WO2019176107A1 - Induction motor rotor and induction motor - Google Patents

Induction motor rotor and induction motor Download PDF

Info

Publication number
WO2019176107A1
WO2019176107A1 PCT/JP2018/010603 JP2018010603W WO2019176107A1 WO 2019176107 A1 WO2019176107 A1 WO 2019176107A1 JP 2018010603 W JP2018010603 W JP 2018010603W WO 2019176107 A1 WO2019176107 A1 WO 2019176107A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
induction motor
conductor bar
rotor core
insulating
Prior art date
Application number
PCT/JP2018/010603
Other languages
French (fr)
Japanese (ja)
Inventor
樹 小野
仁明 大熊
宏紀 立木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880091130.7A priority Critical patent/CN111903037B/en
Priority to PCT/JP2018/010603 priority patent/WO2019176107A1/en
Priority to JP2019547167A priority patent/JP6667731B2/en
Publication of WO2019176107A1 publication Critical patent/WO2019176107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots

Definitions

  • the present invention relates to an induction motor rotor that is an induction type rotating electric machine and an induction motor including the rotor.
  • Induction type rotating electrical machines are often used because they have the advantages of a robust structure and a lower manufacturing cost than a synchronous rotating electrical machine and can be started directly connected to a power source.
  • the induction type rotating electrical machine may be referred to as an induction machine.
  • a rotating magnetic field is generated when an alternating current flows through the winding of the stator, and this rotating magnetic field acts on the secondary conductor of the rotor, thereby generating an electromotive force on the secondary conductor of the rotor.
  • Current flows.
  • the secondary conductor of the rotor is composed of an end ring provided on the rotor core and a rotor bar inserted into the rotor core.
  • an electromagnetic force based on Fleming's left-hand rule is generated between the current and the rotating magnetic field, the secondary conductor is pulled in the direction of the rotating magnetic field, and the rotor rotates.
  • the rotational efficiency of the rotor can be increased by reducing the resistance of the path of the current flowing through the secondary conductor.
  • the resistance of the secondary conductor may be lowered and the rotation efficiency may be improved.
  • Rotational efficiency of the induction machine can also be improved by reducing cross current loss caused by unnecessary current flowing through the rotor.
  • Cross current loss means that when a skew is applied to the secondary conductor, a potential difference between the secondary conductor and the rotor core causes a current that should not flow between the secondary conductor and the rotor core. It is a loss caused by flowing.
  • an insulating agent is immersed in a wall surface forming a slot provided in a rotor core, and then the insulating agent is cured to be applied to the wall surface.
  • a method of providing an insulating layer is conceivable. By providing the insulating layer, the insulation resistance between the wall forming the slot and the rotor bar is increased, current flowing from the rotor bar toward the rotor core is suppressed, and cross current loss is reduced.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a rotor of an induction motor that can improve production efficiency while suppressing a decrease in rotational efficiency due to crossflow loss.
  • the rotor of the induction motor of the present invention includes a rotor core and a conductor bar provided in each of a plurality of slots formed in the rotor core.
  • a rotor of an induction motor is provided at an end portion in the axial direction of a rotor core, and an insulating member provided between an end ring that electrically connects a plurality of conductor bars to each other, and a wall surface that forms a slot and the conductor bars.
  • a nonmagnetic conductor material provided between the wall surface and the insulating member.
  • the rotor of the induction motor according to the present invention has an effect that production efficiency can be improved while suppressing a decrease in rotational efficiency due to cross current loss.
  • the perspective view of the rotor of the induction motor shown in FIG. 1 is a perspective view of a rotor core of the induction motor shown in FIG.
  • the figure which shows the state in inserting the insulation sheet in the slot of the rotor core shown in FIG. The figure which expands and shows the insulating sheet inserted in the slot of the rotor core shown in FIG.
  • FIG. FIG. 1 is a diagram showing the structure of an induction motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of the rotor of the induction motor shown in FIG.
  • FIG. 3 is a perspective view of the rotor core of the induction motor shown in FIG.
  • FIG. 1 shows a one-side cross section of the induction motor 100 according to the first embodiment.
  • the axial direction that is the direction in which the central axis AX of the rotor core 61 extends is the direction indicated by the arrow D1 in FIG.
  • the circumferential direction of the central axis AX of the rotor core 61 is the direction indicated by the arrow D2 in FIG.
  • the induction motor 100 is provided on a bottomed cylindrical frame 11, an end plate 12 that closes an opening of the frame 11, an annular stator 10 that is fixed to the inner peripheral surface of the frame 11, and a bottom of the frame 11. And a bearing 2 provided on the end plate 12.
  • the housing 3 is constituted by the frame 11 and the end plate 12.
  • the induction motor 100 also includes a cylindrical rotor 60 provided inside the stator 10 and a shaft 70 that is rotatably supported by the bearing 1 and the bearing 2 and provided inside the rotor 60.
  • the rotor 60 includes a cylindrical rotor core 61 configured by laminating a plurality of steel plates in the axial direction.
  • a plurality of slots 62 are formed in the rotor core 61.
  • the plurality of slots 62 are formed side by side in the circumferential direction near the outer peripheral surface of the rotor core 61, and each of the plurality of slots 62 extends in the axial direction and penetrates from one end portion of the rotor core 61 to the other end portion.
  • Each of the plurality of slots 62 is skewed in the circumferential direction.
  • the rotor 60 includes a conductor bar 63 provided inside the plurality of slots 62 and an end ring 64 that is an end-ring ring that is provided at each of both axial ends of the rotor core 61 and connects the plurality of conductor bars 63. And a die-cast member 65 that is a nonmagnetic conductor material.
  • Examples of the material of the conductor bar 63 include nonmagnetic conductor materials such as aluminum, aluminum alloy, copper, and copper alloy.
  • FIGS. 4 is a view showing a state in which an insulating sheet is being inserted into the slot of the rotor core shown in FIG.
  • FIG. 5 is an enlarged view showing the insulating sheet inserted into the slot of the rotor core shown in FIG.
  • FIG. 6 is a view showing a state in which a conductor bar is being inserted inside the insulating sheet shown in FIG.
  • FIG. 7 is a view showing a state in which end rings are provided at both ends of the rotor core shown in FIG.
  • the rotor 60 When the rotor 60 is manufactured, first, the rotor core 61 and the V-shaped insulating sheet 66 as viewed along the axial direction are manufactured.
  • the insulating sheet 66 is formed into a V shape as shown in FIG. 4 by folding an insulating sheet made of a material having high heat resistance such as meta-aramid fiber and mica.
  • a folded portion 661 having a collar shape is formed on the insulating sheet 66.
  • the insulating sheet 66 on which the folded portion 661 is formed is inserted into the slot 62.
  • the vertex of the V shape of the insulating sheet 66 is directed to the central axis side.
  • a similar folded portion 661 is also provided at the other end portion of the insulating sheet 66 inserted into the slot 62.
  • a rod-shaped conductor bar 63 is inserted inside the insulating sheet 66 inserted into the slot 62.
  • the inner surface of the insulating sheet 66 is pushed by the conductor bar 63, and the insulating sheet 66 expands toward the wall surface that forms the slot 62.
  • the folded portion 661 when the conductor bar 63 is inserted inside the insulating sheet 66 inserted into the slot 62, the folded portion 661 can be attached to the rotor core 61 even if the insulating sheet 66 contacts the conductor bar 63.
  • the insulation sheet 66 is restrained from moving in the axial direction by being caught at the end. Therefore, the production efficiency of the rotor 60 is improved as compared with the case where the folded portion 661 is not provided.
  • end rings 64 are provided on the one end surface 61 b and the other end surface 61 c in the axial direction of the rotor core 61, respectively.
  • a die-cast member 65 is provided. The two end rings 64 and the die cast member 65 are collectively formed by die casting.
  • the end ring 64 has a function of electrically connecting the plurality of conductor bars 63 to each other and a function of fixing each of the plurality of conductor bars 63 to the rotor core 61.
  • the die-cast member 65 is provided in a gap between the wall surface 61 a forming the slot 62 and the insulating sheet 66 and a gap between the conductor bar 63 and the insulating sheet 66.
  • a method of forming the secondary conductor in the slot 62 a method of forming the secondary conductor by die casting by pouring molten die-cast material into the slot 62 without providing the conductor bar 63 in advance in the slot 62. There is. As described above, when the secondary conductor is formed in the slot 62 in a state where the conductor bar 63 is not inserted inside the insulating sheet 66, the end portion in the axial direction of the insulating sheet 66 is buckled by the die casting pressure. The axial end portion of the buckled insulating sheet 66 may enter the slot 62.
  • the insulation resistance between the rotor core 61 and the die cast member 65 is lower than that when the insulating sheet 66 is not buckled. Therefore, the cross current loss generated in the rotor 60 shows a larger value than the cross current loss generated in the rotor 60 when the insulating sheet 66 is not buckled.
  • the slot 62 is blocked by the buckled insulating sheet 66.
  • passage of the die-cast material to the slot 62 is hindered, and there may be a portion where the die-cast material is not filled in the space inside the insulating sheet 66.
  • the rotation efficiency of the rotor 60 is lower than when the insulating sheet 66 is not buckled.
  • the insulating sheet 66 is attached to the conductor bar 63 even when die-cast pressure is applied to the insulating sheet 66. Since it is supported, it can suppress that the insulating sheet 66 buckles.
  • the insulating sheet 66 can be interposed between the conductor bar 63 and the rotor core 61. Therefore, the insulation resistance between the rotor core 61 and the die-cast member 65 is higher than that when the insulating sheet 66 is buckled. As a result, the cross current loss generated in the rotor 60 is lower than the cross current loss generated in the rotor 60 when the insulating sheet 66 is buckled.
  • the passage of the die-cast material to the slot 62 is not hindered, it is possible to suppress the occurrence of a portion not filled with the die-cast material in the space inside the insulating sheet 66. Therefore, as compared with the case where the insulating sheet 66 is buckled, the rotation efficiency of the rotor 60 is improved, and the conductor bar 63 inserted inside the insulating sheet 66 can be firmly fixed with the die-cast material.
  • the step of providing an insulating layer on the wall surface 61a forming the slot 62 becomes unnecessary, so that the tank for applying the insulating agent to the rotor core 61 and the insulating agent are hardened and insulated.
  • a furnace for forming the agent layer becomes unnecessary. Therefore, even when the size of the rotor core 61 is increased, it is not necessary to manufacture a tank and a furnace corresponding to the increased size of the rotor 60, and the production efficiency of the rotor 60 is improved.
  • the process of forming the insulating layer on the wall surface 61a that forms the slot 62 is not required, so that the production efficiency of the rotor 60 is greatly improved.
  • the rotational efficiency of the rotor 60 can be improved.
  • the material used for die casting is selected with priority given to a material having a low melting point over a material having a low resistivity among nonmagnetic conductor materials, thereby improving the production efficiency of the rotor 60.
  • Can do Therefore, for example, by selecting copper as the material of the conductor bar 63 and selecting aluminum as the material of the end ring 64 and the die cast member 65, the rotational efficiency and production efficiency of the rotor 60 can be improved.
  • FIG. FIG. 8 is an external view of a conductor bar used in the rotor included in the induction motor according to Embodiment 2 of the present invention.
  • the conductor bar 63 used in the induction motor 100 of the second embodiment a portion of the surface of the conductor bar 63 near the center in the axial direction is covered with the insulating coating 90 and a portion near the end in the axial direction is covered with the insulating coating 9. Not covered.
  • Examples of the material of the insulating coating 90 include materials having high heat resistance such as silica and mica.
  • a material having high heat resistance is sprayed on a portion near the center in the axial direction in the surface of the conductor bar 63, and then the conductor bar 63 is heated and dried to form the insulating coating 90.
  • the method of forming the insulating coating 90 is not limited to this, and may be electrodeposition coating in which the insulating coating 90 is formed on the surface of the conductor bar 63 by electrodeposition using an aqueous solution containing a material having high heat resistance as an electrolytic solution.
  • FIG. 9 is a perspective view of the rotor core in which the conductor bar shown in FIG. 8 is inserted.
  • 10 is a cross-sectional view of a rotor including the rotor core and the conductor bar shown in FIG.
  • FIG. 11 is a view showing a state in which end rings are provided at both ends of the rotor core shown in FIG. 12 is a cross-sectional view of the rotor core, end ring, and conductor bar shown in FIG.
  • the width of the portion where the insulating coating 90 is formed in the length of the conductor bar 63 in the axial direction is indicated by Y.
  • a width from one end surface to the other end surface of the rotor core 61 in the axial direction is indicated by X.
  • the axial width Y of the insulating coating 90 is set to a value shorter than the axial width X of the rotor core 61 in consideration of assembly tolerances.
  • the reason for configuring in this way is that a plurality of conductor bars 63 need to be electrically connected by end rings 64 as shown in FIGS.
  • the end ring 64 is formed by die casting using a die cast material after the conductor bar 63 is inserted into the slot 62.
  • the induction motor 100 since the portion near the end of the conductor bar 63 is not covered with the insulating film 90, the plurality of conductor bars 63 are electrically connected when the end ring 64 is provided. Thus, an increase in secondary resistance is suppressed.
  • the same effect as that of the first embodiment can be obtained, and it is not necessary to insert the insulating sheet 66 into the slot 62. Therefore, the slot of the rotor core 61 can be obtained. Even when the cross-sectional area 62 is small, the manufacture of the rotor 60A is facilitated.
  • the heat capacity of the conductor bar 63 is smaller than the heat capacity of the rotor core 61, the heat capacity is smaller than when the rotor core 61 is placed in a furnace and an insulating layer is provided on the wall surface 61 a forming the slot 62.
  • the insulating coating 90 that is an insulating layer can be provided on the conductor bar 63 in a short time using a furnace. Therefore, in the second embodiment, the production efficiency of the rotor 60A can be increased as compared with the case where the rotor core 61 is placed in the furnace.
  • FIG. 13 is a configuration diagram of an insulating member provided in a conductor bar according to a first modification of the second embodiment of the present invention.
  • the conductor bar 63 shown in FIG. 13 is provided with a plurality of insulating members 90A.
  • the plurality of insulating members 90A are provided apart from each other in the axial direction.
  • Each of the plurality of insulating members 90A may be provided on the conductor bar 63 by spraying a material having high heat resistance after applying a plurality of masks that are separated from each other in the axial direction on the surface of the conductor bar 63.
  • a material having high heat resistance may be provided on the conductor bar 63 by electrodeposition coating.
  • each of the plurality of insulating members 90A may be formed by fitting an insulating member formed in a ring shape using a material having high heat resistance to the conductor bar 63.
  • FIG. 14 is a configuration diagram of an insulating member provided in a conductor bar according to a second modification of the second embodiment of the present invention.
  • the conductor bar 63 shown in FIG. 14 is provided with a spiral insulating member 90B.
  • the insulating member 90B may be provided on the conductor bar 63 by performing spiral coating on the surface of the conductor bar 63 and spray-coating a material having high heat resistance. It may be provided on the conductor bar 63 by coating.
  • the insulating member 90B may be formed by spirally winding a strip-shaped insulating sheet having high heat resistance around the conductor bar 63.
  • FIG. 15 is a configuration diagram of an insulating member provided in a conductor bar according to a third modification of the second embodiment of the present invention.
  • the conductor bar 63 shown in FIG. 15 is provided with a knitted insulation member 90C.
  • the insulating member 90 ⁇ / b> C may be formed by winding a knitted insulating sheet having high heat resistance around the conductor bar 63, or may be formed by attaching a knitted cylindrical body having high heat resistance to the conductor bar 63.
  • any one of the plurality of insulating members 90A, insulating members 90B, and insulating members 90C is provided on the conductor bar 63, the amount of the insulating member used can be reduced, so the manufacturing cost of the rotor 60A can be reduced. Can be reduced.
  • FIG. 16 is an external view of a conductor bar used in the rotor included in the induction motor according to Embodiment 3 of the present invention.
  • a conductor bar 63A is used instead of the conductor bar 63 shown in FIG.
  • the conductor bar 63A is composed of a plurality of fine wires 63b.
  • the plurality of thin wire members 63 b are bundled with an insulating sheet 91.
  • the insulating sheet 91 before bundling the plurality of thin wire members 63b has a strip shape.
  • One conductor bar 63A is formed by winding a strip-shaped insulating sheet 91 in a state where a plurality of thin wire members 63b are bundled.
  • the slot 62 can be obtained by changing the diameter of each of the plurality of fine wire members 63b and changing the number of the thin wire members 63b used.
  • the cross-sectional shape orthogonal to the axial direction of the conductor bar 63A can be easily changed in accordance with the cross-sectional shape orthogonal to the axial direction. Therefore, since the shape of the conductor bar 63A can be made to correspond to various types of rotor cores 61 having different cross-sectional shapes of the slots 62, the production efficiency of the rotor 60 is improved.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • stator 11 frame, 12 end plate, 60, 60A rotor, 61 rotor core, 61a wall surface, 61b one end surface, 61c other end surface, 62 slots, 63, 63A conductor bar, 63b fine wire material, 64 end ring, 65 die cast member, 66, 91 insulating sheet, 70 shaft, 90 insulating coating, 90A, 90B, 90C insulating member, 100 induction motor, 661 folded portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

This induction motor rotor (60) is equipped with a rotor core (61) and conductor bars (63) disposed in respective slots formed in the rotor core (61). The induction motor rotor (60) is characterized by being provided with: end rings (64) disposed at axial ends of the rotor core (61) so as to electrically connect the conductor bars (63) to each other; insulation sheets (66) which are insulating members disposed between the conductor bars (63) and wall surfaces (61a) forming the slots; and die-cast members (65) which are non-magnetic conductor materials disposed between the wall surfaces (61a) and the insulation sheets (66).

Description

誘導電動機の回転子及び誘導電動機Induction motor rotor and induction motor
 本発明は、誘導型の回転電機である誘導電動機の回転子及びこの回転子を備えた誘導電動機に関する。 The present invention relates to an induction motor rotor that is an induction type rotating electric machine and an induction motor including the rotor.
 誘導型の回転電機は、同期型の回転電機に比べて堅牢な構造でかつ製造コストが安く、また電源に直接繋いで始動することができるという利点があるため、多く使用されている。以下では誘導型の回転電機を誘導機と称する場合がある。 Induction type rotating electrical machines are often used because they have the advantages of a robust structure and a lower manufacturing cost than a synchronous rotating electrical machine and can be started directly connected to a power source. Hereinafter, the induction type rotating electrical machine may be referred to as an induction machine.
 誘導機では、固定子の巻線に交流電流が流れることによって回転磁界が発生し、この回転磁界が回転子の二次導体に作用することによって、回転子の二次導体に起電力が発生して電流が流れる。回転子の二次導体は、回転子鉄心に設けられるエンドリングと、回転子鉄心に挿入される回転子バーとで構成される。この電流と回転磁界の間にフレミングの左手の法則に基づく電磁力が発生することによって、二次導体が回転磁界の方向に引っ張られて回転子が回転する。このように構成される誘導機では、二次導体に流れる電流の経路の抵抗を低くすることによって、回転子の回転効率を高めることができる。 In an induction machine, a rotating magnetic field is generated when an alternating current flows through the winding of the stator, and this rotating magnetic field acts on the secondary conductor of the rotor, thereby generating an electromotive force on the secondary conductor of the rotor. Current flows. The secondary conductor of the rotor is composed of an end ring provided on the rotor core and a rotor bar inserted into the rotor core. When an electromagnetic force based on Fleming's left-hand rule is generated between the current and the rotating magnetic field, the secondary conductor is pulled in the direction of the rotating magnetic field, and the rotor rotates. In the induction machine configured as described above, the rotational efficiency of the rotor can be increased by reducing the resistance of the path of the current flowing through the secondary conductor.
 回転子バーの材料に抵抗率が比較的小さい銅を用いることによって、二次導体の抵抗を低くして回転効率の向上が図られる場合がある。 By using copper having a relatively low resistivity as the material of the rotor bar, the resistance of the secondary conductor may be lowered and the rotation efficiency may be improved.
 また、回転子に不要な電流が流れることで生じる横流損失を低減させることでも、誘導機の回転効率を高めることができる。横流損失とは、二次導体にスキューをかけた場合、二次導体と回転子鉄心との間に電位差が発生することによって、二次導体と回転子鉄心との間に本来流れるべきでない電流が流れることによって生じる損失である。 Rotational efficiency of the induction machine can also be improved by reducing cross current loss caused by unnecessary current flowing through the rotor. Cross current loss means that when a skew is applied to the secondary conductor, a potential difference between the secondary conductor and the rotor core causes a current that should not flow between the secondary conductor and the rotor core. It is a loss caused by flowing.
 横流損失の低減方法としては、特許文献1に開示されるように、回転子鉄心に設けられるスロットを形作る壁面に絶縁剤を浸して含ませた後、この絶縁剤を硬化させることによって当該壁面に絶縁剤層を設ける方法が考えられる。絶縁剤層を設けることによって、スロットを形作る壁面と回転子バーとの間の絶縁抵抗が増大し、回転子バーから回転子鉄心に向かって流れる電流が抑制され、横流損失が低減される。 As a method of reducing the cross current loss, as disclosed in Patent Document 1, an insulating agent is immersed in a wall surface forming a slot provided in a rotor core, and then the insulating agent is cured to be applied to the wall surface. A method of providing an insulating layer is conceivable. By providing the insulating layer, the insulation resistance between the wall forming the slot and the rotor bar is increased, current flowing from the rotor bar toward the rotor core is suppressed, and cross current loss is reduced.
特開2001-25222号公報JP 2001-25222 A
 しかしながら、特許文献1に開示される方法によって、回転子鉄心のスロットを形作る壁面に絶縁剤層を形成するためには、回転子鉄心へ絶縁剤を施すための槽と、この絶縁剤を硬化させるための炉とが必要になる。従って、回転子鉄心のサイズが大型化するとこれらの槽及び炉を大きくしなければならないため、回転子鉄心のサイズに対応した槽及び炉の製作が必要になり、回転子の生産効率が低下するという課題があった。 However, in order to form the insulating layer on the wall surface that forms the slot of the rotor core by the method disclosed in Patent Document 1, a tank for applying the insulating agent to the rotor core and the insulating agent are cured. And a furnace are needed. Therefore, if the size of the rotor core is increased, these tanks and furnaces must be enlarged. Therefore, it is necessary to manufacture tanks and furnaces corresponding to the size of the rotor core, and the production efficiency of the rotor is reduced. There was a problem.
 本発明は、上記に鑑みてなされたものであって、横流損失に起因する回転効率の低下を抑制しながら生産効率を向上できる誘導電動機の回転子を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a rotor of an induction motor that can improve production efficiency while suppressing a decrease in rotational efficiency due to crossflow loss.
 上述した課題を解決し、目的を達成するために、本発明の誘導電動機の回転子は、回転子鉄心と、回転子鉄心に形成される複数のスロットのそれぞれに設けられる導体バーとを備える。誘導電動機の回転子は、回転子鉄心の軸方向の端部に設けられ、複数の導体バーを互いに電気的に接続するエンドリングと、スロットを形作る壁面と導体バーとの間に設けられる絶縁部材と、壁面と絶縁部材との間に設けられる非磁性導体材料とを備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the rotor of the induction motor of the present invention includes a rotor core and a conductor bar provided in each of a plurality of slots formed in the rotor core. A rotor of an induction motor is provided at an end portion in the axial direction of a rotor core, and an insulating member provided between an end ring that electrically connects a plurality of conductor bars to each other, and a wall surface that forms a slot and the conductor bars. And a nonmagnetic conductor material provided between the wall surface and the insulating member.
 本発明に係る誘導電動機の回転子は、横流損失に起因する回転効率の低下を抑制しながら生産効率を向上できるという効果を奏する。 The rotor of the induction motor according to the present invention has an effect that production efficiency can be improved while suppressing a decrease in rotational efficiency due to cross current loss.
本発明の実施の形態1に係る誘導電動機の構造を示す図The figure which shows the structure of the induction motor which concerns on Embodiment 1 of this invention. 図1に示す誘導電動機の回転子の斜視図The perspective view of the rotor of the induction motor shown in FIG. 図1に示す誘導電動機の回転子鉄心の斜視図1 is a perspective view of a rotor core of the induction motor shown in FIG. 図1に示す回転子鉄心のスロットに絶縁シートを挿入中の状態を示す図The figure which shows the state in inserting the insulation sheet in the slot of the rotor core shown in FIG. 図4に示す回転子鉄心のスロットに挿入された絶縁シートを拡大して示す図The figure which expands and shows the insulating sheet inserted in the slot of the rotor core shown in FIG. 図4に示す絶縁シートの内側に導体バーを挿入中の状態を示す図The figure which shows the state in which the conductor bar is inserted inside the insulating sheet shown in FIG. 図6に示す回転子鉄心の両端のそれぞれにエンドリングを設けた状態を示す図The figure which shows the state which provided the end ring in each of the both ends of the rotor core shown in FIG. 本発明の実施の形態2に係る誘導電動機が備える回転子に用いられる導体バーの外観図External view of the conductor bar used for the rotor with which the induction motor which concerns on Embodiment 2 of this invention is provided 図8に示す導体バーが挿入された回転子鉄心の斜視図The perspective view of the rotor iron core in which the conductor bar shown in FIG. 8 was inserted 図9に示す回転子鉄心及び導体バーを備える回転子の断面図Sectional drawing of a rotor provided with the rotor core and conductor bar shown in FIG. 図10に示す回転子鉄心の両端のそれぞれにエンドリングを設けた状態を示す図The figure which shows the state which provided the end ring in each of the both ends of the rotor core shown in FIG. 図11に示す回転子鉄心、エンドリング及び導体バーの断面図Sectional view of the rotor core, end ring and conductor bar shown in FIG. 本発明の実施の形態2の第1の変形例に係る導体バーに設けられる絶縁部材の構成図The block diagram of the insulating member provided in the conductor bar which concerns on the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第2の変形例に係る導体バーに設けられる絶縁部材の構成図The block diagram of the insulation member provided in the conductor bar which concerns on the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態2の第3の変形例に係る導体バーに設けられる絶縁部材の構成図The block diagram of the insulating member provided in the conductor bar which concerns on the 3rd modification of Embodiment 2 of this invention. 本発明の実施の形態3に係る誘導電動機が備える回転子に用いられる導体バーの外観図External view of conductor bar used for rotor provided in induction motor according to embodiment 3 of the present invention
 以下に、本発明の実施の形態に係る誘導電動機の回転子及び誘導電動機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a rotor and an induction motor of an induction motor according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は本発明の実施の形態1に係る誘導電動機の構造を示す図である。図2は図1に示す誘導電動機の回転子の斜視図である。図3は図1に示す誘導電動機の回転子鉄心の斜視図である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing the structure of an induction motor according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of the rotor of the induction motor shown in FIG. FIG. 3 is a perspective view of the rotor core of the induction motor shown in FIG.
 図1には実施の形態1に係る誘導電動機100の片側断面が示される。図1において、回転子鉄心61の中心軸AXが伸びる方向である軸方向は、図1中に矢印D1で示される方向である。回転子鉄心61の中心軸AXの周方向は、図1中に矢印D2で示される方向である。 FIG. 1 shows a one-side cross section of the induction motor 100 according to the first embodiment. In FIG. 1, the axial direction that is the direction in which the central axis AX of the rotor core 61 extends is the direction indicated by the arrow D1 in FIG. The circumferential direction of the central axis AX of the rotor core 61 is the direction indicated by the arrow D2 in FIG.
 誘導電動機100は、有底円筒状のフレーム11と、フレーム11の開口部を閉塞する端板12と、フレーム11の内周面に固定される環状の固定子10と、フレーム11の底部に設けられるベアリング1と、端板12に設けられるベアリング2とを備える。フレーム11及び端板12によりハウジング3が構成される。 The induction motor 100 is provided on a bottomed cylindrical frame 11, an end plate 12 that closes an opening of the frame 11, an annular stator 10 that is fixed to the inner peripheral surface of the frame 11, and a bottom of the frame 11. And a bearing 2 provided on the end plate 12. The housing 3 is constituted by the frame 11 and the end plate 12.
 また誘導電動機100は、固定子10の内側に設けられる筒状の回転子60と、ベアリング1及びベアリング2に回転可能に支持され回転子60の内側に設けられるシャフト70とを備える。 The induction motor 100 also includes a cylindrical rotor 60 provided inside the stator 10 and a shaft 70 that is rotatably supported by the bearing 1 and the bearing 2 and provided inside the rotor 60.
 回転子60は、複数の鋼板を軸方向に積層して構成される筒状の回転子鉄心61を備える。回転子鉄心61には、複数のスロット62が形成されている。複数のスロット62は、回転子鉄心61の外周面寄りに周方向に並べて形成され、複数のスロット62のそれぞれは、軸方向に伸び、回転子鉄心61の一端部から他端部に貫通する。複数のスロット62のそれぞれは、スロット62は周方向にスキューされている。 The rotor 60 includes a cylindrical rotor core 61 configured by laminating a plurality of steel plates in the axial direction. A plurality of slots 62 are formed in the rotor core 61. The plurality of slots 62 are formed side by side in the circumferential direction near the outer peripheral surface of the rotor core 61, and each of the plurality of slots 62 extends in the axial direction and penetrates from one end portion of the rotor core 61 to the other end portion. Each of the plurality of slots 62 is skewed in the circumferential direction.
 また回転子60は、複数のスロット62の内側に設けられる導体バー63と、回転子鉄心61の軸方向の両端のそれぞれに設けられ複数の導体バー63を接続する端絡環であるエンドリング64と、非磁性導体材料であるダイキャスト部材65とを備える。 Further, the rotor 60 includes a conductor bar 63 provided inside the plurality of slots 62 and an end ring 64 that is an end-ring ring that is provided at each of both axial ends of the rotor core 61 and connects the plurality of conductor bars 63. And a die-cast member 65 that is a nonmagnetic conductor material.
 導体バー63の材料には、アルミニウム、アルミニウム合金、銅又は銅合金といった非磁性導体材料を例示できる。 Examples of the material of the conductor bar 63 include nonmagnetic conductor materials such as aluminum, aluminum alloy, copper, and copper alloy.
 次に図4から図7を用いて、回転子60の製造方法を説明する。図4は図1に示す回転子鉄心のスロットに絶縁シートを挿入中の状態を示す図である。図5は図4に示す回転子鉄心のスロットに挿入された絶縁シートを拡大して示す図である。図6は図4に示す絶縁シートの内側に導体バーを挿入中の状態を示す図である。図7は図6に示す回転子鉄心の両端のそれぞれにエンドリングを設けた状態を示す図である。 Next, a method for manufacturing the rotor 60 will be described with reference to FIGS. 4 is a view showing a state in which an insulating sheet is being inserted into the slot of the rotor core shown in FIG. FIG. 5 is an enlarged view showing the insulating sheet inserted into the slot of the rotor core shown in FIG. FIG. 6 is a view showing a state in which a conductor bar is being inserted inside the insulating sheet shown in FIG. FIG. 7 is a view showing a state in which end rings are provided at both ends of the rotor core shown in FIG.
 回転子60を製造する場合、まず回転子鉄心61と、軸方向に沿って見てV字形状の絶縁シート66とが製造される。 When the rotor 60 is manufactured, first, the rotor core 61 and the V-shaped insulating sheet 66 as viewed along the axial direction are manufactured.
 絶縁シート66は、メタ系アラミド繊維、マイカなどの耐熱性が高い材料で構成される絶縁性のシートを折り畳むことによって、図4に示すようにV字の形になされる。 The insulating sheet 66 is formed into a V shape as shown in FIG. 4 by folding an insulating sheet made of a material having high heat resistance such as meta-aramid fiber and mica.
 次に、製造された絶縁シート66の軸方向の一端部を折り返すことによって、絶縁シート66に襟形状の折り返し部661が形成される。折り返し部661が形成された絶縁シート66は、スロット62に挿入される。絶縁シート66のV字形状の頂点は中心軸側に向けられている。スロット62に挿入された絶縁シート66の他端部にも同様の折り返し部661が設けられる。 Next, by folding back one end portion of the manufactured insulating sheet 66 in the axial direction, a folded portion 661 having a collar shape is formed on the insulating sheet 66. The insulating sheet 66 on which the folded portion 661 is formed is inserted into the slot 62. The vertex of the V shape of the insulating sheet 66 is directed to the central axis side. A similar folded portion 661 is also provided at the other end portion of the insulating sheet 66 inserted into the slot 62.
 次に図6に示すように、スロット62に挿入された絶縁シート66の内側に棒状の導体バー63が挿入される。導体バー63が絶縁シート66へ挿入されることによって、絶縁シート66の内側の面が導体バー63に押されて、絶縁シート66がスロット62を形作る壁面に向かって広がる。 Next, as shown in FIG. 6, a rod-shaped conductor bar 63 is inserted inside the insulating sheet 66 inserted into the slot 62. By inserting the conductor bar 63 into the insulating sheet 66, the inner surface of the insulating sheet 66 is pushed by the conductor bar 63, and the insulating sheet 66 expands toward the wall surface that forms the slot 62.
 折り返し部661を設けることによって、スロット62に挿入された絶縁シート66の内側に導体バー63を挿入する際、絶縁シート66が導体バー63に接触しても、折り返し部661が回転子鉄心61の端部に引っ掛かり、軸方向への絶縁シート66の移動が抑制される。従って、折り返し部661がない場合に比べて、回転子60の生産効率が向上する。 By providing the folded portion 661, when the conductor bar 63 is inserted inside the insulating sheet 66 inserted into the slot 62, the folded portion 661 can be attached to the rotor core 61 even if the insulating sheet 66 contacts the conductor bar 63. The insulation sheet 66 is restrained from moving in the axial direction by being caught at the end. Therefore, the production efficiency of the rotor 60 is improved as compared with the case where the folded portion 661 is not provided.
 その後、図7に示すように、上記の非磁性導体材料をダイキャスト材料として利用して、回転子鉄心61の軸方向の一端面61b及び他端面61cのそれぞれにエンドリング64が設けられると共に、ダイキャスト部材65が設けられる。2つのエンドリング64とダイキャスト部材65とはダイキャストによって一括して成形される。 Thereafter, as shown in FIG. 7, using the nonmagnetic conductor material as a die-cast material, end rings 64 are provided on the one end surface 61 b and the other end surface 61 c in the axial direction of the rotor core 61, respectively. A die-cast member 65 is provided. The two end rings 64 and the die cast member 65 are collectively formed by die casting.
 エンドリング64は、複数の導体バー63を互いに電気的に接続する機能と、複数の導体バー63のそれぞれを回転子鉄心61へ固定する機能とを有する。 The end ring 64 has a function of electrically connecting the plurality of conductor bars 63 to each other and a function of fixing each of the plurality of conductor bars 63 to the rotor core 61.
 ダイキャスト部材65は、スロット62を形作る壁面61aと絶縁シート66との間の隙間と、導体バー63と絶縁シート66との間の隙間とに設けられる。 The die-cast member 65 is provided in a gap between the wall surface 61 a forming the slot 62 and the insulating sheet 66 and a gap between the conductor bar 63 and the insulating sheet 66.
 なお、スロット62内に二次導体を形成する方法には、スロット62に予め導体バー63を設けずに、融解したダイキャスト材料をスロット62に流し込むことによって二次導体をダイキャストで形成する方法がある。このように、絶縁シート66の内側に導体バー63が挿入されていない状態でスロット62内に二次導体を形成する場合、ダイキャスト圧力により、絶縁シート66の軸方向の端部が座屈して、座屈した絶縁シート66の軸方向の端部がスロット62に入り込む可能性がある。 As a method of forming the secondary conductor in the slot 62, a method of forming the secondary conductor by die casting by pouring molten die-cast material into the slot 62 without providing the conductor bar 63 in advance in the slot 62. There is. As described above, when the secondary conductor is formed in the slot 62 in a state where the conductor bar 63 is not inserted inside the insulating sheet 66, the end portion in the axial direction of the insulating sheet 66 is buckled by the die casting pressure. The axial end portion of the buckled insulating sheet 66 may enter the slot 62.
 このように絶縁シート66が座屈した場合、スロット62を形作る壁面61aと、スロット62内に設けられたダイキャスト部材65との間に、絶縁シート66が存在しない部分が生じる。そのため、回転子鉄心61とダイキャスト部材65との間の絶縁抵抗は、絶縁シート66が座屈していないときに比べて、低い値を示す。そのため、回転子60に生じる横流損失は、絶縁シート66が座屈していないときに回転子60へ生じる横流損失に比べて、大きな値を示す。 When the insulating sheet 66 is buckled in this way, a portion where the insulating sheet 66 does not exist is formed between the wall surface 61 a forming the slot 62 and the die cast member 65 provided in the slot 62. Therefore, the insulation resistance between the rotor core 61 and the die cast member 65 is lower than that when the insulating sheet 66 is not buckled. Therefore, the cross current loss generated in the rotor 60 shows a larger value than the cross current loss generated in the rotor 60 when the insulating sheet 66 is not buckled.
 また、座屈した絶縁シート66によってスロット62が閉塞される可能性がある。この場合、スロット62へのダイキャスト材料の通過が妨げられ、絶縁シート66の内側の空間にダイキャスト材料が充填されていない部分が生じる可能性がある。この場合、絶縁シート66が座屈していないときに比べて、回転子60の回転効率が低下する。 Further, there is a possibility that the slot 62 is blocked by the buckled insulating sheet 66. In this case, passage of the die-cast material to the slot 62 is hindered, and there may be a portion where the die-cast material is not filled in the space inside the insulating sheet 66. In this case, the rotation efficiency of the rotor 60 is lower than when the insulating sheet 66 is not buckled.
 実施の形態1に係る回転子60によれば、絶縁シート66の内側に導体バー63が設けられているため、絶縁シート66にダイキャスト圧が加わった場合でも、絶縁シート66が導体バー63に支えられるため、絶縁シート66が座屈することを抑制できる。 According to the rotor 60 according to the first embodiment, since the conductor bar 63 is provided on the inner side of the insulating sheet 66, the insulating sheet 66 is attached to the conductor bar 63 even when die-cast pressure is applied to the insulating sheet 66. Since it is supported, it can suppress that the insulating sheet 66 buckles.
 そのため、ダイキャスト部材65の形成後も、導体バー63と回転子鉄心61との間に絶縁シート66を介在させることができる。従って、回転子鉄心61とダイキャスト部材65との間の絶縁抵抗は、絶縁シート66が座屈したときに比べて、高い値を示す。その結果、回転子60に生じる横流損失は、絶縁シート66が座屈した場合に回転子60に生じる横流損失に比べて、低い値となる。 Therefore, even after the die cast member 65 is formed, the insulating sheet 66 can be interposed between the conductor bar 63 and the rotor core 61. Therefore, the insulation resistance between the rotor core 61 and the die-cast member 65 is higher than that when the insulating sheet 66 is buckled. As a result, the cross current loss generated in the rotor 60 is lower than the cross current loss generated in the rotor 60 when the insulating sheet 66 is buckled.
 またスロット62へのダイキャスト材料の通過が妨げられないため、絶縁シート66の内側の空間にダイキャスト材料が充填されていない部分が生じることを抑制できる。従って、絶縁シート66が座屈した場合に比べて、回転子60の回転効率が向上すると共に、絶縁シート66の内側に挿入された導体バー63をダイキャスト材料で強固に固定することができる。 Moreover, since the passage of the die-cast material to the slot 62 is not hindered, it is possible to suppress the occurrence of a portion not filled with the die-cast material in the space inside the insulating sheet 66. Therefore, as compared with the case where the insulating sheet 66 is buckled, the rotation efficiency of the rotor 60 is improved, and the conductor bar 63 inserted inside the insulating sheet 66 can be firmly fixed with the die-cast material.
 また実施の形態1によれば、スロット62を形作る壁面61aに絶縁剤層を設ける工程が不要になるため、回転子鉄心61へ絶縁剤を施すための槽と、この絶縁剤を硬化させて絶縁剤層を形成するための炉とが不要になる。従って、回転子鉄心61のサイズが大型化した場合でも、大型化した回転子60のサイズに対応した槽及び炉の製作が不要になり、回転子60の生産効率が向上する。 Further, according to the first embodiment, the step of providing an insulating layer on the wall surface 61a forming the slot 62 becomes unnecessary, so that the tank for applying the insulating agent to the rotor core 61 and the insulating agent are hardened and insulated. A furnace for forming the agent layer becomes unnecessary. Therefore, even when the size of the rotor core 61 is increased, it is not necessary to manufacture a tank and a furnace corresponding to the increased size of the rotor 60, and the production efficiency of the rotor 60 is improved.
 また絶縁剤層を形成するためには回転子鉄心61を加熱する必要があり、この加熱に要する時間は長時間に及ぶ。実施の形態1に係る回転子60によれば、スロット62を形作る壁面61aに絶縁剤層を形成する工程が不要であるため、回転子60の生産効率が大きく改善される。 Further, in order to form the insulating layer, it is necessary to heat the rotor core 61, and this heating takes a long time. According to the rotor 60 according to the first embodiment, the process of forming the insulating layer on the wall surface 61a that forms the slot 62 is not required, so that the production efficiency of the rotor 60 is greatly improved.
 導体バー63の材料には、非磁性導体材料の内、融解点が低い材料よりも抵抗率が小さい材料を優先して選択することで、回転子60の回転効率の向上を図ることができる。また、ダイキャストに用いられる材料には、非磁性導体材料の内、抵抗率が小さい材料よりも融解点が低い材料を優先して選択することで、回転子60の生産効率の向上を図ることができる。従って、例えば、導体バー63の材料に銅を選択し、エンドリング64及びダイキャスト部材65の材料にアルミニウムを選択することで、回転子60の回転効率及び生産効率の向上を図ることができる。 As the material of the conductor bar 63, by selecting a material having a lower resistivity than a material having a low melting point among nonmagnetic conductor materials, the rotational efficiency of the rotor 60 can be improved. In addition, the material used for die casting is selected with priority given to a material having a low melting point over a material having a low resistivity among nonmagnetic conductor materials, thereby improving the production efficiency of the rotor 60. Can do. Therefore, for example, by selecting copper as the material of the conductor bar 63 and selecting aluminum as the material of the end ring 64 and the die cast member 65, the rotational efficiency and production efficiency of the rotor 60 can be improved.
実施の形態2.
 図8は本発明の実施の形態2に係る誘導電動機が備える回転子に用いられる導体バーの外観図である。実施の形態2の誘導電動機100に用いられる導体バー63は、導体バー63の表面の内、軸方向の中心寄り部分が絶縁被膜90で覆われ、軸方向の端部寄り部分が絶縁被膜9で覆われていない。
Embodiment 2. FIG.
FIG. 8 is an external view of a conductor bar used in the rotor included in the induction motor according to Embodiment 2 of the present invention. In the conductor bar 63 used in the induction motor 100 of the second embodiment, a portion of the surface of the conductor bar 63 near the center in the axial direction is covered with the insulating coating 90 and a portion near the end in the axial direction is covered with the insulating coating 9. Not covered.
 絶縁被膜90の材料には、シリカ、マイカなどの耐熱性が高い材料を例示できる。例えば、導体バー63の表面の内、軸方向の中心寄り部分に、耐熱性が高い材料がスプレーで塗装され、その後、導体バー63を加熱して乾燥させることによって、絶縁被膜90が形成される。絶縁被膜90の形成方法は、これに限定されず、耐熱性が高い材料を含む水溶液を電解液として、電着作用によって導体バー63の表面に絶縁被膜90を形成する電着塗装でもよい。 Examples of the material of the insulating coating 90 include materials having high heat resistance such as silica and mica. For example, a material having high heat resistance is sprayed on a portion near the center in the axial direction in the surface of the conductor bar 63, and then the conductor bar 63 is heated and dried to form the insulating coating 90. . The method of forming the insulating coating 90 is not limited to this, and may be electrodeposition coating in which the insulating coating 90 is formed on the surface of the conductor bar 63 by electrodeposition using an aqueous solution containing a material having high heat resistance as an electrolytic solution.
 図9は図8に示す導体バーが挿入された回転子鉄心の斜視図である。図10は図9に示す回転子鉄心及び導体バーを備える回転子の断面図である。図11は図10に示す回転子鉄心の両端のそれぞれにエンドリングを設けた状態を示す図である。図12は図11に示す回転子鉄心、エンドリング及び導体バーの断面図である。 FIG. 9 is a perspective view of the rotor core in which the conductor bar shown in FIG. 8 is inserted. 10 is a cross-sectional view of a rotor including the rotor core and the conductor bar shown in FIG. FIG. 11 is a view showing a state in which end rings are provided at both ends of the rotor core shown in FIG. 12 is a cross-sectional view of the rotor core, end ring, and conductor bar shown in FIG.
 図9及び図10には、軸方向の導体バー63の中心位置が軸方向の回転子鉄心61の中心位置と一致するように、複数のスロット62に導体バー63が挿入された状態が示される。 9 and 10 show a state in which the conductor bar 63 is inserted into the plurality of slots 62 so that the center position of the axial conductor bar 63 coincides with the center position of the rotor core 61 in the axial direction. .
 図10において、軸方向の導体バー63の長さの内、絶縁被膜90が形成されている部分の幅は、Yで示される。軸方向の回転子鉄心61の一端面から他端面までの幅は、Xで示される。実施の形態2の回転子60Aでは、絶縁被膜90の軸方向の幅Yは、組立て公差を考慮して、軸方向の回転子鉄心61の幅Xよりも短い値に設定される。 10, the width of the portion where the insulating coating 90 is formed in the length of the conductor bar 63 in the axial direction is indicated by Y. A width from one end surface to the other end surface of the rotor core 61 in the axial direction is indicated by X. In the rotor 60A of the second embodiment, the axial width Y of the insulating coating 90 is set to a value shorter than the axial width X of the rotor core 61 in consideration of assembly tolerances.
 このように構成する理由は、図11及び図12に示すように、複数の導体バー63同士をエンドリング64によって電気的に接続する必要があるためである。エンドリング64は、スロット62に導体バー63が挿入された後、ダイキャスト材料を用いてダイキャストにより形成される。 The reason for configuring in this way is that a plurality of conductor bars 63 need to be electrically connected by end rings 64 as shown in FIGS. The end ring 64 is formed by die casting using a die cast material after the conductor bar 63 is inserted into the slot 62.
 回転子60を構成する部品の組立て公差、絶縁被膜90を形成する際の製造誤差などによって、回転子鉄心61に挿入された導体バー63の内、回転子鉄心61の端部から突き出る部分に絶縁被膜90が形成された状態で、エンドリング64が設けられた場合、複数の導体バー63同士が離れて二次抵抗が増加する。この二次抵抗の増加によって、回転子60の回転効率が低下し、誘導電動機100の出力が低下することになる。 Due to assembly tolerances of components constituting the rotor 60, manufacturing errors when forming the insulating coating 90, etc., insulation is performed on the portion of the conductor bar 63 inserted into the rotor core 61 that protrudes from the end of the rotor core 61. When the end ring 64 is provided in a state where the film 90 is formed, the plurality of conductor bars 63 are separated from each other, and the secondary resistance is increased. Due to the increase in the secondary resistance, the rotation efficiency of the rotor 60 is lowered, and the output of the induction motor 100 is lowered.
 実施の形態2に係る誘導電動機100では、導体バー63の端部寄り部分が絶縁被膜90で覆われていないため、エンドリング64が設けられたときに複数の導体バー63同士が電気的に接続され、二次抵抗の増加が抑制される。 In the induction motor 100 according to the second embodiment, since the portion near the end of the conductor bar 63 is not covered with the insulating film 90, the plurality of conductor bars 63 are electrically connected when the end ring 64 is provided. Thus, an increase in secondary resistance is suppressed.
 また、実施の形態2に係る誘導電動機100によれば、実施の形態1と同様の効果を得ることができると共に、絶縁シート66をスロット62に挿入する必要がないため、回転子鉄心61のスロット62の断面積が小さい場合でも回転子60Aの製造が容易化される。 In addition, according to the induction motor 100 according to the second embodiment, the same effect as that of the first embodiment can be obtained, and it is not necessary to insert the insulating sheet 66 into the slot 62. Therefore, the slot of the rotor core 61 can be obtained. Even when the cross-sectional area 62 is small, the manufacture of the rotor 60A is facilitated.
 また、導体バー63の熱容量は、回転子鉄心61の熱容量よりも小さいため、回転子鉄心61を炉に入れて、スロット62を形作る壁面61aに絶縁剤層を設ける場合に比べて、熱容量が小さい炉を用いて短時間に、絶縁剤層である絶縁被膜90を、導体バー63へ設けることができる。従って実施の形態2では、回転子鉄心61を炉に入れる場合に比べて、回転子60Aの生産効率を高めることができる。 In addition, since the heat capacity of the conductor bar 63 is smaller than the heat capacity of the rotor core 61, the heat capacity is smaller than when the rotor core 61 is placed in a furnace and an insulating layer is provided on the wall surface 61 a forming the slot 62. The insulating coating 90 that is an insulating layer can be provided on the conductor bar 63 in a short time using a furnace. Therefore, in the second embodiment, the production efficiency of the rotor 60A can be increased as compared with the case where the rotor core 61 is placed in the furnace.
 図13は本発明の実施の形態2の第1の変形例に係る導体バーに設けられる絶縁部材の構成図である。図13に示す導体バー63には複数の絶縁部材90Aが設けられている。複数の絶縁部材90Aは軸方向に互いに離れて設けられている。 FIG. 13 is a configuration diagram of an insulating member provided in a conductor bar according to a first modification of the second embodiment of the present invention. The conductor bar 63 shown in FIG. 13 is provided with a plurality of insulating members 90A. The plurality of insulating members 90A are provided apart from each other in the axial direction.
 複数の絶縁部材90Aのそれぞれは、導体バー63の表面に、軸方向に互いに離れるマスキングを複数箇所施した上で、耐熱性が高い材料をスプレー塗装することで導体バー63へ設けたものでもよいし、耐熱性が高い材料を電着塗装によって導体バー63へ設けたものでもよい。 Each of the plurality of insulating members 90A may be provided on the conductor bar 63 by spraying a material having high heat resistance after applying a plurality of masks that are separated from each other in the axial direction on the surface of the conductor bar 63. Alternatively, a material having high heat resistance may be provided on the conductor bar 63 by electrodeposition coating.
 また、複数の絶縁部材90Aのそれぞれは、耐熱性が高い材料を用いてリング状に形成された絶縁部材を導体バー63に嵌め合わせたものでもよい。 Further, each of the plurality of insulating members 90A may be formed by fitting an insulating member formed in a ring shape using a material having high heat resistance to the conductor bar 63.
 図14は本発明の実施の形態2の第2の変形例に係る導体バーに設けられる絶縁部材の構成図である。図14に示す導体バー63には、螺旋状の絶縁部材90Bが設けられている。絶縁部材90Bは、導体バー63の表面に螺旋状のマスキングを施した上で、耐熱性が高い材料をスプレー塗装することで導体バー63へ設けたものでもよいし、耐熱性が高い材料を電着塗装によって導体バー63へ設けたものでもよい。 FIG. 14 is a configuration diagram of an insulating member provided in a conductor bar according to a second modification of the second embodiment of the present invention. The conductor bar 63 shown in FIG. 14 is provided with a spiral insulating member 90B. The insulating member 90B may be provided on the conductor bar 63 by performing spiral coating on the surface of the conductor bar 63 and spray-coating a material having high heat resistance. It may be provided on the conductor bar 63 by coating.
 また、絶縁部材90Bは、耐熱性が高い帯状の絶縁シートを導体バー63へ螺旋状に巻き付けて形成したものでもよい。 Further, the insulating member 90B may be formed by spirally winding a strip-shaped insulating sheet having high heat resistance around the conductor bar 63.
 図15は本発明の実施の形態2の第3の変形例に係る導体バーに設けられる絶縁部材の構成図である。図15に示す導体バー63には、編み目状の絶縁部材90Cが設けられている。絶縁部材90Cは、耐熱性が高い編み目状の絶縁シートを導体バー63へ巻き付けて形成したものでもよいし、耐熱性が高い編み目状の筒体を導体バー63へ取り付けたものでもよい。 FIG. 15 is a configuration diagram of an insulating member provided in a conductor bar according to a third modification of the second embodiment of the present invention. The conductor bar 63 shown in FIG. 15 is provided with a knitted insulation member 90C. The insulating member 90 </ b> C may be formed by winding a knitted insulating sheet having high heat resistance around the conductor bar 63, or may be formed by attaching a knitted cylindrical body having high heat resistance to the conductor bar 63.
 複数の絶縁部材90Aと、絶縁部材90Bと、絶縁部材90Cとの何れか1つを導体バー63に設けることによって、絶縁部材の材料の使用量を低減可能なため、回転子60Aの製造コストを低減できる。 Since any one of the plurality of insulating members 90A, insulating members 90B, and insulating members 90C is provided on the conductor bar 63, the amount of the insulating member used can be reduced, so the manufacturing cost of the rotor 60A can be reduced. Can be reduced.
実施の形態3.
 図16は本発明の実施の形態3に係る誘導電動機が備える回転子に用いられる導体バーの外観図である。実施の形態3の誘導電動機100には、図6に示す導体バー63の代わりに導体バー63Aが用いられる。
Embodiment 3 FIG.
FIG. 16 is an external view of a conductor bar used in the rotor included in the induction motor according to Embodiment 3 of the present invention. In the induction motor 100 of the third embodiment, a conductor bar 63A is used instead of the conductor bar 63 shown in FIG.
 導体バー63Aは、複数の細線材63bで構成される。複数の細線材63bは絶縁シート91で束ねられている。複数の細線材63bを束ねる前の絶縁シート91は帯状である。複数の細線材63bを束ねた状態で帯状の絶縁シート91が巻かれることにより、1つの導体バー63Aが形成される。 The conductor bar 63A is composed of a plurality of fine wires 63b. The plurality of thin wire members 63 b are bundled with an insulating sheet 91. The insulating sheet 91 before bundling the plurality of thin wire members 63b has a strip shape. One conductor bar 63A is formed by winding a strip-shaped insulating sheet 91 in a state where a plurality of thin wire members 63b are bundled.
 実施の形態3では、実施の形態1と同様の効果を得ることができると共に、複数の細線材63bのそれぞれの線径を変更し、また細線材63bの使用本数を変更することによって、スロット62の軸方向と直交する断面形状に合わせて、導体バー63Aの軸方向と直交する断面形状を容易に変更することができる。そのため、導体バー63Aの形状を、スロット62の断面形状が異なる様々な種類の回転子鉄心61に対応させることができるため、回転子60の生産効率が向上する。 In the third embodiment, the same effect as in the first embodiment can be obtained, and the slot 62 can be obtained by changing the diameter of each of the plurality of fine wire members 63b and changing the number of the thin wire members 63b used. The cross-sectional shape orthogonal to the axial direction of the conductor bar 63A can be easily changed in accordance with the cross-sectional shape orthogonal to the axial direction. Therefore, since the shape of the conductor bar 63A can be made to correspond to various types of rotor cores 61 having different cross-sectional shapes of the slots 62, the production efficiency of the rotor 60 is improved.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,2 ベアリング、3 ハウジング、10 固定子、11 フレーム、12 端板、60,60A 回転子、61 回転子鉄心、61a 壁面、61b 一端面、61c 他端面、62 スロット、63,63A 導体バー、63b 細線材、64 エンドリング、65 ダイキャスト部材、66,91 絶縁シート、70 シャフト、90 絶縁被膜、90A,90B,90C 絶縁部材、100 誘導電動機、661 折り返し部。 1, 2, bearing, 3 housing, 10 stator, 11 frame, 12 end plate, 60, 60A rotor, 61 rotor core, 61a wall surface, 61b one end surface, 61c other end surface, 62 slots, 63, 63A conductor bar, 63b fine wire material, 64 end ring, 65 die cast member, 66, 91 insulating sheet, 70 shaft, 90 insulating coating, 90A, 90B, 90C insulating member, 100 induction motor, 661 folded portion.

Claims (8)

  1.  回転子鉄心と、
     前記回転子鉄心に形成される複数のスロットのそれぞれに設けられる導体バーと、
     前記回転子鉄心の軸方向の端部に設けられ、複数の前記導体バーを互いに電気的に接続するエンドリングと、
     前記スロットを形作る壁面と前記導体バーとの間に設けられる絶縁部材と、
     前記壁面と前記絶縁部材との間に設けられる非磁性導体材料と、
     を備えることを特徴とする誘導電動機の回転子。
    The rotor core,
    A conductor bar provided in each of a plurality of slots formed in the rotor core;
    An end ring provided at an axial end of the rotor core, and electrically connecting the plurality of conductor bars to each other;
    An insulating member provided between a wall forming the slot and the conductor bar;
    A nonmagnetic conductor material provided between the wall surface and the insulating member;
    A rotor for an induction motor comprising:
  2.  前記導体バーの材料は、銅であり、
     前記非磁性導体材料及び前記エンドリングのそれぞれの材料は、アルミニウムであることを特徴とする請求項1に記載の誘導電動機の回転子。
    The conductor bar material is copper,
    The induction motor rotor according to claim 1, wherein each material of the nonmagnetic conductor material and the end ring is aluminum.
  3.  前記絶縁部材は、絶縁シートであることを特徴とする請求項1又は2に記載の誘導電動機の回転子。 3. The rotor for an induction motor according to claim 1, wherein the insulating member is an insulating sheet.
  4.  前記絶縁部材の端部には折り返し部が設けられていることを特徴とする請求項3に記載の誘導電動機の回転子。 4. The induction motor rotor according to claim 3, wherein a folded portion is provided at an end of the insulating member.
  5.  前記導体バーは、複数の線材を束ねて一体に構成したものであることを特徴とする請求項1から4の何れか一項に記載の誘導電動機の回転子。 The rotor of an induction motor according to any one of claims 1 to 4, wherein the conductor bar is formed by bundling a plurality of wires and integrally forming the conductor bar.
  6.  前記絶縁部材は、絶縁被膜であることを特徴とする請求項1又は2に記載の誘導電動機の回転子。 3. The rotor of an induction motor according to claim 1, wherein the insulating member is an insulating film.
  7.  前記軸方向の前記絶縁被膜の幅は、前記軸方向の前記回転子鉄心の幅よりも狭いことを特徴とする請求項6に記載の誘導電動機の回転子。 The rotor of an induction motor according to claim 6, wherein the width of the insulating coating in the axial direction is narrower than the width of the rotor core in the axial direction.
  8.  請求項1から7の何れか一項に記載の誘導電動機の回転子と、
     内側に前記回転子が設けられる固定子と、
     を備えることを特徴とする誘導電動機。
    A rotor for an induction motor according to any one of claims 1 to 7,
    A stator provided with the rotor inside,
    An induction motor comprising:
PCT/JP2018/010603 2018-03-16 2018-03-16 Induction motor rotor and induction motor WO2019176107A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880091130.7A CN111903037B (en) 2018-03-16 2018-03-16 Rotor of induction motor and induction motor
PCT/JP2018/010603 WO2019176107A1 (en) 2018-03-16 2018-03-16 Induction motor rotor and induction motor
JP2019547167A JP6667731B2 (en) 2018-03-16 2018-03-16 Induction motor rotor and induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010603 WO2019176107A1 (en) 2018-03-16 2018-03-16 Induction motor rotor and induction motor

Publications (1)

Publication Number Publication Date
WO2019176107A1 true WO2019176107A1 (en) 2019-09-19

Family

ID=67907582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010603 WO2019176107A1 (en) 2018-03-16 2018-03-16 Induction motor rotor and induction motor

Country Status (3)

Country Link
JP (1) JP6667731B2 (en)
CN (1) CN111903037B (en)
WO (1) WO2019176107A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078234A (en) * 2018-10-23 2020-05-21 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Basket type rotor
JP6877657B1 (en) * 2020-05-15 2021-05-26 三菱電機株式会社 Manufacturing method of cage rotor and cage rotor
FR3105642A1 (en) * 2019-12-20 2021-06-25 Valeo Equipements Electriques Moteur Coiled part of rotating electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215286A (en) * 1996-02-02 1997-08-15 Mitsubishi Electric Corp Squirrel-cage induction motor and its manufacture
JPH09266647A (en) * 1996-03-27 1997-10-07 Toyota Autom Loom Works Ltd Rotor structure of motor
JPH1098843A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Rotating electric apparatus
JPH10225034A (en) * 1997-02-12 1998-08-21 Hitachi Ltd Rotor for dynamo-electric machine
JPH1198782A (en) * 1997-09-17 1999-04-09 Denso Corp Rotor for rotary electric machine
JP2004023836A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Method for molding insulating paper for rectangular slot of rotary electric machine
JP2009278701A (en) * 2008-05-12 2009-11-26 Toyota Industries Corp Cage-type induction machine and rotor of cage-type induction machine
JP2010268561A (en) * 2009-05-13 2010-11-25 Toshiba Corp Rotor for rotating electrical machine and the rotating electrical machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659129A (en) * 1970-09-15 1972-04-25 Gen Electric Insulated bar dynamoelectric machine and method of forming
US8395296B2 (en) * 2009-09-16 2013-03-12 Siemens Energy, Inc. Tape structure with conductive outer side and electrically insulating inner side
US8274190B2 (en) * 2010-05-28 2012-09-25 General Electric Company Electric machine rotor bar and method of making same
CN102347671A (en) * 2010-07-23 2012-02-08 江允良 Cage type induction rotor capable of speed regulating operation
JP2012175727A (en) * 2011-02-17 2012-09-10 Toyota Industries Corp Rotor used for induction motor, and induction motor
JP2012175726A (en) * 2011-02-17 2012-09-10 Toyota Industries Corp Rotor for use in induction motor, induction motor, and method for manufacturing rotor
US20130033144A1 (en) * 2011-08-04 2013-02-07 GM Global Technology Operations LLC Stir-welded induction rotor
JP2015162913A (en) * 2014-02-26 2015-09-07 住友重機械工業株式会社 Induction motor and manufacturing method of rotor thereof
US20170104380A1 (en) * 2015-10-08 2017-04-13 Uqm Technologies, Inc. Slot liner thermal conductivity for electric motors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215286A (en) * 1996-02-02 1997-08-15 Mitsubishi Electric Corp Squirrel-cage induction motor and its manufacture
JPH09266647A (en) * 1996-03-27 1997-10-07 Toyota Autom Loom Works Ltd Rotor structure of motor
JPH1098843A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Rotating electric apparatus
JPH10225034A (en) * 1997-02-12 1998-08-21 Hitachi Ltd Rotor for dynamo-electric machine
JPH1198782A (en) * 1997-09-17 1999-04-09 Denso Corp Rotor for rotary electric machine
JP2004023836A (en) * 2002-06-13 2004-01-22 Toyota Motor Corp Method for molding insulating paper for rectangular slot of rotary electric machine
JP2009278701A (en) * 2008-05-12 2009-11-26 Toyota Industries Corp Cage-type induction machine and rotor of cage-type induction machine
JP2010268561A (en) * 2009-05-13 2010-11-25 Toshiba Corp Rotor for rotating electrical machine and the rotating electrical machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078234A (en) * 2018-10-23 2020-05-21 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Basket type rotor
JP7398920B2 (en) 2018-10-23 2023-12-15 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト squirrel cage rotor
FR3105642A1 (en) * 2019-12-20 2021-06-25 Valeo Equipements Electriques Moteur Coiled part of rotating electric machine
JP6877657B1 (en) * 2020-05-15 2021-05-26 三菱電機株式会社 Manufacturing method of cage rotor and cage rotor
WO2021229807A1 (en) * 2020-05-15 2021-11-18 三菱電機株式会社 Method for producing squirrel-cage rotor, and squirrel-cage rotor
CN115516744A (en) * 2020-05-15 2022-12-23 三菱电机株式会社 Cage rotor manufacturing method and cage rotor
CN115516744B (en) * 2020-05-15 2023-07-21 三菱电机株式会社 Method for manufacturing cage rotor and cage rotor

Also Published As

Publication number Publication date
JP6667731B2 (en) 2020-03-18
CN111903037B (en) 2021-08-17
JPWO2019176107A1 (en) 2020-04-16
CN111903037A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
JP5692247B2 (en) Collective conductor for motor winding
EP2909922B1 (en) Stator of rotary electric machine
JP4905568B2 (en) Rotating electric machine stator
TWI536712B (en) Axial air gap type rotary motor
JP2018064421A (en) Stator of dynamo-electric machine
CN109906545B (en) Synchronous reluctance type rotating electric machine
CN108123564B (en) Rotary electric machine and specific adaptation method for producing a rotary electric machine
WO2019176107A1 (en) Induction motor rotor and induction motor
JP5157755B2 (en) Rotating electric machine stator
CN106208427A (en) Motor armature and motor
JP2018068090A (en) Synchronous reluctance type rotary electric machine
WO2014102942A1 (en) Method for manufacturing squirrel-cage rotor, method for manufacturing induction motor, and squirrel-cage rotor
US9819238B2 (en) Rotary electric machine having stator with coil conductors having different cross-sectional width
US20180145549A1 (en) Rotary electric machine and manufacturing method for rotary electric machine
JP2011234443A (en) Coil and armature
JP7254140B1 (en) Rotating electric machine
JP2018129975A (en) Rotary electric machine, and manufacturing method and manufacturing device for tortoiseshell-shaped coil
JP2010011635A (en) Rotating electrical machine
JP2012161126A (en) Electric motor, compressor, and apparatus
JP2021097499A (en) Stator of rotary electric machine
JP4926192B2 (en) Electric motor stator
JP6855993B2 (en) Rotating machine stator
JP5553241B2 (en) Rotating electric machine
JP2008035646A (en) Magnetic-pole concentrated winding structure for stator
JP2012187003A (en) Induction motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547167

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909895

Country of ref document: EP

Kind code of ref document: A1