WO2019174028A1 - 一种啮合式超薄金属双极板及其三维流场 - Google Patents

一种啮合式超薄金属双极板及其三维流场 Download PDF

Info

Publication number
WO2019174028A1
WO2019174028A1 PCT/CN2018/079264 CN2018079264W WO2019174028A1 WO 2019174028 A1 WO2019174028 A1 WO 2019174028A1 CN 2018079264 W CN2018079264 W CN 2018079264W WO 2019174028 A1 WO2019174028 A1 WO 2019174028A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow field
bipolar plate
flow
metal
metal bipolar
Prior art date
Application number
PCT/CN2018/079264
Other languages
English (en)
French (fr)
Inventor
王树博
谢晓峰
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2018/079264 priority Critical patent/WO2019174028A1/zh
Priority to CN201880002721.2A priority patent/CN109643809B/zh
Publication of WO2019174028A1 publication Critical patent/WO2019174028A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of metal bipolar plates and flow field design for proton exchange membrane fuel cells, in particular to a meshing metal bipolar plate for fuel cells and a three-dimensional flow field thereof.
  • the hydrogen-fueled proton exchange membrane fuel cell can directly convert the chemical energy in hydrogen into electric energy, and only discharges water in the process. It is a hydrogen-utilizing green power generation device, which can be used for driving power of an electric vehicle, and Internationally, the fuel cell technology for vehicles has been industrialized.
  • Bipolar plates are one of the key components of fuel cells for vehicles. Due to the space limitation of cars, the volumetric power density of fuel cells for vehicles is high. This requires the thickness of the bipolar plates to be thin to maintain the same output power. In this case, the volume of the fuel cell for the vehicle is reduced as much as possible, that is, the volumetric power density of the fuel cell for the vehicle is increased. In the case where the thickness of the bipolar plate is reduced, the conventional graphite bipolar plate or the composite bipolar plate cannot be applied due to factors such as mechanical properties and gas permeability, and it is necessary to prepare a bipolar plate using a metal material.
  • the flow field groove is based on a rectangular cross-section design, and the metal unipolar plates of two rectangular cross-section designs are combined in a "bite" form to prepare a metal bipolar plate, and two monopoles.
  • the ridge portion of the plate forms a hollow portion in the middle of the bipolar plate to form a flow field of cooling liquid or cooling gas. If the flow field of such a rectangular cross section is assembled in the form of "engagement", the hollow cooling flow field will be closed, and the fuel cell cannot be cooled.
  • the flow field design of the metal bipolar plate In order to further improve the volumetric power density of the fuel cell for a vehicle, it is necessary to improve the flow field design of the metal bipolar plate, optimize the flow field and reduce the thickness of the metal bipolar plate to maintain the output power of the fuel cell for the vehicle while reducing the fuel cell.
  • the volume in order to achieve the purpose of increasing the volumetric power density of the fuel cell for the vehicle.
  • the object of the present invention is to solve the problems in the prior art and provide an intermeshing metal bipolar plate for a fuel cell.
  • By designing a three-dimensional flow field of the metal bipolar plate the thickness and retention of the metal bipolar plate can be effectively reduced.
  • the output power is reduced while reducing the volume of the fuel cell for the vehicle, thereby achieving the purpose of increasing the volumetric power density of the fuel cell for the vehicle.
  • An intermeshing ultra-thin metal bipolar plate comprising two metal single-stage plates, the metal single-stage plate having a plurality of concave flow channels, the flow channel as a flow field groove, and a portion between adjacent flow channels is a flow In the field ridge, the cross section of the flow channel in the width direction is trapezoidal, and the cross section along the length direction is wave-shaped, and the flow field grooves and the flow field ridges of the two metal single-stage plates are alternate with each other, that is, the flow field ridge insertion of one unipolar plate In the flow field slot of the other unipolar plate, the two metal single-stage plates engage at the "wavy" "valley".
  • the lower base of the trapezoid is the upper part of the flow path
  • the upper base of the trapezoid is the lower part of the flow path
  • the ridge groove ratio of the flow field is controlled by changing the lengths of the trapezoidal upper bottom and the lower bottom.
  • the wavy equation is a sine function or a cosine function.
  • the upper and lower bottoms of the trapezoidal section of the flow field slot are the same as the upper and lower bottoms of the flow field ridge, respectively.
  • the metal bipolar plate for fuel cell and the three-dimensional flow field design thereof provided by the invention adopt a flow field design with a trapezoidal and sinusoidal or cosine curve, and the trapezoidal cross-section design can effectively control the ridge groove ratio of the flow field.
  • the two unipolar plates with alternating flow field grooves and ridges are combined into a bipolar plate at the "valley" of the sine or cosine curve, so that the thickness of the metal bipolar plate is two.
  • the thickness of the metal sheet plus a flow field groove depth which can effectively reduce the thickness of a flow field groove depth to obtain an ultra-thin metal bipolar plate; at the same time, due to the sinusoidal or cosine curve section design, in the "crest" There is space left to form a flow field of coolant or cooling gas in the hollow portion of the metal bipolar plate. Due to the use of two flow plate grooves and ridges alternated in unipolar plate design, it is necessary to ensure that the flow field grooves and ridges of the metal bipolar plates on both sides of the fuel cell membrane electrode have the same position when assembling the battery stack. Can not alternate, if it is alternately arranged, the membrane electrode will be destroyed by shearing force.
  • the thickness of the bipolar plate can be effectively reduced, the volume of the fuel cell stack for the vehicle is reduced, and the volume is increased compared with the traditional "bite" design of the metal bipolar plate. Power density.
  • the invention improves the thickness of a flow field groove depth of the metal bipolar plate by improving the traditional snap-in metal bipolar plate design, thereby ensuring the maintenance of a thinner metal bipolar plate.
  • Figure 1 is a cross-sectional view of the bipolar plate of the present invention in the width direction;
  • FIG. 2 is a schematic view showing the flow field structure of the bipolar plate according to the present invention.
  • Figure 3 is a schematic cross-sectional view of a trapezoidal cross section in the width direction
  • Figure 4 is a cross-sectional view of the length direction of the flow path
  • Figure 5 is a schematic view of the length direction of the metal bipolar plate.
  • An intermeshing ultra-thin metal bipolar plate comprising two metal single-stage plates 1 having a plurality of concave flow channels 2 on the metal single-stage plate 1 and a flow channel 2 as a flow field groove, adjacent to the flow channel 2
  • the part is the flow field ridge.
  • the cross section of the flow channel 2 in the width direction is trapezoidal, and the cross section along the length direction is wave.
  • the flow field grooves and the flow field ridges of the two metal single-stage plates 1 alternate with each other, that is, a monopole.
  • the portion of the plate flow field slot corresponds to the portion of the other unipolar plate flow field ridge, and the two metal single-stage plates engage at the "wavy" "valley".
  • the equation of the wave is a sine function or a cosine function, which in this embodiment is a sinusoidal function.
  • the processing method is as follows:
  • Step 1 Using a metal plate having a thickness of 0.1 mm as a metal single-stage substrate;
  • Step 2 The design of the flow field of the metal bipolar plate is as follows: 1 the cross section of the flow channel is trapezoidal and wavy, respectively, and the flow field plate is as shown in Fig. 1; the length of the upper base of the isosceles trapezoidal section is 0.5 mm, and the length of the lower bottom is 0.8. Mm, that is, the flow field plate surface groove width is 0.8mm, the ridge width is 0.5mm, as shown in Figures 1 and 2; 3 wave-shaped section equation is 0.12*sin(x), the flow channel groove has a maximum depth of 0.4mm, and the minimum depth is 0.16. Mm, as shown in Figures 1 and 3;
  • Step 3 Design a flow field plate drawing with the opposite position of the flow field groove and the flow field ridge in step 2;
  • Step 4 Based on the designs in steps 2 and 3, respectively process the corresponding stamping dies;
  • Step 5 Stamping the metal sheet in step 1 using the mold in step 4;
  • Step 6 Using the two unipolar plates punched out based on steps 2 and 3, in the form of meshing at the trough position, as shown in Fig. 4, a meshed ultra-thin metal bipolar plate is obtained.
  • the equation of the wavy shape in this embodiment is a cosine function.
  • Step 1 Using a metal plate having a thickness of 0.1 mm as a substrate;
  • Step 2 The design of the flow field of the metal bipolar plate is as follows: 1 the cross section of the flow channel is trapezoidal and wavy respectively; the length of the upper base of the isosceles trapezoidal section is 0.6 mm, and the length of the lower bottom is 1 mm, that is, the surface groove width of the flow field plate is 1 mm. Ridge width 0.6mm; 3 wave section equation is 0.1*cos(x), flow channel groove maximum depth 0.4mm, minimum depth 0.2mm;
  • Step 3 Design a flow field plate drawing with the opposite position of the flow field groove and the flow field ridge in step 2;
  • Step 4 Based on the designs in steps 2 and 3, respectively process the corresponding stamping dies;
  • Step 5 Stamping the metal sheet in step 1 using the mold in step 4;
  • Step 6 Using the two unipolar plates punched out based on steps 2 and 3, combined in the form of meshing at the trough position, an intermeshing ultra-thin metal bipolar plate is obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池用啮合式超薄金属双极板,包括两块金属单级板(1),金属单级板上具有多条下凹的流道(2),流道作为流场槽,相邻流道之间的部分为流场脊,流道沿宽度方向的截面为梯形、沿长度方向的截面为波浪形,一个单级板的流场脊插入到另一个单级板的流场槽内,两块金属单级板在波浪形的波谷处啮合。该金属双极板通过"梯形波浪"的流场设计,一方面可以实现燃料气体的三维传输,另一方面通过"梯形波浪"流场的"波谷"处实现两个单极板之间的啮合式结合,第三利用波浪形流场的"波峰"处可在双极板的中空部分形成冷却液的流场。通过本啮合式金属双极板的设计,可以进一步减薄双极板的厚度,实现超薄金属双极板的设计成型,且同时保留冷却液或冷却气体的流场。

Description

一种啮合式超薄金属双极板及其三维流场 技术领域
本发明涉及一种质子交换膜燃料电池用金属双极板和流场设计技术领域,具体涉及一种燃料电池用啮合式金属双极板及其三维流场。
背景技术
当前,空气污染已经日趋恶化,环境问题已经被国家日益重视。在汽车方面,国际上许多国家都已制定传统燃油车退出历史舞台的时间表,从而新能源汽车已成为国家的发展战略之一。以氢气为燃料的质子交换膜燃料电池可以直接将氢气中的化学能转换为电能,在此过程中仅排出水,是一种氢能利用的绿色发电装置,可用于电动汽车的驱动电源,且国际上该车用燃料电池技术已经产业化。
双极板是车用燃料电池的关键部件之一,由于轿车的空间限制,对车用燃料电池的体积功率密度要求较高,这就要求双极板的厚度很薄从而在保持同样的输出功率情况下,尽可能降低车用燃料电池的体积,即提高车用燃料电池的体积功率密度。而在双极板厚度减薄的情况下,传统石墨双极板或复合双极板由于机械性能、气体透过率等因素而无法应用,需要使用金属材料制备双极板。在已有金属双极板设计中,流场槽是基于矩形截面设计,将两个矩形截面设计的金属单极板以“咬合”的形式组合,制备一个金属双极板,而两个单极板的脊部分在双极板的中间形成中空部分,从而形成冷却液或冷却气体的流场。而这种矩形截面的流场如果采用“啮合”的形式组装,则将封闭中空的冷却用流场,造成燃料电池无法冷却。为进一步提高车用燃料电池的体积功率密度,需要通过改进金属双极板的流场设计,优化流场的同时降低金属双极板的厚度达到保持车用燃料电池的输出功率的同时降低燃料电池的体积,从而实现提高车用燃料电池体积功率密度的目的。
发明内容
本发明的目的在于解决现有技术中的问题,提供一种燃料电池用啮合式金属双极板,通过对该金属双极板的三维流场设计,可有效减少金属双极板的厚度、保持输出功率的同时降低车用燃料电池的体积,从而实现提高车用燃料电池的体积功率密度的目的。
为实现上述目的,本发明的技术方案如下:
一种啮合式超薄金属双极板,包括两块金属单级板,金属单级板上具有多条下凹的流道,流道作为流场槽,相邻流道之间的部分为流场脊,流道沿宽度方向的截面为梯形、沿长度方向的截面为波浪形,两块金属单级板的流场槽和流场脊互为交替,即一个单极板的流场脊插入到另一个单极板的流场槽内,两块金属单级板在“波浪形”的“波谷”处啮合。
所述梯形的下底是流道的上部,梯形的上底是流道的下部,通过改变梯形上底和下底的长度来控制流场的脊槽比。
波浪形的方程为正弦函数或者余弦函数。
流场槽梯形截面的上底和下底分别与流场脊的上底和下底相同。
本发明具有的技术效果:
本发明所提供的燃料电池用金属双极板及其三维流场设计方案,采用截面为梯形和正弦曲线或余弦曲线的流场设计,且通过梯形截面设计可有效控制流场的脊槽比,通过波浪形截面设计,将两个流场槽和脊互为交替的单极板在正弦或余弦曲线的“波谷”处以啮合的形式结合为一个双极板,这样金属双极板的厚度为两个金属板材的厚度加上一个流场槽深度,从而可以有效减薄一个流场槽深度的厚度,获得超薄型金属双极板;同时由于采用了正弦或余弦曲线截面设计,在“波峰”处留有空间,而形成金属双极板中空部分的冷却液或冷却气体的流场。由于采用了两种流场槽和脊互为交替的单极板设计,从而在组装电池堆时,需确保燃料电池膜电极两侧的金属双极板的流场槽和脊的位置相同,而不能交替,如果是交替排列会导致膜电极受剪切力而被破坏。通过该啮合式超薄型金属双极板的设计方案,相对于传统“咬合”式设计的金属双极板,可以有效降低双极板的厚度,减少车用燃料电池堆的体积,提高其体积功率密度。
本发明通过改进传统咬合式金属双极板设计为啮合式的设计,有效降低了金属双极板一个流场槽深的厚度,实现了更薄的金属双极板的设计,从而可确保在保持车用燃料电池堆输出功率不变的情况下,达到降低该电池堆的体积,提高车用燃料电池堆的体积功率密度的目的。
附图说明
下面结合附图对本实用新型进一步说明
图1为本发明所述双极板沿宽度方向的截面图;
图2为本发明所述双极板的流场结构示意图;
图3为流道宽度方向的梯形截面示意图;
图4为流道长度方向的截面图;
图5为金属双极板的长度方向示意图。
具体实施方式
下面通过实施例对本发明做进一步的描述。
实施例1
一种啮合式超薄金属双极板,包括两块金属单级板1,金属单级板1上具有多个下凹的流道2,流道2作为流场槽,相邻流道2之间的部分为流场脊,流道2沿宽度方向的截面为 梯形、沿长度方向的截面为波浪,两块金属单级板1的流场槽和流场脊互为交替,即一个单极板流场槽的部分对应另一个单极板流场脊的部分,两块金属单级板在“波浪形”的“波谷”处啮合。波浪的方程为正弦函数或者余弦函数,在本实施例中为正弦函数。
其加工方法如下:
步骤1.使用厚度为0.1mm的金属板材为金属单级板基材;
步骤2.金属双极板流场设计具体如下:①流道截面分别呈梯形和波浪形,流场板如附图1所示;②等腰梯形截面的上底长度0.5mm,下底长度0.8mm,即流场板表面槽宽0.8mm,脊宽0.5mm,如附图1、2所示;③波浪形截面方程是0.12*sin(x),流道槽最大深度0.4mm,最小深度0.16mm,如附图1、3所示;
步骤3.设计与步骤2中流场槽和流场脊位置相反的流场板图纸;
步骤4.基于步骤2和3中的设计,分别加工相应的冲压模具;
步骤5.分别使用步骤4中的模具将步骤1中的金属板材进行冲压成型;
步骤6.使用基于步骤2和步骤3冲压出来的两个单极板,在波谷位置以啮合的形式结合,如附图4所示,获得啮合式超薄型金属双极板。
实例2:
在本实施例中波浪形的方程为余弦函数。
步骤1.使用厚度为0.1mm的金属板材为基材;
步骤2.金属双极板流场设计具体如下:①流道截面分别呈梯形和波浪形;②等腰梯形截面的上底长度0.6mm,下底长度1mm,即流场板表面槽宽1mm,脊宽0.6mm;③波浪形截面方程是0.1*cos(x),流道槽最大深度0.4mm,最小深度0.2mm;
步骤3.设计与步骤2中流场槽和流场脊位置相反的流场板图纸;
步骤4.基于步骤2和3中的设计,分别加工相应的冲压模具;
步骤5.分别使用步骤4中的模具将步骤1中的金属板材进行冲压成型;
步骤6.使用基于步骤2和步骤3冲压出来的两个单极板,在波谷位置以啮合的形式结合,获得啮合式超薄型金属双极板。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (4)

  1. 一种啮合式超薄金属双极板,包括两块金属单级板,金属单级板上具有多条下凹的流道,流道作为流场槽,相邻流道之间的部分为流场脊,其特征在于,流道沿宽度方向的截面为梯形、沿长度方向的截面为波浪形,两块金属单级板的流场槽和流场脊互为交替,即一个单极板的流场脊插入到另一个单极板的流场槽内,两块金属单级板在“波浪形”的“波谷”处啮合。
  2. 如权利要求1所述的一种啮合式超薄金属双极板,其特征在于,所述梯形的下底是流道的上部,梯形的上底是流道的下部,通过改变梯形上底和下底的长度来控制流场的脊槽比。
  3. 如权利要求1所述的一种啮合式超薄金属双极板,其特征在于,波浪形的方程为正弦函数或者余弦函数。
  4. 如权利要求1所述的一种啮合式超薄金属双极板,其特征在于,流场槽梯形截面的上底和下底分别与流场脊的上底和下底相同。
PCT/CN2018/079264 2018-03-16 2018-03-16 一种啮合式超薄金属双极板及其三维流场 WO2019174028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/079264 WO2019174028A1 (zh) 2018-03-16 2018-03-16 一种啮合式超薄金属双极板及其三维流场
CN201880002721.2A CN109643809B (zh) 2018-03-16 2018-03-16 一种啮合式超薄金属双极板及其三维流场

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079264 WO2019174028A1 (zh) 2018-03-16 2018-03-16 一种啮合式超薄金属双极板及其三维流场

Publications (1)

Publication Number Publication Date
WO2019174028A1 true WO2019174028A1 (zh) 2019-09-19

Family

ID=66060087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079264 WO2019174028A1 (zh) 2018-03-16 2018-03-16 一种啮合式超薄金属双极板及其三维流场

Country Status (2)

Country Link
CN (1) CN109643809B (zh)
WO (1) WO2019174028A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976099A (zh) * 2022-04-27 2022-08-30 同济大学 一种燃料电池双极板流道优化设计方法
CN115528267A (zh) * 2022-09-20 2022-12-27 中国科学院宁波材料技术与工程研究所 流场板、燃料电池单体、燃料电池、发电系统及用电设备
DE102022106045A1 (de) 2022-03-16 2023-09-21 Schaeffler Technologies AG & Co. KG Bipolarplatte für einen Brennstoffzellenstapel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543042B (zh) * 2024-01-10 2024-04-09 武汉理工大学 模块化三维层级孔结构可调的燃料电池物料流场板及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064270A1 (en) * 2003-09-24 2005-03-24 Marianowski Leonard G. Fuel cell bipolar separator plate
CN104051771A (zh) * 2013-03-15 2014-09-17 福特全球技术公司 燃料电池堆和包括其的车辆
CN104868129A (zh) * 2015-05-26 2015-08-26 昆山弗尔赛能源有限公司 一种质子交换膜燃料电池用金属双极板
CN106575776A (zh) * 2014-06-27 2017-04-19 努威拉燃料电池有限责任公司 与电化学电池一起使用的流场
CN107634240A (zh) * 2017-09-04 2018-01-26 苏州中氢能源科技有限公司 一种小型燃料电池金属双极板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309540B2 (en) * 2004-05-21 2007-12-18 Sarnoff Corporation Electrical power source designs and components
GB2509319A (en) * 2012-12-27 2014-07-02 Intelligent Energy Ltd Fluid flow plate for a fuel cell
CN203607487U (zh) * 2013-12-02 2014-05-21 新源动力股份有限公司 一种集成度高的质子交换膜燃料电池金属双极板
JP2018018768A (ja) * 2016-07-29 2018-02-01 トヨタ車体株式会社 燃料電池用ガス流路形成板の製造方法および燃料電池用ガス流路形成板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064270A1 (en) * 2003-09-24 2005-03-24 Marianowski Leonard G. Fuel cell bipolar separator plate
CN104051771A (zh) * 2013-03-15 2014-09-17 福特全球技术公司 燃料电池堆和包括其的车辆
CN106575776A (zh) * 2014-06-27 2017-04-19 努威拉燃料电池有限责任公司 与电化学电池一起使用的流场
CN104868129A (zh) * 2015-05-26 2015-08-26 昆山弗尔赛能源有限公司 一种质子交换膜燃料电池用金属双极板
CN107634240A (zh) * 2017-09-04 2018-01-26 苏州中氢能源科技有限公司 一种小型燃料电池金属双极板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106045A1 (de) 2022-03-16 2023-09-21 Schaeffler Technologies AG & Co. KG Bipolarplatte für einen Brennstoffzellenstapel
CN114976099A (zh) * 2022-04-27 2022-08-30 同济大学 一种燃料电池双极板流道优化设计方法
CN115528267A (zh) * 2022-09-20 2022-12-27 中国科学院宁波材料技术与工程研究所 流场板、燃料电池单体、燃料电池、发电系统及用电设备
CN115528267B (zh) * 2022-09-20 2023-08-15 中国科学院宁波材料技术与工程研究所 流场板、燃料电池单体、燃料电池、发电系统及用电设备

Also Published As

Publication number Publication date
CN109643809A (zh) 2019-04-16
CN109643809B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2019174028A1 (zh) 一种啮合式超薄金属双极板及其三维流场
US5981098A (en) Fluid flow plate for decreased density of fuel cell assembly
JP4678359B2 (ja) 燃料電池
CN108172857B (zh) 一种支持高电流密度放电的燃料电池电堆流场板
US20020064702A1 (en) Fuel cell fluid flow field plate and methods of making fuel cell flow field plates
US10756357B2 (en) Bipolar plate with coolant flow channel
CN103247807B (zh) 基于相变换热的质子交换膜燃料电池及其双极板
CN107732278A (zh) 燃料电池堆组件
JP5429357B2 (ja) 燃料電池
JP5145623B2 (ja) 燃料電池スタック
US20050058878A1 (en) Method for the production of bipolar plates or electrode plates for fuel cells or electrolyzer stacks, method for the production of a stack of bipolar plates or electrode plates, as well as a bipolar plate or electrode plate
KR20040083832A (ko) 바이폴라판과 이를 채용하는 연료전지
KR101534940B1 (ko) 연료전지용 분리판 및 이를 이용한 연료전지
CN106067558B (zh) 具有不同厚度的半板的双极板和相关的燃料电池电堆
US7261124B2 (en) Bipolar plate channel structure with knobs for the improvement of water management in particular on the cathode side of a fuel cell
CN112236889A (zh) 具有波形通道的双极板
KR101074493B1 (ko) 핀 타입의 유동 채널을 갖는 고분자 전해질 연료 전지
CN212257566U (zh) 双极板用流场式散热装置
EP3065211A2 (en) Low cost fuel cell components
US11050065B2 (en) Separator for fuel cell including guide pattern and fuel cell stack including the same
CN110299542B (zh) 一种燃料电池单元、燃料电池电堆、燃料电池
JP2007149358A (ja) 燃料電池用セパレータ
CN109524685B (zh) 单体燃料电池和燃料电池电堆
JP2004342442A (ja) 燃料電池のセパレータ
CN219393429U (zh) 燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909795

Country of ref document: EP

Kind code of ref document: A1