JP5157755B2 - Rotating electric machine stator - Google Patents

Rotating electric machine stator Download PDF

Info

Publication number
JP5157755B2
JP5157755B2 JP2008220863A JP2008220863A JP5157755B2 JP 5157755 B2 JP5157755 B2 JP 5157755B2 JP 2008220863 A JP2008220863 A JP 2008220863A JP 2008220863 A JP2008220863 A JP 2008220863A JP 5157755 B2 JP5157755 B2 JP 5157755B2
Authority
JP
Japan
Prior art keywords
core
outer cylinder
stator
assembly
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008220863A
Other languages
Japanese (ja)
Other versions
JP2010057304A (en
Inventor
典幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008220863A priority Critical patent/JP5157755B2/en
Priority to US12/547,777 priority patent/US7911108B2/en
Publication of JP2010057304A publication Critical patent/JP2010057304A/en
Application granted granted Critical
Publication of JP5157755B2 publication Critical patent/JP5157755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings

Description

本発明は回転電機の固定子に関し、詳しくは分割コアを外筒に焼きバメなどによる勘合固定してなる回転電機の固定子に関する。   The present invention relates to a stator of a rotating electrical machine, and more particularly to a stator of a rotating electrical machine in which a split core is fitted and fixed to an outer cylinder by shrinkage or the like.

近年、電動機および発電機として使用される回転電機において、小型高出力および高品質が求められている。   In recent years, rotating electrical machines used as electric motors and generators have been required to have small size, high output, and high quality.

たとえば、車両に搭載される回転電機においては、回転電機を搭載するためのスペースが小さくなってきている一方で、出力の向上が求められている。   For example, in a rotating electrical machine mounted on a vehicle, the space for mounting the rotating electrical machine is becoming smaller, while an improvement in output is required.

従来の回転電機として、周方向に分割された固定子コアを円環状に配置し、その外周に円筒状のケースを嵌めて固定する構造が知られている(たとえば、特許文献1参照)。   As a conventional rotating electrical machine, a structure is known in which a stator core divided in the circumferential direction is arranged in an annular shape, and a cylindrical case is fitted and fixed to the outer periphery thereof (see, for example, Patent Document 1).

特許文献1では、円環状に配置された分割コアの外周に円筒状ケースを嵌めこむ方法として、焼きバメと呼ばれる方法を開示している。この焼きバメ工程では、円環状コアの外周寸法に比べて小さな内周寸法の円筒状ケースを用意し、この円筒状ケースを加熱して内周寸法を拡径した状態で円筒状ケース内に円環状コアを挿入する。焼きバメ後の円環状コアと円筒状ケースとはその寸法差により生じる応力によって固定される。
特開2002−51485号公報
Patent Document 1 discloses a method called shrinking as a method of fitting a cylindrical case around the outer periphery of a split core arranged in an annular shape. In this shrinking process, a cylindrical case having an inner peripheral size smaller than the outer peripheral size of the annular core is prepared, and the cylindrical case is heated to expand the inner peripheral size, and then the circular case is placed inside the cylindrical case. Insert the annular core. The annular core after shrinking and the cylindrical case are fixed by the stress generated by the dimensional difference.
JP 2002-51485 A

ところで、連続巻線よりなる固定子コイルを製造する一方法として、たとえば以下に示すものがある。   By the way, as a method for manufacturing a stator coil composed of continuous windings, for example, there is the following method.

まず、電気導体線から、並列した複数の直状部が複数のターン部で連結されてなる成形体を複数成形する。そして、これらの成形体を組み込んで組み込み体を形成する。   First, a plurality of molded bodies in which a plurality of parallel straight portions are connected by a plurality of turn portions from an electric conductor wire are formed. Then, these molded bodies are assembled to form an assembled body.

この組み込み体においては、一つの成形体と他の一つの成形体とからなる複数の成形体組が該組み込み体の長手方向に並列している。また、この組み込み体を構成する各成形体組は、一つの成形体における複数の直状部と他の一つの成形体における複数の直状部とがそれぞれ重ね合わされて形成された複数の直状重ね合わせ部を組み込み体の長手方向に有している。   In this built-in body, a plurality of molded body sets composed of one molded body and another one molded body are arranged in parallel in the longitudinal direction of the built-in body. In addition, each molded body set constituting this built-in body includes a plurality of straight shapes formed by superimposing a plurality of straight portions in one molded body and a plurality of straight portions in another one molded body, respectively. An overlapping portion is provided in the longitudinal direction of the built-in body.

このため、この組み込み体においては、複数の直状重ね合わせ部が組み込み体の長手方向に並列している。そして、この組み込み体を芯部材に所定回数巻回して巻き取り、巻き取り体を形成する。この巻き取り体においては、一つの成形体組における複数の直状重ね合わせ部が径方向に積層されて形成された複数の直状積層部を周方向に有している。   For this reason, in this assembled body, a plurality of straight overlapping portions are arranged in parallel in the longitudinal direction of the assembled body. Then, the built-in body is wound around the core member a predetermined number of times to form a wound body. This winding body has a plurality of straight laminated portions formed in a circumferential direction in which a plurality of straight laminated portions in one molded body set are laminated in the radial direction.

こうして得られた巻き取り体は円筒籠状の固定子コイルとして用いられる。この固定子コイルを固定子コアに組み付けるにあたっては、各直状積層部が固定子コアのスロット内に配設されるとともに、各ターン部がスロットの外部に配設される。   The wound body thus obtained is used as a cylindrical saddle-shaped stator coil. In assembling the stator coil to the stator core, each straight laminated portion is disposed in the slot of the stator core, and each turn portion is disposed outside the slot.

ところが、この円筒籠状の固定子コイルを、すでにコアの形状をなしている一体型の固定子コアに組み付けるのは非常に困難である。そこで、環状のコアを円周上で複数に分割した形状の分割コアを用いて、それぞれの分割コアを円筒籠状の固定子コイルの外側から組み付けた後に、全体を外筒に嵌め込んで固定子を製造する。この外筒への嵌め込みは、外筒を加熱して熱膨張させて嵌め込む焼きバメで行われる。   However, it is very difficult to assemble this cylindrical saddle-shaped stator coil into an integrated stator core that is already in the shape of a core. So, using a split core with a shape that divides the annular core into multiple parts on the circumference, after assembling each split core from the outside of the cylindrical cage-shaped stator coil, the whole is fitted into the outer cylinder and fixed. Produce a child. The fitting into the outer cylinder is performed by shrinking into which the outer cylinder is heated and thermally expanded to be fitted.

コア組み付け体に外筒を焼きバメする工程では、コア組み付け体の外周寸法に比べて小さな内周寸法の外筒を用意し、この外筒を加熱して内周寸法を熱膨張で拡径した状態で外筒内にコア組み付け体を挿入する。焼きバメ後のコア組み付け体と外筒とはその寸法差により生じる応力によって固定される。コア組み付け体の外周寸法から外筒の内周寸法を引いた寸法差である締め代と、焼きバメ後のコア組み付け体と外筒との間に生じる応力と、の間には、締め代が大きいほど応力が大きくなるといった線形の関係がある。   In the process of shrinking and shrinking the outer cylinder on the core assembly, an outer cylinder having an inner circumference smaller than the outer circumference of the core assembly was prepared, and the outer circumference was heated to expand the inner circumference by thermal expansion. Insert the core assembly into the outer cylinder in this state. The core assembly and the outer cylinder after shrinking are fixed by the stress generated by the dimensional difference. The tightening allowance is between the tightening allowance, which is the difference between the outer peripheral dimension of the core assembly and the inner peripheral dimension of the outer cylinder, and the stress generated between the core assembly after shrinking and the outer cylinder. There is a linear relationship that the greater the value, the greater the stress.

締め代は、コア組み付け体と外筒との固定に必要な応力が得られる値にすればよいが、各部品の寸法をその締め代の値に完全一致させて製造することはほぼ不可能であり、一般に寸法公差を設けている。この寸法公差を大きくすると部品製造上の困難さについては解消するが、以下のような問題があった。   The tightening allowance may be set to a value that can provide the stress necessary for fixing the core assembly and the outer cylinder, but it is almost impossible to manufacture with the dimensions of each part being exactly the same as the tightening allowance. Yes, generally with dimensional tolerances. Increasing this dimensional tolerance eliminates the difficulty in manufacturing parts, but has the following problems.

すなわち、寸法公差が大きいために締め代が大きくなると、コア組み付け体と外筒との間に生じる応力が必要以上に大きくなり、これによって分割コア同士を突き合わせている箇所には周方向の大きな応力が発生し、この応力による損失が発生する虞があった。   That is, if the tightening margin increases due to the large dimensional tolerance, the stress generated between the core assembly and the outer cylinder becomes unnecessarily large. There was a risk of loss due to this stress.

また、こうなると、分割コアからなる円環状コアの変形、コア内径寸法のばらつき、コア内径の真円度の低下などの問題も生じてくる。   In addition, this causes problems such as deformation of the annular core composed of the split cores, variations in the core inner diameter, and a decrease in the roundness of the core inner diameter.

さらに、寸法公差が大きいと、寸法公差下限と上限とでは、コア組み付け体と外筒との間に生じる応力の違いが大きく、性能(損失)のばらつきが大きいという問題があった。   Furthermore, when the dimensional tolerance is large, there is a problem that the difference in stress generated between the core assembly and the outer cylinder is large between the lower limit and the upper limit of the dimensional tolerance, and the performance (loss) varies greatly.

本発明は上記実情に鑑みてなされたものであり、寸法公差を大きくとりながらも、コア組み付け体と外筒との間に生じる応力の急激な増加を抑えることを解決すべき技術課題とする。   This invention is made | formed in view of the said situation, and makes it the technical subject which should be solved to suppress the rapid increase of the stress which arises between a core assembly and an outer cylinder, taking a large dimensional tolerance.

以下、上記課題を解決するのに適した各手段につき、必要に応じて作用効果等を付記しつつ説明する。   Hereinafter, each means suitable for solving the above-described problems will be described with additional effects and the like as necessary.

本発明に係る回転電機の固定子は、複数の相巻線を有し、分割コアを組み付けたコア組み付け体の外周に外筒を嵌合固定してなる回転電機の固定子であって、前記分割コアの外周と前記外筒の内周との間には、前記分割コアの周方向隣の分割コアとの突合せ端部が、前記外筒の内周の当たり面と径方向に対向するように、空隙が設けられており、前記空隙は、前記コア組み付け体の外周の形状によって形成され、前記コア組み付け体と前記外筒との間を軸方向に貫通するスリットであり、前記スリットは、前記分割コアの周方向の数の倍数だけ形成され、前記嵌合固定は、焼きバメであることを特徴とする。 A stator of a rotating electrical machine according to the present invention is a stator of a rotating electrical machine having a plurality of phase windings and an outer cylinder fitted and fixed to the outer periphery of a core assembly in which a split core is assembled, Between the outer periphery of the split core and the inner periphery of the outer cylinder, the abutting end of the split core adjacent to the peripheral core in the circumferential direction is opposed to the contact surface of the inner periphery of the outer cylinder in the radial direction. The gap is formed by the shape of the outer periphery of the core assembly, and is a slit that penetrates between the core assembly and the outer cylinder in the axial direction. It is formed by a multiple of the number of the divided cores in the circumferential direction, and the fitting and fixing is shrinkage .

本発明によれば、分割コアの外周と外筒の内周との間に空隙を設けることにより、締め代の増加と、コア組み付け体との外筒との間に生じる応力の増加と、の関係をなだらかなものにすることができる。これにより、分割コアの外周および外筒の内周の寸法公差を大きくとりながらも、コア組み付け体と外筒との間に生じる応力の急激な増加を抑えることができる。 According to the present invention, by providing a gap between the outer periphery of the split core and the inner periphery of the outer cylinder, an increase in tightening margin and an increase in stress generated between the outer cylinder and the core assembly are obtained. Relationships can be made gentle. Thereby, it is possible to suppress a rapid increase in stress generated between the core assembly and the outer cylinder, while taking a large dimensional tolerance between the outer circumference of the split core and the inner circumference of the outer cylinder.

また、隣り合う分割コア同士の突合せ端部には、空隙でなく、外筒の内周の当り面が当たるようにしたので、締め代による力を突合せ端部に均一に加えることができ、応力による損失を低減し、コア内径の寸法ばらつきを抑え、真円度の低下を防止することができる。 In addition, the abutting end of the adjacent split cores is not a gap but a contact surface on the inner periphery of the outer cylinder so that the force due to tightening can be applied uniformly to the abutting end, and the stress The loss due to the above can be reduced, the dimensional variation of the core inner diameter can be suppressed, and the roundness can be prevented from decreasing.

また、空隙としてコア組み付け体と外筒との間を軸方向に貫通するスリットを設けたので、たとえば、このスリット内に冷却風や冷却水を流すことができ、このようにすれば、コアおよび外筒を冷却することができ、高い性能を維持することができる。 Further, since a slit is provided as an air gap between the core assembly and the outer cylinder in the axial direction, for example, cooling air or cooling water can flow in the slit. The outer cylinder can be cooled, and high performance can be maintained.

また、前記スリットが、前記分割コアの周方向の数の倍数だけ形成されているので、隣り合う分割コア同士の突合せ端部に、外筒の内周の当り面を均等に当てることができる。 Further, since the slit is formed by a multiple of the number of the divided cores in the circumferential direction, the contact surface of the inner periphery of the outer cylinder can be evenly applied to the abutting end portions of the adjacent divided cores.

また、空隙が、コア組み付け体の外周の形状すなわち分割コアの形状によって形成されているので、分割コアを構成する積層鋼板を外周位置に凹部を有するものにするだけでよく、製造上、工程の増加を招くことがないし、低コストで製造することができるという効果を奏する。 Further, since the gap is formed by the shape of the outer periphery of the core assembly, that is, the shape of the split core, it is only necessary to make the laminated steel plate constituting the split core have a recess at the outer peripheral position. There is no increase in the manufacturing cost, and there is an effect that it can be manufactured at low cost.

なお、本発明において、コア組み付け体の外周と外筒の内周との間の空隙は、コア組み付け体の外周の形状および外筒の内周面の形状の両方によって形成されるものでもよいことは言うまでもない。   In the present invention, the gap between the outer periphery of the core assembly and the inner periphery of the outer cylinder may be formed by both the outer peripheral shape of the core assembly and the inner peripheral surface of the outer cylinder. Needless to say.

また、焼きバメであれば、コア組み付け体の外周に外筒を焼きバメして嵌合固定することにより、コア組み付け体の外筒への嵌挿をスムーズに行うことができるとともに、確実な固定力を得ることができるという効果を奏する。 In addition, if it is shrink-fitted, the core can be smoothly inserted into the outer cylinder and fixed securely by shrinking the outer cylinder on the outer periphery of the core assembly. There is an effect that power can be obtained.

以下、本発明に係る回転電機の固定子の実施形態について詳しく説明する。   Hereinafter, embodiments of a stator for a rotating electrical machine according to the present invention will be described in detail.

なお、説明する実施形態はあくまでも実施形態の例にすぎず、本発明に係る回転電機の固定子は、下記実施形態に限定されるものではない。本発明に係る回転電機の固定子は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   The embodiment to be described is merely an example of the embodiment, and the stator of the rotating electrical machine according to the present invention is not limited to the following embodiment. The stator of the rotating electrical machine according to the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art without departing from the gist of the present invention.

(実施形態1)
まず、本実施形態の回転電機の固定子を用いた回転電機1の構成について説明する。
(Embodiment 1)
First, the structure of the rotary electric machine 1 using the stator of the rotary electric machine of this embodiment is demonstrated.

この回転電機1は、図1に示すように、略有底筒状の一対のハウジング部材100、101が開口部同士で接合されてなるハウジング10と、ハウジング10に軸受け110、111を介して回転自在に支承された回転軸20と、回転軸20に固定された回転子2と、ハウジング10の内部で回転子2を包囲する位置でハウジング10に固定された固定子3と、を備えている。   As shown in FIG. 1, the rotary electric machine 1 is rotated by a housing 10 in which a pair of substantially bottomed cylindrical housing members 100 and 101 are joined to each other through openings and bearings 110 and 111. A rotating shaft 20 that is freely supported, a rotor 2 fixed to the rotating shaft 20, and a stator 3 fixed to the housing 10 at a position surrounding the rotor 2 inside the housing 10. .

回転子2は、永久磁石により周方向に交互に異なる磁極を、固定子3の内周側と向き合う外周側に複数形成している。回転子2の磁極の数は、回転電機により異なるため限定されるものではない。本実施形態では、8極(N極:4、S極:4)の回転子が用いられている。   The rotor 2 is formed with a plurality of magnetic poles that are alternately different in the circumferential direction by permanent magnets on the outer peripheral side facing the inner peripheral side of the stator 3. The number of magnetic poles of the rotor 2 is not limited because it varies depending on the rotating electric machine. In this embodiment, an 8-pole rotor (N pole: 4, S pole: 4) is used.

固定子3は、図2に示すように、固定子コア30と、複数の各相巻線から形成された三相の固定子コイル4と、固定子コア30に外挿された外筒5と、を備えた構成を有している。なお、詳しくは後述するが、本実施の形態の固定子3では、外筒5の内周面に設けたスリット5bによって、固定子コア30と外筒5との間に空隙が形成されている。   As shown in FIG. 2, the stator 3 includes a stator core 30, a three-phase stator coil 4 formed from a plurality of phase windings, and an outer cylinder 5 extrapolated to the stator core 30. It has the structure provided with. As will be described in detail later, in the stator 3 of the present embodiment, a gap is formed between the stator core 30 and the outer cylinder 5 by a slit 5 b provided on the inner peripheral surface of the outer cylinder 5. .

固定子コア30は、図3に示すように、内周に複数のスロット31が形成された円環状を呈している。複数のスロット31は、その深さ方向が径方向と一致するように形成されている。固定子コア30に形成されたスロット31の数は、回転子2の磁極数に対し、固定子コイル4の一相あたり2個の割合で形成されている。本実施形態では、8×3×2=48より、スロット数は48個とされている。   As shown in FIG. 3, the stator core 30 has an annular shape in which a plurality of slots 31 are formed on the inner periphery. The plurality of slots 31 are formed such that the depth direction thereof coincides with the radial direction. The number of slots 31 formed in the stator core 30 is formed at a ratio of two per one phase of the stator coil 4 with respect to the number of magnetic poles of the rotor 2. In this embodiment, since 8 × 3 × 2 = 48, the number of slots is 48.

固定子コア30は、図4に示す分割コア32を所定の数(本実施形態では、24個)だけ周方向に連結して形成されている。分割コア32は、一つのスロット31を区画するとともに、周方向で隣接する分割コア32との間で一つのスロット31を区画する形状を呈している。具体的には、分割コア32は、径方向内方に伸びる一対のティース部320と、ティース部320を径方向外方で連結するバックコア部321とを有している。   The stator core 30 is formed by connecting a predetermined number (24 in the present embodiment) of the split cores 32 shown in FIG. 4 in the circumferential direction. The split core 32 has a shape in which one slot 31 is defined and one slot 31 is defined between the adjacent split cores 32 in the circumferential direction. Specifically, the split core 32 has a pair of teeth portions 320 that extend radially inward and a back core portion 321 that connects the teeth portions 320 radially outward.

固定子コア30を構成する分割コア32は、電磁鋼板を積層させて形成されている。なお、積層された電磁鋼板の間には、絶縁薄膜が配置されている。固定子コア30を構成する分割コア32は、この電磁鋼板の積層体からだけでなく、従来公知の金属薄板および絶縁薄膜を用いて形成してもよい。   The split core 32 that constitutes the stator core 30 is formed by laminating electromagnetic steel plates. An insulating thin film is disposed between the laminated electrical steel sheets. The split core 32 constituting the stator core 30 may be formed not only from the laminated body of electromagnetic steel sheets but also using a conventionally known metal thin plate and insulating thin film.

なお、本発明に適用可能な固定子コアの形状は、図3および図4に示したものに限られるものではなく、たとえば図5および図6に示す形状のものであってもよい。   The shape of the stator core applicable to the present invention is not limited to that shown in FIGS. 3 and 4, and may be the shape shown in FIGS. 5 and 6, for example.

この図5および図6に示す例の固定子コア1030は、内周に複数のスロット1031が形成された円環状を呈しており、分割コア1032を周方向に連結して形成されている。分割コア1032は、一つのスロット1031を区画するとともに、周方向で隣接する分割コア1032との間で一つのスロット1031を区画する。スロット1031は、径方向内方に伸びるティース部1320と隣接するティース部1320によって区画される。また、この例のバックコア部1321は、径方向において他の分割コア1032と重ならない形状である。なお、分割コア1032の数や材質等は図4に示した分割コイル32と同様である。   The stator core 1030 in the example shown in FIGS. 5 and 6 has an annular shape in which a plurality of slots 1031 are formed on the inner periphery, and is formed by connecting the divided cores 1032 in the circumferential direction. The divided core 1032 divides one slot 1031 and divides one slot 1031 between the divided cores 1032 adjacent in the circumferential direction. The slot 1031 is defined by a tooth portion 1320 extending radially inward and a tooth portion 1320 adjacent to the tooth portion 1320. In addition, the back core portion 1321 in this example has a shape that does not overlap with the other divided cores 1032 in the radial direction. The number, material, and the like of the split core 1032 are the same as those of the split coil 32 shown in FIG.

固定子コイル4は、複数の巻線40を所定の巻回方法で巻回してなる。この固定子コイル4を構成する巻線40は、図7(A)に示すように、銅製の導体41と、導体41の外周を覆い導体41を絶縁する内層420および外層421からなる絶縁被膜42とから形成されている。   The stator coil 4 is formed by winding a plurality of windings 40 by a predetermined winding method. As shown in FIG. 7A, the winding 40 constituting the stator coil 4 includes a copper conductor 41 and an insulating coating 42 comprising an inner layer 420 and an outer layer 421 covering the outer periphery of the conductor 41 and insulating the conductor 41. And is formed from.

このように、内層420および外層421からなる絶縁皮膜42の厚みが厚いので、巻線40同士を絶縁するために巻線40同士の間に絶縁紙等を挟み込む必要がなくなっているが、巻線40同士の間あるいは固定子コア30と固定子コイル4との間に絶縁紙を配設してもよい。   As described above, since the insulating film 42 composed of the inner layer 420 and the outer layer 421 is thick, it is not necessary to sandwich insulating paper or the like between the windings 40 in order to insulate the windings 40 from each other. Insulating paper may be provided between the 40 or between the stator core 30 and the stator coil 4.

さらに、固定子コイル4の巻線40は、図7(B)に示すように、内層420および外層421からなる絶縁皮膜42の外周をエポキシ樹脂等からなる融着材49で被覆して形成してもよい。この場合、回転電機1に発生する熱により融着材49が絶縁皮膜42よりも早く溶融するので、同じスロット31に設置されている複数の巻線40同士が融着材49同士により熱接着する。その結果、同じスロット31に設置されている複数の巻線40が一体化し巻線40同士が鋼体化することで、スロット31内の巻線40の機械的強度が向上する。   Further, the winding 40 of the stator coil 4 is formed by coating the outer periphery of the insulating film 42 made of the inner layer 420 and the outer layer 421 with a fusion material 49 made of epoxy resin or the like, as shown in FIG. 7B. May be. In this case, since the fusion material 49 is melted faster than the insulating film 42 by the heat generated in the rotating electrical machine 1, the plurality of windings 40 installed in the same slot 31 are thermally bonded by the fusion material 49. . As a result, the plurality of windings 40 installed in the same slot 31 are integrated to form a steel body between the windings 40, so that the mechanical strength of the winding 40 in the slot 31 is improved.

固定子コイル4は、図8に示すように、それぞれが2本の三相巻線(U1、U2、V1、V2、W1、W2)により形成されている。   As shown in FIG. 8, each of the stator coils 4 is formed by two three-phase windings (U1, U2, V1, V2, W1, W2).

固定子コイル4は、図9に示すように、複数の巻線40を所定の形状に組み込んだ組み込み体47(図10参照)を巻回してなる巻き取り体48である。固定子コイル4を構成する巻線40は、固定子コア30の内周側で周方向に沿って波巻きされる形状で成形されている。   As shown in FIG. 9, the stator coil 4 is a winding body 48 formed by winding a built-in body 47 (see FIG. 10) in which a plurality of windings 40 are incorporated in a predetermined shape. The winding 40 constituting the stator coil 4 is formed in a shape that is wave-wound along the circumferential direction on the inner peripheral side of the stator core 30.

固定子コイル4を構成する巻線40は、固定子コア30のスロット31に収容される直線状のスロット収容部43と、隣り合ったスロット収容部43同士を接続するターン部44と、を備えている。スロット収容部43は、所定のスロット数(本実施形態では、3相×2個=6個)ごとのスロット31に収容されている。ターン部44は、固定子コア30の軸方向の端面から突出して形成されている。   The winding 40 constituting the stator coil 4 includes a linear slot accommodating portion 43 accommodated in the slot 31 of the stator core 30 and a turn portion 44 that connects the adjacent slot accommodating portions 43 to each other. ing. The slot accommodating portions 43 are accommodated in the slots 31 for each predetermined number of slots (in this embodiment, 3 phases × 2 = 6). The turn portion 44 is formed so as to protrude from the end surface of the stator core 30 in the axial direction.

固定子コイル4は、複数の巻線40の両端を固定子コア30の軸方向の端面から突出させ、かつ複数の巻線40を周方向に沿って波状に巻装した状態で形成されている。固定子コイル4の1相は、第1の巻線部40aと第2の巻線部40bとの端部同士を溶接により接合して形成されている。すなわち、2本の電気導体線から成形した2つの成形体の端部同士を接合して形成された一つの組体から固定子コイル4の1相が形成されている。   The stator coil 4 is formed in a state in which both ends of the plurality of windings 40 protrude from the axial end face of the stator core 30 and the plurality of windings 40 are wound in a wave shape along the circumferential direction. . One phase of the stator coil 4 is formed by welding the ends of the first winding portion 40a and the second winding portion 40b together by welding. That is, one phase of the stator coil 4 is formed from one assembly formed by joining the ends of two molded bodies formed from two electric conductor wires.

第1の巻線部40aのスロット収容部43と第2の巻線部40bのスロット収容部43とは、同一スロット31に収容される。このとき、第一の巻線部40aのスロット収容部43と、第二の巻線部40bのスロット収容部43とは、スロット31の深さ方向で交互に位置するように設置されている。そして、第1の巻線部40aと第2の巻線部40bとの接合部45は、第1の巻線部40aと第2の巻線部40bの巻装される方向が反転するスロット収容部43よりなる折り返し部46に形成されている。   The slot accommodating portion 43 of the first winding portion 40a and the slot accommodating portion 43 of the second winding portion 40b are accommodated in the same slot 31. At this time, the slot accommodating portions 43 of the first winding portion 40 a and the slot accommodating portions 43 of the second winding portion 40 b are installed so as to be alternately positioned in the depth direction of the slot 31. And the joint part 45 of the 1st coil | winding part 40a and the 2nd coil | winding part 40b is the slot accommodation in which the winding direction of the 1st coil | winding part 40a and the 2nd coil | winding part 40b reverses. A folded portion 46 formed by the portion 43 is formed.

固定子コイル4の展開図、すなわち巻回される前の組み込み体47の平面図を図10に示す。固定子コイル4は、互いに巻装方向が異なる第1の巻線部40aと第2の巻線部40bとからなる組体を6組有し、6組の組体を用いて、3相(U,V,W)×2個(倍スロット)のコイルとされている。各組体において、第1の巻線部40aの中性点側(または相端子側)の端部とは反対側の端部と、第2の巻線部40bの相端子側(または中性点側)の端部とは反対側の端部とが、折り返し部46よりなるスロット収容部43を介して接続されている。各相の巻線40の結線方法は同様である。   FIG. 10 shows a development view of the stator coil 4, that is, a plan view of the built-in body 47 before being wound. The stator coil 4 has six sets of first winding portions 40a and second winding portions 40b having different winding directions, and three-phase ( U, V, W) × 2 (double slots) coils. In each assembly, the end on the side opposite to the end on the neutral point side (or phase terminal side) of the first winding portion 40a and the phase terminal side (or neutrality) of the second winding portion 40b. The end on the opposite side to the end on the dot side is connected via a slot accommodating portion 43 formed of a folded portion 46. The method of connecting the windings 40 of each phase is the same.

固定子コイル4(巻き取り体48)に固定子コア30を組み付けてなる組み付け体50の斜視図を図11に示す。また、この組み付け体50の外周に焼きバメする外筒5の斜視図を図12に示す。さらに、組み付け体50の外周に外筒5を焼きバメしてなる固定子3の概要を示す模式平面図を図13に示す。   FIG. 11 is a perspective view of an assembly 50 in which the stator core 30 is assembled to the stator coil 4 (winding body 48). Further, FIG. 12 shows a perspective view of the outer cylinder 5 that shrinks on the outer periphery of the assembly 50. Furthermore, the schematic top view which shows the outline | summary of the stator 3 formed by shrinking | fitting the outer cylinder 5 on the outer periphery of the assembly | attachment body 50 is shown in FIG.

組み付け体50の外周には軸方向に積層された分割コア32のバックコア部321が表れている。外筒5は、たとえば、厚さ2mmの円筒形状をしており、磁束が通過可能な低炭素鋼などによって形成されている。また、外筒5には、固定子3をハウジング10に固定する際に用いられる貫通孔5aが設けられている。   A back core portion 321 of the split core 32 stacked in the axial direction appears on the outer periphery of the assembly 50. The outer cylinder 5 has a cylindrical shape with a thickness of 2 mm, for example, and is formed of low carbon steel through which magnetic flux can pass. In addition, the outer cylinder 5 is provided with a through hole 5 a used when the stator 3 is fixed to the housing 10.

この実施形態1においては、組み付け体50の外径をAとし、外筒5の内径をBとし、外筒5の焼きバメ工程の加熱時に熱膨張した内径をCとしたとき、C>A>Bの関係になるように寸法を定めて各部品を製造する。   In the first embodiment, when the outer diameter of the assembly 50 is A, the inner diameter of the outer cylinder 5 is B, and the inner diameter of the outer cylinder 5 that is thermally expanded during heating in the shrinking process is C, C> A> Each part is manufactured with dimensions determined so as to satisfy the relationship B.

ここで、(A−B)を締め代と呼ぶ。この締め代(A−B)が大きいほど、外筒5に組み付け体50を焼きバメして冷却したときの締め付け力が強まるが、固定に必要な締め付け力を大きく超えるような締め付け力これによる応力が掛かってしまうと、この応力によって損失が発生する虞、また、分割コアの変形、コア内径寸法のばらつき、コア内径の真円度の低下などの問題も生じてくる。   Here, (AB) is referred to as a tightening allowance. The larger the tightening allowance (A-B), the stronger the tightening force when the assembly 50 is squeezed into the outer cylinder 5 and cooled, but the tightening force greatly exceeds the tightening force required for fixing. If this occurs, there is a risk of loss due to this stress, and problems such as deformation of the split core, variation in core inner diameter, and decrease in roundness of the core inner diameter may occur.

そこで、実施形態1では外筒5の内周面にスリット5bを形成して組み付け体50と外筒5との間に空隙を設け、これによって、締め代の増加に伴う締め付け力の増加がなだらかになるようにしている。この実施形態1ではスリット5bは、回転電機の軸方向に貫通し、均等の間隔で、分割コア32の周方向の数と同じく、24本設けられている。組み付け体50の外周に外筒5を焼きバメする際には、隣り合う分割コア同士の突合せ端部にはスリット5bが来ないようにする(図13参照)。   Therefore, in the first embodiment, the slit 5b is formed on the inner peripheral surface of the outer cylinder 5 to provide a gap between the assembly 50 and the outer cylinder 5, thereby increasing the tightening force gently as the tightening margin increases. It is trying to become. In the first embodiment, 24 slits 5b penetrate in the axial direction of the rotating electrical machine, and are provided at equal intervals, as with the number of the divided cores 32 in the circumferential direction. When shrinking the outer cylinder 5 around the outer periphery of the assembly 50, the slits 5b are prevented from coming to the abutting ends of adjacent divided cores (see FIG. 13).

ここで、スリット5bの効果について図14を参照しながらさらに説明する。図14は、締め代と、組み付け体50と外筒5との間に係る締め付け力による応力と、の関係を、実験結果で示すグラフであり、図中、一点鎖線は、外筒5の内周面にスリット5bを形成しない場合の関係を示し、実線は、実施形態1のスリット5bを形成した場合の関係を示すものである。図中、横軸は締め代であり、縦軸は組み付け体50と外筒5との間に掛かる締め付け力による応力を示す。   Here, the effect of the slit 5b will be further described with reference to FIG. FIG. 14 is a graph showing the relationship between the tightening allowance and the stress caused by the tightening force between the assembly 50 and the outer cylinder 5 as an experimental result. In the figure, the alternate long and short dash line indicates the inner diameter of the outer cylinder 5. The relationship when the slit 5b is not formed on the peripheral surface is shown, and the solid line shows the relationship when the slit 5b of the first embodiment is formed. In the figure, the horizontal axis is the tightening allowance, and the vertical axis indicates the stress due to the tightening force applied between the assembly 50 and the outer cylinder 5.

図14においては、応力が、組み付け体50と外筒5とを固定するのに最低限必要とされる力である「必要固定力」となる締め代を下限値として示し、この下限値から一定の寸法公差範囲だけ幅を持たせた締め代を上限値として示している。寸法公差範囲は、スリット5bを形成しない一点鎖線の場合も、スリット5bを形成した実線の場合も同じ幅にしてある。   In FIG. 14, the tightening allowance, which is the “necessary fixing force” that is the minimum force required to fix the assembly 50 and the outer cylinder 5, is shown as a lower limit value, and constant from the lower limit value. The tightening allowance with a width within the dimensional tolerance range is shown as the upper limit value. The dimensional tolerance range has the same width for both the one-dot chain line that does not form the slit 5b and the solid line that forms the slit 5b.

図14を参照して分かるように、スリット5bを形成しない場合は締め代の増加に伴う応力の増加が急激であり、スリット5bを形成した場合は締め代の増加に伴う応力の増加がなだらかである。これにより、同じ寸法公差範囲を確保しながらも、上限値における応力は実施形態1のスリット5bを形成した場合のほうが小さく、応力低減効果が得られている。すなわち、この応力低減効果により、実施形態1によれば、損失が発生する虞、また、分割コアの変形、コア内径寸法のばらつき、コア内径の真円度の低下などの問題を解消することができる。   As can be seen with reference to FIG. 14, when the slit 5b is not formed, the stress increases with an increase in the tightening margin, and when the slit 5b is formed, the stress increases with the increase in the tightening margin. is there. Thereby, while ensuring the same dimensional tolerance range, the stress at the upper limit value is smaller when the slit 5b of the first embodiment is formed, and the stress reduction effect is obtained. In other words, according to the first embodiment, this stress reduction effect can solve the problems such as the possibility of loss, the deformation of the split core, the variation of the core inner diameter, and the decrease in the roundness of the core inner diameter. it can.

なお、この実施形態1では、組み付け体50と外筒5との間の空隙として外筒5の内周面にスリット5bを形成し、図13に示すように、隣り合う分割コア同士の突合せ端部にはスリット5bが来ないように、組み付け体50と外筒5との周方向の位置決めをしている。これにより、この突合せ端部には外筒5の内周の当たり面5cが対向し、この当たり面5cによって分割コア同士がずれないよう均一に締め付け力を加えることができ、応力による損失を低減し、コア内径の寸法ばらつきを抑え、真円度の低下を防止することができる。   In the first embodiment, a slit 5b is formed in the inner peripheral surface of the outer cylinder 5 as a gap between the assembly 50 and the outer cylinder 5, and as shown in FIG. The assembly 50 and the outer cylinder 5 are positioned in the circumferential direction so that the slit 5b does not come to the part. Thereby, the contact surface 5c of the inner periphery of the outer cylinder 5 is opposed to the abutting end portion, and it is possible to apply a tightening force uniformly so that the divided cores are not displaced by the contact surface 5c, thereby reducing loss due to stress. In addition, it is possible to suppress the dimensional variation of the core inner diameter and prevent the roundness from being lowered.

また、この実施形態1では、図12に示すように、組み付け体50と外筒5との間の空隙として、コア組み付け体50と外筒5との間を軸方向に貫通するスリットであるスリット5bを外筒5の内周面に形成している。これによれば、たとえば、このスリット5b内に冷却風や冷却水を流すことができ、このようにすれば、コアおよび外筒を冷却することができ、高い性能を維持することができる。   Moreover, in this Embodiment 1, as shown in FIG. 12, as a space | gap between the assembly body 50 and the outer cylinder 5, it is a slit which is a slit which penetrates between the core assembly body 50 and the outer cylinder 5 in the axial direction. 5 b is formed on the inner peripheral surface of the outer cylinder 5. According to this, for example, cooling air or cooling water can be flowed into the slit 5b, and in this way, the core and the outer cylinder can be cooled, and high performance can be maintained.

なお、実施形態1では、スリット5bの数を分割コア32の周方向の数と同じく24本にしたが、本発明はこれに限られるものではなく、たとえば分割コアの周方向の数の倍数にしてもよい。このようにすれば、隣り合う分割コア同士の突合せ端部に、外筒の内周面を均等に当てることができるという効果を奏する。   In the first embodiment, the number of slits 5b is 24, the same as the number in the circumferential direction of the split core 32. However, the present invention is not limited to this, and for example, a multiple of the number in the circumferential direction of the split core. May be. If it does in this way, there exists an effect that the inner peripheral surface of an outer cylinder can be equally applied to the butting end part of adjacent division cores.

また、実施形態1では、外筒5の内周面の形状すなわちスリット5bによって組み付け体50と外筒5との間の空隙が形成されている。この場合、磁気回路を形成する分割コア32の形状を変更する必要がないので、磁気回路に影響を与えることなく、性能のよい回転電機を提供することができる。   In the first embodiment, the gap between the assembly 50 and the outer cylinder 5 is formed by the shape of the inner peripheral surface of the outer cylinder 5, that is, the slit 5b. In this case, since it is not necessary to change the shape of the split core 32 forming the magnetic circuit, it is possible to provide a rotating electrical machine with good performance without affecting the magnetic circuit.

以下、実施形態1の、固定子コイル4(巻き取り体48)に固定子コア30を組み付けて組み付け体50(図11参照)とし、この組み付け体50を外筒5に焼きバメした固定子3の製造方法について説明する。なお、組み付け体50が、本発明のコア組み付け体を構成するものである。また、径方向は芯部材または巻き取り体の径方向を意味し、周方向は芯部材または巻き取り体の周方向を意味する。   Hereinafter, in the first embodiment, the stator core 30 is assembled to the stator coil 4 (winding body 48) to form an assembled body 50 (see FIG. 11), and the assembled body 50 is baked into the outer cylinder 5 and fixed to the stator 3. The manufacturing method will be described. The assembled body 50 constitutes the core assembled body of the present invention. The radial direction means the radial direction of the core member or the wound body, and the circumferential direction means the circumferential direction of the core member or the wound body.

<成形工程>
まず、12本の電気導体線から12個の成形体を成形する。ここで成形する各成形体は、互いに平行に延びて成形体の長手方向に並列した複数の直状部431と、隣り合う直状部431同士を直状部431の一端側と他端側とで交互に連結する複数のターン部44とを有する。
<Molding process>
First, 12 molded bodies are formed from 12 electric conductor wires. Each molded body to be molded here has a plurality of straight portions 431 extending in parallel with each other and arranged in parallel in the longitudinal direction of the molded body, and adjacent straight portions 431 are connected to one end side and the other end side of the straight portion 431. And a plurality of turn portions 44 that are alternately connected to each other.

<組み込み工程>
12個の成形体を組み込むことにより、組み込み体47を形成する。この組み込み体47においては、6組の組体が組み込み体47の長手方向に並列している。
<Incorporation process>
The built-in body 47 is formed by incorporating 12 molded bodies. In this built-in body 47, six sets of bodies are arranged in parallel in the longitudinal direction of the built-in body 47.

各組体は、第1の巻線部40aとなる第1線部と、第2の巻線部40bとなる第2線部とからなる。なお、第1線部が1個の成形体よりなり、第2線部も1個の成形体よりなる。   Each assembly includes a first line portion that becomes the first winding portion 40a and a second line portion that becomes the second winding portion 40b. In addition, the 1st line part consists of one molded object, and the 2nd line part also consists of one molded object.

各組体における第1線部の端部と第2線部の端部とが溶接接合されて接合部45とされている。なお、12個の成形体を組み込んでから、各組体における第1線部の端部と第2線部の端部とを接合してもよいし、第1線部の端部と第2線部の端部とを接合して6組の組体を形成してから、この6組の組体を組み込んでもよい。   The end portion of the first line portion and the end portion of the second line portion in each assembly are welded to form a joint portion 45. In addition, after assembling the twelve molded bodies, the end portion of the first line portion and the end portion of the second line portion in each assembly may be joined, or the end portion of the first line portion and the second portion. After joining the ends of the line portions to form six sets of assemblies, these six sets of assemblies may be incorporated.

組み込み体47における各組体は、第1線部における複数の直状部431と第2線部における複数の直状部431とがそれぞれ重ね合わされて形成された複数の直状重ね合わせ部471を組み込み体47の長手方向に有する。ただし、後述の巻き取り工程の巻き始めである折り返し部46の6個の直状部431および、巻き終わりの6個の直状部431のそれぞれは、他の直状部431と重ね合わされない。   Each assembly in the built-in body 47 includes a plurality of straight overlapping portions 471 formed by overlapping a plurality of straight portions 431 in the first line portion and a plurality of straight portions 431 in the second line portion. It is in the longitudinal direction of the built-in body 47. However, each of the six straight portions 431 of the folded-back portion 46 and the six straight portions 431 at the end of winding, which are the start of winding in the winding process described later, is not overlapped with the other straight portions 431.

<巻き取り工程>
組み込み体47を折り返し部46が軸心側に位置するように所定の巻数(たとえば、3回とか4回)だけ巻回して、図9に示した巻き取り体48を形成する。このとき、組み込み体47のターン部44を所定の巻き取り半径に塑性変形させながら巻き取る。
<Winding process>
The winding body 48 shown in FIG. 9 is formed by winding the built-in body 47 by a predetermined number of turns (for example, 3 or 4 times) so that the folded portion 46 is located on the axial center side. At this time, the turn portion 44 of the built-in body 47 is wound while being plastically deformed to a predetermined winding radius.

なお、たとえば所定の曲げR形状の成形面を有する成形型や所定の成形ローラを用いてターン部44を曲げ成形してもよい。巻き取り工程の詳細は後述する。   For example, the turn part 44 may be bent and formed using a forming die having a forming surface having a predetermined bending R shape or a predetermined forming roller. Details of the winding process will be described later.

巻き取り体48は、一つの組体における複数の直状重ね合わせ部471が径方向に巻数分だけ積層されて形成された複数の直状積層部481を巻き取り体48の周方向に有する。各直状積層部481においては、巻数の2倍の数の直状部431が重ね合わされて径方向(放射方向)に一列に並んでいる。このとき、各直状積層部481は、巻き取り体48の周方向で小間隔を隔てた状態で位置している。   The wound body 48 has a plurality of straight laminated portions 481 formed by laminating a plurality of straight overlapping portions 471 in one assembly by the number of turns in the radial direction in the circumferential direction of the wound body 48. In each of the straight stacked portions 481, the number of the straight portions 431 that is twice as many as the number of turns is overlapped and aligned in a row in the radial direction (radial direction). At this time, each of the straight laminated portions 481 is located in a state of being spaced apart in the circumferential direction of the winding body 48.

<組み付け工程>
以上のようにして得られた巻き取り体48に対して、径方向外方から分割コア32のティース部320を隣り合う直状積層部481同士の間の隙間に挿入し、隣り合う分割コア32同士を連結して組み付けて組み付け体50を得る(図11参照)。
<Assembly process>
With respect to the wound body 48 obtained as described above, the teeth part 320 of the split core 32 is inserted into the gap between the adjacent straight laminated parts 481 from the radially outer side, and the adjacent split cores 32 are adjacent to each other. They are connected and assembled to obtain an assembled body 50 (see FIG. 11).

<挿入(焼きバメ)工程>
組み付け体50(図11参照)を外筒5(図12参照)に挿入して嵌め込む。まず、図示しないヒータによって外筒5を所定温度(たとえば300℃)に加熱する。続いて、加熱した外筒5に組み付け体50を挿入する。このとき、外筒5の内周面に設けたスリット5bが、組み付け体50を構成する分割コア32同士の突合せ端部に来ないよう周方向の位置決めをしながら挿入する。挿入が完了したならば、図示しない送風機などによって30分程度冷却して挿入(焼きバメ)工程は終了する。
<Insertion (baking) process>
The assembly 50 (see FIG. 11) is inserted and fitted into the outer cylinder 5 (see FIG. 12). First, the outer cylinder 5 is heated to a predetermined temperature (for example, 300 ° C.) by a heater (not shown). Subsequently, the assembly 50 is inserted into the heated outer cylinder 5. At this time, the slit 5b provided on the inner peripheral surface of the outer cylinder 5 is inserted while positioning in the circumferential direction so as not to come to the butted end portions of the split cores 32 constituting the assembly 50. When the insertion is completed, it is cooled by a blower (not shown) for about 30 minutes, and the insertion (shrinking) process is completed.

(実施形態2)
上述の実施形態1では、外筒5の内周面に設けたスリット5bによって、組み付け体50と外筒5との間に空隙を形成したが、本発明はこれに限られるものではない。この実施形態2では、組み付け体の外周の形状によって、組み付け体と外筒5との間に空隙を形成する。
(Embodiment 2)
In Embodiment 1 described above, the gap is formed between the assembly 50 and the outer cylinder 5 by the slit 5b provided on the inner peripheral surface of the outer cylinder 5, but the present invention is not limited to this. In this Embodiment 2, a space | gap is formed between an assembly body and the outer cylinder 5 with the shape of the outer periphery of an assembly body.

図15は、実施形態2の分割積層コアの形状を示す平面図である。   FIG. 15 is a plan view showing the shape of the split laminated core of the second embodiment.

この実施形態2の固定子コアは、図15に示す分割コア2032を所定の数(本実施形態では、24個)だけ周方向に連結して形成されている。分割コア2032は、一つのスロット2031を区画するとともに、周方向で隣接する分割コア2032との間で一つのスロット2031を区画する形状を呈している。具体的には、分割コア2032は、径方向内方に伸びる一対のティース部2320と、ティース部2320を径方向外方で連結するバックコア部2321とを有している。   The stator core of the second embodiment is formed by connecting a predetermined number (24 in the present embodiment) of the split cores 2032 shown in FIG. 15 in the circumferential direction. The split core 2032 has a shape that partitions one slot 2031 and partitions one slot 2031 between the adjacent split cores 2032 in the circumferential direction. Specifically, the split core 2032 includes a pair of teeth portions 2320 that extend radially inward and a back core portion 2321 that connects the teeth portions 2320 radially outward.

この分割コア2032同士を周方向に連結してなる固定子コアの外周すなわち図15のバックコア部2321の上部には凹部2332が設けられており、この凹部2332によって、組み付け体と外筒5との間に空隙を形成することができる。この実施形態2であっても実施形態1と同様の応力低減効果を得ることができる。   A concave portion 2332 is provided on the outer periphery of the stator core formed by connecting the divided cores 2032 in the circumferential direction, that is, on the upper portion of the back core portion 2321 in FIG. 15, and the assembled body and the outer cylinder 5 are formed by the concave portion 2332. A gap can be formed between the two. Even in the second embodiment, the same stress reduction effect as in the first embodiment can be obtained.

この実施形態2のようにコア組み付け体の外周の形状すなわち分割コアの形状によって空隙を形成するようにすれば、分割コアを構成する積層鋼板を外周位置に凹部を有するものにするだけでよく、製造上、工程の増加を招くことがないし、低コストで製造することができるという効果を奏する。   If the gap is formed by the shape of the outer periphery of the core assembly, that is, the shape of the split core as in Embodiment 2, it is only necessary to make the laminated steel plate constituting the split core have a recess at the outer peripheral position. In production, there is no increase in the number of processes, and there is an effect that it can be manufactured at low cost.

なお、本発明において、コア組み付け体の外周と外筒の内周との間の空隙は、コア組み付け体の外周の形状および外筒の内周面の形状の両方によって形成されるものでもよいことは言うまでもない。   In the present invention, the gap between the outer periphery of the core assembly and the inner periphery of the outer cylinder may be formed by both the outer peripheral shape of the core assembly and the inner peripheral surface of the outer cylinder. Needless to say.

また、上記実施形態では、コア組み付け体の外周と外筒の内周との嵌合において、焼きバメを用いたが、必要な嵌合力を得るために、外周面と内周面との圧入によって、たとえば当たり面を互いに挿入方向に対し傾斜させてテーパ勘合するなどしても、よい。   Moreover, in the said embodiment, in the fitting with the outer periphery of a core assembly, and the inner periphery of an outer cylinder, shrinkage was used, but in order to obtain required fitting force, by press-fitting with an outer peripheral surface and an inner peripheral surface For example, the contact surfaces may be inclined with respect to the insertion direction and taper fitted.

本発明は、電気・ハイブリッド車両に搭載する回転電機に適用することができ、その回転電機の固定子コアの内周を真円に近くすることができ、回転電機の小型化、出力向上に有効である。   INDUSTRIAL APPLICABILITY The present invention can be applied to a rotating electrical machine mounted on an electric / hybrid vehicle, and the inner periphery of the stator core of the rotating electrical machine can be made close to a perfect circle, which is effective for downsizing and improving the output of the rotating electrical machine. It is.

実施形態1に係る回転電機の構成を模式的に示す軸方向断面図である。FIG. 3 is an axial cross-sectional view schematically showing the configuration of the rotating electrical machine according to the first embodiment. 実施形態1に係る固定子の平面図である。FIG. 3 is a plan view of the stator according to the first embodiment. 実施形態1に係る固定子コアの平面図である。3 is a plan view of a stator core according to Embodiment 1. FIG. 実施形態1に係る分割積層コアの平面図である。3 is a plan view of a split laminated core according to Embodiment 1. FIG. 変形例の固定子コアの平面図である。It is a top view of the stator core of a modification. 変形例の分割積層コアの平面図である。It is a top view of the division | segmentation laminated | stacked core of a modification. 実施形態1に係る固定子コイルを構成する巻線の断面図である。FIG. 3 is a cross-sectional view of windings that constitute the stator coil according to the first embodiment. 実施形態1に係る固定子コイルの結線を示す図である。It is a figure which shows the connection of the stator coil which concerns on Embodiment 1. FIG. 実施形態1に係る固定子コイルとなる巻き取り体の斜視図である。FIG. 3 is a perspective view of a winding body that is a stator coil according to the first embodiment. 実施形態1に係る固定子コイルの展開図であり、組み込み体の平面図である。It is an expanded view of the stator coil which concerns on Embodiment 1, and is a top view of a built-in body. 実施形態1に係る組み付け体の斜視図である。FIG. 3 is a perspective view of an assembly body according to the first embodiment. 実施形態1に係る外筒の斜視図である。3 is a perspective view of an outer cylinder according to Embodiment 1. FIG. 実施形態1に係る固定子の概要を示す模式平面図である。FIG. 3 is a schematic plan view illustrating an outline of a stator according to the first embodiment. 締め代と、組み付け体と外筒との間に係る締め付け力による応力と、の関係を、実験結果で示すグラフである。It is a graph which shows the relationship between a fastening allowance and the stress by the fastening force concerning an assembly body and an outer cylinder by an experimental result. 実施形態2に係る分割積層コアの平面図である。6 is a plan view of a split laminated core according to Embodiment 2. FIG.

符号の説明Explanation of symbols

1 回転電機
3 固定子
30 固定子コア
31a、31b スロット
32 分割コア
321 バックコア部
4 固定子コイル
43 スロット収容部
44 ターン部
47 組み込み体
48 巻き取り体
431 直状部
471 直状重ね合わせ部
472 隙間
481 直状積層部
5 外筒
5a 貫通孔
5b スリット
5c 当たり面
50 組み付け体
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine 3 Stator 30 Stator core 31a, 31b Slot 32 Divided core 321 Back core part 4 Stator coil 43 Slot accommodating part 44 Turn part 47 Built-in body 48 Winding body 431 Straight part 471 Directly overlapping part 472 Gap 481 Straight laminated portion 5 Outer cylinder 5a Through hole 5b Slit 5c Contact surface 50 Assembly

Claims (1)

複数の相巻線を有し、分割コアを組み付けたコア組み付け体の外周に外筒を嵌合固定してなる回転電機の固定子であって、
前記分割コアの外周と前記外筒の内周との間には、前記分割コアの周方向隣の分割コアとの突合せ端部が、前記外筒の内周の当たり面と径方向に対向するように、空隙が設けられており、
前記空隙は、前記コア組み付け体の外周の形状によって形成され、前記コア組み付け体と前記外筒との間を軸方向に貫通するスリットであり、
前記スリットは、前記分割コアの周方向の数の倍数だけ形成され、
前記嵌合固定は、焼きバメであることを特徴とする回転電機の固定子。
A stator of a rotating electric machine having a plurality of phase windings and an outer cylinder fitted and fixed to the outer periphery of a core assembly in which a split core is assembled,
Between the outer periphery of the split core and the inner periphery of the outer cylinder, a butt end portion of the split core adjacent to the peripheral core in the circumferential direction faces the contact surface of the inner periphery of the outer cylinder in the radial direction. So that a gap is provided,
The gap is formed by the shape of the outer periphery of the core assembly, and is a slit that penetrates between the core assembly and the outer cylinder in the axial direction.
The slit is formed by a multiple of the number in the circumferential direction of the split core,
The stator of a rotating electrical machine , wherein the fitting and fixing is shrinkage .
JP2008220863A 2008-08-29 2008-08-29 Rotating electric machine stator Active JP5157755B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008220863A JP5157755B2 (en) 2008-08-29 2008-08-29 Rotating electric machine stator
US12/547,777 US7911108B2 (en) 2008-08-29 2009-08-26 Stator of electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220863A JP5157755B2 (en) 2008-08-29 2008-08-29 Rotating electric machine stator

Publications (2)

Publication Number Publication Date
JP2010057304A JP2010057304A (en) 2010-03-11
JP5157755B2 true JP5157755B2 (en) 2013-03-06

Family

ID=41724261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220863A Active JP5157755B2 (en) 2008-08-29 2008-08-29 Rotating electric machine stator

Country Status (2)

Country Link
US (1) US7911108B2 (en)
JP (1) JP5157755B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040988B2 (en) * 2009-12-22 2012-10-03 トヨタ自動車株式会社 Stator and motor provided with the stator
JP5641902B2 (en) * 2010-10-08 2014-12-17 日本発條株式会社 Motor stator core and manufacturing method
JP5459174B2 (en) * 2010-10-28 2014-04-02 株式会社デンソー Stator for rotating electric machine and method for manufacturing the same
JP2013042620A (en) * 2011-08-18 2013-02-28 Hitachi Automotive Systems Ltd Rotary electric machine
US8901789B2 (en) 2011-10-07 2014-12-02 Remy Technologies, Llc Electric machine module
US9062700B2 (en) 2012-06-29 2015-06-23 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring with component engagement structures
TWI590568B (en) * 2013-12-31 2017-07-01 鴻海精密工業股份有限公司 Motor
JP6369294B2 (en) * 2014-11-06 2018-08-08 株式会社デンソー Rotating electric machine stator
CN105471156B (en) * 2016-02-05 2018-02-02 上海市雷智电机有限公司 A kind of motor
DE102020214828A1 (en) 2020-11-25 2022-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Stator for an electrical machine and associated electrical machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666017B2 (en) 2000-08-04 2005-06-29 日産自動車株式会社 Stator for rotating electric machine and method for manufacturing the same
JP3698644B2 (en) * 2001-01-09 2005-09-21 英男 河村 Permanent magnet generator / motor flux controller
US20040036367A1 (en) * 2002-01-30 2004-02-26 Darin Denton Rotor cooling apparatus
JP2004201428A (en) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd Motor
JP4527998B2 (en) * 2004-02-20 2010-08-18 三菱電機株式会社 Electric motor, hermetic compressor and fan motor
JP5008883B2 (en) * 2006-03-23 2012-08-22 住友電気工業株式会社 Stator, stator core and stator core holding member
JP2008199711A (en) * 2007-02-08 2008-08-28 Sumitomo Electric Ind Ltd Stator

Also Published As

Publication number Publication date
US7911108B2 (en) 2011-03-22
JP2010057304A (en) 2010-03-11
US20100052465A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5157755B2 (en) Rotating electric machine stator
JP4905568B2 (en) Rotating electric machine stator
EP3512075B1 (en) Stator of rotary electric machine and method of manufacturing stator coil
JP5217704B2 (en) Stator manufacturing apparatus and stator manufacturing method for rotating electrical machine
JP3982446B2 (en) Manufacturing method of rotating electrical machine
JP4623129B2 (en) Rotating electric machine stator and rotating electric machine
JP5083329B2 (en) Stator and rotating electric machine using the same
JP5483056B2 (en) Manufacturing method of stator of rotating electric machine
US8896189B2 (en) Stator for electric rotating machine and method of manufacturing the same
US9583987B2 (en) Stator for electric rotating machine and method of manufacturing the same
JPWO2020017133A1 (en) Distributed winding radial gap type rotary electric machine and its stator
JP4502041B2 (en) Stator for rotating electric machine and method for manufacturing the same
JPWO2019039518A1 (en) Split core linked body and method of manufacturing armature
WO2020174817A1 (en) Dynamo-electric machine stator, dynamo-electric machine, method for manufacturing dynamo-electric machine stator, and method for manufacturing dynamo-electric machine
US8225484B2 (en) Method of manufacturing stator for electric rotating machine
JP5819037B2 (en) Rotating electric machine stator and rotating electric machine
JP5309674B2 (en) Stator coil manufacturing method
JP2006187164A (en) Rotary electric machine
JP6279122B1 (en) Rotating electric machine
JP2010011569A (en) Stator
JP2010239680A (en) Armature for rotary electric machine and manufacturing method therefor
JP2015019452A (en) Coil and coil formation method
WO2024084933A1 (en) Rotating electric machine stator
JP7463995B2 (en) Armature and method for manufacturing the same
JP2009268155A (en) Stator of rotary electric machine, and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250