WO2019174288A1 - 触控面板及其压力触控检测方法、触控装置 - Google Patents

触控面板及其压力触控检测方法、触控装置 Download PDF

Info

Publication number
WO2019174288A1
WO2019174288A1 PCT/CN2018/115432 CN2018115432W WO2019174288A1 WO 2019174288 A1 WO2019174288 A1 WO 2019174288A1 CN 2018115432 W CN2018115432 W CN 2018115432W WO 2019174288 A1 WO2019174288 A1 WO 2019174288A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
layer
capacitance
dielectric layer
pressure
Prior art date
Application number
PCT/CN2018/115432
Other languages
English (en)
French (fr)
Inventor
魏祥野
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/470,736 priority Critical patent/US11231821B2/en
Priority to EP18887231.1A priority patent/EP3767438A4/en
Publication of WO2019174288A1 publication Critical patent/WO2019174288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • At least one embodiment of the present disclosure relates to a touch panel, a pressure touch detection method thereof, and a touch device.
  • capacitive touch panels include self-capacitance and mutual capacitance.
  • the self-capacitive touch panel includes a touch electrode array made of a transparent conductive material on a base substrate, and the touch electrodes respectively form a capacitance with the ground.
  • the touch detection chip can determine the touch by detecting the change of the capacitance value of each touch electrode during the touch time period.
  • the mutual capacitive touch panel comprises a lateral electrode and a longitudinal electrode which are insulated from each other by a transparent conductive material on a base substrate, and a capacitor is formed where the two electrodes intersect.
  • At least one embodiment of the present disclosure provides a touch panel including: a touch electrode layer; a conductive layer disposed opposite to the touch substrate, the conductive layer being configured to be opposite to the touch electrode a layer forming a capacitor; a dielectric layer between the touch electrode layer and the conductive layer, the dielectric layer comprising a fluid dielectric layer and a solid dielectric layer, the dielectric dielectric layer having a dielectric constant greater than a dielectric constant of the solid dielectric layer, the fluid in the fluid dielectric layer being configured to flow under the influence of a touch pressure to change a touch position by changing a dielectric constant of the dielectric layer
  • the capacitance between the touch electrode layer and the conductive layer changes in a peripheral region of the touch position, and the change in the capacitance is used to determine the touch pressure.
  • the fluid dielectric layer is further configured to: in the fluid dielectric layer, fluid in the touch position flows to the peripheral region under the action of the touch pressure to
  • the dielectric constant of the dielectric layer at the touch position is smaller than that before the touch occurs, thereby causing a relationship between the touch electrode layer and the conductive layer at the touch position.
  • the capacitance becomes smaller, and the dielectric constant of the dielectric layer in the peripheral region becomes larger than before the touch occurs, so that the touch electrode layer between the peripheral region and the conductive layer The capacitance becomes larger.
  • At least one of the touch electrode layer and the conductive layer comprises a plurality of sub-electrodes arranged in a two-dimensional array.
  • the touch electrode includes a plurality of sub-electrodes arranged in an array and is configured to detect a touch location.
  • the touch panel is a flexible touch panel.
  • the solid dielectric layer is a flexible layer.
  • the fluid dielectric layer is a liquid dielectric layer that is in contact with a surface of the liquid dielectric layer.
  • the fluid dielectric layer includes a liquid dielectric layer and an air layer
  • the air layer is on a side of the liquid dielectric layer facing the touch electrode layer
  • dielectric of the air layer The constant is less than the dielectric constant of the liquid dielectric layer.
  • the touch pressure is not applied, the dielectric constant ⁇ of the liquid air in the air layer, the dielectric constant ⁇ and the dielectric liquid and the layer thickness d and the air in the air layer
  • the thickness of the liquid dielectric layer d liquid satisfies the following relationship:
  • the liquid dielectric layer includes an electrolyte
  • the solvent of the electrolyte includes acetonitrile and/or propylene carbonate
  • the solute of the electrolyte includes tetraethylammonium tetrafluoroborate.
  • the fluid dielectric layer has a thickness of from 100 ⁇ m to 500 ⁇ m.
  • the conductive layer is a gold foil layer having a thickness in the direction perpendicular to the gold foil layer of from 100 ⁇ m to 300 ⁇ m.
  • the touch electrode layer includes a two-dimensional touch electrode array, the two-dimensional touch electrode array includes a plurality of sensing electrodes, and the capacitor is formed between the sensing electrode and the conductive layer. .
  • An embodiment of the present disclosure provides a touch device including the touch panel of any of the above.
  • An embodiment of the present invention provides a pressure touch detection method for the touch panel, including: detecting a touch position, and the touch electrode layer and the conductive layer in the touch position and the peripheral area a capacitance between the fluid in the fluid dielectric layer flowing under the influence of the touch pressure to change the dielectric constant of the dielectric layer to cause the touch position And changing a capacitance between the touch electrode layer and the conductive layer in the peripheral region; according to the touch position and the touch region between the touch electrode layer and the conductive layer in the peripheral region The change in capacitance determines the touch pressure at the touch position.
  • detecting a capacitance between the touch electrode layer and the conductive layer in the touch position and the peripheral area includes: detecting the touch electrode layer at the touch position
  • the capacitance between the conductive layer and the conductive layer is a first capacitance, the first capacitance is smaller than before the touch occurs, and the capacitance change amount is a first capacitance change amount; and the touch of the peripheral area is detected.
  • the capacitance between the electrode layer and the conductive layer is a second capacitance, and the second capacitance becomes larger than before the touch occurs, and the capacitance change amount is the second capacitance change amount.
  • determining, according to the touch position and a change in capacitance between the touch electrode layer and the conductive layer in the peripheral region, determining a touch pressure at the touch position includes: The second capacitance change amount is compared with the first capacitance to obtain a capacitance ratio, and the touch pressure at the touch position is determined according to the capacitance ratio.
  • K is a constant
  • is a dielectric layer
  • the electrical constant, d1 is the thickness of the solid dielectric layer, d2 is the thickness of the fluid dielectric layer, and the thickness d2 of the fluid dielectric layer at the touch position is under the touch pressure Decreasing so that the dielectric constant ⁇ and the thickness (d1+d2) of the dielectric layer become smaller, and the ratio of the dielectric constant ⁇ becomes smaller than the thickness of the dielectric layer (d1+d2) The ratio is reduced such that the first capacitance becomes smaller than before the touch occurs.
  • the touch panel is a flexible touch panel
  • the thickness d2 of the fluid dielectric layer at the peripheral region is increased by the touch pressure to make the dielectric constant ⁇ and the thickness (d1+d2) of the dielectric layer are both increased, and a ratio in which the dielectric constant ⁇ becomes larger is larger than a ratio in which the thickness (d1+d2) of the dielectric layer becomes larger, thereby The second capacitance becomes larger than before the touch occurs.
  • the fluid dielectric layer includes a liquid dielectric layer and an air layer, and the air layer is located on a side of the liquid dielectric layer facing the touch electrode layer, and the touch pressure acts Lower, at the peripheral region, the thickness (d1+d2) of the dielectric layer is decreased, and the thickness of the liquid dielectric layer is increased to increase the dielectric constant ⁇ , thereby making the The second capacitance becomes larger than before the touch occurs.
  • the capacitance ratio is proportional to the value of the touch pressure, and before determining the touch pressure at the touch position, the method further includes: detecting the plurality of the plurality according to the proportional relationship
  • the capacitance ratio is divided into a plurality of capacitance ratio ranges, and the value of the touch pressure is divided into a plurality of touch pressure levels, wherein the plurality of capacitance ratio ranges are in one-to-one correspondence with the plurality of touch pressure levels Relationship.
  • determining the touch pressure at the touch position includes determining a touch pressure level to which the touch device is applied according to the capacitance ratio range.
  • detecting a change in capacitance between the touch electrode layer and the conductive layer includes: detecting an initial capacitance between the touch electrode layer and the conductive layer before a touch occurs; After the occurrence, the capacitance between the touch control electrode layer and the conductive layer is compared with the initial capacitance to obtain the capacitance change amount.
  • FIG. 1A is a partial structural schematic view of a touch panel according to an embodiment of the present disclosure
  • FIG. 1B is a partial schematic structural diagram of a touch panel according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic block diagram of a touch device according to another embodiment of the present disclosure.
  • FIG. 3A is a schematic flowchart of a pressure touch detection method of a touch panel according to an embodiment of the present disclosure
  • FIG. 3B is a schematic diagram of deformation of a touch panel according to an embodiment of the present disclosure.
  • 3C is a schematic diagram showing the simulation of the touch condition of the fluid dielectric layer shown in FIG. 3B;
  • FIG. 4 is a graph showing a relationship between a second capacitance change amount and a second capacitance change amount and a first capacitor capacitance ratio and an applied pressure according to an embodiment of the present disclosure
  • FIG. 5A is a schematic diagram of deformation of a touch panel according to another embodiment of the present disclosure when pressure is applied;
  • FIG. 5B is a schematic diagram showing deformation of a touch panel according to another embodiment of the present disclosure when pressure is applied;
  • Figure 6 is a schematic illustration of the liquid dielectric layer shown in Figure 3B.
  • the inventor of the present application found that: at present, the liquid crystal display industry can realize the detection of pressure by adding a metal frame in the module of the liquid crystal display device, that is, providing detection perpendicular to the plane of the display screen, thereby realizing three-dimensional Touch detection, however, it is difficult to use a fixed metal plate as a reference surface in a flexible device.
  • Embodiments of the present disclosure provide a touch panel, a pressure touch detection method thereof, and a touch device.
  • the touch panel includes a touch substrate, a dielectric layer, and a conductive layer.
  • the touch substrate includes a touch electrode layer, the touch electrode layer is configured to detect a touch position; the conductive layer is disposed opposite to the touch substrate, the conductive layer is configured to form a capacitance with the touch electrode layer; and the dielectric layer is located at the touch electrode
  • the dielectric layer comprises a fluid dielectric layer and a solid dielectric layer, the dielectric constant of the fluid dielectric layer is greater than the dielectric constant of the solid dielectric layer, and the fluid in the fluid dielectric layer is configured to Flow occurs under the influence of the touch pressure to change the capacitance between the touch electrode layer and the conductive layer in the peripheral region of the touch position and the touch position by changing the dielectric constant of the dielectric layer, and the change in capacitance is used for Determine the touch pressure.
  • the fluid dielectric layer included in the touch panel
  • FIG. 1A is a partial schematic structural diagram of a touch panel according to an embodiment of the present disclosure.
  • the touch panel 10 includes a touch substrate 100 , a dielectric layer 200 , and a conductive layer 300 .
  • the touch substrate 100 includes a touch electrode layer 110.
  • the touch electrode layer 110 includes a two-dimensional touch electrode array.
  • the two-dimensional touch electrode array includes a plurality of sensing electrodes 111.
  • the touch electrode layer 110 is configured to detect a touch position.
  • the dielectric layer 200 includes a fluid dielectric layer 210 and a solid dielectric layer 220.
  • the dielectric constant of the fluid dielectric layer 210 is greater than the dielectric constant of the solid dielectric layer 220, that is,
  • the conductive layer 300 and the touch electrode layer 110 form a planar capacitor.
  • the conductive layer 300 and the touch electrode layer 110 are respectively two plates of the planar capacitor, and the fluid dielectric layer 210 and the solid dielectric layer 220 are located at two. The medium between the plates.
  • the fluid in the fluid dielectric layer 210 is configured to flow under the action of the touch pressure to change the dielectric constant of the dielectric layer 200 to make the touch electrode layer 110 in the touch region and the peripheral region of the touch position.
  • the capacitance between the conductive layers 300 changes, and the change in capacitance is used to determine the touch pressure.
  • the above embodiment has been described by taking a touch electrode layer including a two-dimensional touch electrode array as an example. Since the touch electrodes include an array of electrodes arranged in two dimensions, capacitance values at different positions can be detected. However, embodiments in accordance with the present disclosure are not limited thereto, and the conductive layer 300 may also include a plurality of sub-electrodes arranged in a two-dimensional array.
  • the fluid dielectric layer 210 is further configured to: under the action of the touch pressure, the fluid in the touch dielectric position in the fluid dielectric layer 210 flows toward the peripheral region to make the dielectric layer 200 at the touch position.
  • the dielectric constant refers to the mixed dielectric constant of all the film layers included in the dielectric layer
  • the dielectric constant of the dielectric layer 200 in the peripheral region is larger than that before the touch occurs, so that the capacitance between the touch electrode layer 110 and the conductive layer 300 is increased. Therefore, the touch panel 10 can be capacitive. Change to determine touch pressure.
  • the peripheral area of the touch position refers to an area surrounding the touch position, and the peripheral area is defined by a condition that a capacitance between the touch electrode layer and the conductive layer becomes larger than before the touch occurs, that is, a touch position is pointed
  • the direction of the peripheral area, the capacitance between the touch electrode layer and the conductive layer (before the touch occurs) includes the smaller-larger-unchanged (touch position-peripheral area-outside area)
  • the area is the area corresponding to the capacitance increase.
  • the fluid dielectric layer 210 is a liquid dielectric layer that is microscopically flowable.
  • the liquid dielectric layer can be fabricated by injecting a liquid between two film layers (or a flexible substrate) and then encapsulating the two film layers. This embodiment is not limited thereto.
  • the touch panel 10 provided in this embodiment is a flexible touch panel
  • the solid dielectric layer 220 is a flexible film layer
  • the flexible film layer is in contact with the surface of the liquid dielectric layer 210, that is, the solid dielectric layer 220 and the liquid There is no air between the dielectric layers 210 (or the presence of air is negligible).
  • the solid dielectric layer 220 is a flexible layer.
  • the touch panel 10 can be bent in the direction indicated by the arrow in the Z direction by the action of the touch pressure.
  • the touch panel 10 is a flexible touch panel: at least the film layer between the fluid dielectric layer 210 and the touch electrode layer 110 is a flexible film layer.
  • the embodiment of the present disclosure is described by taking the solid dielectric layer 220 on the side of the fluid dielectric layer 210 facing the touch electrode layer 110, but is not limited thereto, and the solid dielectric layer 220 may also be located away from the fluid dielectric layer 210. One side of the touch electrode layer 110.
  • the touch panel provided in this embodiment adopts a method of filling a liquid dielectric layer between the touch electrode layer and the conductive layer, in a manner of filling the air between the touch electrode layer and the conductive layer.
  • the exhaust valve is fabricated to save the process; on the other hand, the dielectric constant of the liquid dielectric layer is greater than the dielectric constant of the solid dielectric layer, and thus the touch panel including the liquid dielectric layer has better detection performance.
  • the dielectric constant of the liquid dielectric layer and the solid dielectric layer refers to the dielectric constant of the material of the liquid dielectric layer and the material of the solid dielectric layer.
  • the liquid dielectric layer is a liquid film layer
  • the liquid film layer is more suitable for a flexible touch panel
  • the three-dimensional touch detection can be performed by using fluid mechanics.
  • the liquid dielectric layer included in the touch panel provided in this embodiment can be applied to a flexible touch panel to implement three-dimensional touch detection, thereby improving the human-computer interaction function, category, and manner of the touch panel.
  • the liquid dielectric layer 210 includes an electrolyte, that is, the liquid dielectric layer 210 can be an electrolyte layer.
  • the solvent 201 of the electrolytic solution includes acetonitrile and/or propylene carbonate
  • the solute 202 of the electrolytic solution includes a material such as tetraethylammonium tetrafluoroborate.
  • the thickness d of the fluid dielectric layer 210 is from 100 ⁇ m to 500 ⁇ m, that is, the thickness of the electrolyte layer is from 100 ⁇ m to 500 ⁇ m.
  • the thickness of the electrolyte layer may be from 200 ⁇ m to 300 ⁇ m.
  • the thickness of the electrolyte layer may be from 120 ⁇ m to 500 ⁇ m.
  • the electrolyte layer provided in this embodiment has a suitable thickness to absorb the pressure applied to the touch panel and has a good detection effect on the applied pressure.
  • the conductive layer 300 is a metal layer.
  • the thickness H of the conductive layer 300 is 100 ⁇ m - 300 ⁇ m in a direction perpendicular to the conductive layer 300, that is, in the Z direction.
  • the material of the conductive layer 300 is a gold foil, and when the thickness of the gold foil is 100 ⁇ m-300 ⁇ m, the film has good flexibility and can be used as a reference surface for the touch recognition of the Z-direction by the flexible touch panel. .
  • the touch electrode layer 110 provided in this embodiment may include a self-capacitive touch electrode, and may also include a mutual-capacitive touch electrode.
  • the touch electrodes in the two-dimensional touch array are self-capacitive touch electrodes, and all the touch electrodes can be used as a layer of sensing electrodes to detect the capacitance between the touch electrodes and the conductive layer 300.
  • the touch electrodes in the two-dimensional touch array are mutually capacitive touch electrodes, and the touch sensing electrodes and the touch driving electrodes are used to detect the touch electrode layer 110 and the conductive layer 300.
  • a layer of electrodes between the capacitors, and the capacitor is a capacitor formed between the touch sensing electrodes and the conductive layer.
  • a substrate substrate 500 is further included on a side of the conductive layer 300 remote from the fluid dielectric layer 210.
  • FIG. 1B is a partial structural diagram of a touch panel according to an embodiment of the present disclosure.
  • the touch panel 100 further includes an organic light emitting diode 120
  • the touch panel 10 is an organic light emitting diode touch display panel.
  • one touch electrode corresponds to a plurality of pixel units, for example, 18 ⁇ 32 touch electrodes correspond to 1920 ⁇ 1080 pixels.
  • a display panel including the organic light emitting diodes 120 may be a polyethylene terephthalate (PET)-organic light emitting diode (OLED).
  • PET polyethylene terephthalate
  • OLED organic light emitting diode
  • POL Polyethylene terephthalate
  • the touch panel in this embodiment is polyethylene terephthalate - organic light emitting diode - poly-p-phenylene Stacking structure of ethylene glycol formate-polarizing plate-fluid dielectric layer-conductive layer-polyethylene terephthalate.
  • the light emitting diode is located on the side of the touch electrode layer away from the fluid dielectric layer, but is not limited thereto.
  • the light emitting diode may also be located between the touch electrode layer and the fluid dielectric layer, as long as the pressure is not affected. Touch detection can be.
  • the touch panel provided by the embodiment of the present disclosure may be a touch display panel, such as a flexible organic light emitting diode touch display panel.
  • a flexible organic light emitting diode touch display panel can be better realized by providing a fluid dielectric layer. The detection of pressure touch enables 3D touch detection.
  • FIG. 2 is a schematic block diagram of a touch device according to another embodiment of the present disclosure.
  • the touch device 20 of the present disclosure includes the touch panel 10 provided in any of the above embodiments.
  • the touch device 20 is provided with a fluid dielectric layer, so that the three-dimensional touch detection can be better realized.
  • the touch device 20 can be a touch display device, such as a touch display device such as a liquid crystal touch display device or an organic light emitting diode touch display device, and a television, a digital camera, a mobile phone, and a tablet computer including the touch display device.
  • a touch display device such as a liquid crystal touch display device or an organic light emitting diode touch display device
  • a television a digital camera, a mobile phone, and a tablet computer including the touch display device.
  • Any product or component having a touch display function such as a notebook computer or a navigator, is not limited to this embodiment.
  • FIG. 3A is a schematic flowchart of a pressure touch detection method of a touch panel according to an embodiment of the present invention. As shown in FIG. 3A , the pressure touch detection method specifically includes the following steps.
  • S201 detecting a capacitance between the touch position and the touch electrode layer and the conductive layer in the touch position and the peripheral area, wherein the fluid in the fluid dielectric layer is under the action of the touch pressure when the touch occurs Flow occurs to change the capacitance between the touch electrode layer and the conductive layer in the touch position and the peripheral region by changing the dielectric constant of the dielectric layer.
  • S202 Determine a touch pressure at the touch position according to a change in capacitance between the touch electrode layer and the conductive layer in the touch position and the peripheral area.
  • detecting a capacitance between the touch electrode layer and the conductive layer in the touch position and the peripheral area includes: detecting a capacitance between the touch electrode layer and the conductive layer at the touch position as a first capacitance, and a first capacitance Compared with the change before the touch occurs, the capacitance change amount is the first capacitance change amount; the capacitance between the touch electrode layer and the conductive layer in the peripheral region is detected as the second capacitance, and the second capacitance is generated compared to the touch Before it becomes larger, its capacitance change amount is the second capacitance change amount.
  • determining the touch pressure at the touch position according to the change of the capacitance includes: comparing the second capacitance change amount with the first capacitance to obtain a capacitance ratio, and determining the touch pressure at the touch position according to the capacitance ratio.
  • the touch position of the touch device is detected by the two-dimensional touch electrode array included in the touch electrode layer.
  • FIG. 3B is a schematic diagram of a deformation of a touch panel according to an embodiment of the present disclosure, wherein the solid dielectric layer 220 is in direct contact with the surface of the fluid dielectric layer 210, and the fluid dielectric layer 210 is a Layer liquid dielectric layer.
  • FIG. 3B simply illustrates the touch electrode layer as a film layer.
  • FIG. 3C is a schematic diagram showing the simulation of the touch condition of the fluid dielectric layer shown in FIG. 3B, that is, FIG. 3C is a schematic diagram of the touch condition simulation of the side surface of the fluid dielectric layer away from the conductive layer.
  • the touch panel in this embodiment is a flexible touch panel.
  • FIG. 3B is only a schematic view showing a peripheral area of a touch position and a touch position.
  • the touch panel 30 when the touch panel 30 is applied with the touch pressure 30 (the direction of the touch pressure 30 is the direction indicated by the arrow in the Z direction), the touch electrode at the touch position 101
  • the film layer such as the layer 110 is bent in the direction indicated by the arrow in the Z direction.
  • the touch electrode layer 110 and the solid dielectric layer 220 are bent toward the side facing the fluid dielectric layer 210, so that the fluid dielectric layer 210 is subjected to the touch applied to the touch panel 10.
  • the effect of the pressure 30 causes a change in the fluid distribution, that is, at the touch position 101, the thickness of the fluid dielectric layer 210 becomes thinner, that is, the side surface of the fluid dielectric layer 210 away from the conductive layer 300 approaches the conductive layer.
  • One side of the 300 (the direction indicated by the arrow in the Z direction) is recessed; the peripheral area 102 of the touch position is thickened by the thickness of the fluid dielectric layer 210, that is, the side surface of the fluid dielectric layer 210 remote from the conductive layer 300.
  • the touch location 101 corresponds to a region where the thickness of the fluid dielectric layer 210 is thinned
  • the peripheral region 102 of the touch location corresponds to a region where the thickness of the fluid dielectric layer 210 is thickened as an example, but actually may be There are some deviations, for example, the thickness of the peripheral portion of the touch position corresponding to the thickness of the fluid dielectric layer is thinner than before the touch occurs, but the capacitance at the position becomes large, and therefore should be divided into the periphery of the touch position. region.
  • the fluid in the fluid dielectric layer 210 at the touch location 101 flows to the peripheral region 102 of the touch location due to the applied pressure, so that the fluid at the touch location 101 is reduced.
  • the fluid in the peripheral region 102 of the touch position increases. Therefore, the side surface of the fluid dielectric layer 210 located at the touch position 101 away from the conductive layer 300 and the side surface of the fluid dielectric layer 210 of the peripheral region 102 of the touch position away from the conductive layer 300 are changed in opposite directions. To achieve a dynamic balance of the pressure applied to the fluid dielectric layer 210.
  • the above-mentioned “recess” and “bump” are relative to the side surface of the fluid dielectric layer away from the conductive layer when it is not subjected to the touch pressure applied to the touch panel 10, and the above expression is “depression”.
  • the side surface of the fluid dielectric layer that is away from the conductive layer is lowered, and the surface of the fluid dielectric layer that appears to be “bumped” in shape away from the conductive layer is raised.
  • the “one surface away from the conductive layer when the fluid dielectric layer is not applied by the touch pressure 30 applied to the touch panel 10" herein may be a substantially flat surface when the entire flexible touch panel is not bent.
  • the peripheral region 102 of the touch position is The fluid dielectric layer 210 generates a ring of protrusions surrounding the recesses, that is, a portion that surrounds the recesses in a state of arcuate rise.
  • the non-edge area of the touch panel is described as an example.
  • the touch position may also be located in an edge area of the touch panel.
  • the area surrounding the touch position is located on the side of the touch position near the center of the touch panel, and half surrounds the touch position.
  • the touch electrode layer 110 located at the touch position 101 is subjected to the touch pressure 30 applied to the touch panel 10 and bent toward the side where the conductive layer 300 is located, the touch is performed.
  • the capacitance in the touch position 101 between the electrode layer 110 and the conductive layer 300 and the peripheral area 102 in the touch position are changed, that is, the conductive layer 300 at the touch position 101 and the peripheral area 102 of the touch position
  • the capacitance between the touch electrode layer 100 and the touch electrode layer 100 changes.
  • detecting the amount of change in capacitance between the touch electrode layer 110 and the conductive layer 300 includes: detecting an initial capacitance between the touch electrode layer 110 and the conductive layer 300 before the touch occurs; and detecting the touch after the touch occurs.
  • the first capacitance and the second capacitance between the touch electrode layer 110 and the conductive layer 300 are compared with the initial capacitance to obtain a capacitance change amount.
  • environmental changes and noise are considered.
  • the initial capacitances at different locations between the touch electrode layer 110 and the conductive layer 300 may or may not be the same.
  • the touch electrode layer 110 is used to detect the first capacitor C1 between the touch electrode layer 110 and the conductive layer 300 at the touch position 101, and the touch electrode layer at the touch position 101 before the touch occurs.
  • the first capacitor C1 becomes smaller than the first initial capacitance between the conductive layer 300, and therefore, the detected first capacitor C1 is different from the first initial capacitance to obtain a first capacitance change amount ⁇ C1.
  • the touch electrode layer 110 is used to detect the second capacitance C2 (or C3) between the touch electrode layer 110 and the conductive layer 300 of the peripheral region 102 at the touch position, and different positions in the peripheral region 102 of the touch position.
  • the second capacitance between the touch electrode layer 110 and the conductive layer 300 may be the same or different.
  • two positions at two positions in the peripheral region 102 of the touch position shown in FIG. 3B are used.
  • the two capacitors C2 and C3 are described as an example.
  • the second capacitance C2 (or C3) becomes larger than the second initial capacitance between the touch electrode layer 110 of the peripheral region 102 of the touch position and the conductive layer 300, and the detected first The difference between the two capacitors C2 (or C3) and the second initial capacitance results in a second capacitance change amount ⁇ C2 (or ⁇ C3).
  • 3B is a schematic cross-sectional view of the touch panel. When the touch location 101 is located in the non-edge region of the touch panel, the peripheral region 102 of the touch location is located on both sides of the first region along the X direction.
  • the first capacitor may be a capacitor at any one of the touch positions.
  • the first capacitor is a combination of a plurality of electrodes collectively detecting feedback results.
  • the second capacitor is also a combination of several electrodes to jointly detect the feedback results.
  • the first capacitor is regarded as the capacitance at the position where the thickness of the fluid dielectric layer at the touch position is the smallest, and the second capacitance is regarded as the maximum thickness of the fluid dielectric layer in the peripheral region of the touch position.
  • the capacitance at the location For example, when performing pressure detection, the touch pressure may also be calculated by comparing the capacitance corresponding to each electrode at the touch position and the peripheral position, selecting the minimum capacitance value at the touch position and the maximum capacitance value of the peripheral region.
  • the dielectric constant between the touch electrode layer 110 and the conductive layer 300 is a mixed dielectric constant formed by mixing the film layers in the dielectric layer therebetween.
  • (d1 * ⁇ solid dielectric layer + d2 * ⁇ fluid dielectric layer ) / (d1 + d2), when ⁇ solid dielectric layer ⁇ ⁇ fluid dielectric layer , d2 minus Small, when d1 is unchanged, ⁇ decreases.
  • the interface between the touch electrode layer 110 and the conductive layer 300 at the touch position 101 is The dielectric constant ⁇ 1 of the electrical layer is reduced by ⁇ ⁇ 1 .
  • the respective mixed dielectric constants thereof can also be calculated with reference to the above formula for calculating the mixed dielectric constant.
  • the dielectric constant ⁇ 2 (or ⁇ 3 ) of the dielectric layer between the touch electrode layer 110 and the conductive layer 300 in the peripheral region 102 at the touch position is raised.
  • the overall volume may also be the volume of the portion of the fluid dielectric layer 210 that is recessed.
  • the applied pressure F As the applied pressure F is larger, the volume ⁇ V of the convex portion of the fluid dielectric layer 210 of the peripheral region 102 of the touch position is larger, and at this time, the fluid dielectric layer 210 of the peripheral region 102 of the touch position is raised.
  • the height ⁇ h2 (or ⁇ h3) is higher, and therefore, ⁇ h2 (or ⁇ h3) ⁇ ⁇ V.
  • the relationship between the dielectric constant ⁇ 2 (or ⁇ 3) being raised ⁇ 2 (or ⁇ 3) with the dielectric fluid height ⁇ h2 (or [Delta] H3) of the projection 210, and a height of fluid layer 210 of dielectric protrusions ⁇ h2 (or ⁇ h3) is related to the volume ⁇ V of the convex portion of the fluid dielectric layer 210, and the larger the volume ⁇ V of the convex portion of the fluid dielectric layer 210, the higher the dielectric constant ⁇ 2 (or ⁇ 3 ) is obtained.
  • the larger the applied pressure F the larger the reduced volume ⁇ V of the recessed portion of the fluid dielectric layer 210 at the touch position 101.
  • the fluid dielectric layer 210 at the touch position 101 is recessed.
  • the partially reduced height ⁇ h1 is larger, and therefore, ⁇ h1 ⁇ ⁇ V.
  • the relationship between the decreased ⁇ 1 and the applied pressure F is: ⁇ 1 ⁇ F.
  • the touch electrode layer 110 is bent toward the side close to the conductive layer 300 by the applied touch pressure 30, the touch electrode layer 110 and the conductive layer are electrically conductive.
  • the distance (d1+d2) between the layers 300 is reduced, that is, the thickness (d1+d2) of the dielectric layer is decreased, and the ratio of the dielectric constant ⁇ of the dielectric layer is reduced to be larger than the thickness of the dielectric layer (d1) +d2) Reduced ratio.
  • the capacitance and the dielectric constant ⁇ and between the touch electrode layer 110 and the conductive layer 300 are The relationship of the distance (d1+d2) shows that the first capacitance C1 between the touch electrode layer 110 and the conductive layer 300 at the touch position 101 is reduced, and the first capacitance change amount ⁇ C1 is small.
  • the fluid dielectric layer ie, the liquid dielectric layer
  • the solid dielectric layer has a dielectric constant of 4 and a thickness of 1000 microns.
  • the thickness of the fluid dielectric layer 210 at the touch location 101 is compressed by half, then:
  • the dielectric constant ⁇ 2 (or ⁇ 3 ) of the dielectric layer is increased by more than
  • the ratio of the distance between the touch electrode layer 110 and the conductive layer 300 is increased according to the capacitance and dielectric constant in the calculation formula of the capacitance in the planar capacitor and the thickness of the dielectric layer (between the conductive layer and the touch electrode layer)
  • the relationship between the distances and the second capacitor C2 (or C3) between the touch electrode layer 110 and the conductive layer 300 in the peripheral region 102 of the touch position is proportional to the value of the touch pressure, and therefore, the second capacitance change
  • the amount ⁇ C2 (or ⁇ C3) is proportional to the value of the touch pressure.
  • the solid dielectric layer has a dielectric constant of 4 and a thickness of 1000 microns.
  • the thickness of the liquid dielectric layer 210 of the peripheral region 102 of the touch location is pulled up by a quarter, then:
  • the first capacitor C1 is inversely proportional to the value of the pressure applied to the touch panel 10, and the second capacitor C2 (or C3)
  • the second capacitance change amount ⁇ C2 is proportional to the value of the pressure applied to the touch panel 10. Therefore, the greater the applied touch pressure 30, the second capacitance C2 (or C3) between the touch electrode layer 110 and the conductive layer 300 in the peripheral region 102 of the touch position, and the second capacitance change amount ⁇ C2 (or ⁇ C3)
  • FIG. 4 is a graph showing a relationship between a second capacitance change amount and a second capacitance change amount and a first capacitor capacitance ratio and an applied touch pressure according to an embodiment of the present disclosure, as shown in FIG.
  • the abscissa indicates the touch pressure applied by the touch panel
  • the ordinate indicates the variation range of the second capacitance change amount and the change range of the capacitance ratio.
  • the second capacitance change amount ⁇ C2 is proportional to the value of the pressure F, that is, the second capacitance change between the touch electrode layer and the conductive layer located in the second region as the touch pressure applied to the touch panel increases. The amount ⁇ C2 increases.
  • the second capacitance change amount ⁇ C2 is proportional to the value of the touch pressure F, and therefore, the second capacitance change amount ⁇ C2 and the first
  • the capacitance ratio ⁇ C2/C1 of the capacitor C1 is proportional to the value of the pressure F, that is, as the pressure applied to the touch panel increases, the capacitance ratio ⁇ C2/C1 also increases.
  • the intensity of the capacitance ratio ⁇ C2/C1 is greater than 3 times the second capacitance change amount ⁇ C2; when the touch pressure value is 10 g, the capacitance ratio ⁇ C2/ The intensity of C1 is approximately five times that of the second capacitance change amount ⁇ C2. As the value of the touch pressure increases, the change of the capacitance ratio ⁇ C2/C1 is more and more obvious than the change of the second capacitance change amount ⁇ C2.
  • the relationship between the capacitance ratio obtained by the second capacitance change amount ⁇ C2 and the first capacitance C1 and the touch pressure F can increase the amplitude of the ordinate.
  • the value, that is, the relationship between the capacitance ratio obtained by the ratio of the second capacitance change amount ⁇ C2 and the first capacitance C1 and the touch pressure F can more clearly show that the capacitance ratio is proportional to the value of the touch pressure.
  • the embodiment Before determining the touch pressure at the touch position, the embodiment further includes determining a touch pressure at the touch position according to a proportional relationship between the capacitance ratio and the value of the touch pressure.
  • a fitting function of the capacitance ratio and the value of the touch pressure can be established, or a lookup table of the capacitance ratio and the value of the touch pressure can be established.
  • the detected plurality of capacitance ratios are sequentially divided into a plurality of capacitance ratio ranges from small to large, and the value of the touch pressure corresponding to the capacitance ratio is as small as The large order is divided into a plurality of touch pressure levels, and the plurality of capacitance ratio ranges are in a one-to-one correspondence with the plurality of touch pressure levels.
  • a plurality of capacitance ratios are sequentially divided into a first capacitance ratio range, a second capacitance ratio range, and a third capacitance ratio range, and the value of the touch pressure corresponding to the capacitance ratio is divided into small to large Tap, tap, and re-press the touch level, that is, the capacitance ratio included in the first capacitance ratio range corresponds to the value of the touch pressure included in the tap level, and the second capacitance ratio range
  • the capacitance ratio included in the ratio corresponds to the value of the touch pressure included in the touch level
  • the capacitance ratio included in the third capacitance ratio range corresponds to the value of the touch pressure included in the re-pressed touch level.
  • the pressure touch detection method of the touch panel provided in this embodiment further includes: determining a touch pressure level to which the touch device is applied according to the capacitance ratio range.
  • the touch pressure applied by the touch panel when it is detected that the capacitance ratio between the touch electrode layer and the conductive layer satisfies the first capacitance ratio range, it may be determined that the touch pressure applied by the touch panel is a light touch level, and so on.
  • the electrode detects that the capacitance ratio between the touch electrode layer and the conductive layer meets the second capacitance ratio range it can be determined that the touch pressure applied by the touch panel is a light touch level; when the touch electrode detects the touch electrode
  • the capacitance ratio between the layer and the conductive layer satisfies the third capacitance ratio range, it can be determined that the touch pressure applied by the touch panel is a re-pressed touch level, and thus the touch panel provided in this embodiment can respond according to the pressing force. Corresponding operations to improve the human-computer interaction function, category and manner of the touch panel.
  • FIG. 5A is a partial structural diagram of a touch panel according to another embodiment of the present disclosure.
  • the difference from the embodiment shown in FIG. 3B is that the touch panel 10 in the embodiment is flexible.
  • the touch panel, the solid dielectric layer 220 is a flexible film layer, and the fluid dielectric layer includes a liquid dielectric layer 230 and an air layer 240.
  • the air layer 240 is located on a side of the liquid dielectric layer 230 facing the touch electrode layer 110. Before the touch occurs, the air layer 240 is in contact with the surface of the liquid dielectric layer 230 facing the touch electrode layer 110, and the dielectric constant of the air layer 240 is smaller than the dielectric constant of the liquid dielectric layer 230.
  • the solid dielectric layer 220 presses the air layer 240 to flow the air to the surrounding area of the touch position until the solid dielectric layer 220 is in contact with the liquid dielectric layer 230.
  • the solid dielectric layer 220 is recessed by the surface of the liquid dielectric layer 230 at the touch position due to the touch pressure 30, and the thickness thereof is reduced. That is, the liquid in the liquid dielectric layer 230 flows to the surroundings.
  • the air layer 240 is included between the touch electrode layer 110 and the conductive layer 300 at the touch position, and after the touch occurs, the touch electrode layer 110 and the conductive layer 300 at the touch position are not Including the air layer.
  • the dielectric constant of the liquid dielectric layer is 70
  • the thickness is 100 ⁇ m
  • the dielectric constant of the solid dielectric layer is 4, and the thickness is 1000 ⁇ m.
  • the electrical constant is 1 and the thickness is 10 microns.
  • the thickness of the liquid dielectric layer 230 at the touch location 101 is compressed by half, then:
  • the thickness of the liquid dielectric layer 230 is thinned so that the dielectric constant and the thickness of the dielectric layer between the touch electrode layer 110 and the conductive layer 300 become smaller, and the dielectric constant
  • the smaller ratio is larger than the ratio of the thickness of the dielectric layer between the touch electrode layer 110 and the conductive layer 300, so that the first capacitance becomes smaller than before the touch occurs.
  • the thickness of the liquid dielectric layer 230 between the touch electrode layer 110 and the conductive layer 300 in the peripheral region of the touch position becomes thicker than before the touch occurs, and the thickness of the solid dielectric layer 220 does not change. Therefore, the distance between the touch electrode layer 110 and the conductive layer 300 is increased.
  • the dielectric constant of the liquid dielectric layer is 70
  • the thickness is 100 ⁇ m
  • the dielectric constant of the solid dielectric layer is 4, and the thickness is 1000 ⁇ m.
  • the electrical constant is 1 and the thickness is 10 microns.
  • the thickness of the liquid dielectric layer 230 is increased by a quarter, and the thickness of the air layer 240 is compressed by half, then:
  • the thickness of the liquid dielectric layer 230 is increased to increase the dielectric constant and thickness of the dielectric layer between the touch electrode layer 110 and the conductive layer 300, and
  • the ratio at which the electric constant becomes larger is larger than the ratio of the thickness of the dielectric layer between the touch electrode layer 110 and the conductive layer 300, so that the second capacitance becomes larger than before the touch occurs.
  • the first capacitance is inversely proportional to the value of the pressure applied to the touch panel 10 in the touch device
  • the second capacitance is The second capacitance change amount is proportional to the value of the pressure applied to the touch panel 10 in the touch device. Therefore, the capacitance ratio of the second capacitance change amount to the first capacitance is proportional to the value of the pressure, that is, as the pressure applied to the touch panel increases, the capacitance ratio also increases.
  • FIG. 5B is a partial structural diagram of a touch device according to another embodiment of the present disclosure.
  • the touch panel 10 in the embodiment is rigid.
  • the touch panel, the solid dielectric layer 220 is a rigid film layer, and the fluid dielectric layer includes a liquid dielectric layer 230 and an air layer 240.
  • the air layer 240 is located on a side of the liquid dielectric layer 230 facing the touch electrode layer 110, that is, Before the touch occurs, the air layer 240 is in contact with the surface of the liquid dielectric layer 230 facing the touch electrode layer 110, and the dielectric constant of the air layer 240 is smaller than the dielectric constant of the liquid dielectric layer 230.
  • the solid dielectric layer 220 presses the air layer 240 to flow the air around the touch position until the solid dielectric layer 220 and the liquid The dielectric layer 230 is in contact. After the solid dielectric layer 220 is in contact with the liquid dielectric layer 230, the solid dielectric layer 220 is recessed by the surface of the liquid dielectric layer 230 at the touch position due to the touch pressure 30, and the thickness thereof is reduced. That is, the liquid in the liquid dielectric layer 230 flows to the surroundings.
  • the air layer 240 is included between the touch electrode layer 110 and the conductive layer 300 at the touch position, and after the touch occurs, the touch electrode layer 110 and the conductive layer 300 at the touch position are not Including the air layer.
  • the dielectric constant of the liquid dielectric layer is 70
  • the thickness is 100 ⁇ m
  • the dielectric constant of the solid dielectric layer is 4, and the thickness is 1000 ⁇ m.
  • the electrical constant is 1 and the thickness is 10 microns.
  • the thickness of the liquid dielectric layer 230 at the touch location 101 is compressed by a quarter, then:
  • the thickness of the liquid dielectric layer 230 is thinned so that the dielectric constant and the thickness of the dielectric layer between the touch electrode layer 110 and the conductive layer 300 become smaller, and the dielectric constant
  • the smaller ratio is larger than the ratio of the thickness of the dielectric layer between the touch electrode layer 110 and the conductive layer 300, so that the first capacitance becomes smaller than before the touch occurs.
  • the touch panel 10 in the present embodiment is a rigid touch panel. Therefore, the distance between the touch electrode layer 110 and the conductive layer 300 in the peripheral region of the touch position is smaller than that before the touch, that is, The thickness of the dielectric layer 200 between the touch electrode layer 110 and the conductive layer 300 in the peripheral region of the touch position becomes small.
  • the dielectric constant of the liquid dielectric layer is 70
  • the thickness is 100 ⁇ m
  • the dielectric constant of the solid dielectric layer is 4, and the thickness is 1000 ⁇ m.
  • the electrical constant is 1 and the thickness is 10 microns.
  • the thickness of the liquid dielectric layer 230 is increased by one-twentieth, and the thickness of the air layer 240 is compressed by four-fifths.
  • the thickness of the liquid dielectric layer 230 is increased to increase the dielectric constant of the dielectric layer between the touch electrode layer 110 and the conductive layer 300, and the touch electrode layer The thickness of the dielectric layer between 110 and conductive layer 300 becomes smaller, thereby making the second capacitance larger than before the touch occurs.
  • the first capacitance is inversely proportional to the value of the pressure applied to the touch panel in the touch device, the second capacitance and the first The amount of capacitance change is proportional to the value of the pressure applied to the touch panel in the touch device. Therefore, the capacitance ratio of the second capacitance change to the first capacitance is proportional to the value of the pressure, that is, as applied to the touch. As the pressure of the panel increases, the capacitance ratio also increases.
  • the thickness of the air layer and the liquid dielectric layer are given above, however, embodiments according to the present disclosure are not limited thereto.
  • the dielectric constant ⁇ of the air in the air layer and the liquid liquid dielectric constant ⁇ of the dielectric layer and the thickness d of the thickness d of the liquid air in the air layer and the dielectric layer liquid satisfies the following relationship:
  • the thickness range of the fluid dielectric layer 210 in the embodiment of the present disclosure may also be determined according to the applied pressure.
  • FIG. 6 is a schematic diagram of the fluid dielectric layer shown in FIG. 3B, and is simply illustrated in FIG. The geometric relationship of the locations of the fluid dielectric layer 210 of the peripheral region 102 of the touch location.
  • ⁇ h2 is the height of the portion of the fluid dielectric layer 210 located at the touch area at the side away from the conductive layer, and the fluid dielectric of the peripheral region 102 at the touch position.
  • the entire section of the layer 210 after the protrusion can be formed into a fan shape, the radius of the sector is r, the thickness of the fluid dielectric layer 210 when no pressure is applied is d, and the half of the distance between the two corners of the sector and the intersection of the arc is l, half of the angle between the two radii of the sector is ⁇ , and the value of ⁇ is small. According to the geometric relationship, the following formula can be obtained:
  • the calculation formula including S up indicates the area of the sector minus the area of the triangle, and the area of the section of the convex portion of the fluid dielectric layer 210 is obtained.
  • the pressure applied by the touch panel is in the range of 0.1kg-0.8kg, according to the formula:
  • the relationship between the thickness of the fluid dielectric layer 210 and the applied force can be obtained according to the above formula, and the fluid dielectric layer 210 can be set according to the above relationship formula. thickness of.
  • the touch electrode layer is configured to detect the touch position
  • the embodiment according to the present disclosure is not limited thereto.
  • the touch electrode layer may not be an electrode for detecting a touch position. Therefore, the embodiment of the present disclosure can also detect the touch pressure separately.

Abstract

一种触控面板、触控装置及其压力触控检测方法。该触控面板包括:包括触控电极层(110);导电层(300)与触控基板(100)相对设置,且被配置为与触控电极层(110)形成电容;介电层(200)位于触控电极层(110)与导电层(300)之间,介电层(200)包括流体介电层(210)和固体介电层(220),流体介电层(210)的介电常数大于固体介电层(220)的介电常数,流体介电层(210)中的流体被配置为在触控压力的作用下流动以改变介电层(220)的介电常数来使触控位置以及触控位置的周边区域中触控电极层(110)与导电层(300)之间的电容发生变化,电容的变化用于确定触控压力。该触控面板中可以应用于检测使用者的按压力度,从而能够根据按压力度响应相应的操作以提高触控面板的人机交互功能、类别以及方式。

Description

触控面板及其压力触控检测方法、触控装置
本申请要求于2018年3月16日递交的中国专利申请第201810217394.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种触控面板及其压力触控检测方法、触控装置。
背景技术
目前,触控面板技术中的电容式触控技术较为常用。通常,电容式触控面板包括自电容式和互电容式。自电容式触控面板包括在衬底基板上用透明导电材料制作的触控电极阵列,这些触控电极分别与地构成电容。当手指触摸到自容式触控面板时,手指的电容将会叠加到对应的触控电极上,触控侦测芯片在触控时间段通过检测各触控电极的电容值变化可以判断出触控位置。互电容式触控面板包括在衬底基板上用透明导电材料制作相互绝缘的横向电极和纵向电极,两组电极交叉的地方将会形成电容。
发明内容
本公开的至少一实施例提供一种触控面板,该触控面板包括:触控电极层;导电层,与所述触控基板相对设置,所述导电层被配置为与所述触控电极层形成电容;介电层,位于所述触控电极层与所述导电层之间,所述介电层包括流体介电层和固体介电层,所述流体介电层的介电常数大于所述固体介电层的介电常数,所述流体介电层中的流体被配置为在触控压力的作用下发生流动以通过改变所述介电层的介电常数来使触控位置以及所述触控位置的周边区域中所述触控电极层与所述导电层之间的电容发生变化,所述电容的变化用于确定所述触控压力。
在一些示例中,所述流体介电层被进一步配置为:在所述触控压力的作 用下,所述流体介电层中的在所述触控位置的流体向所述周边区域流动,以使所述触控位置处的所述介电层的介电常数相较于触控发生之前变小,进而使所述触控位置处的所述触控电极层与所述导电层之间的电容变小,在所述周边区域的所述介电层的介电常数相较于触控发生之前变大,以使所述周边区域的所述触控电极层与所述导电层之间的电容变大。
在一些示例中,所述触控电极层和所述导电层至少之一包括二维阵列排布的多个子电极。
在一些示例中,所述触控电极包括阵列排布的多个子电极且被配置为检测触控位置。
在一些示例中,所述触控面板为柔性触控面板。
在一些示例中,所述固体介电层为柔性层。
在一些示例中,所述流体介电层为液体介电层,所述固体介电层与所述液体介电层的表面接触。
在一些示例中,所述流体介电层包括液体介电层和空气层,所述空气层位于所述液体介电层面向所述触控电极层的一侧,且所述空气层的介电常数小于所述液体介电层的介电常数。
在一些示例中,在未施加所述触控压力时,所述空气层的介电常数ε 空气和所述液体介电层的介电常数ε 液体以及所述空气层的厚度d 空气和所述液体介电层的厚度d 液体满足以下关系:
10×d 空气×ε 空气≥d 液体×ε 液体≥5×d 空气×ε 空气
在一些示例中,所述液体介电层包括电解液,所述电解液的溶剂包括乙腈和/或碳酸丙烯酯,所述电解液的溶质包括四氟硼酸四乙基铵。
在一些示例中,所述流体介电层的厚度为100μm-500μm。
在一些示例中,所述导电层为金箔层,沿垂直于所述金箔层的方向,所述金箔层的厚度为100μm-300μm。
在一些示例中,所述触控电极层包括二维触控电极阵列,所述二维触控电极阵列包括多个感应电极,且所述电容形成于所述感应电极与所述导电层之间。
本公开一实施例提供一种触控装置,该触控装置包括上述任一项所述的触控面板。
本公开一实施例提供应用于上述触控面板的压力触控检测方法,包括:检测触控位置以及所述触控位置处和所述周边区域中的所述触控电极层与所述导电层之间的电容,其中,在触控发生时,所述流体介电层中的流体在触控压力的作用下发生流动以通过改变所述介电层的介电常数来使所述触控位置以及所述周边区域中所述触控电极层与所述导电层之间的电容发生变化;根据所述触控位置以及所述周边区域中所述触控电极层与所述导电层之间的电容的变化,确定所述触控位置处的触控压力。
在一些示例中,检测所述触控位置处和所述周边区域中的所述触控电极层与所述导电层之间的电容包括:检测所述触控位置处的所述触控电极层与所述导电层之间的电容为第一电容,所述第一电容相较于触控发生之前变小,其电容变化量为第一电容变化量;检测所述周边区域的所述触控电极层与所述导电层之间的电容为第二电容,所述第二电容相较于触控发生之前变大,其电容变化量为第二电容变化量。
在一些示例中,根据所述触控位置以及所述周边区域中所述触控电极层与所述导电层之间的电容的变化,确定所述触控位置处的触控压力包括:将所述第二电容变化量与所述第一电容作比值以得到电容比,根据所述电容比,确定所述触控位置处的触控压力。
在一些示例中,所述触控电极层与所述导电层之间的电容计算公式为:C=K*ε/(d1+d2),其中K为常数,ε为所述介电层的介电常数,d1为所述固体介电层的厚度,d2为所述流体介电层的厚度,在所述触控压力作用下,所述触控位置处的所述流体介电层的厚度d2变小以使所述介电常数ε和所述介电层的厚度(d1+d2)均变小,且所述介电常数ε变小的比例大于所述介电层的厚度(d1+d2)变小的比例,从而使所述第一电容相较于触控发生之前变小。
在一些示例中,所述触控面板为柔性触控面板,在所述触控压力作用下,在所述周边区域处的所述流体介电层的厚度d2变大以使所述介电常数ε和所述介电层的厚度(d1+d2)均变大,且所述介电常数ε变大的比例大于所述介电层的厚度(d1+d2)变大的比例,从而使所述第二电容相较于触控发生之前变大。
在一些示例中,所述流体介电层包括液体介电层和空气层,且所述空气层位于所述液体介电层面向所述触控电极层的一侧,在所述触控压力作用下,在所述周边区域处,所述介电层的厚度(d1+d2)减小,且所述液体介电层的厚 度变大以使所述介电常数ε变大,从而使所述第二电容相较于触控发生之前变大。
在一些示例中,所述电容比与所述触控压力的值呈正比例关系,确定所述触控位置处的触控压力之前还包括:根据所述正比例关系,将检测到的多个所述电容比划分为多个电容比范围,并且将所述触控压力的值划分为多个触控压力等级,其中,所述多个电容比范围与所述多个触控压力等级为一一对应的关系。
在一些示例中,确定所述触控位置处的触控压力包括:根据所述电容比范围确定所述触控装置被施加的触控压力等级。
在一些示例中,检测所述触控电极层与所述导电层之间的电容变化量包括:触控发生之前,检测所述触控电极层与所述导电层之间的初始电容;触控发生之后,将检测到的所述触控电极层与所述导电层之间的电容与所述初始电容作差值以得到所述电容变化量。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一实施例提供的一种触控面板的局部结构示意图;
图1B为本公开一实施例提供的触控面板的局部结构示意图;
图2为本公开另一实施例提供的触控装置的示意框图;
图3A为本公开的一实施例提供的触控面板的压力触控检测方法的示意性流程图;
图3B为本公开一实施例提供的触控面板在被施加压力时的形变示意图;
图3C为对图3B所示的流体介电层的触控情况的模拟示意图;
图4为本公开一实施例提供的第二电容变化量以及第二电容变化量与第一电容的电容比与施加的压力的关系曲线图;
图5A为本公开另一实施例提供的触控面板在被施加压力时的形变示意图;
图5B为本公开另一实施例提供的触控面板在被施加压力时的形变示意 图;
图6为图3B所示的液体介电层的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在研究中,本申请的发明人发现:目前,液晶显示行业通过在液晶显示装置的模组中添加金属框可以实现压力的检测,即提供垂直于显示屏幕所在平面的方向的检测,从而实现三维触控检测,但是,在柔性器件中很难采用固定不变的金属板作为参考面。
本公开的实施例提供一种触控面板及其压力触控检测方法、触控装置。该触控面板包括触控基板、介电层以及导电层。触控基板包括触控电极层,触控电极层被配置为检测触控位置;导电层与触控基板相对设置,导电层被配置为与触控电极层形成电容;介电层位于触控电极层与导电层之间,介电层包括流体介电层和固体介电层,流体介电层的介电常数大于固体介电层的介电常数,流体介电层中的流体被配置为在触控压力的作用下发生流动以通过改变介电层的介电常数来使触控位置以及触控位置的周边区域中触控电极层与导电层之间的电容发生变化,电容的变化用于确定触控压力。该触控面板中包括的流体介电层可以应用于柔性触控面板中以检测使用者的按压力度, 从而能够根据按压力度响应相应的操作以提高触控面板的人机交互功能、类别以及方式。
下面结合附图对本公开实施例提供的触控面板及其压力触控检测方法、触控装置进行描述。
图1A为本公开一实施例提供的一种触控面板的局部结构示意图。如图1A所示,触控面板10包括触控基板100、介电层200以及导电层300。触控基板100包括触控电极层110,触控电极层110包括二维触控电极阵列,该二维触控电极阵列包括多个感应电极111,触控电极层110被配置为检测触控位置,即检测使用者对触控面板10进行触控操作的位置;导电层300与触控基板100相对设置,且导电层300被配置为与触控电极层110形成电容;介电层200位于触控电极层110与导电层300之间,介电层200包括流体介电层210和固体介电层220,流体介电层210的介电常数大于固体介电层220的介电常数,即,导电层300与触控电极层110形成了平板式电容器,导电层300和触控电极层110分别为平板式电容器的两个极板,流体介电层210和固体介电层220为位于两个极板之间的介质。流体介电层210中的流体被配置为在触控压力的作用下发生流动以通过改变介电层200的介电常数来使触控位置以及触控位置的周边区域中触控电极层110与导电层300之间的电容发生变化,电容的变化用于确定触控压力。
例如,上面的实施例以触控电极层包括二维触控电极阵列为例进行了描述。由于触控电极包括二维排布的电极阵列,因此,可以检测不同位置的电容值。然而,根据本公开的实施例不限于此,导电层300也可以包括二维阵列排布的多个子电极。
例如,流体介电层210被进一步配置为:在触控压力的作用下,流体介电层210中的在触控位置的流体向周边区域流动,以使触控位置处的介电层200的介电常数(指介电层中包括的所有膜层的混合的介电常数)相较于触控发生之前变小,进而使触控电极层110与导电层300之间的电容变小,在周边区域的介电层200的介电常数相较于触控发生之前变大,以使触控电极层110与导电层300之间的电容变大,因此,该触控面板10可以根据电容的变化来确定触控压力。上述触控位置的周边区域指围绕触控位置的区域,该周边区域由触控电极层与导电层之间的电容相较于触控发生之前变大的条件 来限定,即由触控位置指向周边区域的方向,触控电极层与导电层之间的电容(相较于触控发生之前)包括变小-变大-不变(触控位置-周边区域-周边区域以外的区域)这三个区域,周边区域为电容变大对应的区域。
例如,本公开一实施例中,流体介电层210为微观上可以流动的液体介电层。这里的液体介电层的制作方法可采用在两个膜层(或柔性基板)之间注入液体,然后对两个膜层进行封装的方式制作,本实施例对此不作限制。
例如,本实施例提供的触控面板10为柔性触控面板,固体介电层220为柔性膜层,且柔性膜层与液体介电层210的表面接触,即,固体介电层220与液体介电层210之间不存在空气(或存在的空气可以忽略不计)。
例如,固体介电层220为柔性层。
例如,如图1A所示,触控面板10可以受触控压力的作用向Z方向的箭头所指的方向弯曲。需要说明的是,触控面板10为柔性触控面板指:至少流体介电层210与触控电极层110之间的膜层均为柔性膜层。
本公开的实施例以固体介电层220位于流体介电层210面向触控电极层110的一侧为例进行描述,但不限于此,固体介电层220也可以位于流体介电层210远离触控电极层110的一侧。
一方面,相对于在触控电极层与导电层之间填充空气的情况,本实施例提供的触控面板采用了在触控电极层与导电层之间填充液体介电层的方式,无需专门制作排气阀,从而节省了工艺;另一方面,液体介电层的介电常数大于固体介电层的介电常数,因此包括液体介电层的触控面板具有更好的检测性能。例如,液体介电层以及固体介电层的介电常数,是指液体介电层的材料和固体介电层的材料的介电常数。此外,由于液体介电层为液体膜层,液体膜层更适合柔性触控面板,并且可以利用流体力学来完成三维触控检测。本实施例提供的触控面板包括的液体介电层可以应用于柔性触控面板中以实现三维触控检测,从而提高了触控面板的人机交互功能、类别以及方式。
例如,如图1A所示,液体介电层210包括电解液,即,液体介电层210可以为电解液层。
例如,如图1A所示,电解液的溶剂201包括乙腈和/或碳酸丙烯酯,电解液的溶质202包括四氟硼酸四乙基铵等材料。
例如,如图1A所示,流体介电层210的厚度d为100μm-500μm,即, 电解液层的厚度为100μm-500μm。
例如,电解液层的厚度可以为200μm-300μm。
例如,电解液层的厚度可以为120μm-500μm。
本实施例提供的电解液层具有适当的厚度可以吸收施加到触控面板的压力,并且对施加的压力具有较好检测效果。
例如,如图1A所示,导电层300为金属层。
例如,如图1A所示,沿垂直于导电层300的方向,即沿Z方向,导电层300的厚度H为100μm-300μm。
例如,本实施例的一示例中导电层300的材料为金箔,在金箔的厚度为100μm-300μm时,具有良好的柔软性,可以作为柔性触控面板对Z方向进行触控识别时的参考面。
例如,如图1A所示,本实施例提供的触控电极层110可以包括自容触控电极,也可以包括互容触控电极。
例如,二维触控阵列中的触控电极为自容式触控电极,全部触控电极均可以作为一层感应电极,以检测其与导电层300之间的电容。
例如,二维触控阵列中的触控电极为互容式触控电极,其包括触控感应电极和触控驱动电极,触控感应电极即为用以检测触控电极层110与导电层300之间的电容的一层电极,且该电容为形成于触控感应电极与导电层之间的电容。
例如,如图1A所示,在导电层300远离流体介电层210的一侧还包括衬底基板500。
例如,图1B为本公开一实施例提供的触控面板的局部结构示意图,如图1B所示,触控基板100还包括有机发光二极管120,触控面板10为有机发光二极管触控显示面板。
例如,一个触控电极对应多个像素单元,例如,18×32个触控电极对应1920×1080个像素。
例如,当触控面板10包括多个有机发光二极管120,包括有机发光二极管120的显示面板(图中未示出)可以为聚对苯二甲酸乙二醇酯(PET)-有机发光二极管(OLED)-聚对苯二甲酸乙二醇酯(PET)-偏光板(POL),即,本实施例中的触控面板为聚对苯二甲酸乙二醇酯-有机发光二极管-聚对 苯二甲酸乙二醇酯-偏光板-流体介电层-导电层-聚对苯二甲酸乙二醇酯的堆叠结构。
本实施例以发光二极管位于触控电极层远离流体介电层的一侧为例进行描述,但不限于此,发光二极管也可以位于触控电极层与流体介电层之间,只要不影响压力触控的检测即可。
本公开实施例提供的触控面板可以为触控显示面板,例如为柔性有机发光二极管触控显示面板,本实施例通过设置流体介电层,可以更好的实现柔性有机发光二极管触控显示面板的压力触控的检测,进而实现三维触控检测。
图2为本公开另一实施例提供的触控装置的示意框图,如图2所示,本公开实施例提供的触控装置20包括上述任一实施例提供的触控面板10,本实施例提供的触控装置20包括流体介电层,从而可以更好的实现三维触控检测。
例如,触控装置20可以为触控显示装置,例如为液晶触控显示装置或者有机发光二极管触控显示装置等触控显示装置以及包括该触控显示装置的电视、数码相机、手机、平板电脑、笔记本电脑、导航仪等任何具有触控显示功能的产品或者部件,本实施例不限于此。
图3A为本公开的一实施例提供的触控面板的压力触控检测方法的示意性流程图,如图3A所示,压力触控检测方法具体包括如下步骤。
S201:检测触控位置以及触控位置处和周边区域中的触控电极层与导电层之间的电容,其中,在触控发生时,流体介电层中的流体在触控压力的作用下发生流动以通过改变介电层的介电常数来使触控位置以及周边区域中触控电极层与导电层之间的电容发生变化。
S202:根据触控位置以及周边区域中触控电极层与导电层之间的电容的变化,确定触控位置处的触控压力。
例如,检测触控位置处和周边区域中的触控电极层与导电层之间的电容包括:检测触控位置处的触控电极层与导电层之间的电容为第一电容,第一电容相较于触控发生之前变小,其电容变化量为第一电容变化量;检测周边区域的触控电极层与导电层之间的电容为第二电容,第二电容相较于触控发生之前变大,其电容变化量为第二电容变化量。
例如,根据电容的变化,确定触控位置处的触控压力包括:将第二电容 变化量与第一电容作比值以得到电容比,根据电容比,确定触控位置处的触控压力。
例如,通过触控电极层包括的二维触控电极阵列检测使用者对触控装置进行触控操作时的触控位置。
例如,图3B为本公开一实施例提供的触控面板在被施加压力时的形变示意图,其中的固体介电层220与流体介电层210的表面直接接触,且流体介电层210为一层液体介电层。
为了方便示意,图3B将触控电极层简单的示意为一层膜层。图3C为对图3B所示的流体介电层的触控情况的模拟示意图,即图3C为流体介电层的远离导电层的一侧表面的触控情况模拟示意图。本实施例中的触控面板为柔性触控面板。图3B仅是示意性的示出触控位置和触控位置的周边区域。
例如,如图3B和图3C所示,当触控面板10被施加触控压力30(触控压力30的方向为Z方向的箭头所指的方向)时,触控位置101处的触控电极层110等膜层向Z方向的箭头所指的方向弯曲。
例如,在触控位置101处,触控电极层110以及固体介电层220向面向流体介电层210的一侧弯曲,从而使流体介电层210受到施加到触控面板10上的触控压力30的作用,发生流体分布的改变,即,在触控位置101处,流体介电层210的厚度变薄,也就是流体介电层210的远离导电层300的一侧表面向靠近导电层300的一侧(Z方向的箭头所指的方向)凹陷;触控位置的周边区域102,流体介电层210的厚度变厚,也就是流体介电层210的远离导电层300的一侧表面向远离导电层300的一侧(Z方向的箭头所指的方向的反方向)凸起。本实施例以触控位置101对应流体介电层210的厚度变薄的区域,触控位置的周边区域102对应流体介电层210的厚度变厚的区域为例进行描述,但实际上可能会有一些偏差,例如触控位置的周边区域对应流体介电层的厚度也有少部分相较于触控发生之前变薄,但该位置的电容变大,因此也应被划分为触控位置的周边区域。
由于流体介电层210的流体特性,触控位置101处的流体介电层210中的流体因被施加压力而向触控位置的周边区域102流动,以使位于触控位置101的流体减少,触控位置的周边区域102的流体增多。因此,位于触控位置101处的流体介电层210的远离导电层300的一侧表面与触控位置的周边 区域102的流体介电层210的远离导电层300的一侧表面向相反方向变化,以使施加到流体介电层210的压力达到动态平衡。
上述的“凹陷”和“凸起”是相对于流体介电层在未受到施加到触控面板10的触控压力作用时的远离导电层的一侧表面而言的,上述的表现为“凹陷”状的流体介电层的远离导电层的一侧表面被降低,表现为“凸起”状的流体介电层的远离导电层的一侧表面被升高。这里的“流体介电层在未受到施加到触控面板10的触控压力30作用时的远离导电层的一侧表面”可以为整个柔性触控面板没有被弯曲时所呈现的大致平面,也可以为柔性触控面板被弯曲时的表面,而在触控面板发生弯曲时,由于宏观上的弯曲远大于微观尺度,并且触控检测的参考基准(baseline)会随着环境的变化而不断刷新,刷新过程会将环境的变化和噪声计算在内(属于后期软件的优化),所以触控面板发生弯曲时对流体介电层造成形变的影响可以通过优化降到最低。
例如,如图3B和图3C所示,在位于触控位置101处的流体介电层210受到施加到触控面板10的触控压力的作用而产生凹陷时,触控位置的周边区域102的流体介电层210产生一圈围绕上述凹陷的凸起,即围绕凹陷的部分呈圆弧上升的状态。
本实施例以触控位置位于触控面板的非边缘区域为例进行描述,但不限于此,触控位置也可以位于触控面板的边缘区域。当触控位置位于触控面板的边缘区域时,围绕触控位置的区域位于触控位置的靠近触控面板中心的一侧,且半围绕触控位置。
例如,如图3B所示,由于位于触控位置101处的触控电极层110受到施加到触控面板10的触控压力30的作用而向导电层300所在的一侧弯曲,因此,触控电极层110与导电层300之间的触控位置101处和触控位置的周边区域102内的电容均发生变化,即,位于触控位置101处和触控位置的周边区域102的导电层300与触控电极层100之间的电容均发生变化。
例如,检测触控电极层110与导电层300之间的电容变化量包括:触控发生之前,检测触控电极层110与导电层300之间的初始电容;触控发生之后,将检测到的触控电极层110与导电层300之间的第一电容和第二电容与初始电容作差值以得到电容变化量。其中,在检测初始电容的过程中,考虑了环境的变化以及噪声。
例如,触控电极层110与导电层300之间的不同位置处的初始电容可能相同,也可能不相同。
例如,采用触控电极层110检测位于触控位置101处的触控电极层110与导电层300之间的第一电容C1,与触控发生之前,位于触控位置101处的触控电极层110与导电层300之间的第一初始电容相比,该第一电容C1变小,因此,将检测到的第一电容C1与第一初始电容作差得到第一电容变化量ΔC1。
例如,采用触控电极层110检测位于触控位置的周边区域102的触控电极层110与导电层300之间的第二电容C2(或C3),触控位置的周边区域102中的不同位置的触控电极层110与导电层300之间的第二电容可能相同,也可能不相同,本实施例以图3B所示的触控位置的周边区域102中的两个位置处的两个第二电容C2和C3为例进行描述。
例如,触控发生之前,触控位置的周边区域102的触控电极层110与导电层300之间的第二初始电容相比,第二电容C2(或C3)变大,将检测到的第二电容C2(或C3)与第二初始电容作差得到第二电容变化量ΔC2(或ΔC3)。由于图3B为触控面板的截面示意图,所以当触控位置101处位于触控面板的非边缘区域时,触控位置的周边区域102会位于第一区域的沿X方向的两侧。
上述的第一电容可以是触控位置处中的任一个位置处的电容,在实际电路工作中,该第一电容是由若干个电极共同探测反馈结果的综合。同理,第二电容也是由若干个电极共同探测反馈结果的综合。本公开中为了方便描述,将第一电容视为触控位置处的流体介电层的厚度最小的位置处的电容,第二电容视为触控位置的周边区域的流体介电层的厚度最大的位置处的电容。例如,在进行压力检测时,也可以通过比较触摸位置处和周边位置处各个电极对应的电容大小,选取触摸位置处的最小电容值以及周边区域的最大电容值来计算触摸压力。
例如,如图3B所示,触控电极层110与导电层300之间的介电常数为位于其间的介电层中的各膜层按比例混合形成的混合介电常数。根据混合介电常数的计算公式:ε=(d1*ε 固体介电层+d2*ε 流体介电层)/(d1+d2),当ε 固体介电层流体介电层,d2减小,d1不变时,ε减小。因此,位于触控位置101处的流体介 电层210的远离导电层300的一侧表面被降低了高度Δh1时,位于触控位置101处的触控电极层110与导电层300之间的介电层的介电常数ε 1降低了Δε 1。流体介电层210的远离导电层300的一侧表面被降低的高度Δh1越大(d2越小),介电常数ε 1被降低的Δε 1越大,即Δε 1∝Δh1。
例如,当流体介电层或固体介电层各自均包括多层时,其各自的混合介电常数也可以参照上述混合介电常数的计算公式进行计算。
同理,根据混合介电常数的计算公式,在d2增大,d1不变时,ε增大,因此,位于触控位置的周边区域102的流体介电层210的远离导电层300的一侧表面被升高了高度Δh2(或Δh3)时,位于触控位置的周边区域102的触控电极层110与导电层300之间的介电层的介电常数ε 2(或ε 3)升高了Δε 2(或Δε 3)。流体介电层210的远离导电层300的一侧表面被升高的高度Δh2(或Δh3)的数值越大,介电常数ε 2(或ε 3)被升高的Δε 2(或Δε 3)越大,即Δε 2(或Δε 3)∝Δh2(或Δh3)。
例如,被施加到流体介电层210的压力满足公式F=ρ*g*(ΔV),其中的ρ为流体介电层210的密度,ΔV既可以为流体介电层210凸起的部分的整体的体积,也可以为流体介电层210凹陷的部分的体积。
由于施加的压力F越大,触控位置的周边区域102的流体介电层210凸起的部分的体积ΔV就越大,此时,触控位置的周边区域102的流体介电层210凸起的高度Δh2(或Δh3)就越高,因此,Δh2(或Δh3)∝ΔV。根据介电常数ε 2(或ε 3)被升高的Δε 2(或Δε 3)与流体介电层210凸起的高度Δh2(或Δh3)的关系,以及流体介电层210凸起的高度Δh2(或Δh3)与流体介电层210凸起的部分的体积ΔV的关系,可以得到流体介电层210凸起的部分的体积ΔV越大,介电常数ε 2(或ε 3)被升高的Δε 2(或Δε 3)就越大,即,Δε 2(或Δε 3)∝ΔV,从而得到介电常数ε 2(或ε 3)被升高的Δε 2(或Δε 3)与被施加的压力F的关系为:Δε 2(或Δε 3)∝F。
同理,由于施加的压力F越大,位于触控位置101处的流体介电层210凹陷的部分减少的体积ΔV就越大,此时,位于触控位置101处的流体介电层210凹陷部分减少的高度Δh1就越大,因此,Δh1∝ΔV。根据介电常数ε 1被降低的Δε 1与流体介电层210凹陷部分减少的高度Δh1的关系,以及流体介电层210凹陷部分减少的高度Δh1与流体介电层210凹陷的部分减少的体 积ΔV的关系,可以得到流体介电层210凹陷的部分减少的体积ΔV越大,介电常数ε 1被降低的Δε 1就越大,即,Δε 1∝ΔV,从而得到介电常数ε 1被降低的Δε 1与被施加的压力F的关系为:Δε 1∝F。
例如,如图3B所示,在触控位置101处,由于触控电极层110受到被施加的触控压力30的作用向靠近导电层300的一侧弯曲,因此,触控电极层110与导电层300之间的距离(d1+d2)减小,即介电层的厚度(d1+d2)减小,并且,介电层的介电常数ε减小的比例大于介电层的厚度(d1+d2)减小的比例。因此,根据平板式电容器中电容的计算公式C=K*ε/(d1+d2)(其中的K为常数)中的电容与介电常数ε以及触控电极层110与导电层300之间的距离(d1+d2)的关系可知,位于触控位置101处的触控电极层110与导电层300之间的第一电容C1减小,并且第一电容变化量ΔC1较小。
假设流体介电层(即为液体介电层)的介电常数为70,厚度为100微米,固体介电层的介电常数为4,厚度为1000微米。
触控位置101处流体介电层210的厚度被压缩一半,则:
触控前:ε 1=(70*100+4*1000)/(100+1000)=10,C1=10K/(100+1000)=0.00909K;
触控后:ε 1=(70*50+4*1000)/(50+1000)=7.143,C1=7.143K/(50+1000)=0.0068K。
同理,由于位于触控位置的周边区域102的触控电极层110与导电层300之间的距离增大,介电层的介电常数ε 2(或ε 3)被升高了的比例大于触控电极层110与导电层300之间的距离增大的比例,根据平板式电容器中电容的计算公式中的电容与介电常数以及介电层的厚度(导电层与触控电极层之间的距离)的关系可知,位于触控位置的周边区域102的触控电极层110与导电层300之间的第二电容C2(或C3)正比于触控压力的值,因此,第二电容变化量ΔC2(或ΔC3)正比于触控压力的值。
假设液体介电层的介电常数为70,厚度为100微米,固体介电层的介电常数为4,厚度为1000微米。
触控位置的周边区域102的液体介电层210厚度被拉高四分之一,则:
触控前:ε 1=(70*100+4*1000)/(100+1000)=10,C2=10K/(100+1000)=0.00909K;
触控后:ε 1=(70*125+4*1000)/(125+1000)=11.33,C2=11.33K/(125+1000)=0.01K。
根据触控电极层110与导电层300之间的介电常数与施加的力的比例关系可知,第一电容C1反比于对触控面板10施加的压力的值,第二电容C2(或C3)以及第二电容变化量ΔC2(或ΔC3)正比于对触控面板10施加的压力的值。因此,施加的触控压力30越大,位于触控位置的周边区域102的触控电极层110与导电层300之间的第二电容C2(或C3)以及第二电容变化量ΔC2(或ΔC3)越大;施加的触控压力30越大,位于触控位置101处的触控电极层110与导电层300之间的第一电容C1也越小。
例如,图4为本公开一实施例提供的第二电容变化量以及第二电容变化量和第一电容的电容比与施加的触控压力的关系曲线图,如图4所示,关系图中的横坐标表示触控面板被施加的触控压力,纵坐标示意出第二电容变化量的变化幅度以及电容比的变化幅度。第二电容变化量ΔC2与压力F的值成正比,即,随着施加到触控面板的触控压力的增大,位于第二区域的触控电极层与导电层之间的第二电容变化量ΔC2增大。
例如,如图4所示,由于第一电容C1与触控压力F的值成反比,第二电容变化量ΔC2与触控压力F的值成正比,因此,第二电容变化量ΔC2和第一电容C1的电容比ΔC2/C1与压力F的值成正比,即,随着施加到触控面板的压力的增大,电容比ΔC2/C1也增大。
例如,如图4所示,在触控压力的值为5g时,电容比ΔC2/C1的强度大于第二电容变化量ΔC2的3倍;在触控压力的值为10g时,电容比ΔC2/C1的强度大致为第二电容变化量ΔC2的5倍,随着触控压力的值的增加,电容比ΔC2/C1的变化相较于第二电容变化量ΔC2的变化越来越明显。
相比于第二电容变化量ΔC2与触控压力F的关系曲线,第二电容变化量ΔC2和第一电容C1作比值得到的电容比与触控压力F的关系曲线,可以增加纵坐标的幅值,即,第二电容变化量ΔC2与第一电容C1作比值得到的电容比与触控压力F的关系曲线可以更明显的看出电容比与触控压力的值呈正比的关系。
本实施例在确定触控位置处的触控压力之前还包括根据电容比与触控压力的值的正比例关系,确定触控位置处的触控压力。
例如,根据图4所示的压力与电容比的正比例关系,可以建立电容比与触控压力的值的拟合函数,或者建立电容比与触控压力的值的查找表。
例如,根据电容比与触控压力的值的正比例关系,将检测到的多个电容比由小到大依次划分为多个电容比范围,将与电容比对应的触控压力的值由小到大依次划分为多个触控压力等级,并且多个电容比范围与多个触控压力等级为一一对应的关系。
例如,多个电容比由小到大依次被划分为第一电容比范围、第二电容比范围和第三电容比范围,与电容比对应的触控压力的值由小到大依次被划分为轻点触控、轻按触控和重按触控触控等级,即,第一电容比范围中包括的电容比对应于轻点触控等级包括的触控压力的值,第二电容比范围中包括的电容比对应于轻按触控等级包括的触控压力的值,第三电容比范围中包括的电容比对应于重按触控等级包括的触控压力的值。
例如,本实施例提供的触控面板的压力触控检测方法还包括:根据电容比范围确定触控装置被施加的触控压力等级。
例如,当检测到触控电极层与导电层之间的电容比满足第一电容比范围时,可以确定触控面板被施加的触控压力为轻点触控等级,以此类推,当触控电极检测到触控电极层与导电层之间的电容比满足第二电容比范围时,可以确定触控面板被施加的触控压力为轻按触控等级;当触控电极检测到触控电极层与导电层之间的电容比满足第三电容比范围时,可以确定触控面板被施加的触控压力为重按触控等级,从而,本实施例提供的触控面板能够根据按压力度响应相应的操作以提高触控面板的人机交互功能、类别以及方式。
例如,图5A为本公开另一实施例提供的触控面板的局部结构示意图,与图3B所示的实施例不同的是,如图5A所示,本实施例中的触控面板10为柔性触控面板,固体介电层220为柔性膜层,流体介电层包括液体介电层230和空气层240,空气层240位于液体介电层230面向触控电极层110的一侧,即在触控发生前,空气层240与液体介电层230面向触控电极层110的表面接触,且空气层240的介电常数小于液体介电层230的介电常数。
例如,在触控压力30施加到触控面板10上时,在触控位置处,固体介电层220对空气层240进行挤压以使空气向触控位置的周围区域流动直至固体介电层220与液体介电层230接触。当固体介电层220与液体介电层230 接触后,固体介电层220因受到触控压力30的作用而使触控位置处的液体介电层230的表面产生凹陷,其厚度变小,即,液体介电层230中的液体向周围流动。
在发生触控前,触控位置处的触控电极层110与导电层300之间包括空气层240,而触控发生后,触控位置处的触控电极层110与导电层300之间不再包括空气层。根据混合介电常数的公式以及电容的计算公式,假设液体介电层的介电常数为70,厚度为100微米,固体介电层的介电常数为4,厚度为1000微米,空气层的介电常数为1,厚度为10微米。
触控位置101处液体介电层230厚度被压缩一半,则:
触控前:ε 1=(70*100+4*1000+1*10)/(100+1000+10)=9.9189,C1=9.9189K/(100+1000+10)=0.00894K;
触控后:ε 1=(70*50+4*1000)/(50+1000)=7.143,C1=7.143K/(50+1000)=0.0068K。
由此,在触控位置处,液体介电层230的厚度变薄以使触控电极层110与导电层300之间的介电层的介电常数以及厚度均变小,并且,介电常数变小的比例大于触控电极层110与导电层300之间的介电层的厚度变小的比例,从而使第一电容相较于触控发生之前变小。
同理,位于触控位置的周边区域的触控电极层110与导电层300之间的液体介电层230的厚度相较于触控发生之前变厚,固体介电层220的厚度不变,因此,触控电极层110与导电层300之间的距离增大。根据混合介电常数的公式以及电容的计算公式,假设液体介电层的介电常数为70,厚度为100微米,固体介电层的介电常数为4,厚度为1000微米,空气层的介电常数为1,厚度为10微米。
触控位置的周边区域,液体介电层230厚度被升高四分之一,空气层240的厚度被压缩了一半,则:
触控前:ε 1=(70*100+4*1000+1*10)/(100+1000+10)=9.9189,C2=9.9189K/(100+1000+10)=0.00894K;
触控后:ε 1=(70*125+4*1000+1*5)/(125+1000+5)=11.288,C2=11.288K/(125+1000+5)=0.00999K。
由此,在触控位置的周边区域,液体介电层230的厚度变厚以使触控电 极层110与导电层300之间的介电层的介电常数以及厚度均变大,并且,介电常数变大的比例大于触控电极层110与导电层300之间的介电层的厚度变大的比例,从而使第二电容相较于触控发生之前变大。
根据触控电极层110与导电层300之间的介电常数与施加的力的比例关系可知,第一电容反比于对触控装置中的触控面板10施加的压力的值,第二电容和第二电容变化量正比于对触控装置中的触控面板10施加的压力的值。因此,第二电容变化量与第一电容的电容比与压力的值成正比,即,随着施加到触控面板的压力的增大,电容比也增大。
例如,图5B为本公开另一实施例提供的触控装置的局部结构示意图,与图3B所示的实施例不同的是,如图5B所示,本实施例中的触控面板10为刚性触控面板,固体介电层220为刚性膜层,且流体介电层包括液体介电层230和空气层240,空气层240位于液体介电层230面向触控电极层110的一侧,即在触控发生前,空气层240与液体介电层230面向触控电极层110的表面接触,且空气层240的介电常数小于液体介电层230的介电常数。
例如,在触控压力30施加到触控面板上时,在触控位置处,固体介电层220对空气层240进行挤压以使空气向触控位置周围流动直至固体介电层220与液体介电层230接触。当固体介电层220与液体介电层230接触后,固体介电层220因受到触控压力30的作用而使触控位置处的液体介电层230的表面产生凹陷,其厚度变小,即,液体介电层230中的液体向周围流动。
在发生触控前,触控位置处的触控电极层110与导电层300之间包括空气层240,而触控发生后,触控位置处的触控电极层110与导电层300之间不再包括空气层。根据混合介电常数的公式以及电容的计算公式,假设液体介电层的介电常数为70,厚度为100微米,固体介电层的介电常数为4,厚度为1000微米,空气层的介电常数为1,厚度为10微米。
触控位置101处液体介电层230厚度被压缩四分之一,则:
触控前:ε 1=(70*100+4*1000+1*10)/(100+1000+10)=9.9189,C1=9.9189K/(100+1000+10)=0.00894K;
触控后:ε 1=(70*85+4*1000)/(85+1000)=9.171,C1=9.171K/(85+1000)=0.00845K。
由此,在触控位置处,液体介电层230的厚度变薄以使触控电极层110 与导电层300之间的介电层的介电常数以及厚度均变小,并且,介电常数变小的比例大于触控电极层110与导电层300之间的介电层的厚度变小的比例,从而使第一电容相较于触控发生之前变小。
由于本实施例中的触控面板10为刚性触控面板,因此,位于触控位置的周边区域的触控电极层110与导电层300之间的距离相较于触控之前变小,即位于触控位置的周边区域的触控电极层110与导电层300之间的介电层200的厚度变小。
根据混合介电常数的公式以及电容的计算公式,假设液体介电层的介电常数为70,厚度为100微米,固体介电层的介电常数为4,厚度为1000微米,空气层的介电常数为1,厚度为10微米。
触控位置的周边区域,液体介电层230厚度被升高二十分之一,空气层240的厚度被压缩了五分之四,则:
触控前:ε 1=(70*100+4*1000+1*10)/(100+1000+10)=9.9189,C2=9.9189K/(100+1000+10)=0.00894K;
触控后:ε 1=(70*105+4*1000+1*2)/(105+1000+2)=10.255,C2=10.255K/(105+1000+2)=0.00926K。
由此,在触控位置的周边区域,液体介电层230的厚度变厚以使触控电极层110与导电层300之间的介电层的介电常数变大,并且,触控电极层110与导电层300之间的介电层的厚度变小,从而使第二电容相较于触控发生之前变大。
根据触控电极层110与导电层300之间的介电常数与施加的力的比例关系可知,第一电容反比于对触控装置中的触控面板施加的压力的值,第二电容和第二电容变化量正比于对触控装置中的触控面板施加的压力的值,因此,第二电容变化量与第一电容的电容比与压力的值成正比,即,随着施加到触控面板的压力的增大,电容比也增大。
以上给出了空气层和液体介电层的厚度的一些示例,然而,根据本公开的实施例不限于此。例如,为了使混合介电层的介电常数在触控压力施加前后有明显变化,可以设定:在未施加所述触控压力时,所述空气层的介电常数ε 空气和所述液体介电层的介电常数ε 液体以及所述空气层的厚度d 空气和所述液体介电层的厚度d 液体满足以下关系:
10×d 空气×ε 空气≥d 液体×ε 液体≥5×d 空气×ε 空气
例如,本公开实施例中的流体介电层210的厚度范围也可以根据被施加的压力来确定,图6为图3B所示的流体介电层的示意图,并且图6中简单的示意出位于触控位置的周边区域102的流体介电层210的各位置的几何关系。
例如,如图6所示,Δh2为位于触控位置的周边区域102的流体介电层210的远离导电层的一侧凸起的部分的高度,位于触控位置的周边区域102的流体介电层210凸起后的整个截面可形成扇形,则扇形的半径为r,流体介电层210未施加压力时的厚度为d,扇形的两个半径与弧线的交点之间的距离的一半为l,扇形的两个半径之间的夹角的一半为α,且α的值较小。则根据几何关系,可以得到以下计算公式:
r=d+Δh2,
Figure PCTCN2018115432-appb-000001
Figure PCTCN2018115432-appb-000002
Figure PCTCN2018115432-appb-000003
其中的包括S up的计算公式表示扇形的面积减去三角形的面积,得到流体介电层210的凸起部分的截面的面积。
触控面板被施加的压力在0.1kg-0.8kg范围内,则根据公式:
Figure PCTCN2018115432-appb-000004
可以得到
Figure PCTCN2018115432-appb-000005
根据上述计算公式可知,由于Δh2与被施加的力的大小有关,所以根据上述公式可以得到流体介电层210的厚度与被施加的力的关系,可以根据上述关系公式设定流体介电层210的厚度。
例如,上述实施例中虽然以触控电极层被配置为检测触控位置,然而, 根据本公开的实施例并不限制于此。该触控电极层也可以不是用于检测触控位置的电极。因此,本公开的实施例也可以单独检测触控压力。
有以下几点需要说明:
(1)除非另作定义,本公开实施例以及附图中,同一标号代表同一含义。
(2)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(3)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种触控面板,包括:
    触控电极层;
    导电层,与所述触控电极层相对设置,所述导电层被配置为与所述触控电极层形成电容;
    介电层,位于所述触控电极层与所述导电层之间,所述介电层包括流体介电层和固体介电层,所述流体介电层的介电常数大于所述固体介电层的介电常数,所述流体介电层中的流体被配置为在触控压力的作用下发生流动以通过改变所述介电层的介电常数来使触控位置以及所述触控位置的周边区域中所述触控电极层与所述导电层之间的电容发生变化,所述电容的变化用于确定所述触控压力。
  2. 根据权利要求1所述的触控面板,其中,所述流体介电层被进一步配置为:在所述触控压力的作用下,所述流体介电层中的在所述触控位置的流体向所述周边区域流动,以使所述触控位置处的所述介电层的介电常数相较于触控发生之前变小,进而使所述触控位置处的所述触控电极层与所述导电层之间的电容变小,在所述周边区域的所述介电层的介电常数相较于触控发生之前变大,以使所述周边区域的所述触控电极层与所述导电层之间的电容变大。
  3. 根据权利要求1或2所述的触控面板,其中,所述触控电极层和所述导电层至少之一包括二维阵列排布的多个子电极。
  4. 根据权利要求3所述的触控面板,其中,所述触控电极层被配置为检测触控位置。
  5. 根据权利要求1-4任一项所述的触控面板,其中,所述触控面板为柔性触控面板。
  6. 根据权利要求1-4任一项所述的触控面板,其中,所述固体介电层为柔性层。
  7. 根据权利要求5或6所述的触控面板,其中,所述流体介电层为液体介电层,所述固体介电层与所述液体介电层的表面接触。
  8. 根据权利要求1-6任一项所述的触控面板,其中,所述流体介电层包 括液体介电层和空气层,所述空气层位于所述液体介电层面向所述触控电极层的一侧,且所述空气层的介电常数小于所述液体介电层的介电常数。
  9. 根据权利要求8所述的触控面板,其中,在未施加所述触控压力时,所述空气层的介电常数ε 空气和所述液体介电层的介电常数ε 液体以及所述空气层的厚度d 空气和所述液体介电层的厚度d 液体满足以下关系:
    10×d 空气×ε 空气≥d 液体×ε 液体≥5×d 空气×ε 空气
  10. 根据权利要求7-9任一项所述的触控面板,其中,所述液体介电层包括电解液,所述电解液的溶剂包括乙腈和/或碳酸丙烯酯,所述电解液的溶质包括四氟硼酸四乙基铵。
  11. 根据权利要求1-10任一项所述的触控面板,其中,所述导电层为金箔层,沿垂直于所述金箔层的方向,所述金箔层的厚度为100μm-300μm。
  12. 根据权利要求3所述的触控面板,其中,所述触控电极层包括二维触控电极阵列,所述二维触控电极阵列包括多个感应电极,且所述电容形成于所述多个感应电极与所述导电层之间。
  13. 一种触控装置,包括权利要求1-12任一项所述的触控面板。
  14. 一种如权利要求1所述的触控面板的压力触控检测方法,包括:
    检测所述触控位置处和所述周边区域中的所述触控电极层与所述导电层之间的电容,其中,在触控发生时,所述流体介电层中的流体在触控压力的作用下发生流动以通过改变所述介电层的介电常数来使所述触控位置以及所述周边区域中所述触控电极层与所述导电层之间的电容发生变化;
    根据所述触控位置以及所述周边区域中所述触控电极层与所述导电层之间的电容的变化,确定所述触控位置处的触控压力。
  15. 根据权利要求14所述的压力触控检测方法,其中,检测所述触控位置处和所述周边区域中的所述触控电极层与所述导电层之间的电容包括:
    检测所述触控位置处的所述触控电极层与所述导电层之间的电容为第一电容,所述第一电容相较于触控发生之前变小,其电容变化量为第一电容变化量;
    检测所述周边区域的所述触控电极层与所述导电层之间的电容为第二电容,所述第二电容相较于触控发生之前变大,其电容变化量为第二电容变化量。
  16. 根据权利要求15所述的压力触控检测方法,其中,根据所述触控位置以及所述周边区域中所述触控电极层与所述导电层之间的电容的变化,确定所述触控位置处的触控压力包括:
    将所述第二电容变化量与所述第一电容作比值以得到电容比,根据所述电容比,确定所述触控位置处的触控压力。
  17. 根据权利要求16所述的压力触控检测方法,其中,所述触控电极层与所述导电层之间的电容计算公式为:C=K*ε/(d1+d2),其中K为常数,ε为所述介电层的介电常数,d1为所述固体介电层的厚度,d2为所述流体介电层的厚度,在所述触控压力作用下,所述触控位置处的所述流体介电层的厚度d2变小以使所述介电常数ε和所述介电层的厚度(d1+d2)均变小,且所述介电常数ε变小的比例大于所述介电层的厚度(d1+d2)变小的比例,从而使所述第一电容相较于触控发生之前变小。
  18. 根据权利要求17所述的压力触控检测方法,其中,所述触控面板为柔性触控面板,在所述触控压力作用下,在所述周边区域处的所述流体介电层的厚度d2变大以使所述介电常数ε和所述介电层的厚度(d1+d2)均变大,且所述介电常数ε变大的比例大于所述介电层的厚度(d1+d2)变大的比例,从而使所述第二电容相较于触控发生之前变大。
  19. 根据权利要求17所述的压力触控检测方法,其中,所述流体介电层包括液体介电层和空气层,且所述空气层位于所述液体介电层面向所述触控电极层的一侧,在所述触控压力作用下,在所述周边区域处,所述介电层的厚度(d1+d2)减小,且所述液体介电层的厚度变大以使所述介电常数ε变大,从而使所述第二电容相较于触控发生之前变大。
  20. 根据权利要求14-17任一项所述的压力触控检测方法,其中,所述电容比与所述触控压力的值呈正比例关系,确定所述触控位置处的触控压力之前还包括:
    根据所述正比例关系,将检测到的多个所述电容比划分为多个电容比范围,并且将所述触控压力的值划分为多个触控压力等级,其中,所述多个电容比范围与所述多个触控压力等级为一一对应的关系。
  21. 根据权利要求20所述的压力触控检测方法,其中,确定所述触控位置处的触控压力包括:
    根据所述电容比范围确定所述触控装置被施加的触控压力等级。
PCT/CN2018/115432 2018-03-16 2018-11-14 触控面板及其压力触控检测方法、触控装置 WO2019174288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/470,736 US11231821B2 (en) 2018-03-16 2018-11-14 Touch panel and pressure touch detection method thereof, and touch apparatus
EP18887231.1A EP3767438A4 (en) 2018-03-16 2018-11-14 TOUCH PANEL, PRESSURE TOUCH DETECTION METHOD FOR IT AND TOUCH DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810217394.4 2018-03-16
CN201810217394.4A CN110275632B (zh) 2018-03-16 2018-03-16 触控面板及其压力触控检测方法、触控装置

Publications (1)

Publication Number Publication Date
WO2019174288A1 true WO2019174288A1 (zh) 2019-09-19

Family

ID=67908572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115432 WO2019174288A1 (zh) 2018-03-16 2018-11-14 触控面板及其压力触控检测方法、触控装置

Country Status (4)

Country Link
US (1) US11231821B2 (zh)
EP (1) EP3767438A4 (zh)
CN (1) CN110275632B (zh)
WO (1) WO2019174288A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308736B (zh) * 2020-02-19 2021-11-12 合肥京东方光电科技有限公司 眼镜及其控制方法
TWI815172B (zh) * 2020-09-09 2023-09-11 元太科技工業股份有限公司 觸控顯示裝置
CN112925445B (zh) * 2021-03-05 2023-03-07 武汉天马微电子有限公司 触控模组、显示模组、显示装置及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930316A (zh) * 2009-06-19 2010-12-29 三星电子株式会社 触摸板和包括它的电子设备
CN104991681A (zh) * 2015-08-03 2015-10-21 京东方科技集团股份有限公司 一种显示器及其显示控制方法和显示控制装置
CN106020529A (zh) * 2016-05-06 2016-10-12 友达光电(厦门)有限公司 压力触控装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479509B (zh) * 2006-02-09 2015-04-01 信越聚合物股份有限公司 導電性高分子溶液、導電性塗膜、電容器,以及電容器之製造方法
KR100874454B1 (ko) * 2007-03-15 2008-12-17 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US20100288635A1 (en) * 2008-01-28 2010-11-18 Kuraray Co., Ltd. Flexible deformation sensor
CN102812425B (zh) * 2009-10-27 2016-05-04 感知像素股份有限公司 投射式电容触摸感应
KR101784436B1 (ko) * 2011-04-18 2017-10-11 삼성전자주식회사 터치 패널 및 이를 위한 구동 장치
TWI581161B (zh) * 2012-09-18 2017-05-01 新益先創科技股份有限公司 電容性觸控模組及其觸控顯示裝置
KR101983069B1 (ko) * 2012-12-12 2019-05-30 한국전자통신연구원 터치스크린 패널
CN103970374A (zh) * 2013-01-28 2014-08-06 宸鸿科技(厦门)有限公司 触控单元及触控面板
CN104345444A (zh) * 2013-07-24 2015-02-11 友达光电股份有限公司 显示面板、显示装置及显示面板的制备方法
KR102206385B1 (ko) * 2014-04-11 2021-01-22 엘지전자 주식회사 이동 단말기 및 이의 제어방법
CN104656249A (zh) * 2015-03-19 2015-05-27 京东方科技集团股份有限公司 电润湿显示面板、制作方法和电润湿显示装置
TWI594160B (zh) * 2016-05-06 2017-08-01 友達光電股份有限公司 整合有觸控感測與壓力感測之顯示器
CN106406627B (zh) * 2016-11-09 2019-03-12 上海天马微电子有限公司 一种柔性触控显示面板及触控显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930316A (zh) * 2009-06-19 2010-12-29 三星电子株式会社 触摸板和包括它的电子设备
CN104991681A (zh) * 2015-08-03 2015-10-21 京东方科技集团股份有限公司 一种显示器及其显示控制方法和显示控制装置
CN106020529A (zh) * 2016-05-06 2016-10-12 友达光电(厦门)有限公司 压力触控装置

Also Published As

Publication number Publication date
EP3767438A4 (en) 2021-12-08
US11231821B2 (en) 2022-01-25
CN110275632A (zh) 2019-09-24
US20210333931A1 (en) 2021-10-28
EP3767438A1 (en) 2021-01-20
CN110275632B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2019174288A1 (zh) 触控面板及其压力触控检测方法、触控装置
KR101016221B1 (ko) 힘 센서를 구비한 입력모듈에 터치 입력을 처리하기 위한 알고리즘 구현방법
TWI524251B (zh) 電容式手指導航模組及其製作方法
US10394339B2 (en) Sensor, input device, keyboard, and electronic device
JP6030220B2 (ja) タッチパネルおよびその製造方法
WO2018040717A1 (zh) 触控显示面板及其驱动方法以及触控显示装置
JP6635042B2 (ja) 入力装置、センサ、キーボードおよび電子機器
TWI506520B (zh) 電容式觸控裝置的控制方法
TW201516813A (zh) 電容式觸控裝置及控制方法
TW201347006A (zh) 感測器單元,輸入器件,及電子裝置
US20140293151A1 (en) Touch Panel and Manufacturing Method Thereof
CN106959790B (zh) 显示面板、显示装置和压力检测方法
US10234959B2 (en) Input apparatus, keyboard, and electronic apparatus
Wang et al. Mutual capacitive flexible tactile sensor for 3-D image control
WO2017071602A1 (zh) 触控模组、其驱动方法及显示装置
US10620735B2 (en) Force touch module, manufacturing method thereof, display screen and display device
US20140253826A1 (en) Touch screen and manufacturing method thereof
US20140253825A1 (en) Touch panel and manufacturing method thereof
US20140253824A1 (en) Touch panel and manufacturing method thereof
US20200064970A1 (en) Touch panel, display panel, display device and touch detecting method
KR20160080069A (ko) 터치 패널 및 이를 포함하는 표시 장치
US10256278B2 (en) Display device having force sensing function
US11460958B2 (en) Touch panel, touch display and method of manufacturing touch panel
US10656825B2 (en) Display device
TWI738438B (zh) 觸控感測器的觸控點感知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018887231

Country of ref document: EP