wherein the concentration of the sodium ions in the alkaline electrolyte is 4.0 mol / L or more.
  11.  前記アルカリ電解液は、ナトリウムイオンとカリウムイオンとを含み、
     前記ナトリウムイオンの濃度の、前記カリウムイオンの濃度に対する比は、1.1以上である、請求項9または10に記載のアルカリ蓄電池。
    The alkaline electrolyte contains sodium ions and potassium ions,
    11. The alkaline storage battery according to claim 9, wherein a ratio of the sodium ion concentration to the potassium ion concentration is 1.1 or more.
PCT/JP2018/036628 2018-03-16 2018-10-01 Alloy powder for electrode, and alkaline storage battery negative electrode and alkaline storage battery using same WO2019176148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-049791 2018-03-16
JP2018049791A JP2021082376A (en) 2018-03-16 2018-03-16 Alloy powder for electrode, alkaline storage battery negative electrode using the same, and alkaline storage battery

Publications (1)

Publication Number Publication Date
WO2019176148A1 true WO2019176148A1 (en) 2019-09-19

Family

ID=67907550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036628 WO2019176148A1 (en) 2018-03-16 2018-10-01 Alloy powder for electrode, and alkaline storage battery negative electrode and alkaline storage battery using same

Country Status (2)

Country Link
JP (1) JP2021082376A (en)
WO (1) WO2019176148A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237571A (en) * 1997-02-26 1998-09-08 Toshiba Corp Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2014067604A (en) * 2012-09-26 2014-04-17 Panasonic Corp Alloy powder for electrode use, alkali storage battery negative electrode using the same, and alkali storage battery
JP2014146557A (en) * 2013-01-30 2014-08-14 Fdk Twicell Co Ltd Nickel hydrogen secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237571A (en) * 1997-02-26 1998-09-08 Toshiba Corp Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2014067604A (en) * 2012-09-26 2014-04-17 Panasonic Corp Alloy powder for electrode use, alkali storage battery negative electrode using the same, and alkali storage battery
JP2014146557A (en) * 2013-01-30 2014-08-14 Fdk Twicell Co Ltd Nickel hydrogen secondary battery

Also Published As

Publication number Publication date
JP2021082376A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP5909683B2 (en) Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
JP6152952B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP5861099B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
WO2019176148A1 (en) Alloy powder for electrode, and alkaline storage battery negative electrode and alkaline storage battery using same
WO2016157669A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
WO2015136836A1 (en) Hydrogen-absorbing alloy, alloy powder for electrode, negative electrode for alkaline storage battery, and alkaline storage battery
JP2004127549A (en) Nickel-hydrogen storage battery
US20170200946A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
WO2016157672A1 (en) Alloy powder for electrodes, negative electrode for nickel-hydrogen storage batteries using same and nickel-hydrogen storage battery
JP5979542B2 (en) Alloy powder for electrode, negative electrode for alkaline storage battery and alkaline storage battery using the same
JP5991525B2 (en) Alkaline storage battery
JPH10237569A (en) Hydrogen storate alloy for battery, its production and nickel-hydrogen secondary battery
JP2008269888A (en) Nickel-hydrogen storage battery
JPH08180861A (en) Hydrogen storage alloy for battery, its manufacture and nickel-hydrogen secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH1060565A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH10102170A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH09270255A (en) Hydrogen storage alloy for battery and nickel hydrogen secondary battery
JPH10106621A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH10237568A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JP2014053135A (en) Method of manufacturing alloy powder for electrode, alloy powder for electrode, negative electrode for alkali storage battery and alkali storage battery
JPH10237571A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH0997608A (en) Hydrogen storage alloy for battery, manufacture thereof, and nickel hydrogen secondary battery
JPH10237570A (en) Hydrogen storage alloy, its production and nickel-hydrogen storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP