WO2019175942A1 - Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film - Google Patents

Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film Download PDF

Info

Publication number
WO2019175942A1
WO2019175942A1 PCT/JP2018/009554 JP2018009554W WO2019175942A1 WO 2019175942 A1 WO2019175942 A1 WO 2019175942A1 JP 2018009554 W JP2018009554 W JP 2018009554W WO 2019175942 A1 WO2019175942 A1 WO 2019175942A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
epoxy
film
resin film
Prior art date
Application number
PCT/JP2018/009554
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 田中
竹澤 由高
一也 木口
智子 東内
片木 秀行
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020505578A priority Critical patent/JP7342852B2/en
Priority to PCT/JP2018/009554 priority patent/WO2019175942A1/en
Publication of WO2019175942A1 publication Critical patent/WO2019175942A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines

Definitions

  • the present invention relates to an epoxy resin composition, an epoxy resin film, and a method for producing an epoxy resin film.
  • An epoxy resin is widely used as a material of an insulating member constituting an electronic device from the viewpoint of high withstand voltage and easy molding.
  • the amount of heat generated per unit volume tends to increase. Therefore, high thermal conductivity is also required for insulating members.
  • Patent Document 1 discloses an epoxy compound having a highly oriented mesogen structure in a molecule that can form a liquid crystal structure in a cured product. It is described that it is effective to use an epoxy resin composition containing it.
  • the cured product of the epoxy resin composition in which the liquid crystal structure is formed has a high thermal conductivity, but the transparency tends to decrease.
  • the epoxy resin composition described in Patent Document 1 is used for applications that require transparency in addition to thermal conductivity (for example, in the case of using a cured epoxy resin film). There is room for improvement.
  • an object of the present invention is to provide an epoxy resin composition from which a cured epoxy resin product having excellent thermal conductivity and transparency can be obtained even when a film is formed.
  • Another object of the present invention is to provide an epoxy resin film excellent in thermal conductivity and transparency and a method for producing the same.
  • Means for solving the above problems include the following embodiments.
  • An epoxy resin composition comprising an epoxy resin and a curing agent, and having a liquid crystal structure and capable of forming a cured product having a minimum visible light transmittance of 50% or more measured at a thickness of 30 ⁇ m. .
  • ⁇ 2> The epoxy resin composition according to ⁇ 1>, wherein the liquid crystal structure is a nematic structure.
  • ⁇ 4> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the epoxy resin includes at least one of epoxy compounds represented by the following general formula (m1) or general formula (m2) object.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • ⁇ 5> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the epoxy resin is in a prepolymer state.
  • ⁇ 6> The epoxy resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the curing agent includes metaxylylenediamine.
  • ⁇ 7> An epoxy resin film that is a cured film of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> The epoxy resin film according to ⁇ 7>, wherein the cured film has a nematic structure.
  • An epoxy resin film comprising a step of forming the epoxy resin composition according to any one of ⁇ 1> to ⁇ 6> into a film shape to obtain a molded product, and a step of curing the molded product Manufacturing method.
  • the manufacturing method of the epoxy resin film as described in ⁇ 9> whose temperature at the time of shape
  • an epoxy resin composition from which an epoxy resin cured product having excellent thermal conductivity and transparency can be obtained even when formed into a film. Moreover, according to this invention, the epoxy resin film excellent in thermal conductivity and transparency and its manufacturing method are provided.
  • the content of each component in the composition is the total of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition.
  • the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition.
  • the “epoxy compound” means a compound having an epoxy group in the molecule
  • the “epoxy resin” means a concept of capturing the epoxy compound as an aggregate.
  • the epoxy resin composition of the present disclosure includes an epoxy resin and a curing agent, and can form a cured product having a liquid crystal structure and a minimum visible light transmittance of 50% or more measured at a thickness of 30 ⁇ m.
  • An epoxy resin composition includes an epoxy resin and a curing agent, and can form a cured product having a liquid crystal structure and a minimum visible light transmittance of 50% or more measured at a thickness of 30 ⁇ m.
  • visible light means light having a wavelength in the range of 400 nm to 700 nm. That is, the minimum value of the visible light transmittance being 50% or more means that the transmittance in the entire wavelength range of 400 nm to 700 nm is 50% or more.
  • the cured product obtained using the epoxy resin composition is not particularly limited as long as the minimum value of the visible light transmittance measured at a thickness of 30 ⁇ m is 50% or more, but it is 60% or more from the viewpoint of transparency. May be.
  • the cured product obtained by using the epoxy resin composition is not particularly limited as long as the minimum value of visible light transmittance measured at a thickness of 30 ⁇ m is 50% or more, but from the viewpoint of transparency, it is measured at a thickness of 50 ⁇ m.
  • the minimum visible light transmittance may be 50% or more.
  • the liquid crystal structure of the cured product obtained by curing the epoxy resin composition is preferably a nematic or smectic structure. From the viewpoint of transparency, the liquid crystal structure is preferably a nematic structure.
  • the liquid crystal structure of the cured product can be formed at a curing temperature of 60 ° C. or lower.
  • a curing agent that can be cured at a low temperature for example, room temperature
  • Epoxy resin The epoxy resin contained in the epoxy resin composition is not particularly limited as long as it can form a liquid crystal structure in a cured product obtained by reacting with a curing agent.
  • Examples of the epoxy resin capable of forming a liquid crystal structure in the cured product include an epoxy resin containing an epoxy compound (hereinafter also referred to as a liquid crystalline epoxy compound) capable of forming a liquid crystal structure in the cured product.
  • Examples of the liquid crystalline epoxy compound include an epoxy compound having a mesogenic structure.
  • An epoxy compound having a mesogenic structure has a rigid and linear molecular structure, and therefore has a property that molecules are aligned in a cured product to form a liquid crystal structure.
  • mesogen structure examples include a biphenyl structure, a phenylbenzoate structure, a cyclohexylbenzoate structure, an azobenzene structure, a stilbene structure, a terphenyl structure, an anthracene structure, derivatives thereof, and two or more of these mesogen structures via a bonding group. Examples include bonded structures.
  • the higher order structure means a state in which molecules are aligned in the resin matrix, for example, a state in which a crystal structure or a liquid crystal structure exists in the resin matrix. The presence of such a crystal structure or liquid crystal structure can be directly confirmed by, for example, observation with a polarizing microscope under crossed Nicols or X-ray scattering.
  • the change in the storage elastic modulus of the resin with respect to temperature becomes small, so the presence of the crystal structure or liquid crystal structure is indirectly confirmed by measuring the change in the storage elastic modulus with respect to temperature. it can.
  • High-order structures with high regularity derived from mesogenic structures include nematic structures and smectic structures.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period.
  • the direction of the period of the layer structure is uniform within the same periodic structure of the smectic structure.
  • Whether or not the periodic structure includes a smectic structure can also be determined by X-ray diffraction measurement. Specifically, for example, using a Cu K alpha 1 line, tube voltage 40 kV, tube current 20 mA, in the range of 2 ⁇ is 0.5 ° ⁇ 30 °, the wide angle X-ray analyzer (e.g., Rigaku Corporation, "RINT2500HL”) When X-ray diffraction measurement is performed using 2 and ⁇ has a diffraction peak in the range of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure.
  • the wide angle X-ray analyzer e.g., Rigaku Corporation, "RINT2500HL
  • the ratio of the periodic structure of the liquid crystal structure in the cured product is preferably 60% by volume or more, and more preferably 80% by volume or more with respect to the entire resin matrix.
  • the ratio of the liquid crystal structure to the entire resin matrix can be easily measured, for example, by observing with a polarizing microscope. Specifically, the cured product is observed with a polarizing microscope (for example, Nikon Corporation, “OPTIPHOT2-POL”), the area of the liquid crystal structure is measured, and the percentage of the entire field of view observed with the polarizing microscope is obtained. The ratio of the liquid crystal structure to the entire resin matrix can be easily measured.
  • the periodic structure of the smectic structure preferably has a period length (length of one period) of 2 nm to 4 mm.
  • the period length is 2 nm to 4 mm, higher thermal conductivity can be exhibited.
  • the period length in the periodic structure is obtained by performing X-ray diffraction using a cured product of the epoxy resin composition as a measurement sample under the following conditions using a wide-angle X-ray diffractometer (for example, Rigaku Corporation, “RINT2500HL”).
  • the diffraction angle obtained can be obtained by converting the following Bragg equation.
  • liquid crystalline epoxy compound examples include epoxy compounds represented by the following general formula (A).
  • X represents a linking group containing at least one selected from the group (I) consisting of the following divalent groups.
  • Y is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group.
  • n independently represents an integer of 0 to 4.
  • each Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, An iodine atom, a cyano group, a nitro group, or an acetyl group is shown.
  • n independently represents an integer of 0 to 4
  • k represents an integer of 0 to 7
  • m represents an integer of 0 to 8
  • l represents an integer of 0 to 12.
  • each Y is independently preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, and preferably a methyl group.
  • n, k, m and l are each preferably 0 or 1 independently.
  • the epoxy resin preferably contains an epoxy compound having one or more structures represented by the following general formula (M1) or general formula (M2).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and more preferably that all 4 are hydrogen atoms.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the epoxy compound having one structure represented by the general formula (M1) or the general formula (M2) include an epoxy compound represented by the following general formula (m1) or (m2).
  • R 1 ⁇ R 4 in the general formula (m1) and (m2) is the same as the specific examples of R 1 ⁇ R 4 in the general formula (M1) and the general formula (M2), also the preferred ranges It is.
  • Examples of the epoxy compound represented by the general formula (m2) include 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene.
  • the epoxy resin is preferably in a state (prepolymer) containing a liquid crystalline epoxy compound (preferably an epoxy compound having a mesogenic structure) and a multimer thereof.
  • a liquid crystalline epoxy compound preferably an epoxy compound having a mesogenic structure
  • Liquid crystalline epoxy compounds are generally easy to crystallize and may have a lower solubility in solvents than other epoxy compounds.
  • the transparency of the cured product tends to be improved by using a prepolymer containing a multimer obtained by polymerizing a part of the liquid crystalline epoxy compound.
  • crystallization of the epoxy resin before curing is suppressed, and the moldability of the epoxy resin composition tends to be improved.
  • the multimer of the liquid crystalline epoxy compound is not particularly limited as long as it contains a structure (preferably a mesogenic structure) derived from two or more liquid crystalline epoxy compounds in the molecule.
  • a structure preferably a mesogenic structure
  • a multimer of a liquid crystalline epoxy compound a liquid crystalline epoxy compound and a compound having two or more functional groups capable of reacting with an epoxy group of the liquid crystalline epoxy compound (hereinafter also referred to as a prepolymerizing agent) The compound obtained by making it react is mentioned.
  • the type of prepolymerizing agent is not particularly limited. From the viewpoint of forming a liquid crystal structure in the cured product, a dihydroxybenzene compound having a structure in which two hydroxyl groups are bonded to one benzene ring, a diaminobenzene compound having a structure in which two amino groups are bonded to one benzene ring, It consists of a dihydroxybiphenyl compound having a structure in which one hydroxyl group is bonded to each of two benzene rings forming a biphenyl structure, and a diaminobiphenyl compound having a structure in which one amino group is bonded to each of two benzene rings forming a biphenyl structure. It is preferably at least one selected from the group (hereinafter also referred to as a specific aromatic compound).
  • dihydroxybenzene compound examples include catechol, resorcinol, hydroquinone, and derivatives thereof.
  • diaminobenzene compound examples include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, and derivatives thereof.
  • Dihydroxybiphenyl compounds include 2,2′-dihydroxybiphenyl, 2,3′-dihydroxybiphenyl, 2,4′-dihydroxybiphenyl, 3,3′-dihydroxybiphenyl, 3,4′-dihydroxybiphenyl, 4,4 ′ -Dihydroxybiphenyl (4,4'-biphenol), derivatives thereof and the like.
  • Diaminobiphenyl compounds include 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 2,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4 ' -Diaminobiphenyl, derivatives thereof and the like.
  • Examples of the derivative of the specific aromatic compound include a compound in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring of the specific aromatic compound.
  • a specific aromatic compound may be used individually by 1 type, and may use 2 or more types together.
  • hydroquinone, 1,4-diaminobenzene, 4,4'-dihydroxybiphenyl (4,4'-biphenol), 4,4'-diaminobiphenyl and derivatives thereof are preferable. Since these compounds have a structure in which the functional group in the molecule is substituted so as to have a para-position, the multimer obtained by reacting with the liquid crystalline epoxy compound tends to have a linear structure. For this reason, it is considered that the stacking property of molecules is high, and it is easy to form a higher order structure in the cured product.
  • a reaction catalyst may be used when the epoxy compound and the prepolymerizing agent are reacted.
  • the type of the reaction catalyst is not particularly limited, and an appropriate catalyst can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts.
  • a reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of the multimer in the prepolymer, the molecular weight of the multimer, and the like can be adjusted by adjusting the blending ratio of the two.
  • the compounding ratio may be such that the equivalent ratio of the epoxy group of the liquid crystalline epoxy compound to the functional group of the prepolymerizing agent (epoxy group / functional group) is 100/5 to 100/50.
  • the compounding ratio may be 100/30.
  • the multimer is an epoxy compound having a structure represented by the following general formula (1-A) or general formula (1-B). There may be.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • Each m independently represents an integer of 0 to 4.
  • Z independently represents —O— or —NH—.
  • the epoxy compound having a structure represented by the general formula (1-A) is preferably an epoxy compound having a structure represented by the following general formula (2-A),
  • the epoxy compound having a structure represented by the general formula (1-B) is preferably an epoxy compound having a structure represented by the following general formula (2-B).
  • the number of structures derived from the liquid crystalline epoxy compound is not particularly limited as long as it is 2 or more. From the viewpoint of reducing the viscosity during work, it is preferable that at least a part of the multimer of the liquid crystalline epoxy compound is an epoxy compound (dimer compound) containing two structures derived from the liquid crystalline epoxy compound.
  • Examples of the structure when the multimer of the liquid crystalline epoxy compound is a dimer compound include an epoxy compound represented by the following general formula (3-A) or (3-B).
  • the epoxy compound having a structure represented by the general formula (3-A) is an epoxy compound having a structure represented by the following general formula (4-A).
  • the epoxy compound having a structure represented by the general formula (3-B) is preferably an epoxy compound having a structure represented by the following general formula (4-B).
  • the epoxy resin composition may further contain an epoxy compound that does not correspond to the liquid crystalline epoxy compound as long as the liquid crystal structure is formed in the cured product.
  • an epoxy compound that does not correspond to a liquid crystalline epoxy compound means an epoxy compound that does not form a liquid crystal structure in a cured product obtained by reacting only it with a curing agent.
  • Epoxy compounds that do not correspond to liquid crystal epoxy compounds include glycidyl ethers of phenol compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolak, cresol novolak, resorcinol novolak; alcohol compounds such as butanediol, polyethylene glycol, and polypropylene glycol.
  • Glycidyl ethers glycidyl esters of carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; Epoxy monomers; vinylcyclohexene epoxides obtained by epoxidizing intramolecular olefin bonds, 3,4-epoxycyclohexyl Cycloaliphatic epoxy monomers such as methyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane; bis (4 -Hydroxy) thioether epoxidized product: paraxylylene modified phenolic resin, metaxylylene paraxylylene modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene modified phenolic resin, cyclopentadiene modified phenolic resin
  • the epoxy resin composition includes a liquid crystal epoxy compound and an epoxy compound that does not correspond to the liquid crystal epoxy compound
  • the content of the epoxy compound that does not correspond to the liquid crystal epoxy compound is 1 on the mass basis. In some cases, it is preferably 0.3 or less, more preferably 0.2 or less, and even more preferably 0.1 or less.
  • the content of the epoxy resin contained in the epoxy resin composition is preferably 50% by volume or less and more preferably 35% by volume or less in the total solid content of the epoxy resin composition. 15% by volume or less is particularly preferable.
  • the volume-based content of the epoxy resin relative to the total solid content is a value determined by the following formula.
  • the curing agent contained in the epoxy resin composition is not particularly limited as long as it is a compound capable of causing a curing reaction with the epoxy resin.
  • Specific examples of the curing agent include amine curing agents, acid anhydride curing agents, phenol curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents. These curing agents may be used alone or in combination of two or more.
  • the curing agent is preferably an amine curing agent or a phenol curing agent, and more preferably an amine curing agent.
  • amine curing agents a compound having an aromatic ring and two amino groups (aromatic diamine) is preferable, and a compound in which two amino groups are bonded to each aromatic ring via a methylene group is more preferable.
  • a compound (metaxylylenediamine) in which two amino groups bonded through a methylene group are in the meta position is more preferable.
  • the content of the curing agent in the epoxy resin composition can be appropriately set in consideration of the kind of the curing agent to be blended and the physical properties of the liquid crystalline epoxy monomer.
  • the equivalent number (chemical equivalent) of the functional group of the curing agent is preferably 0.005 to 5 equivalents relative to 1 equivalent of the epoxy group in the liquid crystalline epoxy monomer, and 0.01 to 3 equivalents. Equivalents are more preferable, and 0.5 to 1.5 equivalents are even more preferable.
  • the number of equivalents of the functional group of the curing agent is 0.005 equivalents or more with respect to 1 equivalent of the epoxy group, the curing rate of the liquid crystalline epoxy monomer tends to be further improved.
  • curing agent is 5 equivalent or less with respect to 1 equivalent of an epoxy group.
  • the chemical equivalent in the present disclosure represents, for example, when a phenol curing agent is used as the curing agent, the number of equivalents of the hydroxyl group of the phenol curing agent relative to 1 equivalent of the epoxy group, and an amine curing agent is used as the curing agent. Represents the number of equivalents of active hydrogen of the amine curing agent with respect to 1 equivalent of epoxy group.
  • the epoxy resin composition may contain a filler.
  • ceramic particles can be used from the viewpoints of thermal conductivity and insulation. Examples of the ceramic particles include alumina particles, silica particles, magnesium oxide particles, boron nitride particles, aluminum nitride particles, and silicon nitride particles.
  • the filler preferably includes at least one selected from the group consisting of alumina particles, boron nitride particles, aluminum nitride particles, and magnesium oxide particles, and more preferably includes alumina particles.
  • the alumina particles preferably include alumina particles with high crystallinity, and more preferably include ⁇ -alumina particles.
  • the volume average particle diameter of the filler is preferably 0.01 ⁇ m to 1 ⁇ m from the viewpoint of thermal conductivity, and more preferably 0.01 ⁇ m to 0.1 ⁇ m from the viewpoint of transparency.
  • the volume average particle diameter of the filler is measured using a laser diffraction method.
  • the measurement by the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring device (for example, LS230 manufactured by Beckman Coulter, Inc.).
  • the volume average particle diameter of the filler in the epoxy resin composition or its cured product is measured using a laser diffraction scattering particle size distribution measuring device after extracting the filler from the epoxy resin composition or its cured product.
  • the filler is extracted from the epoxy resin composition or a cured product thereof using an organic solvent, nitric acid, aqua regia, etc., and sufficiently dispersed with an ultrasonic disperser to prepare a dispersion.
  • a volume cumulative distribution curve is measured by a laser diffraction scattering particle size distribution measuring apparatus.
  • D50 particle diameter
  • the filler content in the total solid content of the epoxy resin composition is preferably 20% by mass or less, and preferably 15% by mass or less. More preferably, it is more preferably 10% by mass or less.
  • An epoxy resin composition may contain components other than an epoxy resin, a hardening
  • examples of such components include a curing accelerator, a solvent, a coupling agent, a dispersant, an elastomer, and a release agent.
  • the epoxy resin composition can be further sufficiently cured.
  • the kind in particular of hardening accelerator is not restrict
  • the curing accelerator include imidazole compounds, phosphine compounds, and borate salt compounds.
  • Solvents include acetone, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, methyl acetate, cyclohexanol, cyclohexanone 1,4-dioxane, dichloromethane, styrene, tetrachloroethylene, tetrahydrafuran, toluene, normal hexane, 1-butanol, 2-butanol, methanol, methyl isobutyl ketone, methyl ethyl ketone, methylcyclohexanol, methylcyclohexanone, chloroform, carbon tetrachloride , 1,2-dichloroethan
  • the epoxy resin composition of the present disclosure is excellent in thermal conductivity and transparency when cured. Therefore, the epoxy resin composition of the present embodiment is suitable for a heat dissipation material of various exothermic electronic components (for example, an IC (Integrated Circuit) chip or a printed wiring board), a molding material of an illumination device, and the like. Can be used.
  • the epoxy resin film of the present disclosure is a film-like cured product of the above-described epoxy resin composition.
  • the epoxy resin film of the present disclosure is excellent in thermal conductivity and excellent in transparency because a liquid crystal structure is formed inside by curing the above-described epoxy resin composition.
  • the thickness of the epoxy resin film is not particularly limited and can be selected according to the application. From the viewpoint of ensuring sufficient transparency, the thickness of the epoxy resin film may be 500 ⁇ m or less, preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less. From the viewpoint of ensuring sufficient strength, the thickness of the epoxy resin film may be 5 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the thickness of the epoxy resin film is not constant, the thickness is measured at five randomly selected thicknesses of the epoxy resin film, and the value is given as an arithmetic average value (average thickness).
  • the thickness can be measured using a micrometer or the like.
  • the visible light transmittance of the epoxy resin film is not particularly limited, but the minimum value of the visible light transmittance measured for the obtained epoxy resin film is preferably 50% or more, and more preferably 60% or more.
  • the visible light transmittance of the epoxy resin film can be measured by the method described above.
  • the epoxy resin film preferably has a nematic structure or a smectic structure as a liquid crystal structure.
  • the periodic structure of the smectic structure preferably has a period length of 2 nm to 4 nm. When the period length is 2 nm to 4 nm, higher thermal conductivity can be exhibited.
  • the periodic length of the smectic structure can be measured by the method described above.
  • a nematic structure is formed as a liquid crystal structure
  • the state of the nematic liquid crystal structure can be observed by observing with a polarizing microscope (for example, Nikon Corporation, “OPTIPHOT2-POL”).
  • the manufacturing method of the epoxy resin film of this indication has the process of shape
  • the epoxy resin film produced by the above method is excellent in thermal conductivity and transparency.
  • the conditions for molding the epoxy resin composition into a film are not particularly limited, but it is preferably performed at a temperature of 100 ° C. or lower.
  • the conditions for curing the film-like molded product are not particularly limited, but it is preferably performed at a temperature of 60 ° C. or lower.
  • the curing time is not particularly limited, but for example, 1 hour to 96 hours is preferable, and 2 hours to 48 hours is more preferable.
  • the molded product may be further heat treated (hereinafter also referred to as “post-curing”).
  • post-curing the crosslinking density tends to be further improved.
  • the heat treatment may be performed only once or two or more times.
  • the heating device used for post-curing is not particularly limited, and a commonly used heating device can be used.
  • the post-curing temperature is not particularly limited, and is preferably 60 ° C. to 100 ° C., and more preferably 80 ° C. to 100 ° C.
  • the post-curing time is not particularly limited, and is preferably 10 minutes to 600 minutes, and more preferably 60 minutes to 300 minutes.
  • the thickness of the epoxy resin film produced by the above method is not particularly limited, and can be selected according to the use. From the viewpoint of ensuring sufficient transparency, the thickness of the epoxy resin film may be 500 ⁇ m or less, preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less. From the viewpoint of ensuring sufficient strength, the thickness of the epoxy resin film may be 5 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the visible light transmittance of the epoxy resin film produced by the above method is not particularly limited, but the minimum value of the visible light transmittance measured for the obtained epoxy resin film is preferably 50% or more, and 60% or more. More preferably.
  • the visible light transmittance of the epoxy resin film can be measured by the method described above.
  • the epoxy resin film produced by the above method preferably has a nematic structure or a smectic structure as a liquid crystal structure.
  • the periodic structure of the smectic structure preferably has a period length of 2 nm to 4 nm. When the period length is 2 nm to 4 nm, higher thermal conductivity can be exhibited.
  • the periodic length of the smectic structure can be measured by the method described above.
  • a nematic structure is formed as a liquid crystal structure
  • the state of the nematic liquid crystal structure can be observed by observing with a polarizing microscope (for example, Nikon Corporation, “OPTIPHOT2-POL”).
  • the following structure hereinafter also referred to as “resin 1”) and prepolymerization 4,4
  • the blending amount of the curing agent with respect to the prepolymer was adjusted so that the ratio of the number of equivalents of active hydrogen in the curing agent to the number of equivalents of epoxy group in the prepolymer (epoxy group: active hydrogen) was 1: 1.
  • the prepared epoxy resin composition was melt-kneaded at 90 ° C. for 10 minutes using an oil bath. Next, while melting at 100 ° C., a film having a thickness of 30 ⁇ m was coated on a 70 ⁇ m-thick substrate made of PET film to obtain a film-like molded product. Thereafter, the molded product was cured at 60 ° C. for 120 minutes to obtain an epoxy resin film.
  • FIG. 1 shows a photograph of the epoxy resin film produced in Example 1 observed from above. As shown in FIG. 1, the lattice pattern of the base material was visible from above the epoxy resin film.
  • the presence or absence of a smectic structure in the epoxy resin film was examined using a wide-angle X-ray diffractometer (Rigaku Corporation, “RINT2500HL”). The results are shown in Table 1.
  • the presence or absence of a nematic liquid crystal structure in the epoxy resin film was examined using a polarizing microscope (Nikon Corporation, “OPTIPHOT2-POL”). The results are shown in Table 1.
  • the visible light transmittance (%) in the range of 400 nm to 700 nm of the epoxy resin film was measured using a spectrophotometer (Hitachi Ltd., “U4100”). Table 1 shows the minimum values of the measured visible light transmittance.
  • Example 2 An epoxy was prepared in the same manner as in Example 1 except that the prepolymerizing agent was changed from 4,4-biphenol to hydroquinone (HQ) to prepare a prepolymer (hereinafter also referred to as “resin 3”). A resin composition was prepared to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the prepolymerizing agent was changed from 4,4-biphenol to hydroquinone (HQ) to prepare a prepolymer (hereinafter also referred to as “resin 3”).
  • a resin composition was prepared to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the liquid crystalline epoxy compound and the prepolymerizing agent were obtained by reacting at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5.
  • the blending amount of the curing agent with respect to the resin 3 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 3 (epoxy group: active hydrogen) was 1: 1.
  • Example 3 In Example 1, the liquid crystalline epoxy compound was changed from Resin 1 to 1- (3-Methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene, the following structure, hereinafter “resin 4
  • the epoxy resin composition was prepared in the same manner as in Example 1 except that a prepolymer (hereinafter also referred to as “resin 5”) was prepared. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the liquid crystalline epoxy compound and the prepolymerizing agent were obtained by reacting at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5.
  • the blending amount of the curing agent with respect to the resin 5 was adjusted such that the ratio of the number of equivalents of active hydrogen in the curing agent to the number of equivalents of epoxy group in the resin 5 (epoxy group: active hydrogen) was 1: 1.
  • Example 4 an epoxy resin composition was prepared in the same manner as in Example 2 except that the liquid crystalline epoxy compound was changed from the resin 1 to the resin 4 to prepare a prepolymer (hereinafter also referred to as “resin 6”). An epoxy resin film was prepared. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the liquid crystalline epoxy compound and the prepolymerizing agent were obtained by reacting at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5.
  • the blending amount of the curing agent with respect to the resin 6 was adjusted such that the ratio of the number of equivalents of active hydrogen in the curing agent to the number of equivalents of epoxy group in the resin 6 (epoxy group: active hydrogen) was 1: 1.
  • Example 5 In Example 1, a solvent (tetrahydrofuran, THF) was further added to prepare an epoxy resin composition.
  • the prepared epoxy resin composition was stirred for 30 minutes at room temperature (25 ° C., the same applies below) using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • THF tetrahydrofuran
  • Example 6 an epoxy resin composition was prepared by further adding a solvent (THF). The prepared epoxy resin composition was stirred for 30 minutes at room temperature using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • THF solvent
  • Example 7 an epoxy resin composition was prepared by further adding a solvent (THF). The prepared epoxy resin composition was stirred for 30 minutes at room temperature using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • THF solvent
  • Example 8 In Example 4, an epoxy resin composition was prepared by further adding a solvent (THF). The prepared epoxy resin composition was stirred for 30 minutes at room temperature using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • THF solvent
  • Example 1 (Comparative Example 1) In Example 1, instead of the resin 2, a bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, “jER828”, hereinafter also referred to as “resin 7”) is used as an epoxy compound that does not correspond to the liquid crystalline epoxy compound. Then, an epoxy resin composition was prepared in the same manner as in Example 1 to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • jER828 bisphenol A type epoxy resin
  • the blending amount of the curing agent with respect to the resin 7 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 7 (epoxy group: active hydrogen) was 1: 1.
  • Example 2 In Example 1, except that Resin 1 was used instead of Resin 2, an epoxy resin composition was prepared in the same manner as in Example 1 to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the blending amount of the curing agent with respect to the resin 1 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 1 (epoxy group: active hydrogen) was 1: 1.
  • Example 3 (Comparative Example 3) In Example 1, an epoxy resin composition was prepared in the same manner as in Example 1 except that the resin 4 was used instead of the resin 2, and an epoxy resin film was produced. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the compounding amount of the curing agent with respect to the resin 4 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 4 (epoxy group: active hydrogen) was 1: 1.
  • Example 5 an epoxy resin composition was prepared in the same manner as in Example 1 except that Resin 1 was used instead of Resin 2 to prepare an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
  • the blending amount of the curing agent with respect to the resin 1 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 1 (epoxy group: active hydrogen) was 1: 1.
  • the epoxy resin films produced in Examples 1 to 8 showed high thermal conductivity and excellent transparency. Although the epoxy resin film produced in Comparative Example 1 that did not use a liquid crystalline epoxy compound was excellent in transparency, the thermal conductivity was lower than that in Examples. This is considered because the liquid crystal structure is not formed in the cured product. Although the epoxy resin films prepared in Comparative Examples 2 to 4 in which the liquid crystalline epoxy compound was not reacted with the prepolymerizing agent were excellent in thermal conductivity, the transparency was lower than that in Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

An epoxy resin composition which comprises an epoxy resin and a hardener and is capable of forming a cured object that has a liquid-crystal structure and that, when having a thickness of 30 μm, has a minimum visible-light transmittance of 50% or higher.

Description

エポキシ樹脂組成物、エポキシ樹脂フィルム、及びエポキシ樹脂フィルムの製造方法Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film
 本発明は、エポキシ樹脂組成物、エポキシ樹脂フィルム、及びエポキシ樹脂フィルムの製造方法に関する。 The present invention relates to an epoxy resin composition, an epoxy resin film, and a method for producing an epoxy resin film.
 電子機器を構成する絶縁部材の材料として、絶縁耐圧の高さ及び成形の容易さの観点から、広くエポキシ樹脂が用いられている。近年、電子機器の小型化及び高性能化によるエネルギー密度の増大に伴い、単位体積当たりの発熱量が増加傾向にあることから、絶縁部材にも高い熱伝導率が求められている。 An epoxy resin is widely used as a material of an insulating member constituting an electronic device from the viewpoint of high withstand voltage and easy molding. In recent years, with the increase in energy density due to downsizing and higher performance of electronic devices, the amount of heat generated per unit volume tends to increase. Therefore, high thermal conductivity is also required for insulating members.
 絶縁部材の材料として用いられるエポキシ樹脂の熱伝導性を高める方法として、例えば、特許文献1には、硬化物中に液晶構造を形成可能な配向性の高いメソゲン構造を分子中に有するエポキシ化合物を含むエポキシ樹脂組成物を利用することが有効であると記載されている。 As a method for increasing the thermal conductivity of an epoxy resin used as a material for an insulating member, for example, Patent Document 1 discloses an epoxy compound having a highly oriented mesogen structure in a molecule that can form a liquid crystal structure in a cured product. It is described that it is effective to use an epoxy resin composition containing it.
特開平11-323162号公報JP-A-11-323162
 しかしながら、液晶構造が形成されたエポキシ樹脂組成物の硬化物は高い熱伝導率を示す一方で透明性が低下する傾向にある。このため、特許文献1に記載されたエポキシ樹脂組成物は、熱伝導性に加えて透明性が要求される用途(例えば、エポキシ樹脂硬化物をフィルム状にして使用する場合)に適用するうえで改善の余地がある。 However, the cured product of the epoxy resin composition in which the liquid crystal structure is formed has a high thermal conductivity, but the transparency tends to decrease. For this reason, the epoxy resin composition described in Patent Document 1 is used for applications that require transparency in addition to thermal conductivity (for example, in the case of using a cured epoxy resin film). There is room for improvement.
 本発明は上記状況に鑑み、フィルム状にしたときでも熱伝導率と透明性に優れるエポキシ樹脂硬化物が得られるエポキシ樹脂組成物を提供することを課題とする。本発明はまた、熱伝導率と透明性に優れるエポキシ樹脂フィルム及びその製造方法を提供することを課題とする。 In view of the above situation, an object of the present invention is to provide an epoxy resin composition from which a cured epoxy resin product having excellent thermal conductivity and transparency can be obtained even when a film is formed. Another object of the present invention is to provide an epoxy resin film excellent in thermal conductivity and transparency and a method for producing the same.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>エポキシ樹脂と硬化剤とを含み、液晶構造を有しかつ厚さ30μmにおいて測定される可視光透過率の最低値が50%以上である硬化物を形成可能である、エポキシ樹脂組成物。
<2>前記液晶構造がネマチック構造である、<1>に記載のエポキシ樹脂組成物。
<3>前記液晶構造が60℃以下の硬化温度で形成可能である、<1>又は<2>に記載のエポキシ樹脂組成物。
<4>前記エポキシ樹脂が下記一般式(m1)又は一般式(m2)で表されるエポキシ化合物の少なくともいずれかを含む、<1>~<3>のいずれか1項に記載のエポキシ樹脂組成物。
Means for solving the above problems include the following embodiments.
<1> An epoxy resin composition comprising an epoxy resin and a curing agent, and having a liquid crystal structure and capable of forming a cured product having a minimum visible light transmittance of 50% or more measured at a thickness of 30 μm. .
<2> The epoxy resin composition according to <1>, wherein the liquid crystal structure is a nematic structure.
<3> The epoxy resin composition according to <1> or <2>, wherein the liquid crystal structure can be formed at a curing temperature of 60 ° C. or less.
<4> The epoxy resin composition according to any one of <1> to <3>, wherein the epoxy resin includes at least one of epoxy compounds represented by the following general formula (m1) or general formula (m2) object.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
〔一般式(m1)及び(m2)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。〕
<5>前記エポキシ樹脂がプレポリマーの状態である、<1>~<4>のいずれか1項に記載のエポキシ樹脂組成物。
<6>前記硬化剤がメタキシリレンジアミンを含む、<1>~<5>のいずれか1項に記載のエポキシ樹脂組成物。
<7><1>~<6>のいずれか1項に記載のエポキシ樹脂組成物のフィルム状硬化物である、エポキシ樹脂フィルム。
<8>前記フィルム状硬化物はネマチック構造を有する、<7>に記載のエポキシ樹脂フィルム。
<9><1>~<6>のいずれか1項に記載のエポキシ樹脂組成物をフィルム状に成形して成形物を得る工程と、前記成形物を硬化する工程と、を有するエポキシ樹脂フィルムの製造方法。
<10>前記エポキシ樹脂組成物をフィルム状に成形する際の温度が100℃以下である、<9>に記載のエポキシ樹脂フィルムの製造方法。
<11>前記成形物を硬化する際の温度が60℃以下である、<9>又は<10>に記載のエポキシ樹脂フィルムの製造方法。
[In the general formulas (m1) and (m2), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
<5> The epoxy resin composition according to any one of <1> to <4>, wherein the epoxy resin is in a prepolymer state.
<6> The epoxy resin composition according to any one of <1> to <5>, wherein the curing agent includes metaxylylenediamine.
<7> An epoxy resin film that is a cured film of the epoxy resin composition according to any one of <1> to <6>.
<8> The epoxy resin film according to <7>, wherein the cured film has a nematic structure.
<9> An epoxy resin film comprising a step of forming the epoxy resin composition according to any one of <1> to <6> into a film shape to obtain a molded product, and a step of curing the molded product Manufacturing method.
The manufacturing method of the epoxy resin film as described in <9> whose temperature at the time of shape | molding the <10> said epoxy resin composition in a film form is 100 degrees C or less.
<11> The method for producing an epoxy resin film according to <9> or <10>, wherein the temperature at which the molded product is cured is 60 ° C. or less.
 本発明によれば、フィルム状にしたときでも熱伝導率と透明性に優れるエポキシ樹脂硬化物が得られるエポキシ樹脂組成物が提供される。また本発明によれば、熱伝導率と透明性に優れるエポキシ樹脂フィルム及びその製造方法が提供される。 According to the present invention, there is provided an epoxy resin composition from which an epoxy resin cured product having excellent thermal conductivity and transparency can be obtained even when formed into a film. Moreover, according to this invention, the epoxy resin film excellent in thermal conductivity and transparency and its manufacturing method are provided.
実施例1で作製したエポキシ樹脂フィルムを上部から観察したときの写真である。It is a photograph when the epoxy resin film produced in Example 1 is observed from the top.
 以下、本発明について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本開示において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「エポキシ化合物」は、分子中にエポキシ基を有する化合物を意味し、「エポキシ樹脂」は、エポキシ化合物を集合体として捉える概念を意味する。
Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
In the present disclosure, numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, the content of each component in the composition is the total of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Mean content.
In the present disclosure, the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of
In the present disclosure, the “epoxy compound” means a compound having an epoxy group in the molecule, and the “epoxy resin” means a concept of capturing the epoxy compound as an aggregate.
<エポキシ樹脂組成物>
 本開示のエポキシ樹脂組成物は、エポキシ樹脂と硬化剤とを含み、液晶構造を有しかつ厚さ30μmにおいて測定される可視光透過率の最低値が50%以上である硬化物を形成可能である、エポキシ樹脂組成物である。
<Epoxy resin composition>
The epoxy resin composition of the present disclosure includes an epoxy resin and a curing agent, and can form a cured product having a liquid crystal structure and a minimum visible light transmittance of 50% or more measured at a thickness of 30 μm. An epoxy resin composition.
 上記エポキシ樹脂組成物によれば、フィルム状にしたときでも熱伝導性に優れ、かつ透明性にも優れるエポキシ樹脂硬化物を得ることができる。 According to the above epoxy resin composition, it is possible to obtain a cured epoxy resin that is excellent in thermal conductivity and excellent in transparency even when formed into a film.
 本開示において可視光とは、波長が400nm~700nmの範囲内にある光を意味する。すなわち、可視光透過率の最低値が50%以上であることは、400nm~700nmの波長範囲の全てにおける透過率が50%以上であることを意味する。 In the present disclosure, visible light means light having a wavelength in the range of 400 nm to 700 nm. That is, the minimum value of the visible light transmittance being 50% or more means that the transmittance in the entire wavelength range of 400 nm to 700 nm is 50% or more.
 エポキシ樹脂組成物を用いて得られる硬化物は、厚さ30μmにおいて測定される可視光透過率の最低値が50%以上であれば特に制限されないが、透明性の観点からは60%以上であってもよい。 The cured product obtained using the epoxy resin composition is not particularly limited as long as the minimum value of the visible light transmittance measured at a thickness of 30 μm is 50% or more, but it is 60% or more from the viewpoint of transparency. May be.
 エポキシ樹脂組成物を用いて得られる硬化物は、厚さ30μmにおいて測定される可視光透過率の最低値が50%以上であれば特に制限されないが、透明性の観点からは厚さ50μmにおいて測定される可視光透過率の最低値が50%以上であってもよい。 The cured product obtained by using the epoxy resin composition is not particularly limited as long as the minimum value of visible light transmittance measured at a thickness of 30 μm is 50% or more, but from the viewpoint of transparency, it is measured at a thickness of 50 μm. The minimum visible light transmittance may be 50% or more.
 熱伝導性の観点からは、エポキシ樹脂組成物を硬化して得られる硬化物が有する液晶構造はネマチックまたはスメクチック構造であることが好ましい。また、透明性の観点からは液晶構造はネマチック構造であることが好ましい。 From the viewpoint of thermal conductivity, the liquid crystal structure of the cured product obtained by curing the epoxy resin composition is preferably a nematic or smectic structure. From the viewpoint of transparency, the liquid crystal structure is preferably a nematic structure.
 作業性の観点からは、硬化物が有する液晶構造は60℃以下の硬化温度で形成可能であることが好ましい。硬化物が有する液晶構造を60℃以下の硬化温度で形成可能にする手法としては、低温(例えば、室温)で硬化可能な硬化剤を選択する等が挙げられる。 From the viewpoint of workability, it is preferable that the liquid crystal structure of the cured product can be formed at a curing temperature of 60 ° C. or lower. As a method for enabling the liquid crystal structure of the cured product to be formed at a curing temperature of 60 ° C. or lower, a curing agent that can be cured at a low temperature (for example, room temperature) may be selected.
(エポキシ樹脂)
 エポキシ樹脂組成物に含まれるエポキシ樹脂は、硬化剤と反応して得られる硬化物中に液晶構造を形成しうるものであれば特に制限されない。
(Epoxy resin)
The epoxy resin contained in the epoxy resin composition is not particularly limited as long as it can form a liquid crystal structure in a cured product obtained by reacting with a curing agent.
 硬化物中に液晶構造を形成しうるエポキシ樹脂としては、硬化物中に液晶構造を形成しうるエポキシ化合物(以下、液晶性エポキシ化合物ともいう)を含むエポキシ樹脂が挙げられる。液晶性エポキシ化合物としては、メソゲン構造を有するエポキシ化合物が挙げられる。メソゲン構造を有するエポキシ化合物は、剛直で直線的な分子構造を有するため、硬化物中で分子が配向して液晶構造を形成する性質を有する。 Examples of the epoxy resin capable of forming a liquid crystal structure in the cured product include an epoxy resin containing an epoxy compound (hereinafter also referred to as a liquid crystalline epoxy compound) capable of forming a liquid crystal structure in the cured product. Examples of the liquid crystalline epoxy compound include an epoxy compound having a mesogenic structure. An epoxy compound having a mesogenic structure has a rigid and linear molecular structure, and therefore has a property that molecules are aligned in a cured product to form a liquid crystal structure.
 メソゲン構造としては、例えば、ビフェニル構造、フェニルベンゾエート構造、シクロヘキシルベンゾエート構造、アゾベンゼン構造、スチルベン構造、ターフェニル構造、アントラセン構造、これらの誘導体、及びこれらのメソゲン構造の2つ以上が結合基を介して結合した構造が挙げられる。 Examples of the mesogen structure include a biphenyl structure, a phenylbenzoate structure, a cyclohexylbenzoate structure, an azobenzene structure, a stilbene structure, a terphenyl structure, an anthracene structure, derivatives thereof, and two or more of these mesogen structures via a bonding group. Examples include bonded structures.
 メソゲン構造を有するエポキシ化合物が硬化剤と反応して樹脂マトリックスを形成すると、樹脂マトリックス(硬化物中のエポキシ樹脂と硬化剤に由来する部分)中にメソゲン構造に由来する高次構造(周期構造ともいう)が形成される。ここでいう高次構造(周期構造)とは、樹脂マトリックス中に分子が配向配列している状態を意味し、例えば、樹脂マトリックス中に結晶構造又は液晶構造が存在する状態を意味する。このような結晶構造又は液晶構造は、例えば、直交ニコル下での偏光顕微鏡による観察又はX線散乱により、その存在を直接確認することができる。また、結晶構造又は液晶構造が存在すると樹脂の貯蔵弾性率の温度に対する変化が小さくなるので、この貯蔵弾性率の温度に対する変化を測定することにより、結晶構造又は液晶構造の存在を間接的に確認できる。 When an epoxy compound having a mesogenic structure reacts with a curing agent to form a resin matrix, a higher-order structure derived from the mesogenic structure (both periodic structures) in the resin matrix (part derived from the epoxy resin and the curing agent in the cured product). Say) is formed. Here, the higher order structure (periodic structure) means a state in which molecules are aligned in the resin matrix, for example, a state in which a crystal structure or a liquid crystal structure exists in the resin matrix. The presence of such a crystal structure or liquid crystal structure can be directly confirmed by, for example, observation with a polarizing microscope under crossed Nicols or X-ray scattering. In addition, if the crystal structure or liquid crystal structure is present, the change in the storage elastic modulus of the resin with respect to temperature becomes small, so the presence of the crystal structure or liquid crystal structure is indirectly confirmed by measuring the change in the storage elastic modulus with respect to temperature. it can.
 メソゲン構造に由来する規則性の高い高次構造には、ネマチック構造、スメクチック構造等がある。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみを持つ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期構造内部では、層構造の周期の方向が一様である。周期構造が樹脂マトリックス中に形成されると、熱伝導の媒体であるフォノンが散乱するのを抑制することができため、熱伝導率が高い傾向にある。 High-order structures with high regularity derived from mesogenic structures include nematic structures and smectic structures. The nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order. On the other hand, the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period. In addition, the direction of the period of the layer structure is uniform within the same periodic structure of the smectic structure. When the periodic structure is formed in the resin matrix, it is possible to suppress scattering of phonons, which are heat conductive media, and the thermal conductivity tends to be high.
 周期構造がスメクチック構造を含んでいるか否かは、X線回折測定によっても判断することができる。具体的は、例えば、CuKα1線を用い、管電圧40kV、管電流20mA、2θが0.5°~30°の範囲で、広角X線解析装置(例えば、株式会社リガク、「RINT2500HL」)を用いてX線回折測定を行い、2θが1°~10°の範囲に回折ピークが存在する場合には、周期構造がスメクチック構造を含んでいると判断する。 Whether or not the periodic structure includes a smectic structure can also be determined by X-ray diffraction measurement. Specifically, for example, using a Cu K alpha 1 line, tube voltage 40 kV, tube current 20 mA, in the range of 2θ is 0.5 ° ~ 30 °, the wide angle X-ray analyzer (e.g., Rigaku Corporation, "RINT2500HL") When X-ray diffraction measurement is performed using 2 and θ has a diffraction peak in the range of 1 ° to 10 °, it is determined that the periodic structure includes a smectic structure.
 硬化物の熱伝導率の観点からは、硬化物における液晶構造の周期構造の割合は、樹脂マトリックス全体に対して60体積%以上であることが好ましく、80体積%以上であることがより好ましい。樹脂マトリックス全体に対する液晶構造の割合は、例えば、偏光顕微鏡で観察することにより、簡易的に測定することができる。具体的には、硬化物を偏光顕微鏡(例えば、株式会社ニコン、「OPTIPHOT2-POL」)で観察して液晶構造の面積を測定し、偏光顕微鏡で観察した視野全体の面積に対する百分率を求めることにより、樹脂マトリックス全体に対する液晶構造の割合を簡易的に測定することができる。 From the viewpoint of the thermal conductivity of the cured product, the ratio of the periodic structure of the liquid crystal structure in the cured product is preferably 60% by volume or more, and more preferably 80% by volume or more with respect to the entire resin matrix. The ratio of the liquid crystal structure to the entire resin matrix can be easily measured, for example, by observing with a polarizing microscope. Specifically, the cured product is observed with a polarizing microscope (for example, Nikon Corporation, “OPTIPHOT2-POL”), the area of the liquid crystal structure is measured, and the percentage of the entire field of view observed with the polarizing microscope is obtained. The ratio of the liquid crystal structure to the entire resin matrix can be easily measured.
 液晶構造がスメクチック構造の場合、スメクチック構造の周期構造は、周期長(1周期の長さ)が2nm~4mmであることが好ましい。周期長が2nm~4mmであることにより、より高い熱伝導率を発揮することが可能である。周期構造における周期長は、広角X線回折装置(例えば、株式会社リガク、「RINT2500HL」)を用いて、下記条件でエポキシ樹脂組成物の硬化物を測定試料としてX線回折を行い、これにより得られた回折角度を、下記ブラッグの式により換算することにより得られる。 When the liquid crystal structure is a smectic structure, the periodic structure of the smectic structure preferably has a period length (length of one period) of 2 nm to 4 mm. When the period length is 2 nm to 4 mm, higher thermal conductivity can be exhibited. The period length in the periodic structure is obtained by performing X-ray diffraction using a cured product of the epoxy resin composition as a measurement sample under the following conditions using a wide-angle X-ray diffractometer (for example, Rigaku Corporation, “RINT2500HL”). The diffraction angle obtained can be obtained by converting the following Bragg equation.
(測定条件)
 ・X線源:Cu
 ・X線出力:50kV、250mA
 ・発散スリット(DS):1.0°
 ・散乱スリット(SS):1.0°
 ・受光スリット(RS):0.3mm
 ・走査速度:1.0度/分
 ブラッグの式:2dsinθ=nλ
 ここで、dは1周期の長さ、θは回折角度、nは反射次数、λはX線波長(0.15406nm)を示している。
(Measurement condition)
・ X-ray source: Cu
・ X-ray output: 50 kV, 250 mA
・ Divergent slit (DS): 1.0 °
-Scattering slit (SS): 1.0 °
・ Reception slit (RS): 0.3mm
Scanning speed: 1.0 degree / minute Bragg's formula: 2 dsin θ = nλ
Here, d is the length of one period, θ is the diffraction angle, n is the reflection order, and λ is the X-ray wavelength (0.15406 nm).
 液晶性エポキシ化合物としては、下記一般式(A)で表されるエポキシ化合物が挙げられる。 Examples of the liquid crystalline epoxy compound include epoxy compounds represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(A)において、Xは下記2価の基からなる群(I)より選択される少なくとも1種を含む連結基を示す。Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nはそれぞれ独立に、0~4の整数を示す。 In general formula (A), X represents a linking group containing at least one selected from the group (I) consisting of the following divalent groups. Y is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group. Indicates. n independently represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 2価の基からなる群(I)において、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示し、kは0~7の整数を示し、mは0~8の整数を示し、lは0~12の整数を示す。 In the group (I) consisting of a divalent group, each Y independently represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, An iodine atom, a cyano group, a nitro group, or an acetyl group is shown. n independently represents an integer of 0 to 4, k represents an integer of 0 to 7, m represents an integer of 0 to 8, and l represents an integer of 0 to 12.
 一般式(A)及び2価の基からなる群(I)において、Yはそれぞれ独立に、炭素数1~8の脂肪族炭化水素基であることが好ましく、メチル基であることが好ましい。n、k、m及びlはそれぞれ独立に0又は1であることが好ましい。 In the group (I) consisting of the general formula (A) and the divalent group, each Y is independently preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, and preferably a methyl group. n, k, m and l are each preferably 0 or 1 independently.
 硬化物中に液晶構造を形成する観点からは、エポキシ樹脂は、下記一般式(M1)又は一般式(M2)で表される構造を1つ以上有するエポキシ化合物を含むことが好ましい。 From the viewpoint of forming a liquid crystal structure in the cured product, the epoxy resin preferably contains an epoxy compound having one or more structures represented by the following general formula (M1) or general formula (M2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(M1)及び一般式(M2)において、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。 In general formula (M1) and general formula (M2), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom. Also, it is preferable that 2 to 4 of R 1 to R 4 are hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and more preferably that all 4 are hydrogen atoms. preferable. When any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
 一般式(M1)又は一般式(M2)で表される構造を1つ有するエポキシ化合物としては、下記一般式(m1)又は(m2)で表されるエポキシ化合物が挙げられる。 Examples of the epoxy compound having one structure represented by the general formula (M1) or the general formula (M2) include an epoxy compound represented by the following general formula (m1) or (m2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(m1)及び(m2)におけるR~Rの具体例は、一般式(M1)及び一般式(M2)におけるR~Rの具体例と同様であり、その好ましい範囲も同様である。 Specific examples of R 1 ~ R 4 in the general formula (m1) and (m2) is the same as the specific examples of R 1 ~ R 4 in the general formula (M1) and the general formula (M2), also the preferred ranges It is.
 一般式(m1)で表されるエポキシ化合物としては、特開2011-74366号公報に記載されている化合物が挙げられる。具体的には、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートからなる群より選択される少なくとも1種の化合物が挙げられる。 Examples of the epoxy compound represented by the general formula (m1) include compounds described in JP 2011-74366 A. Specifically, 4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate and 4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = At least one compound selected from the group consisting of 4- (2,3-epoxypropoxy) -3-methylbenzoate.
 一般式(m2)で表されるエポキシ化合物としては、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(オキシラニルメトキシフェニル)-1-シクロヘキセンが挙げられる。 Examples of the epoxy compound represented by the general formula (m2) include 1- (3-methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene.
 硬化物の透明性の観点からは、エポキシ樹脂は、液晶性エポキシ化合物(好ましくは、メソゲン構造を有するエポキシ化合物)と、その多量体とを含む状態(プレポリマー)であることが好ましい。液晶性エポキシ化合物は、一般に結晶化し易く、溶媒への溶解度がその他のエポキシ化合物に比べて低い場合がある。ここで、液晶性エポキシ化合物の一部を重合させて得た多量体を含むプレポリマーとすることで、硬化物の透明性が向上する傾向にある。さらに、硬化前のエポキシ樹脂の結晶化が抑制され、エポキシ樹脂組成物としたときの成形性が向上する傾向にある。 From the viewpoint of the transparency of the cured product, the epoxy resin is preferably in a state (prepolymer) containing a liquid crystalline epoxy compound (preferably an epoxy compound having a mesogenic structure) and a multimer thereof. Liquid crystalline epoxy compounds are generally easy to crystallize and may have a lower solubility in solvents than other epoxy compounds. Here, the transparency of the cured product tends to be improved by using a prepolymer containing a multimer obtained by polymerizing a part of the liquid crystalline epoxy compound. Furthermore, crystallization of the epoxy resin before curing is suppressed, and the moldability of the epoxy resin composition tends to be improved.
 液晶性エポキシ化合物の多量体は、分子中に2つ以上の液晶性エポキシ化合物に由来する構造(好ましくは、メソゲン構造)を含むものであれば特に制限されない。液晶性エポキシ化合物の多量体として具体的には、液晶性エポキシ化合物と、液晶性エポキシ化合物のエポキシ基と反応しうる官能基を2つ以上有する化合物(以下、プレポリマー化剤とも称する)とを反応させて得られる化合物が挙げられる。 The multimer of the liquid crystalline epoxy compound is not particularly limited as long as it contains a structure (preferably a mesogenic structure) derived from two or more liquid crystalline epoxy compounds in the molecule. Specifically, as a multimer of a liquid crystalline epoxy compound, a liquid crystalline epoxy compound and a compound having two or more functional groups capable of reacting with an epoxy group of the liquid crystalline epoxy compound (hereinafter also referred to as a prepolymerizing agent) The compound obtained by making it react is mentioned.
 プレポリマー化剤の種類は特に制限されない。硬化物中に液晶構造を形成する観点からは、1つのベンゼン環に2つの水酸基が結合した構造を有するジヒドロキシベンゼン化合物、1つのベンゼン環に2つのアミノ基が結合した構造を有するジアミノベンゼン化合物、ビフェニル構造を形成する2つのベンゼン環にそれぞれ1つの水酸基が結合した構造を有するジヒドロキシビフェニル化合物及びビフェニル構造を形成する2つのベンゼン環にそれぞれ1つのアミノ基が結合した構造を有するジアミノビフェニル化合物からなる群より選択される少なくとも1種(以下、特定芳香族化合物とも称する)であることが好ましい。 ∙ The type of prepolymerizing agent is not particularly limited. From the viewpoint of forming a liquid crystal structure in the cured product, a dihydroxybenzene compound having a structure in which two hydroxyl groups are bonded to one benzene ring, a diaminobenzene compound having a structure in which two amino groups are bonded to one benzene ring, It consists of a dihydroxybiphenyl compound having a structure in which one hydroxyl group is bonded to each of two benzene rings forming a biphenyl structure, and a diaminobiphenyl compound having a structure in which one amino group is bonded to each of two benzene rings forming a biphenyl structure. It is preferably at least one selected from the group (hereinafter also referred to as a specific aromatic compound).
 ジヒドロキシベンゼン化合物としては、カテコール、レゾルシノール、ハイドロキノン、これらの誘導体等が挙げられる。
 ジアミノベンゼン化合物としては、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、これらの誘導体等が挙げられる。
Examples of the dihydroxybenzene compound include catechol, resorcinol, hydroquinone, and derivatives thereof.
Examples of the diaminobenzene compound include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, and derivatives thereof.
 ジヒドロキシビフェニル化合物としては、2,2’-ジヒドロキシビフェニル、2,3’-ジヒドロキシビフェニル、2,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル(4,4’-ビフェノール)、これらの誘導体等が挙げられる。
 ジアミノビフェニル化合物としては、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、2,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、これらの誘導体等が挙げられる。
Dihydroxybiphenyl compounds include 2,2′-dihydroxybiphenyl, 2,3′-dihydroxybiphenyl, 2,4′-dihydroxybiphenyl, 3,3′-dihydroxybiphenyl, 3,4′-dihydroxybiphenyl, 4,4 ′ -Dihydroxybiphenyl (4,4'-biphenol), derivatives thereof and the like.
Diaminobiphenyl compounds include 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 2,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4 ' -Diaminobiphenyl, derivatives thereof and the like.
 特定芳香族化合物の誘導体としては、特定芳香族化合物のベンゼン環に炭素数1~8のアルキル基等の置換基が結合した化合物が挙げられる。特定芳香族化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the derivative of the specific aromatic compound include a compound in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring of the specific aromatic compound. A specific aromatic compound may be used individually by 1 type, and may use 2 or more types together.
 特定芳香族化合物の中でも、ハイドロキノン、1,4-ジアミノベンゼン、4,4’-ジヒドロキシビフェニル(4,4’-ビフェノール)、4,4’-ジアミノビフェニル及びこれらの誘導体が好ましい。これらの化合物は分子中の官能基がパラ位の位置関係となるように置換されている構造であるため、液晶性エポキシ化合物と反応させて得られる多量体は直線構造となりやすい。このため、分子のスタッキング性が高く、硬化物中に高次構造を形成し易いと考えられる。 Among the specific aromatic compounds, hydroquinone, 1,4-diaminobenzene, 4,4'-dihydroxybiphenyl (4,4'-biphenol), 4,4'-diaminobiphenyl and derivatives thereof are preferable. Since these compounds have a structure in which the functional group in the molecule is substituted so as to have a para-position, the multimer obtained by reacting with the liquid crystalline epoxy compound tends to have a linear structure. For this reason, it is considered that the stacking property of molecules is high, and it is easy to form a higher order structure in the cured product.
 エポキシ化合物とプレポリマー化剤を反応させる際に、反応触媒を用いてもよい。反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択できる。具体的には、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。 A reaction catalyst may be used when the epoxy compound and the prepolymerizing agent are reacted. The type of the reaction catalyst is not particularly limited, and an appropriate catalyst can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts. A reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
 液晶性エポキシ化合物とプレポリマー化剤とを反応させる際、両者の配合比を調節することで、プレポリマー中の多量体の割合、多量体の分子量等を調節することができる。
 例えば、液晶性エポキシ化合物のエポキシ基と、プレポリマー化剤の官能基の当量比(エポキシ基/官能基)が100/5~100/50となる配合比であってもよく、100/10~100/30となる配合比であってもよい。
When the liquid crystalline epoxy compound is reacted with the prepolymerizing agent, the ratio of the multimer in the prepolymer, the molecular weight of the multimer, and the like can be adjusted by adjusting the blending ratio of the two.
For example, the compounding ratio may be such that the equivalent ratio of the epoxy group of the liquid crystalline epoxy compound to the functional group of the prepolymerizing agent (epoxy group / functional group) is 100/5 to 100/50. The compounding ratio may be 100/30.
 液晶性エポキシ化合物が一般式(A)で表されるエポキシ化合物である場合、その多量体は下記一般式(1-A)又は一般式(1-B)で表される構造を有するエポキシ化合物であってもよい。 When the liquid crystalline epoxy compound is an epoxy compound represented by the general formula (A), the multimer is an epoxy compound having a structure represented by the following general formula (1-A) or general formula (1-B). There may be.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 一般式(1-A)及び一般式(1-B)において、X、Y及びnの定義及び好ましい例は、一般式(A)のX、Y及びnの定義及び好ましい例と同様である。R及びRはそれぞれ独立に、炭素数1~8のアルキル基を表し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。mはそれぞれ独立に、0~4の整数を表す。Zはそれぞれ独立に、-O-又は-NH-を表す。 In general formula (1-A) and general formula (1-B), the definitions and preferred examples of X, Y and n are the same as the definitions and preferred examples of X, Y and n in general formula (A). R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group. Each m independently represents an integer of 0 to 4. Z independently represents —O— or —NH—.
 高次構造形成の観点からは、一般式(1-A)で表される構造を有するエポキシ化合物は、下記一般式(2-A)で表される構造を有するエポキシ化合物であることが好ましく、一般式(1-B)で表される構造を有するエポキシ化合物は、下記一般式(2-B)で表される構造を有するエポキシ化合物であることが好ましい。 From the viewpoint of higher order structure formation, the epoxy compound having a structure represented by the general formula (1-A) is preferably an epoxy compound having a structure represented by the following general formula (2-A), The epoxy compound having a structure represented by the general formula (1-B) is preferably an epoxy compound having a structure represented by the following general formula (2-B).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(2-A)及び一般式(2-B)において、X、Y、n、m、R、R及びZの定義及び好ましい例は、一般式(1-A)及び一般式(1-B)のX、Y、n、m、R、R及びZの定義及び好ましい例と同様である。 In general formula (2-A) and general formula (2-B), the definitions and preferred examples of X, Y, n, m, R 1 , R 2 and Z are the general formula (1-A) and the general formula ( The definition and preferred examples of X, Y, n, m, R 1 , R 2 and Z in 1-B) are the same.
 液晶性エポキシ化合物の多量体において、液晶性エポキシ化合物に由来する構造の数は、2つ以上であれば特に制限されない。作業時の低粘度化の観点からは、液晶性エポキシ化合物の多量体の少なくとも一部が液晶性エポキシ化合物に由来する構造を2つ含むエポキシ化合物(二量体化合物)であることが好ましい。 In the multimer of the liquid crystalline epoxy compound, the number of structures derived from the liquid crystalline epoxy compound is not particularly limited as long as it is 2 or more. From the viewpoint of reducing the viscosity during work, it is preferable that at least a part of the multimer of the liquid crystalline epoxy compound is an epoxy compound (dimer compound) containing two structures derived from the liquid crystalline epoxy compound.
 液晶性エポキシ化合物の多量体が二量体化合物である場合の構造としては、下記一般式(3-A)又は(3-B)で表されるエポキシ化合物が挙げられる。 Examples of the structure when the multimer of the liquid crystalline epoxy compound is a dimer compound include an epoxy compound represented by the following general formula (3-A) or (3-B).
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 一般式(3-A)及び一般式(3-B)において、X、Y、n、m、R、R及びZの定義及び好ましい例は、一般式(1-A)及び一般式(1-B)のX、Y、n、m、R、R及びZの定義及び好ましい例と同様である。 In general formula (3-A) and general formula (3-B), the definitions and preferred examples of X, Y, n, m, R 1 , R 2 and Z are the general formula (1-A) and the general formula ( The definition and preferred examples of X, Y, n, m, R 1 , R 2 and Z in 1-B) are the same.
 硬化物中に高次構造を形成する観点からは、一般式(3-A)で表される構造を有するエポキシ化合物は、下記一般式(4-A)で表される構造を有するエポキシ化合物であることが好ましく、一般式(3-B)で表される構造を有するエポキシ化合物は、下記一般式(4-B)で表される構造を有するエポキシ化合物であることが好ましい。 From the viewpoint of forming a higher order structure in the cured product, the epoxy compound having a structure represented by the general formula (3-A) is an epoxy compound having a structure represented by the following general formula (4-A). Preferably, the epoxy compound having a structure represented by the general formula (3-B) is preferably an epoxy compound having a structure represented by the following general formula (4-B).
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 一般式(4-A)及び一般式(4-B)において、X、Y、n、m、R、R及びZの定義及び好ましい例は、一般式(3-A)及び一般式(3-B)のX、Y、n、m、R、R及びZの定義及び好ましい例と同様である。 In general formula (4-A) and general formula (4-B), the definitions and preferred examples of X, Y, n, m, R 1 , R 2 and Z are the general formula (3-A) and the general formula ( The definition and preferred examples of X, Y, n, m, R 1 , R 2 and Z in 3-B) are the same.
 エポキシ樹脂組成物は、硬化物中に液晶構造が形成されるのであれば、液晶性エポキシ化合物に該当しないエポキシ化合物をさらに含有していてもよい。本開示において液晶性エポキシ化合物に該当しないエポキシ化合物とは、それのみを硬化剤と反応させると得られる硬化物中に液晶構造を形成しないエポキシ化合物を意味する。 The epoxy resin composition may further contain an epoxy compound that does not correspond to the liquid crystalline epoxy compound as long as the liquid crystal structure is formed in the cured product. In the present disclosure, an epoxy compound that does not correspond to a liquid crystalline epoxy compound means an epoxy compound that does not form a liquid crystal structure in a cured product obtained by reacting only it with a curing agent.
 液晶性エポキシ化合物に該当しないエポキシ化合物としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラック、レゾルシノールノボラック等のフェノール化合物のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール化合物のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸化合物のグリシジルエステル;アニリン、イソシアヌール酸等の窒素原子に結合した活性水素をグリシジル基で置換したもの等のグリシジル型(メチルグリシジル型も含む)エポキシモノマー;分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシモノマー;ビス(4-ヒドロキシ)チオエーテルのエポキシ化物;パラキシリレン変性フェノール樹脂、メタキシリレンパラキシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ナフタレン環含有フェノール樹脂等のグリシジルエーテル;スチルベン型エポキシモノマー;ハロゲン化フェノールノボラック型エポキシモノマーなど(但し、これらのうち液晶性エポキシモノマーを除く)が挙げられる。これらのエポキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。 Epoxy compounds that do not correspond to liquid crystal epoxy compounds include glycidyl ethers of phenol compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolak, cresol novolak, resorcinol novolak; alcohol compounds such as butanediol, polyethylene glycol, and polypropylene glycol. Glycidyl ethers; glycidyl esters of carboxylic acid compounds such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; Epoxy monomers; vinylcyclohexene epoxides obtained by epoxidizing intramolecular olefin bonds, 3,4-epoxycyclohexyl Cycloaliphatic epoxy monomers such as methyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane; bis (4 -Hydroxy) thioether epoxidized product: paraxylylene modified phenolic resin, metaxylylene paraxylylene modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene modified phenolic resin, cyclopentadiene modified phenolic resin, polycyclic aromatic ring modified phenolic resin, naphthalene Examples thereof include glycidyl ethers such as ring-containing phenol resins; stilbene type epoxy monomers; halogenated phenol novolac type epoxy monomers (excluding liquid crystal epoxy monomers among these). These epoxy compounds may be used individually by 1 type, and may use 2 or more types together.
 エポキシ樹脂組成物が液晶性エポキシ化合物と液晶性エポキシ化合物に該当しないエポキシ化合物とを含む場合、液晶性エポキシ化合物に該当しないエポキシ化合物の含有率は、質量基準において、液晶性エポキシ化合物を1とした場合に、0.3以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることがさらに好ましい。 When the epoxy resin composition includes a liquid crystal epoxy compound and an epoxy compound that does not correspond to the liquid crystal epoxy compound, the content of the epoxy compound that does not correspond to the liquid crystal epoxy compound is 1 on the mass basis. In some cases, it is preferably 0.3 or less, more preferably 0.2 or less, and even more preferably 0.1 or less.
 エポキシ樹脂組成物に含まれるエポキシ樹脂の含有率は、成形性の観点から、エポキシ樹脂組成物の全固形分中、50体積%以下であることが好ましく、35体積%以下であることがより好ましく、15体積%以下であることが特に好ましい。全固形分に対するエポキシ樹脂の体積基準の含有率は、次式により求めた値とする。 From the viewpoint of moldability, the content of the epoxy resin contained in the epoxy resin composition is preferably 50% by volume or less and more preferably 35% by volume or less in the total solid content of the epoxy resin composition. 15% by volume or less is particularly preferable. The volume-based content of the epoxy resin relative to the total solid content is a value determined by the following formula.
 エポキシ樹脂の全固形分に対する含有率(体積%)={(Aw/Ad)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd))}×100
 ここで、各変数は以下の通りである。
 Aw:エポキシ樹脂の質量組成比(質量%)
 Bw:硬化剤の質量組成比(質量%)
 Cw:その他の任意成分(溶媒を除く)の質量組成比(質量%)
 Ad:エポキシ樹脂の比重
 Bd:硬化剤の比重
 Cd:その他の任意成分(溶媒を除く)の比重
Content (% by volume) of epoxy resin with respect to the total solid content = {(Aw / Ad) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd))} × 100
Here, each variable is as follows.
Aw: mass composition ratio of epoxy resin (mass%)
Bw: mass composition ratio (% by mass) of curing agent
Cw: mass composition ratio (% by mass) of other optional components (excluding solvent)
Ad: Specific gravity of epoxy resin Bd: Specific gravity of curing agent Cd: Specific gravity of other optional components (excluding solvent)
(硬化剤)
 エポキシ樹脂組成物に含まれる硬化剤は、エポキシ樹脂と硬化反応を生じうる化合物であれば特に制限されるものではない。硬化剤の具体例としては、アミン硬化剤、酸無水物硬化剤、フェノール硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。これらの硬化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Curing agent)
The curing agent contained in the epoxy resin composition is not particularly limited as long as it is a compound capable of causing a curing reaction with the epoxy resin. Specific examples of the curing agent include amine curing agents, acid anhydride curing agents, phenol curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents. These curing agents may be used alone or in combination of two or more.
 硬化物の透明性の観点からは、硬化剤としては、アミン硬化剤又はフェノール硬化剤が好ましく、アミン硬化剤がより好ましい。アミン硬化剤の中でも芳香環と2つのアミノ基とを有する化合物(芳香族ジアミン)が好ましく、芳香環に2つのアミノ基がそれぞれメチレン基を介して結合している化合物がより好ましく、芳香環にメチレン基を介して結合している2つのアミノ基がメタ位である化合物(メタキシリレンジアミン)がさらに好ましい。 From the viewpoint of the transparency of the cured product, the curing agent is preferably an amine curing agent or a phenol curing agent, and more preferably an amine curing agent. Among the amine curing agents, a compound having an aromatic ring and two amino groups (aromatic diamine) is preferable, and a compound in which two amino groups are bonded to each aromatic ring via a methylene group is more preferable. A compound (metaxylylenediamine) in which two amino groups bonded through a methylene group are in the meta position is more preferable.
 エポキシ樹脂組成物における硬化剤の含有量は、配合する硬化剤の種類及び液晶性エポキシモノマーの物性を考慮して適宜設定することができる。 The content of the curing agent in the epoxy resin composition can be appropriately set in consideration of the kind of the curing agent to be blended and the physical properties of the liquid crystalline epoxy monomer.
 具体的には、液晶性エポキシモノマーにおけるエポキシ基の1当量に対して硬化剤の官能基の当量数(化学当量)が0.005当量~5当量であることが好ましく、0.01当量~3当量であることがより好ましく、0.5当量~1.5当量であることがさらに好ましい。硬化剤の官能基の当量数がエポキシ基の1当量に対して0.005当量以上であると、液晶性エポキシモノマーの硬化速度をより向上することができる傾向にある。また、硬化剤の官能基の当量数がエポキシ基の1当量に対して5当量以下であると、硬化反応をより適切に制御することができる傾向にある。 Specifically, the equivalent number (chemical equivalent) of the functional group of the curing agent is preferably 0.005 to 5 equivalents relative to 1 equivalent of the epoxy group in the liquid crystalline epoxy monomer, and 0.01 to 3 equivalents. Equivalents are more preferable, and 0.5 to 1.5 equivalents are even more preferable. When the number of equivalents of the functional group of the curing agent is 0.005 equivalents or more with respect to 1 equivalent of the epoxy group, the curing rate of the liquid crystalline epoxy monomer tends to be further improved. Moreover, it exists in the tendency which can control hardening reaction more appropriately that the equivalent number of the functional group of a hardening | curing agent is 5 equivalent or less with respect to 1 equivalent of an epoxy group.
 なお、本開示中での化学当量は、例えば、硬化剤としてフェノール硬化剤を使用した際は、エポキシ基の1当量に対するフェノール硬化剤の水酸基の当量数を表し、硬化剤としてアミン硬化剤を使用した際は、エポキシ基の1当量に対するアミン硬化剤の活性水素の当量数を表す。 The chemical equivalent in the present disclosure represents, for example, when a phenol curing agent is used as the curing agent, the number of equivalents of the hydroxyl group of the phenol curing agent relative to 1 equivalent of the epoxy group, and an amine curing agent is used as the curing agent. Represents the number of equivalents of active hydrogen of the amine curing agent with respect to 1 equivalent of epoxy group.
(フィラー)
 エポキシ樹脂組成物は、フィラーを含有してもよい。フィラーとしては、熱伝導性と絶縁性の観点から、セラミック粒子を用いることができる。セラミック粒子としては、アルミナ粒子、シリカ粒子、酸化マグネシウム粒子、窒化ホウ素粒子、窒化アルミニウム粒子、窒化ケイ素粒子等が挙げられる。フィラーは、アルミナ粒子、窒化ホウ素粒子、窒化アルミニウム粒子及び酸化マグネシウム粒子からなる群より選択される少なくとも1種を含むことが好ましく、アルミナ粒子を含むことがより好ましい。アルミナ粒子は、結晶性が高いアルミナ粒子を含むことが好ましく、α-アルミナ粒子を含むことがより好ましい。
(Filler)
The epoxy resin composition may contain a filler. As the filler, ceramic particles can be used from the viewpoints of thermal conductivity and insulation. Examples of the ceramic particles include alumina particles, silica particles, magnesium oxide particles, boron nitride particles, aluminum nitride particles, and silicon nitride particles. The filler preferably includes at least one selected from the group consisting of alumina particles, boron nitride particles, aluminum nitride particles, and magnesium oxide particles, and more preferably includes alumina particles. The alumina particles preferably include alumina particles with high crystallinity, and more preferably include α-alumina particles.
 フィラーの体積平均粒子径は、熱伝導性の観点から、0.01μm~1μmであることが好ましく、透明性の観点から、0.01μm~0.1μmであることがより好ましい。 The volume average particle diameter of the filler is preferably 0.01 μm to 1 μm from the viewpoint of thermal conductivity, and more preferably 0.01 μm to 0.1 μm from the viewpoint of transparency.
 ここで、フィラーの体積平均粒子径は、レーザー回折法を用いて測定される。レーザー回折法による測定は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS230)を用いて行うことができる。エポキシ樹脂組成物又はその硬化物中のフィラーの体積平均粒子径は、エポキシ樹脂組成物又はその硬化物からフィラーを抽出した後、レーザー回折散乱粒度分布測定装置を用いて測定される。 Here, the volume average particle diameter of the filler is measured using a laser diffraction method. The measurement by the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring device (for example, LS230 manufactured by Beckman Coulter, Inc.). The volume average particle diameter of the filler in the epoxy resin composition or its cured product is measured using a laser diffraction scattering particle size distribution measuring device after extracting the filler from the epoxy resin composition or its cured product.
 具体的には、有機溶剤、硝酸、王水等を用いて、エポキシ樹脂組成物又はその硬化物からフィラーを抽出し、超音波分散機等で充分に分散して分散液を調製する。この分散液についてレーザー回折散乱粒度分布測定装置によって体積累積分布曲線を測定する。小径側から体積累積分布曲線を描いた場合に、累積50%となる粒子径(D50)を体積平均粒子径として求めることで、エポキシ樹脂組成物又はその硬化物に含有されるフィラーの体積平均粒子径が測定される。 Specifically, the filler is extracted from the epoxy resin composition or a cured product thereof using an organic solvent, nitric acid, aqua regia, etc., and sufficiently dispersed with an ultrasonic disperser to prepare a dispersion. With respect to this dispersion, a volume cumulative distribution curve is measured by a laser diffraction scattering particle size distribution measuring apparatus. When the volume cumulative distribution curve is drawn from the small diameter side, the volume average particle diameter of the filler contained in the epoxy resin composition or the cured product thereof is obtained by determining the particle diameter (D50) that becomes 50% cumulative as the volume average particle diameter. The diameter is measured.
 エポキシ樹脂組成物を用いてフィルム状の硬化物を得る場合は、エポキシ樹脂組成物の全固形分中のフィラーの含有率が20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。 When a film-like cured product is obtained using an epoxy resin composition, the filler content in the total solid content of the epoxy resin composition is preferably 20% by mass or less, and preferably 15% by mass or less. More preferably, it is more preferably 10% by mass or less.
(その他の成分)
 エポキシ樹脂組成物は、必要に応じてエポキシ樹脂、硬化剤及びフィラー以外の成分を含有してもよい。このような成分としては、硬化促進剤、溶剤、カップリング剤、分散剤、エラストマー、離型剤等が挙げられる。
(Other ingredients)
An epoxy resin composition may contain components other than an epoxy resin, a hardening | curing agent, and a filler as needed. Examples of such components include a curing accelerator, a solvent, a coupling agent, a dispersant, an elastomer, and a release agent.
 硬化剤としてフェノール硬化剤を用いる場合は、硬化促進剤を併用することが好ましい。硬化促進剤を併用することで、エポキシ樹脂組成物をさらに充分に硬化させることができる。硬化促進剤の種類は特に制限されず、通常使用される硬化促進剤から選択してよい。硬化促進剤としては、例えば、イミダゾール化合物、ホスフィン化合物、及びボレート塩化合物が挙げられる。 When using a phenol curing agent as the curing agent, it is preferable to use a curing accelerator in combination. By using a curing accelerator in combination, the epoxy resin composition can be further sufficiently cured. The kind in particular of hardening accelerator is not restrict | limited, You may select from the hardening accelerator normally used. Examples of the curing accelerator include imidazole compounds, phosphine compounds, and borate salt compounds.
 溶剤としては、アセトン、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、エチルエーテル、エチレングリコールモノエチルエーテル、キシレン、クレゾール、クロロベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、1,4-ジオキサン、ジクロロメタン、スチレン、テトラクロロエチレン、テトラヒドラフラン、トルエン、ノルマルヘキサン、1-ブタノール、2-ブタノール、メタノール、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等の一般的に各種化学製品の製造技術で利用されている有機溶剤を使用することができる。 Solvents include acetone, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, methyl acetate, cyclohexanol, cyclohexanone 1,4-dioxane, dichloromethane, styrene, tetrachloroethylene, tetrahydrafuran, toluene, normal hexane, 1-butanol, 2-butanol, methanol, methyl isobutyl ketone, methyl ethyl ketone, methylcyclohexanol, methylcyclohexanone, chloroform, carbon tetrachloride , 1,2-dichloroethane, and other organic solvents that are generally used in the manufacturing technology of various chemical products. It can be.
(エポキシ樹脂組成物の用途等)
 本開示のエポキシ樹脂組成物は、硬化物としたときの熱伝導性及び透明性に優れている。したがって、本実施形態のエポキシ樹脂組成物は、各種の電気及び電子機器の発熱性電子部品(例えば、IC(Integrated Circuit)チップ又はプリント配線板)の放熱材料、照明機器のモールド材料等に好適に用いることができる。
(Use of epoxy resin composition, etc.)
The epoxy resin composition of the present disclosure is excellent in thermal conductivity and transparency when cured. Therefore, the epoxy resin composition of the present embodiment is suitable for a heat dissipation material of various exothermic electronic components (for example, an IC (Integrated Circuit) chip or a printed wiring board), a molding material of an illumination device, and the like. Can be used.
<エポキシ樹脂フィルム>
 本開示のエポキシ樹脂フィルムは、上述したエポキシ樹脂組成物のフィルム状硬化物である。本開示のエポキシ樹脂フィルムは、上述したエポキシ樹脂組成物が硬化することで内部に液晶構造が形成されているために熱伝導性に優れ、かつ透明性に優れている。
<Epoxy resin film>
The epoxy resin film of the present disclosure is a film-like cured product of the above-described epoxy resin composition. The epoxy resin film of the present disclosure is excellent in thermal conductivity and excellent in transparency because a liquid crystal structure is formed inside by curing the above-described epoxy resin composition.
 エポキシ樹脂フィルムの厚みは特に制限されず、用途等に応じて選択できる。充分な透明性を確保する観点からは、エポキシ樹脂フィルムの厚みは500μm以下であってもよく、200μm以下であることが好ましく、100μm以下であることがより好ましい。充分な強度を確保する観点からは、エポキシ樹脂フィルムの厚みは5μm以上であってもよく、10μm以上であることが好ましく、20μm以上であることがより好ましい。 The thickness of the epoxy resin film is not particularly limited and can be selected according to the application. From the viewpoint of ensuring sufficient transparency, the thickness of the epoxy resin film may be 500 μm or less, preferably 200 μm or less, and more preferably 100 μm or less. From the viewpoint of ensuring sufficient strength, the thickness of the epoxy resin film may be 5 μm or more, preferably 10 μm or more, and more preferably 20 μm or more.
 エポキシ樹脂フィルムの厚みが一定でない場合、上記厚みはエポキシ樹脂フィルムの無作為に選んだ5点の厚みを測定し、その算術平均値として与えられる値(平均厚み)とする。厚みは、マイクロメーター等を用いて測定することができる。 When the thickness of the epoxy resin film is not constant, the thickness is measured at five randomly selected thicknesses of the epoxy resin film, and the value is given as an arithmetic average value (average thickness). The thickness can be measured using a micrometer or the like.
 エポキシ樹脂フィルムの可視光透過率は特に制限されないが、得られたエポキシ樹脂フィルムについて測定した可視光透過率の最低値が50%以上であることが好ましく、60%以上であることがより好ましい。エポキシ樹脂フィルムの可視光透過率は、上述した方法により測定することができる。 The visible light transmittance of the epoxy resin film is not particularly limited, but the minimum value of the visible light transmittance measured for the obtained epoxy resin film is preferably 50% or more, and more preferably 60% or more. The visible light transmittance of the epoxy resin film can be measured by the method described above.
 熱伝導性の観点からは、エポキシ樹脂フィルムは、内部に液晶構造としてネマチック構造またはスメクチック構造が形成されていることが好ましい。エポキシ樹脂フィルムの内部にスメクチック構造が形成されている場合、スメクチック構造の周期構造は、周期長が2nm~4nmであることが好ましい。周期長が2nm~4nmであることにより、より高い熱伝導性を発揮することができる。スメクチック構造の周期長は、上述した方法により測定することができる。内部に液晶構造としてネマチック構造が形成されている場合、偏光顕微鏡(例えば、株式会社ニコン、「OPTIPHOT2-POL」)で観察することにより、ネマチック液晶構造の状態を観察することができる。 From the viewpoint of thermal conductivity, the epoxy resin film preferably has a nematic structure or a smectic structure as a liquid crystal structure. When a smectic structure is formed inside the epoxy resin film, the periodic structure of the smectic structure preferably has a period length of 2 nm to 4 nm. When the period length is 2 nm to 4 nm, higher thermal conductivity can be exhibited. The periodic length of the smectic structure can be measured by the method described above. When a nematic structure is formed as a liquid crystal structure, the state of the nematic liquid crystal structure can be observed by observing with a polarizing microscope (for example, Nikon Corporation, “OPTIPHOT2-POL”).
<エポキシ樹脂フィルムの製造方法>
 本開示のエポキシ樹脂フィルムの製造方法は、上述したエポキシ樹脂組成物をフィルム状に成形して成形物を得る工程と、前記成形物を硬化する工程と、を有する。
<Method for producing epoxy resin film>
The manufacturing method of the epoxy resin film of this indication has the process of shape | molding the epoxy resin composition mentioned above in a film form, and obtaining the molded article, and the process of hardening the said molded article.
 上記方法により製造されるエポキシ樹脂フィルムは、熱伝導性と透明性に優れている。
 エポキシ樹脂組成物をフィルム状に成形する際の条件は特に制限されないが、100℃以下の温度で行うことが好ましい。また、フィルム状の成形物を硬化する際の条件は特に制限されないが、60℃以下の温度で行うことが好ましい。硬化時間は特に制限されないが、例えば、1時間~96時間が好ましく、2時間~48時間がより好ましい。
The epoxy resin film produced by the above method is excellent in thermal conductivity and transparency.
The conditions for molding the epoxy resin composition into a film are not particularly limited, but it is preferably performed at a temperature of 100 ° C. or lower. The conditions for curing the film-like molded product are not particularly limited, but it is preferably performed at a temperature of 60 ° C. or lower. The curing time is not particularly limited, but for example, 1 hour to 96 hours is preferable, and 2 hours to 48 hours is more preferable.
 上記方法では、必要に応じ、成形物を硬化した後にさらに熱処理(以下、「後硬化」とも称する)してもよい。後硬化を行うことにより、架橋密度がさらに向上する傾向にある。熱処理は、1回のみ実施しても、2回以上実施してもよい。 In the above method, if necessary, the molded product may be further heat treated (hereinafter also referred to as “post-curing”). By performing post-curing, the crosslinking density tends to be further improved. The heat treatment may be performed only once or two or more times.
 後硬化に用いる加熱装置は特に制限はなく、一般的に用いられる加熱装置を用いることができる。また、後硬化の温度は特に制限はなく、例えば、60℃~100℃が好ましく、80℃~100℃がより好ましい。また、後硬化の時間は特に制限はなく、例えば、10分間~600分間が好ましく、60分間~300分間がより好ましい。 The heating device used for post-curing is not particularly limited, and a commonly used heating device can be used. The post-curing temperature is not particularly limited, and is preferably 60 ° C. to 100 ° C., and more preferably 80 ° C. to 100 ° C. The post-curing time is not particularly limited, and is preferably 10 minutes to 600 minutes, and more preferably 60 minutes to 300 minutes.
 上記方法により製造されるエポキシ樹脂フィルムの厚みは特に制限されず、用途等に応じて選択できる。充分な透明性を確保する観点からは、エポキシ樹脂フィルムの厚みは500μm以下であってもよく、200μm以下であることが好ましく、100μm以下であることがより好ましい。充分な強度を確保する観点からは、エポキシ樹脂フィルムの厚みは5μm以上であってもよく、10μm以上であることが好ましく、20μm以上であることがより好ましい。 The thickness of the epoxy resin film produced by the above method is not particularly limited, and can be selected according to the use. From the viewpoint of ensuring sufficient transparency, the thickness of the epoxy resin film may be 500 μm or less, preferably 200 μm or less, and more preferably 100 μm or less. From the viewpoint of ensuring sufficient strength, the thickness of the epoxy resin film may be 5 μm or more, preferably 10 μm or more, and more preferably 20 μm or more.
 上記方法により製造されるエポキシ樹脂フィルムの可視光透過率は特に制限されないが、得られたエポキシ樹脂フィルムについて測定した可視光透過率の最低値が50%以上であることが好ましく、60%以上であることがより好ましい。エポキシ樹脂フィルムの可視光透過率は、上述した方法により測定することができる。 The visible light transmittance of the epoxy resin film produced by the above method is not particularly limited, but the minimum value of the visible light transmittance measured for the obtained epoxy resin film is preferably 50% or more, and 60% or more. More preferably. The visible light transmittance of the epoxy resin film can be measured by the method described above.
 熱伝導性の観点からは、上記方法により製造されるエポキシ樹脂フィルムは、内部に液晶構造としてネマチック構造またはスメクチック構造が形成されていることが好ましい。エポキシ樹脂フィルムの内部にスメクチック構造が形成されている場合、スメクチック構造の周期構造は、周期長が2nm~4nmであることが好ましい。周期長が2nm~4nmであることにより、より高い熱伝導性を発揮することができる。スメクチック構造の周期長は、上述した方法により測定することができる。内部に液晶構造としてネマチック構造が形成されている場合、偏光顕微鏡(例えば、株式会社ニコン、「OPTIPHOT2-POL」)で観察することにより、ネマチック液晶構造の状態を観察することができる。 From the viewpoint of thermal conductivity, the epoxy resin film produced by the above method preferably has a nematic structure or a smectic structure as a liquid crystal structure. When a smectic structure is formed inside the epoxy resin film, the periodic structure of the smectic structure preferably has a period length of 2 nm to 4 nm. When the period length is 2 nm to 4 nm, higher thermal conductivity can be exhibited. The periodic length of the smectic structure can be measured by the method described above. When a nematic structure is formed as a liquid crystal structure, the state of the nematic liquid crystal structure can be observed by observing with a polarizing microscope (for example, Nikon Corporation, “OPTIPHOT2-POL”).
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.
(実施例1)
 液晶性エポキシ化合物(4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、下記構造、以下「樹脂1」ともいう)と、プレポリマー化剤として4,4-ビフェノール(44BP)とを、モル比(液晶性エポキシ化合物/プレポリマー化剤)を10/2.5として予め反応させて得たプレポリマー(以下、「樹脂2」ともいう)と、硬化剤(メタキシリレンジアミン)と、を加えてエポキシ樹脂組成物を調製した。プレポリマーに対する硬化剤の配合量は、プレポリマー中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。
Example 1
Liquid crystalline epoxy compound (4- {4- (2,3-epoxypropoxy) phenyl} cyclohexyl = 4- (2,3-epoxypropoxy) benzoate, the following structure, hereinafter also referred to as “resin 1”) and prepolymerization 4,4-biphenol (44BP) as an agent and a prepolymer (hereinafter also referred to as “resin 2”) obtained by reacting in advance at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5. ) And a curing agent (metaxylylenediamine) were added to prepare an epoxy resin composition. The blending amount of the curing agent with respect to the prepolymer was adjusted so that the ratio of the number of equivalents of active hydrogen in the curing agent to the number of equivalents of epoxy group in the prepolymer (epoxy group: active hydrogen) was 1: 1.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 調製したエポキシ樹脂組成物を、オイルバスを用いて、90℃で10分間溶融混練した。次いで、100℃で溶融させながら、PETフィルムからなる厚さ70μmの基材上に厚さ30μmのフィルム状に塗工して、フィルム状の成形物を得た。その後、成形物を60℃で120分間硬化させることにより、エポキシ樹脂フィルムを得た。 The prepared epoxy resin composition was melt-kneaded at 90 ° C. for 10 minutes using an oil bath. Next, while melting at 100 ° C., a film having a thickness of 30 μm was coated on a 70 μm-thick substrate made of PET film to obtain a film-like molded product. Thereafter, the molded product was cured at 60 ° C. for 120 minutes to obtain an epoxy resin film.
 図1に実施例1で作製したエポキシ樹脂フィルムを上部から観察した写真を示す。図1に示すように、基材の格子パターンがエポキシ樹脂フィルム上から視認可能であった。 FIG. 1 shows a photograph of the epoxy resin film produced in Example 1 observed from above. As shown in FIG. 1, the lattice pattern of the base material was visible from above the epoxy resin film.
 エポキシ樹脂フィルムにおけるスメクチック構造の有無を、広角X線回折装置(株式会社リガク、「RINT2500HL」)を使用して調べた。結果を表1に示す。
 エポキシ樹脂フィルムにおけるネマチック液晶構造の有無を、偏光顕微鏡(株式会社ニコン、「OPTIPHOT2-POL」)を使用して調べた。結果を表1に示す。
The presence or absence of a smectic structure in the epoxy resin film was examined using a wide-angle X-ray diffractometer (Rigaku Corporation, “RINT2500HL”). The results are shown in Table 1.
The presence or absence of a nematic liquid crystal structure in the epoxy resin film was examined using a polarizing microscope (Nikon Corporation, “OPTIPHOT2-POL”). The results are shown in Table 1.
 エポキシ樹脂フィルムの400nm~700nmの範囲における可視光透過率(%)を、分光光度計(株式会社日立製作所、「U4100」)を使用して測定した。測定された可視光透過率の最低値を表1に示す。 The visible light transmittance (%) in the range of 400 nm to 700 nm of the epoxy resin film was measured using a spectrophotometer (Hitachi Ltd., “U4100”). Table 1 shows the minimum values of the measured visible light transmittance.
 エポキシ樹脂フィルムの熱拡散率を熱拡散率測定装置(Bethel社、「TA3」)を用いて測定し、測定結果にアルキメデス法により測定した密度と、DSC法により測定した比熱とを乗じることにより、エポキシ樹脂フィルムの面内方向の熱伝導率(W/m・K)を求めた。結果を表1に示す。 By measuring the thermal diffusivity of the epoxy resin film using a thermal diffusivity measuring device (Bethel, “TA3”), the measurement result is multiplied by the density measured by the Archimedes method and the specific heat measured by the DSC method. The thermal conductivity (W / m · K) in the in-plane direction of the epoxy resin film was determined. The results are shown in Table 1.
(実施例2)
 実施例1において、プレポリマー化剤を4,4-ビフェノールからハイドロキノン(HQ)に変更してプレポリマー(以下、「樹脂3」ともいう)を調製したこと以外は実施例1と同様にしてエポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Example 2)
An epoxy was prepared in the same manner as in Example 1 except that the prepolymerizing agent was changed from 4,4-biphenol to hydroquinone (HQ) to prepare a prepolymer (hereinafter also referred to as “resin 3”). A resin composition was prepared to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
 液晶性エポキシ化合物とプレポリマー化剤は、モル比(液晶性エポキシ化合物/プレポリマー化剤)を10/2.5として反応させて得た。樹脂3に対する硬化剤の配合量は、樹脂3中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The liquid crystalline epoxy compound and the prepolymerizing agent were obtained by reacting at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5. The blending amount of the curing agent with respect to the resin 3 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 3 (epoxy group: active hydrogen) was 1: 1.
(実施例3)
 実施例1において、液晶性エポキシ化合物を樹脂1から1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(オキシラニルメトキシフェニル)-1-シクロヘキセン、下記構造、以下「樹脂4」ともいう)に変更してプレポリマー(以下「樹脂5」ともいう)を調製したこと以外は実施例1と同様にして、エポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Example 3)
In Example 1, the liquid crystalline epoxy compound was changed from Resin 1 to 1- (3-Methyl-4-oxiranylmethoxyphenyl) -4- (oxiranylmethoxyphenyl) -1-cyclohexene, the following structure, hereinafter “resin 4 The epoxy resin composition was prepared in the same manner as in Example 1 except that a prepolymer (hereinafter also referred to as “resin 5”) was prepared. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 液晶性エポキシ化合物とプレポリマー化剤は、モル比(液晶性エポキシ化合物/プレポリマー化剤)を10/2.5として反応させて得た。樹脂5に対する硬化剤の配合量は、樹脂5中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The liquid crystalline epoxy compound and the prepolymerizing agent were obtained by reacting at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5. The blending amount of the curing agent with respect to the resin 5 was adjusted such that the ratio of the number of equivalents of active hydrogen in the curing agent to the number of equivalents of epoxy group in the resin 5 (epoxy group: active hydrogen) was 1: 1.
(実施例4)
 実施例2において、液晶性エポキシ化合物を樹脂1から樹脂4に変更してプレポリマー(以下、「樹脂6」ともいう)を調製したこと以外は実施例2と同様にして、エポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
Example 4
In Example 2, an epoxy resin composition was prepared in the same manner as in Example 2 except that the liquid crystalline epoxy compound was changed from the resin 1 to the resin 4 to prepare a prepolymer (hereinafter also referred to as “resin 6”). An epoxy resin film was prepared. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
 液晶性エポキシ化合物とプレポリマー化剤は、モル比(液晶性エポキシ化合物/プレポリマー化剤)を10/2.5として反応させて得た。樹脂6に対する硬化剤の配合量は、樹脂6中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The liquid crystalline epoxy compound and the prepolymerizing agent were obtained by reacting at a molar ratio (liquid crystalline epoxy compound / prepolymerizing agent) of 10 / 2.5. The blending amount of the curing agent with respect to the resin 6 was adjusted such that the ratio of the number of equivalents of active hydrogen in the curing agent to the number of equivalents of epoxy group in the resin 6 (epoxy group: active hydrogen) was 1: 1.
(実施例5)
 実施例1において、更に溶剤(テトラヒドロフラン、THF)を加えてエポキシ樹脂組成物を調製した。調製したエポキシ樹脂組成物を、ミックスローラーを用いて、室温(25℃、以下も同様)で、30分間撹拌した。その後に室温で、フィルム状に成形した。更に60℃で60分間硬化させることにより、エポキシ樹脂フィルムを得た。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Example 5)
In Example 1, a solvent (tetrahydrofuran, THF) was further added to prepare an epoxy resin composition. The prepared epoxy resin composition was stirred for 30 minutes at room temperature (25 ° C., the same applies below) using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
(実施例6)
 実施例2において、更に溶剤(THF)を加えてエポキシ樹脂組成物を調製した。調製したエポキシ樹脂組成物を、ミックスローラーを用いて、室温で、30分間撹拌した。その後に室温で、フィルム状に成形した。更に60℃で60分間硬化させることにより、エポキシ樹脂フィルムを得た。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Example 6)
In Example 2, an epoxy resin composition was prepared by further adding a solvent (THF). The prepared epoxy resin composition was stirred for 30 minutes at room temperature using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
(実施例7)
 実施例3において、更に溶剤(THF)を加えてエポキシ樹脂組成物を調製した。調製したエポキシ樹脂組成物を、ミックスローラーを用いて、室温で、30分間撹拌した。その後に室温で、フィルム状に成形した。更に60℃で60分間硬化させることにより、エポキシ樹脂フィルムを得た。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Example 7)
In Example 3, an epoxy resin composition was prepared by further adding a solvent (THF). The prepared epoxy resin composition was stirred for 30 minutes at room temperature using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
(実施例8)
 実施例4において、更に溶剤(THF)を加えてエポキシ樹脂組成物を調製した。調製したエポキシ樹脂組成物を、ミックスローラーを用いて、室温で、30分間撹拌した。その後に室温で、フィルム状に成形した。更に60℃で60分間硬化させることにより、エポキシ樹脂フィルムを得た。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Example 8)
In Example 4, an epoxy resin composition was prepared by further adding a solvent (THF). The prepared epoxy resin composition was stirred for 30 minutes at room temperature using a mix roller. Thereafter, it was formed into a film at room temperature. Further, an epoxy resin film was obtained by curing at 60 ° C. for 60 minutes. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
(比較例1)
 実施例1において、樹脂2の代わりに、液晶性エポキシ化合物に該当しないエポキシ化合物としてビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社、「jER828」、以下「樹脂7」ともいう)を用いたこと以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Comparative Example 1)
In Example 1, instead of the resin 2, a bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, “jER828”, hereinafter also referred to as “resin 7”) is used as an epoxy compound that does not correspond to the liquid crystalline epoxy compound. Then, an epoxy resin composition was prepared in the same manner as in Example 1 to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
 樹脂7に対する硬化剤の配合量は、樹脂7中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The blending amount of the curing agent with respect to the resin 7 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 7 (epoxy group: active hydrogen) was 1: 1.
(比較例2)
 実施例1において、樹脂2の代わりに樹脂1を使用したこと以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Comparative Example 2)
In Example 1, except that Resin 1 was used instead of Resin 2, an epoxy resin composition was prepared in the same manner as in Example 1 to produce an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
 樹脂1に対する硬化剤の配合量は、樹脂1中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The blending amount of the curing agent with respect to the resin 1 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 1 (epoxy group: active hydrogen) was 1: 1.
(比較例3)
 実施例1において、樹脂2の代わりに、樹脂4を使用したこと以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Comparative Example 3)
In Example 1, an epoxy resin composition was prepared in the same manner as in Example 1 except that the resin 4 was used instead of the resin 2, and an epoxy resin film was produced. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
 樹脂4に対する硬化剤の配合量は、樹脂4中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The compounding amount of the curing agent with respect to the resin 4 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 4 (epoxy group: active hydrogen) was 1: 1.
(比較例4)
 実施例5において、樹脂2の代わりに、樹脂1を使用したこと以外は、実施例1と同様にしてエポキシ樹脂組成物を調製し、エポキシ樹脂フィルムを作製した。そして、実施例1と同様にして、可視光透過率と熱伝導率を求めた。
(Comparative Example 4)
In Example 5, an epoxy resin composition was prepared in the same manner as in Example 1 except that Resin 1 was used instead of Resin 2 to prepare an epoxy resin film. Then, in the same manner as in Example 1, the visible light transmittance and the thermal conductivity were obtained.
 樹脂1に対する硬化剤の配合量は、樹脂1中のエポキシ基の当量数に対する硬化剤の活性水素の当量数の比(エポキシ基:活性水素)が、1:1となるように調整した。 The blending amount of the curing agent with respect to the resin 1 was adjusted so that the ratio of the number of equivalents of active hydrogen of the curing agent to the number of equivalents of epoxy group in the resin 1 (epoxy group: active hydrogen) was 1: 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1中のプレポリマー化剤の欄の「-」は、プレポリマー化剤を用いていないことを表し、溶剤の欄の「-」は、溶剤を使用していないことを表す。 In Table 1, “-” in the column of prepolymerizing agent indicates that no prepolymerizing agent is used, and “-” in the column of solvent indicates that no solvent is used.
 表1に示されるように、実施例1~8で作製したエポキシ樹脂フィルムは高い熱伝導率を示すとともに、透明性に優れていた。
 液晶性エポキシ化合物を使用しなかった比較例1で作製したエポキシ樹脂フィルムは、透明性に優れているものの熱伝導率が実施例よりも低かった。これは硬化物中に液晶構造が形成されていないためと考えられる。
 液晶性エポキシ化合物をプレポリマー化剤と反応させなかった比較例2~4で作製したエポキシ樹脂フィルムは、熱伝導率に優れているものの透明性が実施例よりも低かった。
As shown in Table 1, the epoxy resin films produced in Examples 1 to 8 showed high thermal conductivity and excellent transparency.
Although the epoxy resin film produced in Comparative Example 1 that did not use a liquid crystalline epoxy compound was excellent in transparency, the thermal conductivity was lower than that in Examples. This is considered because the liquid crystal structure is not formed in the cured product.
Although the epoxy resin films prepared in Comparative Examples 2 to 4 in which the liquid crystalline epoxy compound was not reacted with the prepolymerizing agent were excellent in thermal conductivity, the transparency was lower than that in Examples.

Claims (11)

  1.  エポキシ樹脂と硬化剤とを含み、液晶構造を有しかつ厚さ30μmにおいて測定される可視光透過率の最低値が50%以上である硬化物を形成可能である、エポキシ樹脂組成物。 An epoxy resin composition comprising an epoxy resin and a curing agent, and having a liquid crystal structure and capable of forming a cured product having a minimum visible light transmittance of 50% or more measured at a thickness of 30 μm.
  2.  前記液晶構造がネマチック構造である、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the liquid crystal structure is a nematic structure.
  3.  前記液晶構造が60℃以下の硬化温度で形成可能である、請求項1又は請求項2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the liquid crystal structure can be formed at a curing temperature of 60 ° C. or less.
  4.  前記エポキシ樹脂が下記一般式(m1)又は一般式(m2)で表されるエポキシ化合物の少なくともいずれかを含む、請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

     
    〔一般式(m1)及び(m2)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。〕
    The epoxy resin composition according to any one of claims 1 to 3, wherein the epoxy resin contains at least one of epoxy compounds represented by the following general formula (m1) or general formula (m2).
    Figure JPOXMLDOC01-appb-C000001


    [In the general formulas (m1) and (m2), R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
  5.  前記エポキシ樹脂がプレポリマーの状態である、請求項1~請求項4のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the epoxy resin is in a prepolymer state.
  6.  前記硬化剤がメタキシリレンジアミンを含む、請求項1~請求項5のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5, wherein the curing agent contains metaxylylenediamine.
  7.  請求項1~請求項6のいずれか1項に記載のエポキシ樹脂組成物のフィルム状硬化物である、エポキシ樹脂フィルム。 An epoxy resin film, which is a film-like cured product of the epoxy resin composition according to any one of claims 1 to 6.
  8.  前記フィルム状硬化物はネマチック構造を有する、請求項7に記載のエポキシ樹脂フィルム。 The epoxy resin film according to claim 7, wherein the cured film has a nematic structure.
  9.  請求項1~請求項6のいずれか1項に記載のエポキシ樹脂組成物をフィルム状に成形して成形物を得る工程と、前記成形物を硬化する工程と、を有するエポキシ樹脂フィルムの製造方法。 A method for producing an epoxy resin film, comprising: a step of forming the epoxy resin composition according to any one of claims 1 to 6 into a film to obtain a molded product; and a step of curing the molded product. .
  10.  前記エポキシ樹脂組成物をフィルム状に成形する際の温度が100℃以下である、請求項9に記載のエポキシ樹脂フィルムの製造方法。 The method for producing an epoxy resin film according to claim 9, wherein the temperature at which the epoxy resin composition is formed into a film is 100 ° C or lower.
  11.  前記成形物を硬化する際の温度が60℃以下である、請求項9又は請求項10に記載のエポキシ樹脂フィルムの製造方法。 The manufacturing method of the epoxy resin film of Claim 9 or Claim 10 whose temperature at the time of hardening | curing the said molding is 60 degrees C or less.
PCT/JP2018/009554 2018-03-12 2018-03-12 Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film WO2019175942A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020505578A JP7342852B2 (en) 2018-03-12 2018-03-12 Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film
PCT/JP2018/009554 WO2019175942A1 (en) 2018-03-12 2018-03-12 Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009554 WO2019175942A1 (en) 2018-03-12 2018-03-12 Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film

Publications (1)

Publication Number Publication Date
WO2019175942A1 true WO2019175942A1 (en) 2019-09-19

Family

ID=67906462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009554 WO2019175942A1 (en) 2018-03-12 2018-03-12 Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film

Country Status (2)

Country Link
JP (1) JP7342852B2 (en)
WO (1) WO2019175942A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315657A (en) * 2003-04-16 2004-11-11 Nippon Kayaku Co Ltd Epoxy resin composition suitable for protecting film
JP2009215390A (en) * 2008-03-10 2009-09-24 Shin Kobe Electric Mach Co Ltd Method for manufacturing laminate
JP2011074366A (en) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd Diepoxy compound, composition including the compound, cured product obtained by curing the composition
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
JP2014201610A (en) * 2013-04-01 2014-10-27 日立化成株式会社 Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board
JP2016113540A (en) * 2014-12-15 2016-06-23 日立化成株式会社 Epoxy resin composition, resin sheet, semi-cured epoxy resin composition, cured epoxy resin composition, and metal substrate
JP2017123252A (en) * 2016-01-06 2017-07-13 日立化成株式会社 Prepreg mica tape

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016098709A1 (en) * 2014-12-15 2017-09-28 日立化成株式会社 Epoxy resin composition, resin sheet, prepreg, laminate, method for producing epoxy resin composition, and cured body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315657A (en) * 2003-04-16 2004-11-11 Nippon Kayaku Co Ltd Epoxy resin composition suitable for protecting film
JP2009215390A (en) * 2008-03-10 2009-09-24 Shin Kobe Electric Mach Co Ltd Method for manufacturing laminate
JP2011074366A (en) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd Diepoxy compound, composition including the compound, cured product obtained by curing the composition
JP2013227451A (en) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, and printed wiring board
JP2014201610A (en) * 2013-04-01 2014-10-27 日立化成株式会社 Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board
JP2016113540A (en) * 2014-12-15 2016-06-23 日立化成株式会社 Epoxy resin composition, resin sheet, semi-cured epoxy resin composition, cured epoxy resin composition, and metal substrate
JP2017123252A (en) * 2016-01-06 2017-07-13 日立化成株式会社 Prepreg mica tape

Also Published As

Publication number Publication date
JP7342852B2 (en) 2023-09-12
JPWO2019175942A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP5472103B2 (en) Epoxy resin cured product and epoxy resin adhesive
WO2016031888A1 (en) Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
WO2015170744A1 (en) Composition for heat-dissipation members, heat-dissipation member, and electronic device
JP6214910B2 (en) Epoxy resin, epoxy resin composition containing the same, and heat dissipation circuit board using the same
JP6938888B2 (en) Method for producing epoxy resin composition, cured epoxy resin, heat conductive film, and cured epoxy resin
WO2016190260A1 (en) Epoxy resin composition, thermoconductive material precursor, b-stage sheet, prepreg, heat-dissipating material, laminated plate, metal substrate, and printed circuit board
KR102481902B1 (en) Method for producing glassy liquid crystalline epoxy resin and glassy liquid crystalline epoxy resin composition, preservation method for liquid crystalline epoxy resin and liquid crystalline epoxy resin composition, glassy liquid crystalline epoxy resin and glassy liquid crystalline epoxy resin composition, liquid crystalline epoxy resin and liquid crystalline Epoxy resin composition and method for producing cured epoxy resin material
JP2018002809A (en) Epoxy resin composition, molding material precursor, and molding material
WO2021230326A1 (en) Primer, substrate equipped with primer layer, method for producing substrate equipped with primer layer, semiconductor device, and method for producing semiconductor device
WO2019175942A1 (en) Epoxy resin composition, epoxy resin film, and method for producing epoxy resin film
JP2020063433A (en) Thermally conductive resin composition
JP2016113493A (en) Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminate, metal substrate and printed wiring board
JP7095732B2 (en) Epoxy resin, epoxy resin composition, epoxy resin cured product and its manufacturing method, composite material, insulating member, electronic device, structural material and moving body
JP2009242657A (en) Epoxy resin composition and molded product
TWI805693B (en) Epoxy resin, epoxy resin composition, cured epoxy resin and composite material
JP7272372B2 (en) Epoxy resin B-stage film, epoxy resin cured film, and method for producing epoxy resin cured film
JP2023000691A (en) Epoxy resin composition and cured article thereof
WO2019159368A1 (en) Epoxy resin composition, epoxy resin cured product, heat conductive film, and method for producing epoxy resin cured product
JP2013209631A (en) Method for producing epoxy resin cured product
JP2017218468A (en) Epoxy resin composition, molding material precursor, molding material, and method for producing molding material
TW201945422A (en) Epoxy resin composition, cured epoxy resin, thermoconductive film and method of producing cured epoxy resin
JP2019056077A (en) Epoxy resin composition for thick copper circuit filling
JP7176308B2 (en) Liquid crystalline epoxy resin composition, liquid crystalline epoxy resin cured product, composite material, insulating material, electronic device, structural material, and moving body
KR101985255B1 (en) Epoxy resin composite and printed circuit board comprising isolation using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909924

Country of ref document: EP

Kind code of ref document: A1