WO2019175984A1 - Failure level calculation device and failure level calculation system - Google Patents

Failure level calculation device and failure level calculation system Download PDF

Info

Publication number
WO2019175984A1
WO2019175984A1 PCT/JP2018/009798 JP2018009798W WO2019175984A1 WO 2019175984 A1 WO2019175984 A1 WO 2019175984A1 JP 2018009798 W JP2018009798 W JP 2018009798W WO 2019175984 A1 WO2019175984 A1 WO 2019175984A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
failure
failure degree
assembly
aggregate
Prior art date
Application number
PCT/JP2018/009798
Other languages
French (fr)
Japanese (ja)
Inventor
亮佑 寺部
浩一郎 上田
敦生 葉石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/009798 priority Critical patent/WO2019175984A1/en
Priority to JP2018566610A priority patent/JP6526362B1/en
Publication of WO2019175984A1 publication Critical patent/WO2019175984A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a failure degree calculation device and a failure degree calculation system for calculating a part failure degree indicating a probability of failure for each of a plurality of parts included in an assembly.
  • Patent Document 1 it is not possible to determine whether or not an abnormality has occurred only for a component to which a sensor is attached.
  • the configuration of the mechanical device is relatively complicated, and it is difficult to attach the sensor to all the parts constituting the mechanical device.
  • Patent Document 2 it is not possible to determine whether or not an abnormality has occurred only for an aggregate modeled by simulation.
  • the assembly includes a plurality of parts, and the mechanical device is configured by a plurality of assemblies.
  • an aggregate in which an abnormality has occurred can be identified, but it cannot be determined which part of a plurality of parts included in the aggregate has an abnormality. . It is required to provide an apparatus that calculates a component failure degree indicating a probability of failure for a plurality of components included in an assembly.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a failure degree calculation device that calculates a part failure degree indicating a probability of failure for a plurality of parts included in an assembly.
  • the present invention provides a physical quantity for at least one of the plurality of assemblies when each of the plurality of assemblies includes a plurality of parts.
  • an assembly failure degree calculation unit that calculates an assembly failure degree indicating a probability of failure is provided for each of the plurality of assemblies.
  • each of a plurality of parts included in a specific assembly among the plurality of assemblies fails based on connection data indicating a connection state with other components and the assembly failure degree. It further has a part failure degree calculation part which calculates the part failure degree which shows a probability.
  • the failure degree calculation apparatus has an effect of being able to calculate the part failure degree indicating the probability of failure for a plurality of parts included in the assembly.
  • FIG. 1 is a diagram for explaining an example of functions of an assembly failure degree calculation unit included in a failure degree calculation apparatus according to an embodiment
  • FIG. 2 is a diagram for explaining an example of functions of an assembly failure degree calculation unit included in the failure degree calculation apparatus according to the embodiment
  • the figure which shows the component failure degree of each of several components calculated by the component failure degree calculation part which the failure degree calculation apparatus concerning embodiment has The figure which shows the list
  • FIG. 1 is a diagram illustrating a configuration of a failure degree calculation system 1 according to the embodiment.
  • each of the plurality of aggregates includes a plurality of parts.
  • assembly is the some component which comprises a mechanical apparatus.
  • Each of the plurality of aggregates is a three-dimensional object.
  • FIG. 1 shows an aggregate 30 and a measuring device 40 that measures a physical quantity of the aggregate 30.
  • the aggregate 30 is an example of one aggregate among a plurality of aggregates.
  • an assembly when a simulation of a motor control system is performed, an assembly including at least one component such as a stator, a rotor, a bracket, a fan, and a terminal block, which are generally cited as motor components
  • components such as a stator, a rotor, a bracket, a fan, and a terminal block
  • other parts forming the body include connection parts such as screws and O-rings in addition to the main motor parts.
  • Examples of physical quantities include acceleration, temperature, heat, displacement, pressure, sound waves, or electromagnetics.
  • the physical quantity may be a phenomenon or characteristic that can be measured by the measuring device 40.
  • the failure degree calculation system 1 is calculated by a failure degree calculation device 2 that calculates a component failure degree that indicates a probability of failure for each of a plurality of components included in any of a plurality of assemblies, and the failure degree calculation device 2. And a display device 3 for displaying the component failure degree of each of the plurality of components.
  • An example of the display device 3 is a liquid crystal display or an organic electroluminescence display.
  • FIG. 1 also shows a storage device 50 that stores connection data indicating a connection state of each of a plurality of components included in any of the plurality of assemblies with other components.
  • the storage device 50 has, for each of a plurality of components included in any of the plurality of assemblies, connection data indicating the assembly including the components and the components connected to the components.
  • the connection data is, for example, information on which part is mechanically connected to a certain part.
  • An example of the storage device 50 is a device having a semiconductor memory. The connection data will be further described later with reference to FIG.
  • FIG. 2 is a diagram showing a configuration of a plurality of aggregates and a plurality of parts in the embodiment.
  • the first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z are examples of a plurality of aggregates.
  • the first aggregate 30X has a part A and a part D.
  • Part A and part D are examples of a plurality of parts included in one aggregate.
  • the second aggregate 30Y includes a part B and a part F.
  • the parts B and F are also examples of a plurality of parts included in one aggregate.
  • the third aggregate 30 ⁇ / b> Z includes a part C, a part E, and a part G.
  • the part C, the part E, and the part G are also examples of a plurality of parts included in one aggregate.
  • connection of two parts included in the same assembly is indicated by a single line.
  • a connection between a part included in one of two different sets and a part included in the other set is indicated by a double line.
  • the part A included in the first aggregate 30X includes a part D included in the first aggregate 30X, and a part B included in the second aggregate 30Y. It is connected to the.
  • the component D included in the first assembly 30X is connected to the component A included in the first assembly 30X.
  • the part B included in the second aggregate 30Y is connected to the part A included in the first aggregate 30X and the part F included in the second aggregate 30Y.
  • the component F included in the second assembly 30Y is connected to the component B included in the second assembly 30Y and the component C included in the third assembly 30Z.
  • the part C included in the third aggregate 30Z is connected to the part F included in the second aggregate 30Y and the part E included in the third aggregate 30Z.
  • the part E included in the third aggregate 30Z is connected to the parts C and G included in the third aggregate 30Z.
  • the part G included in the third aggregate 30Z is connected to the part E included in the third aggregate 30Z.
  • FIG. 3 is a diagram illustrating connection data stored in the storage device 50 according to the embodiment.
  • the storage device 50 stores connection data constituting the table shown in FIG. That is, for the part A, the storage device 50 includes connection data including information indicating that the part A is included in the first assembly 30X and that the part A is connected to the part D and the part B.
  • the connection data includes information indicating the situation described with reference to FIG. 2 for each of the parts B, C, D, E, F, and G.
  • the failure level calculation device 2 calculates an aggregate failure level that indicates a failure probability for each of the multiple sets based on a physical quantity of at least one of the multiple sets.
  • a degree calculation unit 21 is included.
  • FIG. 4 is a first diagram for explaining an example of the function of the assembly failure degree calculation unit 21 included in the failure degree calculation apparatus 2 according to the embodiment. Specifically, FIG. 4 is a diagram illustrating an example of data in which the acceleration of the first aggregate 30X measured by the acceleration sensor changes with time.
  • the acceleration sensor is an example of the measuring device 40.
  • FIG. 5 is a second diagram for explaining an example of the function of the assembly failure degree calculation unit 21 included in the failure degree calculation apparatus 2 according to the embodiment.
  • FIG. 5 shows an example of the result of fast Fourier transform performed on the data shown in FIG. 4 by the aggregate failure degree calculation unit 21 with a solid line. That is, FIG. 5 shows an example of the amplitude at each frequency when the aggregate failure degree calculation unit 21 performs the fast Fourier transform on the data shown in FIG.
  • FIG. 5 shows, as a broken line, the result of performing a fast Fourier transform on the acceleration data of the first aggregate 30X measured by the acceleration sensor when the first aggregate 30X is normal in advance. .
  • FIG. 5 shows that the acceleration indicated by the solid line is “s1” and the acceleration indicated by the broken line is “s0” at the predetermined specific frequency p.
  • the assembly failure degree calculation unit 21 calculates the assembly failure degree R of the first assembly 30X according to the following equation (1).
  • the assembly failure degree calculation unit 21 may calculate the assembly failure degree of the first assembly 30X as follows.
  • the thermometer measures the temperature of the first aggregate 30X, and the measured temperature is “t1”, and the temperature of the first aggregate 30X when it is normal in advance is “t0”. Assume that. In this case, the assembly failure degree calculation unit 21 may calculate the assembly failure degree R of the first assembly 30X according to the following equation (2).
  • a thermometer is an example of the measuring device 40.
  • the heat sensor measures the amount of heat of the first assembly 30X, and the amount of heat measured is “v1”, and the amount of heat of the first assembly 30X when it is normal in advance is “v0”. Assume that.
  • the assembly failure degree calculation unit 21 may calculate the assembly failure degree R of the first assembly 30X according to the following equation (3).
  • the thermal sensor is an example of the measuring device 40.
  • the assembly failure degree calculation unit 21 calculates the assembly failure degree of the first assembly 30X based on the physical quantity of the first assembly 30X. Similarly, the assembly failure degree calculation unit 21 calculates the assembly failure degree of each of the second assembly 30Y and the third assembly 30Z. Alternatively, the aggregate failure degree calculation unit 21 may calculate a physical quantity for any one of the first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z and each of the plurality of aggregates. Based on the rules determined in advance based on the relationship with other aggregates, the aggregate failure degree of each of the first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z is calculated. calculate.
  • FIG. 6 is a diagram illustrating an aggregate failure degree of each of the multiple aggregates in the embodiment.
  • the failure degree calculation device 2 includes, for each of a plurality of parts included in any of the plurality of assemblies, connection data indicating a connection state with other parts and a plurality of pieces calculated by the assembly failure degree calculation unit 21.
  • a component failure degree calculation unit 22 is further provided that calculates a component failure degree indicating a failure probability based on each assembly failure degree of the assembly.
  • the connection data is stored in the storage device 50 as described with reference to FIG.
  • the component failure degree may be a value indicating the probability of failure, for example, an index indicating which component is relatively likely to fail.
  • a value indicating the degree of deterioration may be used. The same applies to the aggregate failure degree.
  • the part failure degree calculation unit 22 calculates the part failure degree of each part according to the following equation (4).
  • “Ex” is the component failure degree of the component to be calculated by the component failure degree calculation unit 22.
  • the component for which the component failure level calculation unit 22 calculates the component failure level is an example of a specific component.
  • “Ex1” is an assembly failure degree of an assembly including parts for which the component failure degree calculation unit 22 is to calculate the part failure degree.
  • “Ey1” is an assembly failure degree of an assembly including parts connected to the component for which the part failure degree calculation unit 22 is to calculate the part failure degree.
  • the aggregate failure degree is a value calculated by the aggregate failure degree calculation unit 21.
  • “Nall” is the number of components connected to the component for which the component failure degree calculation unit 22 calculates the component failure degree. That is, the component failure level calculation unit 22 calculates the component failure level of a specific component based on the number of components connected to the specific component.
  • the component failure level calculation unit 22 calculates the component failure level of a specific component
  • the component connected to the specific component is determined based on the aggregate failure level of the aggregate including the specific component. Is added to the sum of the failure degrees of the aggregates, and a first aggregate failure degree sum related to a specific part is calculated.
  • the part failure degree calculation unit 22 calculates the part failure degree of a specific part by dividing the first aggregate failure degree total by 1 plus the number of parts connected to the specific part. .
  • the component failure degree of component A is calculated as follows.
  • the part A is included in the first assembly 30X, and the assembly failure degree of the first assembly 30X is “20”.
  • the part A is connected to the part B, the part B is included in the second assembly 30Y, and the assembly failure degree of the second assembly 30Y is “70”.
  • the part A is also connected to the part D.
  • the part D is included in the first assembly 30X, and the assembly failure degree of the first assembly 30X is “20”.
  • the number of parts connected to the part A is two. Therefore, the part failure degree calculation unit 22 calculates the part failure degree of the part A as the following equation (5). That is, the part failure degree calculation unit 22 calculates that the part failure degree Ex of the part A is “36.7”.
  • the component failure degree of component B is calculated as follows.
  • the component B is included in the second assembly 30Y, and the assembly failure degree of the second assembly 30Y is “70”.
  • the component B is connected to the component A, the component A is included in the first assembly 30X, and the assembly failure degree of the first assembly 30X is “20”.
  • the component B is also connected to the component F, and the component F is included in the second assembly 30Y, and the assembly failure degree of the second assembly 30Y is “70”.
  • the number of components connected to the component B is two. Therefore, the component failure degree calculation unit 22 calculates the component failure degree of the component B as the following formula (6). That is, the part failure degree calculation unit 22 calculates that the part failure degree Ex of the part B is “53.3”.
  • the component failure level calculation unit 22 uses the number of components connected to each component as connection data, and calculates the component failure level of each component according to the above equation (4).
  • FIG. 7 is a diagram illustrating the component failure degree of each of the plurality of components calculated by the component failure degree calculation unit 22 included in the failure degree calculation apparatus 2 according to the embodiment.
  • the failure level calculation device 2 outputs information indicating the component failure level of each of the plurality of components calculated by the component failure level calculation unit 22 to the display device 3 and causes the display device 3 to display the component failure level. 23. That is, the display device 3 displays the component failure degree of each of the plurality of components calculated by the component failure degree calculation unit 22 of the failure degree calculation device 2.
  • FIG. 8 is a diagram illustrating a list of component failure levels of each of a plurality of components displayed by the display device 3 included in the failure level calculation system 1 according to the embodiment.
  • the display device 3 displays a component failure degree of each of a plurality of components as a list.
  • FIG. 9 shows a plurality of assemblies displayed three-dimensionally by the display device 3 included in the failure degree calculation system 1 according to the embodiment, and each of a plurality of components included in any of the plurality of assemblies is a component. It is a figure which shows the condition displayed with a moving image using the color corresponding to a failure degree.
  • FIG. 9 shows that component A is displayed in green, component B is displayed in orange, component C is displayed in yellow, component D is displayed in blue, component E is displayed in yellow-green, and component F is displayed in red. Is displayed, indicating that the component G is displayed in yellow-green. For example, as shown in FIG.
  • the display device 3 displays a component having a relatively high component failure level in a color close to red, and displays a component having a relatively low component failure level in a color close to blue. .
  • the parentheses in FIG. 9 and the characters in the parentheses are not displayed.
  • the display device 3 displays a part having a part failure degree of less than 30 in blue, displays a part having a part failure degree of 30 or more and less than 40 in green, and displays the part failure degree. If the part is 40 or more and less than 50, it is displayed in yellow green, if the part failure degree is 50 or more and less than 53, it is displayed in yellow, and if the part failure degree is 53 or more and less than 60, it is displayed in orange. However, parts having a part failure degree of 60 or more are displayed in red.
  • the failure level calculation device 2 uses the connection data and the failure level of each of the plurality of assemblies for each of a plurality of parts included in any of the plurality of assemblies.
  • the component failure degree indicating the probability of performing is calculated. That is, the failure level calculation device 2 can calculate the component failure level indicating the probability of failure for a plurality of components included in the assembly. Furthermore, the failure level calculation device 2 can identify a component having a relatively high component failure level and a component having a relatively low level of component failure among a plurality of components included in one aggregate. it can.
  • the aggregate failure degree is higher. It is specified that the second aggregate 30Y has the highest probability of failure. However, in the conventional technique, it cannot be specified which of the component B and the component F included in the second assembly 30Y has a higher probability of failure.
  • the failure degree calculation device 2 calculates the part failure degree of each of the plurality of parts included in any of the plurality of aggregates. That is, since the failure level calculation device 2 calculates the component failure level of each of the component B and the component F included in the second assembly 30Y, either of the component B or the component F fails. It can be specified whether the probability is high.
  • the display device 3 displays the component failure level of each of the plurality of components calculated by the component failure level calculation unit 22 of the failure level calculation device 2. Furthermore, the display device 3 uses the failure level calculation system 1 to identify a component having a relatively high component failure degree and a component having a relatively low component failure degree among a plurality of components included in one aggregate. You can inform the administrator. The administrator can know a part that needs to be replaced or repaired based on the degree of the part failure displayed by the display device 3, and the mechanical device suddenly fails by replacing or repairing the part. This can be prevented beforehand.
  • the display device 3 can display a list of component failure levels of each of a plurality of components as shown in FIG.
  • the administrator of the failure level calculation system 1 must grasp the components that need to be replaced or repaired based on numerical values. Can do.
  • the display device 3 can display a plurality of aggregates in a three-dimensional manner and display each of the plurality of parts as a moving image using a color corresponding to the degree of component failure.
  • the display device 3 displays a plurality of assemblies three-dimensionally and displays each of the plurality of parts as a moving image using a color corresponding to the part failure degree, the administrator of the failure degree calculation system 1
  • part failure degree calculation unit 22 may calculate the part failure degree of each part according to the following expression (7) instead of the expression (4).
  • “w1” indicates a specific amount of a component for which the component failure degree calculation unit 22 is to calculate the component failure degree.
  • “W2” indicates a specific amount of a component connected to the component for which the component failure degree calculation unit 22 is to calculate the component failure degree.
  • “W3” is a specific amount of a component for which the component failure degree calculation unit 22 is to calculate the component failure degree, and a component connected to the component for which the component failure degree calculation unit 22 is to calculate the component failure degree. Shows the average with a specific amount.
  • the specific quantity is a physical quantity or physical property. Examples of physical quantities or physical properties are mass, stiffness, moment of inertia or volume.
  • the part failure degree calculation unit 22 specifies the aggregate failure degree of the assembly including the specific part.
  • the value obtained by multiplying a specific amount for a part is added to the following aggregate failure degree partial sum to calculate a second aggregate failure degree sum related to the specific part.
  • An aggregate failure degree partial sum is obtained by multiplying an aggregate failure degree of an aggregate including parts connected to a specific part by a specific amount for the part to obtain a specific value. This is a value obtained by adding specific values of all connected parts.
  • the component failure degree calculation unit 22 adds the specific amount for each of all the components connected to the specific component to the specific amount for the specific component. The sum is divided by 1 plus the number of parts connected to the specific part to calculate the average of the specific amount for the specific part and the part connected to the specific part.
  • the component failure degree calculation unit 22 divides the second aggregate failure degree total by 1 by adding the number of parts connected to the specific part to the value obtained by multiplying the average. The component failure degree of a specific component is calculated.
  • the part failure degree calculation unit 22 may calculate the part failure degree of a specific part based on a specific amount for each of the specific part and the part connected to the specific part.
  • the failure degree calculation device 2 calculates the component failure degree in consideration of a specific amount for each component. be able to.
  • the part failure degree calculation unit 22 calculates the part failure degree of each of the plurality of parts included in any of the plurality of aggregates.
  • the component failure level calculation unit 22 may calculate only the component failure levels of a plurality of components included in a specific assembly among the plurality of assemblies. Each of the plurality of parts included in the specific assembly is an example of the specific part.
  • the component failure degree calculation unit 22 may calculate only the component failure degrees of the parts B and F. Parts B and F are examples of specific parts.
  • the connection data includes, for each of a plurality of parts included in a specific aggregate, a connection state with other parts included in the specific aggregate, and a specific set of the plurality of aggregates.
  • the connection state with the components contained in the assembly other than the body is shown.
  • the component failure degree calculation unit 22 calculates the component failure degree of a specific part included in a specific assembly
  • the component failure degree calculation unit 22 determines a specific failure based on the connection state with the component connected to the specific component indicated by the connection data. The component failure degree of the component is calculated.
  • the control unit 23 indicates the component failure level of each of the plurality of components included in the specific assembly.
  • Information is output to the display device 3 to display the component failure degree on the display device 3.
  • the display device 3 displays the component failure degree of each of a plurality of components included in the specific assembly.
  • the display device 3 displays a part failure degree of each of a plurality of parts included in a specific assembly as a list.
  • the display device 3 displays a specific assembly three-dimensionally, and displays each of a plurality of components included in the specific assembly using, for example, a moving image using a color corresponding to the component failure degree.
  • FIG. 10 illustrates a processor in a case where at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 included in the failure degree calculation device 2 according to the embodiment are realized by the processor 61.
  • the processor 61 is a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • FIG. 10 also shows the memory 62.
  • the partial functions include the processor 61, software, firmware, or Realized by a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 62.
  • the processor 61 implements at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 by reading and executing a program stored in the memory 62.
  • the failure degree calculation apparatus 2 includes the assembly failure degree calculation unit 21, It has a memory 62 for storing a program in which steps executed by at least a part of the component failure degree calculation unit 22 and the control unit 23 are executed as a result.
  • the program stored in the memory 62 causes the computer to execute a procedure or method executed by at least a part of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23.
  • the memory 62 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory), etc. Or it is a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disk).
  • FIG. 11 at least some of the constituent elements constituting the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 included in the failure degree calculation apparatus 2 according to the embodiment are realized by the processing circuit 63.
  • the processing circuit 63 is dedicated hardware.
  • the processing circuit 63 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. It is. Some of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 may be dedicated hardware separate from the remaining part.
  • the plurality of functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 a part of the plurality of functions is realized by software or firmware, and the rest of the plurality of functions is dedicated hardware. It may be realized with.
  • the plurality of functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 can be realized by hardware, software, firmware, or a combination thereof.
  • an abnormality can be determined only for an aggregate modeled by simulation. That is, abnormality cannot be determined up to the part level constituting the assembly.
  • the simulation model becomes complicated, so it is necessary to perform a large-scale calculation, and the specifications and calculation time of the simulation apparatus greatly increase. To do. Therefore, the apparatus cost and simulation cost also increase. Furthermore, since the apparatus is enlarged, it may not be mounted on, for example, a motor control device.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 failure degree calculation system 2 failure degree calculation device, 21 assembly failure degree calculation unit, 22 parts failure degree calculation unit, 23 control unit, 3 display device, 30 assembly, 30X first assembly, 30Y second Aggregate, 30Z 3rd aggregate, 40 measuring device, 50 storage device, 61 processor, 62 memory, 63 processing circuit, A, B, C, D, E, F, G components, p frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A failure level calculation device (2) comprises an aggregation failure level calculation unit (21) which, on the basis of a physical quantity of at least one of a plurality of aggregations that each include a plurality of components, calculates an aggregation failure level representing the probability that each aggregation of the plurality of aggregations will fail. The failure level calculation device (2) further comprises a component failure level calculation unit (22) which calculates a component failure level representing the probability that each component of the plurality of components included in a specific aggregation of the plurality of aggregations will fail, on the basis of the aggregation failure level and connection data indicating the connected state between the component and other components.

Description

故障度算出装置及び故障度算出システムFailure degree calculation device and failure degree calculation system
 本発明は、集合体に含まれる複数の部品の各々について、故障する確率を示す部品故障度を算出する故障度算出装置及び故障度算出システムに関する。 The present invention relates to a failure degree calculation device and a failure degree calculation system for calculating a part failure degree indicating a probability of failure for each of a plurality of parts included in an assembly.
 従来、摩耗又は経年劣化により機械装置に比較的重度の損傷が生じる前に故障の予兆を検出し、機械装置を構成する物の交換又は修理を行う必要があることを機械装置の管理者に知らせる予防保全技術が注目されている。例えば、機械装置を構成する物の物理量をセンサで検出して検出結果をもとに当該物に異常が生じているか否かを判定し、異常が生じている場合に異常が生じていることを報知する技術が提案されている(例えば、特許文献1参照)。シミュレーションを行って故障が生じているか否かを判定する技術も提案されている(例えば、特許文献2参照)。 Conventionally, before a relatively severe damage is caused to the machine due to wear or deterioration, it is necessary to detect a sign of failure and inform the manager of the machine that the components constituting the machine need to be replaced or repaired. Preventive maintenance technology is drawing attention. For example, a physical quantity of an object constituting a mechanical device is detected by a sensor, it is determined whether an abnormality has occurred in the object based on the detection result, and if an abnormality has occurred, an abnormality has occurred. A technique for notification has been proposed (see, for example, Patent Document 1). A technique for determining whether or not a failure has occurred by performing a simulation has also been proposed (see, for example, Patent Document 2).
特開平10-258974号公報JP-A-10-258974 特開平9-330120号公報JP-A-9-330120
 しかしながら、特許文献1の技術では、センサが取り付けられている部品についてしか異常が生じているか否かを判定することはできない。機械装置の構成は比較的複雑であって、機械装置を構成するすべての部品にセンサを取り付けることは困難である。 However, with the technique of Patent Document 1, it is not possible to determine whether or not an abnormality has occurred only for a component to which a sensor is attached. The configuration of the mechanical device is relatively complicated, and it is difficult to attach the sensor to all the parts constituting the mechanical device.
 特許文献2の技術では、シミュレーションでモデル化された集合体についてしか異常が生じているか否かを判定することはできない。集合体は複数の部品を含み、機械装置は複数の集合体によって構成されている。特許文献2の技術では、異常が生じている集合体を特定することはできるが、当該集合体に含まれる複数の部品のうちのいずれの部品に異常が生じているのかを判定することはできない。集合体に含まれる複数の部品について、故障する確率を示す部品故障度を算出する装置が提供されることが要求されている。 In the technique of Patent Document 2, it is not possible to determine whether or not an abnormality has occurred only for an aggregate modeled by simulation. The assembly includes a plurality of parts, and the mechanical device is configured by a plurality of assemblies. With the technique of Patent Document 2, an aggregate in which an abnormality has occurred can be identified, but it cannot be determined which part of a plurality of parts included in the aggregate has an abnormality. . It is required to provide an apparatus that calculates a component failure degree indicating a probability of failure for a plurality of components included in an assembly.
 本発明は、上記に鑑みてなされたものであって、集合体に含まれる複数の部品について、故障する確率を示す部品故障度を算出する故障度算出装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a failure degree calculation device that calculates a part failure degree indicating a probability of failure for a plurality of parts included in an assembly.
 上述した課題を解決し、目的を達成するために、本発明は、複数の集合体の各々が複数の部品を含む場合において、前記複数の集合体のうちの少なくともひとつの集合体についての物理量をもとに、前記複数の集合体の各々について、故障する確率を示す集合体故障度を算出する集合体故障度算出部を有する。本発明は、前記複数の集合体のうち特定の集合体に含まれる複数の部品の各々について、他の部品との接続状態を示す接続データと前記集合体故障度とをもとに、故障する確率を示す部品故障度を算出する部品故障度算出部を更に有する。 In order to solve the above-described problems and achieve the object, the present invention provides a physical quantity for at least one of the plurality of assemblies when each of the plurality of assemblies includes a plurality of parts. Basically, an assembly failure degree calculation unit that calculates an assembly failure degree indicating a probability of failure is provided for each of the plurality of assemblies. According to the present invention, each of a plurality of parts included in a specific assembly among the plurality of assemblies fails based on connection data indicating a connection state with other components and the assembly failure degree. It further has a part failure degree calculation part which calculates the part failure degree which shows a probability.
 本発明にかかる故障度算出装置は、集合体に含まれる複数の部品について、故障する確率を示す部品故障度を算出することができるという効果を奏する。 The failure degree calculation apparatus according to the present invention has an effect of being able to calculate the part failure degree indicating the probability of failure for a plurality of parts included in the assembly.
実施の形態にかかる故障度算出システムの構成を示す図The figure which shows the structure of the failure degree calculation system concerning embodiment 実施の形態における複数の集合体及び複数の部品の構成を示す図The figure which shows the structure of the some aggregate | assembly and several components in embodiment 実施の形態における記憶装置が記憶する接続データを示す図The figure which shows the connection data which the memory | storage device in embodiment stores 実施の形態にかかる故障度算出装置が有する集合体故障度算出部の機能の例を説明するための第1図FIG. 1 is a diagram for explaining an example of functions of an assembly failure degree calculation unit included in a failure degree calculation apparatus according to an embodiment; 実施の形態にかかる故障度算出装置が有する集合体故障度算出部の機能の例を説明するための第2図FIG. 2 is a diagram for explaining an example of functions of an assembly failure degree calculation unit included in the failure degree calculation apparatus according to the embodiment; 実施の形態における複数の集合体の各々の集合体故障度を示す図The figure which shows each aggregate | assembly failure degree of the some aggregate | assembly in embodiment. 実施の形態にかかる故障度算出装置が有する部品故障度算出部によって算出された複数の部品の各々の部品故障度を示す図The figure which shows the component failure degree of each of several components calculated by the component failure degree calculation part which the failure degree calculation apparatus concerning embodiment has 実施の形態にかかる故障度算出システムが有する表示装置によって表示される複数の部品の各々の部品故障度のリストを示す図The figure which shows the list | wrist of the component failure degree of each of the several components displayed by the display apparatus which the failure degree calculation system concerning embodiment has 実施の形態にかかる故障度算出システムが有する表示装置によって複数の集合体が立体的に表示され、かつ、複数の集合体のいずれかに含まれる複数の部品の各々が部品故障度に対応した色を用いて動画で表示される状況を示す図A color in which a plurality of assemblies are displayed three-dimensionally by the display device included in the failure degree calculation system according to the embodiment, and each of a plurality of components included in any of the plurality of assemblies corresponds to a component failure degree Showing the situation displayed in the video using 実施の形態にかかる故障度算出装置が有する集合体故障度算出部、部品故障度算出部及び制御部の少なくとも一部の機能がプロセッサによって実現される場合のプロセッサを示す図The figure which shows a processor in case at least one part function of the aggregate | assembly failure degree calculation part, component failure degree calculation part, and control part which the failure degree calculation apparatus concerning embodiment has is implement | achieved by a processor 実施の形態にかかる故障度算出装置が有する集合体故障度算出部、部品故障度算出部及び制御部を構成する少なくとも一部の構成要素が処理回路によって実現される場合の処理回路を示す図The figure which shows the processing circuit in case the at least one component which comprises the aggregate | assembly failure degree calculation part, component failure degree calculation part, and control part which the failure degree calculation apparatus concerning embodiment has is implement | achieved by the processing circuit.
 以下に、本発明の実施の形態にかかる故障度算出装置及び故障度算出システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a failure degree calculation device and a failure degree calculation system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、実施の形態にかかる故障度算出システム1の構成を示す図である。実施の形態では、複数の集合体の各々が複数の部品を含むことを想定する。複数の集合体の例は、機械装置を構成する複数の構成要素である。複数の集合体の各々は、立体物である。図1には、集合体30と、集合体30の物理量を測定する測定装置40とが示されている。集合体30は、複数の集合体のうちのひとつの集合体の例である。
Embodiment.
FIG. 1 is a diagram illustrating a configuration of a failure degree calculation system 1 according to the embodiment. In the embodiment, it is assumed that each of the plurality of aggregates includes a plurality of parts. The example of a some aggregate | assembly is the some component which comprises a mechanical apparatus. Each of the plurality of aggregates is a three-dimensional object. FIG. 1 shows an aggregate 30 and a measuring device 40 that measures a physical quantity of the aggregate 30. The aggregate 30 is an example of one aggregate among a plurality of aggregates.
 例えばモータ制御システムのシミュレーションを行う場合の集合体の例としては、一般的にモータ部品として挙げられるステータ、ロータ、ブラケット、ファン、端子台、等を少なくとも一つの部品を含む集合体であり、集合体を形成するその他の部品としては、上記主要なモータ部品の他に、ネジやOリングといった接続部品等が挙げられる。物理量の例は、加速度、温度、熱量、変位、圧力、音波又は電磁気が挙げられる。例えば、物理量は、測定装置40によって測定可能な現象あるいは特性であれば良い。 For example, as an example of an assembly when a simulation of a motor control system is performed, an assembly including at least one component such as a stator, a rotor, a bracket, a fan, and a terminal block, which are generally cited as motor components, Examples of other parts forming the body include connection parts such as screws and O-rings in addition to the main motor parts. Examples of physical quantities include acceleration, temperature, heat, displacement, pressure, sound waves, or electromagnetics. For example, the physical quantity may be a phenomenon or characteristic that can be measured by the measuring device 40.
 故障度算出システム1は、複数の集合体のいずれかに含まれる複数の部品の各々について、故障する確率を示す部品故障度を算出する故障度算出装置2と、故障度算出装置2によって算出された複数の部品の各々の部品故障度を表示する表示装置3とを有する。表示装置3の例は、液晶ディスプレイ又は有機エレクトロルミネッセンスディスプレイである。 The failure degree calculation system 1 is calculated by a failure degree calculation device 2 that calculates a component failure degree that indicates a probability of failure for each of a plurality of components included in any of a plurality of assemblies, and the failure degree calculation device 2. And a display device 3 for displaying the component failure degree of each of the plurality of components. An example of the display device 3 is a liquid crystal display or an organic electroluminescence display.
 図1には、複数の集合体のいずれかに含まれる複数の部品の各々について、他の部品との接続状態を示す接続データを記憶する記憶装置50も示されている。具体的には、記憶装置50は、複数の集合体のいずれかに含まれる複数の部品の各々について、部品が含まれている集合体と、当該部品に接続されている部品とを示す接続データを記憶している。すなわち、接続データとは、例えばある部品が機械的にどの部品に接続されているかといった情報である。記憶装置50の例は、半導体メモリを有する装置である。接続データについては、後に図3を用いて更に説明する。 FIG. 1 also shows a storage device 50 that stores connection data indicating a connection state of each of a plurality of components included in any of the plurality of assemblies with other components. Specifically, the storage device 50 has, for each of a plurality of components included in any of the plurality of assemblies, connection data indicating the assembly including the components and the components connected to the components. Is remembered. That is, the connection data is, for example, information on which part is mechanically connected to a certain part. An example of the storage device 50 is a device having a semiconductor memory. The connection data will be further described later with reference to FIG.
 図2は、実施の形態における複数の集合体及び複数の部品の構成を示す図である。実施の形態では、第1の集合体30Xと、第2の集合体30Yと、第3の集合体30Zとが存在する。第1の集合体30X、第2の集合体30Y及び第3の集合体30Zは、複数の集合体の例である。 FIG. 2 is a diagram showing a configuration of a plurality of aggregates and a plurality of parts in the embodiment. In the embodiment, there are a first aggregate 30X, a second aggregate 30Y, and a third aggregate 30Z. The first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z are examples of a plurality of aggregates.
 第1の集合体30Xは、部品A及び部品Dを有する。部品A及び部品Dは、ひとつの集合体に含まれる複数の部品の例である。第2の集合体30Yは、部品B及び部品Fを有する。部品B及び部品Fも、ひとつの集合体に含まれる複数の部品の例である。第3の集合体30Zは、部品C、部品E及び部品Gを有する。部品C、部品E及び部品Gも、ひとつの集合体に含まれる複数の部品の例である。 The first aggregate 30X has a part A and a part D. Part A and part D are examples of a plurality of parts included in one aggregate. The second aggregate 30Y includes a part B and a part F. The parts B and F are also examples of a plurality of parts included in one aggregate. The third aggregate 30 </ b> Z includes a part C, a part E, and a part G. The part C, the part E, and the part G are also examples of a plurality of parts included in one aggregate.
 図2では、同じ集合体に含まれている2個の部品の接続は、ひとつの線で示されている。互いに異なる2個の集合体の一方の集合体に含まれている部品と他方の集合体に含まれている部品との接続は、二重線で示されている。 In FIG. 2, the connection of two parts included in the same assembly is indicated by a single line. A connection between a part included in one of two different sets and a part included in the other set is indicated by a double line.
 図2の例では、第1の集合体30Xに含まれている部品Aは、第1の集合体30Xに含まれている部品Dと、第2の集合体30Yに含まれている部品Bとに接続されている。第1の集合体30Xに含まれている部品Dは、第1の集合体30Xに含まれている部品Aに接続されている。 In the example of FIG. 2, the part A included in the first aggregate 30X includes a part D included in the first aggregate 30X, and a part B included in the second aggregate 30Y. It is connected to the. The component D included in the first assembly 30X is connected to the component A included in the first assembly 30X.
 第2の集合体30Yに含まれている部品Bは、第1の集合体30Xに含まれている部品Aと、第2の集合体30Yに含まれている部品Fとに接続されている。第2の集合体30Yに含まれている部品Fは、第2の集合体30Yに含まれている部品Bと、第3の集合体30Zに含まれている部品Cとに接続されている。 The part B included in the second aggregate 30Y is connected to the part A included in the first aggregate 30X and the part F included in the second aggregate 30Y. The component F included in the second assembly 30Y is connected to the component B included in the second assembly 30Y and the component C included in the third assembly 30Z.
 第3の集合体30Zに含まれている部品Cは、第2の集合体30Yに含まれている部品Fと、第3の集合体30Zに含まれている部品Eとに接続されている。第3の集合体30Zに含まれている部品Eは、第3の集合体30Zに含まれている部品C及び部品Gに接続されている。第3の集合体30Zに含まれている部品Gは、第3の集合体30Zに含まれている部品Eに接続されている。 The part C included in the third aggregate 30Z is connected to the part F included in the second aggregate 30Y and the part E included in the third aggregate 30Z. The part E included in the third aggregate 30Z is connected to the parts C and G included in the third aggregate 30Z. The part G included in the third aggregate 30Z is connected to the part E included in the third aggregate 30Z.
 図3は、実施の形態における記憶装置50が記憶する接続データを示す図である。実施の形態では、複数の集合体及び複数の部品と、複数の部品の各々の接続についての状態とは、図2に示される通りである。そのため、記憶装置50は、図3に示される表を構成する接続データを記憶する。つまり、記憶装置50は、部品Aについて、部品Aが第1の集合体30Xに含まれていることと、部品Aが部品D及び部品Bに接続されていることとを示す情報を含む接続データを記憶する。接続データは、部品B、部品C、部品D、部品E、部品F及び部品Gの各々についても、図2を用いて説明した状況を示す情報を含む。 FIG. 3 is a diagram illustrating connection data stored in the storage device 50 according to the embodiment. In the embodiment, the plurality of aggregates and the plurality of parts, and the state of the connection of each of the plurality of parts are as shown in FIG. Therefore, the storage device 50 stores connection data constituting the table shown in FIG. That is, for the part A, the storage device 50 includes connection data including information indicating that the part A is included in the first assembly 30X and that the part A is connected to the part D and the part B. Remember. The connection data includes information indicating the situation described with reference to FIG. 2 for each of the parts B, C, D, E, F, and G.
 故障度算出装置2は、複数の集合体のうちの少なくともひとつの集合体についての物理量をもとに、複数の集合体の各々について、故障する確率を示す集合体故障度を算出する集合体故障度算出部21を有する。図4は、実施の形態にかかる故障度算出装置2が有する集合体故障度算出部21の機能の例を説明するための第1図である。具体的には、図4は、加速度センサによって測定された第1の集合体30Xの加速度が時間の経過と共に変化するデータの例を示す図である。加速度センサは、測定装置40の例である。 The failure level calculation device 2 calculates an aggregate failure level that indicates a failure probability for each of the multiple sets based on a physical quantity of at least one of the multiple sets. A degree calculation unit 21 is included. FIG. 4 is a first diagram for explaining an example of the function of the assembly failure degree calculation unit 21 included in the failure degree calculation apparatus 2 according to the embodiment. Specifically, FIG. 4 is a diagram illustrating an example of data in which the acceleration of the first aggregate 30X measured by the acceleration sensor changes with time. The acceleration sensor is an example of the measuring device 40.
 集合体故障度算出部21は、図4に示されるデータについて高速フーリエ変換を行う。図5は、実施の形態にかかる故障度算出装置2が有する集合体故障度算出部21の機能の例を説明するための第2図である。具体的には、図5は、集合体故障度算出部21が図4に示されるデータについて高速フーリエ変換を行った結果の例を実線で示している。すなわち、図5は、集合体故障度算出部21が図4に示されるデータについて高速フーリエ変換を行った場合の各周波数における振幅の例を示している。図5は、第1の集合体30Xがあらかじめ決められた正常である場合に加速度センサによって測定された第1の集合体30Xの加速度のデータについて高速フーリエ変換を行った結果を破線で示している。 The aggregate failure degree calculation unit 21 performs a fast Fourier transform on the data shown in FIG. FIG. 5 is a second diagram for explaining an example of the function of the assembly failure degree calculation unit 21 included in the failure degree calculation apparatus 2 according to the embodiment. Specifically, FIG. 5 shows an example of the result of fast Fourier transform performed on the data shown in FIG. 4 by the aggregate failure degree calculation unit 21 with a solid line. That is, FIG. 5 shows an example of the amplitude at each frequency when the aggregate failure degree calculation unit 21 performs the fast Fourier transform on the data shown in FIG. FIG. 5 shows, as a broken line, the result of performing a fast Fourier transform on the acceleration data of the first aggregate 30X measured by the acceleration sensor when the first aggregate 30X is normal in advance. .
 図5は、あらかじめ決められた特定の周波数pにおいて、実線で示される加速度が「s1」であって、破線で示される加速度が「s0」であることを示している。集合体故障度算出部21は、下記の式(1)にしたがって、第1の集合体30Xの集合体故障度Rを算出する。 FIG. 5 shows that the acceleration indicated by the solid line is “s1” and the acceleration indicated by the broken line is “s0” at the predetermined specific frequency p. The assembly failure degree calculation unit 21 calculates the assembly failure degree R of the first assembly 30X according to the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 集合体故障度算出部21は、以下の通りに第1の集合体30Xの集合体故障度を算出してもよい。温度計が第1の集合体30Xの温度を測定し、測定された温度が「t1」であって、あらかじめ決められた正常である場合の第1の集合体30Xの温度が「t0」であることを想定する。この場合、集合体故障度算出部21は、下記の式(2)にしたがって、第1の集合体30Xの集合体故障度Rを算出してもよい。温度計は、測定装置40の例である。 The assembly failure degree calculation unit 21 may calculate the assembly failure degree of the first assembly 30X as follows. The thermometer measures the temperature of the first aggregate 30X, and the measured temperature is “t1”, and the temperature of the first aggregate 30X when it is normal in advance is “t0”. Assume that. In this case, the assembly failure degree calculation unit 21 may calculate the assembly failure degree R of the first assembly 30X according to the following equation (2). A thermometer is an example of the measuring device 40.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 熱センサが第1の集合体30Xの熱量を測定し、測定された熱量が「v1」であって、あらかじめ決められた正常である場合の第1の集合体30Xの熱量が「v0」であることを想定する。この場合、集合体故障度算出部21は、下記の式(3)にしたがって、第1の集合体30Xの集合体故障度Rを算出してもよい。熱センサは、測定装置40の例である。 The heat sensor measures the amount of heat of the first assembly 30X, and the amount of heat measured is “v1”, and the amount of heat of the first assembly 30X when it is normal in advance is “v0”. Assume that. In this case, the assembly failure degree calculation unit 21 may calculate the assembly failure degree R of the first assembly 30X according to the following equation (3). The thermal sensor is an example of the measuring device 40.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上述の例のように、集合体故障度算出部21は、第1の集合体30Xについての物理量をもとに、第1の集合体30Xの集合体故障度を算出する。同様に、集合体故障度算出部21は、第2の集合体30Y及び第3の集合体30Zの各々の集合体故障度を算出する。又は、集合体故障度算出部21は、第1の集合体30X、第2の集合体30Y及び第3の集合体30Zのいずれかひとつの集合体についての物理量と、複数の集合体の各々の他の集合体との関連をもとにあらかじめ決められた規則とをもとに、第1の集合体30X、第2の集合体30Y及び第3の集合体30Zの各々の集合体故障度を算出する。 As in the example described above, the assembly failure degree calculation unit 21 calculates the assembly failure degree of the first assembly 30X based on the physical quantity of the first assembly 30X. Similarly, the assembly failure degree calculation unit 21 calculates the assembly failure degree of each of the second assembly 30Y and the third assembly 30Z. Alternatively, the aggregate failure degree calculation unit 21 may calculate a physical quantity for any one of the first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z and each of the plurality of aggregates. Based on the rules determined in advance based on the relationship with other aggregates, the aggregate failure degree of each of the first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z is calculated. calculate.
 以下の説明の便宜上、第1の集合体30Xの集合体故障度が「20」であり、第2の集合体30Yの集合体故障度が「70」であって、第3の集合体30Zの集合体故障度が「40」であることを想定する。図6は、実施の形態における複数の集合体の各々の集合体故障度を示す図である。 For convenience of the following description, the first assembly 30X has an assembly failure degree of “20”, the second assembly 30Y has an assembly failure degree of “70”, and the third assembly 30Z has Assume that the aggregate failure degree is “40”. FIG. 6 is a diagram illustrating an aggregate failure degree of each of the multiple aggregates in the embodiment.
 故障度算出装置2は、複数の集合体のいずれかに含まれる複数の部品の各々について、他の部品との接続状態を示す接続データと、集合体故障度算出部21によって算出された複数の集合体の各々の集合体故障度とをもとに、故障する確率を示す部品故障度を算出する部品故障度算出部22を更に有する。接続データは、図3を用いて説明した通り、記憶装置50に記憶されている。 The failure degree calculation device 2 includes, for each of a plurality of parts included in any of the plurality of assemblies, connection data indicating a connection state with other parts and a plurality of pieces calculated by the assembly failure degree calculation unit 21. A component failure degree calculation unit 22 is further provided that calculates a component failure degree indicating a failure probability based on each assembly failure degree of the assembly. The connection data is stored in the storage device 50 as described with reference to FIG.
 ここで、部品故障度は、故障する確率を示す値であれば良く、例えば、相対的にいずれの部品が故障する可能性が高いかを示す指標であれば良い。あるいは、劣化度合いを示す値を用いても良い。集合体故障度も同様である。 Here, the component failure degree may be a value indicating the probability of failure, for example, an index indicating which component is relatively likely to fail. Alternatively, a value indicating the degree of deterioration may be used. The same applies to the aggregate failure degree.
 具体的には、部品故障度算出部22は、各部品の部品故障度を下記の式(4)にしたがって算出する。 Specifically, the part failure degree calculation unit 22 calculates the part failure degree of each part according to the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、「Ex」は、部品故障度算出部22が算出しようとする部品の部品故障度である。部品故障度算出部22が部品故障度を算出しようとする部品は、特定の部品の例である。「Ex1」は、部品故障度算出部22が部品故障度を算出しようとする部品が含まれている集合体の集合体故障度である。「Ey1」は、部品故障度算出部22が部品故障度を算出しようとする部品に接続されている部品が含まれている集合体の集合体故障度である。集合体故障度は、集合体故障度算出部21によって算出された値である。「Nall」は、部品故障度算出部22が部品故障度を算出しようとする部品に接続されている部品の個数である。つまり、部品故障度算出部22は、特定の部品に接続されている部品の個数をもとに、特定の部品の部品故障度を算出する。 In Expression (4), “Ex” is the component failure degree of the component to be calculated by the component failure degree calculation unit 22. The component for which the component failure level calculation unit 22 calculates the component failure level is an example of a specific component. “Ex1” is an assembly failure degree of an assembly including parts for which the component failure degree calculation unit 22 is to calculate the part failure degree. “Ey1” is an assembly failure degree of an assembly including parts connected to the component for which the part failure degree calculation unit 22 is to calculate the part failure degree. The aggregate failure degree is a value calculated by the aggregate failure degree calculation unit 21. “Nall” is the number of components connected to the component for which the component failure degree calculation unit 22 calculates the component failure degree. That is, the component failure level calculation unit 22 calculates the component failure level of a specific component based on the number of components connected to the specific component.
 すなわち、部品故障度算出部22は、特定の部品の部品故障度を算出する場合、まず、特定の部品が含まれている集合体の集合体故障度に、特定の部品に接続されている部品が含まれている集合体の集合体故障度の和を加えて特定の部品に関連する第1の集合体故障度総和を算出する。部品故障度算出部22は、第1の集合体故障度総和を、1に特定の部品に接続されている部品の個数を加えた値で割ることによって、特定の部品の部品故障度を算出する。 That is, when the component failure level calculation unit 22 calculates the component failure level of a specific component, first, the component connected to the specific component is determined based on the aggregate failure level of the aggregate including the specific component. Is added to the sum of the failure degrees of the aggregates, and a first aggregate failure degree sum related to a specific part is calculated. The part failure degree calculation unit 22 calculates the part failure degree of a specific part by dividing the first aggregate failure degree total by 1 plus the number of parts connected to the specific part. .
 例えば、部品Aの部品故障度は、下記の通りに算出される。部品Aは第1の集合体30Xに含まれており、第1の集合体30Xの集合体故障度は「20」である。部品Aは部品Bに接続されており、部品Bは第2の集合体30Yに含まれていて、第2の集合体30Yの集合体故障度は「70」である。部品Aは部品Dにも接続されており、部品Dは第1の集合体30Xに含まれていて、第1の集合体30Xの集合体故障度は「20」である。部品Aに接続されている部品の個数は、2個である。したがって、部品故障度算出部22は、部品Aの部品故障度を、下記の式(5)の通りに算出する。すなわち、部品故障度算出部22は、部品Aの部品故障度Exが「36.7」であると算出する。 For example, the component failure degree of component A is calculated as follows. The part A is included in the first assembly 30X, and the assembly failure degree of the first assembly 30X is “20”. The part A is connected to the part B, the part B is included in the second assembly 30Y, and the assembly failure degree of the second assembly 30Y is “70”. The part A is also connected to the part D. The part D is included in the first assembly 30X, and the assembly failure degree of the first assembly 30X is “20”. The number of parts connected to the part A is two. Therefore, the part failure degree calculation unit 22 calculates the part failure degree of the part A as the following equation (5). That is, the part failure degree calculation unit 22 calculates that the part failure degree Ex of the part A is “36.7”.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 例えば、部品Bの部品故障度は、下記の通りに算出される。部品Bは第2の集合体30Yに含まれており、第2の集合体30Yの集合体故障度は「70」である。部品Bは部品Aに接続されており、部品Aは第1の集合体30Xに含まれていて、第1の集合体30Xの集合体故障度は「20」である。部品Bは部品Fにも接続されており、部品Fは第2の集合体30Yに含まれていて、第2の集合体30Yの集合体故障度は「70」である。部品Bに接続されている部品の個数は、2個である。したがって、部品故障度算出部22は、部品Bの部品故障度を、下記の式(6)の通りに算出する。すなわち、部品故障度算出部22は、部品Bの部品故障度Exが「53.3」であると算出する。 For example, the component failure degree of component B is calculated as follows. The component B is included in the second assembly 30Y, and the assembly failure degree of the second assembly 30Y is “70”. The component B is connected to the component A, the component A is included in the first assembly 30X, and the assembly failure degree of the first assembly 30X is “20”. The component B is also connected to the component F, and the component F is included in the second assembly 30Y, and the assembly failure degree of the second assembly 30Y is “70”. The number of components connected to the component B is two. Therefore, the component failure degree calculation unit 22 calculates the component failure degree of the component B as the following formula (6). That is, the part failure degree calculation unit 22 calculates that the part failure degree Ex of the part B is “53.3”.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上述の通り、部品故障度算出部22は、各部品に接続される部品の個数を接続データとして用い、各部品の部品故障度を上記の式(4)にしたがって算出する。図7は、実施の形態にかかる故障度算出装置2が有する部品故障度算出部22によって算出された複数の部品の各々の部品故障度を示す図である。 As described above, the component failure level calculation unit 22 uses the number of components connected to each component as connection data, and calculates the component failure level of each component according to the above equation (4). FIG. 7 is a diagram illustrating the component failure degree of each of the plurality of components calculated by the component failure degree calculation unit 22 included in the failure degree calculation apparatus 2 according to the embodiment.
 故障度算出装置2は、部品故障度算出部22によって算出された複数の部品の各々の部品故障度を示す情報を表示装置3に出力して当該部品故障度を表示装置3に表示させる制御部23を更に有する。すなわち、表示装置3は、故障度算出装置2の部品故障度算出部22によって算出された複数の部品の各々の部品故障度を表示する。 The failure level calculation device 2 outputs information indicating the component failure level of each of the plurality of components calculated by the component failure level calculation unit 22 to the display device 3 and causes the display device 3 to display the component failure level. 23. That is, the display device 3 displays the component failure degree of each of the plurality of components calculated by the component failure degree calculation unit 22 of the failure degree calculation device 2.
 図8は、実施の形態にかかる故障度算出システム1が有する表示装置3によって表示される複数の部品の各々の部品故障度のリストを示す図である。例えば、表示装置3は、図8に示す通り、複数の部品の各々の部品故障度をリストにして表示する。 FIG. 8 is a diagram illustrating a list of component failure levels of each of a plurality of components displayed by the display device 3 included in the failure level calculation system 1 according to the embodiment. For example, as shown in FIG. 8, the display device 3 displays a component failure degree of each of a plurality of components as a list.
 図9は、実施の形態にかかる故障度算出システム1が有する表示装置3によって複数の集合体が立体的に表示され、かつ、複数の集合体のいずれかに含まれる複数の部品の各々が部品故障度に対応した色を用いて動画で表示される状況を示す図である。図9は、部品Aが緑色で表示され、部品Bが橙色で表示され、部品Cが黄色で表示され、部品Dが青色で表示され、部品Eが黄緑色で表示され、部品Fが赤色で表示され、部品Gが黄緑色で表示されることを示している。例えば、表示装置3は、図9に示す通り、相対的に部品故障度が高い部品については赤色に近い色で表示し、相対的に部品故障度が低い部品については青色に近い色で表示する。実際には、図9の括弧と当該括弧のなかの文字とは表示されない。 FIG. 9 shows a plurality of assemblies displayed three-dimensionally by the display device 3 included in the failure degree calculation system 1 according to the embodiment, and each of a plurality of components included in any of the plurality of assemblies is a component. It is a figure which shows the condition displayed with a moving image using the color corresponding to a failure degree. FIG. 9 shows that component A is displayed in green, component B is displayed in orange, component C is displayed in yellow, component D is displayed in blue, component E is displayed in yellow-green, and component F is displayed in red. Is displayed, indicating that the component G is displayed in yellow-green. For example, as shown in FIG. 9, the display device 3 displays a component having a relatively high component failure level in a color close to red, and displays a component having a relatively low component failure level in a color close to blue. . Actually, the parentheses in FIG. 9 and the characters in the parentheses are not displayed.
 例えば、表示装置3は、図9に示す通り、部品故障度が30未満である部品については青色で表示し、部品故障度が30以上40未満である部品については緑色で表示し、部品故障度が40以上50未満である部品については黄緑色で表示し、部品故障度が50以上53未満である部品については黄色で表示し、部品故障度が53以上60未満である部品については橙色で表示し、部品故障度が60以上である部品については赤色で表示する。 For example, as shown in FIG. 9, the display device 3 displays a part having a part failure degree of less than 30 in blue, displays a part having a part failure degree of 30 or more and less than 40 in green, and displays the part failure degree. If the part is 40 or more and less than 50, it is displayed in yellow green, if the part failure degree is 50 or more and less than 53, it is displayed in yellow, and if the part failure degree is 53 or more and less than 60, it is displayed in orange. However, parts having a part failure degree of 60 or more are displayed in red.
 上述の通り、故障度算出装置2は、複数の集合体のいずれかに含まれる複数の部品の各々について、接続データと、複数の集合体の各々の集合体故障度とをもとに、故障する確率を示す部品故障度を算出する。すなわち、故障度算出装置2は、集合体に含まれる複数の部品について、故障する確率を示す部品故障度を算出することができる。更に言うと、故障度算出装置2は、ひとつの集合体に含まれる複数の部品のうちの相対的に部品故障度が高い部品と、相対的に部品故障度が低い部品とを特定することができる。 As described above, the failure level calculation device 2 uses the connection data and the failure level of each of the plurality of assemblies for each of a plurality of parts included in any of the plurality of assemblies. The component failure degree indicating the probability of performing is calculated. That is, the failure level calculation device 2 can calculate the component failure level indicating the probability of failure for a plurality of components included in the assembly. Furthermore, the failure level calculation device 2 can identify a component having a relatively high component failure level and a component having a relatively low level of component failure among a plurality of components included in one aggregate. it can.
 具体的には、従来の技術では、第1の集合体30Xと、第2の集合体30Yと、第3の集合体30Zとのうちでは、図6に示す通り、集合体故障度がもっと高い第2の集合体30Yが故障する確率が最も高いことが特定される。しかしながら、従来の技術では、第2の集合体30Yに含まれる部品Bと部品Fとのうちのいずれの方が故障する確率が高いのかということを特定することはできない。 Specifically, in the conventional technique, among the first aggregate 30X, the second aggregate 30Y, and the third aggregate 30Z, as shown in FIG. 6, the aggregate failure degree is higher. It is specified that the second aggregate 30Y has the highest probability of failure. However, in the conventional technique, it cannot be specified which of the component B and the component F included in the second assembly 30Y has a higher probability of failure.
 しかしながら、故障度算出装置2は、複数の集合体のいずれかに含まれる複数の部品の各々の部品故障度を算出する。つまり、故障度算出装置2は、第2の集合体30Yに含まれる部品Bと部品Fとの各々の部品故障度を算出するので、部品Bと部品Fとのうちのいずれの方が故障する確率が高いのかということを特定することができる。 However, the failure degree calculation device 2 calculates the part failure degree of each of the plurality of parts included in any of the plurality of aggregates. That is, since the failure level calculation device 2 calculates the component failure level of each of the component B and the component F included in the second assembly 30Y, either of the component B or the component F fails. It can be specified whether the probability is high.
 表示装置3は、故障度算出装置2の部品故障度算出部22によって算出された複数の部品の各々の部品故障度を表示する。更に言うと、表示装置3は、ひとつの集合体に含まれる複数の部品のうちの相対的に部品故障度が高い部品と、相対的に部品故障度が低い部品とを故障度算出システム1の管理者に知らせることができる。管理者は、表示装置3によって表示された部品故障度をもとに、交換又は修理を行うことが必要な部品を知ることができ、当該部品を交換又は修理することによって機械装置が突然故障することを未然に防止することができる。 The display device 3 displays the component failure level of each of the plurality of components calculated by the component failure level calculation unit 22 of the failure level calculation device 2. Furthermore, the display device 3 uses the failure level calculation system 1 to identify a component having a relatively high component failure degree and a component having a relatively low component failure degree among a plurality of components included in one aggregate. You can inform the administrator. The administrator can know a part that needs to be replaced or repaired based on the degree of the part failure displayed by the display device 3, and the mechanical device suddenly fails by replacing or repairing the part. This can be prevented beforehand.
 上述の通り、表示装置3は、図8に示す通り、複数の部品の各々の部品故障度のリストを表示することができる。表示装置3が複数の部品の各々の部品故障度のリストを表示する場合、故障度算出システム1の管理者は、交換又は修理を行うことが必要な部品を、数値をもとに把握することができる。 As described above, the display device 3 can display a list of component failure levels of each of a plurality of components as shown in FIG. When the display device 3 displays a list of component failure levels for each of a plurality of components, the administrator of the failure level calculation system 1 must grasp the components that need to be replaced or repaired based on numerical values. Can do.
 表示装置3は、図9に示す通り、複数の集合体を立体的に表示し、かつ、複数の部品の各々を部品故障度に対応した色を用いて動画で表示することができる。表示装置3が複数の集合体を立体的に表示し、かつ、複数の部品の各々を部品故障度に対応した色を用いて動画で表示する場合、故障度算出システム1の管理者は、色に着目することにより、時間の経過によって変化する交換又は修理を行うことが必要な部品を視覚を通じて知ることができる。 As shown in FIG. 9, the display device 3 can display a plurality of aggregates in a three-dimensional manner and display each of the plurality of parts as a moving image using a color corresponding to the degree of component failure. When the display device 3 displays a plurality of assemblies three-dimensionally and displays each of the plurality of parts as a moving image using a color corresponding to the part failure degree, the administrator of the failure degree calculation system 1 By paying attention to the above, it is possible to visually know parts that need to be replaced or repaired that change over time.
 なお、部品故障度算出部22は、式(4)ではなく下記の式(7)にしたがって各部品の部品故障度を算出してもよい。 In addition, the part failure degree calculation unit 22 may calculate the part failure degree of each part according to the following expression (7) instead of the expression (4).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)において、「w1」は、部品故障度算出部22が部品故障度を算出しようとする部品についての特定の量を示している。「w2」は、部品故障度算出部22が部品故障度を算出しようとする部品に接続されている部品についての特定の量を示している。「w3」は、部品故障度算出部22が部品故障度を算出しようとする部品についての特定の量と、部品故障度算出部22が部品故障度を算出しようとする部品に接続されている部品についての特定の量との平均を示している。特定の量は、物理量又は物理的特性である。物理量又は物理的特性の例は、質量、剛性、慣性モーメント又は体積である。 In Expression (7), “w1” indicates a specific amount of a component for which the component failure degree calculation unit 22 is to calculate the component failure degree. “W2” indicates a specific amount of a component connected to the component for which the component failure degree calculation unit 22 is to calculate the component failure degree. “W3” is a specific amount of a component for which the component failure degree calculation unit 22 is to calculate the component failure degree, and a component connected to the component for which the component failure degree calculation unit 22 is to calculate the component failure degree. Shows the average with a specific amount. The specific quantity is a physical quantity or physical property. Examples of physical quantities or physical properties are mass, stiffness, moment of inertia or volume.
 つまり、部品故障度算出部22は、上記の式(7)にしたがって特定の部品の部品故障度を算出する場合、まず、特定の部品が含まれている集合体の集合体故障度に特定の部品についての特定の量を掛けて得られた値に、下記の集合体故障度部分和を加えて特定の部品に関連する第2の集合体故障度総和を算出する。集合体故障度部分和は、特定の部品に接続されている部品が含まれている集合体の集合体故障度に当該部品についての特定の量を掛けて特定値を得て、特定の部品に接続されているすべての部品の特定値を加算することによって得られる値である。 That is, when the component failure degree calculation unit 22 calculates the component failure degree of a specific part in accordance with the above equation (7), first, the part failure degree calculation unit 22 specifies the aggregate failure degree of the assembly including the specific part. The value obtained by multiplying a specific amount for a part is added to the following aggregate failure degree partial sum to calculate a second aggregate failure degree sum related to the specific part. An aggregate failure degree partial sum is obtained by multiplying an aggregate failure degree of an aggregate including parts connected to a specific part by a specific amount for the part to obtain a specific value. This is a value obtained by adding specific values of all connected parts.
 次に、部品故障度算出部22は、特定の部品についての特定の量に、特定の部品に接続されているすべての部品の各々についての特定の量を加えることによって得られた特定の量の総和を、1に特定の部品に接続されている部品の個数を加えた値で割って、特定の部品と特定の部品に接続されている部品とについての特定の量の平均を算出する。部品故障度算出部22は、第2の集合体故障度総和を、1に特定の部品に接続されている部品の個数を加えた値に当該平均を掛けることによって得られる値で割ることによって、特定の部品の部品故障度を算出する。 Next, the component failure degree calculation unit 22 adds the specific amount for each of all the components connected to the specific component to the specific amount for the specific component. The sum is divided by 1 plus the number of parts connected to the specific part to calculate the average of the specific amount for the specific part and the part connected to the specific part. The component failure degree calculation unit 22 divides the second aggregate failure degree total by 1 by adding the number of parts connected to the specific part to the value obtained by multiplying the average. The component failure degree of a specific component is calculated.
 すなわち、部品故障度算出部22は、特定の部品と特定の部品に接続されている部品との各々についての特定の量をもとに、特定の部品の部品故障度を算出してもよい。部品故障度算出部22が上記の式(7)にしたがって各部品の部品故障度を算出することにより、故障度算出装置2は、各部品についての特定の量を考慮した部品故障度を算出することができる。 That is, the part failure degree calculation unit 22 may calculate the part failure degree of a specific part based on a specific amount for each of the specific part and the part connected to the specific part. When the component failure degree calculation unit 22 calculates the component failure degree of each component according to the above equation (7), the failure degree calculation device 2 calculates the component failure degree in consideration of a specific amount for each component. be able to.
 上述した実施の形態では、部品故障度算出部22は、複数の集合体のいずれかに含まれる複数の部品の各々の部品故障度を算出する。しかしながら、部品故障度算出部22は、複数の集合体のうちの特定の集合体に含まれる複数の部品の部品故障度のみを算出してもよい。特定の集合体に含まれる複数の部品の各々は、特定の部品の例である。例えば、特定の集合体が第2の集合体30Yである場合、部品故障度算出部22は、部品B及び部品Fの部品故障度のみを算出してもよい。部品B及び部品Fは、特定の部品の例である。 In the above-described embodiment, the part failure degree calculation unit 22 calculates the part failure degree of each of the plurality of parts included in any of the plurality of aggregates. However, the component failure level calculation unit 22 may calculate only the component failure levels of a plurality of components included in a specific assembly among the plurality of assemblies. Each of the plurality of parts included in the specific assembly is an example of the specific part. For example, when the specific aggregate is the second aggregate 30Y, the component failure degree calculation unit 22 may calculate only the component failure degrees of the parts B and F. Parts B and F are examples of specific parts.
 図3に示す通り、接続データは、特定の集合体に含まれる複数の部品の各々について、特定の集合体に含まれる他の部品との接続状態と、複数の集合体のうちの特定の集合体以外の集合体に含まれる部品との接続状態とを示している。部品故障度算出部22は、特定の集合体に含まれる特定の部品の部品故障度を算出する場合、接続データが示す特定の部品に接続されている部品との接続状態をもとに特定の部品の部品故障度を算出する。 As shown in FIG. 3, the connection data includes, for each of a plurality of parts included in a specific aggregate, a connection state with other parts included in the specific aggregate, and a specific set of the plurality of aggregates. The connection state with the components contained in the assembly other than the body is shown. When the component failure degree calculation unit 22 calculates the component failure degree of a specific part included in a specific assembly, the component failure degree calculation unit 22 determines a specific failure based on the connection state with the component connected to the specific component indicated by the connection data. The component failure degree of the component is calculated.
 部品故障度算出部22が特定の集合体に含まれる複数の部品の部品故障度のみを算出する場合、制御部23は、特定の集合体に含まれる複数の部品の各々の部品故障度を示す情報を表示装置3に出力して当該部品故障度を表示装置3に表示させる。表示装置3は、特定の集合体に含まれる複数の部品の各々の部品故障度を表示する。例えば、表示装置3は、特定の集合体に含まれる複数の部品の各々の部品故障度をリストにして表示する。例えば、表示装置3は、特定の集合体を立体的に表示すると共に、特定の集合体に含まれる複数の部品の各々を部品故障度に対応した色を用いて例えば動画で表示する。 When the component failure level calculation unit 22 calculates only the component failure level of a plurality of components included in a specific assembly, the control unit 23 indicates the component failure level of each of the plurality of components included in the specific assembly. Information is output to the display device 3 to display the component failure degree on the display device 3. The display device 3 displays the component failure degree of each of a plurality of components included in the specific assembly. For example, the display device 3 displays a part failure degree of each of a plurality of parts included in a specific assembly as a list. For example, the display device 3 displays a specific assembly three-dimensionally, and displays each of a plurality of components included in the specific assembly using, for example, a moving image using a color corresponding to the component failure degree.
 図10は、実施の形態にかかる故障度算出装置2が有する集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部の機能がプロセッサ61によって実現される場合のプロセッサ61を示す図である。つまり、集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部の機能は、メモリ62に格納されるプログラムを実行するプロセッサ61によって実現されてもよい。 FIG. 10 illustrates a processor in a case where at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 included in the failure degree calculation device 2 according to the embodiment are realized by the processor 61. FIG. That is, at least some functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 may be realized by the processor 61 that executes a program stored in the memory 62.
 プロセッサ61は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)である。図10には、メモリ62も示されている。 The processor 61 is a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor). FIG. 10 also shows the memory 62.
 集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部の機能がプロセッサ61によって実現される場合、当該一部の機能は、プロセッサ61と、ソフトウェア、ファームウェア、又は、ソフトウェア及びファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ62に格納される。 When at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 are realized by the processor 61, the partial functions include the processor 61, software, firmware, or Realized by a combination of software and firmware. Software or firmware is described as a program and stored in the memory 62.
 プロセッサ61は、メモリ62に記憶されたプログラムを読み出して実行することにより、集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部の機能を実現する。 The processor 61 implements at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 by reading and executing a program stored in the memory 62.
 すなわち、集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部の機能がプロセッサ61によって実現される場合、故障度算出装置2は、集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部によって実行されるステップが結果的に実行されることになるプログラムを格納するためのメモリ62を有する。 That is, when at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 are realized by the processor 61, the failure degree calculation apparatus 2 includes the assembly failure degree calculation unit 21, It has a memory 62 for storing a program in which steps executed by at least a part of the component failure degree calculation unit 22 and the control unit 23 are executed as a result.
 メモリ62に格納されるプログラムは、集合体故障度算出部21、部品故障度算出部22及び制御部23の少なくとも一部が実行する手順又は方法をコンピュータに実行させるものであるともいえる。 It can be said that the program stored in the memory 62 causes the computer to execute a procedure or method executed by at least a part of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23.
 メモリ62は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。 The memory 62 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory), etc. Or it is a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disk).
 図11は、実施の形態にかかる故障度算出装置2が有する集合体故障度算出部21、部品故障度算出部22及び制御部23を構成する少なくとも一部の構成要素が処理回路63によって実現される場合の処理回路63を示す図である。つまり、集合体故障度算出部21、部品故障度算出部22及び制御部23の機能の少なくとも一部は、処理回路63によって実現されてもよい。 In FIG. 11, at least some of the constituent elements constituting the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 included in the failure degree calculation apparatus 2 according to the embodiment are realized by the processing circuit 63. FIG. That is, at least some of the functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 may be realized by the processing circuit 63.
 処理回路63は、専用のハードウェアである。処理回路63は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。集合体故障度算出部21、部品故障度算出部22及び制御部23の一部は、残部とは別個の専用のハードウェアであってもよい。 The processing circuit 63 is dedicated hardware. The processing circuit 63 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. It is. Some of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 may be dedicated hardware separate from the remaining part.
 集合体故障度算出部21、部品故障度算出部22及び制御部23の複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、集合体故障度算出部21、部品故障度算出部22及び制御部23の複数の機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって実現することができる。 Of the plurality of functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23, a part of the plurality of functions is realized by software or firmware, and the rest of the plurality of functions is dedicated hardware. It may be realized with. Thus, the plurality of functions of the assembly failure degree calculation unit 21, the component failure degree calculation unit 22, and the control unit 23 can be realized by hardware, software, firmware, or a combination thereof.
 特許文献2に開示される技術では、シミュレーションでモデル化された集合体についてしか異常判定することができない。すなわち、集合体を構成する部品レベルまでは異常を判定できない。特許文献2において、集合体を部品レベルまで詳細化したシミュレーションを行うと、シミュレーションのモデルが複雑化するため、大規模な計算を実施する必要があり、シミュレーション装置のスペックや計算時間が大幅に増大する。そのため、装置コストやシミュレーションコストも増大してしまう。さらに、装置が大型化するため、例えばモータ制御機器等には実装できない場合も生じる。 In the technique disclosed in Patent Document 2, an abnormality can be determined only for an aggregate modeled by simulation. That is, abnormality cannot be determined up to the part level constituting the assembly. In Patent Document 2, if the simulation is performed with the assembly being detailed to the part level, the simulation model becomes complicated, so it is necessary to perform a large-scale calculation, and the specifications and calculation time of the simulation apparatus greatly increase. To do. Therefore, the apparatus cost and simulation cost also increase. Furthermore, since the apparatus is enlarged, it may not be mounted on, for example, a motor control device.
 本実施の形態を用いれば、集合体をモデルとしたシミュレーションの結果を用いて、部品レベルの異常判定を実施することができるため、シミュレーション装置のスペックを上げる必要なく、高精度な異常判定を行うことが可能となるため、上述した問題を解決できる。 By using this embodiment, it is possible to perform abnormality determination at the component level using the simulation results using the aggregate as a model. Therefore, high-accuracy abnormality determination is performed without having to increase the specifications of the simulation apparatus. Therefore, the above-described problem can be solved.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 故障度算出システム、2 故障度算出装置、21 集合体故障度算出部、22 部品故障度算出部、23 制御部、3 表示装置、30 集合体、30X 第1の集合体、30Y 第2の集合体、30Z 第3の集合体、40 測定装置、50 記憶装置、61 プロセッサ、62 メモリ、63 処理回路、A,B,C,D,E,F,G 部品、p 周波数。 1 failure degree calculation system, 2 failure degree calculation device, 21 assembly failure degree calculation unit, 22 parts failure degree calculation unit, 23 control unit, 3 display device, 30 assembly, 30X first assembly, 30Y second Aggregate, 30Z 3rd aggregate, 40 measuring device, 50 storage device, 61 processor, 62 memory, 63 processing circuit, A, B, C, D, E, F, G components, p frequency.

Claims (8)

  1.  複数の集合体の各々が複数の部品を含む場合において、前記複数の集合体のうちの少なくともひとつの集合体についての物理量をもとに、前記複数の集合体の各々について、故障する確率を示す集合体故障度を算出する集合体故障度算出部と、
     前記複数の集合体のうち特定の集合体に含まれる複数の部品の各々について、他の部品との接続状態を示す接続データと前記集合体故障度とをもとに、故障する確率を示す部品故障度を算出する部品故障度算出部と
     を備えることを特徴とする故障度算出装置。
    In the case where each of the plurality of aggregates includes a plurality of parts, the probability of failure of each of the plurality of aggregates is indicated based on a physical quantity of at least one of the plurality of aggregates. An aggregate failure degree calculation unit for calculating an aggregate failure degree;
    A part indicating a probability of failure based on connection data indicating a connection state with other parts and the degree of failure of the aggregate for each of a plurality of parts included in the specific aggregate among the plurality of aggregates A failure degree calculation device comprising: a component failure degree calculation unit that calculates a failure degree.
  2.  前記部品故障度算出部は、前記特定の集合体に含まれる特定の部品の部品故障度を算出する場合、前記複数の集合体のうち前記接続データが示す前記特定の部品に接続されている部品を含む集合体の前記集合体故障度をもとに、前記特定の部品の部品故障度を算出する
     ことを特徴とする請求項1に記載の故障度算出装置。
    The component failure degree calculation unit calculates a component failure degree of a specific part included in the specific assembly, and is connected to the specific component indicated by the connection data among the plurality of assemblies. The failure degree calculation apparatus according to claim 1, wherein a component failure degree of the specific part is calculated based on the assembly failure degree of the assembly including the component.
  3.  前記部品故障度算出部は、前記特定の部品に接続されている部品の個数をもとに、前記特定の部品の部品故障度を算出する
     ことを特徴とする請求項2に記載の故障度算出装置。
    The failure level calculation according to claim 2, wherein the component failure level calculation unit calculates a component failure level of the specific component based on the number of components connected to the specific component. apparatus.
  4.  前記部品故障度算出部は、前記特定の部品と前記特定の部品に接続されている部品との各々についての物理量又は物理的特性をもとに、前記特定の部品の部品故障度を算出する
     ことを特徴とする請求項3に記載の故障度算出装置。
    The component failure degree calculation unit calculates a component failure degree of the specific part based on a physical quantity or a physical characteristic of each of the specific part and a part connected to the specific part. The failure degree calculation apparatus according to claim 3.
  5.  前記部品故障度算出部によって算出された前記特定の集合体に含まれる複数の部品の各々の部品故障度を示す情報を表示装置に出力して前記部品故障度を前記表示装置に表示させる制御部を更に備える
     ことを特徴とする請求項1から4のいずれか1項に記載の故障度算出装置。
    A control unit that outputs information indicating a component failure level of each of a plurality of components included in the specific assembly calculated by the component failure level calculation unit to a display device, and causes the display device to display the component failure level. The failure degree calculation device according to claim 1, further comprising:
  6.  請求項1から5のいずれか1項に記載の故障度算出装置と、
     前記部品故障度算出部によって算出された前記特定の集合体に含まれる複数の部品の各々の部品故障度を表示する表示装置と
     を備えることを特徴とする故障度算出システム。
    The failure degree calculation device according to any one of claims 1 to 5,
    A failure degree calculation system comprising: a display device that displays a part failure degree of each of a plurality of parts included in the specific assembly calculated by the part failure degree calculation unit.
  7.  前記表示装置は、前記複数の部品の各々の部品故障度をリストにして表示する
     ことを特徴とする請求項6に記載の故障度算出システム。
    The failure degree calculation system according to claim 6, wherein the display device displays a part failure degree of each of the plurality of parts as a list.
  8.  前記特定の集合体は、立体物であって、
     前記表示装置は、前記特定の集合体を立体的に表示すると共に、前記複数の部品の各々を部品故障度に対応した色を用いて表示する
     ことを特徴とする請求項6に記載の故障度算出システム。
    The specific aggregate is a three-dimensional object,
    The failure degree according to claim 6, wherein the display device displays the specific assembly in a three-dimensional manner and displays each of the plurality of components using a color corresponding to the component failure degree. Calculation system.
PCT/JP2018/009798 2018-03-13 2018-03-13 Failure level calculation device and failure level calculation system WO2019175984A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/009798 WO2019175984A1 (en) 2018-03-13 2018-03-13 Failure level calculation device and failure level calculation system
JP2018566610A JP6526362B1 (en) 2018-03-13 2018-03-13 Failure degree calculation device and failure degree calculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009798 WO2019175984A1 (en) 2018-03-13 2018-03-13 Failure level calculation device and failure level calculation system

Publications (1)

Publication Number Publication Date
WO2019175984A1 true WO2019175984A1 (en) 2019-09-19

Family

ID=66730654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009798 WO2019175984A1 (en) 2018-03-13 2018-03-13 Failure level calculation device and failure level calculation system

Country Status (2)

Country Link
JP (1) JP6526362B1 (en)
WO (1) WO2019175984A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332967A (en) * 1989-06-30 1991-02-13 Mazda Motor Corp Troubleshooting device for vehicle
JPH07200981A (en) * 1993-12-28 1995-08-04 Toshiba Corp Reliability evaluating method for plant and update evaluating method therefor
JP2000235507A (en) * 1999-02-16 2000-08-29 Toshiba Corp Device and method for designing reliability of system and recording medium recording software for designing system reliability
JP2005202886A (en) * 2004-01-19 2005-07-28 Kawahara Tekko Kk Support system of machine failure and maintenance
EP3136255A1 (en) * 2014-04-24 2017-03-01 ALSTOM Transport Technologies Method and system for automatically detecting defects on a rotating shaft
WO2017163561A1 (en) * 2016-03-25 2017-09-28 株式会社日立製作所 Operation support device and wind power system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234247A (en) * 1985-08-08 1987-02-14 Nec Corp Production system for point-out table of fault hardware
JP6533403B2 (en) * 2015-03-24 2019-06-19 三菱航空機株式会社 Failure rate calculation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332967A (en) * 1989-06-30 1991-02-13 Mazda Motor Corp Troubleshooting device for vehicle
JPH07200981A (en) * 1993-12-28 1995-08-04 Toshiba Corp Reliability evaluating method for plant and update evaluating method therefor
JP2000235507A (en) * 1999-02-16 2000-08-29 Toshiba Corp Device and method for designing reliability of system and recording medium recording software for designing system reliability
JP2005202886A (en) * 2004-01-19 2005-07-28 Kawahara Tekko Kk Support system of machine failure and maintenance
EP3136255A1 (en) * 2014-04-24 2017-03-01 ALSTOM Transport Technologies Method and system for automatically detecting defects on a rotating shaft
WO2017163561A1 (en) * 2016-03-25 2017-09-28 株式会社日立製作所 Operation support device and wind power system

Also Published As

Publication number Publication date
JP6526362B1 (en) 2019-06-05
JPWO2019175984A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP2012008126A5 (en)
TW201912930A (en) Failure probability assessment system
TWI686125B (en) Fan Speed Control Optimization Method
US10895873B2 (en) Machine health monitoring of rotating machinery
JP5822413B2 (en) Measuring diesel engine emissions
TWI687699B (en) State analysis apparatus, state analysis method, and storage medium recorded with program
JP2015507123A (en) Apparatus and method for controlling internal vehicle engine
WO2019175984A1 (en) Failure level calculation device and failure level calculation system
JP6671899B2 (en) Automatic failure prediction system and method
JP2011199867A (en) Bayesian approach to identifying sub-module failure
JP6419534B2 (en) Diagnostic system, diagnostic method and diagnostic program
JP7078060B2 (en) Analytical instrument and diagnostic system
JP2006234621A5 (en)
US10132718B2 (en) Vehicle computer and crankshaft sensor type detecting method
JP2008011622A (en) Inverter device, its alternating-current motor diagnosis, and method for representing diagnostic outcome
JP2012093356A (en) Diagnosis of stator thermal anomalies in electrical machine
US9268660B2 (en) Matrix and compression-based error detection
WO2021140942A1 (en) Diagnosing device, diagnosing method, and program
JP2015170211A (en) Information processing program, information processing method and information processing apparatus
JP6658173B2 (en) Deterioration detection device and deterioration detection method
KR102199104B1 (en) Apparatus and method for detecting defects in rotating machines
JP2016071419A (en) Fluctuation data management system and singularity detection method of the same
JP6963456B2 (en) Gear diagnostic device and gear diagnostic method
US20140309948A1 (en) Method and device for generating allowed input data trajectories for a testing system
WO2018101132A1 (en) Failure diagnosis system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566610

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909651

Country of ref document: EP

Kind code of ref document: A1