WO2019175954A1 - Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation - Google Patents

Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation Download PDF

Info

Publication number
WO2019175954A1
WO2019175954A1 PCT/JP2018/009652 JP2018009652W WO2019175954A1 WO 2019175954 A1 WO2019175954 A1 WO 2019175954A1 JP 2018009652 W JP2018009652 W JP 2018009652W WO 2019175954 A1 WO2019175954 A1 WO 2019175954A1
Authority
WO
WIPO (PCT)
Prior art keywords
freeze
spray
dry powder
frozen
drying
Prior art date
Application number
PCT/JP2018/009652
Other languages
French (fr)
Japanese (ja)
Inventor
晋也 川口
Original Assignee
株式会社プリス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プリス filed Critical 株式会社プリス
Priority to PCT/JP2018/009652 priority Critical patent/WO2019175954A1/en
Priority to JP2020505974A priority patent/JP7038435B2/en
Publication of WO2019175954A1 publication Critical patent/WO2019175954A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Definitions

  • the present invention relates to a spray freeze granulated dry powder production apparatus and spray for producing a frozen granule by rapidly cooling a sprayed undiluted solution and producing a dry powder by freeze drying the produced frozen granule.
  • the present invention relates to a freeze granulated dry powder production system.
  • Non-Patent Document 1 describes a freeze granulation drying method and a rough apparatus configuration, and discloses that a ceramic dry powder can be obtained through a series of treatments.
  • the freeze granulation drying apparatus disclosed in Non-Patent Document 1 mixes a stock solution and a compressed gas and sprays the mixture into liquid nitrogen maintained at ⁇ 196 ° C. through a nozzle. To produce frozen granules.
  • the produced frozen granule is separately collected in a collection container such as a bat cooled in advance, and then dried by a freeze dryer.
  • the present invention has been made in view of such a situation, and the problem of the present invention is that spray freezing granulation drying which can eliminate the manual process as much as possible, and can mass-produce dry powder by continuous operation and long-time operation. It is to provide a powder production apparatus and a spray freeze granulated dry powder production system.
  • the spray freeze granulated dry powder manufacturing apparatus generates a frozen granulated body in a freezing granulation chamber by cooling a continuously supplied stock solution
  • a spray freeze granulation dry powder production apparatus for producing a dry powder by freeze-drying a frozen granulation body, having spraying prevention means, and spraying a stock solution into a freeze granulation chamber
  • the mechanism and a lower part of the freezing granulation chamber are configured to be detachable, and have a storage container for storing the frozen granulation generated in the freezing granulation chamber, and the frozen granulation stored in the storage container
  • a freeze-drying section for freeze-drying, and the freeze-granulation chamber directly cools by introducing the cooling medium directly into the chamber and cools the jacket to the jacket structure provided around the freeze-granulation chamber.
  • Indirect cooling that cools by filling It is characterized by being cooled by any or a combination thereof.
  • the jacket structure may be provided with an evaporative gas input pipe for directly introducing evaporative gas obtained by evaporating the filled cooling medium into the chamber.
  • the storage container for storing the frozen granulated material generated in the freezing granulation chamber may be formed so as to be swingable at a predetermined angle with respect to the container longitudinal axis. It may be formed so as to be rotatable.
  • the storage container may be formed in a shallow bottom shape in which the frozen granulation body can be left stationary, and may include a stirring member for stirring the stored frozen granulation body.
  • the spray mechanism unit can include any one of a two-fluid nozzle, a one-fluid pressure nozzle, an ultrasonic nozzle, and a centrifugal sprayer. It is preferable to provide an antifreeze gas supply unit for supplying a warm antifreeze gas.
  • the cooling medium liquid nitrogen, nitrogen gas obtained by evaporating liquid nitrogen, liquid argon, argon gas obtained by evaporating liquid argon, dry ice, carbon dioxide gas, cooling by cooling the atmosphere by a direct expansion type or a chiller type Gas
  • a medium remaining amount detecting means for detecting the remaining amount of the cooling medium in the jacket structure and a cooling medium replenishing means for replenishing the cooling medium in the jacket structure based on the detection result by the medium remaining amount detecting means may be provided.
  • the jacket structure may have a heat insulating structure.
  • the spray freeze granulated dry powder production system is a freeze granulated product from a stock solution continuously supplied in a freeze granulation chamber into which a cooling medium is introduced.
  • a freeze freeze-dried powder production system for producing a dry powder by freeze-drying the produced freeze-granulated product, and having a freeze-preventing means, and supplying the stock solution into the freeze-granulation chamber
  • a spray mechanism unit for spraying and a lower part of the freezing granulation chamber are configured so as to be detachable, and has a storage container for storing the frozen granulated material generated in the freezing granulation chamber, and the freezing process stored in the storage container. It is characterized by comprising a freeze-drying section for freeze-drying the granules and a collecting means for collecting the frozen granules that move as the cooling medium is exhausted.
  • the collecting means may include a cyclone type dust collector and / or a bag filter type dust collector.
  • a spray freeze granulated dry powder production apparatus and a spray freeze granulated dry powder production system capable of mass production of dry powder by continuous operation and long time operation as much as possible. can do.
  • FIG. 2 is a schematic diagram for schematically explaining the internal configuration of the spray mechanism section 10 and the freeze granulation chamber 30.
  • FIG. It is the schematic explaining the structure of the centrifugal sprayer 400 which is another example of the spray mechanism with which the spray mechanism part 10 is provided.
  • 3 is a front view illustrating the configuration of a freeze-drying unit 50.
  • FIG. FIG. 5 is a top view illustrating the configuration of the freeze-drying unit 50 as viewed from the direction of the arrow z-axis in FIG. 4. It is a side view explaining the structure of the freeze-drying part 50 seen from the arrow y-axis direction in FIG.
  • FIG. 1A is a device external view for explaining the overall configuration of a spray freeze granulated dry powder manufacturing apparatus 100 which is a preferred example of an embodiment according to the present invention
  • FIG. It is an external view of the apparatus for explaining a state where the freeze-drying unit 50 is separated from the granulating chamber 30.
  • the spray freeze granulated dry powder production apparatus 100 includes a spray mechanism unit 10, a freeze granulation chamber 30 supported by a gantry 70 via a support member 40, and a freeze drying unit 50.
  • the stock solution continuously supplied from the spray mechanism 10 into the freezing granulation chamber 30 is instantly frozen in the freezing granulation chamber 30 maintained at a predetermined temperature to form a frozen granulated body.
  • FIG. 2 is a schematic diagram schematically illustrating the internal configuration of the spray mechanism unit 10 and the freeze granulation chamber 30, and FIG.
  • FIG. 3 is a centrifugal sprayer 400 which is another example of the spray mechanism provided in the spray mechanism unit 10. It is the schematic explaining the structure. 4 to 6 are a front view, a top view, and a side view for explaining the configuration of the freeze-drying unit 50. FIG. For ease of explanation and understanding, FIG. 2 will be described on the assumption that the closed structure portion of the upper part (near the top surface) of the freeze granulation chamber 30 is in an open state.
  • the spray mechanism applicable to the present invention is not limited to this,
  • a one-fluid pressure nozzle, an ultrasonic nozzle, a centrifugal sprayer, etc. can be used, and various circumstances such as the size and uniformity of particles obtained as a dry powder, or the physical and chemical characteristics of the stock solution to be sprayed It can be selected as appropriate in consideration.
  • the raw fluid supply pipe 12 and the compressed gas supply pipe 15 are connected to the two-fluid nozzle main body 11 in which the discharge part 21 for spraying the raw liquid M is formed at the tip of the freezing granulation chamber 30 side.
  • the undiluted solution supply pipe 12 is a piping member for supplying undiluted solution M stored in the undiluted solution tank 13 to the two-fluid nozzle main body 11 via the pump 14, and the compressed gas supply tube 15 includes a compressor, a cylinder, and the like.
  • This is a piping member for supplying compressed gas (for example, air) from the compressed gas supply unit 16 to the two-fluid nozzle body 11.
  • the two-fluid nozzle main body 11 mixes the stock solution M supplied from these piping members and the compressed gas, and then sprays the stock solution M into the freezing granulation chamber 30 via the discharge unit 21. Further, due to the venturi effect of the compressed gas from the compressed gas supply unit 16, the stock solution M can be supplied without using the pump 14.
  • the spray mechanism unit 10 has anti-freezing means for preventing the frozen solid material generated by freezing of the stock solution M from adhering to the discharge unit 21 of the two-fluid nozzle body unit 11. Is provided.
  • the anti-freezing means discharges normal temperature or heated gas supplied through the gas suction filter 17, the blower blower 18, the heater 22, the HEPA filter (High Efficiency Particulate Air Filter) 19 and the like as the anti-freezing gas supply unit.
  • An antifreeze gas pipe 20 is provided in the vicinity of the portion 21.
  • centrifugal sprayer 400 when using a centrifugal sprayer as a spraying mechanism with which the spraying mechanism part 10 is equipped, as illustrated in FIG. 3, it is configured as a centrifugal sprayer 400 having a motor part 401, a rotating disk part 402, a stock solution supply pipe 12, and the like. can do.
  • the rotating disk unit 402 is a member that functions as a rotating unit, and rotates at a rotational speed corresponding to the driving force applied from the motor unit 401, so that the stock solution M supplied from the stock solution supply pipe 12 is converted into the freezing granulation chamber 30. Centrifuge spray.
  • the rotating disk 402 for example, those having various shapes and structures such as a bell type and a pin type can be adopted.
  • the stock solution M various raw materials in the fields of foods, pharmaceuticals, agricultural chemicals, chemicals, metal materials, and industrial materials can be used.
  • ceramic materials such as fine ceramic materials, glass, cement, etc., such as alumina, mullite, ferrite, forsterite, barium titanate, lead zirconate titanate, steatite, zircon are used, they are spherical and fluid.
  • An excellent dry powder can be produced, and a dry powder suitable for an intermediate material before press molding can be provided.
  • the freezing granulation chamber 30 can be formed of a steel material such as stainless steel, and includes a freezing granulation chamber 31 formed in a hollow substantially cylindrical shape.
  • a heat insulation chamber 34 is formed concentrically outwardly from the outer wall 33 of the freezing granulation chamber, and the freezing granulation chamber 31 is indirectly cooled between the outer wall 33 of the freezing granulation chamber and the inner wall 35 of the heat insulating chamber. Used as a cooling medium filling chamber 37 for charging the cooling medium, these form a jacket structure.
  • the freezing granulation chamber 31 is a place where the frozen granulation body G is formed from the stock solution M sprayed from the discharge part 21 of the two-fluid nozzle 11 provided in the vicinity of the top surface, and is filled in the cooling medium filling chamber 37. Due to the cooling effect of the cooling medium or the cooling medium directly introduced into the freezing granulation chamber 31, the freezing temperature at which the room temperature freezes the stock solution M (approximately ⁇ 10 ° C. to ⁇ 190 ° C., preferably ⁇ 20 ° C. to ⁇ 150 ° C.). ° C) can be maintained.
  • an opening 32 is provided so as to be able to communicate with the freeze drying unit 50 for storing the frozen granulated body G formed in the freezing granulation chamber 31.
  • the outer wall portion around the opening portion 32 is formed with a granulation chamber side joint portion 38 using a ferrule, a band, a clamp, a flange or the like so that the freeze-drying portion 50 can be connected and communicated. .
  • the cooling medium filling chamber 37 provided between the freezing granulation chamber outer wall 33 and the heat insulating chamber wall 35 is filled with a cooling medium for cooling the freezing granulation chamber 31.
  • a cooling medium for example, liquid nitrogen, nitrogen gas, liquid argon, argon gas, liquid helium, helium gas, dry ice, carbon dioxide gas, or the like can be used.
  • mold via the chiller and the refrigerator can also be used.
  • a chiller, a refrigerator, a heat exchanger, etc. may be newly installed.
  • the heat insulation chamber 34 may be formed as a vacuum heat insulation structure having a double structure in which the space between the heat insulation chamber inner wall 35 and the heat insulation chamber outer wall 39 is maintained in a vacuum state, and is filled in the cooling medium filling chamber 37. Further, heat transfer from the cooling medium or outside air can be prevented.
  • the heat insulating chamber 34 for example, glass wool, cellulose fiber, insulation board, wool heat insulating material, heat insulating material such as rock wool, hard urethane foam, phenol foam, or vacuum heat insulating material using glass wool as a core material is used or used in combination.
  • the jacket structure is provided with an evaporative gas input pipe 36 communicating from the upper part of the cooling medium filling chamber 37 to the lower part of the freezing granulation chamber 31, and liquid nitrogen or
  • a liquefied gas such as liquid argon
  • the evaporated gas obtained by evaporating the liquefied gas is directly introduced into the lower part of the freezing granulation chamber 31 from the upper part of the cooling medium filling chamber 37 to directly cool the inside of the freezing granulation room 31. It is also possible.
  • the inside of the freezing granulation chamber 31 is filled by filling the cooling medium filling chamber 37 with these gases. Indirect cooling is also possible, and the inside of the freezing granulation chamber 31 may be directly cooled via the cooling gas supply / exhaust pipe 36 ′ provided in the upper part of the freezing granulation chamber 31.
  • medium remaining amount detecting means 80 for detecting the remaining amount of the cooling medium in the cooling medium filling chamber 37 may be provided.
  • the medium remaining amount detection means 80 can use various level sensors such as a float type, a displacer type, a guide pulse type, an optical type, an ultrasonic wave, and a laser type.
  • various concentration sensors such as a semiconductor type, a heat ray type semiconductor type, an infrared type, and an ultrasonic type can be used. Then, by outputting and managing these detection results to an information processing apparatus such as the control computer 81, it is possible to accurately grasp the remaining amount of the cooling medium, the replenishment timing, and the like.
  • the cooling medium remaining amount and the replenishment timing may be notified to the operator via a display unit such as a monitor (not shown) connected via the control computer 81 or a notification unit such as a speaker.
  • cooling medium supplementing means such as a cooling medium supplementing cylinder 82 and a valve 83 may be further provided.
  • the valve 83 may be opened and closed manually by the operator, or the cooling replenishing means is connected to the control computer 81 via the regulator 84 to detect the remaining amount of the cooling medium and the remaining amount is insufficient. Needless to say, the replenishment in this case is automatically performed via the control computer 81.
  • the frozen granulation body G formed in the freezing granulation chamber 30 is stored in a freeze-drying unit 50 that is detachably attached to the freezing granulation chamber 30.
  • a freeze-drying unit 50 that is detachably attached to the freezing granulation chamber 30.
  • the operator separates the freeze-drying unit 50 from the freeze-granulation chamber 30, and after sealing, freeze-drying to obtain a dry powder. Can do.
  • the structure of the freeze-drying part 50 which concerns on this embodiment is demonstrated.
  • a detachable storage container that does not have a freeze-drying function is connected to the freeze granulation chamber 30 to store the frozen granulation body G, which is transferred to the freeze-drying unit 50 and dried powder in a later step. You can also get In that case, before transferring the frozen granulated body G, a cooling medium is introduced into the gap 52 through the medium inlet 63 of the casing 52 of the freeze-drying unit 50 described later, and the drying main body 51 is sufficiently cooled. It is preferable to make it. Moreover, there is no problem in cooling by directly putting liquid nitrogen, dry ice or the like into the dry main body 51.
  • the freeze-drying section 50 has a drying main body 51 as a storage container formed in a substantially cylindrical shape with round ends at both ends when the x-axis direction in the figure is the container longitudinal direction;
  • a casing 52 is formed so as to surround the periphery of the drying body 51 and forms a gap 53 with the drying body 51.
  • a drying portion opening 54 having a substantially circular opening shape is formed in a substantially central portion of the upper body portion of the drying main body 51 so as to protrude through the housing portion 52, and is used for freeze granulation.
  • the frozen granulated body G formed in the chamber 30 is stored in the drying main body 51 through the drying section opening 54. Therefore, as shown in FIG. 5, the drying section opening 54 can be connected and communicated via the granulation chamber side joint 38 formed in the opening 32 at the bottom of the freezing granulation chamber 31.
  • the inner wall portion is formed with a drying portion side joining portion 55 such as a ferrule, a band, a clamp, and a flange. It should be noted that the drying portion side joining portion 55 can be joined to the upper lid 56 for sealing the drying main body portion 51 after the connection with the freezing granulation chamber 30 (freezing granulation chamber 31) is released. It is configured.
  • a sight glass 57 for observing the inside of the drying main body 51 through the housing 52 is provided on the upper side of the drying main body 51.
  • the operator can observe the storage amount of the frozen granulation G, the progress of freeze-drying, and the like via the sight glass 57.
  • a mechanical or optical storage amount detection sensor and an infrared spectroscopic analyzer are provided inside the dry main body 51, and the detection results and analysis results May be output to an information processing apparatus such as the control computer 81.
  • a vacuuming tube connector 59 with a filter is provided on the upper side of the drying main body 51.
  • a cold trap 61 and a vacuum pump 62 are connected to the vacuuming tube connector 59 via a flexible pipe 60.
  • the internal pressure (vacuum pressure) inside the drying main body 51 gradually decreases.
  • the efficiency of lyophilization is achieved by promoting the sublimation of the solvent contained in the frozen granulated body G by circulation of the heat medium to the space
  • the filter may be attached to the vacuum tube connector, but may be attached between the cold trap 61 and the vacuum pump 62.
  • a dry powder can be collected by placing a collection container such as a collection tray (not shown) directly below, opening the drying section opening 54 and dropping the dry powder.
  • the casing 52 has a medium inlet 63 for introducing a heat medium such as heated water, steam, cooling gas, refrigerant oil, and heat transfer oil into a gap 53 formed between the main body 51 and the drying main body 51, and these.
  • a medium discharge port 64 for discharging is provided. Since the gap 53 is formed over substantially the entire area around the drying body 51, the entire drying body 51 can be uniformly heated or cooled. Further, a heat insulating structure equivalent to the heat insulating chamber 34 may be provided on the outer periphery of the gap portion 53.
  • the casing 52 has shafts 66 at both ends thereof so that the casing 52 can swing at a predetermined angle with respect to the longitudinal axis 65 when the x-axis direction in the drawing is the longitudinal direction of the container.
  • the longitudinal axis 65 and the shaft body 66 may be the center of the drying main body 51, but can be installed on the upper part of the drying main body 51 in order to narrow the movable range of the flexible pipe 60 and reduce consumption.
  • the shaft body 66 is pivotally supported by a bearing 91 provided on the gantry 90, and as shown in FIG. 6, the freeze-drying unit 50 is moved at a predetermined angle (for example, in the longitudinal direction) by a driving force from a motor (not shown).
  • the shaft 65 is configured to be swingable within a movable range of 100 ° left and right in the figure.
  • the freeze-drying part 50 can swing during freeze-drying, that is, the freeze-drying part 50 main body is inclined in the left-right direction with respect to the longitudinal axis of the container. Become.
  • the drying efficiency is improved.
  • a baffle plate can be set at the bottom inside the dry main body 51 to promote the flow.
  • a knocker, a vibrator or the like is installed on the dry main body 51, and the frozen granule G is forced to flow by applying an impact or vibration. You can also.
  • the freeze-drying unit 50 since the freeze-drying unit 50 is directly connected to the lower part of the freeze-granulation chamber 30, the cold air in the freeze-granulation chamber 31 of the freeze-granulation chamber 30 is lyophilized. It will flow directly into the drying main body 51. As a result, the dried main body 51 is in an appropriately cooled state, thereby eliminating the need for pre-cooling of the collection container, which was necessary in the prior art, and preventing melting of the frozen granule when the container is transferred. be able to.
  • the operator fills the cooling medium filling chamber 37 with liquid nitrogen, and sets the temperature of the freezing granulation chamber 31 to a temperature at which the stock solution M is frozen (approximately ⁇ 10 ° C. to ⁇ 190 ° C., preferably ⁇ 20 ° C. To ⁇ 150 ° C.).
  • liquid nitrogen is heat-exchanged and gasified when cooling the freezing granulation chamber 31.
  • the evaporated nitrogen gas into the freezing granulation chamber 31 via the evaporating gas introduction pipe 36 provided in the cooling medium filling chamber 37, the freezing granulation chamber 31 can be directly cooled more efficiently. It is also possible to put nitrogen gas into the freezing granulation chamber 31 after the spraying of the stock solution M described later is started. Further, nitrogen gas may be directly fed into the inside of the freezing granulation chamber 31 through the cooling gas supply / exhaust pipe 36 ′ provided in the upper part of the freezing granulation chamber 31.
  • the operator When the room temperature of the freezing granulation chamber 31 is lowered to a temperature at which the stock solution M is frozen, the operator starts spraying the stock solution M from the discharge unit 21 of the two-fluid nozzle main body 11. At this time, by generating a normal temperature or heated gas from the antifreezing gas pipe 20, it is possible to prevent generation and adhesion of frozen solids in the discharge unit 21.
  • the stock solution M sprayed from the discharge part 21 of the two-fluid nozzle main body part 11 is frozen in the freezing granulation chamber 31 of the freezing granulation chamber 30 to form a freezing granulated body G.
  • the formed frozen granulation body G naturally falls below the freezing granulation chamber 31 and is stored in the drying main body 51 of the freeze drying unit 50 connected to the lower portion of the freezing granulation chamber 31.
  • the connection with the freeze drying unit 50 should be a conical hopper. Is also possible.
  • the liquefied gas is used as an indirect cooling medium, and when the evaporated gas is charged into the freezing granulation chamber 31 via the evaporating gas charging pipe 36 provided in the cooling medium filling chamber 37, Alternatively, when the frozen granulated material G is produced by injecting a large amount of gas by direct cooling instead of indirect cooling using liquefied gas or the like, a cyclone, a bag filter or the like is provided upstream of the cooling gas supply / exhaust pipe 36 '. It is preferable to collect the frozen granulated body G riding on a gas stream.
  • the operator separates the freeze drying unit 50 from the freezing granulation chamber 30 and joins (attaches) the upper lid 56 to the drying unit opening 54. ) To seal the drying main body 51.
  • the operator starts evacuation of the inside of the drying main body 51 by starting the vacuum pump 62. Further, the operator starts swinging of the freeze-drying unit 50 by driving a motor (not shown) and rotating the shaft body 66 at a predetermined angle.
  • the internal pressure of the drying main body 51 is reduced to a predetermined pressure
  • a heating medium such as heated water, heating oil, or steam is introduced into the gap 53 through the medium inlet 63 of the housing 52.
  • the sublimation of the solvent of the frozen granulated body G is promoted.
  • the freeze-drying unit 50 main body is inclined in the left-right direction with respect to the longitudinal axis of the container, the frozen granulated body G flows in the drying main body 51 and is further uniformly heated by the conduction electric heat from the heat medium. Will be. Thereby, drying efficiency can be promoted efficiently.
  • the operator places a collection container such as a collection tray (not shown) directly under the drying body 51, removes the flexible pipe 60 from the drying body 51, and removes the drying body 51 in the container longitudinal direction.
  • a collection container such as a collection tray (not shown)
  • the drying part opening 54 is directed toward the floor, and the drying part opening 54 is opened to collect the dry powder.
  • the production of the dry powder according to the present embodiment can be continuously performed by reconnecting the freeze-drying unit 50 after freeze-drying or the separate freeze-drying unit 50 to the freeze granulation chamber 30. At this time, even if the spraying of the stock solution M by the spray mechanism unit 10 is not completely stopped, for example, by continuing spraying in a state where the spray amount is reduced, it is possible to maintain a stable spray state.
  • a damper is placed directly under the granulation chamber side joint portion 38 so as to be in a closed state, so that the time during which the freeze-drying portion 50 is reconnected is also stable in a sealed state. Can be maintained.
  • the freezing granulation chamber 31 according to the present embodiment can be cooled by indirect cooling using a liquefied gas such as liquid nitrogen as a cooling medium and direct cooling of evaporated nitrogen gas, In this case, it is possible to replenish the cooling medium without affecting the spraying of the stock solution M in the spray mechanism unit 10.
  • a liquefied gas such as liquid nitrogen as a cooling medium and direct cooling of evaporated nitrogen gas
  • the lyophilization unit 50 that can swing at a predetermined angle with respect to the longitudinal axis of the container has been described as the lyophilization unit.
  • the present invention is not limited to this.
  • the x-axis direction in the figure is the container longitudinal direction
  • the freezing that can rotate 360 ° with respect to the longitudinal axis 65 ′.
  • the configuration of the drying unit 200 may be used.
  • the freeze-drying unit 200 is configured to surround a drying main body 51 ′ as a storage container and the periphery of the drying main body 51 ′, and a housing unit that forms a gap 53 ′ between the drying main body 51 ′. 52 ′, the name and function of which can be the same as those of the freeze-drying unit 50.
  • the freeze-drying unit 200 is configured to be able to connect and communicate with the freezing granulation chamber 31 of the freezing granulation chamber 30 through the drying unit opening 54 '.
  • the freeze-drying section 200 has shaft bodies 66 'formed on the left and right sides of the casing section 52' so that it can be supported by a bearing 91 'provided on the gantry 90'.
  • the vacuum-evacuation tube connector 59 ′ extends from the central axis of the shaft body 66 ′ to the interior of the drying body 51 ′. Is inserted, and the flexible pipe 60 'is connected to this.
  • the freeze-drying unit 200 can rotate during freeze-drying, that is, the freeze-drying unit 200 main body tilts and rotates in the left-right direction with respect to the container longitudinal axis. It will flow in the drying body 51 '. As a result, since the exposure frequency of the surface to be dried of the frozen granulated body G increases, the drying efficiency can be improved.
  • the freeze-drying unit is configured to surround a drying main body 511 as a storage container and the periphery of the drying main body 511, and a housing 552 that forms a gap 553 with the drying main body 511. Is provided.
  • the tumbler-type rotary drying unit 500 is configured to be able to connect and communicate with the freezing granulation chamber 31 of the freezing granulation chamber 30 through the drying unit opening 554.
  • the both ends of the tumbler-type rotary drying unit 500 are pivotally supported by the mount 590 so that the tumbler-type rotary drying unit 500 can be rotated 360 ° with respect to the rotation shaft 565.
  • a vacuuming line 559 is inserted into the drying main body portion 511, and on the right side in the drawing, the medium injection line 563 is connected to the gap portion 553.
  • the drying operation using the tumbler type rotary drying unit 500 can be performed in the same manner as the freeze-drying units 50 and 200. That is, when the storage amount of the frozen granulation G in the drying main body 511 reaches a certain amount, the operator separates the freeze drying unit 511 from the freezing granulation chamber 30 and joins the upper lid 56 to the drying unit opening 554. By (attaching), the drying main body 511 is sealed.
  • the operator starts evacuation of the drying main body 511 via the evacuation line 559. Further, the operator starts rotation of the tumbler type rotary drying unit 500 by driving or manually driving a motor (not shown).
  • the operator places a collection container such as a collection tray (not shown) immediately below the drying main body 511, rotates the drying main body 511 by 180 ° with respect to the rotation axis, and opens the drying unit.
  • the part 554 is directed toward the floor, the drying part opening 554 is opened, and the dry powder is collected.
  • the structure as a freeze-drying part is not limited to the said example. That is, as shown in FIG. 9, a storage container having a so-called stationary shallow shape provided with a drying portion opening 354 that can be connected to and communicated with the freezing granulation chamber 31 of the freezing granulation chamber 30. May be used as the freeze-drying unit 300. Considering the efficiency of lyophilization, the storage amount is limited, but as in the above example, the cold air in the freezing granulation chamber 31 of the freezing granulation chamber 30 flows directly into the drying main body of the freezing drying unit 300.
  • a stirring member such as a stirring blade that stirs the frozen granulated body G stored in the drying main body.
  • the storage container provided with 301 as the freeze-drying unit 300 ′.
  • a pipe for transportation that extends from the lower part of the chamber for freezing granulation and is provided with stirring and transporting means such as a helical blade is provided, and a plurality of frozen granulation bodies transported by the transportation pipe are provided. It is possible to obtain a form close to full automation by sequentially receiving it in the freeze-drying section and starting freeze-drying in order from the amount in which the storage amount exceeds a certain amount.
  • the gas, oil, ethylene glycol-containing liquid, propylene glycol cooled through the medium inlet provided in the casing of the freeze-drying unit By introducing an antifreeze liquid such as a containing liquid in advance, the dry main body can be appropriately cooled.
  • An operator can obtain a dry powder by connecting a vacuum line to a freeze-drying section ready for freeze-drying and starting freeze-drying, and thus can further improve productivity.
  • the collecting means for collecting the freezing granulated material discharged on the airflow is produced by the spray freezing granulated dry powder production according to this embodiment.
  • FIG. 11 is a system configuration diagram illustrating an example of a configuration example of the spray freeze granulated dry powder manufacturing system 700.
  • the spray freeze granulated dry powder production apparatus is intended for mass production of frozen granulated bodies, and is connected to the freeze dry section via a conical hopper section.
  • a spray freeze granulated dry powder production apparatus 600 including the centrifugal sprayer 400 illustrated in FIG. 3 as an example of a spray mechanism provided in the mechanism unit will be described as an example.
  • the air drawn in by the blower 618 through the gas suction filter 617 is passed through the heat exchanger 615 cooled by the chiller 619 to become cooled atmospheric gas.
  • the cooling atmospheric gas is introduced into the freezing granulation chamber 631 in the freezing granulation chamber 630 through the cooling gas supply pipe 624 through the filter 623.
  • a dehumidifier 621 it is preferable to attach to the front stage of the heat exchanger 615. .
  • the cooling air gas described here may be used, and it is of course possible to use a cooling gas such as nitrogen gas, argon gas, helium gas, carbon dioxide gas or the like.
  • the freezing granulation chamber 630 may be cooled by indirect cooling using the jacket structure described above.
  • the jacket structure is provided with an evaporative gas input pipe and a liquefied gas such as liquid nitrogen or liquid argon is used as a cooling medium, the evaporated gas evaporated from the liquefied gas is directly frozen from the upper part of the jacket structure. It is preferable to adopt a configuration in which the particle chamber 631 is directly introduced into the lower portion.
  • the stock solution M in the stock solution tank 613 is supplied to the centrifugal sprayer 400 via the stock solution supply pipe 612 by the pump 614.
  • Centrifugal sprayer 400 atomizes supplied stock solution M by centrifugal spraying.
  • the undiluted undiluted solution M is solidified by contact with the cooled atmospheric gas supplied through the cooling gas supply pipe 624 to form a frozen granulated body G.
  • a cooling gas heat shield plate 634 having a shape surrounding the rotating disk unit 402 is provided.
  • a gas suction filter 617 ′, a blower blower 618 ′, and a heater 622 are provided in front of the cooling gas heat shield plate 634.
  • the gas heated at room temperature or by the heater 622 is input to the inside of the cooling gas heat shield plate 634 through the antifreeze gas pipe 620, and generation and adhesion of frozen solids to the rotating disk 402 can be suppressed.
  • the dehumidifier 621 ′ is provided between the blower blower 618 ′ and the heater 622 ′, thereby reducing the water introduced into the freezing granulation chamber 631 and freezing. It is also possible to suppress the generation of frost in the grain chamber 631.
  • the frozen granulation G generated in the freezing granulation chamber 631 is deposited on the conical hopper 632 located below the freezing granulation chamber 631 in the freezing granulation chamber 630 and provided in the hopper 632. It is forcibly dropped to the above-mentioned freeze-drying part by the impact and vibration by a knocker 633, a vibrator or the like.
  • a knocker 633 a vibrator or the like.
  • the operator can separate the freeze-drying unit from the freeze-granulating chamber 630, and after sealing, freeze-drying can obtain a dry powder. .
  • a cooling gas exhaust pipe 625 for exhausting the cooling atmospheric gas introduced into the freezing granulation chamber 631 is connected to the hopper portion 632.
  • the cooling gas exhaust pipe 625 is provided with a cyclone type dust collector 626 as a collecting means for collecting the fine frozen granule G discharged on the airflow when the cooling atmospheric gas is exhausted. Is provided.
  • the frozen granulated material G collected by the cyclone type dust collector 626 can be collected by a freeze-drying unit provided at the lower part of the cyclone type dust collector 626.
  • a bag filter type dust collector 628 as a collecting means for collecting a finer frozen granulated material G that cannot be collected by the cyclone type dust collector 626 is provided at the upper end of the cyclone type dust collector 626. Are connected via a cooling gas exhaust pipe 627.
  • the frozen granulated material G collected by the bag filter type dust collector 628 can be collected by a freeze-drying unit provided at the lower part of the bag filter type dust collector 628.
  • the aggregated piping of the frozen granulation G is installed in the lower part of the hopper part 632, the cyclone type dust collector 626, and the bag filter type dust collector 628, or a plurality of frozen granule G inlets are provided in the freeze drying part.
  • the cyclone type dust collector 626 and the bag filter type dust collector 628 are provided with a knocker 633, a vibrator and the like as with the hopper portion 632, and the frozen granule G is forced to the freeze drying portion by the impact and vibration caused by them. It may be dropped.
  • the configuration in which the cooling gas exhaust pipe 625 is provided in the hopper portion 632 has been described, but the cooling gas exhaust pipe 625 may be provided in the freezing granulation chamber 631 side.
  • a circulation pipe 640 indicated by a dotted line in the figure is connected to circulate before the blower blower 618. By doing so, the cooling atmospheric gas can be reused.
  • the collection / recovery means for collecting and recovering the frozen granulated material discharged on the air current is spray-freezing according to this embodiment.
  • the spray freeze-granulated dry powder production apparatus and spray freeze-granulated powder are capable of mass production of dry powder by continuous operation and long-time operation, eliminating manual steps as much as possible.
  • a manufacturing system can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

[Problem] To provide a device for producing a dry powder using spray freeze granulation and a system for producing a dry powder using spray freeze granulation, wherein manual steps are minimized and mass production of a dry powder through continuous operation and long-term operation is possible. [Solution] Provided is a device for producing a dry powder using spray freeze granulation, the device being provided with: a spray mechanism part which has a freezing preventing means and sprays a raw liquid into a freeze granulation chamber; and a freeze drying part which is configured to be detachable from a lower part of the freeze granulation chamber, has a storage container for storing frozen granulated bodies generated inside the freeze granulation chamber, and freezes and dries the frozen granulated bodies stored inside the storage container, wherein the freeze granulation chamber is cooled by any one or a combination of direct cooling, in which cooling is performed by introducing a coolant directly into the chamber, and indirect cooling, in which cooling is performed by filling a coolant into a jacket structure provided around the freeze granulation chamber. Also, provided is a system for producing a dry powder using spray freeze granulation, wherein the system, in addition to the device for producing a dry powder, is also provided with a collection means for collecting moving frozen granulated bodies according to the discharge of the coolant.

Description

噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒乾燥粉体製造システムSpray freeze granulated dry powder manufacturing apparatus and spray freeze granulated dry powder manufacturing system
 本発明は、噴霧した原液を急速冷却することにより凍結造粒体を生成し、生成した凍結造粒体を凍結乾燥することで乾燥粉体を製造する噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒乾燥粉体製造システムに関するものである。 The present invention relates to a spray freeze granulated dry powder production apparatus and spray for producing a frozen granule by rapidly cooling a sprayed undiluted solution and producing a dry powder by freeze drying the produced frozen granule. The present invention relates to a freeze granulated dry powder production system.
 食品、医薬品、農薬、化学薬品、金属材料、工業用材料等の製造分野において、球形で流動性に優れた顆粒体の製造が可能である、熱に弱い物質の乾燥が可能である、低密度でソフトな顆粒体の製造が可能であるといった利点から、スラリー・溶液等の原液を噴霧し、これを急速冷却することにより凍結造粒体を生成し、生成した凍結造粒体を凍結乾燥することで乾燥粉体を得ることができる凍結造粒乾燥法が好んで用いられている。 In the field of manufacturing food, pharmaceuticals, agricultural chemicals, chemicals, metal materials, industrial materials, etc., it is possible to produce spherical granules with excellent fluidity, and it is possible to dry heat-sensitive materials, low density From the advantage that it is possible to produce soft granules, spraying the stock solution such as slurry and solution, rapidly cooling this to produce frozen granules, and freeze-drying the generated frozen granules Thus, a freeze granulation drying method capable of obtaining a dry powder is preferably used.
 例えば、非特許文献1には、凍結造粒乾燥法並びに大まかな装置構成について記載がなされており、一連の処理を通してセラミックス乾燥粉体が得られることが開示されている。 For example, Non-Patent Document 1 describes a freeze granulation drying method and a rough apparatus configuration, and discloses that a ceramic dry powder can be obtained through a series of treatments.
 非特許文献1で開示されている凍結造粒乾燥装置は、図12に示すように、原液と圧縮ガスとを混合し、ノズルを介して-196℃に維持された液体窒素内に噴霧することで凍結造粒体を生成するものである。生成した凍結造粒体は、予め冷却されたバット等の回収容器に別途回収された後、凍結乾燥機にて乾燥がなされる。 As shown in FIG. 12, the freeze granulation drying apparatus disclosed in Non-Patent Document 1 mixes a stock solution and a compressed gas and sprays the mixture into liquid nitrogen maintained at −196 ° C. through a nozzle. To produce frozen granules. The produced frozen granule is separately collected in a collection container such as a bat cooled in advance, and then dried by a freeze dryer.
 しかしながら、図12に示された従来技術では、液体窒素の蒸発が激しく定期的に液体窒素を補充する必要がある、ノズル吐出口につらら状の凍結固形物が付着することでノズル閉塞の危険性がある、液体窒素内の凍結造粒体の量が多くなるとマグネットスターラーの撹拌子による攪拌に不具合が生じ、頻繁に凍結造粒体を回収する必要があるといった問題があった。そして、これらの処理は全て手動で行う必要があり、また処理中には原液の供給を停止しなければならず、連続運転による大量生産が難しいといった問題もあった。さらに、液体窒素内から回収した凍結造粒体は手作業で予め冷却した回収容器に薄く敷いた状態で凍結乾燥機に供する必要があり、この作業が迅速に完了されないと、凍結造粒体の溶解が始まり、品質低下の要因ともなっていた。 However, in the prior art shown in FIG. 12, the evaporation of liquid nitrogen is intense, and it is necessary to periodically replenish liquid nitrogen. The risk of nozzle clogging due to icicle-shaped frozen solids adhering to the nozzle discharge port. However, when the amount of the frozen granulated material in the liquid nitrogen increases, there is a problem that the stirring with the stirring bar of the magnetic stirrer causes a problem, and it is necessary to frequently collect the frozen granulated material. All of these processes must be performed manually, and the supply of the stock solution must be stopped during the process, resulting in a problem that mass production by continuous operation is difficult. Furthermore, the frozen granulation recovered from the liquid nitrogen must be thinly laid in a collection container that has been manually cooled in advance, and then provided to the freeze dryer. If this operation is not completed quickly, Melting began and was a factor in quality degradation.
 本発明はこのような実状に鑑みてなされたものであり、本発明の課題は、手動による工程を極力省き、連続運転、長時間運転による乾燥粉体の大量生産が可能な噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒乾燥粉体製造システムを提供することである。 The present invention has been made in view of such a situation, and the problem of the present invention is that spray freezing granulation drying which can eliminate the manual process as much as possible, and can mass-produce dry powder by continuous operation and long-time operation. It is to provide a powder production apparatus and a spray freeze granulated dry powder production system.
 上記課題を解決するため、本発明に係る噴霧凍結造粒乾燥粉体製造装置は、連続的に供給される原液を冷却することにより凍結造粒用チャンバ内で凍結造粒体を生成し、生成した凍結造粒体を凍結乾燥して乾燥粉体を製造する噴霧凍結造粒乾粉体製造装置であって、凍結防止手段を有し、凍結造粒用チャンバ内に対して原液を噴霧する噴霧機構部と、凍結造粒用チャンバ下部において脱着自在に構成され、凍結造粒用チャンバ内で生成した凍結造粒体を貯留する貯留容器を有し、当該貯留容器に貯留した凍結造粒体を凍結乾燥する凍結乾燥部とを備え、凍結造粒用チャンバは、冷却媒体を直接チャンバ内に導入して冷却する直接冷却、凍結造粒用チャンバの周囲に設けられたジャケット構造体に冷却媒体を充填することで冷却する間接冷却の何れか又はこれらの組み合わせによって冷却されることを特徴としている。 In order to solve the above-mentioned problem, the spray freeze granulated dry powder manufacturing apparatus according to the present invention generates a frozen granulated body in a freezing granulation chamber by cooling a continuously supplied stock solution, A spray freeze granulation dry powder production apparatus for producing a dry powder by freeze-drying a frozen granulation body, having spraying prevention means, and spraying a stock solution into a freeze granulation chamber The mechanism and a lower part of the freezing granulation chamber are configured to be detachable, and have a storage container for storing the frozen granulation generated in the freezing granulation chamber, and the frozen granulation stored in the storage container A freeze-drying section for freeze-drying, and the freeze-granulation chamber directly cools by introducing the cooling medium directly into the chamber and cools the jacket to the jacket structure provided around the freeze-granulation chamber. Indirect cooling that cools by filling It is characterized by being cooled by any or a combination thereof.
 この場合、ジャケット構造体には充填された冷却媒体が蒸発した蒸発ガスをチャンバ内に直接導入する蒸発ガス投入配管を設けてもよい。 In this case, the jacket structure may be provided with an evaporative gas input pipe for directly introducing evaporative gas obtained by evaporating the filled cooling medium into the chamber.
 なお、凍結造粒用チャンバ内で生成した凍結造粒体を貯留する貯留容器は、容器長手方向軸に対し所定の角度で揺動可能となるように形成されてもよく、容器長手方向軸に対し回転可能となるように形成されてもよい。 The storage container for storing the frozen granulated material generated in the freezing granulation chamber may be formed so as to be swingable at a predetermined angle with respect to the container longitudinal axis. It may be formed so as to be rotatable.
 また、貯留容器は、凍結造粒体を静置可能な底浅形状として形成してもよく、貯留した凍結造粒体を攪拌する攪拌部材を具備してもかまわない。 Further, the storage container may be formed in a shallow bottom shape in which the frozen granulation body can be left stationary, and may include a stirring member for stirring the stored frozen granulation body.
 噴霧機構部は、二流体ノズル、一流体加圧ノズル、超音波ノズル、遠心噴霧機の何れかの噴霧機構を備えることができ、凍結防止手段として、噴霧機構の原液吐出部近傍に常温又は加温の凍結防止ガスを供給する凍結防止ガス供給部を設けるのが好ましい。 The spray mechanism unit can include any one of a two-fluid nozzle, a one-fluid pressure nozzle, an ultrasonic nozzle, and a centrifugal sprayer. It is preferable to provide an antifreeze gas supply unit for supplying a warm antifreeze gas.
 ところで、冷却媒体としては、液体窒素、液体窒素を蒸発させた窒素ガス、液体アルゴン、液体アルゴンを蒸発させたアルゴンガス、ドライアイス、二酸化炭素ガス、直膨式又はチラー式により大気を冷却した冷却ガスを用いることができる。さらに、ジャケット構造体内の冷却媒体残量を検知する媒体残量検知手段を設けるとともに、媒体残量検知手段による検知結果に基づきジャケット構造体内に冷却媒体を補充する冷却媒体補充手段を設けてもよい。なお、ジャケット構造体は断熱構造を備える構成としてもかまわない。 By the way, as the cooling medium, liquid nitrogen, nitrogen gas obtained by evaporating liquid nitrogen, liquid argon, argon gas obtained by evaporating liquid argon, dry ice, carbon dioxide gas, cooling by cooling the atmosphere by a direct expansion type or a chiller type Gas can be used. Further, a medium remaining amount detecting means for detecting the remaining amount of the cooling medium in the jacket structure and a cooling medium replenishing means for replenishing the cooling medium in the jacket structure based on the detection result by the medium remaining amount detecting means may be provided. . The jacket structure may have a heat insulating structure.
 また、上記課題を解決するため、本発明に係る噴霧凍結造粒乾燥粉体製造システムは、冷却媒体が導入された凍結造粒用チャンバ内において、連続的に供給される原液から凍結造粒体を生成させ、生成した凍結造粒体を凍結乾燥して乾燥粉体を製造する噴霧凍結乾燥粉体製造システムであって、凍結防止手段を有し、凍結造粒用チャンバ内に対して原液を噴霧する噴霧機構部と、凍結造粒用チャンバ下部において脱着自在に構成され、凍結造粒用チャンバ内で生成した凍結造粒体を貯留する貯留容器を有し、当該貯留容器に貯留した凍結造粒体を凍結乾燥する凍結乾燥部と、冷却媒体の排気に伴い移動する凍結造粒体を捕集する捕集手段とを備えることを特徴としている。 In order to solve the above-mentioned problem, the spray freeze granulated dry powder production system according to the present invention is a freeze granulated product from a stock solution continuously supplied in a freeze granulation chamber into which a cooling medium is introduced. And a freeze freeze-dried powder production system for producing a dry powder by freeze-drying the produced freeze-granulated product, and having a freeze-preventing means, and supplying the stock solution into the freeze-granulation chamber A spray mechanism unit for spraying and a lower part of the freezing granulation chamber are configured so as to be detachable, and has a storage container for storing the frozen granulated material generated in the freezing granulation chamber, and the freezing process stored in the storage container. It is characterized by comprising a freeze-drying section for freeze-drying the granules and a collecting means for collecting the frozen granules that move as the cooling medium is exhausted.
 この場合、捕集手段は、サイクロン型集塵装置及び/又はバグフィルタ型集塵装置を含めることができる。 In this case, the collecting means may include a cyclone type dust collector and / or a bag filter type dust collector.
 本発明によれば、手動による工程を極力省き、連続運転、長時間運転による乾燥粉体の大量生産が可能な噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒乾燥粉体製造システムを提供することができる。 According to the present invention, there is provided a spray freeze granulated dry powder production apparatus and a spray freeze granulated dry powder production system capable of mass production of dry powder by continuous operation and long time operation as much as possible. can do.
噴霧凍結造粒乾燥粉体製造装置100の装置構成を説明する装置外観図である。It is an apparatus external view explaining the apparatus structure of the spray freeze granulation dry powder manufacturing apparatus 100. FIG. 噴霧機構部10及び凍結造粒チャンバ30の内部構成を概略的に説明する模式図である。2 is a schematic diagram for schematically explaining the internal configuration of the spray mechanism section 10 and the freeze granulation chamber 30. FIG. 噴霧機構部10が備える噴霧機構の他の一例である遠心噴霧機400の構成を説明する概略図である。It is the schematic explaining the structure of the centrifugal sprayer 400 which is another example of the spray mechanism with which the spray mechanism part 10 is provided. 凍結乾燥部50の構成を説明する正面図である。3 is a front view illustrating the configuration of a freeze-drying unit 50. FIG. 図4において矢印z軸方向から見た凍結乾燥部50の構成を説明する上面図である。FIG. 5 is a top view illustrating the configuration of the freeze-drying unit 50 as viewed from the direction of the arrow z-axis in FIG. 4. 図4において矢印y軸方向から見た凍結乾燥部50の構成を説明する側面図である。It is a side view explaining the structure of the freeze-drying part 50 seen from the arrow y-axis direction in FIG. 本発明に係る変形例を説明する図である。It is a figure explaining the modification which concerns on this invention. 本発明に係る変形例を説明する図である。It is a figure explaining the modification which concerns on this invention. 本発明に係る変形例を説明する図である。It is a figure explaining the modification which concerns on this invention. 本発明に係る変形例を説明する図である。It is a figure explaining the modification which concerns on this invention. 噴霧凍結造粒乾燥粉体製造システム700の構成例の一例を説明するシステム構成図である。It is a system block diagram explaining an example of a structural example of the spray freeze granulation dry powder manufacturing system. 従来技術を説明する説明図である。It is explanatory drawing explaining a prior art.
 以下、本発明の実施形態について図面を参照して説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨に逸脱しない範囲において適宜変更可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.
 図1(a)は、本発明に係る実施形態の好適な一例である噴霧凍結造粒乾燥粉体製造装置100の装置全体構成を説明する装置外観図であり、図1(b)は、凍結造粒用チャンバ30から凍結乾燥部50を分離した状態を説明する装置外観図である。噴霧凍結造粒乾燥粉体製造装置100は、噴霧機構部10と、支持部材40を介して架台70に支持された凍結造粒用チャンバ30と、凍結乾燥部50とを備える。噴霧機構部10から凍結造粒用チャンバ30内に連続的に供給される原液は、所定の温度に維持された凍結造粒用チャンバ30内において瞬時に凍結し、凍結造粒体を形成する。凍結造粒体は、凍結造粒用チャンバ30内を自然落下し、凍結造粒用チャンバ30下部に着脱自在に設けられた凍結乾燥部50内の貯留容器に貯留される。凍結乾燥部50に一定量の凍結造粒体が貯留されると、オペレータは図1(b)に示すように、凍結造粒用チャンバ30から凍結乾燥部50を分離し、密閉後、凍結乾燥を行うことで乾燥粉体を得ることができる。このような構成を有する噴霧凍結造粒乾燥粉体装置100について、図1に加えて図2、図3、図4、図5、及び図6を用いて説明する。図2は、噴霧機構部10及び凍結造粒チャンバ30の内部構成を概略的に説明する模式図であり、図3は、噴霧機構部10が備える噴霧機構の他の一例である遠心噴霧機400の構成を説明する概略図である。図4乃至図6は、凍結乾燥部50の構成を説明する正面図、上面図、及び側面図である。なお、図2は説明並びに理解を容易とするために、凍結造粒用チャンバ30上部(天面近傍)の密閉構造部分を開状態であるものとして説明する。 FIG. 1A is a device external view for explaining the overall configuration of a spray freeze granulated dry powder manufacturing apparatus 100 which is a preferred example of an embodiment according to the present invention, and FIG. It is an external view of the apparatus for explaining a state where the freeze-drying unit 50 is separated from the granulating chamber 30. The spray freeze granulated dry powder production apparatus 100 includes a spray mechanism unit 10, a freeze granulation chamber 30 supported by a gantry 70 via a support member 40, and a freeze drying unit 50. The stock solution continuously supplied from the spray mechanism 10 into the freezing granulation chamber 30 is instantly frozen in the freezing granulation chamber 30 maintained at a predetermined temperature to form a frozen granulated body. The frozen granulated material naturally falls in the frozen granulation chamber 30 and is stored in a storage container in a freeze-drying unit 50 that is detachably provided at the lower portion of the frozen granulation chamber 30. When a certain amount of frozen granulated material is stored in the freeze drying unit 50, the operator separates the freeze drying unit 50 from the freeze granulation chamber 30 as shown in FIG. To obtain a dry powder. The spray freeze granulation dry powder apparatus 100 having such a configuration will be described with reference to FIGS. 2, 3, 4, 5, and 6 in addition to FIG. FIG. 2 is a schematic diagram schematically illustrating the internal configuration of the spray mechanism unit 10 and the freeze granulation chamber 30, and FIG. 3 is a centrifugal sprayer 400 which is another example of the spray mechanism provided in the spray mechanism unit 10. It is the schematic explaining the structure. 4 to 6 are a front view, a top view, and a side view for explaining the configuration of the freeze-drying unit 50. FIG. For ease of explanation and understanding, FIG. 2 will be described on the assumption that the closed structure portion of the upper part (near the top surface) of the freeze granulation chamber 30 is in an open state.
 図2に示すように、本実施形態においては、噴霧機構部10が備える噴霧機構として、二流体ノズルを用いた例について説明するが、本発明に適用可能な噴霧機構はこれに限定されず、例えば、一流体加圧ノズル、超音波ノズル、遠心噴霧機等を用いることができ、乾燥粉体として得られる粒子のサイズ、均一性、又は噴霧する原液の物理・化学特性等の種々の事情を考慮し適宜選択することができる。 As shown in FIG. 2, in the present embodiment, an example using a two-fluid nozzle as a spray mechanism provided in the spray mechanism unit 10 will be described, but the spray mechanism applicable to the present invention is not limited to this, For example, a one-fluid pressure nozzle, an ultrasonic nozzle, a centrifugal sprayer, etc. can be used, and various circumstances such as the size and uniformity of particles obtained as a dry powder, or the physical and chemical characteristics of the stock solution to be sprayed It can be selected as appropriate in consideration.
 原液Mを噴霧する吐出部21が凍結造粒チャンバ30側先端部に形成された二流体ノズル本体部11には、原液供給管12及び圧縮ガス供給管15がそれぞれ接続されている。原液供給管12は、原液タンク13に備蓄された原液Mをポンプ14を介して二流体ノズル本体部11に供給するための配管部材であり、圧縮ガス供給管15は、コンプレッサー、ボンベ等を備えた圧縮ガス供給部16からの圧縮ガス(例えば、空気)を二流体ノズル本体部11に供給するための配管部材である。二流体ノズル本体部11は、これらの配管部材から供給された原液Mと圧縮ガスとを混合したのち吐出部21を介して当該原液Mを凍結造粒チャンバ30内に噴霧する。また、圧縮ガス供給部16からの圧縮ガスによるベンチュリー効果により、ポンプ14を介さず原液Mを供給することも可能である。 The raw fluid supply pipe 12 and the compressed gas supply pipe 15 are connected to the two-fluid nozzle main body 11 in which the discharge part 21 for spraying the raw liquid M is formed at the tip of the freezing granulation chamber 30 side. The undiluted solution supply pipe 12 is a piping member for supplying undiluted solution M stored in the undiluted solution tank 13 to the two-fluid nozzle main body 11 via the pump 14, and the compressed gas supply tube 15 includes a compressor, a cylinder, and the like. This is a piping member for supplying compressed gas (for example, air) from the compressed gas supply unit 16 to the two-fluid nozzle body 11. The two-fluid nozzle main body 11 mixes the stock solution M supplied from these piping members and the compressed gas, and then sprays the stock solution M into the freezing granulation chamber 30 via the discharge unit 21. Further, due to the venturi effect of the compressed gas from the compressed gas supply unit 16, the stock solution M can be supplied without using the pump 14.
 なお、本実施形態に係る噴霧機構部10には、二流体ノズル本体部11の吐出部21に原液Mが凍結することにより生成する凍結固形物が付着するのを防止するための凍結防止手段が設けられている。凍結防止手段は、凍結防止ガス供給部として、ガス吸入フィルタ17、送風ブロワ18、ヒータ22、HEPAフィルタ(High Efficiency Particulate Air Filter)19等を介して供給された常温又は加温されたガスを吐出部21近傍に噴射する凍結防止ガス配管20を備える。二流体ノズル本体部11の吐出部21から原液Mが噴霧されている間、凍結防止ガス配管20から噴射された、例えば、空気等の常温ガスAにより、つらら状の凍結固形物の発生・付着を抑制し、吐出部21における閉塞を防ぐことができる。また、送風ブロワ18を用いず、コンプレッサー、ボンベ等の圧力ガスを使用することも可能である。 Note that the spray mechanism unit 10 according to the present embodiment has anti-freezing means for preventing the frozen solid material generated by freezing of the stock solution M from adhering to the discharge unit 21 of the two-fluid nozzle body unit 11. Is provided. The anti-freezing means discharges normal temperature or heated gas supplied through the gas suction filter 17, the blower blower 18, the heater 22, the HEPA filter (High Efficiency Particulate Air Filter) 19 and the like as the anti-freezing gas supply unit. An antifreeze gas pipe 20 is provided in the vicinity of the portion 21. While the stock solution M is being sprayed from the discharge part 21 of the two-fluid nozzle main body 11, generation / adhesion of icicle-shaped frozen solids is generated by room-temperature gas A such as air injected from the anti-freezing gas pipe 20. Can be suppressed, and blockage in the discharge part 21 can be prevented. Moreover, it is also possible to use pressure gas, such as a compressor and a cylinder, without using the blower blower 18.
 なお、噴霧機構部10が備える噴霧機構として、遠心噴霧機を用いる場合は、図3で例示するように、モータ部401、回転ディスク部402、原液供給管12等を有する遠心噴霧機400として構成することができる。回転ディスク部402は、回転部として機能する部材であって、モータ部401より与えられる駆動力に応じた回転数で回転し、原液供給管12から供給される原液Mを凍結造粒チャンバ30内部に遠心噴霧する。回転ディスク402としては、例えば、ベル型、ピン型といった種々の形状、構造を有するものを採用することができる。 In addition, when using a centrifugal sprayer as a spraying mechanism with which the spraying mechanism part 10 is equipped, as illustrated in FIG. 3, it is configured as a centrifugal sprayer 400 having a motor part 401, a rotating disk part 402, a stock solution supply pipe 12, and the like. can do. The rotating disk unit 402 is a member that functions as a rotating unit, and rotates at a rotational speed corresponding to the driving force applied from the motor unit 401, so that the stock solution M supplied from the stock solution supply pipe 12 is converted into the freezing granulation chamber 30. Centrifuge spray. As the rotating disk 402, for example, those having various shapes and structures such as a bell type and a pin type can be adopted.
 ところで、本発明において、原液Mとしては、食品、医薬品、農薬、化学薬品、金属材料、工業用材料の分野における各種原料を用いることができるが、例えば、炭化ケイ素、窒化ケイ素、窒化アルミニウム、ジルコニア、アルミナ、ムライト、フェライト、フォルステライト、チタン酸バリウム、チタン酸ジルコン酸鉛、ステアタイト、ジルコンといった、所謂、ファインセラミックス原料、ガラス、セメント等のセラミックス原料を用いた場合においても球形で流動性に優れた乾燥粉体を製造することができ、プレス成型前の中間材料に適した乾燥粉体を提供することができる。 In the present invention, as the stock solution M, various raw materials in the fields of foods, pharmaceuticals, agricultural chemicals, chemicals, metal materials, and industrial materials can be used. For example, silicon carbide, silicon nitride, aluminum nitride, zirconia Even when ceramic materials such as fine ceramic materials, glass, cement, etc., such as alumina, mullite, ferrite, forsterite, barium titanate, lead zirconate titanate, steatite, zircon are used, they are spherical and fluid. An excellent dry powder can be produced, and a dry powder suitable for an intermediate material before press molding can be provided.
 図2に戻り、二流体ノズル本体部11の吐出部21から噴霧された原液Mは、凍結造粒用チャンバ30内で凍結し、凍結造粒体Gを形成する。凍結造粒用チャンバ30は、ステンレス等の鋼材で形成することができ、中空の略円筒形状に形成された凍結造粒室31を備える。そして、凍結造粒室外壁33から同心円状に外側に向って断熱室34が形成されおり、凍結造粒室外壁33と断熱室内壁35との間は、凍結造粒室31室内を間接冷却する冷却媒体を充填するための冷却媒体充填室37として用いられ、これらはジャケット構造体を形成している。 2, the stock solution M sprayed from the discharge unit 21 of the two-fluid nozzle main body 11 is frozen in the freezing granulation chamber 30 to form a frozen granulated body G. The freezing granulation chamber 30 can be formed of a steel material such as stainless steel, and includes a freezing granulation chamber 31 formed in a hollow substantially cylindrical shape. A heat insulation chamber 34 is formed concentrically outwardly from the outer wall 33 of the freezing granulation chamber, and the freezing granulation chamber 31 is indirectly cooled between the outer wall 33 of the freezing granulation chamber and the inner wall 35 of the heat insulating chamber. Used as a cooling medium filling chamber 37 for charging the cooling medium, these form a jacket structure.
 凍結造粒室31は、天面近傍に設けられた二流体ノズル11の吐出部21から噴霧された原液Mから凍結造粒体Gを形成させる場であり、冷却媒体充填室37に充填された冷却媒体又は凍結造粒室31内部に直接導入された冷却媒体の冷却効果により、その室内温度が原液Mを凍結させる凍結温度(大凡-10℃~-190℃、好ましくは-20℃~-150℃)を維持することが可能となるように構成されている。凍結造粒室31の下部には、凍結造粒室31室内で形成された凍結造粒体Gを貯留する凍結乾燥部50との連通が可能となるように開口部32が設けられているとともに、開口部32周辺の外壁部分には、凍結乾燥部50との接続・連通が可能となるように、ヘルール、バンド、クランプ、フランジ等を用いた造粒室側接合部38が形成されている。 The freezing granulation chamber 31 is a place where the frozen granulation body G is formed from the stock solution M sprayed from the discharge part 21 of the two-fluid nozzle 11 provided in the vicinity of the top surface, and is filled in the cooling medium filling chamber 37. Due to the cooling effect of the cooling medium or the cooling medium directly introduced into the freezing granulation chamber 31, the freezing temperature at which the room temperature freezes the stock solution M (approximately −10 ° C. to −190 ° C., preferably −20 ° C. to −150 ° C.). ° C) can be maintained. In the lower part of the freezing granulation chamber 31, an opening 32 is provided so as to be able to communicate with the freeze drying unit 50 for storing the frozen granulated body G formed in the freezing granulation chamber 31. The outer wall portion around the opening portion 32 is formed with a granulation chamber side joint portion 38 using a ferrule, a band, a clamp, a flange or the like so that the freeze-drying portion 50 can be connected and communicated. .
 凍結造粒室外壁33と断熱室内壁35との間に設けられた冷却媒体充填室37には、凍結造粒室31室内を冷却するための冷却媒体が充填される。冷却媒体としては、例えば、液体窒素、窒素ガス、液体アルゴン、アルゴンガス、液体ヘリウム、ヘリウムガス、ドライアイス、二酸化炭素ガス等を用いることができる。また、大気をチラー、冷凍機を介して直膨式又は間接式にて熱交換器を介して冷却した冷却ガスも用いることができる。この場合、チラー、冷凍機、熱交換器等を新規に設置してもかまわない。 The cooling medium filling chamber 37 provided between the freezing granulation chamber outer wall 33 and the heat insulating chamber wall 35 is filled with a cooling medium for cooling the freezing granulation chamber 31. As the cooling medium, for example, liquid nitrogen, nitrogen gas, liquid argon, argon gas, liquid helium, helium gas, dry ice, carbon dioxide gas, or the like can be used. Moreover, the cooling gas which cooled the air | atmosphere via the heat exchanger by the direct expansion type or indirect type | mold via the chiller and the refrigerator can also be used. In this case, a chiller, a refrigerator, a heat exchanger, etc. may be newly installed.
 断熱室34は、断熱室内壁35と断熱室外壁39との間の空間が真空状態に維持された二重構造を有した真空断熱構造として形成されてもよく、冷却媒体充填室37に充填された冷却媒体又は外気からの熱伝達を防ぐことができるように構成されている。なお、断熱室34には、例えば、グラスウール、セルロースファイバー、インショレーションボード、羊毛断熱材、ロックウール、硬質ウレタンフォーム、フェノールフォームといった断熱材、グラスウールを芯材とした真空断熱材の使用又は併用も可能であり、また、断熱効果を高めるための外内壁表面を鏡面仕上げ、銅箔の貼付けといった工夫も可能である。 The heat insulation chamber 34 may be formed as a vacuum heat insulation structure having a double structure in which the space between the heat insulation chamber inner wall 35 and the heat insulation chamber outer wall 39 is maintained in a vacuum state, and is filled in the cooling medium filling chamber 37. Further, heat transfer from the cooling medium or outside air can be prevented. In addition, for the heat insulating chamber 34, for example, glass wool, cellulose fiber, insulation board, wool heat insulating material, heat insulating material such as rock wool, hard urethane foam, phenol foam, or vacuum heat insulating material using glass wool as a core material is used or used in combination. In addition, it is possible to devise such as mirror finishing the surface of the outer inner wall and attaching copper foil to enhance the heat insulation effect.
 なお、上記ジャケット構造体には、図2に示すように、冷却媒体充填室37の上部からと凍結造粒室31の下部に連通する蒸発ガス投入配管36を設け、冷却媒体として、液体窒素や液体アルゴンといった液化ガスを使用する場合に、当該液化ガスが蒸発した蒸発ガスを冷却媒体充填室37の上部から直接凍結造粒室31下部に直接導入し、凍結造粒室31内部を直接冷却することも可能である。また、冷却媒体として窒素ガス、アルゴンガス、ドライアイス、二酸化炭素ガス、大気を冷却した冷却ガスを使用する場合、冷却媒体充填室37にこれらのガスを充填することにより凍結造粒室31内部を間接冷却することも可能であるし、凍結造粒室31上部に設けた冷却ガス供給・排気管36’を介して凍結造粒室31内部を直接冷却する形態としてもかまわない。 As shown in FIG. 2, the jacket structure is provided with an evaporative gas input pipe 36 communicating from the upper part of the cooling medium filling chamber 37 to the lower part of the freezing granulation chamber 31, and liquid nitrogen or When a liquefied gas such as liquid argon is used, the evaporated gas obtained by evaporating the liquefied gas is directly introduced into the lower part of the freezing granulation chamber 31 from the upper part of the cooling medium filling chamber 37 to directly cool the inside of the freezing granulation room 31. It is also possible. Further, in the case of using nitrogen gas, argon gas, dry ice, carbon dioxide gas, or a cooling gas cooled in the atmosphere as a cooling medium, the inside of the freezing granulation chamber 31 is filled by filling the cooling medium filling chamber 37 with these gases. Indirect cooling is also possible, and the inside of the freezing granulation chamber 31 may be directly cooled via the cooling gas supply / exhaust pipe 36 ′ provided in the upper part of the freezing granulation chamber 31.
 なお、本実施形態においては、冷却媒体充填室37における冷却媒体の残量を検知する媒体残量検知手段80を設けても良い。媒体残量検知手段80は、例えば、冷却媒体が液体である場合には、フロート式、ディスプレーサー式、ガイドパルス式、光学式、超音波、レーザー式といった各種レベルセンサを用いることができ、冷却媒体がガス体である場合には、半導体式、熱線型半導体式、赤外線式、超音波式といった各種濃度センサを用いることができる。そして、これらの検知結果を制御コンピュータ81等の情報処理装置に出力し、管理することで冷却媒体の残量、補充タイミング等を的確に把握することができる。また、制御コンピュータ81を介して接続された図示せぬモニタ等の表示手段や、スピーカー等の報知手段を介してオペレータに対し、冷却媒体の残量、補充タイミングを報知する構成としてもかまわない。 In the present embodiment, medium remaining amount detecting means 80 for detecting the remaining amount of the cooling medium in the cooling medium filling chamber 37 may be provided. For example, when the cooling medium is a liquid, the medium remaining amount detection means 80 can use various level sensors such as a float type, a displacer type, a guide pulse type, an optical type, an ultrasonic wave, and a laser type. When the medium is a gas body, various concentration sensors such as a semiconductor type, a heat ray type semiconductor type, an infrared type, and an ultrasonic type can be used. Then, by outputting and managing these detection results to an information processing apparatus such as the control computer 81, it is possible to accurately grasp the remaining amount of the cooling medium, the replenishment timing, and the like. Also, the cooling medium remaining amount and the replenishment timing may be notified to the operator via a display unit such as a monitor (not shown) connected via the control computer 81 or a notification unit such as a speaker.
 さらに、本実施形態においては、冷却媒体の補充用ボンベ82、バルブ83といった冷却媒体補充手段を更に設けてもよい。この場合、バルブ83の開閉をオペレータの手動で行う形態としてもよいし、これらの冷却補充手段をレギュレータ84を介して制御コンピュータ81と接続することで、冷却媒体の残量検知、残量が不足した場合の補充を制御コンピュータ81介して自動的に行う形態とすることも無論可能である。 Furthermore, in the present embodiment, cooling medium supplementing means such as a cooling medium supplementing cylinder 82 and a valve 83 may be further provided. In this case, the valve 83 may be opened and closed manually by the operator, or the cooling replenishing means is connected to the control computer 81 via the regulator 84 to detect the remaining amount of the cooling medium and the remaining amount is insufficient. Needless to say, the replenishment in this case is automatically performed via the control computer 81.
 凍結造粒用チャンバ30内で形成された凍結造粒体Gは、当該凍結造粒用チャンバ30に対して着脱自在に設けられた凍結乾燥部50に貯留することになる。凍結乾燥部50に一定量の凍結造粒体Gが貯留されると、オペレータは凍結造粒用チャンバ30から凍結乾燥部50を分離し、密閉後、凍結乾燥を行うことで乾燥粉末を得ることができる。以下に、本実施形態に係る凍結乾燥部50の構成について説明する。 The frozen granulation body G formed in the freezing granulation chamber 30 is stored in a freeze-drying unit 50 that is detachably attached to the freezing granulation chamber 30. When a certain amount of the frozen granulation body G is stored in the freeze-drying unit 50, the operator separates the freeze-drying unit 50 from the freeze-granulation chamber 30, and after sealing, freeze-drying to obtain a dry powder. Can do. Below, the structure of the freeze-drying part 50 which concerns on this embodiment is demonstrated.
 なお、凍結乾燥機能を有していない着脱自在な貯留容器を凍結造粒用チャンバ30に接続し、凍結造粒体Gを貯留し、後工程にて、凍結乾燥部50へ移送して乾燥粉末を得ることもできる。その際は、凍結造粒体Gの移送前に後述する凍結乾燥部50の筐体52の媒体注入口63を介して、冷却媒体を空隙部52に導入し、乾燥本体部51を十分に冷却させることが好ましい。また乾燥本体部51内部に直接、液体窒素、ドライアイス等を投入して冷却することも問題ない。 A detachable storage container that does not have a freeze-drying function is connected to the freeze granulation chamber 30 to store the frozen granulation body G, which is transferred to the freeze-drying unit 50 and dried powder in a later step. You can also get In that case, before transferring the frozen granulated body G, a cooling medium is introduced into the gap 52 through the medium inlet 63 of the casing 52 of the freeze-drying unit 50 described later, and the drying main body 51 is sufficiently cooled. It is preferable to make it. Moreover, there is no problem in cooling by directly putting liquid nitrogen, dry ice or the like into the dry main body 51.
 図4に示すように、凍結乾燥部50は、図中x軸方向を容器長手方向としたときに、両端部が丸底の略円筒状に形成された貯留容器としての乾燥本体部51と、当該乾燥本体部51の周囲を取り囲むように構成され、乾燥本体部51との間で空隙部53を形成する筐体部52とを備える。 As shown in FIG. 4, the freeze-drying section 50 has a drying main body 51 as a storage container formed in a substantially cylindrical shape with round ends at both ends when the x-axis direction in the figure is the container longitudinal direction; A casing 52 is formed so as to surround the periphery of the drying body 51 and forms a gap 53 with the drying body 51.
 乾燥本体部51の上側の胴体部略中央部分には、筐体部52を介して突出するように、略円形の開口部形状を有する乾燥部開口部54が形成されており、凍結造粒用チャンバ30内で形成された凍結造粒体Gは当該乾燥部開口部54を介して乾燥本体部51に貯留することになる。このため、図5に示すように、乾燥部開口部54には凍結造粒室31下部の開口部32に形成された造粒室側接合部38を介した接続・連通が可能となるように、その内壁部分にヘルール、バンド、クランプ、フランジ等の乾燥部側接合部55が形成されている。なお、乾燥部側接合部55は、凍結造粒用チャンバ30(凍結造粒室31)との接続を解除した後、乾燥本体部51を密閉するための上蓋56との接合が可能となるよう構成されている。 A drying portion opening 54 having a substantially circular opening shape is formed in a substantially central portion of the upper body portion of the drying main body 51 so as to protrude through the housing portion 52, and is used for freeze granulation. The frozen granulated body G formed in the chamber 30 is stored in the drying main body 51 through the drying section opening 54. Therefore, as shown in FIG. 5, the drying section opening 54 can be connected and communicated via the granulation chamber side joint 38 formed in the opening 32 at the bottom of the freezing granulation chamber 31. The inner wall portion is formed with a drying portion side joining portion 55 such as a ferrule, a band, a clamp, and a flange. It should be noted that the drying portion side joining portion 55 can be joined to the upper lid 56 for sealing the drying main body portion 51 after the connection with the freezing granulation chamber 30 (freezing granulation chamber 31) is released. It is configured.
 また、乾燥本体部51の上側には、筐体部52を介して乾燥本体部51内部を観察するためのサイトグラス57が設けられている。オペレータは、サイトグラス57を介して凍結造粒体Gの貯留量、凍結乾燥の進行状態等を観察することができる。また、凍結造粒体Gの貯留量、含有溶媒量を計測する上で、乾燥本体部51内部に機械式又は光学式の貯留量検出センサ、赤外分光分析計を設け、検出結果、分析結果を制御コンピュータ81等の情報処理装置に出力する形態としてもかまわない。 Further, a sight glass 57 for observing the inside of the drying main body 51 through the housing 52 is provided on the upper side of the drying main body 51. The operator can observe the storage amount of the frozen granulation G, the progress of freeze-drying, and the like via the sight glass 57. Further, in measuring the storage amount of the frozen granulated body G and the amount of solvent contained therein, a mechanical or optical storage amount detection sensor and an infrared spectroscopic analyzer are provided inside the dry main body 51, and the detection results and analysis results May be output to an information processing apparatus such as the control computer 81.
 同じく、乾燥本体部51の上側には、フィルタ付きの真空引き用チューブコネクタ59が設けられている。真空引き用チューブコネクタ59には、フレキシブル配管60を介してコールドトラップ61、真空ポンプ62が接続されている。真空ポンプ62が始動すると、乾燥本体部51内部の内部圧力(真空圧力)が徐々に低下する。そして、後述する空隙部53への熱媒体の循環、凍結乾燥部50本体の揺動により凍結造粒体Gに含まれる溶媒の昇華を促進させることで凍結乾燥の効率化が図られる。なお、フィルタは真空引きチューブコネクタに付帯しても良いが、コールドトラップ61と真空ポンプ62との間に付帯させることもできる。 Similarly, a vacuuming tube connector 59 with a filter is provided on the upper side of the drying main body 51. A cold trap 61 and a vacuum pump 62 are connected to the vacuuming tube connector 59 via a flexible pipe 60. When the vacuum pump 62 is started, the internal pressure (vacuum pressure) inside the drying main body 51 gradually decreases. And the efficiency of lyophilization is achieved by promoting the sublimation of the solvent contained in the frozen granulated body G by circulation of the heat medium to the space | gap part 53 mentioned later and rocking | fluctuation of the freeze-drying part 50 main body. The filter may be attached to the vacuum tube connector, but may be attached between the cold trap 61 and the vacuum pump 62.
 オペレータは、凍結乾燥が完了した後、フレキシブル配管60を乾燥本体部50から外し、乾燥本体部51を容器長手方向軸に対して180°回転させて、乾燥部開口部54を床方向に向け、直下に図示せぬ回収用トレイ等の回収容器を載置し、乾燥部開口部54を開放して乾燥粉体を落下させることにより、乾燥粉体を回収することができる。 After the freeze drying is completed, the operator removes the flexible pipe 60 from the drying main body 50, rotates the drying main body 51 by 180 ° with respect to the container longitudinal axis, and directs the drying section opening 54 toward the floor. A dry powder can be collected by placing a collection container such as a collection tray (not shown) directly below, opening the drying section opening 54 and dropping the dry powder.
 筐体52には、乾燥本体部51との間で形成される空隙部53に加温水、蒸気、冷却ガス、冷媒油、熱媒油といった熱媒体を導入するための媒体注入口63及びこれらを排出するための媒体排出口64がそれぞれ設けられている。空隙部53は、乾燥本体部51周囲の略全域に亘って形成されているため、乾燥本体部51全体を均一に加熱又は冷却することができる。また、空隙部53の外周に断熱室34と同等の断熱構造を設けてもかまわない。 The casing 52 has a medium inlet 63 for introducing a heat medium such as heated water, steam, cooling gas, refrigerant oil, and heat transfer oil into a gap 53 formed between the main body 51 and the drying main body 51, and these. A medium discharge port 64 for discharging is provided. Since the gap 53 is formed over substantially the entire area around the drying body 51, the entire drying body 51 can be uniformly heated or cooled. Further, a heat insulating structure equivalent to the heat insulating chamber 34 may be provided on the outer periphery of the gap portion 53.
 また、筐体部52には、図中x軸方向を容器長手方向としたときに、長手方向軸65に対して所定の角度で揺動可能となるようにその両端側に軸体66がそれぞれ設けられている。長手方向軸65、軸体66は、乾燥本体部51の中心でもよいが、フレキシブル配管60の可動域を狭め、消耗を軽減させるために乾燥本体部51の上部に設置することも可能である。軸体66は、架台90に設けられた軸受け91に軸支されており、図示せぬモータからの駆動力により、図6に示すように、凍結乾燥部50を所定の角度(例えば、長手方向軸65に対して図中左右100°の可動範囲)で揺動可能となるように構成されている。凍結乾燥時に凍結乾燥部50が揺動可能、すなわち、凍結乾燥部50本体が容器長手方向軸に対して左右方向に傾斜するため、凍結造粒体Gは乾燥本体部51内を流動することになる。その結果、凍結造粒体Gの乾燥対象面の露出頻度が増加するため、また乾燥が促進しにくい凍結造粒体Gのバルク体の内部が攪拌、露出されるため、乾燥効率を向上させることができる。また、静置式の凍結乾燥機において起こり得る乾燥ムラの発生を防ぐことができる。凍結造粒体Gの流動が少なく、攪拌が十分でない場合は、乾燥本体部51内部の底部に邪魔板を設定して流動を促進させることもできる。凍結造粒体Gが乾燥本体部51内に付着して流動しない場合は、乾燥本体部51にノッカー、バイブレータ等を設置し、衝撃、振動を与えることで、凍結造粒体Gを強制流動させることもできる。 In addition, the casing 52 has shafts 66 at both ends thereof so that the casing 52 can swing at a predetermined angle with respect to the longitudinal axis 65 when the x-axis direction in the drawing is the longitudinal direction of the container. Is provided. The longitudinal axis 65 and the shaft body 66 may be the center of the drying main body 51, but can be installed on the upper part of the drying main body 51 in order to narrow the movable range of the flexible pipe 60 and reduce consumption. The shaft body 66 is pivotally supported by a bearing 91 provided on the gantry 90, and as shown in FIG. 6, the freeze-drying unit 50 is moved at a predetermined angle (for example, in the longitudinal direction) by a driving force from a motor (not shown). The shaft 65 is configured to be swingable within a movable range of 100 ° left and right in the figure. The freeze-drying part 50 can swing during freeze-drying, that is, the freeze-drying part 50 main body is inclined in the left-right direction with respect to the longitudinal axis of the container. Become. As a result, since the exposure frequency of the surface to be dried of the frozen granulated body G increases and the inside of the bulk body of the frozen granulated body G that is difficult to promote drying is stirred and exposed, the drying efficiency is improved. Can do. In addition, it is possible to prevent the occurrence of drying unevenness that may occur in a stationary freeze dryer. When the flow of the frozen granulated body G is small and stirring is not sufficient, a baffle plate can be set at the bottom inside the dry main body 51 to promote the flow. When the frozen granule G adheres to the dry main body 51 and does not flow, a knocker, a vibrator or the like is installed on the dry main body 51, and the frozen granule G is forced to flow by applying an impact or vibration. You can also.
 前述したように、本実施形態においては、凍結造粒用チャンバ30下部に凍結乾燥部50が直接接続されているため、凍結造粒用チャンバ30の凍結造粒室31の冷気が凍結乾燥部50の乾燥本体部51に直接流れ込むことになる。その結果、乾燥本体部51は適度に冷却された状態となるため、従来技術において必要であった回収容器の事前冷却の手間も無くなり、容器移し替えの際の凍結造粒体の溶解も防止することができる。 As described above, in the present embodiment, since the freeze-drying unit 50 is directly connected to the lower part of the freeze-granulation chamber 30, the cold air in the freeze-granulation chamber 31 of the freeze-granulation chamber 30 is lyophilized. It will flow directly into the drying main body 51. As a result, the dried main body 51 is in an appropriately cooled state, thereby eliminating the need for pre-cooling of the collection container, which was necessary in the prior art, and preventing melting of the frozen granule when the container is transferred. be able to.
 次に、上記構成を有する本実施形態に係る噴霧凍結造粒乾燥粉体製造装置100による乾燥粉体の製造方法について説明する。なお、ここでの説明では、冷却媒体として液体窒素を用いる場合について説明する。 Next, a method for producing a dry powder by the spray freeze granulated dry powder production apparatus 100 according to the present embodiment having the above-described configuration will be described. In the description here, the case where liquid nitrogen is used as the cooling medium will be described.
 まず、事前準備としてオペレータは、冷却媒体充填室37に液体窒素を充填し、凍結造粒室31の室内温度を原液Mを凍結させる温度(大凡-10℃~-190℃、好ましくは-20℃~-150℃)まで低下させる。ところで、液体窒素は、凍結造粒室31を冷却する際に熱交換され気化しガス化する。蒸発した窒素ガスを、冷却媒体充填室37に設けた蒸発ガス投入配管36を介して凍結造粒室31に投入することで、より効率的に凍結造粒室31を直接冷却することができる。なお、後述の原液Mの噴霧開始後も同様に窒素ガスを凍結造粒室31に投入することも可能である。また、凍結造粒室31上部に設けた冷却ガス供給・排気管36’を介して凍結造粒室31内部に直接窒素ガスを直接投入してもよい。 First, as an advance preparation, the operator fills the cooling medium filling chamber 37 with liquid nitrogen, and sets the temperature of the freezing granulation chamber 31 to a temperature at which the stock solution M is frozen (approximately −10 ° C. to −190 ° C., preferably −20 ° C. To −150 ° C.). By the way, liquid nitrogen is heat-exchanged and gasified when cooling the freezing granulation chamber 31. By introducing the evaporated nitrogen gas into the freezing granulation chamber 31 via the evaporating gas introduction pipe 36 provided in the cooling medium filling chamber 37, the freezing granulation chamber 31 can be directly cooled more efficiently. It is also possible to put nitrogen gas into the freezing granulation chamber 31 after the spraying of the stock solution M described later is started. Further, nitrogen gas may be directly fed into the inside of the freezing granulation chamber 31 through the cooling gas supply / exhaust pipe 36 ′ provided in the upper part of the freezing granulation chamber 31.
 凍結造粒室31の室内温度が原液Mが凍結する温度まで低下すると、オペレータは、二流体ノズル本体部11の吐出部21からの原液Mの噴霧を開始する。このとき、凍結防止ガス配管20から常温又は加熱されたガスを噴射することで、吐出部21における凍結固形物の発生・付着を防止することができる。 When the room temperature of the freezing granulation chamber 31 is lowered to a temperature at which the stock solution M is frozen, the operator starts spraying the stock solution M from the discharge unit 21 of the two-fluid nozzle main body 11. At this time, by generating a normal temperature or heated gas from the antifreezing gas pipe 20, it is possible to prevent generation and adhesion of frozen solids in the discharge unit 21.
 二流体ノズル本体部11の吐出部21から噴霧された原液Mは、凍結造粒用チャンバ30の凍結造粒室31内で凍結し、凍結造粒体Gを形成する。形成した凍結造粒体Gは、凍結造粒室31下方に自然落下し、当該凍結造粒室31下部に接続された凍結乾燥部50の乾燥本体部51内に貯留する。なお、大量生産を意図した装置の大型化や、噴霧方式の変更等により、凍結造粒室31の径が大きくなった場合には、凍結乾燥部50との接続を円錐形のホッパーとすることも可能である。この際、ホッパー部に設けたノッカー、バイブレータ等を用いて衝撃、振動等を与えることで、凍結造粒体Gを強制落下させることが好ましい。ところで、大型機、小型機問わず、液化ガスを間接冷却媒体として使用し、蒸発したガスを冷却媒体充填室37に設けた蒸発ガス投入配管36を介して凍結造粒室31に投入する際、又は液化ガス等を用いた間接冷却ではなく、直接冷却によるガスを大量に投入して凍結造粒体Gを作成する際は、冷却ガス供給・排気管36’の上流側にサイクロン、バグフィルタ等を設置して、ガスの気流に乗った凍結造粒体Gを捕集することが好ましい。 The stock solution M sprayed from the discharge part 21 of the two-fluid nozzle main body part 11 is frozen in the freezing granulation chamber 31 of the freezing granulation chamber 30 to form a freezing granulated body G. The formed frozen granulation body G naturally falls below the freezing granulation chamber 31 and is stored in the drying main body 51 of the freeze drying unit 50 connected to the lower portion of the freezing granulation chamber 31. In addition, when the diameter of the freeze granulation chamber 31 is increased due to an increase in the size of the apparatus intended for mass production or a change in the spraying method, the connection with the freeze drying unit 50 should be a conical hopper. Is also possible. At this time, it is preferable to forcibly drop the frozen granulated body G by applying an impact, vibration, or the like using a knocker, vibrator or the like provided in the hopper. By the way, regardless of whether it is a large machine or a small machine, the liquefied gas is used as an indirect cooling medium, and when the evaporated gas is charged into the freezing granulation chamber 31 via the evaporating gas charging pipe 36 provided in the cooling medium filling chamber 37, Alternatively, when the frozen granulated material G is produced by injecting a large amount of gas by direct cooling instead of indirect cooling using liquefied gas or the like, a cyclone, a bag filter or the like is provided upstream of the cooling gas supply / exhaust pipe 36 '. It is preferable to collect the frozen granulated body G riding on a gas stream.
 乾燥本体部51内の凍結造粒体Gの貯留量が一定量となると、オペレータは、凍結乾燥部50を凍結造粒用チャンバ30から分離し、乾燥部開口部54に上蓋56を接合(装着)することで、乾燥本体部51を密閉する。 When the storage amount of the frozen granulation G in the drying main body 51 becomes a certain amount, the operator separates the freeze drying unit 50 from the freezing granulation chamber 30 and joins (attaches) the upper lid 56 to the drying unit opening 54. ) To seal the drying main body 51.
 そして、オペレータは、真空ポンプ62を始動させることによって乾燥本体部51内部の真空引きを開始する。さらに、オペレータは、図示せぬモータを駆動させ、軸体66を所定の角度で回動させることにより、凍結乾燥部50の揺動を開始する。 Then, the operator starts evacuation of the inside of the drying main body 51 by starting the vacuum pump 62. Further, the operator starts swinging of the freeze-drying unit 50 by driving a motor (not shown) and rotating the shaft body 66 at a predetermined angle.
 乾燥本体部51の内部圧力が所定の圧力まで低下した状態で、筐体52の媒体注入口63を介して、例えば、加温水、加熱油、蒸気等の熱媒体を空隙部53に導入することにより、凍結造粒体Gの溶媒の昇華を促進させる。この際、凍結乾燥部50本体が容器長手方向軸に対して左右方向に傾斜するため、凍結造粒体Gは乾燥本体部51内を流動し、さらに熱媒体からの伝導電熱により均一に加熱されることになる。これにより乾燥効率を効率的に促進させることができる。 In the state where the internal pressure of the drying main body 51 is reduced to a predetermined pressure, for example, a heating medium such as heated water, heating oil, or steam is introduced into the gap 53 through the medium inlet 63 of the housing 52. Thus, the sublimation of the solvent of the frozen granulated body G is promoted. At this time, since the freeze-drying unit 50 main body is inclined in the left-right direction with respect to the longitudinal axis of the container, the frozen granulated body G flows in the drying main body 51 and is further uniformly heated by the conduction electric heat from the heat medium. Will be. Thereby, drying efficiency can be promoted efficiently.
 オペレータは、凍結乾燥が完了した後、乾燥本体部51直下に図示せぬ回収用トレイ等の回収容器を載置し、フレキシブル配管60を乾燥本体部51から外し、乾燥本体部51を容器長手方向軸に対して180°回転させて、乾燥部開口部54を床方向へ向け、乾燥部開口部54を開放して乾燥粉体を回収する。 After completion of freeze-drying, the operator places a collection container such as a collection tray (not shown) directly under the drying body 51, removes the flexible pipe 60 from the drying body 51, and removes the drying body 51 in the container longitudinal direction. By rotating 180 ° with respect to the shaft, the drying part opening 54 is directed toward the floor, and the drying part opening 54 is opened to collect the dry powder.
 本実施形態に係る乾燥粉体の製造は、凍結乾燥後の凍結乾燥部50又は別体の凍結乾燥部50を凍結造粒用チャンバ30に再接続することで連続的に行うことが出来る。この際、噴霧機構部10による原液Mの噴霧を完全停止せずとも、例えば、噴霧量を低下させた状態で噴霧を継続することで、安定した噴霧状態を維持させることが可能である。また、噴霧量を低下させる代わりに、造粒室側接合部38直下にダンパを設置し閉状態とすることで、凍結乾燥部50を再接続する間の時間も、密閉状態で安定した噴霧状態を維持させることが可能である。また、本実施形態に係る凍結造粒室31の冷却は液体窒素等の液化ガスを冷却媒体とする間接冷却と、蒸発した窒素ガスの直接冷却とで行うことが可能であるため、連続運転中においても、噴霧機構部10における原液Mの噴霧に影響を与えることなく冷却媒体の補充を行うことが可能である。 The production of the dry powder according to the present embodiment can be continuously performed by reconnecting the freeze-drying unit 50 after freeze-drying or the separate freeze-drying unit 50 to the freeze granulation chamber 30. At this time, even if the spraying of the stock solution M by the spray mechanism unit 10 is not completely stopped, for example, by continuing spraying in a state where the spray amount is reduced, it is possible to maintain a stable spray state. In addition, instead of reducing the spray amount, a damper is placed directly under the granulation chamber side joint portion 38 so as to be in a closed state, so that the time during which the freeze-drying portion 50 is reconnected is also stable in a sealed state. Can be maintained. Moreover, since the freezing granulation chamber 31 according to the present embodiment can be cooled by indirect cooling using a liquefied gas such as liquid nitrogen as a cooling medium and direct cooling of evaporated nitrogen gas, In this case, it is possible to replenish the cooling medium without affecting the spraying of the stock solution M in the spray mechanism unit 10.
 [変形例]
 本実施形態の噴霧凍結造粒乾燥粉体製造装置100の好適な例においては、凍結乾燥部として、容器長手方向軸に対して所定の角度で揺動可能な凍結乾燥部50について説明したが、本発明はこれに限定されるものではなく、例えば、図7に示すような、図中x軸方向を容器長手方向としたときに、長手方向軸65’に対して360°回動可能な凍結乾燥部200の構成としてもかまわない。
[Modification]
In the preferred example of the spray freeze granulated dry powder production apparatus 100 of the present embodiment, the lyophilization unit 50 that can swing at a predetermined angle with respect to the longitudinal axis of the container has been described as the lyophilization unit. The present invention is not limited to this. For example, as shown in FIG. 7, when the x-axis direction in the figure is the container longitudinal direction, the freezing that can rotate 360 ° with respect to the longitudinal axis 65 ′. The configuration of the drying unit 200 may be used.
 凍結乾燥部200は、貯留容器としての乾燥本体部51’と該乾燥本体部51’の周囲を取り囲むように構成され、乾燥本体部51’との間で空隙部53’を形成する筐体部52’とを備える構成であり、その名称・機能共に凍結乾燥部50のものと同一とすることができる。凍結乾燥部200は、乾燥部開口部54’を介して凍結造粒用チャンバ30の凍結造粒室31との接続・連通が可能となるように構成されている。 The freeze-drying unit 200 is configured to surround a drying main body 51 ′ as a storage container and the periphery of the drying main body 51 ′, and a housing unit that forms a gap 53 ′ between the drying main body 51 ′. 52 ′, the name and function of which can be the same as those of the freeze-drying unit 50. The freeze-drying unit 200 is configured to be able to connect and communicate with the freezing granulation chamber 31 of the freezing granulation chamber 30 through the drying unit opening 54 '.
 また、凍結乾燥部200は、架台90’に設けられた軸受け91’に軸支可能となるように軸体66’が筐体部52’の左右両側に形成されている。凍結乾燥部200を長手方向軸65’に対して360°回動可能とするために、本変形例では、軸体66’の中心軸から乾燥本体部51’室内にかけて真空引き用チューブコネクタ59’が挿通されており、これにフレキシブル配管60’が接続される形態となっている。真空引き用チューブコネクタ59’をこのような接続形態とすることで、凍結乾燥部200の回動時に、真空引きチューブコネクタ59’やフレキシブル配管60’が架台90’又は軸受け91’に引っかかり、回動が阻害されるといった不具合を防止することができる。凍結乾燥部50と同様に、凍結乾燥時に凍結乾燥部200が回動可能、すなわち、凍結乾燥部200本体が容器長手方向軸に対して左右方向に傾斜し回転するため、凍結造粒体Gは乾燥本体部51’内を流動することになる。その結果、凍結造粒体Gの乾燥対象面の露出頻度が増加するため乾燥効率を向上させることができる。 Also, the freeze-drying section 200 has shaft bodies 66 'formed on the left and right sides of the casing section 52' so that it can be supported by a bearing 91 'provided on the gantry 90'. In order to enable the freeze-drying section 200 to be rotated 360 ° with respect to the longitudinal axis 65 ′, in this modification, the vacuum-evacuation tube connector 59 ′ extends from the central axis of the shaft body 66 ′ to the interior of the drying body 51 ′. Is inserted, and the flexible pipe 60 'is connected to this. By adopting such a connection configuration of the vacuuming tube connector 59 ′, the vacuuming tube connector 59 ′ and the flexible pipe 60 ′ are caught by the gantry 90 ′ or the bearing 91 ′ when the freeze-drying unit 200 is rotated. It is possible to prevent problems such as movement being hindered. Similarly to the freeze-drying unit 50, the freeze-drying unit 200 can rotate during freeze-drying, that is, the freeze-drying unit 200 main body tilts and rotates in the left-right direction with respect to the container longitudinal axis. It will flow in the drying body 51 '. As a result, since the exposure frequency of the surface to be dried of the frozen granulated body G increases, the drying efficiency can be improved.
 さらに、凍結乾燥部を、図8に示すような、所謂、タンブラー型回転乾燥部500の構成とすることも無論可能である。タンブラー型回転乾燥部500は、貯留容器としての乾燥本体部511と該乾燥本体部511の周囲を取り囲むように構成され、乾燥本体部511との間で空隙部553を形成する筐体部552とを備える。タンブラー型回転乾燥部500は、乾燥部開口部554を介して凍結造粒用チャンバ30の凍結造粒室31との接続・連通が可能となるように構成されている。 Furthermore, it is of course possible to configure the freeze-drying unit as a so-called tumbler type rotary drying unit 500 as shown in FIG. The tumbler-type rotary drying unit 500 is configured to surround a drying main body 511 as a storage container and the periphery of the drying main body 511, and a housing 552 that forms a gap 553 with the drying main body 511. Is provided. The tumbler-type rotary drying unit 500 is configured to be able to connect and communicate with the freezing granulation chamber 31 of the freezing granulation chamber 30 through the drying unit opening 554.
 タンブラー型回転乾燥部500は、回動軸565に対して360°回動可能となるように、架台590にその両端が軸支されている。筐体部552の図中左側では、真空引き用ライン559が乾燥本体部511室内に挿通されており、図中右側では、媒体注入ライン563が空隙部553に接続されている。 The both ends of the tumbler-type rotary drying unit 500 are pivotally supported by the mount 590 so that the tumbler-type rotary drying unit 500 can be rotated 360 ° with respect to the rotation shaft 565. On the left side of the housing portion 552 in the figure, a vacuuming line 559 is inserted into the drying main body portion 511, and on the right side in the drawing, the medium injection line 563 is connected to the gap portion 553.
 タンブラー型回転乾燥部500を用いた乾燥動作は、凍結乾燥部50、200等と同様に行うことができる。すなわち、乾燥本体部511内の凍結造粒体Gの貯留量が一定量となると、オペレータは、凍結乾燥部511を凍結造粒用チャンバ30から分離し、乾燥部開口部554に上蓋56を接合(装着)することで、乾燥本体部511を密閉する。 The drying operation using the tumbler type rotary drying unit 500 can be performed in the same manner as the freeze-drying units 50 and 200. That is, when the storage amount of the frozen granulation G in the drying main body 511 reaches a certain amount, the operator separates the freeze drying unit 511 from the freezing granulation chamber 30 and joins the upper lid 56 to the drying unit opening 554. By (attaching), the drying main body 511 is sealed.
 そして、オペレータは、真空引き用ライン559を介して乾燥本体部511内部の真空引きを開始する。さらに、オペレータは、図示せぬモータの駆動若しくは手動により、タンブラー型回転乾燥部500の回動を開始する。 Then, the operator starts evacuation of the drying main body 511 via the evacuation line 559. Further, the operator starts rotation of the tumbler type rotary drying unit 500 by driving or manually driving a motor (not shown).
 乾燥本体部511の内部圧力が所定の圧力まで低下した状態で、媒体注入ライン563を介して、例えば、加温水、加熱油、蒸気等の熱媒体を空隙部553に導入することにより、凍結造粒体Gの溶媒の昇華を促進させる。この際、タンブラー型回転乾燥部500は回動しているため、凍結造粒体Gは乾燥本体部511内を流動し、さらに熱媒体からの伝導電熱により均一に加熱されることになる。これにより乾燥効率を効率的に促進させることができる。 In a state where the internal pressure of the drying main body 511 is reduced to a predetermined pressure, for example, by introducing a heat medium such as heated water, heating oil, steam, or the like into the gap 553 through the medium injection line 563, The sublimation of the solvent of the granule G is promoted. At this time, since the tumbler-type rotary drying unit 500 is rotating, the frozen granulated body G flows in the drying main body 511 and is uniformly heated by conduction electric heat from the heat medium. Thereby, drying efficiency can be promoted efficiently.
 オペレータは、凍結乾燥が完了した後、乾燥本体部511直下に図示せぬ回収用トレイ等の回収容器を載置し、乾燥本体部511を回転軸に対して180°回転させて、乾燥部開口部554を床方向へ向け、乾燥部開口部554を開放して乾燥粉体を回収する。 After the freeze-drying is completed, the operator places a collection container such as a collection tray (not shown) immediately below the drying main body 511, rotates the drying main body 511 by 180 ° with respect to the rotation axis, and opens the drying unit. The part 554 is directed toward the floor, the drying part opening 554 is opened, and the dry powder is collected.
 なお、本発明では、凍結乾燥部としての構成を上記例に限定するものではない。すなわち、図9に示すような、凍結造粒用チャンバ30の凍結造粒室31との接続・連通が可能な乾燥部開口部354を備えた、所謂、静置式の浅底形状を有する貯留容器を凍結乾燥部300として用いてもかまわない。凍結乾燥の効率を考慮すると、貯留量に制限を伴うが、上記例と同様に、凍結造粒用チャンバ30の凍結造粒室31の冷気が凍結乾燥部300の乾燥本体部に直接流れ込むこむ形態であるため、従来技術において必要であった回収容器の事前冷却の手間も無くなり、容器移し替えの際の凍結造粒体の溶解も防止することができる。なお、凍結造粒体Gの乾燥対象面の露出頻度を増加させるために、例えば、図10に示すように、乾燥本体部内部に貯留した凍結造粒体Gを攪拌する攪拌羽根等の攪拌部材301を設けた貯留容器を凍結乾燥部300’として用いることも無論可能である。 In addition, in this invention, the structure as a freeze-drying part is not limited to the said example. That is, as shown in FIG. 9, a storage container having a so-called stationary shallow shape provided with a drying portion opening 354 that can be connected to and communicated with the freezing granulation chamber 31 of the freezing granulation chamber 30. May be used as the freeze-drying unit 300. Considering the efficiency of lyophilization, the storage amount is limited, but as in the above example, the cold air in the freezing granulation chamber 31 of the freezing granulation chamber 30 flows directly into the drying main body of the freezing drying unit 300. Therefore, there is no need for the prior cooling of the collection container, which is necessary in the prior art, and it is possible to prevent the frozen granulation from being melted when the container is transferred. In order to increase the exposure frequency of the surface to be dried of the frozen granulated body G, for example, as shown in FIG. 10, a stirring member such as a stirring blade that stirs the frozen granulated body G stored in the drying main body. Of course, it is possible to use the storage container provided with 301 as the freeze-drying unit 300 ′.
 なお、本発明の好適な説明においては、凍結乾燥部を1台用いた例について説明したが、例えば、複数台の凍結乾燥部を同時運用することも無論可能である。具体的には、凍結造粒用チャンバ下部から延在し、内部にヘリカルブレード等の攪拌搬送手段を備えた搬送用配管を設け、当該搬送用配管により搬送された凍結造粒体を複数台の凍結乾燥部で順に受け、貯留量が一定量を超えたものから凍結乾燥を順次開始することで完全自動化に近い形態とすることが可能となる。この場合、複数台の凍結乾燥部を予め冷却しておく必要があるが、凍結乾燥部の筐体部に設けられた媒体注入口を介して冷却したガス、油、エチレングリコール含有液、プロピレングリコール含有液等の不凍液を予め導入しておくことで、乾燥本体部を適度に冷却することができる。オペレータは、凍結乾燥の準備が出来た凍結乾燥部に真空ラインを接続し凍結乾燥を開始することで乾燥粉体を得ることが出来るため、より生産性を向上させることも可能である。 In the preferred description of the present invention, an example in which one lyophilization unit is used has been described. However, for example, it is of course possible to operate a plurality of lyophilization units simultaneously. Specifically, a pipe for transportation that extends from the lower part of the chamber for freezing granulation and is provided with stirring and transporting means such as a helical blade is provided, and a plurality of frozen granulation bodies transported by the transportation pipe are provided. It is possible to obtain a form close to full automation by sequentially receiving it in the freeze-drying section and starting freeze-drying in order from the amount in which the storage amount exceeds a certain amount. In this case, it is necessary to cool a plurality of freeze-drying units in advance, but the gas, oil, ethylene glycol-containing liquid, propylene glycol cooled through the medium inlet provided in the casing of the freeze-drying unit By introducing an antifreeze liquid such as a containing liquid in advance, the dry main body can be appropriately cooled. An operator can obtain a dry powder by connecting a vacuum line to a freeze-drying section ready for freeze-drying and starting freeze-drying, and thus can further improve productivity.
 ところで、凍結造粒室に送り込まれた冷却媒体を排気する際に、気流に乗って排出される凍結造粒体を捕集する捕集手段を本実施形態に係る噴霧凍結造粒乾燥粉体製造装置に対して設けることにより、さらなる収量向上を目指した噴霧凍結造粒粉体製造システムを構築することも可能である。 By the way, when the cooling medium sent to the freezing granulation chamber is exhausted, the collecting means for collecting the freezing granulated material discharged on the airflow is produced by the spray freezing granulated dry powder production according to this embodiment. By providing the apparatus, it is also possible to construct a spray freeze granulated powder production system aiming at further yield improvement.
 図11は噴霧凍結造粒乾燥粉体製造システム700の構成例の一例を説明するシステム構成図である。ここでの説明では、噴霧凍結造粒乾燥粉体製造装置として、凍結造粒体の大量生産を意図し、凍結乾燥部との接続を円錐形のホッパー部を介して行うものであって、噴霧機構部が備える噴霧機構として図3で例示した遠心噴霧機400を備えた噴霧凍結造粒乾燥粉体製造装置600を一例にして説明する。 FIG. 11 is a system configuration diagram illustrating an example of a configuration example of the spray freeze granulated dry powder manufacturing system 700. In this description, the spray freeze granulated dry powder production apparatus is intended for mass production of frozen granulated bodies, and is connected to the freeze dry section via a conical hopper section. A spray freeze granulated dry powder production apparatus 600 including the centrifugal sprayer 400 illustrated in FIG. 3 as an example of a spray mechanism provided in the mechanism unit will be described as an example.
 ガス吸入フィルタ617を介して送風ブロワ618により引き込まれた大気は、チラー619で冷却された熱交換器615を通すことにより冷却大気ガスとなる。冷却大気ガスはフィルタ623を介し冷却ガス供給管624を通して凍結造粒チャンバ630内の凍結造粒室631に導入される。この際、大気に含まれる水分が熱交換器615に霜となって付着することで、長時間運転に支障をきたす恐れがあるため、熱交換器615前段に除湿器621を付帯させることが好ましい。なお、冷却ガスとしては、ここで述べた冷却大気ガスでもよいし、窒素ガス、アルゴンガス、ヘリウムガス、二酸化炭素ガス等の冷却ガスを用いることも無論可能である。また、凍結造粒チャンバ630の冷却は、前述したジャケット構造体を用いた間接冷却で行ってもかまわない。この場合、ジャケット構造体に蒸発ガス投入配管を設け、冷却媒体として、液体窒素や液体アルゴンといった液化ガスを使用する場合に、当該液化ガスが蒸発した蒸発ガスをジャケット構造体の上部から直接凍結造粒室631下部に直接導入する構成とすることが好ましい。 The air drawn in by the blower 618 through the gas suction filter 617 is passed through the heat exchanger 615 cooled by the chiller 619 to become cooled atmospheric gas. The cooling atmospheric gas is introduced into the freezing granulation chamber 631 in the freezing granulation chamber 630 through the cooling gas supply pipe 624 through the filter 623. At this time, since moisture contained in the atmosphere adheres as frost to the heat exchanger 615, there is a risk of hindering long-time operation. Therefore, it is preferable to attach a dehumidifier 621 to the front stage of the heat exchanger 615. . As the cooling gas, the cooling air gas described here may be used, and it is of course possible to use a cooling gas such as nitrogen gas, argon gas, helium gas, carbon dioxide gas or the like. The freezing granulation chamber 630 may be cooled by indirect cooling using the jacket structure described above. In this case, when the jacket structure is provided with an evaporative gas input pipe and a liquefied gas such as liquid nitrogen or liquid argon is used as a cooling medium, the evaporated gas evaporated from the liquefied gas is directly frozen from the upper part of the jacket structure. It is preferable to adopt a configuration in which the particle chamber 631 is directly introduced into the lower portion.
 原液タンク613内の原液Mは、ポンプ614により原液供給管612を介して遠心噴霧機400に供給される。遠心噴霧機400は、供給された原液Mを遠心噴霧することにより微粒子化させる。微粒子化した原液Mは冷却ガス供給管624を通して供給された冷却大気ガスと接触して凝固化し、凍結造粒体Gを形成する。遠心噴霧機400の回転ディスク部402の近傍には、回転ディスク部402の周囲を囲む形状の冷却ガス遮熱板634が設けられている。冷却ガス遮熱板634の前段には、ガス吸入フィルタ617’、送風ブロワ618’、ヒータ622が設けられている。送風ブロワ618’はガス吸入フィルタ617’を介して、例えば、大気等のガスを引き込む。常温又はヒータ622により加熱されたガスは、凍結防止ガス配管620を通して、冷却ガス遮熱板634の内側に投入され、回転ディスク402部への凍結固形物の発生・付着を抑制することができる。また、上記の冷却ガス供給ラインと同様に、除湿器621’を送風ブロワ618’とヒータ622’との間に設けることで、凍結造粒室631内に導入される水分を減少させ、凍結造粒室631内での霜の発生を抑制することも可能である。 The stock solution M in the stock solution tank 613 is supplied to the centrifugal sprayer 400 via the stock solution supply pipe 612 by the pump 614. Centrifugal sprayer 400 atomizes supplied stock solution M by centrifugal spraying. The undiluted undiluted solution M is solidified by contact with the cooled atmospheric gas supplied through the cooling gas supply pipe 624 to form a frozen granulated body G. In the vicinity of the rotating disk unit 402 of the centrifugal sprayer 400, a cooling gas heat shield plate 634 having a shape surrounding the rotating disk unit 402 is provided. A gas suction filter 617 ′, a blower blower 618 ′, and a heater 622 are provided in front of the cooling gas heat shield plate 634. The blower 618 'draws in gas such as the atmosphere through the gas suction filter 617'. The gas heated at room temperature or by the heater 622 is input to the inside of the cooling gas heat shield plate 634 through the antifreeze gas pipe 620, and generation and adhesion of frozen solids to the rotating disk 402 can be suppressed. Similarly to the cooling gas supply line described above, the dehumidifier 621 ′ is provided between the blower blower 618 ′ and the heater 622 ′, thereby reducing the water introduced into the freezing granulation chamber 631 and freezing. It is also possible to suppress the generation of frost in the grain chamber 631.
 凍結造粒室631内で生成した凍結造粒体Gは、凍結造粒チャンバ630内の凍結造粒室631下方に位置する円錐形状のホッパー部632に堆積し、当該ホッパー部632に設けられたノッカー633、バイブレータ等による衝撃、振動により、前述の凍結乾燥部に強制落下させられる。凍結乾燥部内における結造粒体Gの貯留量が一定量となると、オペレータは凍結造粒用チャンバ630から凍結乾燥部を分離し、密閉後、凍結乾燥を行うことで乾燥粉末を得ることができる。 The frozen granulation G generated in the freezing granulation chamber 631 is deposited on the conical hopper 632 located below the freezing granulation chamber 631 in the freezing granulation chamber 630 and provided in the hopper 632. It is forcibly dropped to the above-mentioned freeze-drying part by the impact and vibration by a knocker 633, a vibrator or the like. When the storage amount of the granulation body G in the freeze-drying unit becomes a certain amount, the operator can separate the freeze-drying unit from the freeze-granulating chamber 630, and after sealing, freeze-drying can obtain a dry powder. .
 なお、ホッパー部632には、凍結造粒室631に導入された冷却大気ガスを排気するための冷却ガス排気管625が接続されている。そして、冷却ガス排気管625には、冷却大気ガスの排気の際に、気流に乗って排出される微細な凍結造粒体Gを捕集するための捕集手段としてのサイクロン型集塵装置626が設けられている。サイクロン型集塵装置626で捕集された凍結造粒体Gは、サイクロン型集塵装置626下部に設けられた凍結乾燥部によって回収することができる。また、サイクロン型集塵装置626の上端部には、サイクロン型集塵装置626では捕集できない更に微細な凍結造粒体Gを捕集するための捕集手段としてのバグフィルタ型集塵装置628が冷却ガス排気管627を介して接続されている。バグフィルタ型集塵装置628で捕集された凍結造粒体Gは、バグフィルタ型集塵装置628下部に設けられた凍結乾燥部によって回収することができる。なお、ホッパー部632、サイクロン型集塵装置626、バグフィルタ型集塵装置628の下部に凍結造粒体Gの集合配管を設置、または凍結乾燥部に複数の凍結造粒体Gの投入口を設けることで、1つの凍結乾燥部で捕集することもできる。なお、サイクロン型集塵装置626及びバグフィルタ型集塵装置628には、ホッパー部632と同様にノッカー633、バイブレータ等を設け、これらによる衝撃、振動により凍結造粒体Gを凍結乾燥部に強制落下させてもよい。なお、ここでの説明においては、冷却ガス排気管625をホッパー部632に設けた構成について説明したが、当該冷却ガス排気管625を凍結造粒室631側に設けた構成としてもかまわない。 Note that a cooling gas exhaust pipe 625 for exhausting the cooling atmospheric gas introduced into the freezing granulation chamber 631 is connected to the hopper portion 632. The cooling gas exhaust pipe 625 is provided with a cyclone type dust collector 626 as a collecting means for collecting the fine frozen granule G discharged on the airflow when the cooling atmospheric gas is exhausted. Is provided. The frozen granulated material G collected by the cyclone type dust collector 626 can be collected by a freeze-drying unit provided at the lower part of the cyclone type dust collector 626. Further, a bag filter type dust collector 628 as a collecting means for collecting a finer frozen granulated material G that cannot be collected by the cyclone type dust collector 626 is provided at the upper end of the cyclone type dust collector 626. Are connected via a cooling gas exhaust pipe 627. The frozen granulated material G collected by the bag filter type dust collector 628 can be collected by a freeze-drying unit provided at the lower part of the bag filter type dust collector 628. In addition, the aggregated piping of the frozen granulation G is installed in the lower part of the hopper part 632, the cyclone type dust collector 626, and the bag filter type dust collector 628, or a plurality of frozen granule G inlets are provided in the freeze drying part. By providing, it can also collect in one freeze-drying part. The cyclone type dust collector 626 and the bag filter type dust collector 628 are provided with a knocker 633, a vibrator and the like as with the hopper portion 632, and the frozen granule G is forced to the freeze drying portion by the impact and vibration caused by them. It may be dropped. In the description here, the configuration in which the cooling gas exhaust pipe 625 is provided in the hopper portion 632 has been described, but the cooling gas exhaust pipe 625 may be provided in the freezing granulation chamber 631 side.
 バグフィルタ型集塵装置628を通過した冷却大気ガスは排風ブロワ629によって大気中に放出することも可能であるが、図中点線で示す循環用配管640を接続し、送風ブロワ618前において循環させることによって、冷却大気ガスを再利用することもできる。 Although the cooled atmospheric gas that has passed through the bag filter type dust collector 628 can be discharged into the atmosphere by the exhaust blower 629, a circulation pipe 640 indicated by a dotted line in the figure is connected to circulate before the blower blower 618. By doing so, the cooling atmospheric gas can be reused.
 このように、凍結造粒室に送り込まれた冷却媒体を排気する際に、気流に乗って排出される凍結造粒体を捕集して回収する捕集回収手段を本実施形態に係る噴霧凍結造粒乾燥粉体製造装置に対して設けることにより、さらなる収量向上を目指した噴霧凍結造粒粉体製造システムを提供することも可能である。 Thus, when the cooling medium sent to the freezing granulation chamber is exhausted, the collection / recovery means for collecting and recovering the frozen granulated material discharged on the air current is spray-freezing according to this embodiment. By providing it to the granulated dry powder production apparatus, it is also possible to provide a spray-frozen granulated powder production system aiming at further yield improvement.
 以上のように、本発明によれば、手動による工程を極力省き、連続運転、長時間運転による乾燥粉体の大量生産が可能な噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒粉体製造システムを提供することができる。 As described above, according to the present invention, the spray freeze-granulated dry powder production apparatus and spray freeze-granulated powder are capable of mass production of dry powder by continuous operation and long-time operation, eliminating manual steps as much as possible. A manufacturing system can be provided.
10 噴霧機構部
11 二流体ノズル本体部
12、612 原液供給管
13、613 原液タンク
14、614 ポンプ
15 圧縮ガス供給管
16 圧縮ガス供給部
17、617、617’ ガス吸入フィルタ
18、618、618’ 送風ブロア
19 HEPAフィルタ
20、620 凍結防止ガス配管
21 吐出部
22、622 ヒータ
30、630 凍結造粒用チャンバ
31、631 凍結造粒室
32 開口部
33 凍結造粒室外壁
34 断熱室
35 断熱室内壁
36 蒸発ガス投入配管
36’ 冷却ガス供給・排気管
37 冷却媒体充填室
38 造粒室側接合部
39 断熱室外壁
40 支持部材
50、200、300、300’、500 凍結乾燥部
51、51’、511 乾燥本体部
52、52’、552 筐体部
53、53’、553 空隙部
54、54’、354、554 乾燥部開口部
55 乾燥部側接合部
56 上蓋
57 サイトグラス
59 真空引き用チューブコネクタ
60 フレキシブル配管
61 コールドトラップ
62 真空ポンプ
63 媒体注入口
64 媒体排出口
65、65’ 長手方向中心軸
66、66’ 軸体
70 架台
80 媒体残量検知手段
81 制御コンピュータ
82 補充用ボンベ
83 バルブ
84 レギュレータ
90、90’、590 架台
91、91’ 軸受け
100、600 噴霧凍結造粒乾燥粉体製造装置
301 攪拌部材
400 遠心噴霧機
401 モータ部
402 回転ディスク部
559 真空引きライン
563 媒体注入ライン
565 回動軸
615 熱交換器
619 チラー
621、621’ 除湿器
623 フィルタ
624 冷却ガス供給管
625、627 冷却ガス排気管
626 サイクロン型集塵装置
628 バグフィルタ型集塵装置
629 排風ブロワ
632 ホッパー部
633 ノッカー
634 冷却ガス遮熱板
640循環用配管
700 噴霧凍結造粒乾燥粉体製造システム
DESCRIPTION OF SYMBOLS 10 Spray mechanism part 11 Two-fluid nozzle main-body part 12,612 Stock solution supply pipe | tube 13,613 Stock solution tank 14,614 Pump 15 Compressed gas supply pipe | tube 16 Compressed gas supply part 17,617,617 'Gas suction filter 18,618,618' Blower blower 19 HEPA filter 20, 620 Antifreeze gas piping 21 Discharge part 22, 622 Heater 30, 630 Freezing granulation chamber 31, 631 Freezing granulation room 32 Opening 33 Freezing granulation room outer wall 34 Insulating room 35 Insulating room wall 36 Evaporative gas introduction pipe 36 ′ Cooling gas supply / exhaust pipe 37 Cooling medium filling chamber 38 Granulation chamber side joint portion 39 Heat insulation chamber outer wall 40 Support members 50, 200, 300, 300 ′, 500 Freeze drying portions 51, 51 ′, 511 Drying main body 52, 52 ′, 552 Housing 53, 53 ′, 553 Gap 54, 54 ′, 354, 554 Drying Mouth part 55 Drying part side joint part 56 Upper cover 57 Sight glass 59 Vacuum pulling tube connector 60 Flexible piping 61 Cold trap 62 Vacuum pump 63 Medium inlet 64 Medium outlet 65, 65 'Longitudinal central axis 66, 66' Shaft 70 Stand 80 Medium remaining amount detection means 81 Control computer 82 Refill cylinder 83 Valve 84 Regulator 90, 90 ', 590 Mount 91, 91' Bearing 100, 600 Spray freeze granulated dry powder production apparatus 301 Stirring member 400 Centrifugal sprayer 401 Motor part 402 Rotating disk part 559 Vacuum drawing line 563 Medium injection line 565 Rotating shaft 615 Heat exchanger 619 Chiller 621, 621 'Dehumidifier 623 Filter 624 Cooling gas supply pipe 625, 627 Cooling gas exhaust pipe 626 Cyclone type dust collecting Device 628 Bug filter type collection Device 629 exhaust air blower 632 hopper 633 knocker 634 circulation pipe cooling gas heat shield 640 700 spray freeze granulated dry powder production systems

Claims (14)

  1.  連続的に供給される原液を冷却することにより凍結造粒用チャンバ内で凍結造粒体を生成し、生成した前記凍結造粒体を凍結乾燥して乾燥粉体を製造する噴霧凍結造粒乾燥粉体製造装置であって、
     凍結防止手段を有し、前記凍結造粒用チャンバ内に対して前記原液を噴霧する噴霧機構部と、
     前記凍結造粒用チャンバ下部において脱着自在に構成され、前記凍結造粒用チャンバ内で生成した前記凍結造粒体を貯留する貯留容器を有し、当該貯留容器に貯留した前記凍結造粒体を凍結乾燥する凍結乾燥部とを備え、
     前記凍結造粒用チャンバは、冷却媒体を直接チャンバ内に導入して冷却する直接冷却、前記凍結造粒用チャンバの周囲に設けられたジャケット構造体に前記冷却媒体を充填することで冷却する間接冷却の何れか又はこれらの組み合わせによって冷却されること
     を特徴とする噴霧凍結造粒乾燥粉体製造装置。
    Spray freeze granulation drying in which a frozen granulation is produced in a freezing granulation chamber by cooling a continuously supplied stock solution, and the produced frozen granulation is freeze dried to produce a dry powder. A powder manufacturing apparatus,
    A spray mechanism having spray preventing means and spraying the stock solution into the freeze granulation chamber;
    The freezing granulation chamber has a storage container configured to be detachable in the lower part of the freezing granulation chamber and storing the freezing granulation body generated in the freezing granulation chamber, and the freezing granulation body stored in the storage container A freeze-drying section for freeze-drying,
    The freezing granulation chamber directly cools by introducing a cooling medium directly into the chamber and cooling, and indirectly by cooling the jacket structure provided around the freezing granulation chamber with the cooling medium. A spray freeze granulated dry powder production apparatus characterized by being cooled by any one of cooling or a combination thereof.
  2.  前記ジャケット構造体には充填された前記冷却媒体が蒸発した蒸発ガスをチャンバ内に直接導入する蒸発ガス投入配管が設けられること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    2. The spray freeze granulated dry powder production according to claim 1, wherein the jacket structure is provided with an evaporative gas input pipe for directly introducing evaporative gas obtained by evaporating the filled cooling medium into the chamber. apparatus.
  3.  前記貯留容器は、容器長手方向軸に対し所定の角度で揺動可能となるように形成されること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray-freeze-granulated dry powder production apparatus according to claim 1, wherein the storage container is formed so as to be swingable at a predetermined angle with respect to the longitudinal axis of the container.
  4.  前記貯留容器は、容器長手方向軸に対し回動可能となるように形成されること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray-freeze-granulated dry powder manufacturing apparatus according to claim 1, wherein the storage container is formed so as to be rotatable with respect to the longitudinal axis of the container.
  5.  前記貯留容器は、前記凍結造粒体を静置する底浅形状として形成されること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray frozen granulated dry powder production apparatus according to claim 1, wherein the storage container is formed in a shallow bottom shape in which the frozen granulated body is allowed to stand.
  6.  前記貯留容器は、貯留した前記凍結造粒体を攪拌する攪拌部材を備えること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray frozen granulated dry powder production apparatus according to claim 1, wherein the storage container includes a stirring member that stirs the stored frozen granulated body.
  7.  前記噴霧機構部は、二流体ノズル、一流体加圧ノズル、超音波ノズル、遠心噴霧機の何れかの噴霧機構を備えること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    2. The spray freeze granulated dry powder production according to claim 1, wherein the spray mechanism includes a spray mechanism of any one of a two-fluid nozzle, a one-fluid pressurizing nozzle, an ultrasonic nozzle, and a centrifugal sprayer. apparatus.
  8.  前記凍結防止手段は、前記噴霧機構の原液吐出部近傍に常温又は加温の凍結防止ガスを供給する凍結防止ガス供給部を備えること
     を特徴とする請求項7に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray freeze granulated dry powder according to claim 7, wherein the freeze prevention means includes an antifreeze gas supply unit that supplies an antifreeze gas at normal temperature or warm temperature in the vicinity of the stock solution discharge unit of the spray mechanism. Body manufacturing equipment.
  9.  前記冷却媒体は、液体窒素、窒素ガス、液体アルゴン、アルゴンガス、液体ヘリウム、ヘリウムガス、ドライアイス、二酸化炭素ガス、又は大気を冷却した冷却ガスの何れかであること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The cooling medium is any one of liquid nitrogen, nitrogen gas, liquid argon, argon gas, liquid helium, helium gas, dry ice, carbon dioxide gas, or a cooling gas that cools the atmosphere. The spray freeze granulated dry powder production apparatus described in 1.
  10.  前記ジャケット構造体内の前記冷却媒体残量を検知する媒体残量検知手段を備えること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray frozen granulated dry powder manufacturing apparatus according to claim 1, further comprising medium remaining amount detecting means for detecting the remaining amount of the cooling medium in the jacket structure.
  11.  前記媒体残量検知手段による検知結果に基づき前記ジャケット構造体内に前記冷却媒体を補充する冷却媒体補充手段を備えること
     を特徴とする請求項10に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray freeze granulated dry powder manufacturing apparatus according to claim 10, further comprising a cooling medium replenishing unit that replenishes the cooling medium in the jacket structure based on a detection result by the medium remaining amount detecting unit.
  12.  前記ジャケット構造体は断熱構造を備えること
     を特徴とする請求項1に記載の噴霧凍結造粒乾燥粉体製造装置。
    The spray frozen granulated dry powder production apparatus according to claim 1, wherein the jacket structure includes a heat insulating structure.
  13.  冷却媒体が導入された凍結造粒用チャンバ内において、連続的に供給される原液から凍結造粒体を生成させ、生成した前記凍結造粒体を凍結乾燥して乾燥粉体を製造する噴霧凍結乾燥粉体製造システムであって、
     凍結防止手段を有し、前記凍結造粒用チャンバ内に対して前記原液を噴霧する噴霧機構部と、
     前記凍結造粒用チャンバ下部において脱着自在に構成され、前記凍結造粒用チャンバ内で生成した前記凍結造粒体を貯留する貯留容器を有し、当該貯留容器に貯留した前記凍結造粒体を凍結乾燥する凍結乾燥部と、
     前記冷却媒体の排気に伴い移動する前記凍結造粒体を捕集する捕集手段とを備えること
     を特徴とする噴霧凍結乾燥粉体製造システム。
    Spray freezing in which a frozen granulation body is produced from a continuously supplied stock solution in a freezing granulation chamber into which a cooling medium has been introduced, and the produced frozen granulation body is freeze-dried to produce a dry powder. A dry powder manufacturing system,
    A spray mechanism having spray preventing means and spraying the stock solution into the freeze granulation chamber;
    The freezing granulation chamber has a storage container configured to be detachable in the lower part of the freezing granulation chamber and storing the freezing granulation body generated in the freezing granulation chamber, and the freezing granulation body stored in the storage container A freeze-drying section for freeze-drying;
    A spray freeze-dried powder production system, comprising: a collecting unit that collects the frozen granule that moves as the cooling medium is exhausted.
  14.  前記捕集手段は、サイクロン型集塵装置及び/又はバグフィルタ型集塵装置を含むこと
     を特徴とする請求項13に記載の噴霧凍結乾燥粉体製造システム。
    The spray freeze-dried powder manufacturing system according to claim 13, wherein the collecting means includes a cyclone type dust collector and / or a bag filter type dust collector.
PCT/JP2018/009652 2018-03-13 2018-03-13 Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation WO2019175954A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/009652 WO2019175954A1 (en) 2018-03-13 2018-03-13 Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation
JP2020505974A JP7038435B2 (en) 2018-03-13 2018-03-13 Spray freeze granulation dry powder production equipment and spray freeze granulation dry powder production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009652 WO2019175954A1 (en) 2018-03-13 2018-03-13 Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation

Publications (1)

Publication Number Publication Date
WO2019175954A1 true WO2019175954A1 (en) 2019-09-19

Family

ID=67908196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009652 WO2019175954A1 (en) 2018-03-13 2018-03-13 Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation

Country Status (2)

Country Link
JP (1) JP7038435B2 (en)
WO (1) WO2019175954A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923316A (en) * 2022-05-17 2022-08-19 西安工业大学 Industrialized dynamic spray freeze drying device and process flow thereof
CN115282872A (en) * 2022-02-10 2022-11-04 温州医科大学 Biological pesticide formulation processingequipment
CN116105468A (en) * 2023-04-13 2023-05-12 天津凯莱英医药科技发展有限公司 Spray freeze-drying device and freeze-drying equipment
WO2023103153A1 (en) * 2021-12-08 2023-06-15 南通东概念新材料有限公司 Method for preparing particles through spray drying, liquid nitrogen quick freezing, and vacuum freeze drying
JP7367240B1 (en) 2022-05-19 2023-10-23 株式会社神鋼環境ソリューション Particle manufacturing device and frozen particle manufacturing method
CN117304961A (en) * 2023-11-30 2023-12-29 山东乾泰技术研究有限公司 Method and device for micronizing high-softening-point asphalt
JP7534762B2 (en) 2020-04-08 2024-08-15 東京理化器械株式会社 Freezing Granulation Equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116889776B (en) * 2023-07-14 2024-05-10 营口市中日友协环保节能设备有限责任公司 Wet dust removal recovery system and equipment and method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037937U (en) * 1989-06-05 1991-01-25
US5208998A (en) * 1991-02-25 1993-05-11 Oyler Jr James R Liquid substances freeze-drying systems and methods
JP2003314956A (en) * 2002-04-22 2003-11-06 Okawara Mfg Co Ltd Vacuum dryer having function for preventing attachment of liquid material
JP2014081093A (en) * 2012-10-13 2014-05-08 Seiko Engineering Kk Microwave reduced-pressure oscillation dryer, and method of manufacturing dry food and the like
JP2014529055A (en) * 2011-10-05 2014-10-30 サノフィ パスツール ソシエテ アノニム Process line for the production of freeze-dried particles
JP2014530061A (en) * 2011-10-05 2014-11-17 サノフィ パスツール ソシエテ アノニム Process line for lyophilized particle production
JP2017503641A (en) * 2013-12-19 2017-02-02 エアロゾル セラピューティクス, エルエルシー Compositions and methods for atmospheric pressure spray freeze drying

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037937U (en) * 1989-06-05 1991-01-25
US5208998A (en) * 1991-02-25 1993-05-11 Oyler Jr James R Liquid substances freeze-drying systems and methods
JP2003314956A (en) * 2002-04-22 2003-11-06 Okawara Mfg Co Ltd Vacuum dryer having function for preventing attachment of liquid material
JP2014529055A (en) * 2011-10-05 2014-10-30 サノフィ パスツール ソシエテ アノニム Process line for the production of freeze-dried particles
JP2014530061A (en) * 2011-10-05 2014-11-17 サノフィ パスツール ソシエテ アノニム Process line for lyophilized particle production
JP2014081093A (en) * 2012-10-13 2014-05-08 Seiko Engineering Kk Microwave reduced-pressure oscillation dryer, and method of manufacturing dry food and the like
JP2017503641A (en) * 2013-12-19 2017-02-02 エアロゾル セラピューティクス, エルエルシー Compositions and methods for atmospheric pressure spray freeze drying

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7534762B2 (en) 2020-04-08 2024-08-15 東京理化器械株式会社 Freezing Granulation Equipment
WO2023103153A1 (en) * 2021-12-08 2023-06-15 南通东概念新材料有限公司 Method for preparing particles through spray drying, liquid nitrogen quick freezing, and vacuum freeze drying
CN115282872A (en) * 2022-02-10 2022-11-04 温州医科大学 Biological pesticide formulation processingequipment
CN115282872B (en) * 2022-02-10 2023-09-01 温州医科大学 Biological pesticide dosage form processingequipment
CN114923316A (en) * 2022-05-17 2022-08-19 西安工业大学 Industrialized dynamic spray freeze drying device and process flow thereof
JP7367240B1 (en) 2022-05-19 2023-10-23 株式会社神鋼環境ソリューション Particle manufacturing device and frozen particle manufacturing method
WO2023224103A1 (en) * 2022-05-19 2023-11-23 株式会社神鋼環境ソリューション Particle production device and method for producing frozen particles
JP2023171213A (en) * 2022-05-19 2023-12-01 株式会社神鋼環境ソリューション Particle production device and frozen particle production method
CN116105468A (en) * 2023-04-13 2023-05-12 天津凯莱英医药科技发展有限公司 Spray freeze-drying device and freeze-drying equipment
CN116105468B (en) * 2023-04-13 2023-07-11 天津凯莱英医药科技发展有限公司 Spray freeze-drying device and freeze-drying equipment
CN117304961A (en) * 2023-11-30 2023-12-29 山东乾泰技术研究有限公司 Method and device for micronizing high-softening-point asphalt

Also Published As

Publication number Publication date
JP7038435B2 (en) 2022-03-18
JPWO2019175954A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2019175954A1 (en) Device for producing dry powder using spray freeze granulation and system for producing dry powder using spray freeze granulation
JP5114552B2 (en) Freeze drying method and freeze drying apparatus
JPS60253783A (en) Method and device for drying granular body
EP1697035B1 (en) Powder formation by atmospheric spray-freeze drying
CN107706130A (en) Substrate board treatment and substrate processing method using same
CA2849796C (en) A process line for the production of freeze-dried particles
US20030000228A1 (en) Method for producing particulate goods
US20060130355A1 (en) Powder formation by atmospheric spray-freeze drying
JP2002508053A (en) Apparatus and method for blowing ice
CN102089605A (en) Freeze-drying device and freeze-drying method
CN110523096A (en) The scale drying device and method of probiotics feed liquid sublimation drying can be shortened
US20020189127A1 (en) Apparatus for freeze-drying foodstuffs, medicaments, and so forth
JPH0642867A (en) Tumbler type rotary dryer
JP2020085346A (en) Decompression drying method
JP2009097793A (en) Method for manufacturing spherical ice particles by air releasing method and device for manufacturing the same
JP6398805B2 (en) Continuous cooling device and cooling method for powder
JP4003174B2 (en) Raw material liquid supply method and apparatus for vacuum dryer
TWI686251B (en) Micro powder forming device
JP3824890B2 (en) Dry bulk food / pharmaceutical dry bulk crusher
JP2009115422A (en) Method and apparatus for manufacturing spherical ice grain by aerial release method
JP2003207268A (en) Method and device for manufacturing powder and grain using liquid raw material
CN208345768U (en) Magnesium chloride particles manufacturing equipment
JP2003314956A (en) Vacuum dryer having function for preventing attachment of liquid material
JP6616053B1 (en) Freeze vacuum drying apparatus and freeze vacuum drying method
CN210170469U (en) Tilmicosin preparation production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020505974

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910043

Country of ref document: EP

Kind code of ref document: A1