WO2019172621A1 - Disease prediction method and disease prediction device using same - Google Patents

Disease prediction method and disease prediction device using same Download PDF

Info

Publication number
WO2019172621A1
WO2019172621A1 PCT/KR2019/002544 KR2019002544W WO2019172621A1 WO 2019172621 A1 WO2019172621 A1 WO 2019172621A1 KR 2019002544 W KR2019002544 W KR 2019002544W WO 2019172621 A1 WO2019172621 A1 WO 2019172621A1
Authority
WO
WIPO (PCT)
Prior art keywords
diseases
probability
disease
occurrence
medical image
Prior art date
Application number
PCT/KR2019/002544
Other languages
French (fr)
Korean (ko)
Inventor
김성원
김성준
이영한
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2019172621A1 publication Critical patent/WO2019172621A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Definitions

  • the present invention relates to a disease prediction method and a disease prediction device using the same, and more particularly, to a method and device for predicting a disease based on a diagnostic medical image of a target site.
  • the medical imaging apparatus is a device for acquiring an internal structure of an object as an image.
  • the medical imaging apparatus is a non-invasive inspection apparatus that is performed without suffering to the human body, and photographs and processes structural details, internal tissues, and fluid flow in the body and shows them to the medical personnel. Medical personnel may diagnose a medical condition and a disease of a patient by using the medical image output from the medical imaging apparatus.
  • Medical imaging devices include magnetic resonance imaging (MRI) devices, computed tomography (CT) devices, X-ray (X-ray) devices, and ultrasound diagnostic devices to provide magnetic resonance imaging. Etc.
  • MRI magnetic resonance imaging
  • CT computed tomography
  • X-ray X-ray
  • ultrasound diagnostic devices to provide magnetic resonance imaging.
  • the magnetic resonance imaging apparatus is a device for photographing a subject by using a magnetic field, and is widely used for accurate disease diagnosis because bones, disks, joints, nerve ligaments, and the like are shown in three dimensions at a desired angle.
  • the magnetic resonance imaging apparatus acquires a magnetic resonance (MR) signal using a high frequency multi coil, a permanent magnet, a gradient coil, and the like including RF coils.
  • the magnetic resonance signal is sampled to obtain a magnetic resonance image.
  • a computed tomography apparatus may provide a cross-sectional image of an object, and have an advantage that internal structures of the object, such as kidneys and lungs, may not be overlapped with each other in comparison with a general x-ray apparatus. Accordingly, the computed tomography apparatus is widely used for precise diagnosis of a disease.
  • Such a computed tomography apparatus irradiates an X-ray to an object and detects an X-ray passing through the object. Then, an image is acquired using the detected X-rays.
  • an additional diagnostic test such as a cell test or a histological test may be performed.
  • this may not only cause the patient and the medical staff to be troublesome, but may not be able to obtain an accurate diagnosis result by additional examination according to the disease to be diagnosed, and thus may re-perform the medical image diagnosis.
  • tuberculosis spondylitis and purulent spondylitis are a disease that can be diagnosed by a medical image, but are not easily distinguishable within the medical image.
  • diagnosis of spondylitis in the early stages, or diagnosis using a low performance medical imaging apparatus may not provide a significant difference that can distinguish the two diseases in the medical image, and thus the accuracy of diagnosis may be reduced.
  • the medical staff additionally performs a biopsy.
  • the accuracy of histological examination is also very low, so accurate diagnosis of tuberculous spondylitis and purulent spondylitis is very difficult.
  • the medical staff re-diagnoses the diagnosis based on the medical image to diagnose spondylitis.
  • the inventors of the present invention may use a predictive model learned by medical image data to solve problems caused by a diagnosis using a conventional medical image, in particular, a diagnosis process of a disease having a similar form in the medical image. could be perceived.
  • the inventors of the present invention determine a lesion area present in a medical image for a target site, calculate a probability of a plurality of diseases for the determined area, respectively, and use a predictive model configured to predict the disease.
  • a prediction method We have come to develop a prediction method.
  • the inventors of the present invention learn disease prediction based on an image in which lesion areas associated with a plurality of predetermined diseases in a medical image are masked, and calculate a probability of the disease for the lesion area and predict the disease. By using the model, it was confirmed that each of the plurality of diseases was classified and predicted with high accuracy.
  • the disease prediction model is configured to calculate the probability of disease occurrence for each of a plurality of medical images for one target site and calculate the final probability score to predict whether the disease onset, within the medical image The accuracy of diagnosis was improved for each of the similarly manifested diseases.
  • an object of the present invention is to determine a lesion region in a received medical image by using a disease prediction model trained to determine lesion regions for each of a plurality of diseases, and based on this, among the plurality of diseases. It is to provide a disease prediction method and a disease prediction device using the same, which can determine whether one disease occurs.
  • the problem to be solved by the present invention by using a disease prediction model to determine the lesion area for each of a plurality of medical images for one target site, and to determine the probability of occurrence of each of the plurality of diseases for these areas
  • the present invention provides a disease prediction method and a disease prediction device using the same, by calculating whether or not the disease is caused by one of the plurality of diseases, thereby increasing the accuracy of diagnosis of the disease regardless of the skill of the medical professional.
  • Another object of the present invention is to provide a disease prediction method and a disease prediction device using the prediction model that can provide a probability of a predetermined disease for a selected region in a medical image.
  • the method may include receiving a medical image of a target site, using a disease prediction model trained to determine lesion areas for a plurality of predetermined diseases in the medical image, and including the lesion region in the medical image. And determining whether to develop one of the plurality of diseases based on the determined lesion area.
  • the plurality of diseases are two different diseases, the two diseases being tuberculosis spondylitis and purulent spondylitis, tuberculosis and pneumonia, solid tumors and water bumps, metastatic cancer and abscess, and osteolytic metastatic cancer and degenerative disease.
  • the step of predicting the presence of a disease may be performed by using a disease prediction model, calculating a probability of occurrence of each of a plurality of diseases, for a lesion area determined in a medical image, and for the lesion area. And determining that one of the plurality of diseases is developed based on the probability of developing each of the plurality of diseases.
  • a disease having a probability of occurrence below a threshold among a plurality of newly emerging diseases may further include determining that the predicted reliability of the disease is low.
  • the lesion region determined by the ring prediction model is a plurality
  • the step of predicting the presence of the disease is a plurality of diseases for each of the plurality of lesion areas determined in the medical image using the disease prediction model Calculating a probability of each occurrence, determining a single final onset probability having a maximum value for each of the calculated plurality of diseases, and a final onset probability for each of the plurality of determined diseases
  • the method may include determining that one of the plurality of diseases has developed.
  • the medical image includes a plurality of medical images for one target site
  • the determining includes determining a lesion area for each of the plurality of medical images using a disease prediction model.
  • the predicting of the disease may include calculating a probability of occurrence of each of the plurality of medical images by using a disease prediction model, and based on a probability of each of the plurality of diseases for the plurality of medical images. And determining whether one of the diseases is developed.
  • the determining of the onset of one of the plurality of diseases may include determining the onset of each of the plurality of diseases, the probability of occurrence of each of the plurality of diseases calculated for the lesion area in the plurality of medical images. Determining a final incidence probability of each one, calculating a sum of the final incidence probability determined in each of the plurality of medical images for each of the plurality of diseases, and calculating a ratio of the sum of the final incidence probability for each of the plurality of diseases. And determining that one of the plurality of diseases has developed based on the ratio of the sum of the calculated final occurrence probability.
  • the determining of the onset of one of the plurality of diseases may include determining the onset of each of the plurality of diseases, the probability of occurrence of each of the plurality of diseases calculated for the lesion area in each of the plurality of medical images. Determining the incidence of one disease as a final incidence probability, replacing the incidence of the other diseases by zero, and calculating a sum of the final incidence probability determined in each of the plurality of medical images for each of the plurality of diseases. Comprising: calculating a ratio of the sum of the final probability of occurrence for each of the plurality of diseases, and based on the calculated ratio of the sum of the final probability of occurrence may include the step of determining that one of the plurality of diseases has developed.
  • the step of predicting the presence of a disease in each of the plurality of medical images calculating the average probability of occurrence for each of the plurality of diseases for the lesion area, a plurality of for each of the plurality of diseases Calculating a sum of the average incidence probability calculated on each of the medical images, calculating a ratio of the sum of the average incidence probability for each of the plurality of diseases, and one of the plurality of diseases based on the calculated ratio of the sum of the average incidence probability
  • the method may further include determining that the disease is caused.
  • the medical image may be a tomography image or a magnetic resonance image
  • the predetermined disease may be a disease that can be diagnosed as a tomography image or a magnetic resonance image.
  • the predictive model is further configured to calculate the probability of occurrence on a pixel-by-pixel basis for the medical image, receiving a selection for a specific region having a certain pixel of the medical image, using the disease prediction model
  • the method may further include calculating a probability of occurrence of a predetermined disease for the selected specific region, and providing a calculated probability of occurrence of the specific region.
  • the lesion area determined in the medical image is displayed and provided, and when the lesion area is not determined by the disease prediction model, normal diagnostic information is provided. Providing may further provide.
  • the disease to determine the lesion area for the predetermined disease in the medical image for the target region based on the learning medical image including the lesion area confirmed as a predetermined disease for the target site Training of the predictive model may be further included.
  • the medical image is a T2-weighted image
  • the training step of cropping (cropping) the training medical image to a predetermined size, normalizing the pixels of the training medical image, Masking the lesion area identified as a predetermined disease in the training medical image, and training the disease prediction model to form a box around the masked lesion area.
  • the device includes a receiver configured to receive a medical image of a target site, and a processor operatively connected with the receiver.
  • the processor determines a lesion area in the medical image by using a predictive model trained to determine lesion areas for a plurality of predetermined diseases in the medical image, and based on the determined lesion area, one of the plurality of diseases. It is configured to determine the onset of the disease.
  • the processor calculates the incidence of each of the plurality of diseases for the lesion area determined in the medical image by using the disease prediction model, and based on the incidence of each of the plurality of diseases for the lesion area. It may be further configured to determine that one of the plurality of diseases is onset.
  • the medical image comprises a plurality of medical images for one target site
  • the processor calculates the probability of the occurrence of each of the plurality of diseases in each of the plurality of medical images using a disease prediction model
  • the onset probability of each of the plurality of diseases of the plurality of medical images may be further determined to determine whether one of the plurality of diseases is developed.
  • the present invention has an effect of providing accurate diagnostic information on a target site of a subject by providing a disease prediction method and a device using the prediction model configured to predict whether a plurality of predetermined diseases occur.
  • the present invention enables accurate diagnosis of a disease by calculating and providing an incidence of occurrence of each of a plurality of diseases with respect to a lesion region determined by a disease prediction model.
  • the present invention has an effect of predicting and providing a probability of occurrence of a disease in a region selected in a medical image.
  • the present invention is configured to receive a plurality of medical images to calculate the probability of disease occurrence for each of the plurality of diseases and to calculate the final probability score to predict whether or not to develop one disease, the disease appears in a similar form in the medical image There is an effect that can increase the accuracy of the diagnosis for each.
  • the present invention has the effect of providing accurate diagnostic results for the target site of the subject regardless of the proficiency of the medical image diagnosis system.
  • FIG. 1 illustrates a configuration of a disease prediction device according to an embodiment of the present invention.
  • Figure 2a illustrates the procedure of a disease prediction method according to an embodiment of the present invention.
  • FIG. 2B exemplarily illustrates a procedure for determining a disease occurring in a medical image by a disease prediction method according to an exemplary embodiment of the present invention.
  • 2C exemplarily illustrates various occurrence probability calculation procedures for a lesion area determined by a disease prediction method according to an embodiment of the present invention.
  • FIG. 3 exemplarily illustrates a learning procedure for a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • FIG. 4A illustrates a lesion area of tuberculous spondylitis and purulent spondylitis determined by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • 4B illustrates the results of a disease prediction method and a disease prediction model used in a disease prediction device using the same, and a predictive evaluation of tuberculous spondylitis and purulent spondylitis by three radiologists according to an embodiment of the present invention.
  • Figure 4c illustrates the specificity and accuracy of the disease prediction method and the disease prediction model used in the disease prediction device using the same, and the diagnosis of tuberculous spondylitis and purulent spondylitis of three radiologists according to an embodiment of the present invention .
  • 5A illustrates a plurality of medical images predicted as tuberculosis by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • 5B illustrates a plurality of medical images predicted as pneumonia by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items.
  • the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
  • 'comprises', 'haves', 'consists of' and the like mentioned in the present specification are used, other parts may be added unless 'only' is used.
  • the plural number includes the plural unless specifically stated otherwise.
  • each of the features of the various embodiments of the present invention may be combined or combined with each other in part or in whole, various technically interlocking and driving as can be understood by those skilled in the art, each of the embodiments may be implemented independently of each other It may be possible to carry out together in an association.
  • the term "medical image” may refer to all images taken for diagnosis of a target site.
  • the medical image may be a magnetic resonance image, a computed tomography image, an x-ray image, or an ultrasound image.
  • the medical image may be, but is not limited to, a magnetic resonance image, a tomography image, or a T2 weighted image.
  • the medical image of the target region may mean a 2D image, a 3D image, a still image of one cut, a moving image image including a plurality of cuts, and the like including the target portion.
  • the detection of the lesion area for each of the plurality of medical images and the prediction of the onset of the disease according to the disease prediction method according to an embodiment of the present invention are performed. It may be possible.
  • the term "purpose site" as used herein may be a specific body part of a subject to predict a condition such as the presence or absence of a disease.
  • the target site may be the chest, spine, upper abdomen, lower abdomen, lungs, brain, liver, varicose veins, uterus, prostate, testes, musculoskeletal system, thyroid or breast.
  • the target site is not limited thereto and may be various sites as long as the image is acquired by the imaging apparatus.
  • the term “predetermined disease” may mean any disease or lesion that can be diagnosed based on a medical image obtained from an imaging device.
  • the predetermined disease may be a plurality.
  • the predetermined diseases are two different diseases from each other, and may be diseases that appear in a similar form in a medical image.
  • two predetermined diseases may be tuberculosis spondylitis and purulent spondylitis, or tuberculosis and pneumonia, or solid tumors and water bumps, or metastatic cancer and abscess, or at least one pair of osteolytic metastatic cancer and degenerative lesions.
  • two predetermined diseases may be tuberculosis spondylitis and purulent spondylitis, or tuberculosis and pneumonia, or solid tumors and water bumps, or metastatic cancer and abscess, or at least one pair of osteolytic metastatic cancer and degenerative lesions.
  • it is not limited thereto.
  • the term "lesion area” may refer to an area having a lesion for a particular disease that is different from normal tissue in a medical image for a target site.
  • the lesion area may have different pixel values, textures for different areas.
  • the lesion area may include an area for cyst, inflammation, or mass tissue appearing at the target site.
  • a plurality of lesion areas may be independently distributed in a medical image of one target site.
  • tuberculosis spondylitis and purulent spondylitis can all appear similarly within a medical image, Depending on the skill, the accuracy of diagnosis of the disease may vary.
  • a predictive model trained to predict a lesion area in a medical image and predict the onset of a disease may be used.
  • the term “disease prediction model” may be a predictive model trained to predict a lesion area with respect to a target site of a subject and determine whether to develop one of a plurality of diseases.
  • the disease prediction model may be a model trained using a data set of each of the medical images including a lesion region confirmed as two diseases predetermined by the medical image for the target region.
  • the disease prediction model may be trained to determine the lesion area for each of the plurality of medical images of the target site and to calculate the probability of occurrence of the plurality of predetermined diseases for the lesion area.
  • the disease prediction model may determine the onset of one of the plurality of diseases in the target region by calculating a final incidence probability based on the disease incidence probability calculated for each of the lesion areas in the plurality of medical images.
  • the disease prediction model may include a probability of developing tuberculous spondylitis and purulent spondylitis, or a probability of developing tuberculosis and pneumonia, respectively, or a probability of each of solid tumors and water bumps, for lesion areas determined in a plurality of input medical images. Or the probability of developing metastatic cancer and abscess respectively, or the probability of developing osteolytic metastatic cancer and degenerative lesion, respectively.
  • the disease prediction model includes one of tuberculosis spondylitis and purulent spondylitis, or one of tuberculosis and pneumonia, or one of solid tumors and water bumps, or one of metastatic cancer and abscess, or osteolytic metastasis. The onset of one of the cancerous and degenerative lesions can be determined.
  • the term "probability of occurrence” may mean the probability that the lesion area determined by the disease prediction model is a lesion site for a predetermined disease.
  • the disease prediction model may calculate an incidence of a plurality of diseases for the lesion area, respectively, and finally determine whether to develop one disease.
  • the medical practitioner may acquire a medical image including the probability of occurrence of the predicted lesion area through the disease prediction model, and further, determine whether the disease is finally predicted through the disease prediction model. Based on this, accurate diagnosis may be possible.
  • FIG. 1 illustrates a configuration of a disease prediction device according to an embodiment of the present invention.
  • the disease prediction device 100 includes a receiver 110, an inputter 120, an outputter 130, a storage 140, and a processor 150.
  • the receiver 110 may receive a medical image of a target part of a subject that can be obtained from an imaging apparatus.
  • the receiver 110 may receive a medical image of the spine, chest, upper abdomen, lower abdomen, lung, brain, liver, varicose vein, uterus, prostate, testes, musculoskeletal system, thyroid, or breast of the subject.
  • the medical image of the target site of the subject received through the receiver 110 may be a plurality, it may include a region for the lesion tissue for a particular disease.
  • the input unit 120 is not limited to a keyboard, a mouse, a touch screen panel, and the like.
  • the input unit 120 may set the disease prediction device 100 and instruct an operation of the disease prediction device 100.
  • the medical person may directly determine the lesion area within the medical image received by the receiver 110 through the input unit 120.
  • the output unit 130 may visually display the medical image received by the receiver 110.
  • the output unit 130 may be configured to display, by the processor 150, the lesion area determined in the medical image, further, the probability of the disease predicted for the lesion area, and the diagnostic information of the finally determined disease.
  • the output unit 130 may be configured to display normal diagnostic information when the lesion area is not determined in the medical image of the target site by the processor 150.
  • the storage unit 140 may be configured to store a medical image of the target part of the subject received through the receiver 110 and store an indication of the disease prediction device 100 set through the input unit 120.
  • the storage 140 may store the lesion area determined by the processor 150 to be described later, and store the probability of occurrence of a plurality of diseases calculated for the determined lesion area and diagnostic information about one disease finally determined. Is configured to. However, without being limited to the above, the storage 140 may store various pieces of information determined by the processor 150.
  • the processor 150 may be a component for providing accurate prediction results for the disease prediction device 110.
  • the processor 150 may be configured to determine a lesion area in a medical image of a target region of a subject and use a disease prediction model configured to predict a disease occurrence probability for the lesion area.
  • the processor 150 may input a medical image obtained through the receiver 110 using a disease prediction model configured to predict a lesion area with respect to a predetermined disease with respect to a target part of a subject, within the medical image. It can be configured to determine the lesion area.
  • the processor 150 may calculate the probability of occurrence of the plurality of predetermined diseases for the determined lesion area using the disease prediction model configured to calculate the probability of occurrence of the plurality of predetermined diseases.
  • the processor 150 may be configured to determine that one of the normal or a plurality of diseases is developed based on the probability of occurrence of the disease finally calculated by the disease prediction model.
  • the disease prediction model configured to determine the lesion area in the medical image and predict the onset of Xalhwan may be based on various learning models learned based on the image.
  • a prediction model used in various embodiments of the present invention may be a deep neural network (DNN), a convolutional neural network (CNN), a deep convolution neural network (DNN), a current recurrent neural network (RNN), or a restricted boltzmann machine (RBM). ), but may be a prediction model based on a deep belief network (DBN), a single shot detector (SSD) model, or a U-net, but is not limited thereto.
  • DNN deep neural network
  • CNN convolutional neural network
  • DNN deep convolution neural network
  • DNN deep convolution neural network
  • RNN current recurrent neural network
  • RBM restricted boltzmann machine
  • DNN deep belief network
  • SSD single shot detector
  • the processor 150 determines a lesion area in the medical image on a pixel-by-pixel basis using a disease prediction model, calculates a probability of occurrence of the disease in the lesion area having a plurality of pixel units, and then selects one of the normal or multiple diseases. It can be further configured to predict the disease of.
  • a disease prediction method according to an embodiment of the present invention will be described in detail with reference to FIGS. 2A to 2C.
  • TB tuberculous spondylitis
  • Pyo pyogenic spondylitis
  • the present invention is not limited thereto, and the disease prediction method according to an exemplary embodiment of the present invention may be used to predict whether various diseases occur in a medical image of a more various target site.
  • FIG. 2a illustrates the procedure of a disease prediction method according to an embodiment of the present invention.
  • FIG. 2B exemplarily illustrates a procedure for determining a disease occurring in a medical image by a disease prediction method according to an exemplary embodiment of the present invention.
  • 2C exemplarily illustrates various occurrence probability calculation procedures for a lesion area determined by a disease prediction method according to an embodiment of the present invention.
  • the disease prediction procedure is as follows. First, a medical image of a target part of a subject is received (S210). Next, the lesion area is determined in the medical image by using a disease prediction model configured to predict lesion areas for a plurality of predetermined diseases in the medical image (S220). Finally, the disease prediction model is used to determine whether the disease region determined in the medical image is normal or one of the plurality of diseases is developed (S230).
  • a plurality of 15 medical images 212 for a thoracic-lumbar region set as a target site may be obtained.
  • the obtained plurality of medical images 212 may be a T2-weighted axial plane image that is easy to analyze the lesion area.
  • the medical image in the receiving of the medical image (S210), the medical image, which has been pre-processed, may be further received to enable fast analysis of the plurality of medical images 212. Otherwise, the plurality of medical images may be adjusted to have a predetermined pixel unit or to adjust contrast, resolution, contrast, or symmetry of the plurality of medical images 212 received after receiving the medical image (S210).
  • a preprocessing step for the medical image 212 may be further performed.
  • the plurality of medical images 212 may have a resolution or size required by the disease prediction model 222 to be described later, and may have a smaller resolution or size than a plurality of original medical images, thereby predicting a disease.
  • the processing speed in model 222 can be improved.
  • the disease prediction model 222 may determine the lesion area for the disease based on at least one of pixel values, textures, and pixel differences with respect to the surrounding areas of the plurality of areas existing in the plurality of medical images 212. You can decide. For example, the disease prediction model 222 can determine the lesion area for tuberculous spondylitis or purulent spondylitis in each of the plurality of medical images 212.
  • a box may be formed around the lesion area determined by the disease prediction model 222 in determining the lesion area (S220). For example, referring to the plurality of medical images 224 in which the lesion area of FIG. 2B is determined, lesions for tuberculous spondylitis or purulent spondylitis determined for each of the plurality of medical images 212 by the disease prediction model 222. A box may be formed around the area. Thus, the medical person can easily recognize the lesion area determined for the disease.
  • the disease prediction model 222 determines that there is no disease at the target site. Normal diagnostic information can be provided to a healthcare practitioner.
  • step S230 of determining whether the disease occurs in each of the plurality of medical images 224 in which the lesion area is determined by the disease prediction model 222, the onset of tuberculous spondylitis in the determined lesion area Probability (TB score) and Pyo score of purulent spondylitis are calculated.
  • the step of determining whether the disease occurs S230
  • a tuberculous spondylitis having a high final probability score may be determined as the diseased disease, and a medical image 232 in which the diseased disease is predicted may be provided.
  • one of the probabilities of occurrence of each of the plurality of diseases calculated for the lesion area may be determined.
  • the final onset probability is determined separately, the sum of the final incidence probability determined in each of the plurality of medical images for each of the plurality of diseases is calculated, the ratio of the sum of the final incidence probability for each of the plurality of diseases is calculated, and the calculated final onset And may determine that one of the plurality of diseases has developed on the basis of the ratio of the sum of the probabilities.
  • a slice of four medical images (Slice # 1, Slice # 2, Slice # 3, and Slice # 4) of the thoracic and lumbar spine by the disease prediction model 222 may be used.
  • # 1 0.9 and Lesion # 3 purulent spondylitis of TB, which is the incidence of TB spondylitis of Lesion # 2 having the maximum of a plurality of lesion areas (Lesion # 1, Lesion # 2 and Lesion # 3)
  • a Pyo score of 0.72 can be determined as the final probability of onset.
  • the disease prediction model 222 can determine TB incidence (TB score) and Pyo score of pyogenic spondylitis (Pyo score) in each of the remaining three medical images (Slice # 2, Slice # 3 and Slice # 4). Final probability of onset can be determined.
  • the disease prediction model 222 calculates the sum of tuberculous spondylitis final incidence probability (3.53) and the final incidence probability of purulent spondylitis (3.05) for the four medical images, followed by Calculate the ratio (3.53 / (3.53 + 3.05)) of the incidence of spondylitis.
  • the final probability score is calculated to be 0.54, and as the probability of developing tuberculous spondylitis is relatively high, the disease prediction model 222 may determine that tuberculous spondylitis is developed at the target site.
  • a slice of four medical images (Slice # 1, Slice # 2, Slice # 3, and Slice # 4) of the thoracic and lumbar spine by the disease prediction model 222 may be used.
  • # 1, 0.9 which is the probability of occurrence of spondylitis (TB score) having the maximum value among the plurality of lesion areas (Lesion # 1, Lesion # 2, and Lesion # 3), may be determined as the final occurrence probability.
  • the probability of occurrence of purulent spondylitis (Pyo score) can be replaced with zero.
  • the disease prediction model 222 can determine the final incidence probability for one spondylitis having a maximum for total spondylitis in each of the remaining three medical images (Slice # 2, Slice # 3, and Slice # 4). .
  • the disease prediction model 222 then calculates the sum of tuberculous spondylitis final incidence probability (2.74) and the final incidence probability of purulent spondylitis (0.88) for four medical images, and then the tuberculosis for overall spondylitis incidence probability. Calculate the ratio (2.74 / (2.74 + 0.88)) of the probability of developing spondylitis.
  • the final probability score is calculated to be 0.76, which indicates that the incidence of tuberculous spondylitis is relatively high, so that the disease prediction model 222 may determine that tuberculous spondylitis is developed at the target site.
  • an average occurrence probability of each of the plurality of diseases calculated for the lesion area is calculated, and the plurality of Calculate the sum of the average incidence probability calculated from each of the plurality of medical images for each of the disease, calculate the ratio of the sum of the average incidence probability for each of the plurality of diseases, and determine the plurality of It can be configured to determine that one of the diseases of the dog is onset.
  • a slice of four medical images (Slice # 1, Slice # 2, Slice # 3, and Slice # 4) of the thoracic-lumbar spine by the disease prediction model 222 may be used.
  • # 1 the average incidence of 0.82 and TB was 0.82 and ascites for TB incidence of TB spondylitis (TB score) calculated in each of the multiple lesion areas (Lesion # 1, Lesion # 2 and Lesion # 3), respectively.
  • the disease prediction model 222 can determine TB incidence (TB score) and Pyo score of pyogenic spondylitis (Pyo score) in each of the remaining three medical images (Slice # 2, Slice # 3 and Slice # 4). The average probability of onset can be calculated. The disease prediction model 222 then calculates the sum of tuberculosis spondylitis onset probability (3.40) and the sum of the mean onset probability of purulent spondylitis (2.94) on four medical images, and then the tuberculosis of overall spondylitis probability Calculate the ratio (3.40 / (3.40 + 2.94)) of the incidence of spondylitis. As a result, the final probability score is calculated to be 0.54, and as the probability of developing tuberculous spondylitis is relatively high, the disease prediction model 222 may determine that tuberculous spondylitis is developed at the target site.
  • a disease having a probability of occurrence below the threshold may be determined to have low predicted reliability of the disease.
  • the TB probability and the probability of developing purulent spondylitis (TB score) calculated for each lesion of a plurality of medical images ( Pyo score) is greater than 0.6. If a value having a probability of 0.6 or less among the calculated TB score or Pyo score of purulent spondylitis is determined to be non-discriminatory, it is determined that the final probability score for determining the onset is determined. May be excluded.
  • diagnostic information for one disease determined based on the probability of occurrence of each of the plurality of diseases calculated for each of the plurality of medical images, is provided so that the medical practitioner can obtain the target with higher accuracy regardless of skill level. Determination of the onset of the site can be made.
  • the medical image used for learning was used for the patient who was finally diagnosed with tuberculous spondylitis or purulent spondylitis for the thoracic-lumbar region, but the medical image includes various target areas depending on the disease to be predicted. This can be used for learning.
  • FIG. 3 exemplarily illustrates a learning procedure for a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • a disease prediction model used in various embodiments of the present invention is trained with a learning set of a plurality of medical images 312 for the thoracic-lumbar region. More specifically, in order to train the disease prediction model, the plurality of medical images 312 may be acquired as the T2 weighted image 313 in which the lesion area is displayed with high luminance. The T2-weighted medical image 313 can then be normalized to have a pixel between 0 and 255 and cropped to a size of about 10 ⁇ 10 cm. The lesion area for tuberculous spondylitis or purulent spondylitis may then be masked within the cropping and standardized medical image 314.
  • the disease prediction model may be trained to form a lesion area box 318 around the lesion area with respect to the medical image 315 where the lesion area is masked, including the masked lesion area 316.
  • the disease prediction model of the present invention may be trained not to form lesion area box 318 for lesion areas less than 1.5 cm 2.
  • the predictive model trained by the above method may form a lesion area box 318 for each of the plurality of medical images for the input target region, and as a result, the medical image in which the lesion area box is formed for each of the plurality of diseases. 317 may be provided.
  • the disease prediction model of the present invention may be a model configured to determine a lesion area on the basis of an SSD performing recognition in a unified framework by recognizing a medical image of a target region as multiple boxes.
  • the present invention is not limited thereto, and the disease prediction model used in various embodiments of the present disclosure may be based on various algorithms based on images.
  • Example 1 an evaluation method and results of a prediction model used in various embodiments of the present invention will be described with reference to FIGS. 4A to 4C.
  • FIG. 4A illustrates a lesion area of tuberculous spondylitis and purulent spondylitis determined by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • 4B illustrates a disease prediction method and a disease prediction model used in a disease prediction device using the same, and a prediction evaluation of tuberculous spondylitis and purulent spondylitis by three radiologists according to one embodiment of the present invention.
  • Figure 4c illustrates the specificity and accuracy of the disease prediction method and the disease prediction model used in the disease prediction device using the same, and the diagnosis of tuberculous spondylitis and purulent spondylitis of three radiologists according to an embodiment of the present invention .
  • a thoracic-lumbar spine image finally determined as tuberculous spondylitis by a disease prediction model used in various embodiments of the present invention is shown. More specifically, the disease prediction model determined lesion areas with respect to the input thoracic-lumbar spine images to generate cyan boxes around the lesion areas, and calculated the probability of developing tuberculous spondylitis for the lesion areas within the boxes. As a result, the incidence of tuberculous spondylitis for each of the lesion areas was 1.00 and 0.91, and the disease prediction model could finally determine that tuberculous spondylitis was developed for the target site.
  • a thoracic-lumbar spine image finally determined as purulent spondylitis by a disease prediction model used in various embodiments of the present invention is shown. More specifically, the disease prediction model determined lesion areas for tuberculous spondylitis and purulent spondylitis on input thoracic-lumbar spine images, and generated cyan boxes and red boxes around the lesion areas, respectively. The disease prediction model then calculated the probability of developing tuberculous spondylitis and the probability of purulent spondylitis for the lesion area present in the box.
  • the incidence of tuberculous spondylitis and the probability of purulent spondylitis were calculated to be 0.75 and 0.88 for each of the two lesion regions, and the disease prediction model finally showed the development of purulent spondylitis with a relatively high probability for the target site. Can be determined.
  • a thoracic-lumbar spine image finally determined to be normal by a disease prediction model used in various embodiments of the present invention is shown. More specifically, when the lesion region is not determined by the disease prediction model or the lesion area box is not formed, the disease prediction model may finally be determined to be normal to the target site.
  • an area under the curve (AUC) value which means a result hit ratio, associated with excellent diagnostic ability, was respectively measured.
  • the disease prediction model was finally determined as tuberculous spondylitis or purulent spondylitis based on the final probability scores of tuberculous spondylitis and purulent spondylitis calculated on thoracolumbar lumbar spine images.
  • the AUC value in each evaluation was calculated, and the sensitivity (Sen, sensitivity) specificity (Spe, specificity) was calculated by comparing the predetermined correct disease for the image with the disease determined by the disease prediction model in various ways. .
  • the disease prediction model has a high discrimination ability against two diseases that appear similarly in a medical image, for example, tuberculous spondylitis and purulent spondylitis.
  • the disease prediction device of the present invention using the disease prediction model may determine whether the disease occurs with high accuracy with respect to the lesion area determined in the medical image of the target site.
  • Example 2 an evaluation method and results of a prediction model used in various embodiments of the present invention will be described with reference to FIGS. 5A and 5B.
  • evaluation of the prediction of pneumonia or tuberculosis was performed based on ten computed tomography images (Image 1 to Image 10) of the chest lung.
  • the present invention is not limited thereto, and the disease prediction model of the present invention may predict each disease with high accuracy for two diseases having similar shapes in the medical image.
  • 5A illustrates a plurality of medical images predicted as tuberculosis by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
  • 5B illustrates a plurality of medical images predicted as pneumonia by a disease prediction model used in a disease prediction method and a disease prediction device using the same, according to an embodiment of the present invention.
  • tuberculosis which is calculated for lesion areas determined in each of 10 images (Images 1 to Image 10) acquired for the lung of the target region, was obtained.
  • Onset probability and onset of pneumonia Pn, pneumonia).
  • the disease prediction model yields the ratio of the incidence of tuberculosis (5.84 / (1.56 + 5.84)) to the probability of total disease (tuberculosis and pneumonia) at 1.56 and 5.84, the sum of both the probability of developing pneumonia and tuberculosis. do.
  • the final probability score was calculated to be about 0.789 by the disease prediction model, indicating that the incidence of tuberculosis is relatively high, and thus, the target site having the computed tomography image of the chest lung shown in FIG. 5A. Can be determined to have tuberculosis.
  • tuberculosis (Tb, tuberculosis) calculated for the lesion area determined in each of 10 images (Image 1 to Image 10) acquired for the lung of the target region. Probability of onset and probability of developing pneumonia (Pn, pneumonia).
  • the disease prediction model is the ratio of the incidence of tuberculosis to the probability of total disease (tuberculosis and pneumonia) at 5.3 and 1.38, which is the sum of the incidence of each pneumonia and the probability of tuberculosis (1.38 / (5.3 + 1.38)) To calculate.
  • the final probability score was calculated to be about 0.206 by the disease prediction model, indicating that the incidence of tuberculosis was relatively low, so that the target site having the computed tomography image of the chest lung shown in FIG. 5B. Can be determined to have developed pneumonia.
  • Example 2 the disease prediction method and the device using the same according to an embodiment of the present invention based on a disease prediction model to determine the lesion area in the medical image of the target site of the subject with high accuracy, There is an effect that can predict the onset.
  • the disease prediction method and the device using the same by determining the disease with a high accuracy for a plurality of similar diseases having a similar shape in the medical image, thereby obtaining an accurate diagnosis result regardless of the skill of the medical practitioner There is an effect that can be provided.
  • the disease prediction method according to an embodiment of the present invention and the use range and effects of the device using the same are not limited.
  • a disease prediction method and a device using the same according to an embodiment of the present invention may provide a probability of occurrence of a predetermined disease with respect to a specific area in a medical image selected by a medical person, and develop the disease based on the occurrence probability.
  • the healthcare provider may be provided with information that is normally predicted.
  • the disease prediction method and the device using the same as well as the thoracic-lumbar region and lungs, the upper abdomen, lower abdomen, liver, brain, varicose veins, uterus, prostate, testicles, musculoskeletal system, or breast
  • lesion areas can be predicted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention provides a disease prediction method and a device using same, the method comprising the steps of: receiving a medical image of a target part; determining a lesion area in the medical image by using a disease prediction model learned to determine, for a plurality of predetermined diseases, lesion areas for a plurality of diseases in medical images; and determining whether the subject is attacked with one disease among the plurality of diseases, on the basis of the determined lesion area.

Description

질환 예측 방법 및 이를 이용한 질환 예측 디바이스Disease prediction method and disease prediction device using same
본 발명은 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에 관한 것으로, 보다 구체적으로 목적 부위에 대한 진단 의료 영상을 기초로 질환을 예측하는 방법 및 디바이스에 관한 것이다.The present invention relates to a disease prediction method and a disease prediction device using the same, and more particularly, to a method and device for predicting a disease based on a diagnostic medical image of a target site.
의료 영상 장치는 대상체의 내부 구조를 영상으로 획득하기 위한 장비이다. 이러한 의료 영상 장치는 인체에 고통을 주지 않고 실시되는 비침습 검사 장치로서, 신체 내의 구조적 세부사항, 내부 조직 및 유체의 흐름 등을 촬영 및 처리하여 의료인에게 보여준다. 의료인들은 의료 영상 장치에서 출력되는 의료 영상을 이용하여 환자의 건강 상태 및 질병을 진단할 수 있다.The medical imaging apparatus is a device for acquiring an internal structure of an object as an image. The medical imaging apparatus is a non-invasive inspection apparatus that is performed without suffering to the human body, and photographs and processes structural details, internal tissues, and fluid flow in the body and shows them to the medical personnel. Medical personnel may diagnose a medical condition and a disease of a patient by using the medical image output from the medical imaging apparatus.
의료 영상 장치로는 자기 공명 영상을 제공하기 위한 자기 공명 영상 (MRI, magnetic resonance imaging) 장치, 컴퓨터 단층 촬영 (CT, Computed Tomography) 장치, 엑스레이 (X-ray) 장치, 및 초음파 (ultrasound) 진단 장치 등이 있다. Medical imaging devices include magnetic resonance imaging (MRI) devices, computed tomography (CT) devices, X-ray (X-ray) devices, and ultrasound diagnostic devices to provide magnetic resonance imaging. Etc.
보다 구체적으로, 자기 공명 영상 장치는 자기장을 이용해 피사체를 촬영하는 장치로, 뼈는 물론 디스크, 관절, 신경 인대 등을 원하는 각도에서 입체적으로 보여주기 때문에 정확한 질병 진단을 위해서 널리 이용되고 있다. 이러한, 자기 공명 영상 장치는 RF 코일들을 포함하는 고주파 멀티 코일, 영구자석 및 그래디언트 코일 등을 이용하여 자기 공명 (MR, magnetic resonance) 신호를 획득한다. 그리고, 자기 공명 신호를 샘플링하여 자기 공명 영상을 획득한다. More specifically, the magnetic resonance imaging apparatus is a device for photographing a subject by using a magnetic field, and is widely used for accurate disease diagnosis because bones, disks, joints, nerve ligaments, and the like are shown in three dimensions at a desired angle. The magnetic resonance imaging apparatus acquires a magnetic resonance (MR) signal using a high frequency multi coil, a permanent magnet, a gradient coil, and the like including RF coils. The magnetic resonance signal is sampled to obtain a magnetic resonance image.
의료 영상 장치 중, 컴퓨터 단층 촬영 장치는 대상체에 대한 단면 영상을 제공할 수 있고, 일반적인 엑스레이 장치에 비하여 대상체의 내부 구조, 예를 들어 신장, 폐와 같은 장기가 겹치지 않게 표현할 수 있다는 장점을 가지고 있다. 이에, 컴퓨터 단층 촬영 장치는 질병의 정밀한 진단을 위하여 널리 이용된다. 이러한, 컴퓨터 단층 촬영 장치는 대상체에 엑스레이를 조사하며, 대상체를 통과한 엑스레이를 감지한다. 그리고, 감지된 엑스레이를 이용하여 영상을 획득한다.Among medical imaging apparatuses, a computed tomography apparatus may provide a cross-sectional image of an object, and have an advantage that internal structures of the object, such as kidneys and lungs, may not be overlapped with each other in comparison with a general x-ray apparatus. . Accordingly, the computed tomography apparatus is widely used for precise diagnosis of a disease. Such a computed tomography apparatus irradiates an X-ray to an object and detects an X-ray passing through the object. Then, an image is acquired using the detected X-rays.
한편, 의료 영상 장치로부터 획득한 의료 영상 내에서, 상이한 질환들이 유사한 형태로 나타날 수 있다. 이러한 이유로, 의료 영상에 기초한 진단에 있어서, 의료인들은 특정 질환들을 정확하게 진단하는 것에 어려움이 있다. 또한, 질환에 따라 상이한 치료법이 적용될 수 있어, 유사한 형태로 나타나는 질환들은 의료 영상에 기초하여 진단을 진행할 경우 오진 및 이에 따른 부작용의 위험이 높을 수 있다. Meanwhile, within the medical image acquired from the medical imaging apparatus, different diseases may appear in a similar form. For this reason, in diagnosis based on medical imaging, medical personnel have difficulty in accurately diagnosing specific diseases. In addition, different treatments may be applied depending on the disease, and thus, diseases that appear in a similar form may have a high risk of misdiagnosis and side effects when the diagnosis is performed based on a medical image.
의료 사고의 예방 및 의료 서비스의 향상 등을 위하여 진단의 정확성이 더욱 요구되고 있음에 따라, 의료 영상 내에서 유사한 형태를 갖는 특정 질환을 높은 정확도로 진단할 수 있는 새로운 진단 방법의 개발이 지속적으로 요구되고 있는 실정이다. As the accuracy of diagnosis is required for the prevention of medical accidents and the improvement of medical services, there is a continuous need for the development of new diagnostic methods that can accurately diagnose certain diseases with similar shapes in medical images. It's happening.
발명의 배경이 되는 기술은 본 발명에 대한 이해를 보다 용이하게 하기 위해 작성되었다. 발명의 배경이 되는 기술에 기재된 사항들이 선행기술로 존재한다고 인정하는 것으로 이해되어서는 안 된다.The background art of the invention has been created to facilitate understanding of the present invention. It should not be understood that the matters described in the background of the invention exist as prior art.
한편, 종래의 의료 영상을 이용한 진단 시스템이 갖는 문제점을 해결하기 위한 방안으로, 세포 검사, 조직 검사와 같은 추가적인 진단 검사가 수행될 수 있다. 그러나, 이는 환자 및 의료진으로 하여금 번거로움을 수반할 뿐만 아니라, 진단하고자 하는 질환에 따라 추가적인 검진으로 정확한 진단 결과를 획득하지 못해, 의료 영상 진단을 재 수행하는 경우가 발생할 수 있다.Meanwhile, in order to solve a problem of the conventional diagnosis system using a medical image, an additional diagnostic test such as a cell test or a histological test may be performed. However, this may not only cause the patient and the medical staff to be troublesome, but may not be able to obtain an accurate diagnosis result by additional examination according to the disease to be diagnosed, and thus may re-perform the medical image diagnosis.
예를 들어, 감염성 척추염 중, 서로 상이한 치료법이 적용되는 결핵성 척추염과 화농성 척추염은 의료 영상으로 진단 가능한 질환이나, 의료 영상 내에서 구별되기 쉽지 않다. 특히, 초기 병기의 척추염의 진단 또는, 저조한 성능의 의료 영상 장치를 이용한 진단은, 의료 영상에서 두 가지 질환이 구별될 수 있을 정도의 유의한 차이를 제공하지 못해 진단의 정확도가 떨어질 수 있게 된다. 이에 따라, 의료진은 추가적으로 조직 검사를 수행한다. 그러나, 조직 검사의 정확도 또한 매우 낮아 결핵성 척추염과 화농성 척추염의 정확한 진단은 매우 어려운 실정이다. 결국, 의료진은 의료 영상에 기초한 진단을 재 수행하여 척추염의 진단을 내리게 된다. For example, among infectious spondylitis, tuberculosis spondylitis and purulent spondylitis, to which different treatments are applied, are a disease that can be diagnosed by a medical image, but are not easily distinguishable within the medical image. In particular, the diagnosis of spondylitis in the early stages, or diagnosis using a low performance medical imaging apparatus, may not provide a significant difference that can distinguish the two diseases in the medical image, and thus the accuracy of diagnosis may be reduced. Accordingly, the medical staff additionally performs a biopsy. However, the accuracy of histological examination is also very low, so accurate diagnosis of tuberculous spondylitis and purulent spondylitis is very difficult. Eventually, the medical staff re-diagnoses the diagnosis based on the medical image to diagnose spondylitis.
한편, 본 발명의 발명자들은 종래의 의료 영상을 이용한 진단, 특히 의료 영상 내에서 유사한 형태를 갖는 질환의 진단 과정에서 야기되는 문제점을 해결하기 위해, 의료 영상 데이터에 의해 학습된 예측 모델을 이용할 수 있음을 인지할 수 있었다. Meanwhile, the inventors of the present invention may use a predictive model learned by medical image data to solve problems caused by a diagnosis using a conventional medical image, in particular, a diagnosis process of a disease having a similar form in the medical image. Could be perceived.
그 결과, 본 발명의 발명자들은 목적 부위에 대한 의료 영상 내에서 존재하는 병변 영역을 결정하고, 결정된 영역에 대한 복수개의 질환의 확률을 각각 산출하여, 질환을 예측하도록 구성된 예측 모델을 이용한, 새로운 질환 예측 방법을 개발하기에 이르렀다. As a result, the inventors of the present invention determine a lesion area present in a medical image for a target site, calculate a probability of a plurality of diseases for the determined area, respectively, and use a predictive model configured to predict the disease. We have come to develop a prediction method.
보다 구체적으로 본 발명의 발명자들은, 의료 영상 내에서 미리 결정된 복수개의 질환과 각각 연관된 병변 영역이 마스킹된 영상을 기초로, 병변 영역에 대한 질환의 확률을 산출하고 질환을 예측하도록 학습된, 질환 예측 모델을 이용함으로써 복수개의 질환들 각각에 대하여 높은 정확도로 분별하여 예측하는 것을 확인할 수 있었다. More specifically, the inventors of the present invention learn disease prediction based on an image in which lesion areas associated with a plurality of predetermined diseases in a medical image are masked, and calculate a probability of the disease for the lesion area and predict the disease. By using the model, it was confirmed that each of the plurality of diseases was classified and predicted with high accuracy.
특히 본 발명의 발명자들은, 질환 예측 모델이 하나의 목적 부위에 대한 복수개의 의료 영상 각각에 대하여 질환 발병 확률을 산출하고 최종 확률 점수를 산출하여 질환 발병의 여부를 예측하도록 구성함으로써, 의료 영상 내에서 유사한 형태로 나타나는 질환들 각각에 대한 진단의 정확도를 높일 수 있었다. In particular, the inventors of the present invention, the disease prediction model is configured to calculate the probability of disease occurrence for each of a plurality of medical images for one target site and calculate the final probability score to predict whether the disease onset, within the medical image The accuracy of diagnosis was improved for each of the similarly manifested diseases.
이에, 본 발명이 해결하고자 하는 과제는, 복수개의 질환 각각에 대한 병변 영역을 결정하도록 학습된 질환 예측 모델을 이용하여, 수신된 의료 영상 내에서 병변 영역을 결정하고, 이를 기초로 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정할 수 있는, 질환 예측 방법 및 이를 이용한 질환 예측 디바이스를 제공하는 것이다. Accordingly, an object of the present invention is to determine a lesion region in a received medical image by using a disease prediction model trained to determine lesion regions for each of a plurality of diseases, and based on this, among the plurality of diseases. It is to provide a disease prediction method and a disease prediction device using the same, which can determine whether one disease occurs.
보다 구체적으로, 본 발명이 해결하고자 하는 과제는, 질환 예측 모델을 이용하여 하나의 목적 부위에 대한 복수개의 의료 영상 각각에 대하여 병변 영역을 결정하고, 이들 영역에 대하여 복수개의 질환 각각의 발병 확률을 산출하여, 복수개의 질환 중 하나의 질환에 대한 발병 여부를 제공함에 따라, 의료인의 숙련도에 관계 없이 질환의 진단의 정확도를 높일 수 있는, 질환 예측 방법 및 이를 이용한 질환 예측 디바이스를 제공하는 것이다. More specifically, the problem to be solved by the present invention, by using a disease prediction model to determine the lesion area for each of a plurality of medical images for one target site, and to determine the probability of occurrence of each of the plurality of diseases for these areas The present invention provides a disease prediction method and a disease prediction device using the same, by calculating whether or not the disease is caused by one of the plurality of diseases, thereby increasing the accuracy of diagnosis of the disease regardless of the skill of the medical professional.
본 발명이 해결하고자 하는 다른 과제는, 의료 영상 내에서 선택된 영역에 대하여 미리 결정된 질환일 확률을 제공할 수 있는 예측 모델을 이용한, 질환 예측 방법 및 이를 이용한 질환 예측 디바이스를 제공하는 것이다. Another object of the present invention is to provide a disease prediction method and a disease prediction device using the prediction model that can provide a probability of a predetermined disease for a selected region in a medical image.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
전술한 바와 같은 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 질환 예측 방법이 제공된다. 본 방법은, 목적 부위에 대한 의료 영상 (medical image) 을 수신하는 단계, 의료 영상 내에서 미리 결정된 복수개의 질환에 대한 병변 영역을 결정하도록 학습된 질환 예측 모델을 이용하여, 의료 영상 내에서 병변 영역을 결정하는 단계, 및 결정된 병변 영역을 기초로, 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정하는 단계를 포함한다.In order to solve the above problems, there is provided a disease prediction method according to an embodiment of the present invention. The method may include receiving a medical image of a target site, using a disease prediction model trained to determine lesion areas for a plurality of predetermined diseases in the medical image, and including the lesion region in the medical image. And determining whether to develop one of the plurality of diseases based on the determined lesion area.
본 발명의 특징에 따르면, 복수개의 질환은 서로 상이한 두 개의 질환이고, 두 개의 질환은, 결핵성 척추염 및 화농성 척추염, 결핵 및 폐렴, 고형 종양 및 물혹, 전이암 및 농양, 및 골용해성 전이암 및 퇴행성 병변으로 구성된 그룹 중 선택된 한 쌍의 질환일 수 있다.According to a feature of the invention, the plurality of diseases are two different diseases, the two diseases being tuberculosis spondylitis and purulent spondylitis, tuberculosis and pneumonia, solid tumors and water bumps, metastatic cancer and abscess, and osteolytic metastatic cancer and degenerative disease. May be a pair of diseases selected from the group consisting of lesions.
본 발명의 다른 특징에 따르면, 질환의 여부를 예측하는 단계는 질환 예측 모델을 이용하여, 의료 영상 내에서 결정된 병변 영역에 대하여, 복수개의 질환 각각의 발병 확률을 산출하는 단계, 및 병변 영역에 대한 복수개의 질환 각각의 발병 확률을 기초로, 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함할 수 있다. According to another feature of the present invention, the step of predicting the presence of a disease may be performed by using a disease prediction model, calculating a probability of occurrence of each of a plurality of diseases, for a lesion area determined in a medical image, and for the lesion area. And determining that one of the plurality of diseases is developed based on the probability of developing each of the plurality of diseases.
본 발명의 또 다른 특징에 따르면, 신출된 복수개의 질환 중, 임계치 미만의 발병 확률을 갖는 질환은, 질환의 예측 신뢰도가 낮은 것으로 결정하는 단계를 더 포함할 수 있다.According to another feature of the present invention, a disease having a probability of occurrence below a threshold among a plurality of newly emerging diseases may further include determining that the predicted reliability of the disease is low.
본 발명의 또 다른 특징에 따르면, 환 예측 모델에 의해 결정된 병변 영역은 복수개이고, 질환의 여부를 예측하는 단계는 질환 예측 모델을 이용하여 의료 영상 내에서 결정된 복수개의 병변 영역 각각에 대하여 복수개의 질환 각각의 발병 확률을 산출하는 단계, 복수개의 병변 영역 전체에서, 산출된 복수개의 질환 각각에 대하여 최대값을 갖는 하나의 최종 발병 확률을 결정하는 단계, 및 결정된 복수개의 질환 각각에 대한 최종 발병 확률을 비교하여, 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함할 수 있다.According to another feature of the invention, the lesion region determined by the ring prediction model is a plurality, the step of predicting the presence of the disease is a plurality of diseases for each of the plurality of lesion areas determined in the medical image using the disease prediction model Calculating a probability of each occurrence, determining a single final onset probability having a maximum value for each of the calculated plurality of diseases, and a final onset probability for each of the plurality of determined diseases In comparison, the method may include determining that one of the plurality of diseases has developed.
본 발명의 또 다른 특징에 따르면, 의료 영상은 하나의 목적 부위에 대한 복수개의 의료 영상을 포함하고, 결정하는 단계는 질환 예측 모델을 이용하여 복수개의 의료 영상 각각에 대하여 병변 영역을 결정하는 단계를 포함하고, 질환의 여부를 예측하는 단계는 질환 예측 모델을 이용하여 복수개의 의료 영상 각각의 발병 확률을 산출하는 단계, 및 복수개의 의료 영상에 대하여 복수개의 질환 각각의 발병 확률을 기초로, 복수개의 질환 중 하나의 질환의 발병 여부를 결정하는 단계를 포함할 수 있다.According to another feature of the present invention, the medical image includes a plurality of medical images for one target site, and the determining includes determining a lesion area for each of the plurality of medical images using a disease prediction model. The predicting of the disease may include calculating a probability of occurrence of each of the plurality of medical images by using a disease prediction model, and based on a probability of each of the plurality of diseases for the plurality of medical images. And determining whether one of the diseases is developed.
본 발명의 또 다른 특징에 따르면, 복수개의 질환 중 하나의 질환의 발병 여부를 결정하는 단계는 복수개의 의료 영상 각각에서, 병변 영역에 대하여 산출된 복수개의 질환 각각의 발병 확률 중, 최대값을 갖는 하나의 최종 발병 확률을 각각 결정하는 단계, 복수개의 질환 각각에 대하여 복수개의 의료 영상 각각에서 결정된 최종 발병 확률의 합을 산출하는 단계, 복수개의 질환 각각에 대하여, 최종 발병 확률의 합의 비율을 산출하는 단계, 및 산출된 최종 발병 확률의 합의 비율을 기초로, 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함할 수 있다.According to another feature of the present invention, the determining of the onset of one of the plurality of diseases may include determining the onset of each of the plurality of diseases, the probability of occurrence of each of the plurality of diseases calculated for the lesion area in the plurality of medical images. Determining a final incidence probability of each one, calculating a sum of the final incidence probability determined in each of the plurality of medical images for each of the plurality of diseases, and calculating a ratio of the sum of the final incidence probability for each of the plurality of diseases. And determining that one of the plurality of diseases has developed based on the ratio of the sum of the calculated final occurrence probability.
본 발명의 또 다른 특징에 따르면, 복수개의 질환 중 하나의 질환의 발병 여부를 결정하는 단계는 복수개의 의료 영상 각각에서, 병변 영역에 대하여 산출된 복수개의 질환 각각의 발병 확률 중, 최대값을 갖는 하나의 질환에 대한 발병 확률을 최종 발병 확률로 결정하고, 나머지 질환에 대한 발병 확률을 0으로 대체하는 단계, 복수개의 질환 각각에 대하여 복수개의 의료 영상 각각에서 결정된 최종 발병 확률의 합을 산출하는 단계, 복수개의 질환 각각에 대하여 최종 발병 확률의 합의 비율을 산출하는 단계, 및 산출된 최종 발병 확률의 합의 비율을 기초로 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함할 수 있다.According to another feature of the present invention, the determining of the onset of one of the plurality of diseases may include determining the onset of each of the plurality of diseases, the probability of occurrence of each of the plurality of diseases calculated for the lesion area in each of the plurality of medical images. Determining the incidence of one disease as a final incidence probability, replacing the incidence of the other diseases by zero, and calculating a sum of the final incidence probability determined in each of the plurality of medical images for each of the plurality of diseases. Comprising: calculating a ratio of the sum of the final probability of occurrence for each of the plurality of diseases, and based on the calculated ratio of the sum of the final probability of occurrence may include the step of determining that one of the plurality of diseases has developed.
본 발명의 또 다른 특징에 따르면, 질환의 여부를 예측하는 단계는 복수개의 의료 영상 각각에서, 병변 영역에 대하여 복수개의 질환 각각에 대한 평균 발병 확률을 산출하는 단계, 복수개의 질환 각각에 대하여 복수개의 의료 영상 각각에서 산출된 평균 발병 확률의 합을 산출하는 단계, 복수개의 질환 각각에 대하여 평균 발병 확률의 합의 비율을 산출하는 단계, 및 산출된 평균 발병 확률의 합의 비율을 기초로 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 더 포함할 수 있다.According to another feature of the invention, the step of predicting the presence of a disease in each of the plurality of medical images, calculating the average probability of occurrence for each of the plurality of diseases for the lesion area, a plurality of for each of the plurality of diseases Calculating a sum of the average incidence probability calculated on each of the medical images, calculating a ratio of the sum of the average incidence probability for each of the plurality of diseases, and one of the plurality of diseases based on the calculated ratio of the sum of the average incidence probability The method may further include determining that the disease is caused.
본 발명의 또 다른 특징에 따르면, 의료 영상은 단층 촬영 영상 또는 자기 공명 영상이고, 미리 결정된 질환은 단층 촬영 영상 또는 자기 공명 영상으로 진단 가능한 질환일 수 있다.According to another feature of the present invention, the medical image may be a tomography image or a magnetic resonance image, and the predetermined disease may be a disease that can be diagnosed as a tomography image or a magnetic resonance image.
본 발명의 또 다른 특징에 따르면, 예측 모델은 의료 영상에 대하여 픽셀 단위로 발병 확률을 산출 하도록 더 구성되고, 의료 영상 중 일정한 픽셀을 갖는 특정 영역에 대한 선택을 수신하는 단계, 질환 예측 모델을 이용하여, 선택된 특정 영역에 대하여 미리 결정된 질환에 대한 발병 확률을 산출하는 단계, 및 특정 영역에 대하여 산출된 발병 확률을 제공하는 단계를 더 포함할 수 있다.According to another feature of the invention, the predictive model is further configured to calculate the probability of occurrence on a pixel-by-pixel basis for the medical image, receiving a selection for a specific region having a certain pixel of the medical image, using the disease prediction model The method may further include calculating a probability of occurrence of a predetermined disease for the selected specific region, and providing a calculated probability of occurrence of the specific region.
본 발명의 또 다른 특징에 따르면, 질환 예측 모델에 의해 병변 영역이 결정된 경우 의료 영상 내에서 결정된 병변 영역을 표시하여 제공하고, 질환 예측 모델에 의해 병변 영역이 결정되지 않은 경우, 정상의 진단 정보를 제공하는 단계를 더 제공할 수 있다.According to another feature of the present invention, when the lesion area is determined by the disease prediction model, the lesion area determined in the medical image is displayed and provided, and when the lesion area is not determined by the disease prediction model, normal diagnostic information is provided. Providing may further provide.
본 발명의 또 다른 특징에 따르면, 목적 부위에 대하여 미리 결정된 질환으로 확진된 병변 영역을 포함하는 학습용 의료 영상을 기초로, 목적 부위에 대한 의료 영상 내에서 미리 결정된 질환에 대한 병변 영역을 결정하도록 질환 예측 모델을 트레이닝하는 단계를 더 포함할 수 있다.According to another feature of the invention, the disease to determine the lesion area for the predetermined disease in the medical image for the target region based on the learning medical image including the lesion area confirmed as a predetermined disease for the target site Training of the predictive model may be further included.
본 발명의 또 다른 특징에 따르면, 의료 영상은 T2 강조 영상이고, 트레이닝하는 단계는 학습용 의료 영상을 미리 결정된 크기로 크로핑 (cropping) 하는 단계, 학습용 의료 영상의 픽셀을 표준화 (normalization) 하는 단계, 학습용 의료 영상 내에 미리 결정된 질환으로 확진된 병변 영역을 마스킹 (masking) 하는 단계, 및 질환 예측 모델이 마스킹된 병변 영역 주위에 박스를 형성하도록 트레이닝하는 단계를 포함할 수 있다.According to another feature of the invention, the medical image is a T2-weighted image, the training step of cropping (cropping) the training medical image to a predetermined size, normalizing the pixels of the training medical image, Masking the lesion area identified as a predetermined disease in the training medical image, and training the disease prediction model to form a box around the masked lesion area.
전술한 바와 같은 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 질환 예측 디바이스가 제공된다. 본 디바이스는, 목적 부위에 대한 의료 영상을 수신하도록 구성된 수신부, 및 수신부와 동작 가능하게 연결된 프로세서를 포함한다. 이때, 프로세서는 의료 영상 내에서 미리 결정된 복수개의 질환에 대한 병변 영역을 결정하도록 학습된 예측 모델을 이용하여, 의료 영상 내에서 병변 영역을 결정하고, 결정된 병변 영역을 기초로, 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정하도록 구성된다.In order to solve the above problems, there is provided a disease prediction device according to an embodiment of the present invention. The device includes a receiver configured to receive a medical image of a target site, and a processor operatively connected with the receiver. In this case, the processor determines a lesion area in the medical image by using a predictive model trained to determine lesion areas for a plurality of predetermined diseases in the medical image, and based on the determined lesion area, one of the plurality of diseases. It is configured to determine the onset of the disease.
본 발명의 특징에 따르면, 프로세서는 질환 예측 모델을 이용하여 의료 영상 내에서 결정된 병변 영역에 대하여, 복수개의 질환 각각의 발병 확률을 산출하고, 병변 영역에 대한 복수개의 질환 각각의 발병 확률을 기초로, 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하도록 더 구성될 수 있다.According to a feature of the present invention, the processor calculates the incidence of each of the plurality of diseases for the lesion area determined in the medical image by using the disease prediction model, and based on the incidence of each of the plurality of diseases for the lesion area. It may be further configured to determine that one of the plurality of diseases is onset.
본 발명의 다른 특징에 따르면, 의료 영상은 하나의 목적 부위에 대한 복수개의 의료 영상을 포함하고, 프로세서는 질환 예측 모델을 이용하여, 복수개의 의료 영상 각각에서 복수개의 질환 각각의 발병 확률을 산출하고, 복수개의 의료 영상에 대한 복수개의 질환 각각의 발병 확률을 기초로, 복수개의 질환 중 하나의 질환의 발병 여부를 결정하도록 더 구성될 수 있다.According to another feature of the invention, the medical image comprises a plurality of medical images for one target site, the processor calculates the probability of the occurrence of each of the plurality of diseases in each of the plurality of medical images using a disease prediction model The onset probability of each of the plurality of diseases of the plurality of medical images may be further determined to determine whether one of the plurality of diseases is developed.
본 발명은 미리 결정된 복수개의 질환의 발병 여부를 예측하도록 구성된 예측 모델을 이용한, 질환 예측 방법 및 이를 이용한 디바이스를 제공함으로써, 피검자의 목적 부위에 대하여 정확한 진단 정보를 제공할 수 있는 효과가 있다. The present invention has an effect of providing accurate diagnostic information on a target site of a subject by providing a disease prediction method and a device using the prediction model configured to predict whether a plurality of predetermined diseases occur.
구체적으로, 본 발명은 질환 예측 모델에 의해 결정된 병변 영역에 대하여 복수개의 질환 각각의 발병 확률을 산출하여 제공함으로써 정확한 질환의 진단이 가능하게 할 수 있게 한다. Specifically, the present invention enables accurate diagnosis of a disease by calculating and providing an incidence of occurrence of each of a plurality of diseases with respect to a lesion region determined by a disease prediction model.
또한, 본 발명은, 의료 영상 내에서 선택된 영역에 대하여, 질환의 발병 확률을 예측하여 제공할 수 있는 효과가 있다. In addition, the present invention has an effect of predicting and providing a probability of occurrence of a disease in a region selected in a medical image.
본 발명은 복수개의 의료 영상을 수신하여 복수개의 질환 각각에 대한 질환 발병 확률을 산출하고 최종 확률 점수를 산출하여 하나의 질환의 발병 여부를 예측하도록 구성함으로써, 의료 영상 내에서 유사한 형태로 나타나는 질환들 각각에 대한 진단의 정확도를 높일 수 있는 효과가 있다. The present invention is configured to receive a plurality of medical images to calculate the probability of disease occurrence for each of the plurality of diseases and to calculate the final probability score to predict whether or not to develop one disease, the disease appears in a similar form in the medical image There is an effect that can increase the accuracy of the diagnosis for each.
나아가, 본 발명은 질환 예측 모델에 의해 피검자의 목적 부위에 대하여 병변 영역이 결정될 경우, 결정된 병변 영역을 의료 영상 내에서 표시하여 제공하고, 질환 예측 모델에 의해 병변 영역이 결정되지 않을 경우, 정상의 진단 정보를 제공할 수 있는 효과가 있다. 이에, 본 발명은 의료인의 의료 영상 진단 시스템 사용의 숙련도에 관계 없이, 피검자의 목적 부위에 대한 정확한 진단 결과를 제공할 수 있는 효과가 있다. Furthermore, when the lesion region is determined for the target region of the subject by the disease prediction model, the determined lesion region is displayed in the medical image and provided, and when the lesion region is not determined by the disease prediction model, This has the effect of providing diagnostic information. Thus, the present invention has the effect of providing accurate diagnostic results for the target site of the subject regardless of the proficiency of the medical image diagnosis system.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.The effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 질환 예측 디바이스의 구성을 도시한 것이다. 1 illustrates a configuration of a disease prediction device according to an embodiment of the present invention.
도 2a는 본 발명의 일 실시예에 따른 질환 예측 방법의 절차를 도시한 것이다. Figure 2a illustrates the procedure of a disease prediction method according to an embodiment of the present invention.
도 2b는 본 발명의 일 실시예에 따른 질환 예측 방법에 의한 의료 영상 내의 발병된 질환의 결정 절차를 예시적으로 도시한 것이다. FIG. 2B exemplarily illustrates a procedure for determining a disease occurring in a medical image by a disease prediction method according to an exemplary embodiment of the present invention.
도 2c는 본 발명의 일 실시예에 따른 질환 예측 방법에 의해 결정된 병변 영역에 대한 다양한 발병 확률 산출 절차를 예시적으로 도시한 것이다. 2C exemplarily illustrates various occurrence probability calculation procedures for a lesion area determined by a disease prediction method according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 대한 학습 절차를 예시적으로 도시한 것이다. 3 exemplarily illustrates a learning procedure for a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
도 4a는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 의해 결정된 결핵성 척추염 및 화농성 척추염의 병변 영역을 도시한 것이다. FIG. 4A illustrates a lesion area of tuberculous spondylitis and purulent spondylitis determined by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
도 4b는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는 질환 예측 모델, 및 3명의 영상의학과 전문의에 의한 결핵성 척추염 및 화농성 척추염의 예측 평가의 결과를 도시한 것이다. 4B illustrates the results of a disease prediction method and a disease prediction model used in a disease prediction device using the same, and a predictive evaluation of tuberculous spondylitis and purulent spondylitis by three radiologists according to an embodiment of the present invention.
도 4c는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는 질환 예측 모델, 및 3 명의 영상의학과 전문의의 결핵성 척추염 및 화농성 척추염의 진단의 특이도 및 정확도를 도시한 것이다. Figure 4c illustrates the specificity and accuracy of the disease prediction method and the disease prediction model used in the disease prediction device using the same, and the diagnosis of tuberculous spondylitis and purulent spondylitis of three radiologists according to an embodiment of the present invention .
도 5a는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 의해 결핵으로 예측된 복수개의 의료 영상을 도시한 것이다. 5A illustrates a plurality of medical images predicted as tuberculosis by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
도 5b는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 의해 폐렴로 예측된 복수개의 의료 영상을 도시한 것이다.5B illustrates a plurality of medical images predicted as pneumonia by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
발명의 이점, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages of the invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우, '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다. Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items. In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. When 'comprises', 'haves', 'consists of' and the like mentioned in the present specification are used, other parts may be added unless 'only' is used. In case of singular reference, the plural number includes the plural unless specifically stated otherwise.
구성요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다. In interpreting a component, it is interpreted to include an error range even if there is no separate description.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다. Each of the features of the various embodiments of the present invention may be combined or combined with each other in part or in whole, various technically interlocking and driving as can be understood by those skilled in the art, each of the embodiments may be implemented independently of each other It may be possible to carry out together in an association.
본 명세서의 해석의 명확함을 위해, 이하에서는 본 명세서에서 사용되는 용어들을 정의하기로 한다. For clarity of interpretation of the present specification, the terms used herein will be defined below.
본 명세서에서 사용되는 용어, "의료 영상"은 목적 부위에 대한 진단을 위해 촬영된 모든 영상을 의미할 수 있다. 예를 들어, 의료 영상은 자기 공명 영상, 컴퓨터 단층 촬영 영상, 엑스레이 영상, 초음파 영상일 수 있다. 바람직하게, 본원 명세서 내에서 의료 영상은, 자기 공명 영상, 단층 촬영 영상, 또는, T2 강조 영상일 수 있으나 이에 제한되는 것은 아니다. 한편, 목적 부위에 대한 의료 영상은, 목적 부위를 포함하는 2차원 영상, 3차원 영상, 한 컷의 스틸 영상, 복수개의 컷으로 구성된 동영상 영상 등을 의미할 수 있다. 예를 들어, 의료 영상은 복수개의 컷으로 구성된 동영상 영상일 경우, 본 발명의 일 실시예에 따른 질환 예측 방법에 따라 복수개의 의료 영상 각각에 대한 병변 영역의 검출 및 이에 대한 질환의 발병의 예측이 가능할 수 있다. As used herein, the term "medical image" may refer to all images taken for diagnosis of a target site. For example, the medical image may be a magnetic resonance image, a computed tomography image, an x-ray image, or an ultrasound image. Preferably, within the present specification, the medical image may be, but is not limited to, a magnetic resonance image, a tomography image, or a T2 weighted image. The medical image of the target region may mean a 2D image, a 3D image, a still image of one cut, a moving image image including a plurality of cuts, and the like including the target portion. For example, when the medical image is a moving image including a plurality of cuts, the detection of the lesion area for each of the plurality of medical images and the prediction of the onset of the disease according to the disease prediction method according to an embodiment of the present invention are performed. It may be possible.
한편, 목적 부위에 대한 의료 영상에 기초한 질환 예측은, 질환의 조기 진단에 있어서 특히 중요할 수 있다. 이때, 본 명세서에서 사용되는 용어, "목적 부위"는 질환의 유무 등의 상태를 예측하고자 하는 피검자의 특정 신체 부위일 수 있다. 예를 들어, 목적 부위는, 흉부, 척추, 상복부, 하복부, 폐, 뇌, 간, 정맥류, 자궁, 전립선, 고환, 근골격계, 갑상선 또는 유방일 수 있다. 그러나, 목적 부위는 이에 제한되는 것은 아니며 영상 진단 장치에 의해 영상이 획득되는 한 다양한 부위가 될 수 있다. On the other hand, disease prediction based on the medical image of the target site may be particularly important in the early diagnosis of the disease. In this case, the term "purpose site" as used herein may be a specific body part of a subject to predict a condition such as the presence or absence of a disease. For example, the target site may be the chest, spine, upper abdomen, lower abdomen, lungs, brain, liver, varicose veins, uterus, prostate, testes, musculoskeletal system, thyroid or breast. However, the target site is not limited thereto and may be various sites as long as the image is acquired by the imaging apparatus.
본 명세서에서 사용되는 용어, "미리 결정된 질환"은 영상 진단 장치로부터 획득한 의료 영상에 기초하여 진단 가능한 모든 질환 또는 병변을 의미할 수 있다. 이때, 미리 결정된 질환은 복수개일 수 있다. 보다 구체적으로, 미리 결정된 질환은 서로 상이한 두 개의 질환으로서, 의료 영상 내에서 유사한 형태로 나타나는 질환일 수 있다. 예를 들어, 미리 결정된 두 개의 질환은, 결핵성 척추염 및 화농성 척추염, 또는 결핵 및 폐렴, 또는 고형 종양 및 물혹, 또는 전이암 및 농양, 또는 골용해성 전이암 및 퇴행성 병변의 적어도 한 쌍의 질환일 수 있으나 이에 제한되는 것은 아니다. As used herein, the term “predetermined disease” may mean any disease or lesion that can be diagnosed based on a medical image obtained from an imaging device. In this case, the predetermined disease may be a plurality. More specifically, the predetermined diseases are two different diseases from each other, and may be diseases that appear in a similar form in a medical image. For example, two predetermined diseases may be tuberculosis spondylitis and purulent spondylitis, or tuberculosis and pneumonia, or solid tumors and water bumps, or metastatic cancer and abscess, or at least one pair of osteolytic metastatic cancer and degenerative lesions. However, it is not limited thereto.
본 명세서에서 사용되는 용어, "병변 영역"은 목적 부위에 대한 의료 영상 내에서 정상의 조직과 상이한, 특정 질환에 대하여 병변을 갖는 영역을 의미할 수 있다. 예를 들어, 병변 영역은 다른 영역에 대하여 상이한 픽셀 값, 질감을 가질 수 있다. 이때, 병변 영역은 목적 부위에 나타난 낭종, 염증 또는 종괴 조직에 대한 영역을 포함할 수 있다. 한편, 병변 영역은, 하나의 목적 부위에 대한 의료 영상 내에서 독립적으로 복수개 산포되어 있을 수 있다. As used herein, the term "lesion area" may refer to an area having a lesion for a particular disease that is different from normal tissue in a medical image for a target site. For example, the lesion area may have different pixel values, textures for different areas. In this case, the lesion area may include an area for cyst, inflammation, or mass tissue appearing at the target site. Meanwhile, a plurality of lesion areas may be independently distributed in a medical image of one target site.
전술한 바와 같이, 결핵성 척추염 및 화농성 척추염, 또는 결핵 및 폐렴, 또는 고형 종양 및 물혹, 또는 전이암 및 농양, 또는 골용해성 전이암 및 퇴행성 병변 각각은 의료 영상 내에서 유사하게 나타날 수 있어, 의료인의 숙련도에 따라 질환의 진단의 정확도가 달라질 수 있다. As noted above, tuberculosis spondylitis and purulent spondylitis, or tuberculosis and pneumonia, or solid tumors and water bumps, or metastatic cancers and abscesses, or osteolytic metastases and degenerative lesions, respectively, can all appear similarly within a medical image, Depending on the skill, the accuracy of diagnosis of the disease may vary.
이러한 문제를 해결하기 위해, 의료 영상 내에서 병변 영역을 예측하고, 이를 기초로 질환의 발병 여부를 예측 하도록 학습된 예측 모델이 이용될 수 있다. In order to solve this problem, a predictive model trained to predict a lesion area in a medical image and predict the onset of a disease may be used.
본 명세서에서 사용되는 용어, "질환 예측 모델"은 피검자의 목적 부위에 대하여 병변 영역을 예측하고, 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정하기 위해 학습된 예측 모델 일 수 있다. 예를 들어, 질환 예측 모델은 목적 부위에 대하여 의료 영상에 의해 미리 결정된 두 개의 질환으로 확진된 병변 영역을 포함하는 의료 영상 각각의 데이터 세트를 이용하여 학습된 모델일 수 있다. 이때, 질환 예측 모델은 목적 부위에 대한 복수개의 의료 영상 각각에 대하여 병변 영역을 결정하고, 병변 영역에 대하여 복수개의 미리 결정된 질환에 대한 발병 확률을 각각 산출하도록 학습될 수 있다. 결과적으로 질환 예측 모델은 복수개의 의료 영상 내의 병변 영역에 대하여 각각 산출된 질환 발병 확률을 기초로 최종 발병 확률을 산출하여, 목적 부위의 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정할 수 있다. As used herein, the term “disease prediction model” may be a predictive model trained to predict a lesion area with respect to a target site of a subject and determine whether to develop one of a plurality of diseases. For example, the disease prediction model may be a model trained using a data set of each of the medical images including a lesion region confirmed as two diseases predetermined by the medical image for the target region. In this case, the disease prediction model may be trained to determine the lesion area for each of the plurality of medical images of the target site and to calculate the probability of occurrence of the plurality of predetermined diseases for the lesion area. As a result, the disease prediction model may determine the onset of one of the plurality of diseases in the target region by calculating a final incidence probability based on the disease incidence probability calculated for each of the lesion areas in the plurality of medical images.
예를 들어, 질환 예측 모델은, 입력된 복수개의 의료 영상 내에 결정된 병변 영역에 대하여 결핵성 척추염 및 화농성 척추염 각각의 발병 확률, 또는 결핵 및 폐렴 각각의 발병 확률, 또는 고형 종양 및 물혹 각각의 발병 확률, 또는 전이암 및 농양 각각의 발병 확률, 또는 골용해성 전이암 및 퇴행성 병변 각각의 발병 확률을 산출할 수 있다. 최종적으로 질환 예측 모델은, 결핵성 척추염 및 화농성 척추염 중 하나의 질환, 또는 결핵 및 폐렴 중 하나의 질환, 또는 고형 종양 및 물혹 중 하나의 질환, 또는 전이암 및 농양 중 하나의 질환, 또는 골용해성 전이암 및 퇴행성 병변 중 하나의 질환의 발병 여부를 결정할 수 있다. For example, the disease prediction model may include a probability of developing tuberculous spondylitis and purulent spondylitis, or a probability of developing tuberculosis and pneumonia, respectively, or a probability of each of solid tumors and water bumps, for lesion areas determined in a plurality of input medical images. Or the probability of developing metastatic cancer and abscess respectively, or the probability of developing osteolytic metastatic cancer and degenerative lesion, respectively. Finally, the disease prediction model includes one of tuberculosis spondylitis and purulent spondylitis, or one of tuberculosis and pneumonia, or one of solid tumors and water bumps, or one of metastatic cancer and abscess, or osteolytic metastasis. The onset of one of the cancerous and degenerative lesions can be determined.
본 명세서에서 사용되는 용어, "발병 확률"은 질환 예측 모델에 의해 결정된 병변 영역이 미리 결정된 질환에 대한 병변 부위일 확률을 의미할 수 있다. 전술한 바와 같이, 질환 예측 모델은 병변 영역에 대한 복수개의 질환에 대한 발병 확률을 각각 산출하여 최종적으로 하나의 질환에 대한 발병 여부를 결정할 수 있다. As used herein, the term "probability of occurrence" may mean the probability that the lesion area determined by the disease prediction model is a lesion site for a predetermined disease. As described above, the disease prediction model may calculate an incidence of a plurality of diseases for the lesion area, respectively, and finally determine whether to develop one disease.
최종적으로, 의료인은 질환 예측 모델을 통해 예측된 병변 영역에 대한 발병 확률을 포함하는 의료 영상을 획득 할 수 있고, 나아가 질환 예측 모델을 통해 최종적으로 예측된 질환의 발병 여부를 확인 할 수 있어 의료 영상에 기초한 정확한 진단이 가능할 수 있다. Finally, the medical practitioner may acquire a medical image including the probability of occurrence of the predicted lesion area through the disease prediction model, and further, determine whether the disease is finally predicted through the disease prediction model. Based on this, accurate diagnosis may be possible.
이하에서는 도 1 내지 도 2c를 참조하여 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 디바이스를 설명한다. Hereinafter, a disease prediction method and a device using the same will be described with reference to FIGS. 1 to 2C.
먼저, 도 1을 참조하여, 본 발명의 일 실시예에 따른 질환 예측 디바이스를 구체적으로 설명한다. 도 1은 본 발명의 일 실시예에 따른 질환 예측 디바이스의 구성을 도시한 것이다. First, a disease prediction device according to an embodiment of the present invention will be described in detail with reference to FIG. 1. 1 illustrates a configuration of a disease prediction device according to an embodiment of the present invention.
도 1을 참조하면, 질환 예측 디바이스 (100) 는 수신부 (110), 입력부 (120), 출력부 (130), 저장부 (140) 및 프로세서 (150) 를 포함한다. Referring to FIG. 1, the disease prediction device 100 includes a receiver 110, an inputter 120, an outputter 130, a storage 140, and a processor 150.
구체적으로 수신부 (110) 는 영상 진단 장치로부터 획득 가능한 피검자의 목적 부위에 대한 의료 영상을 수신할 수 있다. 예를 들어, 수신부 (110) 는 피검자의 척추, 흉부, 상복부, 하복부, 폐, 뇌, 간, 정맥류, 자궁, 전립선, 고환, 근골격계, 갑상선 또는 유방에 대한 의료 영상을 수신할 수 있다. 한편, 수신부 (110) 를 통해 수신된 피검자의 목적 부위에 대한 의료 영상은 복수개일 수 있고, 특정 질환에 대한 병변 조직에 대한 영역을 포함할 수 있다. In detail, the receiver 110 may receive a medical image of a target part of a subject that can be obtained from an imaging apparatus. For example, the receiver 110 may receive a medical image of the spine, chest, upper abdomen, lower abdomen, lung, brain, liver, varicose vein, uterus, prostate, testes, musculoskeletal system, thyroid, or breast of the subject. On the other hand, the medical image of the target site of the subject received through the receiver 110 may be a plurality, it may include a region for the lesion tissue for a particular disease.
입력부 (120) 는 키보드, 마우스, 터치 스크린 패널 등 제한되지 않는다. 입력부 (120) 는 질환 예측 디바이스 (100) 를 설정하고, 질환 예측 디바이스 (100) 의 동작을 지시할 수 있다. 예를 들어, 의료인은 입력부 (120) 를 통해, 수신부 (110) 에 의해 수신된 의료 영상 내에서, 병변 영역을 직접 결정할 수 있다. The input unit 120 is not limited to a keyboard, a mouse, a touch screen panel, and the like. The input unit 120 may set the disease prediction device 100 and instruct an operation of the disease prediction device 100. For example, the medical person may directly determine the lesion area within the medical image received by the receiver 110 through the input unit 120.
한편, 출력부 (130) 는 수신부 (110) 에 의해 수신된 의료 영상을 시각적으로 표시할 수 있다. 나아가, 출력부 (130) 는 프로세서 (150) 에 의해 의료 영상 내에서 결정된 병변 영역, 나아가 병변 영역에 대하여 예측된 질환인 확률, 최종적으로 결정된 질환의 진단 정보를 표시하도록 구성될 수 있다. 또한, 출력부 (130) 는, 프로세서 (150) 에 의해 목적 부위에 대한 의료 영상 내에 병변 영역이 결정되지 않은 경우, 정상의 진단 정보를 표시하도록 구성될 수 있다. The output unit 130 may visually display the medical image received by the receiver 110. In addition, the output unit 130 may be configured to display, by the processor 150, the lesion area determined in the medical image, further, the probability of the disease predicted for the lesion area, and the diagnostic information of the finally determined disease. In addition, the output unit 130 may be configured to display normal diagnostic information when the lesion area is not determined in the medical image of the target site by the processor 150.
저장부 (140) 는 수신부 (110) 를 통해 수신한 피검자의 목적 부위에 대한 의료 영상을 저장하고, 입력부 (120) 를 통해 설정된 질환 예측 디바이스 (100) 의 지시를 저장하도록 구성될 수 있다. 나아가, 저장부 (140) 는 후술될 프로세서 (150) 에 의해 결정된 병변 영역을 저장할 수 있고, 결정된 병변 영역에 대하여 산출된 복수개의 질환의 발병 확률들과 최종 결정된 하나의 질환에 대한 진단 정보를 저장하도록 구성된다. 그러나, 전술한 것에 제한되지 않고 저장부 (140) 는 프로세서 (150) 에 의해 결정된 다양한 정보들을 저장할 수 있다. The storage unit 140 may be configured to store a medical image of the target part of the subject received through the receiver 110 and store an indication of the disease prediction device 100 set through the input unit 120. In addition, the storage 140 may store the lesion area determined by the processor 150 to be described later, and store the probability of occurrence of a plurality of diseases calculated for the determined lesion area and diagnostic information about one disease finally determined. Is configured to. However, without being limited to the above, the storage 140 may store various pieces of information determined by the processor 150.
프로세서 (150) 는 질환 예측 디바이스 (110) 에 대하여 정확한 예측 결과를 제공하기 위한 구성 요소일 수 있다. 이때, 질환 예측을 위해 프로세서 (150) 는 피검자의 목적 부위에 대한 의료 영상 내에서 병변 영역을 결정하고, 병변 영역에 대한 질환 발병 확률을 예측하도록 구성된 질환 예측 모델을 이용하도록 구성될 수 있다. 예를 들어, 프로세서 (150) 는 피검자의 목적 부위에 대하여 미리 결정된 질환에 대하여 병변 영역을 예측하도록 구성된 질환 예측 모델을 이용하여, 수신부 (110) 를 통해 획득한 의료 영상을 입력해 의료 영상 내에서 병변 영역을 결정하도록 구성될 수 있다. 또한, 프로세서 (150) 는 복수개의 미리 결정된 질환의 발병 확률을 산출하도록 구성된 질환 예측 모델을 이용하여, 결정된 병변 영역에 대한 복수개의 미리 결정된 질환의 발병 확률을 각각 산출할 수 있다. 프로세서 (150) 는 최종적으로 질환 예측 모델에 의해 산출된 질환의 발병 확률에 기초하여 정상 또는, 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하도록 구성될 수 있다. 이때, 의료 영상 내에서 병변 영역을 결정하고, 잘환의 발병 여부를 예측도록 구성된 질환 예측 모델은, 영상을 기초로 학습되는 다양한 학습 모델에 기초할 수 있다. 예를 들어, 본 발명의 다양한 실시예에서 이용되는 예측 모델은 DNN (Deep Neural Network), CNN (Convolutional Neural Network), DCNN (Deep Convolution Neural Network), RNN (Recurrent Neural Network), RBM (Restricted Boltzmann Machine), DBN (Deep Belief Network), SSD (Single Shot Detector) 모델 또는 U-net을 기반으로 하는 예측 모델일 수 있으나, 이에 제한되는 것은 아니다. The processor 150 may be a component for providing accurate prediction results for the disease prediction device 110. In this case, for disease prediction, the processor 150 may be configured to determine a lesion area in a medical image of a target region of a subject and use a disease prediction model configured to predict a disease occurrence probability for the lesion area. For example, the processor 150 may input a medical image obtained through the receiver 110 using a disease prediction model configured to predict a lesion area with respect to a predetermined disease with respect to a target part of a subject, within the medical image. It can be configured to determine the lesion area. In addition, the processor 150 may calculate the probability of occurrence of the plurality of predetermined diseases for the determined lesion area using the disease prediction model configured to calculate the probability of occurrence of the plurality of predetermined diseases. The processor 150 may be configured to determine that one of the normal or a plurality of diseases is developed based on the probability of occurrence of the disease finally calculated by the disease prediction model. In this case, the disease prediction model configured to determine the lesion area in the medical image and predict the onset of Xalhwan may be based on various learning models learned based on the image. For example, a prediction model used in various embodiments of the present invention may be a deep neural network (DNN), a convolutional neural network (CNN), a deep convolution neural network (DNN), a current recurrent neural network (RNN), or a restricted boltzmann machine (RBM). ), But may be a prediction model based on a deep belief network (DBN), a single shot detector (SSD) model, or a U-net, but is not limited thereto.
한편, 프로세서 (150) 는 질환 예측 모델을 이용하여 픽셀 단위로 의료 영상 내에서 병변 영역을 결정하고, 복수의 픽셀 단위를 갖는 병변 영역에 대한 질환의 발병 확률을 산출하여 정상 또는 복수개의 질환 중 하나의 질환으로 예측하도록 더 구성될 수 있다. Meanwhile, the processor 150 determines a lesion area in the medical image on a pixel-by-pixel basis using a disease prediction model, calculates a probability of occurrence of the disease in the lesion area having a plurality of pixel units, and then selects one of the normal or multiple diseases. It can be further configured to predict the disease of.
이하에서는, 도 2a 내지 도 2c를 참조하여, 본 발명의 일 실시예에 따른 질환 예측 방법을 구체적으로 설명한다. 이때, 피검자의 흉추-요추 (T-L spine, Thoracic-Lumbar spine) 에 대한 MRI 영상을 기초로 결핵성 척추염 (TB, tuberculous spondylitis) 또는 화농성 척추염 (Pyo, pyogenic spondylitis) 의 발병 여부를 결정하는 것을 예로 들어 설명하나, 이에 제한되지 않고 본 발명의 일 실시예에 따른 질환 예측 방법은 보다 다양한 목적 부위의 의료 영상 내에서 다양한 질환들의 발병 여부를 예측 하는 것에 이용될 수 있다. Hereinafter, a disease prediction method according to an embodiment of the present invention will be described in detail with reference to FIGS. 2A to 2C. In this case, it is explained by using an example of determining whether the tuberculous spondylitis (TB) or pyogenic spondylitis (Pyo) is developed on the basis of MRI images of the TL spine (Thoracic-Lumbar spine) of the subject. However, the present invention is not limited thereto, and the disease prediction method according to an exemplary embodiment of the present invention may be used to predict whether various diseases occur in a medical image of a more various target site.
도 2a는 본 발명의 일 실시예에 따른 질환 예측 방법의 절차를 도시한 것이다. 도 2b는 본 발명의 일 실시예에 따른 질환 예측 방법에 의한 의료 영상 내의 발병된 질환의 결정 절차를 예시적으로 도시한 것이다. 도 2c는 본 발명의 일 실시예에 따른 질환 예측 방법에 의해 결정된 병변 영역에 대한 다양한 발병 확률 산출 절차를 예시적으로 도시한 것이다. Figure 2a illustrates the procedure of a disease prediction method according to an embodiment of the present invention. FIG. 2B exemplarily illustrates a procedure for determining a disease occurring in a medical image by a disease prediction method according to an exemplary embodiment of the present invention. 2C exemplarily illustrates various occurrence probability calculation procedures for a lesion area determined by a disease prediction method according to an embodiment of the present invention.
도 2a를 참조하면, 본 발명의 일 실시예에 따른 질환 예측 절차는 다음과 같다. 먼저, 피검자의 목적 부위에 대한 의료 영상을 수신한다 (S210). 그 다음, 의료 영상 내에서 미리 결정된 복수개의 질환에 대한 병변 영역을 예측하도록 구성된 질환 예측 모델을 이용하여, 의료 영상 내에서 병변 영역을 결정한다 (S220). 마지막으로, 질환 예측 모델을 이용하여 의료 영상 내에 결정된 병변 영역에 대하여 정상으로 또는, 복수개의 질환 중 하나의 질환이 발병된 것으로 결정한다 (S230). Referring to Figure 2a, the disease prediction procedure according to an embodiment of the present invention is as follows. First, a medical image of a target part of a subject is received (S210). Next, the lesion area is determined in the medical image by using a disease prediction model configured to predict lesion areas for a plurality of predetermined diseases in the medical image (S220). Finally, the disease prediction model is used to determine whether the disease region determined in the medical image is normal or one of the plurality of diseases is developed (S230).
예를 들어, 도 2b를 참조하면, 의료 영상을 수신하는 단계 (S210) 에서는 목적 부위로 설정된 흉추-요추에 대한 15 장의 복수개의 의료 영상 (212) 을 획득할 수 있다. 이때, 획득된 복수개의 의료 영상 (212) 은 병변 영역에 대한 분석이 용이한 T2 강조 축평면 영상 (T2-weighted axial plane image) 일 수 있다. For example, referring to FIG. 2B, in operation S210 of receiving a medical image, a plurality of 15 medical images 212 for a thoracic-lumbar region set as a target site may be obtained. In this case, the obtained plurality of medical images 212 may be a T2-weighted axial plane image that is easy to analyze the lesion area.
본 발명의 다양한 실시예에서, 의료 영상을 수신하는 단계 (S210) 에서는 복수개의 의료 영상 (212) 에 대한 빠른 분석이 가능하도록 전 처리가 수행된 의료 영상을 더 수신할 수 있다. 그렇지 않은 경우, 의료 영상을 수신하는 단계 (S210) 이후에 수신된 복수개의 의료 영상 (212) 에 대하여 일정한 픽셀 단위를 갖도록 크기를 조절하거나 대비, 해상도, 명암, 또는 좌우 대칭을 조절하는, 복수개의 의료 영상 (212) 에 대한 전처리 단계가 더 수행될 수 있다. 전처리 단계의 결과로, 복수개의 의료 영상 (212) 는 후술할 질환 예측 모델 (222) 에서 요구되는 해상도 또는 크기를 갖게 되고, 원본의 복수개의 의료 영상보다 해상도 또는 크기가 작아질 수 있어, 질환 예측 모델 (222) 에서의 처리 속도가 향상될 수 있다. In various embodiments of the present disclosure, in the receiving of the medical image (S210), the medical image, which has been pre-processed, may be further received to enable fast analysis of the plurality of medical images 212. Otherwise, the plurality of medical images may be adjusted to have a predetermined pixel unit or to adjust contrast, resolution, contrast, or symmetry of the plurality of medical images 212 received after receiving the medical image (S210). A preprocessing step for the medical image 212 may be further performed. As a result of the preprocessing step, the plurality of medical images 212 may have a resolution or size required by the disease prediction model 222 to be described later, and may have a smaller resolution or size than a plurality of original medical images, thereby predicting a disease. The processing speed in model 222 can be improved.
다음으로, 도 2b를 참조하면, 병변 영역을 결정하는 단계 (S220) 에서는 질환 예측 모델 (222) 에 의료 영상을 수신하는 단계 (S210) 에서 획득된 흉추-요추에 복수개의 의료 영상 (212) 이 입력된다. 이때, 질환 예측 모델 (222) 은 복수개의 의료 영상 (212) 내에 존재하는 복수의 영역들에 대한 픽셀 값, 질감 및 주변 영역과의 픽셀 차이 정도 중 적어도 하나를 기초로 질환에 대한 병변 영역을 각각 결정할 수 있다. 예를 들어, 질환 예측 모델 (222) 는 복수개의 의료 영상 (212) 각각에서 결핵성 척추염 또는 화농성 척추염에 대한 병변 영역을 결정할 수 있다. Next, referring to FIG. 2B, in the determining of the lesion area (S220), the plurality of medical images 212 are included in the thoracic-lumbar region obtained in the step S210 of receiving the medical image in the disease prediction model 222. Is entered. In this case, the disease prediction model 222 may determine the lesion area for the disease based on at least one of pixel values, textures, and pixel differences with respect to the surrounding areas of the plurality of areas existing in the plurality of medical images 212. You can decide. For example, the disease prediction model 222 can determine the lesion area for tuberculous spondylitis or purulent spondylitis in each of the plurality of medical images 212.
본 발명의 다른 실시예에 따르면, 병변 영역을 결정하는 단계 (S220) 에서 질환 예측 모델 (222) 에 의해 결정된 병변 영역 주변에 박스가 형성될 수 있다. 예를 들어, 도 2b의 병변 영역이 결정된 복수개의 의료 영상 (224) 을 참조하면, 질환 예측 모델 (222) 에 의해, 복수개의 의료 영상 (212) 각각에 대하여 결정된 결핵성 척추염 또는 화농성 척추염에 대한 병변 영역 주변에 박스가 형성될 수 있다. 이에, 의료인은 질환에 대하여 결정된 병변 영역을 용이하게 인지할 수 있다. According to another embodiment of the present invention, a box may be formed around the lesion area determined by the disease prediction model 222 in determining the lesion area (S220). For example, referring to the plurality of medical images 224 in which the lesion area of FIG. 2B is determined, lesions for tuberculous spondylitis or purulent spondylitis determined for each of the plurality of medical images 212 by the disease prediction model 222. A box may be formed around the area. Thus, the medical person can easily recognize the lesion area determined for the disease.
나아가, 다른 실시예에 따르면, 병변 영역을 결정하는 단계 (S220) 에서 질환 예측 모델 (222) 에 의해 병변 영역이 결정되지 않은 경우, 질환 예측 모델 (222) 은 목적 부위에 질환이 없는 것으로 결정하여 정상의 진단 정보를 의료인에게 제공할 수 있다. Furthermore, according to another embodiment, when the lesion region is not determined by the disease prediction model 222 in determining the lesion region (S220), the disease prediction model 222 determines that there is no disease at the target site. Normal diagnostic information can be provided to a healthcare practitioner.
다음으로, 도 2b를 참조하면 발병 여부를 결정하는 단계 (S230) 에서는, 질환 예측 모델 (222) 에 의해 병변 영역이 결정된 복수개의 의료 영상 (224) 각각에서, 결정된 병변 영역에 대한 결핵성 척추염의 발병 확률 (TB score) 및 화농성 척추염의 발병 확률 (Pyo score) 이 산출된다. 최종적으로, 발병 여부를 결정하는 단계 (S230) 에서는 질환 예측 모델 (222) 에 의해 복수개의 의료 영상 (212) 각각에 대하여 산출된 결핵성 척추염의 발병 확률 (TB score) 및 화농성 척추염의 발병 확률 (Pyo score) 을 기초로, 최종 확률 점수가 큰 결핵성 척추염이 발병 질환으로 결정되고, 발병 질환이 예측된 의료 영상 (232) 이 제공될 수 있다. Next, referring to FIG. 2B, in step S230 of determining whether the disease occurs, in each of the plurality of medical images 224 in which the lesion area is determined by the disease prediction model 222, the onset of tuberculous spondylitis in the determined lesion area Probability (TB score) and Pyo score of purulent spondylitis are calculated. Finally, in the step of determining whether the disease occurs (S230), the incidence of TB spondylitis (TB score) and the incidence of purulent spondylitis (Pyo) calculated for each of the plurality of medical images 212 by the disease prediction model 222. based on the score), a tuberculous spondylitis having a high final probability score may be determined as the diseased disease, and a medical image 232 in which the diseased disease is predicted may be provided.
본 발명의 다른 실시예에 따르면, 발병 여부를 결정하는 단계 (S230) 에서는 복수개의 의료 영상 (212) 각각에서, 병변 영역에 대하여 산출된 복수개의 질환 각각의 발병 확률 중, 최대값을 갖는 하나의 최종 발병 확률을 각각 결정하고, 복수개의 질환 각각에 대하여 복수개의 의료 영상 각각에서 결정된 최종 발병 확률의 합을 산출하고, 복수개의 질환 각각에 대하여 최종 발병 확률의 합의 비율을 산출하고, 산출된 최종 발병 확률의 합의 비율을 기초로 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하도록 구성될 수 있다. According to another exemplary embodiment of the present disclosure, in the determining of whether the disease occurs (S230), in each of the plurality of medical images 212, one of the probabilities of occurrence of each of the plurality of diseases calculated for the lesion area may be determined. The final onset probability is determined separately, the sum of the final incidence probability determined in each of the plurality of medical images for each of the plurality of diseases is calculated, the ratio of the sum of the final incidence probability for each of the plurality of diseases is calculated, and the calculated final onset And may determine that one of the plurality of diseases has developed on the basis of the ratio of the sum of the probabilities.
예를 들어, 도 2c의 (a)를 참조하면, 질환 예측 모델 (222) 에 의해 흉추-요추에 대한 4 장의 의료 영상 (Slice #1, Slice #2, Slice #3 및 Slice #4) 중 Slice #1의 경우, 복수개의 병변 영역 (Lesion #1, Lesion #2 및 Lesion #3) 중 최대값을 갖는 Lesion #2의 결핵성 척추염의 발병 확률 (TB score) 인 0.9와 Lesion #3의 화농성 척추염의 발병 확률 (Pyo score) 인 0.72가 최종 발병 확률로 결정될 수 있다. 동일한 방법으로 질환 예측 모델 (222) 은 나머지 3 장의 의료 영상 (Slice #2, Slice #3 및 Slice #4) 각각에서 결핵성 척추염의 발병 확률 (TB score) 및 화농성 척추염의 발병 확률 (Pyo score) 각각에 대한 최종 발병 확률을 결정할 수 있다. 그 다음, 질환 예측 모델 (222) 은 4 장의 의료 영상에 대한 결핵성 척추염 최종 발병 확률의 합 (3.53) 및 화농성 척추염의 최종 발병 확률의 합 (3.05) 을 산출한 후, 전체 척추염 발병 확률에 대한 결핵성 척추염의 발병 확률의 비율 (3.53 / (3.53 + 3.05)) 을 산출한다. 그 결과, 최종 확률 점수 (Final score) 는 0.54로 산출되어, 결핵성 척추염의 발병 확률이 상대적으로 높은 것으로 나타남에 따라, 질환 예측 모델 (222) 은 목적 부위에 결핵성 척추염이 발병된 것으로 결정할 수 있다. For example, referring to (a) of FIG. 2C, a slice of four medical images (Slice # 1, Slice # 2, Slice # 3, and Slice # 4) of the thoracic and lumbar spine by the disease prediction model 222 may be used. In case of # 1, 0.9 and Lesion # 3 purulent spondylitis of TB, which is the incidence of TB spondylitis of Lesion # 2 having the maximum of a plurality of lesion areas (Lesion # 1, Lesion # 2 and Lesion # 3) A Pyo score of 0.72 can be determined as the final probability of onset. In the same way, the disease prediction model 222 can determine TB incidence (TB score) and Pyo score of pyogenic spondylitis (Pyo score) in each of the remaining three medical images (Slice # 2, Slice # 3 and Slice # 4). Final probability of onset can be determined. The disease prediction model 222 then calculates the sum of tuberculous spondylitis final incidence probability (3.53) and the final incidence probability of purulent spondylitis (3.05) for the four medical images, followed by Calculate the ratio (3.53 / (3.53 + 3.05)) of the incidence of spondylitis. As a result, the final probability score is calculated to be 0.54, and as the probability of developing tuberculous spondylitis is relatively high, the disease prediction model 222 may determine that tuberculous spondylitis is developed at the target site.
본 발명의 또 다른 실시예에 따르면, 발병 여부를 결정하는 단계 (S230) 에서는 복수개의 의료 영상 (212) 각각에서, 병변 영역에 대하여 산출된 복수개의 질환 각각의 발병 확률 중, 최대값을 갖는 하나의 질환에 대한 발병 확률을 최종 발병 확률로 결정하고, 나머지 질환에 대한 발병 확률을 0으로 대체하고, 복수개의 질환 각각에 대하여 복수개의 의료 영상 각각에서 결정된 최종 발병 확률의 합을 산출하고, 복수개의 질환 각각에 대하여 최종 발병 확률의 합의 비율을 산출하고, 산출된 최종 발병 확률의 합의 비율을 기초로 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하도록 구성될 수 있다. According to another embodiment of the present invention, in the step of determining whether the disease (S230), in each of the plurality of medical images 212, one of the probability of the occurrence of each of the plurality of diseases calculated for the lesion area, the one having the maximum value Determine the incidence of onset of the disease as the final incidence, replace the incidence of the remaining disease with zero, calculate the sum of the final incidence determined in each of the plurality of medical images for each of the plurality of diseases, And calculating a ratio of the sum of the final probability of occurrence for each disease, and determining that one of the plurality of diseases is on the basis of the calculated percentage of the sum of the final probability of occurrence.
예를 들어, 도 2c의 (b)를 참조하면, 질환 예측 모델 (222) 에 의해 흉추-요추에 대한 4 장의 의료 영상 (Slice #1, Slice #2, Slice #3 및 Slice #4) 중 Slice #1의 경우, 복수개의 병변 영역 (Lesion #1, Lesion #2 및 Lesion #3) 중 최대값을 갖는 척추염의 발병 확률 (TB score) 인 0.9가 최종 발병 확률로 결정될 수 있다. 이때, 화농성 척추염의 발병 확률 (Pyo score) 은 0으로 대체될 수 있다. 동일한 방법으로 질환 예측 모델 (222) 은 나머지 3 장의 의료 영상 (Slice #2, Slice #3 및 Slice #4) 각각에서 전체 척추염에 대하여 최대값을 갖는 하나의 척추염에 대한 최종 발병 확률을 결정할 수 있다. 그 다음, 질환 예측 모델 (222) 은 4 장의 의료 영상에 대한 결핵성 척추염 최종 발병 확률의 합 (2.74) 및 화농성 척추염의 최종 발병 확률의 합 (0.88) 을 산출한 후, 전체 척추염 발병 확률에 대한 결핵성 척추염의 발병 확률의 비율 (2.74 / (2.74 + 0.88)) 을 산출한다. 그 결과, 최종 확률 점수 (Final score) 는 0.76로 산출되어, 결핵성 척추염의 발병 확률이 상대적으로 높은 것으로 나타남에 따라, 질환 예측 모델 (222) 은 목적 부위에 결핵성 척추염이 발병된 것으로 결정할 수 있다.For example, referring to (b) of FIG. 2C, a slice of four medical images (Slice # 1, Slice # 2, Slice # 3, and Slice # 4) of the thoracic and lumbar spine by the disease prediction model 222 may be used. In the case of # 1, 0.9, which is the probability of occurrence of spondylitis (TB score) having the maximum value among the plurality of lesion areas (Lesion # 1, Lesion # 2, and Lesion # 3), may be determined as the final occurrence probability. At this time, the probability of occurrence of purulent spondylitis (Pyo score) can be replaced with zero. In the same way, the disease prediction model 222 can determine the final incidence probability for one spondylitis having a maximum for total spondylitis in each of the remaining three medical images (Slice # 2, Slice # 3, and Slice # 4). . The disease prediction model 222 then calculates the sum of tuberculous spondylitis final incidence probability (2.74) and the final incidence probability of purulent spondylitis (0.88) for four medical images, and then the tuberculosis for overall spondylitis incidence probability. Calculate the ratio (2.74 / (2.74 + 0.88)) of the probability of developing spondylitis. As a result, the final probability score is calculated to be 0.76, which indicates that the incidence of tuberculous spondylitis is relatively high, so that the disease prediction model 222 may determine that tuberculous spondylitis is developed at the target site.
본 발명의 또 다른 실시예에 따르면, 발병 여부를 결정하는 단계 (S230) 에서는 복수개의 의료 영상 (212) 각각에서, 병변 영역에 대하여 산출된 복수개의 질환 각각에 대한 평균 발병 확률을 산출하고, 복수개의 질환 각각에 대하여 복수개의 의료 영상 각각에서 산출된 평균 발병 확률의 합을 산출하고, 복수개의 질환 각각에 대하여 평균 발병 확률의 합의 비율을 산출하고, 산출된 평균 발병 확률의 합의 비율을 기초로 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하도록 구성될 수 있다. According to another exemplary embodiment of the present disclosure, in the determining of whether the disease occurs (S230), in each of the plurality of medical images 212, an average occurrence probability of each of the plurality of diseases calculated for the lesion area is calculated, and the plurality of Calculate the sum of the average incidence probability calculated from each of the plurality of medical images for each of the disease, calculate the ratio of the sum of the average incidence probability for each of the plurality of diseases, and determine the plurality of It can be configured to determine that one of the diseases of the dog is onset.
예를 들어, 도 2c의 (c)를 참조하면, 질환 예측 모델 (222) 에 의해 흉추-요추에 대한 4 장의 의료 영상 (Slice #1, Slice #2, Slice #3 및 Slice #4) 중 Slice #1의 경우, 복수개의 병변 영역 (Lesion #1, Lesion #2 및 Lesion #3) 각각에서 산출된 결핵성 척추염의 발병 확률 (TB score) 인 0.8, 0.9 및 0.76 에 대한 평균 발병 확률인 0.82와 복수개의 병변 영역 (Lesion #1, Lesion #2 및 Lesion #3) 각각에서 산출된 화농성 척추염의 발병 확률 (Pyo score) 인 0.6, 0.7 및 0.72 에 대한 평균 발병 확률인 0.67이 산출된다. 동일한 방법으로 질환 예측 모델 (222) 은 나머지 3 장의 의료 영상 (Slice #2, Slice #3 및 Slice #4) 각각에서 결핵성 척추염의 발병 확률 (TB score) 및 화농성 척추염의 발병 확률 (Pyo score) 각각에 대한 평균 발병 확률을 산출할 수 있다. 그 다음, 질환 예측 모델 (222) 은 4 장의 의료 영상에 대한 결핵성 척추염 평균 발병 확률의 합 (3.40) 및 화농성 척추염의 평균 발병 확률의 합 (2.94) 을 산출한 후, 전체 척추염 발병 확률에 대한 결핵성 척추염의 발병 확률의 비율 (3.40 / (3.40 + 2.94)) 을 산출한다. 그 결과, 최종 확률 점수 (Final score) 는 0.54로 산출되어, 결핵성 척추염의 발병 확률이 상대적으로 높은 것으로 나타남에 따라, 질환 예측 모델 (222) 은 목적 부위에 결핵성 척추염이 발병된 것으로 결정할 수 있다.For example, referring to (c) of FIG. 2C, a slice of four medical images (Slice # 1, Slice # 2, Slice # 3, and Slice # 4) of the thoracic-lumbar spine by the disease prediction model 222 may be used. In case of # 1, the average incidence of 0.82 and TB was 0.82 and ascites for TB incidence of TB spondylitis (TB score) calculated in each of the multiple lesion areas (Lesion # 1, Lesion # 2 and Lesion # 3), respectively. The mean onset probability 0.67 for the Pyo scores of 0.6, 0.7, and 0.72, which is calculated in each of the lesion areas (Lesion # 1, Lesion # 2, and Lesion # 3), is calculated. In the same way, the disease prediction model 222 can determine TB incidence (TB score) and Pyo score of pyogenic spondylitis (Pyo score) in each of the remaining three medical images (Slice # 2, Slice # 3 and Slice # 4). The average probability of onset can be calculated. The disease prediction model 222 then calculates the sum of tuberculosis spondylitis onset probability (3.40) and the sum of the mean onset probability of purulent spondylitis (2.94) on four medical images, and then the tuberculosis of overall spondylitis probability Calculate the ratio (3.40 / (3.40 + 2.94)) of the incidence of spondylitis. As a result, the final probability score is calculated to be 0.54, and as the probability of developing tuberculous spondylitis is relatively high, the disease prediction model 222 may determine that tuberculous spondylitis is developed at the target site.
본 발명의 다른 실시예에 따르면, 신출된 복수개의 질환 중, 임계치 미만의 발병 확률을 갖는 질환은, 질환의 예측 신뢰도가 낮은 것으로 결정될 수 있다. 예를 들어, 도 2c의 (a), (b) 및 (c)를 참조하면, 복수개의 의료 영상의 각각의 병변에 대하여 산출된 결핵성 척추염의 발병 확률 (TB score) 및 화농성 척추염의 발병 확률 (Pyo score) 은 0.6 이상의 값을 갖는다. 만약, 산출된 핵성 척추염의 발병 확률 (TB score) 또는 화농성 척추염의 발병 확률 (Pyo score) 중 0.6 이하의 확률을 갖는 값은 변별력이 없는 것으로 결정되어, 발병 여부 결정을 위한 최종 확률 점수의 산출 단계에서 제외될 수 있다. According to another embodiment of the present invention, among the plurality of emerging diseases, a disease having a probability of occurrence below the threshold may be determined to have low predicted reliability of the disease. For example, referring to (a), (b) and (c) of FIG. 2C, the TB probability and the probability of developing purulent spondylitis (TB score) calculated for each lesion of a plurality of medical images ( Pyo score) is greater than 0.6. If a value having a probability of 0.6 or less among the calculated TB score or Pyo score of purulent spondylitis is determined to be non-discriminatory, it is determined that the final probability score for determining the onset is determined. May be excluded.
다양한 실시예의 결과로, 복수개의 의료 영상 각각에 대하여 산출된 복수개의 질환 각각에 대한 발병 확률을 기초로 결정된, 하나의 질환에 대한 진단 정보가 제공되어, 의료인은 숙련도에 관계 없이 보다 높은 정확도로 목적 부위에 대한 발병 여부의 결정을 내릴 수 있다. As a result of various embodiments, diagnostic information for one disease, determined based on the probability of occurrence of each of the plurality of diseases calculated for each of the plurality of medical images, is provided so that the medical practitioner can obtain the target with higher accuracy regardless of skill level. Determination of the onset of the site can be made.
이하에서는, 도 3을 참조하여, 질환 예측 모델의 학습 방법을 설명한다. 이때, 학습에 이용된 의료 영상은 흉추-요추 부위에 대하여 결핵성 척추염 또는 화농성 척추염으로 최종 진단된 환자에 대한 영상이 이용되었으나, 이에 제한되지 않고 예측하고자 하는 질환에 따라 다양한 목적 부위를 포함하는 의료 영상이 학습에 이용될 수 있다. Hereinafter, a learning method of a disease prediction model will be described with reference to FIG. 3. In this case, the medical image used for learning was used for the patient who was finally diagnosed with tuberculous spondylitis or purulent spondylitis for the thoracic-lumbar region, but the medical image includes various target areas depending on the disease to be predicted. This can be used for learning.
도 3은 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 대한 학습 절차를 예시적으로 도시한 것이다.3 exemplarily illustrates a learning procedure for a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 다양한 실시예에서 이용되는 질환 예측 모델은, 흉추-요추 부위에 대한 복수개의 의료 영상 (312) 의 학습 세트로 트레이닝된다. 보다 구체적으로, 질환 예측 모델의 트레이닝을 위해, 복수개의 의료 영상 (312) 은 병변 영역이 높은 휘도로 나타나는 T2 강조 영상 (313) 으로 획득될 수 있다. 그 다음, T2 강조 의료 영상 (313) 은 0 내지 255의 픽셀을 갖도록 표준화 (normalization) 되고, 약 10 X 10 cm의 크기를 갖도록 크로핑 (cropping) 될 수 있다. 그 다음, 크로핑 및 표준화된 의료 영상 (314) 내에 결핵성 척추염 또는 화농성 척추염에 대한 병변 영역이 마스킹 (masking) 될 수 있다. 이때, 질환 예측 모델은 마스킹된 병변 영역 (316) 을 포함하는, 병변 영역이 마스킹된 의료 영상 (315) 에 대하여 병변 영역 주위에, 병변 영역 박스 (318) 를 형성하도록 트레이닝될 수 있다. 한편, 1.5 cm2 미만의 병변 영역은 거짓 양성 (false positive) 일 수 있음에 따라, 본 발명의 질환 예측 모델은 1.5 cm2 미만의 병변 영역에 대해서 병변 영역 박스 (318) 를 형성하지 않도록 트레이닝될 수 있다. 이상의 방법으로 트레이닝된 예측 모델은, 입력된 목적 부위에 대한 복수개의 의료 영상 각각에 대하여 병변 영역 박스를 (318) 를 형성할 수 있고, 결과적으로 복수의 질환 각각에 대하여 병변 영역 박스가 형성된 의료 영상 (317) 을 제공할 수 있다. Referring to FIG. 3, a disease prediction model used in various embodiments of the present invention is trained with a learning set of a plurality of medical images 312 for the thoracic-lumbar region. More specifically, in order to train the disease prediction model, the plurality of medical images 312 may be acquired as the T2 weighted image 313 in which the lesion area is displayed with high luminance. The T2-weighted medical image 313 can then be normalized to have a pixel between 0 and 255 and cropped to a size of about 10 × 10 cm. The lesion area for tuberculous spondylitis or purulent spondylitis may then be masked within the cropping and standardized medical image 314. At this time, the disease prediction model may be trained to form a lesion area box 318 around the lesion area with respect to the medical image 315 where the lesion area is masked, including the masked lesion area 316. On the other hand, as lesion areas less than 1.5 cm 2 may be false positive, the disease prediction model of the present invention may be trained not to form lesion area box 318 for lesion areas less than 1.5 cm 2. Can be. The predictive model trained by the above method may form a lesion area box 318 for each of the plurality of medical images for the input target region, and as a result, the medical image in which the lesion area box is formed for each of the plurality of diseases. 317 may be provided.
한편, 본 발명의 질환 예측 모델은, 목적 부위에 대한 의료 영상을 다중의 박스로 인식하여 통일된 프레임워크에서 인식을 수행하는 SSD에 기초하여 병변 영역을 결정하도록 구성된 모델일 수 있다. 그러나, 이에 제한되는 것은 아니며 본 발명의 다양한 실시예에서 이용되는 질환 예측 모델은 영상 기반의 다양한 알고리즘에 기초할 수 있다. Meanwhile, the disease prediction model of the present invention may be a model configured to determine a lesion area on the basis of an SSD performing recognition in a unified framework by recognizing a medical image of a target region as multiple boxes. However, the present invention is not limited thereto, and the disease prediction model used in various embodiments of the present disclosure may be based on various algorithms based on images.
실시예 1: 질환 예측 모델의 평가_결핵성 척추염 또는, 화농성 척추염Example 1 Evaluation of Disease Prediction Models Tuberculosis Spondylitis or Purulent Spondylitis
이하의 실시예 1에서는 도 4a 내지 도 4c를 참조하여 본 발명의 다양한 실시예에 이용되는 예측 모델에 대한 평가 방법 및 결과를 설명한다. In Example 1 below, an evaluation method and results of a prediction model used in various embodiments of the present invention will be described with reference to FIGS. 4A to 4C.
본 평가에서는, 본 발명의 질환 예측 모델 및 3 명의 영상의학과 전문의 각각에 의해 결정된 결핵성 척추염 또는, 화농성 척추염에 대한 예측률을 비교하여 설명한다. In this evaluation, the predictive rate for tuberculous spondylitis or purulent spondylitis determined by each of the disease prediction model of the present invention and each of three radiology specialists is compared and explained.
도 4a는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 의해 결정된 결핵성 척추염 및 화농성 척추염의 병변 영역을 도시한 것이다. 도 4b는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는 질환 예측 모델, 및 방사선 3명의 영상의학과 전문의에 의한 결핵성 척추염 및 화농성 척추염의 예측 평가의 결과를 도시한 것이다. 도 4c는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는 질환 예측 모델, 및 3 명의 영상의학과 전문의의 결핵성 척추염 및 화농성 척추염의 진단의 특이도 및 정확도를 도시한 것이다. FIG. 4A illustrates a lesion area of tuberculous spondylitis and purulent spondylitis determined by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention. 4B illustrates a disease prediction method and a disease prediction model used in a disease prediction device using the same, and a prediction evaluation of tuberculous spondylitis and purulent spondylitis by three radiologists according to one embodiment of the present invention. . Figure 4c illustrates the specificity and accuracy of the disease prediction method and the disease prediction model used in the disease prediction device using the same, and the diagnosis of tuberculous spondylitis and purulent spondylitis of three radiologists according to an embodiment of the present invention .
도 4a의 (a)를 참조하면, 본 발명의 다양한 실시예에 이용되는 질환 예측 모델에 의해 최종적으로 결핵성 척추염으로 결정된 흉추-요추 영상이 도시된다. 보다 구체적으로, 질환 예측 모델은 입력된 흉추-요추 영상에 대하여 병변 영역을 결정하여 병변 영역 주변에 청록색의 박스를 각각 생성하였고, 박스 내의 병변 영역에 대하여 결핵성 척추염의 발병 확률을 산출하였다. 그 결과, 병변 영역 각각에 대한 결핵성 척추염의 발병 확률은 1.00 및 0.91으로 높은 확률을 보였고, 최종적으로 질환 예측 모델은 목적 부위에 대하여 결핵성 척추염이 발병된 것으로 결정할 수 있다.Referring to FIG. 4A (a), a thoracic-lumbar spine image finally determined as tuberculous spondylitis by a disease prediction model used in various embodiments of the present invention is shown. More specifically, the disease prediction model determined lesion areas with respect to the input thoracic-lumbar spine images to generate cyan boxes around the lesion areas, and calculated the probability of developing tuberculous spondylitis for the lesion areas within the boxes. As a result, the incidence of tuberculous spondylitis for each of the lesion areas was 1.00 and 0.91, and the disease prediction model could finally determine that tuberculous spondylitis was developed for the target site.
도 4a의 (b)를 참조하면, 본 발명의 다양한 실시예에 이용되는 질환 예측 모델에 의해 최종적으로 화농성 척추염으로 결정된 흉추-요추 영상이 도시된다. 보다 구체적으로, 질환 예측 모델은 입력된 흉추-요추 영상에 대하여 결핵성 척추염 및 화농성 척추염에 대한 병변 영역을 결정하고, 병변 영역 주변에 청록색의 박스 및 빨간색의 박스를 각각 생성하였다. 그 다음, 질환 예측 모델은 박스 내에 존재하는 병변 영역에 대하여 결핵성 척추염의 발병 확률과 화농성 척추염의 확률을 산출하였다. 그 결과, 두 개의 병변 영역 각각에 대한 결핵성 척추염의 발병 확률 및 화농성 척추염의 발병 확률은 0.75 및 0.88로 산출되었고, 질환 예측 모델은 최종적으로 목적 부위에 대하여 상대적으로 높은 확률을 보이는 화농성 척추염이 발병된 것으로 결정할 수 있다. Referring to FIG. 4A (b), a thoracic-lumbar spine image finally determined as purulent spondylitis by a disease prediction model used in various embodiments of the present invention is shown. More specifically, the disease prediction model determined lesion areas for tuberculous spondylitis and purulent spondylitis on input thoracic-lumbar spine images, and generated cyan boxes and red boxes around the lesion areas, respectively. The disease prediction model then calculated the probability of developing tuberculous spondylitis and the probability of purulent spondylitis for the lesion area present in the box. As a result, the incidence of tuberculous spondylitis and the probability of purulent spondylitis were calculated to be 0.75 and 0.88 for each of the two lesion regions, and the disease prediction model finally showed the development of purulent spondylitis with a relatively high probability for the target site. Can be determined.
도 4a의 (c)를 참조하면, 본 발명의 다양한 실시예에 이용되는 질환 예측 모델에 의해 최종적으로 정상으로 결정된 흉추-요추 영상이 도시된다. 보다 구체적으로, 질환 예측 모델에 의해 병변 영역이 결정되지 않거나, 병변 영역 박스가 형성되지 않을 경우, 질환 예측 모델은 최종적으로 목적 부위에 대하여 정상으로 결정할 수 있다. Referring to (c) of FIG. 4, a thoracic-lumbar spine image finally determined to be normal by a disease prediction model used in various embodiments of the present invention is shown. More specifically, when the lesion region is not determined by the disease prediction model or the lesion area box is not formed, the disease prediction model may finally be determined to be normal to the target site.
도 4b의 (a)를 참조하면, 질환 예측 모델에 대한 4 차의 평가에서는, 우수한 진단 능력과 연관된, 결과 적중률을 의미하는 AUC (Area Under the Curve) 값을 각각 측정하였다. 이때, 질환 예측 모델은 흉추-요추 영상에 대하여 산출된 결핵성 척추염 및 화농성 척추염의 최종 확률 점수를 기초로, 결핵성 척추염 또는 화농성 척추염으로 최종 결정하였다. 그 다음, 각 평가에서의 AUC 값을 산출하였고, 영상에 대하여 미리 결정된 정답 질환과 질환 예측 모델에 의해 결정된 질환을 다양한 방법으로 비교하여 민감도 (Sen, sensitivity) 특이도 (Spe, specificity) 를 산출하였다. 그 결과, 1 차, 2 차, 3차, 및 4 차 각각에서 0.723, 0.856, 0.853 및 0.761의 높은 AUC 값을 갖는 것으로 나타났고, 총 4 차의 평가에 대한 평균 AUC 값은 0.802로 나타났다. 나아가, ROC 커브의 각 점에서 기울기가 1인 직선을 그렸을 때 y절편이 가장 큰 값을 최적 임계치로 설정했을 때 (Youden index) 의 민감도 및 특이도는 각각 85.0 및 67.9로 나타났고, 민감도와 특이도에 대한 등식에 따른 최적 임계치에 의한 민감도 및 특이도는 각각 73.8 및 75.3으로 나타났다. Referring to (a) of FIG. 4B, in the fourth evaluation of the disease prediction model, an area under the curve (AUC) value, which means a result hit ratio, associated with excellent diagnostic ability, was respectively measured. At this time, the disease prediction model was finally determined as tuberculous spondylitis or purulent spondylitis based on the final probability scores of tuberculous spondylitis and purulent spondylitis calculated on thoracolumbar lumbar spine images. Then, the AUC value in each evaluation was calculated, and the sensitivity (Sen, sensitivity) specificity (Spe, specificity) was calculated by comparing the predetermined correct disease for the image with the disease determined by the disease prediction model in various ways. . As a result, it was found to have high AUC values of 0.723, 0.856, 0.853, and 0.761 in the 1st, 2nd, 3rd, and 4th phases respectively, and the average AUC value for the total 4th evaluation was 0.802. Furthermore, when a straight line with a slope of 1 at each point of the ROC curve was drawn, the sensitivity and specificity of the (Youden index) were 85.0 and 67.9, respectively. The sensitivity and specificity by the optimal threshold according to the equation for the figure were 73.8 and 75.3, respectively.
한편, 도 4b의 (b)를 참조하면, 전술한 바와 동일한 방법으로 3명의 영상의학과 전문의 (Reader 1, Reader 2 및 Reader 3) 에 의한 결핵성 척추염 및 화농성 척추염의 예측 결과에 따라 측정된 AUC값이 나타난다. 그 결과, 3 명의 영상의학과 전문의에 의한 예측 결과에 따른 평균 AUC 값은 본 발명의 질환 예측 모델의 AUC 값인 0.802보다 낮은 0.729을 갖는 것으로 나타난다. 이러한 결과는, 결핵성 척추염 또는, 화농성 척추염으로의 진단에 있어서 본 발명의 질환 예측 모델이 영상의학과 전문의보다 우수한 진단 능력을 갖는 것을 의미할 수 있다. On the other hand, referring to Figure 4b (b), the AUC value measured according to the prediction results of tuberculous spondylitis and purulent spondylitis by three radiologists (Reader 1, Reader 2 and Reader 3) in the same manner as described above Appears. As a result, the average AUC value according to the prediction result of three radiologists has a 0.729 lower than the 0.80 AUC value of the disease prediction model of the present invention. These results may mean that the disease prediction model of the present invention has a diagnosis ability superior to that of a radiologist in the diagnosis of tuberculous spondylitis or purulent spondylitis.
보다 구체적으로, 도 4c의 (a)를 참조하면, 본 발명의 질환 예측 모델과 명의 영상의학과 전문의 (Reader 1, Reader 2 및 Reader 3) 에 의한 진단의 특이도는 유사한 것으로 나타난다. 나아가, 도 4c의 (b)를 참조하면, 질환 예측 모델에서, 질환의 발병 여부 결정을 위한 최종 확률 점수 (final score) 의 임계치를 0.5로 설정했을 때, Epoch 증가함에도 환자에 대한 진단의 정확도가 0.7로 유지되는 것으로 나타난다. More specifically, referring to (a) of FIG. 4C, the specificity of diagnosis by the disease prediction model of the present invention and the diagnostic radiology specialists (Reader 1, Reader 2 and Reader 3) of the present invention appears to be similar. Furthermore, referring to (b) of FIG. 4C, in the disease prediction model, when the threshold of the final probability score for determining the onset of the disease is set to 0.5, the accuracy of diagnosis for the patient is increased even though the epoch increases. It appears to remain at 0.7.
이상의 실시예 1의 결과로, 질환 예측 모델은 의료 영상 내에서 유사하게 나타나는 두 개의 질환, 예를 들어 결핵성 척추염 및 화농성 척추염에 대하여 높은 판별력을 가지는 것을 확인할 수 있었다. 이에, 질환 예측 모델을 이용한 본 발명의 질환 예측 디바이스는, 목적 부위에 대한 의료 영상 내에서 결정된 병변 영역에 대하여 높은 정확도로 질환의 발병 여부를 결정할 수 있다. As a result of Example 1, it was confirmed that the disease prediction model has a high discrimination ability against two diseases that appear similarly in a medical image, for example, tuberculous spondylitis and purulent spondylitis. Thus, the disease prediction device of the present invention using the disease prediction model may determine whether the disease occurs with high accuracy with respect to the lesion area determined in the medical image of the target site.
실시예 2: 질환 예측 모델의 평가_폐렴 또는, 결핵Example 2 Evaluation of Disease Prediction Models Pneumonia or Tuberculosis
이하의 실시예 2에서는 도 5a 및 도 5b를 참조하여 본 발명의 다양한 실시예에 이용되는 예측 모델에 대한 평가 방법 및 결과를 설명한다. In Example 2 below, an evaluation method and results of a prediction model used in various embodiments of the present invention will be described with reference to FIGS. 5A and 5B.
본 질환 예측 모델의 평가에서는, 흉부의 폐에 대한 10 장의 컴퓨터 단층 촬영 영상 (Image 1 내지 Image 10) 을 기초로 폐렴 또는 결핵의 예측에 대한 평가가 수행되었다. 그러나, 이에 제한되지 않고 본 발명의 질환 예측 모델은 의료 영상 내에서 유사한 형태를 갖는 두 개의 질환에 대하여, 각각의 질환을 높은 정확도로 예측할 수 있다. In the evaluation of this disease prediction model, evaluation of the prediction of pneumonia or tuberculosis was performed based on ten computed tomography images (Image 1 to Image 10) of the chest lung. However, the present invention is not limited thereto, and the disease prediction model of the present invention may predict each disease with high accuracy for two diseases having similar shapes in the medical image.
도 5a는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 의해 결핵으로 예측된 복수개의 의료 영상을 도시한 것이다. 도 5b는 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 질환 예측 디바이스에서 이용되는, 질환 예측 모델에 의해 폐렴으로 예측된 복수개의 의료 영상을 도시한 것이다.5A illustrates a plurality of medical images predicted as tuberculosis by a disease prediction model used in a disease prediction method and a disease prediction device using the same according to an embodiment of the present invention. 5B illustrates a plurality of medical images predicted as pneumonia by a disease prediction model used in a disease prediction method and a disease prediction device using the same, according to an embodiment of the present invention.
도 5a를 참조하면, 질환 예측 모델에 의해 흉부의 폐에 대한 의료 영상 내에서 결정된 결핵 (Tb, tuberculosis) 및 폐렴 (Pn, pneumonia) 각각의 병변 영역 주위에 형성된 빨간색의 박스 및 청록색의 박스와 결핵 및 폐렴 각각의 발병 확률이 도시된 10 장의 영상이 도시된다.Referring to FIG. 5A, a red box and a cyan box and tuberculosis formed around the lesion area of each of tuberculosis (Tb, tuberculosis) and pneumonia (Pn, pneumonia) determined in a medical image of a chest lung by a disease prediction model And 10 images showing the probability of developing each of pneumonia.
보다 구체적으로, 하기 [표 1]을 참조하면, 목적 부위인 흉부의 폐에 대하여 획득한 10 장의 영상 (Image 1 내지 Image 10) 각각에서 결정된 병변 영역에 대하여 산출된, 결핵 (Tb, tuberculosis) 의 발병 확률 및 폐렴 (Pn, pneumonia) 의 발병 확률이 나타난다.More specifically, referring to Table 1 below, tuberculosis (Tb), which is calculated for lesion areas determined in each of 10 images (Images 1 to Image 10) acquired for the lung of the target region, was obtained. Onset probability and onset of pneumonia (Pn, pneumonia).
질환 예측 모델은 각각의 폐렴 발병 확률 및 결핵 발병 확률 모두 합한 값인, 1.56 및 5.84에서, 전체 질환 (결핵 및 폐렴) 의 확률에 대한 결핵의 발병 확률의 비율 (5.84 / (1.56 + 5.84)) 을 산출한다. 질환 예측 모델에 의해 최종 확률 점수 (Final score) 는 약 0.789로 산출되어, 결핵의 발병 확률이 상대적으로 높은 것으로 나타남에 따라, 도 5a에 도시된 흉부의 폐에 대한 컴퓨터 단층 촬영 영상을 갖는 목적 부위는 결핵이 발병된 것으로 결정될 수 있다.The disease prediction model yields the ratio of the incidence of tuberculosis (5.84 / (1.56 + 5.84)) to the probability of total disease (tuberculosis and pneumonia) at 1.56 and 5.84, the sum of both the probability of developing pneumonia and tuberculosis. do. The final probability score was calculated to be about 0.789 by the disease prediction model, indicating that the incidence of tuberculosis is relatively high, and thus, the target site having the computed tomography image of the chest lung shown in FIG. 5A. Can be determined to have tuberculosis.
pneumonia pneumonia tbtb
image 1image 1 00 00
image 2 image 2 0.950.95 00
image 3 image 3 00 0.90.9
image 4 image 4 00 0.990.99
image 5 image 5 0.610.61 0.980.98
image 6 image 6 00 1One
image 7 image 7 00 0.990.99
image 8 image 8 00 0.980.98
image 9 image 9 00 00
image 10 image 10 00 00
sumsum 1.561.56 5.845.84
final score (favoring tb)final score (favoring tb) 0.789189190.78918919
도 5b를 참조하면, 질환 예측 모델에 의해 흉부의 폐에 대한 의료 영상 내에서 결정된 결핵 (Tb, tuberculosis) 및 폐렴 (Pn, pneumonia) 각각의 병변 영역 주위에 형성된 빨간색의 박스 및 청록색의 박스와 결핵 및 폐렴 각각의 발병 확률이 도시된 10 장의 영상이 도시된다.Referring to FIG. 5B, a red box and a cyan box and tuberculosis formed around the lesion area of each of tuberculosis (Tb, tuberculosis) and pneumonia (Pn, pneumonia) determined in a medical image of a chest lung by a disease prediction model And 10 images showing the probability of developing each of pneumonia.
보다 구체적으로, 하기의 [표 2]을 참조하면, 목적 부위인 흉부의 폐에 대하여 획득한 10 장의 영상 (Image 1 내지 Image 10) 각각에서 결정된 병변 영역에 대하여 산출된, 결핵 (Tb, tuberculosis) 의 발병 확률 및 폐렴 (Pn, pneumonia) 의 발병 확률이 나타난다.More specifically, referring to [Table 2] below, tuberculosis (Tb, tuberculosis) calculated for the lesion area determined in each of 10 images (Image 1 to Image 10) acquired for the lung of the target region. Probability of onset and probability of developing pneumonia (Pn, pneumonia).
pneumonia pneumonia tbtb
image 1image 1 0.820.82 00
image 2 image 2 0.810.81 00
image 3 image 3 0.980.98 00
image 4 image 4 0.990.99 00
image 5 image 5 0.80.8 0.710.71
image 6 image 6 00 0.670.67
image 7 image 7 00 00
image 8 image 8 00 00
image 9 image 9 00 00
image 10 image 10 0.90.9 00
sumsum 5.35.3 1.381.38
final score (favoring tb)final score (favoring tb) 0.2065868260.206586826
질환 예측 모델은 각각의 폐렴의 발병 확률 및 결핵의 발병 확률 모두 합한 값인, 5.3 및 1.38에서, 전체 질환 (결핵 및 폐렴) 의 확률에 대한 결핵의 발병 확률의 비율 (1.38 / (5.3 + 1.38)) 을 산출한다. 질환 예측 모델에 의해 최종 확률 점수 (Final score) 는 약 0.206로 산출되어, 결핵의 발병 확률이 상대적으로 낮은 것으로 나타남에 따라, 도 5b에 도시된 흉부의 폐에 대한 컴퓨터 단층 촬영 영상을 갖는 목적 부위는 폐렴이 발병된 것으로 결정될 수 있다.The disease prediction model is the ratio of the incidence of tuberculosis to the probability of total disease (tuberculosis and pneumonia) at 5.3 and 1.38, which is the sum of the incidence of each pneumonia and the probability of tuberculosis (1.38 / (5.3 + 1.38)) To calculate. The final probability score was calculated to be about 0.206 by the disease prediction model, indicating that the incidence of tuberculosis was relatively low, so that the target site having the computed tomography image of the chest lung shown in FIG. 5B. Can be determined to have developed pneumonia.
이상의 실시예 2의 결과로, 질환 예측 모델에 기초한 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 디바이스는 높은 정확도로 피검자의 목적 부위에 대한 의료 영상 내에서 병변 영역을 결정하고, 질환의 발병 유무를 예측할 수 있는 효과가 있다. As a result of Example 2, the disease prediction method and the device using the same according to an embodiment of the present invention based on a disease prediction model to determine the lesion area in the medical image of the target site of the subject with high accuracy, There is an effect that can predict the onset.
특히, 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 디바이스는, 의료 영상에서 유사한 형태를 나타내는 복수개의 유사 질환에 대하여 높은 정확도로 질환을 판별함으로써, 의료인의 숙련도에 관계 없이 정확한 진단 결과를 제공할 수 있는 효과가 있다.In particular, the disease prediction method and the device using the same according to an embodiment of the present invention, by determining the disease with a high accuracy for a plurality of similar diseases having a similar shape in the medical image, thereby obtaining an accurate diagnosis result regardless of the skill of the medical practitioner There is an effect that can be provided.
한편, 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 디바이스의 이용 범위 및 효과에 제한되지 않는다. 예를 들어, 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 디바이스는, 의료인으로부터 선택된 의료 영상 내의 특정 영역에 대하여, 미리 결정된 질환의 발병 확률을 제공할 수 있고, 발병 확률을 기초로 질환 발병 또는 정상으로 예측된 정보를 의료인에게 제공할 수 있다. On the other hand, the disease prediction method according to an embodiment of the present invention and the use range and effects of the device using the same are not limited. For example, a disease prediction method and a device using the same according to an embodiment of the present invention may provide a probability of occurrence of a predetermined disease with respect to a specific area in a medical image selected by a medical person, and develop the disease based on the occurrence probability. Alternatively, the healthcare provider may be provided with information that is normally predicted.
나아가, 본 발명의 일 실시예에 따른 질환 예측 방법 및 이를 이용한 디바이스는, 흉부-요추 부위와 폐뿐만 아니라, 상복부, 하복부, 간, 뇌, 정맥류, 자궁, 전립선, 고환, 근골격계, 또는 유방과 같이 초음파 검사가 수행될 수 있는 다양한 부위에 대하여, 병변 영역을 예측할 수 있다.  Furthermore, the disease prediction method and the device using the same according to an embodiment of the present invention, as well as the thoracic-lumbar region and lungs, the upper abdomen, lower abdomen, liver, brain, varicose veins, uterus, prostate, testicles, musculoskeletal system, or breast For various sites where an ultrasound scan can be performed, lesion areas can be predicted.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시 예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
*부호의 설명* Description of the sign
100: 질환 예측 디바이스100: disease prediction device
110: 수신부110: receiver
120: 입력부120: input unit
130: 출력부130: output unit
140: 저장부140: storage unit
212, 312: 복수개의 의료 영상212, 312: multiple medical images
222: 질환 예측 모델222: disease prediction model
224: 병변 영역 및 발병 확률이 결정된 복수개의 의료 영상224: A plurality of medical images of the lesion area and the probability of onset
232: 발병 질환이 예측된 의료 영상232: Medical image predicted disease
313: T2 강조 의료 영상313: T2 highlighted medical imaging
314: 크로핑 및 표준화된 의료 영상314: Cropped and Standardized Medical Imaging
315: 병변 영역이 마스킹된 의료 영상315: Medical image masking lesion area
316: 마스킹 병변 영역316: masking lesion area
317: 병변 영역 박스가 형성된 의료 영상317: Medical image with lesion area box formed
318: 병변 영역 박스318: lesion area box
*이 발명을 지원한 국가연구개발사업* National R & D project supporting this invention
[과제고유번호] 1711051031, [부처명] 과학기술정보통신부, [연구관리 전문기관] 한국연구재단, [연구사업명] 개인기초연구(미래부), [연구과제명] 회선신경망을 이용한 흉부 방사선 영상에서의 늑골 골절 검출 자동화 연구, [기여율] 1/1[Operation Unique Number] 1711051031, [Department Name] Ministry of Science and ICT, [Research Management Specialized Institution] Korea Research Foundation, [Research Project Name] Personal Basic Research (Future Part), [Research Title] Study of Automated Fracture Fractures in Women, [Contribution Rate] 1/1

Claims (18)

  1. 목적 부위에 대한 의료 영상 (medical image) 을 수신하는 단계;Receiving a medical image of a target site;
    상기 의료 영상 내에서 미리 결정된 복수개의 질환에 대한 병변 영역을 결정하도록 학습된 질환 예측 모델을 이용하여, 상기 의료 영상 내에서 병변 영역을 결정하는 단계, 및Determining a lesion region in the medical image using a disease prediction model trained to determine lesion regions for a plurality of predetermined diseases in the medical image, and
    결정된 상기 병변 영역을 기초로, 상기 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정하는 단계를 포함하는, 질환 예측 방법.And determining whether the disease occurs for one of the plurality of diseases based on the determined lesion area.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수개의 질환은 서로 상이한 두 개의 질환이고,The plurality of diseases are two different diseases from each other,
    상기 두 개의 질환은, 결핵성 척추염 및 화농성 척추염, 결핵 및 폐렴, 고형 종양 및 물혹, 전이암 및 농양, 및 골용해성 전이암 및 퇴행성 병변으로 구성된 그룹 중 선택된 한 쌍의 질환인, 질환 예측 방법.Wherein said two diseases are a pair of diseases selected from the group consisting of tuberculous spondylitis and purulent spondylitis, tuberculosis and pneumonia, solid tumors and water bumps, metastatic cancer and abscess, and osteolytic metastatic cancer and degenerative lesions.
  3. 제1항에 있어서,The method of claim 1,
    상기 질환의 여부를 예측하는 단계는,Predicting whether the disease is,
    상기 질환 예측 모델을 이용하여, 상기 의료 영상 내에서 결정된 상기 병변 영역에 대하여, 상기 복수개의 질환 각각의 발병 확률을 산출하는 단계, 및 Calculating a probability of occurrence of each of the plurality of diseases with respect to the lesion area determined in the medical image by using the disease prediction model, and
    상기 병변 영역에 대한 상기 복수개의 질환 각각의 발병 확률을 기초로, 상기 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함하는, 질환 예측 방법.And determining that one of the plurality of diseases is developed based on a probability of occurrence of each of the plurality of diseases for the lesion area.
  4. 제3항에 있어서,The method of claim 3,
    신출된 상기 복수개의 질환 중, 임계치 미만의 발병 확률을 갖는 질환은, 질환의 예측 신뢰도가 낮은 것으로 결정하는 단계를 더 포함하는, 질환 예측 방법.The disease prediction method of the said several diseases which have a probability of onset below a threshold further including determining that the predicted reliability of a disease is low.
  5. 제3항에 있어서,The method of claim 3,
    상기 질환 예측 모델에 의해 결정된 병변 영역은 복수개이고,There are a plurality of lesion regions determined by the disease prediction model,
    상기 질환의 여부를 예측하는 단계는,Predicting whether the disease is,
    상기 질환 예측 모델을 이용하여, 상기 의료 영상 내에서 결정된 복수개의 상기 병변 영역 각각에 대하여, 상기 복수개의 질환 각각의 발병 확률을 산출하는 단계;Calculating a probability of occurrence of each of the plurality of diseases for each of the plurality of lesion areas determined in the medical image by using the disease prediction model;
    상기 복수개의 병변 영역 전체에서, 산출된 상기 복수개의 질환 각각에 대하여 최대값을 갖는 하나의 최종 발병 확률을 결정하는 단계, 및Determining, in all of the plurality of lesion areas, one final onset probability having a maximum value for each of the calculated plurality of diseases, and
    결정된 상기 복수개의 질환 각각에 대한 최종 발병 확률을 비교하여, 상기 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함하는, 질환 예측 방법. Comparing the final probability of occurrence for each of the determined plurality of diseases, and determining that one of the plurality of diseases has developed.
  6. 제3항에 있어서,The method of claim 3,
    상기 의료 영상은 하나의 목적 부위에 대한 복수개의 의료 영상을 포함하고,The medical image includes a plurality of medical images of one target region,
    상기 결정하는 단계는, The determining step,
    상기 질환 예측 모델을 이용하여 상기 복수개의 의료 영상 각각에 대하여 병변 영역을 결정하는 단계를 포함하고,Determining a lesion area for each of the plurality of medical images by using the disease prediction model;
    상기 질환의 여부를 예측하는 단계는,Predicting whether the disease is,
    상기 질환 예측 모델을 이용하여, 상기 복수개의 의료 영상 각각에서 상기 복수개의 질환 각각의 발병 확률을 산출하는 단계, 및Calculating a probability of occurrence of each of the plurality of diseases in each of the plurality of medical images by using the disease prediction model, and
    상기 복수개의 의료 영상에 대하여 상기 복수개의 질환 각각의 상기 발병 확률을 기초로, 상기 복수개의 질환 중 하나의 질환의 발병 여부를 결정하는 단계를 포함하는, 질환 예측 방법. And determining whether one of the plurality of diseases occurs on the basis of the occurrence probability of each of the plurality of diseases with respect to the plurality of medical images.
  7. 제6항에 있어서,The method of claim 6,
    상기 복수개의 질환 중 하나의 질환의 발병 여부를 결정하는 단계는,Determining whether one of the plurality of diseases is onset,
    상기 복수개의 의료 영상 각각에서, 상기 병변 영역에 대하여 산출된 상기 복수개의 질환 각각의 발병 확률 중, 최대값을 갖는 하나의 최종 발병 확률을 각각 결정하는 단계;Determining, in each of the plurality of medical images, one final onset probability having a maximum value among the incidences of occurrence of each of the plurality of diseases calculated for the lesion area;
    상기 복수개의 질환 각각에 대하여, 상기 복수개의 의료 영상 각각에서 결정된 상기 최종 발병 확률의 합을 산출하는 단계;Calculating, for each of the plurality of diseases, a sum of the final probability of occurrence determined in each of the plurality of medical images;
    상기 복수개의 질환 각각에 대하여, 상기 최종 발병 확률의 합의 비율을 산출하는 단계, 및,Calculating a ratio of the sum of the final incidence probability for each of the plurality of diseases, and
    산출된 상기 최종 발병 확률의 합의 비율을 기초로, 상기 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함하는, 질환 예측 방법.And determining that one of the plurality of diseases is on the basis of the calculated percentage of the sum of the final probability of occurrence.
  8. 제6항에 있어서,The method of claim 6,
    상기 복수개의 질환 중 하나의 질환의 발병 여부를 결정하는 단계는,Determining whether one of the plurality of diseases is onset,
    상기 복수개의 의료 영상 각각에서, 상기 병변 영역에 대하여 산출된 상기 복수개의 질환 각각의 발병 확률 중, 최대값을 갖는 하나의 질환에 대한 발병 확률을 최종 발병 확률로 결정하고, 나머지 질환에 대한 발병 확률을 0으로 대체하는 단계;In each of the plurality of medical images, the probability of occurrence of one disease having a maximum value among the probability of occurrence of each of the plurality of diseases calculated for the lesion area is determined as a final occurrence probability, and the probability of occurrence of the remaining diseases. Replacing with 0;
    상기 복수개의 질환 각각에 대하여, 상기 복수개의 의료 영상 각각에서 결정된 상기 최종 발병 확률의 합을 산출하는 단계; Calculating, for each of the plurality of diseases, a sum of the final probability of occurrence determined in each of the plurality of medical images;
    상기 복수개의 질환 각각에 대하여, 상기 최종 발병 확률의 합의 비율을 산출하는 단계, 및,Calculating a ratio of the sum of the final incidence probability for each of the plurality of diseases, and
    산출된 상기 최종 발병 확률의 합의 비율을 기초로, 상기 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 포함하는, 질환 예측 방법.And determining that one of the plurality of diseases is on the basis of the calculated percentage of the sum of the final probability of occurrence.
  9. 제6항에 있어서,The method of claim 6,
    상기 질환의 여부를 예측하는 단계는,Predicting whether the disease is,
    상기 복수개의 의료 영상 각각에서, 상기 병변 영역에 대하여 상기 복수개의 질환 각각에 대한 평균 발병 확률을 산출하는 단계;Calculating an average probability of occurrence of each of the plurality of diseases in the lesion area in each of the plurality of medical images;
    상기 복수개의 질환 각각에 대하여, 상기 복수개의 의료 영상 각각에서 산출된 평균 발병 확률의 합을 산출하는 단계; Calculating, for each of the plurality of diseases, a sum of average occurrence probabilities calculated from each of the plurality of medical images;
    상기 복수개의 질환 각각에 대하여, 상기 평균 발병 확률의 합의 비율을 산출하는 단계, 및Calculating a ratio of the sum of the average probability of occurrence for each of the plurality of diseases, and
    산출된 상기 평균 발병 확률의 합의 비율을 기초로, 상기 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하는 단계를 더 포함하는, 질환 예측 방법.And determining that one of the plurality of diseases is on the basis of the calculated ratio of the sum of the average occurrence probability.
  10. 제1항에 있어서,The method of claim 1,
    상기 의료 영상은, 단층 촬영 영상 또는 자기 공명 영상이고,The medical image is a tomography image or a magnetic resonance image,
    상기 미리 결정된 질환은 상기 단층 촬영 영상 또는 자기 공명 영상으로 진단 가능한 질환인, 질환 예측 방법.The predetermined disease is a disease prediction method, which can be diagnosed by the tomography image or magnetic resonance image.
  11. 제1항에 있어서,The method of claim 1,
    상기 예측 모델은, 상기 의료 영상에 대하여 픽셀 단위로 발병 확률을 산출 하도록 더 구성되고,The prediction model is further configured to calculate a probability of occurrence on a pixel-by-pixel basis with respect to the medical image.
    상기 의료 영상 중 일정한 픽셀을 갖는 특정 영역에 대한 선택을 수신하는 단계;Receiving a selection of a specific area having a predetermined pixel of the medical image;
    상기 질환 예측 모델을 이용하여, 선택된 상기 특정 영역에 대하여 상기 미리 결정된 질환에 대한 발병 확률을 산출하는 단계, 및Calculating a probability of occurrence for the predetermined disease for the selected specific region using the disease prediction model, and
    상기 특정 영역에 대하여 산출된 상기 발병 확률을 제공하는 단계를 더 포함하는, 질환 예측 방법.And providing the probability of occurrence calculated for the particular region.
  12. 제1항에 있어서, The method of claim 1,
    상기 질환 예측 모델에 의해 상기 병변 영역이 결정된 경우,When the lesion area is determined by the disease prediction model,
    상기 의료 영상 내에서 결정된 상기 병변 영역을 표시하여 제공하고,Displaying and providing the lesion area determined in the medical image,
    상기 질환 예측 모델에 의해 상기 병변 영역이 결정되지 않은 경우, When the lesion area is not determined by the disease prediction model,
    정상의 진단 정보를 제공하는 단계를 더 포함하는, 질환 예측 방법.Providing normal diagnostic information.
  13. 제1항에 있어서,The method of claim 1,
    상기 목적 부위에 대하여 상기 미리 결정된 질환으로 확진된 병변 영역을 포함하는 학습용 의료 영상을 기초로, 상기 목적 부위에 대한 의료 영상 내에서 상기 미리 결정된 질환에 대한 병변 영역을 결정하도록 상기 질환 예측 모델을 트레이닝하는 단계를 더 포함하는, 질환 예측 방법.Training the disease prediction model to determine a lesion area for the predetermined disease in the medical image for the target area based on a training medical image including the lesion area confirmed as the predetermined disease for the target area. Further comprising the step of, disease prediction method.
  14. 제13항에 있어서,The method of claim 13,
    상기 의료 영상은 T2 강조 영상이고,The medical image is a T2-weighted image,
    상기 트레이닝하는 단계는,The training step,
    상기 학습용 의료 영상을 미리 결정된 크기로 크로핑 (cropping) 하는 단계;Cropping the training medical image to a predetermined size;
    상기 학습용 의료 영상의 픽셀을 표준화 (normalization) 하는 단계;Normalizing pixels of the training medical image;
    상기 학습용 의료 영상 내에 상기 미리 결정된 질환으로 확진된 병변 영역을 마스킹 (masking) 하는 단계, 및Masking a lesion area confirmed as the predetermined disease in the learning medical image, and
    상기 질환 예측 모델이 마스킹된 상기 병변 영역 주위에 박스를 형성하도록 트레이닝하는 단계를 포함하는, 질환 예측 방법.Training the disease prediction model to form a box around the lesion area masked.
  15. 목적 부위에 대한 의료 영상을 수신하도록 구성된 수신부, 및A receiver configured to receive a medical image of a target site, and
    상기 수신부와 동작 가능하게 연결된 프로세서를 포함하고, A processor operatively connected with the receiver,
    상기 프로세서는, The processor,
    상기 의료 영상 내에서 미리 결정된 복수개의 질환에 대한 병변 영역을 결정하도록 학습된 예측 모델을 이용하여, 상기 의료 영상 내에서 상기 복수개의 질환에 대한 병변 영역을 결정하고,Determine a lesion area for the plurality of diseases in the medical image by using a predictive model trained to determine the lesion area for the plurality of predetermined diseases in the medical image,
    결정된 상기 병변 영역을 기초로, 복수개의 질환 중 하나의 질환에 대한 발병 여부를 결정하도록 구성된, 질환 예측 디바이스.And determining whether to develop onset of one of a plurality of diseases based on the determined lesion area.
  16. 제15항에 있어서,The method of claim 15,
    상기 프로세서는, The processor,
    상기 질환 예측 모델을 이용하여 상기 의료 영상 내에서 결정된 상기 병변 영역에 대하여, 상기 복수개의 질환 각각의 발병 확률을 산출하고,Calculating a probability of occurrence of each of the plurality of diseases with respect to the lesion area determined in the medical image by using the disease prediction model,
    상기 병변 영역에 대한 복수개의 질환 각각의 발병 확률을 기초로, 상기 복수개의 질환 중 하나의 질환이 발병된 것으로 결정하도록 더 구성된, 질환 예측 디바이스.And determine, based on the probability of developing each of the plurality of diseases for the lesion area, that one of the plurality of diseases is onset.
  17. 제15항에 있어서,The method of claim 15,
    상기 의료 영상은 하나의 목적 부위에 대한 복수개의 의료 영상을 포함하고,The medical image includes a plurality of medical images of one target region,
    상기 프로세서는, The processor,
    상기 질환 예측 모델을 이용하여, 상기 복수개의 의료 영상 각각에서 상기 복수개의 질환 각각의 발병 확률을 산출하고, 상기 복수개의 의료 영상에 대한 상기 복수개의 질환 각각의 상기 발병 확률을 기초로, 상기 복수개의 질환 중 하나의 질환의 발병 여부를 결정하도록 더 구성된, 질환 예측 디바이스.The onset probability of each of the plurality of diseases in each of the plurality of medical images is calculated using the disease prediction model, and based on the incidence probability of each of the plurality of diseases in the plurality of medical images, The disease prediction device further configured to determine whether the disease of one of the diseases is onset.
  18. 제15항에 있어서,The method of claim 15,
    상기 복수개의 질환은 서로 상이한 두 개의 질환이고,The plurality of diseases are two different diseases from each other,
    상기 두 개의 질환은, 결핵성 척추염 및 화농성 척추염, 결핵 및 폐렴, 고형 종양 및 물혹, 전이암 및 농양, 및 골용해성 전이암 및 퇴행성 병변으로 구성된 그룹 중 선택된 한 쌍의 질환인, 질환 예측 디바이스.Wherein said two diseases are a pair of diseases selected from the group consisting of tuberculous spondylitis and purulent spondylitis, tuberculosis and pneumonia, solid tumors and water bumps, metastatic cancer and abscess, and osteolytic metastatic cancer and degenerative lesions.
PCT/KR2019/002544 2018-03-09 2019-03-05 Disease prediction method and disease prediction device using same WO2019172621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180027881A KR20190106403A (en) 2018-03-09 2018-03-09 Method for predicting diseases and device for predicting diseases using the same
KR10-2018-0027881 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019172621A1 true WO2019172621A1 (en) 2019-09-12

Family

ID=67845654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002544 WO2019172621A1 (en) 2018-03-09 2019-03-05 Disease prediction method and disease prediction device using same

Country Status (2)

Country Link
KR (1) KR20190106403A (en)
WO (1) WO2019172621A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111028223A (en) * 2019-12-11 2020-04-17 大连医科大学附属第一医院 Microsatellite unstable intestinal cancer energy spectrum CT iodine water map image omics feature processing method
CN112754458A (en) * 2019-11-01 2021-05-07 上海联影医疗科技股份有限公司 Magnetic resonance imaging method, system and storage medium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280583B1 (en) * 2019-11-19 2021-07-21 연세대학교 산학협력단 Diagnostic prediction model for prostate cancer based on magnetic resonance imaging and prostate specific antigen density
KR102293511B1 (en) * 2019-11-19 2021-08-24 연세대학교 산학협력단 Diagnostic prediction model for clinically significant prostate cancer based on magnetic resonance imaging and prostate specific antigen density
KR102402011B1 (en) 2020-02-18 2022-05-27 재단법인 아산사회복지재단 Medical image process apparatus and medical image learning method, and medical image process method
KR102435799B1 (en) * 2020-06-29 2022-08-25 주식회사 메디웨일 Diagnosis assistance method and apparatus
KR102561318B1 (en) 2020-07-27 2023-07-31 재단법인 아산사회복지재단 Method of predicting treatment response to disease using artificial neural network and treatment response prediction device performing method
KR102684355B1 (en) * 2020-12-24 2024-07-18 (주)제이엘케이 Prostate cancer pathological images report system based on artificial intelligence
AU2022248761A1 (en) * 2021-03-31 2023-08-10 Lunit Inc. Method and apparatus for providing confidence information on result of artificial intelligence model
WO2023106679A1 (en) * 2021-12-06 2023-06-15 연세대학교 산학협력단 Method for providing information about decubitus and device using same
WO2023132523A1 (en) * 2022-01-10 2023-07-13 주식회사 온택트헬스 Method and device for assisting diagnosis of calcification on basis of artificial intelligence model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100010973A (en) * 2008-07-24 2010-02-03 울산대학교 산학협력단 Method for automatic classifier of lung diseases
JP2012179336A (en) * 2011-03-02 2012-09-20 Stat Lab:Kk Pathology image diagnosis support system
JP2013131211A (en) * 2011-12-21 2013-07-04 Samsung Electronics Co Ltd Device and method for determining optimum diagnosis element set for disease diagnosis
JP2016007270A (en) * 2014-06-23 2016-01-18 東芝メディカルシステムズ株式会社 Medical image processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100010973A (en) * 2008-07-24 2010-02-03 울산대학교 산학협력단 Method for automatic classifier of lung diseases
JP2012179336A (en) * 2011-03-02 2012-09-20 Stat Lab:Kk Pathology image diagnosis support system
JP2013131211A (en) * 2011-12-21 2013-07-04 Samsung Electronics Co Ltd Device and method for determining optimum diagnosis element set for disease diagnosis
JP2016007270A (en) * 2014-06-23 2016-01-18 東芝メディカルシステムズ株式会社 Medical image processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI XIANG J. WANG: "A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging", QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, vol. 7, no. 1, 7 February 2017 (2017-02-07) - 20 February 2017 (2017-02-20), pages 88 - 122, XP055636755 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112754458A (en) * 2019-11-01 2021-05-07 上海联影医疗科技股份有限公司 Magnetic resonance imaging method, system and storage medium
CN111028223A (en) * 2019-12-11 2020-04-17 大连医科大学附属第一医院 Microsatellite unstable intestinal cancer energy spectrum CT iodine water map image omics feature processing method
CN111028223B (en) * 2019-12-11 2023-11-07 大连医科大学附属第一医院 Method for processing microsatellite unstable intestinal cancer energy spectrum CT iodogram image histology characteristics

Also Published As

Publication number Publication date
KR20190106403A (en) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2019172621A1 (en) Disease prediction method and disease prediction device using same
WO2017051944A1 (en) Method for increasing reading efficiency by using gaze information of user in medical image reading process and apparatus therefor
US8027524B2 (en) Image diagnosis support apparatus and image diagnosis support program
KR20190134586A (en) Method for predicting diseases and device for predicting diseases using the same
US7881508B2 (en) Method, apparatus, and program for judging medical images
JP6183177B2 (en) Medical image system and program
JP5100323B2 (en) A system to synchronize corresponding landmarks between multiple images
US10918346B2 (en) Virtual positioning image for use in imaging
CN109716445A (en) Similar cases image retrieval program, similar cases image retrieving apparatus and similar cases image search method
WO2019054576A1 (en) Method and apparatus for fully automated segmentation of image of joint, based on patient-specific optimal thresholding method and watershed algorithm
JP2015508301A (en) Chest image processing and display
WO2019143179A1 (en) Method for automatically detecting same regions of interest between images of same object taken with temporal interval, and apparatus using same
WO2016159726A1 (en) Device for automatically sensing lesion location from medical image and method therefor
WO2022014856A1 (en) Device and method for supporting chest medical image reading
WO2019198981A1 (en) Method for analyzing health condition and providing information on basis of captured image, device therefor, and recording medium therefor
KR101941209B1 (en) Standalone automatic disease screening system and method based on artificial intelligence
WO2015199257A1 (en) Apparatus and method for supporting acquisition of area-of-interest in ultrasound image
JP4691732B1 (en) Tissue extraction system
WO2017065591A1 (en) System and method for automatically calculating effective radiation exposure dose
WO2022060099A1 (en) Method and apparatus for calculating risk of vascular disease in ct image using low voltage
WO2020212962A2 (en) Foot type evaluation method and foot type evaluation device using same
WO2017222283A1 (en) Method for analyzing health condition on basis of image photographing and providing health condition information
WO2017200132A1 (en) Device and method for diagnosing sleep-disordered breathing
JP2011182946A (en) Medical image display and medical image display method
Sonka et al. Validation of an enhanced knowledge-based method for segmentation and quantitative analysis of intrathoracic airway trees from three-dimensional CT images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763191

Country of ref document: EP

Kind code of ref document: A1