WO2019173934A1 - 压力检测芯片和检测压力的方法 - Google Patents

压力检测芯片和检测压力的方法 Download PDF

Info

Publication number
WO2019173934A1
WO2019173934A1 PCT/CN2018/078677 CN2018078677W WO2019173934A1 WO 2019173934 A1 WO2019173934 A1 WO 2019173934A1 CN 2018078677 W CN2018078677 W CN 2018078677W WO 2019173934 A1 WO2019173934 A1 WO 2019173934A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
output signal
signal
circuit
pressure
Prior art date
Application number
PCT/CN2018/078677
Other languages
English (en)
French (fr)
Inventor
魏海军
陈土江
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP18889970.2A priority Critical patent/EP3567461B1/en
Priority to PCT/CN2018/078677 priority patent/WO2019173934A1/zh
Priority to CN201880000276.6A priority patent/CN110476144B/zh
Priority to US16/449,375 priority patent/US11099092B2/en
Publication of WO2019173934A1 publication Critical patent/WO2019173934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0026Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means
    • G01L9/003Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means using variations in capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/975Switches controlled by moving an element forming part of the switch using a capacitive movable element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells

Definitions

  • the present application relates to the field of electronic technology, and more particularly to a pressure detecting chip and a method of detecting pressure.
  • the present application provides a pressure detecting chip and a method of detecting pressure, which can improve the sensitivity of pressure detection.
  • a pressure detecting chip comprising: a canceling circuit, a driving unit and a processing unit, wherein the canceling circuit and the coupling circuit are connected in parallel, the coupling circuit comprising a variable capacitance component, the variable capacitance component
  • the coupling circuit comprising a variable capacitance component, the variable capacitance component
  • the first electrode layer and the second electrode layer are included, and a distance between the first electrode layer and the second electrode layer changes when the first electrode layer is subjected to a touch pressure, and a capacitance value of the variable capacitance component The change varies with the distance between the first electrode layer and the second electrode layer.
  • the driving unit is configured to: output a first input signal to the cancellation circuit, and output a second input signal to the coupling circuit, wherein the coupling circuit receives the second input signal and outputs a second Outputting a signal, the first input signal and the second input signal are 180 degrees out of phase, the first output signal is used to cancel the second output signal;
  • the cancellation circuit is configured to: receive the first Inputting a signal and outputting a first output signal;
  • the processing unit is configured to: determine, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the touch pressure.
  • the cancellation circuit includes a preset capacitor, a capacitance of the predetermined capacitor is equal to an initial capacitance of the variable capacitance component, and the initial capacitance is An equivalent capacitance between the first electrode layer and the second electrode layer when the first electrode layer is not subjected to the touch pressure.
  • the pressure detecting chip further includes: an amplifying circuit, an output end of the canceling circuit and an output end of the coupling circuit are both The input ends of the amplifying circuit are connected, and the amplifying circuit is configured to: perform amplification processing on the first output signal and the second output signal.
  • the first input signal is obtained by inverting a phase of the second input signal by 180 degrees.
  • the pressure detecting chip of the embodiment of the present application can cancel most or all of the signals of the coupling circuit when the touch pressure is not applied by setting the road canceling circuit, so that if there is a touch pressure, the amplifier multiple is unchanged.
  • the effective signal outputted by the coupling circuit can be increased, that is, the detection sensitivity is improved, and the pressure detection is more accurate.
  • a pressure detecting device includes: a pressure detecting chip and a first coupling circuit, wherein the pressure detecting chip includes a first canceling circuit, a driving unit, and a processing unit, the first canceling circuit and the The first coupling circuit is connected in parallel, the first coupling circuit includes a variable capacitance component, and the variable capacitance component includes a first electrode layer and a second electrode layer, when the first electrode layer is subjected to a touch pressure A distance between an electrode layer and the second electrode layer changes, and a capacitance value of the variable capacitance component changes with a change in a distance between the first electrode layer and the second electrode layer.
  • the driving unit is configured to: output a first input signal to the first cancellation circuit, and output a second input signal to the first coupling circuit;
  • the first cancellation circuit is configured to: receive the first An input signal and outputting a first output signal;
  • the first coupling circuit is configured to: receive the second input signal and output a second output signal, the first input signal and the second input signal have a phase difference of 180 The first output signal is used to cancel the second output signal;
  • the processing unit is configured to: determine, according to the first output signal and the second output signal, whether the first electrode layer is subjected to Touch pressure.
  • the cancellation circuit includes a preset capacitor, a capacitance of the preset capacitor is equal to an initial capacitance of the variable capacitance component, and the initial capacitance is An equivalent capacitance between the first electrode layer and the second electrode layer when the first electrode layer is not subjected to the touch pressure.
  • the pressure detecting chip further includes: an amplifying circuit, an output end of the canceling circuit and an output end of the coupling circuit are both The input ends of the amplifying circuit are connected, and the amplifying circuit is configured to: perform amplification processing on the first output signal and the second output signal.
  • the first input signal is obtained by inverting a phase of the second input signal by 180 degrees.
  • the processing unit is specifically configured to: if a difference signal between the first output signal and the second output signal Less than or equal to the first preset value, determining that the first electrode layer is not subjected to the touch pressure.
  • the processing unit is specifically configured to: if a difference signal between the first output signal and the second output signal The first electrode layer is determined to be subjected to the touch pressure by being greater than the first preset value.
  • the pressure detecting chip further includes a second canceling circuit
  • the pressure detecting device further includes a second coupling circuit
  • the second a cancellation circuit is connected in parallel with the second coupling circuit
  • an input signal of the second cancellation circuit is 180 degrees out of phase with an input signal of the second coupling circuit
  • the second cancellation circuit output signal is used to cancel the The output signal of the two coupled circuits.
  • the difference signal between the first output signal and the second output signal is a first difference signal
  • a difference signal between an output signal of the second cancellation circuit and an output signal of the second coupling circuit is a second difference signal, the first difference signal being greater than or equal to the second difference signal
  • the processing unit is specifically configured to: if the first difference signal is greater than the first preset value, and the difference signal between the first difference signal and the second difference signal is less than or equal to the second preset value, determine The first electrode layer is not subjected to the touch pressure; or, if the first difference signal is greater than the first preset value, and the difference signal between the first difference signal and the second difference signal is greater than the second A preset value determines that the first electrode layer is subjected to the touch pressure.
  • the processing unit is further configured to: if it is determined that the first electrode layer is subjected to the touch pressure, determine the touch pressure Pressure characteristics.
  • the pressure detecting device of the embodiment of the present application may include a canceling circuit, which can cancel most or all of the signals of the corresponding coupling circuit when there is no touch pressure, so that if there is a touch pressure, the amplifier multiple is constant.
  • the effective signal outputted by the coupling circuit can be increased, that is, the detection sensitivity is improved, and the pressure detection is more accurate.
  • the capacitance detecting device of the embodiment of the present invention implements pressure detection by using a small capacitance detecting technology, which is in principle the same type of signal detecting technology as the currently widely used capacitive touch detection, and can be reused with the capacitive touch IC. It saves the internal space of the mobile phone and saves economic costs.
  • a plurality of pressure detecting circuits may be included in the pressure detecting device, each of the pressure detecting circuits including a coupling circuit and a canceling circuit, and the plurality of pressure detecting circuits may simultaneously detect the pressure signal, and use part of them as an aid to determine the temperature drift and Anti-interference processing can greatly improve application performance.
  • a terminal device comprising: the pressure detecting device in each of the possible implementations of the second aspect and the second aspect described above.
  • the terminal device is configured to: if the pressure detecting device detects the touch pressure, trigger a target event corresponding to the touch pressure.
  • a method of detecting pressure is provided, the method being performed by a pressure detecting device comprising a canceling circuit and a coupling circuit, wherein the canceling circuit and the coupling circuit are connected in parallel, the coupling circuit including a variable capacitance component including a first electrode layer and a second electrode layer, the distance between the first electrode layer and the second electrode layer being changed when the first electrode layer is subjected to a touch pressure
  • the capacitance value of the variable capacitance component changes as a distance between the first electrode layer and the second electrode layer changes.
  • the method includes: inputting a first input signal to the cancellation circuit, and outputting a first output signal through the cancellation circuit; inputting a second input signal to the coupling circuit; and outputting a second output signal through the coupling circuit
  • the first input signal is 180 degrees out of phase with the second input signal, the first output signal is used to cancel the second output signal; according to the first output signal and the second And outputting a signal to determine whether the first electrode layer is subjected to the touch pressure.
  • the cancellation circuit includes a preset capacitor, a capacitance of the preset capacitor is equal to an initial capacitance of the variable capacitance component, and the initial capacitance is An equivalent capacitance between the first electrode layer and the second electrode layer when the first electrode layer is not subjected to the touch pressure.
  • determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to Before the touch pressure the method further includes: amplifying the first output signal and the second output signal.
  • the first input signal is obtained by inverting a phase of the second input signal by 180 degrees.
  • the determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the The touch pressure includes: if the difference signal between the first output signal and the second output signal is less than or equal to a first preset value, determining that the first electrode layer is not subjected to the touch pressure.
  • the determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the The touch pressure includes: determining that the first electrode layer is subjected to the touch pressure if a difference signal between the first output signal and the second output signal is greater than a first preset value.
  • the pressure detecting apparatus further includes a second cancellation circuit and a second coupling circuit, the second cancellation circuit and the second The coupling circuit is connected in parallel, and an input signal of the second cancellation circuit is 180 degrees out of phase with an input signal of the second coupling circuit, and the second cancellation circuit output signal is used to cancel an output signal of the second coupling circuit.
  • the difference signal between the first output signal and the second output signal is a first difference signal
  • a difference signal between an output signal of the second cancellation circuit and an output signal of the second coupling circuit is a second difference signal, the first difference signal being greater than or equal to the second difference signal
  • Determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the touch pressure comprising: if the first difference signal is greater than a first preset value, and the first difference The difference signal between the value signal and the second difference signal is less than or equal to a second preset value, determining that the first electrode layer is not subjected to the touch pressure; or if the first difference signal is greater than the first preset a value, and a difference signal between the first difference signal and the second difference signal is greater than a second preset value, determining that the first electrode layer is subjected to the touch pressure.
  • the method further includes determining a pressure characteristic of the touch pressure if the first electrode layer is determined to be subjected to the touch pressure .
  • the road detecting circuit is disposed in the pressure detecting device, and when most of the signal of the coupling circuit is not applied, the signal of the coupling circuit can be cancelled, so that if there is a touch pressure, the amplifier is present.
  • the effective signal outputted by the coupling circuit can be increased due to the cancellation function of the cancellation circuit, that is, the detection sensitivity is improved, and the pressure detection is more accurate.
  • the capacitance detecting device of the embodiment of the present invention implements pressure detection by using a small capacitance detecting technology, which is in principle the same type of signal detecting technology as the currently widely used capacitive touch detection, and can be reused with the capacitive touch IC. It saves the internal space of the mobile phone and saves economic costs.
  • a plurality of pressure detecting circuits may be included in the pressure detecting device, each of the pressure detecting circuits including a coupling circuit and a canceling circuit, and the plurality of pressure detecting circuits may simultaneously detect the pressure signal, and use part of them as an aid to determine the temperature drift and Anti-interference processing can greatly improve application performance.
  • a pressure detecting apparatus comprising: a storage unit for storing an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the instruction stored by the memory The execution causes the processor to perform the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • a computer program product comprising instructions for performing the detection of any of the first aspect or the first aspect of the first aspect when the computer runs the finger of the computer program product The method of stress.
  • the computer program product can be run on the pressure detecting device of the above fifth aspect.
  • FIG. 1 is a schematic diagram of a pressure detecting chip according to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a pressure detecting circuit in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic illustration of a stack of pressure sensing devices in accordance with an embodiment of the present application.
  • FIG. 4 is a schematic view of a pressure detecting device according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a pressure detecting device according to an embodiment of the present application.
  • FIG. 6 is a schematic flow chart of a method of detecting pressure according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a pressure detecting chip 100 in accordance with an embodiment of the present application.
  • the pressure detecting chip 100 may include a driving unit 110 , a cancellation circuit 120 , and a processing unit 130 , wherein the cancellation circuit 120 is connected in parallel with the coupling circuit 200 .
  • the coupling circuit 200 may further include a variable capacitance component, which may be equivalent to a capacitor, the variable capacitance component including a first electrode layer and a second electrode layer, and the first electrode layer When the touch pressure is applied, the distance between the first electrode layer and the second electrode layer is changed. Similarly, the capacitance value of the variable capacitance component is also between the first electrode layer and the second electrode layer. The distance changes.
  • the driving unit 110 is configured to: output a first input signal to the cancellation circuit 120, and output a second input signal to the coupling circuit 200; the cancellation circuit 120 is configured to receive the first input signal and output the first output Similarly, the coupling circuit 200 is configured to receive the second input signal and output a second output signal, wherein the first input signal and the second input signal are 180 degrees out of phase, and the first output signal is used for The second output signal is cancelled.
  • the first output signal can be used to cancel all or nearly all of the second output signal when the first electrode layer is not subjected to the touch pressure. Additionally, the first output signal and the second output signal are used to determine whether the first electrode layer is subjected to the touch pressure.
  • FIG. 2 shows a schematic diagram of a pressure detecting circuit according to an embodiment of the present application.
  • the pressure detecting circuit can be used as a specific implementation of the pressure detecting chip 100 and the coupling circuit 200.
  • the pressure detecting circuit includes a canceling circuit 120 and a coupling circuit 200.
  • the pressure detecting circuit may further include an amplifying circuit 140.
  • the pressure detecting chip 100 includes the amplifying circuit 140.
  • the input end of the amplifying circuit 140 is connected to the output end of the canceling circuit 120 and the output end of the coupling circuit 200.
  • the amplifying circuit 140 can be used to amplify the output signals of the canceling circuit 120 and the coupling circuit 200, so that the amplifying circuit 140 can amplify the detection result, and determine the variable capacitance component in the coupling circuit 200 according to the amplified result. Whether an electrode layer is subjected to touch pressure.
  • the amplifying circuit 140 may include an amplifier, and may also include other related circuits, but the embodiment of the present application is not limited thereto.
  • the input signal of the cancellation circuit 120 is a first input signal, and the first input signal outputs a first output signal through the cancellation circuit 120.
  • the first output signal can be output to the cancellation circuit 120 through the driving unit 110.
  • the cancellation circuit 120 may include a preset capacitor Cc, and the capacitance value of the preset capacitor Cc may be a preset fixed value.
  • the input signal of the coupling circuit 200 is a second input signal, and the second input signal outputs a second output signal through the coupling circuit 200.
  • the second input signal can be output to the coupling circuit 200 through the driving unit 110.
  • the second input signal is 180 degrees out of phase with the first input signal, and the other parameters are the same.
  • the two input signals can be output by the driving unit 110, and the phase of the second input signal can be reversed by 180 degrees.
  • the first input signal is obtained, and the first input signal is input to the cancellation circuit 120, and the second input signal is input to the coupling circuit 200.
  • the embodiment of the present application is not limited thereto.
  • the coupling circuit 200 may include a variable capacitance component Cs, which may be equivalent to a capacitor with variable capacitance.
  • the variable capacitance component Cs may include a first electrode layer. And a second electrode layer, the distance between the first electrode layer and the second electrode layer is variable, for example, the first electrode layer changes between the first electrode layer and the second electrode layer when subjected to a touch pressure Similarly, the capacitance value of the variable capacitance component Cs also changes as the distance between the first electrode layer and the second electrode layer changes.
  • the magnitude of the capacitance is equal to the magnitude of the capacitance of the preset capacitor Cc of the cancellation circuit 120, that is, the preset of the cancellation circuit 120 can be
  • the size of the capacitance of the capacitor Cc is set to be approximately equal to the magnitude of the capacitance of the variable capacitance part Cs of the coupling circuit 200 when it is not subjected to the touch pressure. It should be understood that the equalities of the above two capacitance values may be approximately equal, such that the variable capacitance component Cs of the coupling circuit 200 may pass through the first input signal of the preset capacitor Cc of the cancellation circuit 120 when it is not subjected to the touch pressure. All or most of the second input signal passing through the variable capacitance component Cs of the coupling circuit 200 is cancelled.
  • FIG. 3 shows a schematic view of a stack of pressure detecting devices in accordance with an embodiment of the present application.
  • the pressure detecting circuit shown in FIG. 2 is located in the pressure detecting device shown in FIG. 3.
  • the pressure detecting device shown in FIG. 3 may be a terminal device or located at the terminal.
  • the terminal device may be a mobile phone
  • the stack of the pressure detecting device may be as shown in FIG. 3 from top to bottom.
  • the first layer may be the back panel of the display screen of the mobile phone.
  • the touch pressure is transmitted to the second layer through the display back panel, and the touch pressure may be pressed by the user's finger.
  • the pressure generated when the display screen; the second layer is the emitter electrode conductor Tx, which can be used to transmit an electrical signal, and the second layer can be equivalent to the first electrode layer of the variable capacitance component Cs in the coupling circuit 200 in the pressure detecting circuit.
  • the emitted electrical signal is the second input signal; the third layer is Optically Clear Adhesive (OCA) and air, and the OCA is used to isolate and support the second and fourth layers.
  • OCA Optically Clear Adhesive
  • the OCA and the air can digest the pressure and function as a contraction space;
  • the fourth layer is the receiving electrode conductor Rx, which can be regarded as the second electrode layer of the variable capacitance part Cs in the coupling circuit 200, the fourth layer
  • the second layer constitutes a variable capacitance component Cs in the coupling circuit 200, and the fourth layer can be used to receive an electrical signal emitted by the second layer of the transmitting electrode Tx.
  • the electrical signal output by the fourth layer is the second Output letter
  • the fifth layer is the mobile phone system ground, used to shield the interference signal below into the Rx detection circuit.
  • the fourth layer may further comprise a Flexible Printed Circuit (FPC).
  • FPC Flexible Printed Circuit
  • the fourth layer of FIG. 3 includes four receiving electrode conductors Rx, which may be larger or smaller than the size shown in FIG. 3.
  • the size of Rx1 may be greater than or less than or equal to the size of the corresponding air space of the upper layer.
  • each of the receiving electrode conductors Rx has the same size and uniform distribution.
  • the second layer is shielded above, which can resist strong interference, such as charger interference.
  • the second input signal is input to the second layer of the emitter electrode conductor Tx, and the variable capacitance component Cs in the coupling circuit 200 is passed through the fourth layer. And outputting the second output signal to the input end of the amplifying circuit 140; in addition, corresponding to the canceling circuit 120, the second input signal passes through the preset capacitor Cc, and is also connected to the input end of the amplifying circuit 140, wherein the second input signal of the coupling circuit 200 is The second input signal of the cancellation circuit 120 is 180 degrees out of phase.
  • the pressure detecting chip of the embodiment of the present application can cancel most or all of the signals of the coupling circuit when the touch pressure is not applied by setting the road canceling circuit, so that if there is a touch pressure, the amplifier multiple is unchanged.
  • the effective signal outputted by the coupling circuit can be increased, that is, the detection sensitivity is improved, and the pressure detection is more accurate.
  • FIG. 4 shows a schematic diagram of a pressure detecting device 300 of an embodiment of the present application.
  • the pressure detecting device 300 may include a pressure detecting chip and a at least one coupling circuit, wherein the pressure detecting chip includes a driving unit 311, at least one canceling circuit, and a processing unit 313, and the at least one canceling circuit includes a first canceling circuit 312, optionally
  • a second cancellation circuit 314 can also be included, and the second cancellation circuit 314 can be any cancellation circuit other than the first cancellation circuit 312;
  • the at least one coupling circuit includes a first coupling circuit 320, and optionally, can also include
  • the second coupling circuit 330 can be any coupling circuit other than the first coupling circuit 320, and the first coupling circuit 320 is connected in parallel with the first cancellation circuit 312, and the second coupling circuit 330 is offset by the second.
  • the pressure detecting chip may be the pressure detecting chip 100 as shown in FIG. 1 or FIG. 2, the driving unit 311 corresponds to the driving unit 110, and the first canceling circuit 312 or the second canceling circuit 314 corresponds to the canceling circuit 120, corresponding to The first coupling circuit 320 or the second coupling circuit 330 corresponds to the coupling circuit 200, and the processing unit 313 corresponds to the processing unit 130.
  • the coupling circuit 320 may further include a variable capacitance component, which may be equivalent to a capacitor, the variable capacitance component including a first electrode layer and a second electrode layer, and the first electrode layer is touched When the pressure is changed, the distance between the first electrode layer and the second electrode layer is changed. Similarly, the capacitance value of the variable capacitance component is also the distance between the first electrode layer and the second electrode layer. Change and change.
  • the driving unit 311 is configured to: output the first input signal to the first cancellation circuit 312, output a first output signal through the first cancellation circuit 312, and output the second input to the second coupling circuit 320.
  • the signal is outputted by the second coupling circuit 320 to output a second output signal, wherein the first input signal and the second input signal are 180 degrees out of phase, and the first output signal is used to cancel the second output signal.
  • the first output signal may be used to cancel all or almost all of the second output signal;
  • the processing unit 313 is configured to: according to the first output signal and the The second output signal determines whether the first electrode layer of the second coupling circuit 320 is subjected to the touch pressure.
  • the processing unit 313 is specifically configured to: if the difference signal between the first output signal and the second output signal is less than or equal to a first preset value, determine that the first electrode layer is not Subject to this touch pressure.
  • the processing unit 313 is further configured to: if the difference signal between the first output signal and the second output signal is greater than a first preset value, determine that the first electrode layer is subjected to the touch pressure.
  • the first output signal of the first cancellation circuit 312 may completely cancel or almost completely cancel the second output signal, that is, the first output signal and the second may be detected.
  • the difference signal between the output signals is less than or equal to the first preset value; and when the touch pressure is applied, the first output signal of the first cancellation circuit 312 cannot completely cancel the second output signal, and the first output signal can be detected.
  • the difference signal with the second output signal is greater than the first predetermined value.
  • an auxiliary circuit may be provided in the pressure detecting device, that is, a plurality of coupling circuits and offsets may be included. Circuit.
  • the pressure detecting device may include a plurality of canceling circuits and a plurality of coupling circuits, wherein the plurality of coupling circuits include a first coupling circuit 320 and a second coupling circuit 330, and the plurality of cancellation circuits include the first cancellation circuit 312.
  • the second cancellation circuit 314 for example, the first coupling circuit 320 and the first cancellation circuit 312 may be the coupling circuit 200 and the cancellation circuit 120 as shown in FIG. 1 or FIG. 2, the second coupling circuit 330 and the second cancellation circuit. 314 may also be the coupling circuit 200 and the cancellation circuit 120 as shown in FIG. 1 or 2.
  • the first coupling circuit and the second coupling circuit are disposed at different positions.
  • Rx1, Rx2, and Rx3 may respectively correspond to positions of three coupling circuits.
  • the Rx1, Rx2, and Rx3 may respectively Corresponding to the second electrode plates of the three coupling circuits.
  • the difference signal between the first output signal output by the first cancellation circuit 312 and the second output signal output by the first coupling circuit 320 is referred to as a first difference signal
  • the output signal of the second cancellation circuit 314 is The difference signal between the output signals of the second coupling circuit 330 is referred to as a second difference signal
  • the first difference signal is greater than or equal to the second difference signal.
  • the processing unit 313 is further configured to: if the first difference signal is greater than the first preset value, and the difference signal between the first difference signal and the second difference signal is less than or equal to the second preset value Determining that the first electrode layer is not subjected to the touch pressure; or, if the first difference signal is greater than the first preset value, and the difference signal between the first difference signal and the second difference signal is greater than the second The preset value determines that the first electrode layer is subjected to the touch pressure.
  • the output of the detected coupling circuit which may be subjected to the touch pressure, is compared with the output of the other coupling circuit, thereby eliminating the error caused by the temperature drift and the common mode interference, and more accurately determining whether the pressure detecting device is Subject to touch pressure.
  • FIG. 5 shows another schematic diagram of a pressure detecting device according to an embodiment of the present application.
  • the pressure detecting device includes three sets of coupling circuits and a canceling circuit as an example for convenience.
  • a set of coupling circuits and a parallel cancellation circuit are referred to herein as a pressure detecting circuit, that is, a broken line frame in FIG. 5, that is, three pressure detecting circuits are collectively shown in FIG.
  • any one of the three pressure detecting circuits includes a coupling circuit and a cancellation circuit, and the coupling circuit and the cancellation circuit may correspond to the first coupling circuit 320 and the first cancellation circuit 312 as shown in FIG. 4, and may also correspond to As shown in FIGS.
  • the coupling circuit 200 and the canceling circuit 120 similarly, the remaining two pressure detecting circuits shown in FIG. 5 can also correspond to the coupling circuit and the canceling circuit of FIGS. 1, 2, and 4.
  • the first pressure detecting circuit is a combination of the first coupling circuit 320 and the first canceling circuit 312 shown in FIG. 4, and it is assumed that the first pressure detecting circuit detects the pressure, that is, the first pressure detecting circuit may Under the action of the touch pressure, the other two pressure detecting circuits are used as auxiliary, and the temperature drift and the common mode interference are eliminated.
  • any one of the two pressure detecting circuits is arbitrarily selected as an auxiliary, and compared with the first pressure detecting circuit.
  • a pressure detecting circuit compares to determine whether or not the touch pressure is applied, but the embodiment of the present application is not limited thereto.
  • each of the pressure detecting circuits may further include an amplifying circuit, the input end of the amplifying circuit is connected to the coupling circuit of the pressure detecting circuit and the output end of the canceling circuit, and the output signals of the coupling circuit and the canceling circuit may be amplified, according to The amplified result determines whether the first electrode layer of the variable capacitance component in the coupling circuit is subjected to the touch pressure.
  • the amplifying circuit may include an amplifier, and may also include other related circuits, but the embodiment of the present application is not limited thereto.
  • the driving unit 311 outputs a first input signal to the cancellation circuit of each pressure detecting circuit, and outputs a second input signal to the coupling circuit of each pressure detecting circuit, and the first input signal may be a phase of the second input signal. Obtained 180 degrees in reverse, each pressure detecting circuit transmits the output result to the processing unit 313, and the processing unit 313 compares the measurement results of the respective pressure detecting circuits to determine whether it is subjected to the touch pressure, for example, which one can be determined. The pressure detecting circuit detects the touch pressure.
  • first preset value and the second preset value may be set according to an actual application, and the first preset value may be equal to the second preset value, for example, both are set to 0;
  • the first preset value may be equal to the second preset value as two values that are not equal, and the embodiment of the present application is not limited thereto.
  • the driving unit 311 of the embodiment of the present application may include a digital to analog converter (DAC), a digital signal converted into a coupling circuit for inputting an analog signal to each pressure detecting circuit, and a cancellation circuit, but the present application implements The example is not limited to this.
  • DAC digital to analog converter
  • the processing unit 313 of the embodiment of the present application may collect pressure signal data.
  • the processing unit may include an analog to digital converter (ADC) to convert the analog signal into a digital signal, and the processing unit 313 may Including a micro control unit (MCU), the MCU can collect and process the digital signal to determine whether the pressure detecting device is subjected to touch pressure. If it is determined to be subjected to touch pressure, the processing unit can further determine the touch pressure.
  • the pressure characteristic for example, the pressure characteristic may include the magnitude of the touch pressure, or the duration of action, etc., and the embodiment of the present application is not limited thereto.
  • the pressure detecting device 300 in the embodiment of the present application may be located in the terminal device.
  • the terminal device may trigger a corresponding target event, thereby performing a target operation.
  • the terminal device may determine a corresponding target event according to the pressure feature, and trigger the target event to perform the target operation.
  • the terminal device performs an operation of unlocking the home screen, or the terminal device can also perform a short-time touch according to the touch pressure action time, perform an operation of returning to the home page, and touch for a long time to execute the lock screen. operating.
  • the pressure detecting device of the embodiment of the present application may include a canceling circuit, which can cancel most or all of the signals of the corresponding coupling circuit when there is no touch pressure, so that if there is a touch pressure, the amplifier multiple is constant.
  • the effective signal outputted by the coupling circuit can be increased, that is, the detection sensitivity is improved, and the pressure detection is more accurate.
  • the capacitance detecting device of the embodiment of the present invention implements pressure detection by using a small capacitance detecting technology, which is in principle the same type of signal detecting technology as the currently widely used capacitive touch detection, and can be reused with the capacitive touch IC. It saves the internal space of the mobile phone and saves economic costs.
  • a plurality of pressure detecting circuits may be included in the pressure detecting device, each of the pressure detecting circuits including a coupling circuit and a canceling circuit, and the plurality of pressure detecting circuits may simultaneously detect the pressure signal, and use part of them as an aid to determine the temperature drift and Anti-interference processing can greatly improve application performance.
  • the pressure detecting device includes a canceling circuit and a coupling circuit, wherein the canceling circuit and the coupling circuit are connected in parallel, the coupling circuit includes a variable capacitance component including a first electrode layer and a second electrode layer, at the first The distance between the first electrode layer and the second electrode layer changes when the electrode layer is subjected to the touch pressure, and the capacitance value of the variable capacitance component varies with the distance between the first electrode layer and the second electrode layer. Variety,.
  • the method 400 includes: S410, inputting a first input signal to the cancellation circuit, and outputting a first output signal through the cancellation circuit; S420, inputting a second input signal to the coupling circuit; and passing the coupling The circuit outputs a second output signal, wherein the first input signal and the second input signal are 180 degrees out of phase, the first output signal is used to cancel the second output signal; S430, according to the first output signal And a second output signal determining whether the first electrode layer is subjected to the touch pressure.
  • the cancellation circuit includes a preset capacitor having a capacitance equal to an initial capacitance of the variable capacitance component, the initial capacitance being the first electrode layer when the first electrode layer is not subjected to the touch pressure The equivalent capacitance between the second electrode layers.
  • the method before determining whether the first electrode layer is subjected to the touch pressure according to the first output signal and the second output signal, the method further includes: performing the first output signal and the second output signal Zoom in.
  • the first input signal is obtained by inverting the phase of the second input signal by 180 degrees.
  • determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the touch pressure comprising: if a difference signal between the first output signal and the second output signal Less than or equal to the first preset value, determining that the first electrode layer is not subjected to the touch pressure.
  • determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the touch pressure comprising: if a difference signal between the first output signal and the second output signal Greater than the first preset value, determining that the first electrode layer is subjected to the touch pressure.
  • the pressure detecting device further includes a second canceling circuit and a second coupling circuit, the second canceling circuit is connected in parallel with the second coupling circuit, and an input signal of the second canceling circuit and an input signal of the second coupling circuit The phases are 180 degrees out of phase, and the second cancellation circuit output signal is used to cancel the output signal of the second coupling circuit.
  • the difference signal between the first output signal and the second output signal is a first difference signal, and a difference between an output signal of the second cancellation circuit and an output signal of the second coupling circuit
  • the signal is a second difference signal, the first difference signal is greater than or equal to the second difference signal; and determining, according to the first output signal and the second output signal, whether the first electrode layer is subjected to the touch pressure,
  • the method includes: if the first difference signal is greater than the first preset value, and the difference signal between the first difference signal and the second difference signal is less than or equal to a second preset value, determining that the first electrode layer is not Receiving the touch pressure; determining the first electrode layer if the first difference signal is greater than the first preset value, and the difference signal between the first difference signal and the second difference signal is greater than a second preset value Subject to this touch pressure.
  • the method further includes determining a pressure characteristic of the touch pressure if the first electrode layer is determined to be subjected to the touch pressure.
  • the road detecting circuit is disposed in the pressure detecting device, and when most of the signal of the coupling circuit is not applied, the signal of the coupling circuit can be cancelled, so that if there is a touch pressure, the amplifier is present.
  • the effective signal outputted by the coupling circuit can be increased due to the cancellation function of the cancellation circuit, that is, the detection sensitivity is improved, and the pressure detection is more accurate.
  • the capacitance detecting device of the embodiment of the present invention implements pressure detection by using a small capacitance detecting technology, which is in principle the same type of signal detecting technology as the currently widely used capacitive touch detection, and can be reused with the capacitive touch IC. It saves the internal space of the mobile phone and saves economic costs.
  • a plurality of pressure detecting circuits may be included in the pressure detecting device, each of the pressure detecting circuits including a coupling circuit and a canceling circuit, and the plurality of pressure detecting circuits may simultaneously detect the pressure signal, and use part of them as an aid to determine the temperature drift and Anti-interference processing can greatly improve application performance.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Measuring Fluid Pressure (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Electronic Switches (AREA)

Abstract

一种压力检测芯片和检测压力的方法,该方法由包括抵消电路(120)和耦合电路(200)的压力检测装置(300)执行,该抵消电路(120)和耦合电路(200)并联,该耦合电路(200)包括具有第一电极层与第二电极层的可变电容部件,该第一电极层在受到触摸压力时与该第二电极层之间的距离改变。该压力检测方法包括:向该抵消电路输入第一输入信号并输出第一输出信号(S410);向该耦合电路输入第二输入信号并输出第二输出信号,该第一输入信号与该第二输入信号的相位相差180度,该第一输出信号用于抵消该第二输出信号(S420);根据该第一输出信号与该第二输出信号,确定该第一电极层是否受到该触摸压力(S430)。该压力检测芯片和检测压力的方法,能够提高压力检测的灵敏度。

Description

压力检测芯片和检测压力的方法 技术领域
本申请涉及电子技术领域,尤其涉及压力检测芯片和检测压力的方法。
背景技术
手机显示屏的变革浪潮带来了电容式触控屏。现在随着智能手机制造商引入新的纵横比显示屏,新的无边框全面屏设计,在不增加手机整体尺寸的情况下,显示区域可以做到最大化,甚至追求100%屏占比设计,大大改善了智能手机用户体验。然而,这些新的显示形式会导致手机显示屏上没有物理Home键的位置,因此,寻找一种Home键的替代方案已经成为智能手机制造商必须要考虑的事情。
目前,有多种Home键的常用替代方案,其中一种便是通过在屏体下方布置可变压力传感器,通过该可变压力传感器检测压力的有无,或者也可以检测压力变化特征,共同判断是否触发Home键事件,这种方案既能节省空间,又能够防止误触发。但手指压力信号穿透手机玻璃盖板到达压力传感器时已经极其微弱,会存在检测灵敏度不够的问题。
发明内容
本申请提供了一种压力检测芯片和检测压力的方法,能够提高压力检测的灵敏度。
第一方面,提供了一种压力检测芯片,包括:抵消电路、驱动单元和处理单元,其中,所述抵消电路和耦合电路并联,所述耦合电路包括可变电容部件,所述可变电容部件包括第一电极层与第二电极层,在所述第一电极层受到触摸压力时所述第一电极层与所述第二电极层之间的距离改变,所述可变电容部件的电容值随所述第一电极层与所述第二电极层之间的距离的变化而变化。
具体地,所述驱动单元用于:向所述抵消电路输出第一输入信号,以及向所述耦合电路输出第二输入信号,其中,所述耦合电路接收所述第二输入信号并输出第二输出信号,所述第一输入信号与所述第二输入信号的相位相差180度,所述第一输出信号用于抵消所述第二输出信号;所述抵消电路用 于:接收所述第一输入信号并输出第一输出信号;所述处理单元用于:根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力。
结合第一方面,在第一方面的一种实现方式中,所述抵消电路包括预设电容器,所述预设电容器的电容等于所述可变电容部件的初始电容,所述初始电容为在所述第一电极层未受到所述触摸压力时所述第一电极层与所述第二电极层之间的等效电容。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述压力检测芯片还包括:放大电路,所述抵消电路的输出端和所述耦合电路的输出端均与所述放大电路的输入端相连,所述放大电路用于:将所述第一输出信号和所述第二输出信号进行放大处理。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,所述第一输入信号为将所述第二输入信号的相位反向180度获得的。
因此,本申请实施例的压力检测芯片,通过设置路抵消电路,在没有触摸压力作用时,可以抵消耦合电路的大部分或全部信号,这样,若存在触摸压力作用时,在放大器倍数不变的情况,由于抵消电路的抵消作用,能够增大经过耦合电路输出的有效信号,即提升检测灵敏度,使得压力检测更准确。
第二方面,提供了一种压力检测装置,包括:压力检测芯片和第一耦合电路,其中,所述压力检测芯片包括第一抵消电路、驱动单元和处理单元,所述第一抵消电路和所述第一耦合电路并联,所述第一耦合电路包括可变电容部件,所述可变电容部件包括第一电极层与第二电极层,在所述第一电极层受到触摸压力时所述第一电极层与所述第二电极层之间的距离改变,所述可变电容部件的电容值随所述第一电极层与所述第二电极层之间的距离的变化而变化。
具体地,所述驱动单元用于:向所述第一抵消电路输出第一输入信号,以及向所述第一耦合电路输出第二输入信号;所述第一抵消电路用于:接收所述第一输入信号并输出第一输出信号;所述第一耦合电路用于:接收所述第二输入信号并输出第二输出信号,所述第一输入信号与所述第二输入信号的相位相差180度,所述第一输出信号用于抵消所述第二输出信号;所述处理单元用于:根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力。
结合第二方面,在第二方面的一种实现方式中,所述抵消电路包括预设电容器,所述预设电容器的电容等于所述可变电容部件的初始电容,所述初始电容为在所述第一电极层未受到所述触摸压力时所述第一电极层与所述第二电极层之间的等效电容。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述压力检测芯片还包括:放大电路,所述抵消电路的输出端和所述耦合电路的输出端均与所述放大电路的输入端相连,所述放大电路用于:将所述第一输出信号和所述第二输出信号进行放大处理。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第一输入信号为将所述第二输入信号的相位反向180度获得的。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述处理单元具体用于:若所述第一输出信号与所述第二输出信号之间的差值信号小于或者等于第一预设值,确定所述第一电极层未受到所述触摸压力。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述处理单元具体用于:若所述第一输出信号与所述第二输出信号之间的差值信号大于第一预设值,确定所述第一电极层受到所述触摸压力。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述压力检测芯片还包括第二抵消电路,所述压力检测装置还包括第二耦合电路,所述第二抵消电路与所述第二耦合电路并联,所述第二抵消电路的输入信号与所述第二耦合电路的输入信号的相位相差180度,所述第二抵消电路输出信号用于抵消所述第二耦合电路的输出信号。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所述第一输出信号与所述第二输出信号之间的差值信号为第一差值信号,所述第二抵消电路的输出信号与所述第二耦合电路的输出信号之间的差值信号为第二差值信号,所述第一差值信号大于或者等于所述第二差值信号;所述处理单元具体用于:若第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号小于或者等于第二预设值,确定所述第一电极层未受到所述触摸压力;或,若第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号大于第二预设值,确定所述第一电极层受到所述触摸压力。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,所 述处理单元还用于:若确定所述第一电极层受到所述触摸压力,确定所述触摸压力的压力特征。
因此,本申请实施例的压力检测装置,可以包括抵消电路,在没有触摸压力作用时,可以抵消对应耦合电路的大部分或全部信号,这样,若存在触摸压力作用时,在放大器倍数不变的情况,由于抵消电路的抵消作用,能够增大经过耦合电路输出的有效信号,即提升检测灵敏度,使得压力检测更准确。另外,本申请实施例的电容检测装置采用微小电容检测技术实现压力检测,这在原理上和目前广泛使用的电容式触控检测属于同类型信号检测技术,可以与电容触控IC复用,既能节省手机内部空间,还能节省经济成本。
而且,在该压力检测装置中可以包括多个压力检测电路,每个压力检测电路包括耦合电路和抵消电路,该多个压力检测电路可以同时检测压力信号,将其中部分作为辅助以判断温漂和抗干扰处理,能够大大提升应用性能。
第三方面,提供了一种终端设备,包括:如上述第二方面和第二方面各个可能实现方式中的压力检测装置。
结合第三方面,在第三方面的一种实现方式中,所述终端设备用于:若所述压力检测装置检测到所述触摸压力,触发与所述触摸压力对应的目标事件。
第四方面,提供了一种检测压力的方法,该方法由压力检测装置执行,所述压力检测装置包括抵消电路和耦合电路,其中,所述抵消电路和耦合电路并联,所述耦合电路包括可变电容部件,所述可变电容部件包括第一电极层与第二电极层,在所述第一电极层受到触摸压力时所述第一电极层与所述第二电极层之间的距离改变,所述可变电容部件的电容值随所述第一电极层与所述第二电极层之间的距离的变化而变化。
所述方法包括:向所述抵消电路输入第一输入信号,并经过所述抵消电路输出第一输出信号;向所述耦合电路输入第二输入信号;并经过所述耦合电路输出第二输出信号,其中,所述第一输入信号与所述第二输入信号的相位相差180度,所述第一输出信号用于抵消所述第二输出信号;根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力。
结合第四方面,在第四方面的一种实现方式中,所述抵消电路包括预设电容器,所述预设电容器的电容等于所述可变电容部件的初始电容,所述初 始电容为在所述第一电极层未受到所述触摸压力时所述第一电极层与所述第二电极层之间的等效电容。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,在所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力之前,所述方法还包括:将所述第一输出信号和所述第二输出信号进行放大处理。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述第一输入信号为将所述第二输入信号的相位反向180度获得的。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力,包括:若所述第一输出信号与所述第二输出信号之间的差值信号小于或者等于第一预设值,确定所述第一电极层未受到所述触摸压力。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力,包括:若所述第一输出信号与所述第二输出信号之间的差值信号大于第一预设值,确定所述第一电极层受到所述触摸压力。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述压力检测装置还包括第二抵消电路和第二耦合电路,所述第二抵消电路与所述第二耦合电路并联,所述第二抵消电路的输入信号与所述第二耦合电路的输入信号的相位相差180度,所述第二抵消电路输出信号用于抵消所述第二耦合电路的输出信号。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述第一输出信号与所述第二输出信号之间的差值信号为第一差值信号,所述第二抵消电路的输出信号与所述第二耦合电路的输出信号之间的差值信号为第二差值信号,所述第一差值信号大于或者等于所述第二差值信号;所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力,包括:若第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号小于或者等于第二预设值,确定所述第一电极层未受到所述触摸压力;或,若第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号大于第二预设值,确定所述第一电极层受到所述触摸压力。
结合第四方面及其上述实现方式,在第四方面的另一种实现方式中,所述方法还包括:若确定所述第一电极层受到所述触摸压力,确定所述触摸压力的压力特征。
因此,本申请实施例的检测压力的方法,在压力检测装置设置路抵消电路,在没有触摸压力作用时,可以抵消耦合电路的大部分或全部信号,这样,若存在触摸压力作用时,在放大器倍数不变的情况,由于抵消电路的抵消作用,能够增大经过耦合电路输出的有效信号,即提升检测灵敏度,使得压力检测更准确。另外,本申请实施例的电容检测装置采用微小电容检测技术实现压力检测,这在原理上和目前广泛使用的电容式触控检测属于同类型信号检测技术,可以与电容触控IC复用,既能节省手机内部空间,还能节省经济成本。
而且,在该压力检测装置中可以包括多个压力检测电路,每个压力检测电路包括耦合电路和抵消电路,该多个压力检测电路可以同时检测压力信号,将其中部分作为辅助以判断温漂和抗干扰处理,能够大大提升应用性能。
第五方面,提供了一种压力检测装置,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第四方面或第四方面的任意可能的实现方式中的方法。
第六方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第四方面或第四方面的任意可能的实现方式中的方法的指令。
第七方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第一方面或第一方面的任意可能的实现方式中的检测压力的方法。具体地,该计算机程序产品可以运行于上述第五方面的压力检测装置上。
附图说明
图1是根据本申请实施例的压力检测芯片的示意图。
图2是根据本申请实施例的压力检测电路的另一示意图。
图3是根据本申请实施例的压力检测装置叠层的示意图。
图4是根据本申请实施例的压力检测装置的示意图。
图5是根据本申请实施例的压力检测装置的另一示意图。
图6是根据本申请实施例的检测压力的方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1示出了根据本申请实施例的压力检测芯片100的示意图。如图1所示,该压力检测芯片100可以包括驱动单元110、抵消电路120以及处理单元130,其中,该抵消电路120与耦合电路200并联。具体地,该耦合电路200中还可以包括可变电容部件,该可变电容部件可以等效为一个电容器,该可变电容部件包括第一电极层和第二电极层,且该第一电极层在受到触摸压力时,会改变第一电极层与第二电极层之间的距离,同样的,该可变电容部件的电容值也会随着该第一电极层与该第二电极层之间的距离的变化而变化。
具体地,该驱动单元110用于:向该抵消电路120输出第一输入信号,以及向该耦合电路200输出第二输入信号;该抵消电路120用于接收该第一输入信号并输出第一输出信号;类似的,该耦合电路200用于接收该第二输入信号并输出第二输出信号,其中,该第一输入信号与该第二输入信号的相位相差180度,该第一输出信号用于抵消该第二输出信号。例如,在该第一电极层未受到该触摸压力时,该第一输出信号可以用于抵消全部或者几乎全部的该第二输出信号。另外,该第一输出信号与该第二输出信号用于确定该第一电极层是否受到该触摸压力。
在本申请实施例中,图2示出了根据本申请实施例的压力检测电路的示意图,如图2所示,该压力检测电路可以作为上述压力检测芯片100以及耦合电路200的一种具体实施例,其中,压力检测电路包括抵消电路120以及耦合电路200。
可选的,该压力检测电路还可以包括放大电路140,例如,压力检测芯片100包括该放大电路140,该放大电路140的输入端与抵消电路120的输出端以及耦合电路200的输出端相连,该放大电路140可以用于放大抵消电路120和耦合电路200的输出信号,以便于该放大电路140可以将检测结果放大,根据该放大后的结果确定该耦合电路200中的可变电容部件的第一电极层是否受到触摸压力。
可选地,该放大电路140可以包括放大器,还可以包括其它相关电路,但本申请实施例并不限于此。
以图2为例,该抵消电路120的输入信号为第一输入信号,该第一输入信号经过该抵消电路120输出第一输出信号,例如,可以通过驱动单元110向抵消电路120输出该第一输入信号。可选的,该抵消电路120可以包括预设电容器Cc,该预设电容器Cc的电容值可以为预先设置的固定值。
该耦合电路200的输入信号为第二输入信号,该第二输入信号经过该耦合电路200输出第二输出信号,例如,可以通过驱动单元110向该耦合电路200输出该第二输入信号。其中,该第二输入信号与第一输入信号的相位相差180度,而其他参数相同,例如,可以通过驱动单元110输出该两路输入信号,将第二输入信号的相位反向180度即可获得第一输入信号,再将该第一输入信号输入至抵消电路120,将第二输入信号输入至耦合电路200,但本申请实施例并不限于此。
在本申请实施例中,该耦合电路200可以包括可变电容部件Cs,该可变电容部件Cs可以等效为电容可变的电容器,具体地,该可变电容部件Cs可以包括第一电极层和第二电极层,该第一电极层和第二电极层之间的距离可变,例如,该第一电极层在受到触摸压力时,会改变第一电极层与第二电极层之间的距离,同样的,该可变电容部件Cs的电容值也会随着该第一电极层与该第二电极层之间的距离的变化而变化。
可选地,该耦合电路200的可变电容部件Cs在未受到触摸压力作用时,其电容的大小与抵消电路120的预设电容器Cc的电容的大小相等,即可以将抵消电路120的预设电容器Cc的电容的大小设置为约等于耦合电路200的可变电容部件Cs在未受到触摸压力作用时的电容的大小。应理解,上述两个电容值的相等可以为近似相等,使得该耦合电路200的可变电容部件Cs在未受到触摸压力作用时,经过抵消电路120的预设电容器Cc的第一输入信号可以将经过耦合电路200的可变电容部件Cs的第二输入信号的全部或者大部分抵消。
图3示出了根据本申请实施例的压力检测装置叠层的示意图。具体地,以图3为例,假设如图2所示的该压力检测电路位于如图3所示的压力检测装置内,例如图3所示的该压力检测装置可以为终端设备,或者位于终端设备中,例如该终端设备可以为手机,该压力检测装置的叠层从上到下可以如 图3所示。其中,第一层可以为该手机的显示屏的背板,显示屏表面受到触摸压力作用时,通过显示屏背板传导该触摸压力到第二层,该触摸压力可以为用户的手指摁压该显示屏时产生的压力;第二层是发射电极导体Tx,可以用于发射电信号,该第二层可以等效为压力检测电路中耦合电路200中的可变电容部件Cs的第一电极层,发射的电信号即为第二输入信号;第三层为光学胶(Optically Clear Adhesive,OCA)和空气,OCA用于隔离和支撑第二层和第四层,当屏表面压力传到至第二层时,OCA和空气能够消化压力,起到收缩空间的作用;第四层是接收电极导体Rx,可以看作耦合电路200中的可变电容部件Cs的第二电极层,该第四层与第二层构成耦合电路200中的可变电容部件Cs,该第四层可以用于接收第二层发射电极Tx发射的电信号,对应的,该第四层输出的电信号即为第二输出信号;第五层是手机系统地,用于屏蔽下方干扰信号进入Rx检测电路。
可选地,该第四层还可以包括柔性电路板(Flexible Printed Circuit,FPC)。
应理解,这里不限制图3中的各个层的大小以及厚度。例如,图3的第四层包括四个接收电极导体Rx,其大小可以大于或者小于图3所示的大小,例如,Rx1的大小可以大于或者小于或者等于上一层对应的空气间隔的大小。一般情况下,每个接收电极导体Rx的大小相同,且分布均匀。
应理解,对于干扰而言,由于第四层下方有接地层,上方有第二层做为屏蔽,能抵抗较强的干扰,例如充电器干扰等。
在本申请实施例中,如图2和3所示,对应耦合电路200,第二输入信号输入给第二层发射电极导体Tx,经过耦合电路200中的可变电容部件Cs,由第四层输出第二输出信号至放大电路140的输入端;另外,对应抵消电路120,第二输入信号经过预设电容器Cc,也接入放大电路140的输入端,其中耦合电路200的第二输入信号与抵消电路120的第二输入信号相位相差180度。
因此,本申请实施例的压力检测芯片,通过设置路抵消电路,在没有触摸压力作用时,可以抵消耦合电路的大部分或全部信号,这样,若存在触摸压力作用时,在放大器倍数不变的情况,由于抵消电路的抵消作用,能够增大经过耦合电路输出的有效信号,即提升检测灵敏度,使得压力检测更准确。
图4示出了本申请实施例的压力检测装置300的示意图。该压力检测装置300可以包括压力检测芯片和至少一个耦合电路,其中,压力检测芯片包 括驱动单元311、至少一个抵消电路和处理单元313,至少一个抵消电路包括第一抵消电路312,可选地,还可以包括第二抵消电路314,该第二抵消电路314可以为除第一抵消电路312以外的任意一个抵消电路;该至少一个耦合电路包括第一耦合电路320,可选地,还可以包括第二耦合电路330,该第二耦合电路330可以为除第一耦合电路320以外的任意一个耦合电路,并且,第一耦合电路320与第一抵消电路312并联,第二耦合电路330与第二抵消电路314并联。具体地,该压力检测芯片可以为如图1或图2所示的压力检测芯片100,驱动单元311对应于驱动单元110,第一抵消电路312或第二抵消电路314对应于抵消电路120,对应的,第一耦合电路320或第二耦合电路330对应于耦合电路200,处理单元313对应于处理单元130。
该耦合电路320中还可以包括可变电容部件,该可变电容部件可以等效为一个电容器,该可变电容部件包括第一电极层和第二电极层,且该第一电极层在受到触摸压力时,会改变第一电极层与第二电极层之间的距离,同样的,该可变电容部件的电容值也会随着该第一电极层与该第二电极层之间的距离的变化而变化。
具体地,该驱动单元311用于:向该第一抵消电路312输出该第一输入信号,经过第一抵消电路312输出第一输出信号;以及向该第二该耦合电路320输出该第二输入信号,经过第二耦合电路320输出第二输出信号,其中,该第一输入信号与该第二输入信号的相位相差180度,该第一输出信号用于抵消该第二输出信号。例如,在该第一电极层未受到该触摸压力时,该第一输出信号可以用于抵消全部或者几乎全部的该第二输出信号;该处理单元313用于:根据该第一输出信号与该第二输出信号,确定该第二耦合电路320的该第一电极层是否受到该触摸压力。
在本申请实施例中,该处理单元313具体可以用于:若该第一输出信号与该第二输出信号之间的差值信号小于或者等于第一预设值,确定该第一电极层未受到该触摸压力。
对应的,该处理单元313还可以用于:若该第一输出信号与该第二输出信号之间的差值信号大于第一预设值,确定该第一电极层受到该触摸压力。
具体地,在压力检测装置受到触摸压力作用时,例如,该压力检测装置中第一耦合电路320的可变电容部件的第一电极层受到触摸压力作用,与未受到触摸压力相比,第二输出信号会发生改变,因此,在未受到触摸压力时, 第一抵消电路312的第一输出信号会完全抵消或几乎完全抵消第二输出信号,即可以检测到该第一输出信号与该第二输出信号之间的差值信号小于或者等于第一预设值;而在受到触摸压力时,第一抵消电路312的第一输出信号无法完全抵消第二输出信号,则可以检测到第一输出信号与该第二输出信号之间的差值信号大于第一预设值。
但是,考虑到在压力检测过程中存在温漂和共模干扰的问题,可能会影响检测结果的准确性,因此,可以在该压力检测装置中设置辅助的电路,即包括多个耦合电路和抵消电路。
具体地,该压力检测装置中可以包括多个抵消电路和多个耦合电路,其中,该多个耦合电路包括第一耦合电路320和第二耦合电路330,多个抵消电路包括第一抵消电路312和第二抵消电路314,例如该第一耦合电路320以及第一抵消电路312可以为如图1或图2所示的耦合电路200和抵消电路120,该第二耦合电路330以及第二抵消电路314也可以为如图1或图2所示的耦合电路200和抵消电路120。但是第一耦合电路与第二耦合电路的设置位置不同,例如,如图3所示,Rx1、Rx2和Rx3即可分别对应三个耦合电路的位置,具体地,该Rx1、Rx2和Rx3可分别对应三个耦合电路的第二电极板。
假设将第一抵消电路312输出的第一输出信号与第一耦合电路320输出的该第二输出信号之间的差值信号称为第一差值信号,将第二抵消电路314的输出信号与该第二耦合电路330的输出信号之间的差值信号称为第二差值信号,且假设该第一差值信号大于或者等于该第二差值信号。
因此,该处理单元313还用于:若第一差值信号大于第一预设值,且该第一差值信号与第二差值信号之间的差值信号小于或者等于第二预设值,确定该第一电极层未受到该触摸压力;或,若第一差值信号大于第一预设值,且该第一差值信号与第二差值信号之间的差值信号大于第二预设值,确定该第一电极层受到该触摸压力。
这样,将检测到的可能受到触摸压力作用的耦合电路的输出结果,与其它耦合电路的输出结果进行比较,可以消除由于温漂和共模干扰导致的误差,更加准确的判断该压力检测装置是否受到触摸压力。
具体地,图5示出了根据本申请实施例的压力检测装置的另一示意图,如图5所示,这里以该压力检测装置包括三组耦合电路和抵消电路为例进行 说明,为例便于说明,这里将一组耦合电路和并联的抵消电路称为一个压力检测电路,即图5中的一个虚线框,即图5共示出了三个压力检测电路。其中,该三个压力检测电路中任意一个压力检测电路包括耦合电路和抵消电路,该耦合电路和抵消电路可对应如图4所示的第一耦合电路320和第一抵消电路312,也可以对应如图1和图2所示的耦合电路200以及抵消电路120,同样的,图5所示的其余两个压力检测电路也可以对应图1、图2和图4的耦合电路和抵消电路。这里假设第一个压力检测电路为图4所示的第一耦合电路320和第一抵消电路312的组合,并假设该第一个压力检测电路检测到压力,即该第一个压力检测电路可能受到触摸压力的作用,则以另外两个压力检测电路为辅助,排除温漂以及共模干扰,例如,任意选择该两个压力检测电路中任意一个作为辅助,与第一个压力检测电路对比确定是否存在温漂或共模干扰,进而确定该第一个压力检测电路是否受到触摸压力;或者令两个压力检测电路均作为辅助,比如可以取该两个压力检测电路的平均值,与该第一个压力检测电路做比较,确定是否受到触摸压力,但本申请实施例并不限于此。
应理解,每个压力检测电路还可以包括放大电路,该放大电路的输入端连接该压力检测电路的耦合电路和抵消电路的输出端,可以将耦合电路和抵消电路的输出信号进行放大处理,根据该放大后的结果确定该耦合电路中的可变电容部件的第一电极层是否受到触摸压力。
可选地,该放大电路可以包括放大器,还可以包括其它相关电路,但本申请实施例并不限于此。
具体地,驱动单元311会向每个压力检测电路的抵消电路输出第一输入信号,向每个压力检测电路的耦合电路输出第二输入信号,该第一输入信号可以为将第二输入信号相位反向180度获得的,每个压力检测电路都会将输出结果传输至处理单元313,由处理单元313将各个压力检测电路的测量结果进行比较,确定是否受到触摸压力作用,例如,可以确定哪一个压力检测电路检测到触摸压力。
应理解,该第一预设值与第二预设值均可以根据实际应用进行设置,并且,该第一预设值可以与第二预设值相等,例如,均设置为0;或者,该第一预设值可以与第二预设值相等为不相等的两个值,本申请实施例并不限于此。
应理解,本申请实施例的驱动单元311可以包括数模转换器(digital to analog converter,DAC),将数字信号转换为模拟信号输入至各个压力检测电路的耦合电路以及抵消电路,但本申请实施例并不限于此。
应理解,本申请实施例的处理单元313可以采集压力信号数据,具体地,处理单元可以包括模数转换器(analog to digital converter,ADC),将模拟信号转换为数字信号,该处理单元313可以包括微控制单元(microcontroller unit,MCU),MCU可以采集并处理该数字信号,确定该压力检测装置是否受到触摸压力作用,若确定受到触摸压力作用,进一步的,该处理单元还可以确定该触摸压力的压力特征,例如,该压力特征可以包括该触摸压力的大小,或者作用时长等,本申请实施例并不限于此。
应理解,本申请实施例中的压力检测装置300可以位于终端设备中,当该压力检测装置300确定检测到触摸压力时,该终端设备可以触发对应的目标事件,进而执行目标操作。具体地,若该压力检测装置300确定检测到触摸压力,终端设备可以根据该压力特征,确定对应的目标事件,并触发该目标事件,执行目标操作。例如,终端设备在检测装置300检测到触摸压力时,执行解锁主屏幕的操作,或者,终端设备还可以根据触摸压力作用时间,短时间触摸,执行返回主页的操作,长时间触摸,执行锁屏操作。
因此,本申请实施例的压力检测装置,可以包括抵消电路,在没有触摸压力作用时,可以抵消对应耦合电路的大部分或全部信号,这样,若存在触摸压力作用时,在放大器倍数不变的情况,由于抵消电路的抵消作用,能够增大经过耦合电路输出的有效信号,即提升检测灵敏度,使得压力检测更准确。另外,本申请实施例的电容检测装置采用微小电容检测技术实现压力检测,这在原理上和目前广泛使用的电容式触控检测属于同类型信号检测技术,可以与电容触控IC复用,既能节省手机内部空间,还能节省经济成本。
而且,在该压力检测装置中可以包括多个压力检测电路,每个压力检测电路包括耦合电路和抵消电路,该多个压力检测电路可以同时检测压力信号,将其中部分作为辅助以判断温漂和抗干扰处理,能够大大提升应用性能。
图6示出了根据本申请实施例的检测压力的方法400的示意性流程图,该方法400可以由压力检测装置执行,例如该压力检测装置可以为图4或图5中的压力检测装置300。该压力检测装置包括抵消电路和耦合电路,其中,该抵消电路和耦合电路并联,该耦合电路包括可变电容部件,该可变电容部 件包括第一电极层与第二电极层,在该第一电极层受到触摸压力时该第一电极层与该第二电极层之间的距离改变,该可变电容部件的电容值随该第一电极层与该第二电极层之间的距离的变化而变化,。
如图6所示,该方法400包括:S410,向该抵消电路输入第一输入信号,并经过该抵消电路输出第一输出信号;S420,向该耦合电路输入第二输入信号;并经过该耦合电路输出第二输出信号,其中,该第一输入信号与该第二输入信号的相位相差180度,该第一输出信号用于抵消该第二输出信号;S430,根据该第一输出信号与该第二输出信号,确定该第一电极层是否受到该触摸压力。
可选地,该抵消电路包括预设电容器,该预设电容器的电容等于该可变电容部件的初始电容,该初始电容为在该第一电极层未受到该触摸压力时该第一电极层与该第二电极层之间的等效电容。
可选地,在该根据该第一输出信号与该第二输出信号,确定该第一电极层是否受到该触摸压力之前,该方法还包括:将该第一输出信号和该第二输出信号进行放大处理。
可选地,该第一输入信号为将该第二输入信号的相位反向180度获得的。
可选地,该根据该第一输出信号与该第二输出信号,确定该第一电极层是否受到该触摸压力,包括:若该第一输出信号与该第二输出信号之间的差值信号小于或者等于第一预设值,确定该第一电极层未受到该触摸压力。
可选地,该根据该第一输出信号与该第二输出信号,确定该第一电极层是否受到该触摸压力,包括:若该第一输出信号与该第二输出信号之间的差值信号大于第一预设值,确定该第一电极层受到该触摸压力。
可选地,该压力检测装置还包括第二抵消电路和第二耦合电路,该第二抵消电路与该第二耦合电路并联,该第二抵消电路的输入信号与该第二耦合电路的输入信号的相位相差180度,该第二抵消电路输出信号用于抵消该第二耦合电路的输出信号。
可选地,该第一输出信号与该第二输出信号之间的差值信号为第一差值信号,该第二抵消电路的输出信号与该第二耦合电路的输出信号之间的差值信号为第二差值信号,该第一差值信号大于或者等于该第二差值信号;该根据该第一输出信号与该第二输出信号,确定该第一电极层是否受到该触摸压力,包括:若第一差值信号大于第一预设值,且该第一差值信号与第二差值 信号之间的差值信号小于或者等于第二预设值,确定该第一电极层未受到该触摸压力;若第一差值信号大于第一预设值,且该第一差值信号与第二差值信号之间的差值信号大于第二预设值,确定该第一电极层受到该触摸压力。
可选地,该方法还包括:若确定该第一电极层受到该触摸压力,确定该触摸压力的压力特征。
因此,本申请实施例的检测压力的方法,在压力检测装置设置路抵消电路,在没有触摸压力作用时,可以抵消耦合电路的大部分或全部信号,这样,若存在触摸压力作用时,在放大器倍数不变的情况,由于抵消电路的抵消作用,能够增大经过耦合电路输出的有效信号,即提升检测灵敏度,使得压力检测更准确。另外,本申请实施例的电容检测装置采用微小电容检测技术实现压力检测,这在原理上和目前广泛使用的电容式触控检测属于同类型信号检测技术,可以与电容触控IC复用,既能节省手机内部空间,还能节省经济成本。
而且,在该压力检测装置中可以包括多个压力检测电路,每个压力检测电路包括耦合电路和抵消电路,该多个压力检测电路可以同时检测压力信号,将其中部分作为辅助以判断温漂和抗干扰处理,能够大大提升应用性能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种压力检测芯片,其特征在于,包括:抵消电路、驱动单元和处理单元;
    其中,所述抵消电路和耦合电路并联,所述耦合电路包括可变电容部件,所述可变电容部件包括第一电极层与第二电极层,在所述第一电极层受到触摸压力时所述第一电极层与所述第二电极层之间的距离改变,所述可变电容部件的电容值随所述第一电极层与所述第二电极层之间的距离的变化而变化;
    所述驱动单元用于:向所述抵消电路输出第一输入信号,以及向所述耦合电路输出第二输入信号,其中,所述耦合电路接收所述第二输入信号并输出第二输出信号,所述第一输入信号与所述第二输入信号的相位相差180度,所述第一输出信号用于抵消所述第二输出信号;
    所述抵消电路用于:接收所述第一输入信号并输出第一输出信号;
    所述处理单元用于:根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力。
  2. 根据权利要求1所述的压力检测芯片,其特征在于,所述抵消电路包括预设电容器,所述预设电容器的电容等于所述可变电容部件的初始电容,所述初始电容为在所述第一电极层未受到所述触摸压力时所述第一电极层与所述第二电极层之间的等效电容。
  3. 根据权利要求1或2所述的压力检测芯片,其特征在于,所述压力检测芯片还包括:放大电路,所述抵消电路的输出端和所述耦合电路的输出端均与所述放大电路的输入端相连,所述放大电路用于:将所述第一输出信号和所述第二输出信号进行放大处理。
  4. 根据权利要求1至3中任一项所述的压力检测芯片,其特征在于,所述第一输入信号是将所述第二输入信号的相位反向180度获得的。
  5. 一种压力检测装置,其特征在于,包括:压力检测芯片和第一耦合电路,其中:
    所述压力检测芯片包括第一抵消电路、驱动单元和处理单元,所述第一抵消电路和所述第一耦合电路并联,所述第一耦合电路包括可变电容部件,所述可变电容部件包括第一电极层与第二电极层,在所述第一电极层受到触摸压力时所述第一电极层与所述第二电极层之间的距离改变,所述可变电容 部件的电容值随所述第一电极层与所述第二电极层之间的距离的变化而变化;
    所述驱动单元用于:向所述第一抵消电路输出第一输入信号,以及向所述第一耦合电路输出第二输入信号;
    所述第一抵消电路用于:接收所述第一输入信号并输出第一输出信号;
    所述第一耦合电路用于:接收所述第二输入信号并输出第二输出信号,所述第一输入信号与所述第二输入信号的相位相差180度,所述第一输出信号用于抵消所述第二输出信号;
    所述处理单元用于:根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力。
  6. 根据权利要求5所述的压力检测装置,其特征在于,所述抵消电路包括预设电容器,所述预设电容器的电容等于所述可变电容部件的初始电容,所述初始电容为在所述第一电极层未受到所述触摸压力时所述第一电极层与所述第二电极层之间的等效电容。
  7. 根据权利要求5或6所述的压力检测装置,其特征在于,所述压力检测芯片还包括:放大电路,所述抵消电路的输出端和所述耦合电路的输出端均与所述放大电路的输入端相连,所述放大电路用于将所述第一输出信号和所述第二输出信号进行放大处理。
  8. 根据权利要求5至7中任一项所述的压力检测装置,其特征在于,所述第一输入信号是将所述第二输入信号的相位反向180度获得的。
  9. 根据权利要求5至8中任一项所述的压力检测装置,其特征在于,所述处理单元用于:
    若所述第一输出信号与所述第二输出信号之间的差值信号小于或者等于第一预设值,确定所述第一电极层未受到所述触摸压力;或者,
    若所述第一输出信号与所述第二输出信号之间的差值信号大于第一预设值,确定所述第一电极层受到所述触摸压力。
  10. 根据权利要求5至8中任一项所述的压力检测装置,其特征在于,所述压力检测芯片还包括第二抵消电路,所述压力检测装置还包括第二耦合电路,所述第二抵消电路与所述第二耦合电路并联,所述第二抵消电路的输入信号与所述第二耦合电路的输入信号的相位相差180度,所述第二抵消电路输出信号用于抵消所述第二耦合电路的输出信号。
  11. 根据权利要求10所述的压力检测装置,其特征在于,所述第一输出信号与所述第二输出信号之间的差值信号为第一差值信号,所述第二抵消电路的输出信号与所述第二耦合电路的输出信号之间的差值信号为第二差值信号,所述第一差值信号大于或者等于所述第二差值信号;
    所述处理单元用于:
    当第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号小于或者等于第二预设值,确定所述第一电极层未受到所述触摸压力;或
    当第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号大于第二预设值,确定所述第一电极层受到所述触摸压力。
  12. 根据权利要求5至11中任一项所述的压力检测装置,其特征在于,所述处理单元还用于:
    若确定所述第一电极层受到所述触摸压力,确定所述触摸压力的压力特征。
  13. 一种终端设备,其特征在于,包括:如权利要求5至12中任一项所述的压力检测装置。
  14. 根据权利要求13所述的终端设备,其特征在于,所述终端设备用于:
    若所述压力检测装置检测到所述触摸压力,触发与所述触摸压力对应的目标事件。
  15. 一种检测压力的方法,其特征在于,所述方法由压力检测装置执行,所述压力检测装置包括抵消电路和耦合电路,其中,所述抵消电路和耦合电路并联,所述耦合电路包括可变电容部件,所述可变电容部件包括第一电极层与第二电极层,在所述第一电极层受到触摸压力时所述第一电极层与所述第二电极层之间的距离改变,所述可变电容部件的电容值随所述第一电极层与所述第二电极层之间的距离的变化而变化,所述方法包括:
    向所述抵消电路输入第一输入信号,并经过所述抵消电路输出第一输出信号;
    向所述耦合电路输入第二输入信号;并经过所述耦合电路输出第二输出信号,其中,所述第一输入信号与所述第二输入信号的相位相差180度,所述第一输出信号用于抵消所述第二输出信号;
    根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力。
  16. 根据权利要求15所述的方法,其特征在于,所述抵消电路包括预设电容器,
    所述预设电容器的电容等于所述可变电容部件的初始电容,所述初始电容为在所述第一电极层未受到所述触摸压力时所述第一电极层与所述第二电极层之间的等效电容。
  17. 根据权利要求15或16述的方法,其特征在于,在所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力之前,所述方法还包括:
    将所述第一输出信号和所述第二输出信号进行放大处理。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第一输入信号为将所述第二输入信号的相位反向180度获得的。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力,包括:
    若所述第一输出信号与所述第二输出信号之间的差值信号小于或者等于第一预设值,确定所述第一电极层未受到所述触摸压力;或
    若所述第一输出信号与所述第二输出信号之间的差值信号大于第一预设值,确定所述第一电极层受到所述触摸压力。
  20. 根据权利要求15至18中任一项所述的方法,其特征在于,所述压力检测装置还包括第二抵消电路和第二耦合电路,所述第二抵消电路与所述第二耦合电路并联,所述第二抵消电路的输入信号与所述第二耦合电路的输入信号的相位相差180度,所述第二抵消电路输出信号用于抵消所述第二耦合电路的输出信号。
  21. 根据权利要求20所述的方法,其特征在于,所述第一输出信号与所述第二输出信号之间的差值信号为第一差值信号,所述第二抵消电路的输出信号与所述第二耦合电路的输出信号之间的差值信号为第二差值信号,所述第一差值信号大于或者等于所述第二差值信号;
    所述根据所述第一输出信号与所述第二输出信号,确定所述第一电极层是否受到所述触摸压力,包括:
    若第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号小于或者等于第二预设值,确定所述第一电极层未受到所述触摸压力;或
    若第一差值信号大于第一预设值,且所述第一差值信号与第二差值信号之间的差值信号大于第二预设值,确定所述第一电极层受到所述触摸压力。
  22. 根据权利要求15至21中任一项所述的方法,其特征在于,所述方法还包括:
    若确定所述第一电极层受到所述触摸压力,确定所述触摸压力的压力特征。
PCT/CN2018/078677 2018-03-12 2018-03-12 压力检测芯片和检测压力的方法 WO2019173934A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18889970.2A EP3567461B1 (en) 2018-03-12 2018-03-12 Pressure detection chip and pressure detection method
PCT/CN2018/078677 WO2019173934A1 (zh) 2018-03-12 2018-03-12 压力检测芯片和检测压力的方法
CN201880000276.6A CN110476144B (zh) 2018-03-12 2018-03-12 压力检测芯片和检测压力的方法
US16/449,375 US11099092B2 (en) 2018-03-12 2019-06-22 Pressure detection chip and method for detection pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078677 WO2019173934A1 (zh) 2018-03-12 2018-03-12 压力检测芯片和检测压力的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/449,375 Continuation US11099092B2 (en) 2018-03-12 2019-06-22 Pressure detection chip and method for detection pressure

Publications (1)

Publication Number Publication Date
WO2019173934A1 true WO2019173934A1 (zh) 2019-09-19

Family

ID=67907463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078677 WO2019173934A1 (zh) 2018-03-12 2018-03-12 压力检测芯片和检测压力的方法

Country Status (4)

Country Link
US (1) US11099092B2 (zh)
EP (1) EP3567461B1 (zh)
CN (1) CN110476144B (zh)
WO (1) WO2019173934A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333907B (zh) * 2020-11-10 2023-03-21 上海安平静电科技有限公司 一种离子棒消电装置及消电控制方法
CN113031770B (zh) * 2021-03-22 2024-02-27 联想(北京)有限公司 一种处理方法及电子设备
JPWO2023002709A1 (zh) * 2021-07-20 2023-01-26

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914197A (zh) * 2013-01-07 2014-07-09 株式会社东海理化电机制作所 触控式输入设备
WO2015046289A1 (ja) * 2013-09-27 2015-04-02 株式会社村田製作所 タッチ式入力装置
CN105930019A (zh) * 2016-07-01 2016-09-07 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN106054433A (zh) * 2016-08-11 2016-10-26 厦门天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN106445220A (zh) * 2015-08-06 2017-02-22 矽创电子股份有限公司 触控侦测方法与电容式感测装置
CN106855760A (zh) * 2015-12-08 2017-06-16 群创光电股份有限公司 具压力感测功能的触控显示装置
CN107229366A (zh) * 2016-03-24 2017-10-03 速博思股份有限公司 整合触控与压力感测的装置及其方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519974B2 (en) * 2010-01-19 2013-08-27 Sony Corporation Touch sensing device, touch screen device comprising the touch sensing device, mobile device, method for sensing a touch and method for manufacturing a touch sensing device
US8711120B2 (en) * 2012-07-16 2014-04-29 Synaptics Incorporated Single integrated circuit configured to operate both a capacitive proximity sensor device and a resistive pointing stick
US9582123B2 (en) * 2012-11-26 2017-02-28 Qualcomm Incorporated Dual-mode capacitance sensing in a touch panel sensor
US9639733B2 (en) * 2014-11-25 2017-05-02 Cypress Semiconductor Corporation Methods and sensors for multiphase scanning in the fingerprint and touch applications
TWI550495B (zh) * 2015-03-26 2016-09-21 原相科技股份有限公司 高靈敏度的電容觸控裝置及其運作方法
US10229304B2 (en) * 2015-06-05 2019-03-12 Synaptics Incorporated Finger detection with auto-baseline tracking
KR101765650B1 (ko) * 2015-08-03 2017-08-08 주식회사 하이딥 터치 검출기, 터치 검출 칩 및 터치 입력 장치
US10068121B2 (en) * 2015-08-31 2018-09-04 Cypress Semiconductor Corporation Baseline compensation for capacitive sensing
US20170160866A1 (en) 2015-12-08 2017-06-08 Innolux Corporation Touch display device
CN107168565B (zh) * 2016-03-07 2020-05-15 敦泰电子有限公司 触控装置及其驱动电路和驱动方法、电子设备
WO2017190052A1 (en) 2016-04-29 2017-11-02 Synaptics Incorporated Differential force and touch sensing
CN205809842U (zh) * 2016-06-15 2016-12-14 深圳市汇顶科技股份有限公司 压力检测装置、触控设备及电子终端
WO2017214928A1 (zh) * 2016-06-16 2017-12-21 深圳市汇顶科技股份有限公司 触摸传感器、触摸检测装置及检测方法、触控设备
CN107438998B (zh) * 2017-06-05 2019-08-02 深圳市汇顶科技股份有限公司 接近的检测装置和方法、接近感应传感器、终端设备
CN107479776B (zh) * 2017-08-03 2020-07-24 京东方科技集团股份有限公司 压感检测电路及其驱动方法、电子装置
DE112017007864T5 (de) * 2017-11-14 2020-05-28 Wacom Co., Ltd. Sensorsteuerung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914197A (zh) * 2013-01-07 2014-07-09 株式会社东海理化电机制作所 触控式输入设备
WO2015046289A1 (ja) * 2013-09-27 2015-04-02 株式会社村田製作所 タッチ式入力装置
CN106445220A (zh) * 2015-08-06 2017-02-22 矽创电子股份有限公司 触控侦测方法与电容式感测装置
CN106855760A (zh) * 2015-12-08 2017-06-16 群创光电股份有限公司 具压力感测功能的触控显示装置
CN107229366A (zh) * 2016-03-24 2017-10-03 速博思股份有限公司 整合触控与压力感测的装置及其方法
CN105930019A (zh) * 2016-07-01 2016-09-07 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN106054433A (zh) * 2016-08-11 2016-10-26 厦门天马微电子有限公司 一种显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20190310154A1 (en) 2019-10-10
CN110476144B (zh) 2023-05-26
EP3567461A4 (en) 2019-12-11
CN110476144A (zh) 2019-11-19
EP3567461B1 (en) 2021-01-13
US11099092B2 (en) 2021-08-24
EP3567461A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
US9870097B2 (en) Noise cancellation technique for capacitive touchscreen controller using differential sensing
US20210157436A1 (en) Controller for use in a device comprising force sensors
US9442598B2 (en) Detecting interference in an input device having electrodes
US10444910B2 (en) Electronic device and method of processing user actuation of a touch-sensitive input surface
WO2019173934A1 (zh) 压力检测芯片和检测压力的方法
US9092100B2 (en) Multitouch touch-sensitive device with multifrequency capacitive detection
US11460953B2 (en) Noise suppression circuit
CN106371648B (zh) 校正方法与电容式感测装置
US9823774B2 (en) Noise reduction in a digitizer system
US10540042B2 (en) Impedance ratio-based current conveyor
TW201706814A (zh) 觸控偵測方法與電容式感測裝置
US11106317B1 (en) Common mode noise suppression with restoration of common mode signal
KR101950806B1 (ko) 터치 패널을 위한 입력 장치 및 방법
US20220261104A1 (en) Distributed analog display noise suppression circuit
US10235004B1 (en) Touch input detector with an integrated antenna
US20240168584A1 (en) Multi-frequency simultaneous absolute capacitance touch sensing
CN117008747A (zh) 分布式模拟显示噪声抑制电路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018889970

Country of ref document: EP

Effective date: 20190627

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE