WO2019172465A1 - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor Download PDF

Info

Publication number
WO2019172465A1
WO2019172465A1 PCT/KR2018/002640 KR2018002640W WO2019172465A1 WO 2019172465 A1 WO2019172465 A1 WO 2019172465A1 KR 2018002640 W KR2018002640 W KR 2018002640W WO 2019172465 A1 WO2019172465 A1 WO 2019172465A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
cathode
electrode
positive electrode
separator
Prior art date
Application number
PCT/KR2018/002640
Other languages
French (fr)
Korean (ko)
Inventor
정한기
백병민
윤이나
Original Assignee
비나텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비나텍 주식회사 filed Critical 비나텍 주식회사
Priority to PCT/KR2018/002640 priority Critical patent/WO2019172465A1/en
Publication of WO2019172465A1 publication Critical patent/WO2019172465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor, and more particularly, to an electric double layer capacitor attaching an insulating tape to a junction of a negative electrode and a negative electrode terminal.
  • an electrochemical energy storage device As part of securing stable energy, an electrochemical energy storage device is used, which converts electrical energy into chemical energy and stores it, and then converts the electrical energy into electrical energy when needed.
  • Batteries the most common electrical double layer capacitors, are widely used because they can store a great deal of energy in a relatively small volume and weight, and can provide adequate output in many applications.
  • batteries have a common problem of low storage characteristics and cycle life regardless of the type. This is due to the natural deterioration of the chemicals contained in the battery or the deterioration caused by the use.
  • the disadvantage of such a battery is a natural phenomenon, so no alternatives have been proposed.
  • an electric double-layer capacitor is an energy storage device using an electric double layer formed between an electrode and an electrolyte, unlike a battery using a chemical reaction.
  • the basic structure of an electric double layer capacitor is composed of an electrode, an electrolyte, a current collector, and a separator. A voltage of several volts is applied to both ends of a unit cell electrode to generate ions in the electrolyte.
  • the principle of operation is a series of electrochemical mechanisms that move along and adsorb to the electrode surface.
  • the electrolyte is mainly used by dissolving a certain amount of metal salt or organic salt in an organic solution. In this case, more energy can be stored than a conventional capacitor, and there is an advantage that rapid charging and discharging is possible.
  • an electric double layer capacitor has a problem of shortening its life due to a foreign substance generated by a chemical reaction between a negative electrode terminal and an electrolyte.
  • An object of the present invention is to provide an electric double layer capacitor which prevents foreign substances generated by a chemical reaction between a negative electrode of an electric double layer capacitor and an electrolyte in advance.
  • the electric double layer capacitor of the present invention includes a positive electrode, a negative electrode, an electrolyte and a separator, the electrode device for storing electrochemical energy, the anode material made of a slurry of the positive electrode is connected to the uncoated region
  • the cathode connection portion is characterized in that for forming a plurality of perforations penetrating the cathode and the separator.
  • the plurality of perforations may be formed such that the negative electrode, the separator and the negative electrode connection part are fixed by pressing a barr generated while the negative electrode connection part is punched in the direction of the lower surface of the separator.
  • the insulating tape may be attached so that one surface of the negative electrode, the separator, and the negative electrode connection part are stacked and the other surface is surrounded.
  • the electric double layer capacitor according to the present invention can prolong the life of the electric double layer capacitor by preventing foreign substances generated by the chemical reaction between the negative terminal and the electrolyte of the electric double layer capacitor.
  • the electrode terminals are directly connected without being connected through the electrode material, thereby maximizing energy efficiency.
  • FIG. 1 is a cross-sectional view illustrating an electric double layer capacitor according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view for explaining an electrode device according to an embodiment of the present invention.
  • FIG 3 is a view for explaining the structure in which the negative electrode terminal is connected to the negative electrode current collector according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view for describing a portion A of FIG. 2.
  • FIG. 1 is a cross-sectional view for explaining an electric double layer capacitor according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view for explaining an electrode element according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present ignition It is a figure for demonstrating the structure where the negative electrode terminal which concerns on an example is connected to the negative electrode electrical power collector.
  • the electric double layer capacitor 100 includes an electrode element 10, an electrode terminal 20, a case 50, a rubber cap 60, a polymer resin 70, and an insulating tape 80. .
  • the electrode element 10 stores electrochemical energy, and converts electrical energy into chemical energy or chemical energy into electrical energy.
  • the electrode element 10 includes an anode 11, a cathode 13, an electrolyte (not shown), and a separator 15.
  • the positive electrode 11 includes a positive electrode material made of a positive electrode current collector and a slurry provided on both sides or one surface of the positive electrode current collector, and the negative electrode 13 includes both the negative electrode current collector 17 and the negative electrode current collector 17. It includes a negative electrode material (13a) made of a slurry provided on one side.
  • the positive electrode material and the negative electrode material 13a are not coated in the areas where the positive electrode terminal 30 and the negative electrode terminal 40 are connected, respectively, of the positive electrode collector and the negative electrode collector 17. That is, the positive electrode terminal 30 and the negative electrode terminal 40 may be directly connected to the terminal current collector, thereby maximizing energy efficiency.
  • physical damage can be prevented from being applied in the process of coating the electrode material on the terminal connection portion of the current collector.
  • the positive electrode current collector and the negative electrode current collector 17 accumulate electrons generated by the electrochemical reaction of the active material in the electrode element 10 and serve to transfer them to an external circuit.
  • polycarbonate polycarbonate, PC
  • aluminum, nickel, titanium, copper, gold, silver, platinum, cobalt, and the like, alloys or chemicals may be used, and conductive carbon, polyaniline, poly Conductive polymers such as thiophene, polyprefill, and the like can be used.
  • an electrode active material, a conductive material and a binder are used for the cathode material and the cathode material made of the slurry.
  • activated carbon may be used as an electrode active material, and activated carbon may be a porous carbon-based material having high electrical conductivity, thermal conductivity, low density, suitable corrosion resistance, low thermal expansion rate, and high purity.
  • activated carbon powder ACP
  • carbon nanotube CNT
  • VGCF vapor grown carbon fiber
  • COgel polyacryl Carbon nanofibers (CNF) manufactured by carbonizing polymers such as poly acrylonitrile (PAN) and polyvinylidene fluoride (PVdF) may be used.
  • the conductive material may be carbon black (CB), acetylene black, ketjen black, graphite, or super-p as a material for imparting conductivity to the electrode. .
  • the binder serves as a crosslinking agent for bonding the electrode active material and the conductive material and for binding the electrode active material, the positive electrode current collector, and the negative electrode current collector 17.
  • Materials that can be used as binders include CMC (carboxy methyl cellulose), polyvinylpyrrolidone (PVP), fluorinated poly tetra fluoroethylene (PTFE) powder, emulsions and rubber styrene butadiene rubbers ( styrene butadienerubber, SBR) may be used, and at least one of such materials may be used in a mixed form.
  • the CMC plays a role of increasing binding force with the positive electrode current collector and the negative electrode current collector while maintaining the viscosity of the electrode slurry in a state similar to a paste.
  • CMC increases binding but increases the embrittlement of the electrode material layer after the electrode slurry is cast.
  • CMC can be used to obtain a binding force between the current collector and the electrode slurry.
  • Polyvinylpyrrolidone acts as a dispersant and helps to disperse the particles forming the electrode slurry. Polyvinylpyrrolidone may be substituted if there is a small amount added and other substances that can aid in dispersion.
  • the polytetrafluoroethylene is hermetically encapsulated inside the electrode slurry, and when melted above the melting point, the polymer encloses the particles like a spider web. Polytetrafluoroethylene can stably increase the binding force between particles.
  • Rubber-based styrene butadiene rubber serves to protect the surface by coating the surface of the particles.
  • the binder may further include polyvinylidene fluoride, carboxymethylcellulose, hydropropylmethylcellulose, polyvinylalcohol, and the like.
  • the electrolyte may smoothly move charges generated at the anode and the cathode, and may be composed of a salt consisting of a cation and an anion as a liquid solvent.
  • a salt consisting of a cation and an anion as a liquid solvent.
  • hydrochloric acid, sulfuric acid, nitric acid, acetic acid may be used alone or in combination with distilled water.
  • Li2SO4, Na2SO4, K2SO4, (NH4) 2SO4, LiOH, NaOH, KOH, NH4OH may be used alone or two or more selected by mixing with distilled water.
  • cyclic carbonate linear carbonate, lactone, ether, ester, ketone, and / or water may be used as the electrolyte.
  • cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and examples of linear carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC), and dipropyl carbonate (DPC). ), Ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), and the like.
  • lactones include gamma butyrolactone (GBL), and ethers include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, and the like.
  • ester examples include methyl acetate, ethyl acetate, methyl propionate, methyl pivalate, and the like
  • ketones include, but are not limited to, polymethylvinyl ketone.
  • Such a solvent can be used individually or in mixture of 2 or more types.
  • the electrolyte contains ions composed of alkali metal cations such as Li +, Na + and K + or a combination thereof, and includes PF 6-, BF 4-, Cl-, Br-, I-, ClO 4-, ASF 6-and CH 3 CO 2-.
  • PC Propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Organic solvents selected from the group consisting of carbonate (EMC), gamma butyrolactone or mixtures thereof may be used, and such organic solvents include TEABF4 (tetraethylammonium tetrafluorborate), TEMABF4 (triethylmethylammonium tetrafluorborate), LiCl04 (lithium perchlorate), and LiPF6.
  • LiAsF6 l Ithium hexafluoroarsenate
  • LiBF4 lithium tetraflouroborate
  • Such an electrolyte solution may be used to be impregnated or coated on the separator 15.
  • the separator 15 is positioned between the anode 11 and the cathode 13 to electrically insulate them.
  • the separator 15 is not limited to a specific form, it is preferable to use a porous separator, and as an example, a pulp-based, polypropylene-based, polyethylene-based, or polyolefin-based porous separator may be used.
  • the electrode element 10 is formed by stacking and winding the separator 15 between the anode 11, the cathode 13, between the anode 11 and the cathode 13 or on both sides of the anode 11 and the cathode 13. do. That is, the electrode element 10 may be wound and formed in a cylindrical shape.
  • the electrode element 10 includes a pair of electrode terminals 20 protruding from each other on the electrode element 10.
  • the pair of electrode terminals 20 may be divided into the positive electrode terminal 30 and the negative electrode terminal 40, and are connected to the positive electrode 11 and the negative electrode 12, respectively, to connect the electrode element 10 to external power. Play a role.
  • the positive electrode terminal 30 is welded to the positive electrode electrode tab 33 and the positive electrode sealing portion 32 which are composed of the positive electrode connecting portion 31 connected to the positive electrode 11, and the positive electrode connecting portion 32 connected to the positive electrode connecting portion 31.
  • the positive electrode connecting portion 31 is a region in which the positive electrode material made of a slurry of the positive electrode 11 is connected with an uncoated region.
  • the negative electrode terminal 40 is welded to the negative electrode tab 45 and the negative electrode round portion 43 formed of a negative electrode connecting portion 41 connected to the negative electrode 13, and a negative electrode sealing portion 43 connected to the negative electrode connecting portion 41.
  • the negative electrode connecting portion 41 is a region in which the negative electrode material 13a in which the slurry is made is connected to the uncoated region of the negative electrode 13.
  • the positive electrode terminal 30 and the negative electrode terminal 40 may be used as a material of one of aluminum steel or stainless steel, the surface may be coated by nickel or tin.
  • the negative electrode 13, the separator 15, and the negative electrode connection part 41 form a plurality of perforations 46 penetrating the negative electrode 13, the separator 15, and the negative electrode connection part 41 to secure each other. do.
  • the plurality of perforations 46 are formed by punching, and the burrs generated while punching are pressed to fix the negative electrode 13, the separator 15, and the negative electrode connecting part 41.
  • the plurality of perforations 46 is limited to the first perforation 47, the second perforation 48, and the third perforation 49, the number of perforations may be set without being limited thereto.
  • the insulating tape 80 is attached so that the part to which the negative electrode 13 and the negative electrode connection part 41 are connected is covered.
  • the insulating tape 80 is attached so that the negative electrode connection part 41 and electrolyte solution are not mutually connected.
  • the electric double layer capacitor 100 may prevent foreign substances generated by the chemical reaction between the negative electrode connecting portion 41 and the electrolyte solution in advance, thereby preventing external exposure of the foreign substances.
  • the case 50 has an opening formed at an upper portion thereof, and the electrode element 10 is embedded through the opening.
  • the electrode element 10 not only the electrode element 10 but also the gas generated from the electrode element 10 may be present together.
  • the material of the case 50 aluminum or an aluminum alloy is light and has little influence of corrosion by gas. This can be used.
  • the case 50 includes a fixing portion 51 in which a side contacting the rubber cap 60 to be described later is pressed by an external pressure to be concave.
  • the fixing portion 51 is a portion in which the rubber cap 60 is inserted through the opening of the case 50 and is concavely deformed inwardly by an external pressure, through which the case 50 and the rubber cap 60 are formed. ) To close the primary seal.
  • the case end 53 is deformed into a hook shape, and the hook shape may be formed to be spaced apart from the rubber cap 60.
  • the case 50 may be formed in a cylindrical shape.
  • the maximum diameter ⁇ 1 is 18.1 mm ⁇ 0.1
  • the diameter ⁇ 2 of the portion where the fixing portion 51 is formed is 16.3 mm ⁇ 0.1
  • the height H1 is 40.7 mm ⁇ 0.05
  • the fixing portion 51 H2 from) to the top of the case is 3.8mm ⁇ 0.1.
  • the case 50 is not limited to a cylindrical shape and may have a shape corresponding to the shape of the electrode element 10.
  • the case 50 when the electrode element 10 is cylindrical, the case 50 may be cylindrical, and when the electrode element 10 is polygonal, the case 50 may also be polygonal.
  • the technical idea of the present invention is not limited thereto, and the case 50 may have a polygonal shape when the electrode element 10 is cylindrical, and the case 50 when the electrode element 10 has a polygonal shape. May be cylindrical.
  • the rubber cap 60 is coupled to the inside of the upper portion of the opening to seal the case 50. That is, the rubber cap 60 may be made to seal the inside of the case 50 to block the inside and outside of the electrode element 10.
  • the rubber cap 60 may be a rubber material having elasticity.
  • an olefinic synthetic rubber such as ethylene propylene copolymer (EPT), ethylene propylene diene copolymer (EPDM), silicone rubber, fluorine rubber, butyl rubber, or the like may be used as the rubber material.
  • the rubber cap 60 has a first through hole 61 and a second through hole 63 formed therein so as to be fitted into the positive electrode terminal 30 and the negative electrode terminal 40, respectively. That is, the rubber cap 60 may be spaced apart from the upper portion of the electrode element 10 through the first through hole 61 and the second through hole 63. Therefore, the rubber cap 60 and the electrode element 10 may be installed at a distance of 0.4mm to 10mm. Through this, the rubber cap 60 can suppress the generation of foreign matter on the surface.
  • the electric double layer capacitor 100 is provided with a separation distance between the rubber cap 60 and the electrode element 10, even if used for a long time, the foreign matter does not occur, the life can be increased.
  • the electric double layer capacitor 100 is installed with a separation distance of 0.4 to 10 mm between the rubber cap 60 and the electrode element 10, and if the separation distance is shorter than 0.4 mm, the electric double layer capacitor ( When a long time using 100), foreign matter is generated on the surface of the rubber cap 60 or the life is shortened quickly. If the separation distance is farther than 10 mm, the energy density of the electric double layer capacitor 100 is lowered.
  • the polymer resin 70 is formed so that the opening end 53 is locked to the upper surface of the rubber cap 60. Therefore, the polymer resin 70 can prevent the leakage of the electrolyte leakage to the outside by sealing the case 50.
  • the polymer resin 70 may be formed so that the open end 53 is covered so as to finish the finish on the case end 53.
  • the polymer resin 70 may be made of a polymer resin having excellent mechanical properties and heat resistance, and preferably, may be made of an epoxy resin.
  • Epoxy resins are thermosetting resins produced by polymerization of epoxy groups and dendritic materials having epoxy groups in a molecule. They are excellent in mechanical properties such as bending strength and hardness, and do not generate volatile substances and shrinkage in volume during curing. It has a feature of great adhesion to cotton.
  • the polymer resin 70 is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a brominated epoxy resin, It may include at least one or more of the group selected from BPA- novolac-type epoxy resin, cycloaliphatic epoxy resin or a mixture thereof.
  • FIG. 4 is a cross-sectional view for describing a portion A of FIG. 2.
  • the insulating tape 80 is attached to cover the fixed cathode connection 41, the cathode 13, and the separator 15 due to a plurality of perforations.
  • the negative electrode connecting portion 41 forms first to third perforations 47, 48, and 49 penetrating the cathode 13 and the separator 15 by punching.
  • the first to third perforations 47, 48, and 49 press the burrs generated while the negative electrode connecting portion 41 is punched in the direction of the lower surface of the separator 15 to form the negative electrode 13, the separator 15, and the negative electrode connecting portion 41. ) To be fixed.
  • the burrs generated by punching penetrate through the cathode 13 and the separator 15 and protrude out of the lower surface of the separator 15. 13) and the separator 15 is fixed.
  • the insulating tape 80 is attached to cover the fixed portion as a whole. That is, the insulating tape 80 is attached so that one surface on which the negative electrode 13, the separator 15, and the negative electrode connecting portion 41 are stacked and the other surface which is not stacked are surrounded. Preferably, the insulating tape 80 is attached so that the electrolyte solution may not be connected to the negative electrode connecting portion 41.
  • electrode element 11 anode
  • cathode 13a cathode material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An electric double-layer capacitor is disclosed. An electric double-layer capacitor of the present invention comprises a positive electrode, a negative electrode, an electrolyte solution and a separator membrane, and comprises: an electrode device for storing electrochemical energy; a positive electrode terminal having a positive electrode connecting portion connecting to an area which is not coated with a positive electrode material formed from a slurry in a positive electrode; a negative electrode terminal having a negative electrode connecting portion connecting to an area which is not coated with a negative electrode material formed from a slurry in a negative electrode; and an insulating tape adhered such that the negative electrode connecting portion is covered.

Description

전기이중층 커패시터Electric Double Layer Capacitors
본 발명은 전기이중층 커패시터에 관한 것으로, 보다 상세하게는 음극과 음극단자의 접합부분에 절연 테이프를 부착하는 전기이중층 커패시터에 관한 것이다.The present invention relates to an electric double layer capacitor, and more particularly, to an electric double layer capacitor attaching an insulating tape to a junction of a negative electrode and a negative electrode terminal.
정보화 시대에는 각종 정보통신기기를 통해 다양하고 유용한 정보를 실시간으로 수집 및 활용하는 고부가가치 산업이 주도하고 있으며, 이러한 시스템의 신뢰성 확보를 위해서는 안정적인 에너지의 공급이 중요한 요소로 인식되고 있다.In the information age, a high value-added industry, which collects and utilizes various and useful information in real time through various information and communication devices, is leading, and stable energy supply is recognized as an important factor to secure reliability of such a system.
안정적인 에너지 확보의 일환으로서, 전기에너지를 화학에너지로 변환하여 저장하였다가 필요시 다시 전기에너지로 변환하여 쓸 수 있는 전기이중층 커패시터(electrochemical energy storage device)가 사용되고 있다.As part of securing stable energy, an electrochemical energy storage device is used, which converts electrical energy into chemical energy and stores it, and then converts the electrical energy into electrical energy when needed.
가장 일반적인 전기이중층 커패시터인 배터리는 비교적 작은 부피와 중량으로 상당히 많은 에너지를 저장할 수 있고, 여러 용도에서 적당한 출력을 내어 줄 수 있기 때문에 널리 사용되고 있다. 그러나 배터리는 종류에 무관하게 저장특성 및 사이클 수명이 낮은 공통적인 문제점을 가지고 있다. 이는 배터리에 내포되어 있는 화학물질의 자연적인 열화현상 또는 사용에 따른 열화현상 때문이다. 이러한 배터리의 단점은 자연적인 현상이기 때문에 별다른 대안이 제시되지 못하고 있는 실정이다.Batteries, the most common electrical double layer capacitors, are widely used because they can store a great deal of energy in a relatively small volume and weight, and can provide adequate output in many applications. However, batteries have a common problem of low storage characteristics and cycle life regardless of the type. This is due to the natural deterioration of the chemicals contained in the battery or the deterioration caused by the use. The disadvantage of such a battery is a natural phenomenon, so no alternatives have been proposed.
한편, 전기이중층 커패시터(electric double-layer capacitor, EDLC)는 화학반응을 이용하는 배터리와는 달리 전극과 전해액 사이에 형성되는 전기 이중층을 이용한 에너지 저장장치이다.On the other hand, an electric double-layer capacitor (EDLC) is an energy storage device using an electric double layer formed between an electrode and an electrolyte, unlike a battery using a chemical reaction.
전기이중층 커패시터의 기본구조는 전극(electrode), 전해액(electrolyte), 집전체(current collector), 분리막(separator)으로 이루어져 있으며, 단위 셀 전극의 양단에 수 볼트의 전압을 가해 전해액 내의 이온들이 전기장을 따라 이동하여 전극표면에 흡착되는 일련의 전기 화학적 메커니즘을 작동원리로 한다.The basic structure of an electric double layer capacitor is composed of an electrode, an electrolyte, a current collector, and a separator. A voltage of several volts is applied to both ends of a unit cell electrode to generate ions in the electrolyte. The principle of operation is a series of electrochemical mechanisms that move along and adsorb to the electrode surface.
전기이중층 커패시터에서 전해액은 주로 유기계 용액에 금속염 또는 유기계염을 일정량 용해시켜 사용한다. 이 경우, 기존의 커패시터보다 많은 에너지를 저장할 수 있으며, 급속 충방전이 가능하다는 장점이 있다.In the electric double layer capacitor, the electrolyte is mainly used by dissolving a certain amount of metal salt or organic salt in an organic solution. In this case, more energy can be stored than a conventional capacitor, and there is an advantage that rapid charging and discharging is possible.
하지만 전기이중층 커패시터는 음극단자와 전해액 사이의 화학반응으로 발생되는 이물질에 의해 수명이 단축되는 문제점을 가지고 있다.However, an electric double layer capacitor has a problem of shortening its life due to a foreign substance generated by a chemical reaction between a negative electrode terminal and an electrolyte.
따라서, 이러한 문제점을 해결할 수 있는 전기이중층 커패시터가 필요한 실정이다.Therefore, there is a need for an electric double layer capacitor capable of solving this problem.
본 발명이 이루고자 하는 기술적 과제는 전기이중층 커패시터의 음극단자와 전해액 사이의 화학반응으로 발생되는 이물질을 미연에 방지하는 전기이중층 커패시터를 제공하는데 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide an electric double layer capacitor which prevents foreign substances generated by a chemical reaction between a negative electrode of an electric double layer capacitor and an electrolyte in advance.
상기 목적을 달성하기 위해, 본 발명의 전기이중층 커패시터는 양극, 음극, 전해액 및 분리막을 포함하고, 전기화학 에너지가 저장되는 전극소자, 상기 양극 중 슬러리로 만들어진 양극재료가 미코팅된 영역과 접속하는 양극 접속부가 형성되는 양극단자, 상기 음극 중 슬러리로 만들어진 음극재료가 미코팅된 영역과 접속하는 음극 접속부가 형성되는 음극단자 및 상기 음극 접속부가 덮이도록 부착되는 절연 테이프를 포함한다.In order to achieve the above object, the electric double layer capacitor of the present invention includes a positive electrode, a negative electrode, an electrolyte and a separator, the electrode device for storing electrochemical energy, the anode material made of a slurry of the positive electrode is connected to the uncoated region A positive electrode terminal to form a positive electrode connection portion, a negative electrode terminal to form a negative electrode connection portion for connecting a negative electrode material made of a slurry of the negative electrode and the uncoated region, and an insulating tape attached to cover the negative electrode connection portion.
상기 음극 접속부는, 상기 음극 및 상기 분리막을 관통하는 복수의 천공을 형성하는 것을 특징으로 한다.The cathode connection portion is characterized in that for forming a plurality of perforations penetrating the cathode and the separator.
상기 복수의 천공은, 상기 음극 접속부가 펀칭(punching)되면서 생성된 버(barr)를 상기 분리막의 하면 방향으로 압착하여 상기 음극, 상기 분리막 및 상기 음극 접속부가 고정되도록 형성하는 것을 특징으로 한다.The plurality of perforations may be formed such that the negative electrode, the separator and the negative electrode connection part are fixed by pressing a barr generated while the negative electrode connection part is punched in the direction of the lower surface of the separator.
상기 절연 테이프는, 상기 음극, 상기 분리막 및 상기 음극 접속부가 적층된 일면과, 타면이 둘러싸이도록 부착하는 것을 특징으로 한다.The insulating tape may be attached so that one surface of the negative electrode, the separator, and the negative electrode connection part are stacked and the other surface is surrounded.
본 발명에 따른 전기이중층 커패시터는 전기이중층 커패시터의 음극단자와 전해액 사이의 화학반응으로 발생되는 이물질을 미연에 방지하여 전기이중층 커패시터의 수명을 연장시킬 수 있다.The electric double layer capacitor according to the present invention can prolong the life of the electric double layer capacitor by preventing foreign substances generated by the chemical reaction between the negative terminal and the electrolyte of the electric double layer capacitor.
또한 양극 및 음극의 외부면에 단자가 접합되는 부분을 제외한 나머지 영역에 각각 양극재료 및 음극재료를 코팅함으로써, 집전체의 단자 접속 부분에 전극 재료를 코팅하는 과정에서 물리적 손상이 가해지는 것을 방지할 수 있다.In addition, by coating the positive electrode material and the negative electrode material on the remaining areas except the portion where the terminal is bonded to the outer surface of the positive electrode and the negative electrode, it is possible to prevent physical damage from being applied in the process of coating the electrode material on the terminal connection portion of the current collector. Can be.
또한 전극 단자가 전극 재료를 통해 접속되지 않고 직접적으로 접속됨으로써, 에너지 효율을 극대화 시킬 수 있다.In addition, the electrode terminals are directly connected without being connected through the electrode material, thereby maximizing energy efficiency.
도 1은 본 발명의 일 실시예에 따른 전기이중층 커패시터를 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating an electric double layer capacitor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전극소자를 설명하기 위한 분해 사시도이다.2 is an exploded perspective view for explaining an electrode device according to an embodiment of the present invention.
도 3은 본 발멸의 일 실시예에 따른 음극단자가 음극 집전체에 접속되는 구조를 설명하기 위한 도면이다. 3 is a view for explaining the structure in which the negative electrode terminal is connected to the negative electrode current collector according to an embodiment of the present invention.
도 4는 도 2의 A부분을 설명하기 위한 단면도이다.4 is a cross-sectional view for describing a portion A of FIG. 2.
이하 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it is noted that the same reference numerals are assigned to the same components as much as possible, even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function is apparent to those skilled in the art or may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 전기이중층 커패시터를 설명하기 위한 단면도이고, 도 2는 본 발명의 일 실시예에 따른 전극소자를 설명하기 위한 분해 사시도이며, 도 3은 본 발멸의 일 실시예에 따른 음극단자가 음극 집전체에 접속되는 구조를 설명하기 위한 도면이다. 1 is a cross-sectional view for explaining an electric double layer capacitor according to an embodiment of the present invention, Figure 2 is an exploded perspective view for explaining an electrode element according to an embodiment of the present invention, Figure 3 is an embodiment of the present ignition It is a figure for demonstrating the structure where the negative electrode terminal which concerns on an example is connected to the negative electrode electrical power collector.
도 1 내지 도 3은 전기이중층 커패시터(100)는 전극소자(10), 전극단자(20), 케이스(50), 러버캡(60), 고분자 수지(70) 및 절연 테이프(80)를 포함한다.1 to 3, the electric double layer capacitor 100 includes an electrode element 10, an electrode terminal 20, a case 50, a rubber cap 60, a polymer resin 70, and an insulating tape 80. .
전극소자(10)는 전기화학 에너지를 저장하며, 전기 에너지를 화학 에너지 또는 화학 에너지를 전기 에너지로 변환한다. 전극소자(10)는 양극(11), 음극(13), 전해액(미도시) 및 분리막(15)을 포함한다.The electrode element 10 stores electrochemical energy, and converts electrical energy into chemical energy or chemical energy into electrical energy. The electrode element 10 includes an anode 11, a cathode 13, an electrolyte (not shown), and a separator 15.
양극(11)은 양극 집전체와 양극 집전체 양면 또는 일면에 구비된 슬러리(slurry)로 만들어진 양극재료를 포함하고, 음극(13)은 음극 집전체(17)와 음극 집전체(17) 양면 또는 일면에 구비된 슬러리로 만들어진 음극재료(13a)를 포함한다. 여기서, 양극재료와 음극재료(13a)는 각각 양극 집체와 음극 집전체(17) 중 양극단자(30)와 음극단자(40)가 접속되는 영역에 코팅되지 않는다. 즉, 양극단자(30)와 음극단자(40)는 단자 집전체와 직접적으로 접속됨으로써, 에너지 효율을 극대화할 수 있다. 또한 집전체의 단자 접속 부분에 전극 재료를 코팅하는 과정에서 물리적 손상이 가해지는 것을 방지할 수 있다.The positive electrode 11 includes a positive electrode material made of a positive electrode current collector and a slurry provided on both sides or one surface of the positive electrode current collector, and the negative electrode 13 includes both the negative electrode current collector 17 and the negative electrode current collector 17. It includes a negative electrode material (13a) made of a slurry provided on one side. Here, the positive electrode material and the negative electrode material 13a are not coated in the areas where the positive electrode terminal 30 and the negative electrode terminal 40 are connected, respectively, of the positive electrode collector and the negative electrode collector 17. That is, the positive electrode terminal 30 and the negative electrode terminal 40 may be directly connected to the terminal current collector, thereby maximizing energy efficiency. In addition, physical damage can be prevented from being applied in the process of coating the electrode material on the terminal connection portion of the current collector.
양극 집전체 및 음극 집전체(17)는 전극소자(10)에서 활물질의 전기화학 반응으로 생성된 전자를 축적하여 외부회로로 전달하는 역할을 한다. 양극 집전체 및 음극 집전체는 폴리카보네이트(polycarbonate, PC), 알루미늄, 니켈, 티타늄, 동, 금, 은, 백금, 코발트 등의 단체, 합금 혹은 화학물이 사용될 수 있고, 도전성 카본, 폴리아닐린, 폴리티오펜, 폴리프리필 등의 도전성 폴리머 등이 사용될 수 있다. 특히, 슬러리로 만들어진 양극재료 및 음극재료는 전극 활물질, 도전재 및 바인더가 사용된다.The positive electrode current collector and the negative electrode current collector 17 accumulate electrons generated by the electrochemical reaction of the active material in the electrode element 10 and serve to transfer them to an external circuit. As the positive electrode current collector and the negative electrode current collector, polycarbonate (polycarbonate, PC), aluminum, nickel, titanium, copper, gold, silver, platinum, cobalt, and the like, alloys or chemicals may be used, and conductive carbon, polyaniline, poly Conductive polymers such as thiophene, polyprefill, and the like can be used. In particular, an electrode active material, a conductive material and a binder are used for the cathode material and the cathode material made of the slurry.
전극 활물질로는 전해액 내 염(salt)의 양이온 또는 음이온이 양극 집전체 및 음극 집전체(17)에 흡착되거나, 탈착이 가능한 물질이 사용될 수 있다. 즉, 전극 활물질로 활성탄이 사용될 수 있는데, 활성탄은 높은 전기전도성, 열전도성, 낮은 밀도, 적합한 내부식성, 낮은 열팽창율 그리고 높은 순도를 지닌 다공성 탄소계 물질이 이용될수 있다. 예를 들어, 활성 탄소분말(activated carbon powder, ACP), 탄소나노튜브(carbon nano tube,CNT), 흑연, 기상 성장 탄소섬유(vapor grown carbon fiber, VGCF), 탄소 에어로겔(carbon aerogel), 폴리아크릴로나이트릴(poly acrylonitrile, PAN) 및 폴리비닐리덴플로라이드(polyvinylidenefluoride, PVdF)와 같은 고분자를 탄화하여 제조하는 탄소나노섬유(carbon nano fiber, CNF) 등이 사용될 수 있다.As the electrode active material, a material in which a cation or anion of a salt in the electrolyte solution is adsorbed to the positive electrode current collector and the negative electrode current collector 17 or is detachable. That is, activated carbon may be used as an electrode active material, and activated carbon may be a porous carbon-based material having high electrical conductivity, thermal conductivity, low density, suitable corrosion resistance, low thermal expansion rate, and high purity. For example, activated carbon powder (ACP), carbon nanotube (CNT), graphite, vapor grown carbon fiber (VGCF), carbon aerogel, polyacryl Carbon nanofibers (CNF) manufactured by carbonizing polymers such as poly acrylonitrile (PAN) and polyvinylidene fluoride (PVdF) may be used.
도전재는 전극에 도전성을 부여하기 위한 물질로서, 카본 블랙(carbon black, CB), 아세틸렌 블랙(acetylene black), 캐첸 블랙(ketjen black), 흑연 또는 슈퍼-피(super-p) 등이 사용될 수 있다.The conductive material may be carbon black (CB), acetylene black, ketjen black, graphite, or super-p as a material for imparting conductivity to the electrode. .
바인더는 전극 활물질과 도전재의 결합 및 전극 활물질과 양극 집전체 및 음극 집전체(17) 결착을 위한 가교역할을 한다. 바인더로 사용될 수 있는 물질로는 CMC(carboxy methyl cellulose), 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP), 불소계의 폴리테트라플루오로에틸렌(poly tetra fluoroethylene, PTFE) 분말이나 에멀젼 및 고무계의 스티렌 부타디엔 러버(styrene butadienerubber,SBR) 등이 사용될 수 있고, 이와 같은 물질이 적어도 하나 이상이 혼합된 형태로 사용될 수 있다. The binder serves as a crosslinking agent for bonding the electrode active material and the conductive material and for binding the electrode active material, the positive electrode current collector, and the negative electrode current collector 17. Materials that can be used as binders include CMC (carboxy methyl cellulose), polyvinylpyrrolidone (PVP), fluorinated poly tetra fluoroethylene (PTFE) powder, emulsions and rubber styrene butadiene rubbers ( styrene butadienerubber, SBR) may be used, and at least one of such materials may be used in a mixed form.
CMC는 전극 슬러리의 점도를 풀과 비슷한 상태로 유지하면서 양극 집전체 및 음극 집전체와 결착력을 높이는 역할을 한다. CMC는 결착력을 높이지만 전극 슬러리가 캐스팅(casting)된 후에는 전극물질층의 취성(embrittlement)을 증가시킨다. CMC는 집전체와 전극 슬러리의 결착력을 얻기 위해 사용될 수 있다. The CMC plays a role of increasing binding force with the positive electrode current collector and the negative electrode current collector while maintaining the viscosity of the electrode slurry in a state similar to a paste. CMC increases binding but increases the embrittlement of the electrode material layer after the electrode slurry is cast. CMC can be used to obtain a binding force between the current collector and the electrode slurry.
폴리비닐피롤리돈은 분산제로 작용하며 전극 슬러리를 이루고 있는 입자들의 분산을 도와주는 역할을 한다. 폴리비닐피롤리돈은 첨가량이 적고 분산에 도움을 줄 수 있는 다른 물질이 있다면 대체 가능하다. Polyvinylpyrrolidone acts as a dispersant and helps to disperse the particles forming the electrode slurry. Polyvinylpyrrolidone may be substituted if there is a small amount added and other substances that can aid in dispersion.
폴리테트라플루오로에틸렌은 전극 슬러리 내부에서 에멀젼 상태로 포진하고 있다가 용융점 이상에서 용융되면 거미줄과 같이 폴리머가 입자들을 감싸 안게 된다. 폴리테트라플루오로에틸렌은 입자간의 결합력을 안정적으로 높여줄 수 있다. The polytetrafluoroethylene is hermetically encapsulated inside the electrode slurry, and when melted above the melting point, the polymer encloses the particles like a spider web. Polytetrafluoroethylene can stably increase the binding force between particles.
고무계의 스티렌 부타디엔 러버는 입자들의 표면을 코팅하여 표면을 보호하는 역할을 한다. Rubber-based styrene butadiene rubber serves to protect the surface by coating the surface of the particles.
추가적으로, 바인더는 폴리비닐리덴플루오라이드, 카르복시메틸셀룰로오즈, 하이드로프로필메틸셀룰로오즈 및 폴리비닐알콜로 등을 더 포함할 수 있다.Additionally, the binder may further include polyvinylidene fluoride, carboxymethylcellulose, hydropropylmethylcellulose, polyvinylalcohol, and the like.
전해액은 양극 및 음극에서 발생하는 전하가 원활하게 이동하게 할 수 있으며, 액체 상태의 용매로 양이온과 음이온으로 이루어진 염으로 구성할 수 있다. 예를 들어, 전해액으로는 염산, 황산, 질산, 초산을 단독으로 또는 2종 이상을 선택하여 증류수와 혼합하여 사용될 수 있다. 또한, Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, LiOH, NaOH, KOH, NH4OH을 단독으로 또는 2종 이상을 선택하여 증류수와 혼합하여 사용될 수 있다.The electrolyte may smoothly move charges generated at the anode and the cathode, and may be composed of a salt consisting of a cation and an anion as a liquid solvent. For example, as the electrolyte, hydrochloric acid, sulfuric acid, nitric acid, acetic acid may be used alone or in combination with distilled water. In addition, Li2SO4, Na2SO4, K2SO4, (NH4) 2SO4, LiOH, NaOH, KOH, NH4OH may be used alone or two or more selected by mixing with distilled water.
또한, 전해액으로는 환형 카보네이트, 선형 카보네이트, 락톤, 에테르, 에스테르, 케톤, 및/또는 물을 사용할 수 있다.In addition, cyclic carbonate, linear carbonate, lactone, ether, ester, ketone, and / or water may be used as the electrolyte.
환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 있고, 선형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 및 메틸 프로필 카보네이트(MPC) 등이 있다. 락톤의 예로는 감마부티로락톤(GBL)이 있으며, 에테르의 예로는 디부틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,4-디옥산, 1,2-디메톡시에탄 등이 있다. 또한 에스테르의 예로는 메틸 아세테이트, 에틸 아세테이트, 메틸 프로피오네이트, 메틸 피발레이트 등이 있으며, 케톤으로는 폴리메틸비닐 케톤이 있으나, 이에 한정하지 않는다. 이와 같은 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Examples of cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and examples of linear carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC), and dipropyl carbonate (DPC). ), Ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), and the like. Examples of lactones include gamma butyrolactone (GBL), and ethers include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, and the like. . In addition, examples of the ester include methyl acetate, ethyl acetate, methyl propionate, methyl pivalate, and the like, and ketones include, but are not limited to, polymethylvinyl ketone. Such a solvent can be used individually or in mixture of 2 or more types.
이 뿐만 아니라, 전해액으로 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함하고, PF6-, BF4-, Cl-, Br-, I-, ClO4-, ASF6-, CH3CO2-, CF3SO3-, N(CF3SO2)2-, C(CF2SO2)3-와 같은 음이온이나 이들의 조합으로 이루어진 이온을 포함하는 염인 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴(AN), 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 또는 이들의 혼합물로 이루어진 군에서 선택되는 유기 용매를 사용할 수 있고, 이와 같은 유기 용매에 TEABF4(tetraethylammonium tetrafluorborate), TEMABF4(triethylmethylammonium tetrafluorborate), LiCl04(lithium perchlorate), LiPF6(lithium hexafluorophosphate), LiAsF6(lithium hexafluoroarsenate), LiBF4(lithium tetraflouroborate)으로 이루어진 군으로부터 선택되는 단독으로 또는 2종 이상의 염을 혼합하여 사용할 수 있다.In addition, the electrolyte contains ions composed of alkali metal cations such as Li +, Na + and K + or a combination thereof, and includes PF 6-, BF 4-, Cl-, Br-, I-, ClO 4-, ASF 6-and CH 3 CO 2-. , Propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), salts containing ions consisting of anions such as CF3SO3-, N (CF3SO2) 2-, C (CF2SO2) 3- or combinations thereof Dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile (AN), dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl Organic solvents selected from the group consisting of carbonate (EMC), gamma butyrolactone or mixtures thereof may be used, and such organic solvents include TEABF4 (tetraethylammonium tetrafluorborate), TEMABF4 (triethylmethylammonium tetrafluorborate), LiCl04 (lithium perchlorate), and LiPF6. (lithium hexafluorophosphate), LiAsF6 (l Ithium hexafluoroarsenate), LiBF4 (lithium tetraflouroborate) can be used alone or in combination of two or more salts selected from the group consisting of.
이와 같은 전해액은 분리막(15)에 함침 또는 코팅되도록 사용될 수 있다.Such an electrolyte solution may be used to be impregnated or coated on the separator 15.
분리막(15)은 양극(11)과 음극(13) 사이에 위치하여 이들을 전기적으로 절연시켜주는 역할을 한다. 분리막(15)은 특정 형태로 한정되는 것은 아니지만, 다공성 분리막을 사용하는 것이 바람직하며, 일 예로서 펄프계, 폴리프로필렌계, 폴리에틸렌계, 또는 폴리올레핀계 다공성 분리막 등이 이용될 수 있다.The separator 15 is positioned between the anode 11 and the cathode 13 to electrically insulate them. Although the separator 15 is not limited to a specific form, it is preferable to use a porous separator, and as an example, a pulp-based, polypropylene-based, polyethylene-based, or polyolefin-based porous separator may be used.
전극소자(10)는 양극(11), 음극(13), 양극(11)과 음극(13) 사이 또는 양극(11)과 음극(13) 양면에 분리막(15)을 적층하고, 권취하여 형성이 된다. 즉, 전극소자(10)는 권취되어 원통형으로 형성될 수 있다.The electrode element 10 is formed by stacking and winding the separator 15 between the anode 11, the cathode 13, between the anode 11 and the cathode 13 or on both sides of the anode 11 and the cathode 13. do. That is, the electrode element 10 may be wound and formed in a cylindrical shape.
전극소자(10)는 전극소자(10) 상부에 각각 돌출 형성된 한 쌍의 전극단자(20)를 포함한다. 한 쌍의 전극단자(20)는 양극단자(30) 및 음극단자(40)로 구분할 수 있으며, 각각 양극(11) 및 음극(12)과 연결되어, 전극소자(10)를 외부전력과 연결해주는 역할을 한다.The electrode element 10 includes a pair of electrode terminals 20 protruding from each other on the electrode element 10. The pair of electrode terminals 20 may be divided into the positive electrode terminal 30 and the negative electrode terminal 40, and are connected to the positive electrode 11 and the negative electrode 12, respectively, to connect the electrode element 10 to external power. Play a role.
양극단자(30)는 양극(11)과 접속하는 양극 접속부(31), 양극 접속부(31)와 연결된 양극 환봉부(32)로 이루어지는 양극 전극탭(33) 및 양극 환봉부(32)에 용접된 양극 외부 접속부(34)를 포함한다. 양극 접속부(31)는 양극(11) 중 슬러리로 만들어진 양극재료가 미코팅된 영역과 접속하는 영역이다.The positive electrode terminal 30 is welded to the positive electrode electrode tab 33 and the positive electrode sealing portion 32 which are composed of the positive electrode connecting portion 31 connected to the positive electrode 11, and the positive electrode connecting portion 32 connected to the positive electrode connecting portion 31. An anode external connection 34. The positive electrode connecting portion 31 is a region in which the positive electrode material made of a slurry of the positive electrode 11 is connected with an uncoated region.
음극단자(40)는 음극(13)과 접속하는 음극 접속부(41), 음극 접속부(41)와 연결된 음극 환봉부(43)로 이루지는 음극 전극탭(45) 및 음극 환봉부(43)에 용접된 음극 외부 접속부(47)를 포함한다. 음극 접속부(41)는 음극(13) 중 슬러리가 만들어진 음극재료(13a)가 미코팅된 영역과 접속하는 영역이다.The negative electrode terminal 40 is welded to the negative electrode tab 45 and the negative electrode round portion 43 formed of a negative electrode connecting portion 41 connected to the negative electrode 13, and a negative electrode sealing portion 43 connected to the negative electrode connecting portion 41. Cathode external connection 47. The negative electrode connecting portion 41 is a region in which the negative electrode material 13a in which the slurry is made is connected to the uncoated region of the negative electrode 13.
이 때, 양극단자(30) 및 음극단자(40)는 알루미늄 스틸 또는 스테인레스 스틸 중 하나의 재질로 사용될 수 있으며, 표면은 니켈 또는 주석에 의해 코팅될 수 있다.At this time, the positive electrode terminal 30 and the negative electrode terminal 40 may be used as a material of one of aluminum steel or stainless steel, the surface may be coated by nickel or tin.
여기서, 음극(13), 분리막(15) 및 음극 접속부(41)는 서로 간의 단단한 고정을 위해 음극(13), 분리막(15) 및 음극 접속부(41)를 관통하는 복수의 천공(46)을 형성한다. 복수의 천공(46)은 펀칭(punching)으로 형성되고, 펀칭되면서 생성된 버를 압착하여 음극(13), 분리막(15) 및 음극 접속부(41)를 고정시킨다. 여기서, 복수의 천공(46)은 제1 천공(47), 제2 천공(48) 및 제3 천공(49)으로 한정하였지만 이에 한정하지 않고 천공의 개수를 설정할 수 있다. Here, the negative electrode 13, the separator 15, and the negative electrode connection part 41 form a plurality of perforations 46 penetrating the negative electrode 13, the separator 15, and the negative electrode connection part 41 to secure each other. do. The plurality of perforations 46 are formed by punching, and the burrs generated while punching are pressed to fix the negative electrode 13, the separator 15, and the negative electrode connecting part 41. Here, although the plurality of perforations 46 is limited to the first perforation 47, the second perforation 48, and the third perforation 49, the number of perforations may be set without being limited thereto.
절연 테이프(80)는 음극(13)과 음극 접속부(41)가 접속되는 부분이 덮이도록 부착된다. 바람직하게는, 절연 테이프(80)는 음극 접속부(41)와 전해액이 서로 접속되지 않게 부착을 한다. 이를 통해, 전기 이중층 커패시터(100)는 음극 접속부(41)와 전해액 사이에서의 화학반응으로 인한 발생되는 이물질을 미연에 방지함으로써, 이물질의 외부 노출을 막을 수 있다.The insulating tape 80 is attached so that the part to which the negative electrode 13 and the negative electrode connection part 41 are connected is covered. Preferably, the insulating tape 80 is attached so that the negative electrode connection part 41 and electrolyte solution are not mutually connected. As a result, the electric double layer capacitor 100 may prevent foreign substances generated by the chemical reaction between the negative electrode connecting portion 41 and the electrolyte solution in advance, thereby preventing external exposure of the foreign substances.
케이스(50)는 상부에 개방부가 형성되고, 개방부를 통하여 전극소자(10)가 내장된다. 케이스(50) 내부에는 전극소자(10)뿐만 아니라 전극소자(10)에서 발생되는 가스 등도 함께 존재하게 되므로, 케이스(50)의 소재로는 가벼우면서도 가스 등에 의한 부식의 영향이 적은 알루미늄 또는 알루미늄 합금이 사용될 수 있다.The case 50 has an opening formed at an upper portion thereof, and the electrode element 10 is embedded through the opening. In the case 50, not only the electrode element 10 but also the gas generated from the electrode element 10 may be present together. As the material of the case 50, aluminum or an aluminum alloy is light and has little influence of corrosion by gas. This can be used.
케이스(50)는 후술되는 러버캡(60)과 접하는 측면이 외부의 압력에 의해 눌려 오목하게 형성되는 고정부(51)를 포함한다. 고정부(51)는 러버캡(60)이 케이스(50)의 개방부를 통해 삽입된 후, 외부의 압력에 의해 안쪽 방향으로 오목하게 변형되는 부분이며, 이를 통해 케이스(50)와 러버캡(60)을 밀착시켜 1차 밀봉을 한다. 또한 케이스(50)는 러버캡(60)이 삽입된 후, 케이스 끝단(53)을 갈고리 형상으로 변형을 하며, 이 때 갈고리 형상은 러버캡(60)과 이격되게 형성될 수 있다. The case 50 includes a fixing portion 51 in which a side contacting the rubber cap 60 to be described later is pressed by an external pressure to be concave. The fixing portion 51 is a portion in which the rubber cap 60 is inserted through the opening of the case 50 and is concavely deformed inwardly by an external pressure, through which the case 50 and the rubber cap 60 are formed. ) To close the primary seal. In addition, after the rubber cap 60 is inserted into the case 50, the case end 53 is deformed into a hook shape, and the hook shape may be formed to be spaced apart from the rubber cap 60.
케이스(50)는 원통형으로 형성될 수 있다. 이 때, 최대지름(Φ1)이 18.1mm±0.1이고, 고정부(51)가 형성된 부분의 지름(Φ2)이 16.3mm±0.1이며, 높이(H1)는 40.7mm±0.05이고, 고정부(51)에서 케이스의 상부까지의 높이(H2)는 3.8mm±0.1이다.The case 50 may be formed in a cylindrical shape. In this case, the maximum diameter Φ 1 is 18.1 mm ± 0.1, the diameter Φ 2 of the portion where the fixing portion 51 is formed is 16.3 mm ± 0.1, the height H1 is 40.7 mm ± 0.05, and the fixing portion 51 H2 from) to the top of the case is 3.8mm ± 0.1.
하지만 케이스(50)는 원통형으로 한정되지 않고, 전극소자(10)의 형상에 대응하는 형상으로 이루어질 수 있다. 달리 말하면, 전극소자(10)가 원통형일 경우 케이스(50)도 원통형이 되며, 전극소자(10)가 다각형 형상일 경우 케이스(50)도 다각형 형상일 수 있다. 하지만, 본 발명의 기술적 사상은 이에 한정되는 것은 아니며, 전극소자(10)가 원통형일 때, 케이스(50)가 다각형 형상일 수 있고, 전극소자(10)가 다각형 형상일 때, 케이스(50)가 원통형일 수 있다.However, the case 50 is not limited to a cylindrical shape and may have a shape corresponding to the shape of the electrode element 10. In other words, when the electrode element 10 is cylindrical, the case 50 may be cylindrical, and when the electrode element 10 is polygonal, the case 50 may also be polygonal. However, the technical idea of the present invention is not limited thereto, and the case 50 may have a polygonal shape when the electrode element 10 is cylindrical, and the case 50 when the electrode element 10 has a polygonal shape. May be cylindrical.
러버캡(60)은 개방부 상부에 내측에 결합하여 케이스(50)를 밀봉한다. 즉, 러버캡(60)은 케이스(50)의 내부가 밀봉된 상태로 만들어, 전극소자(10)의 내부와 외부를 차단시킬 수 있다.The rubber cap 60 is coupled to the inside of the upper portion of the opening to seal the case 50. That is, the rubber cap 60 may be made to seal the inside of the case 50 to block the inside and outside of the electrode element 10.
러버캡(60)은 탄성이 있는 고무 소재가 사용될 수 있다. 예컨대, 고무 소재로는 에틸렌프로필렌 공중합체(EPT), 에틸렌프로필렌디엔 공중합체(EPDM) 등의 올레핀계 합성 고무, 실리콘계 고무, 불소계 고무, 부틸계 고무 등이 사용될 수 있다.The rubber cap 60 may be a rubber material having elasticity. For example, an olefinic synthetic rubber such as ethylene propylene copolymer (EPT), ethylene propylene diene copolymer (EPDM), silicone rubber, fluorine rubber, butyl rubber, or the like may be used as the rubber material.
러버캡(60)에는 제1 관통구(61) 및 제2 관통구(63)가 형성되어 각각 양극단자(30) 및 음극단자(40)와 끼움 결합을 할 수 있다. 즉, 러버캡(60)은 제1 관통구(61) 및 제2 관통구(63)를 통해 전극소자(10)의 상부에 이격되어 설치될 수 있다. 따라서, 러버캡(60)과 전극소자(10) 사이에 0.4mm 내지 10mm의 이격거리를 두고 설치될 수 있다. 이를 통해, 러버캡(60)은 표면에 이물질의 발생을 억제시킬 수 있다. The rubber cap 60 has a first through hole 61 and a second through hole 63 formed therein so as to be fitted into the positive electrode terminal 30 and the negative electrode terminal 40, respectively. That is, the rubber cap 60 may be spaced apart from the upper portion of the electrode element 10 through the first through hole 61 and the second through hole 63. Therefore, the rubber cap 60 and the electrode element 10 may be installed at a distance of 0.4mm to 10mm. Through this, the rubber cap 60 can suppress the generation of foreign matter on the surface.
즉, 전기이중층 커패시터(100)는 러버캡(60)과 전극소자(10) 사이에 이격거리를 두고 설치함으로서, 장시간 사용하여도 이물질이 발생하지 않아 수명이 증가될 수 있다.That is, since the electric double layer capacitor 100 is provided with a separation distance between the rubber cap 60 and the electrode element 10, even if used for a long time, the foreign matter does not occur, the life can be increased.
전술된 바와 같이, 전기이중층 커패시터(100)는 러버캡(60)과 전극소자(10) 사이에 0.4 내지 10mm의 이격거리를 두고 설치하며, 만일 이격거리가 0.4mm 보다 짧아지면, 전기이중층 커패시터(100)를 장시간 사용시 러버캡(60)의 표면에 이물질이 생성되거나 수명이 빨리 단축되고, 이격거리가 10mm보다 멀어지면, 전기이중층 커패시터(100)의 에너지밀도가 낮아지게 된다.As described above, the electric double layer capacitor 100 is installed with a separation distance of 0.4 to 10 mm between the rubber cap 60 and the electrode element 10, and if the separation distance is shorter than 0.4 mm, the electric double layer capacitor ( When a long time using 100), foreign matter is generated on the surface of the rubber cap 60 or the life is shortened quickly. If the separation distance is farther than 10 mm, the energy density of the electric double layer capacitor 100 is lowered.
고분자 수지(70)는 러버캡(60) 상부면에 개방부 끝단(53)이 잠기도록 형성된다. 따라서, 고분자 수지(70)는 케이스(50)를 2차 밀봉을 함으로써, 전해액이 외부로 누출되는 누액 현상을 방지할 수 있다. 특히, 고분자 수지(70)는 개방부 끝단(53)이 덮어지도록 형성하여 케이스 끝단(53)에 대한 마감처리도 동시에 할 수 있다.The polymer resin 70 is formed so that the opening end 53 is locked to the upper surface of the rubber cap 60. Therefore, the polymer resin 70 can prevent the leakage of the electrolyte leakage to the outside by sealing the case 50. In particular, the polymer resin 70 may be formed so that the open end 53 is covered so as to finish the finish on the case end 53.
고분자 수지(70)는 기계적 성질 및 내열성이 우수한 고분자 수지로 이루어진 것일 수 있으며, 바람직하게는 에폭시 수지로 이루어질 수 있다.The polymer resin 70 may be made of a polymer resin having excellent mechanical properties and heat resistance, and preferably, may be made of an epoxy resin.
에폭시 수지는 분자 내에 에폭시기를 갖는 수지상 물질 및 에폭시기의 중합에 의해서 생긴 열경화성 수지로서, 굽힘 강도 및 굳기 등 기계적 성질이 우수하고, 경화 시에 휘발성 물질의 발생 및 부피의 수축이 없고, 경화할 때는 재료면에 큰 접착력을 가지는 특징을 지닌다.Epoxy resins are thermosetting resins produced by polymerization of epoxy groups and dendritic materials having epoxy groups in a molecule. They are excellent in mechanical properties such as bending strength and hardness, and do not generate volatile substances and shrinkage in volume during curing. It has a feature of great adhesion to cotton.
특히, 고분자 수지(70)는 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 하이드로제네이티드 비스페놀 A형 에폭시 수지, 브로민에이티드 에폭시 수지, BPA-노볼락형 에폭시 수지, 시클로알리파틱형 에폭시 수지 또는 이들의 혼합물로부터 선택되는 군 중 적어도 어느 하나 이상을 포함할 수 있다.In particular, the polymer resin 70 is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a hydrogenated bisphenol A type epoxy resin, a brominated epoxy resin, It may include at least one or more of the group selected from BPA- novolac-type epoxy resin, cycloaliphatic epoxy resin or a mixture thereof.
도 4는 도 2의 A부분을 설명하기 위한 단면도이다.4 is a cross-sectional view for describing a portion A of FIG. 2.
도 4를 참조하면, 절연 테이프(80)는 복수의 천공으로 인해 고정된 음극 접속부(41), 음극(13) 및 분리막(15)이 덮이도록 부착된다.Referring to FIG. 4, the insulating tape 80 is attached to cover the fixed cathode connection 41, the cathode 13, and the separator 15 due to a plurality of perforations.
여기서, 복수의 천공을 형성하기 위해, 음극 접속부(41)는 펀칭을 이용하여 음극(13)과 분리막(15)을 관통하는 제1 내지 제3 천공(47, 48, 49)을 형성한다. 제1 내지 제3 천공(47, 48, 49)은 음극 접속부(41)가 펀칭되면서 생성된 버를 분리막(15)의 하면 방향으로 압착하여 음극(13), 분리막(15) 및 음극 접속부(41)가 고정되도록 형성한다. Here, in order to form a plurality of perforations, the negative electrode connecting portion 41 forms first to third perforations 47, 48, and 49 penetrating the cathode 13 and the separator 15 by punching. The first to third perforations 47, 48, and 49 press the burrs generated while the negative electrode connecting portion 41 is punched in the direction of the lower surface of the separator 15 to form the negative electrode 13, the separator 15, and the negative electrode connecting portion 41. ) To be fixed.
즉, 펀칭으로 발생되는 버는 음극(13)과 분리막(15)을 관통하여 분리막(15)의 하면 밖으로 돌출되고, 돌출된 버는 분리막(15)의 하면 방향으로 압착되어 음극 접속부(41), 음극(13) 및 분리막(15)을 고정시킨다. That is, the burrs generated by punching penetrate through the cathode 13 and the separator 15 and protrude out of the lower surface of the separator 15. 13) and the separator 15 is fixed.
음극(13), 분리막(15) 및 음극 접속부(41)가 고정되면, 절연 테이프(80)는 고정된 부분이 전체적으로 덮이도록 부착한다. 즉, 절연 테이프(80)는 음극(13), 분리막(15) 및 음극 접속부(41)가 적층된 일면과 적층되지 않은 타면이 둘러싸이도록 부착한다. 바람직하게는, 절연 테이프(80)는 전해액이 음극 접속부(41)에 접속되지 않도록 부착한다.When the negative electrode 13, the separator 15, and the negative electrode connecting portion 41 are fixed, the insulating tape 80 is attached to cover the fixed portion as a whole. That is, the insulating tape 80 is attached so that one surface on which the negative electrode 13, the separator 15, and the negative electrode connecting portion 41 are stacked and the other surface which is not stacked are surrounded. Preferably, the insulating tape 80 is attached so that the electrolyte solution may not be connected to the negative electrode connecting portion 41.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific preferred embodiments described above, and the present invention belongs to the present invention without departing from the gist of the present invention as claimed in the claims. Various modifications can be made by those skilled in the art, and such changes are within the scope of the claims.
[부호의 설명][Description of the code]
10: 전극소자 11: 양극10: electrode element 11: anode
13: 음극 13a: 음극재료 13: cathode 13a: cathode material
15: 분리막 17: 음극 집전체15: separator 17: negative electrode current collector
20: 전극단자 30: 양극단자20: electrode terminal 30: anode terminal
31: 양극 접속부 32: 양극 환봉부31: positive electrode connecting portion 32: positive electrode sealing portion
33: 양극 전극탭 34: 양극 외부 접속부33: anode electrode tab 34: anode external connection
40: 음극단자 41: 음극 접속부40: negative electrode terminal 41: negative electrode connection portion
42: 음극 환봉부 43: 음극 전극탭42: negative electrode sealing portion 43: negative electrode tab
44: 음극 외부 접속부 46: 천공44: cathode external connection 46: perforation
47: 제1 천공 48: 제2 천공47: first perforation 48: second perforation
49: 제3 천공 50: 케이스49: third perforation 50: case
51: 고정부 53: 케이스 끝단51: fixed part 53: case end
60: 러버캡 61: 제1 관통구60: rubber cap 61: first through hole
63: 제2 관통구 70: 고분자 수지63: second through hole 70: polymer resin
80: 절연 테이프 100: 전기이중층 커패시터80: insulating tape 100: electric double layer capacitor

Claims (4)

  1. 양극, 음극, 전해액 및 분리막을 포함하고, 전기화학 에너지가 저장되는 전극소자;An electrode device including an anode, a cathode, an electrolyte, and a separator, the electrochemical energy being stored;
    상기 양극 중 슬러리로 만들어진 양극재료가 미코팅된 영역과 접속하는 양극 접속부가 형성되는 양극단자;A positive electrode terminal in which a positive electrode connecting portion is formed to connect an uncoated region of a positive electrode material made of a slurry of the positive electrode;
    상기 음극 중 슬러리로 만들어진 음극재료가 미코팅된 영역과 접속하는 음극 접속부가 형성되는 음극단자; 및A negative electrode terminal on which a negative electrode connection portion for connecting a negative electrode material made of a slurry of the negative electrode to an uncoated region is formed; And
    상기 음극 접속부가 덮이도록 부착되는 절연 테이프;An insulating tape attached to cover the cathode connecting portion;
    를 포함하는 전기이중층 커패시터.Electric double layer capacitor comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 음극 접속부는,The cathode connection portion,
    상기 음극 및 상기 분리막을 관통하는 복수의 천공을 형성하는 것을 특징으로 하는 전기이중층 커패시터.And a plurality of perforations penetrating the cathode and the separator.
  3. 제 2항에 있어서,The method of claim 2,
    상기 복수의 천공은,The plurality of perforations,
    상기 음극 접속부가 펀칭(punching)되면서 생성된 버(barr)를 상기 분리막의 하면 방향으로 압착하여 상기 음극, 상기 분리막 및 상기 음극 접속부가 고정되도록 형성하는 것을 특징으로 하는 전기이중층 커패시터.And compressing a burr generated while the cathode connection part is punched in the direction of the bottom surface of the separator to form the cathode, the separator and the cathode connection part to be fixed.
  4. 제 1항에 있어서,The method of claim 1,
    상기 절연 테이프는,The insulating tape,
    상기 음극, 상기 분리막 및 상기 음극 접속부가 적층된 일면과, 타면이 둘러싸이도록 부착하는 것을 특징으로 하는 전기이중층 커패시터.And attaching one surface of the cathode, the separator, and the cathode connecting part to be stacked, and the other surface of the cathode, the separator, and the cathode connecting part.
PCT/KR2018/002640 2018-03-06 2018-03-06 Electric double-layer capacitor WO2019172465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/002640 WO2019172465A1 (en) 2018-03-06 2018-03-06 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/002640 WO2019172465A1 (en) 2018-03-06 2018-03-06 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
WO2019172465A1 true WO2019172465A1 (en) 2019-09-12

Family

ID=67847339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002640 WO2019172465A1 (en) 2018-03-06 2018-03-06 Electric double-layer capacitor

Country Status (1)

Country Link
WO (1) WO2019172465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210202185A1 (en) * 2019-12-30 2021-07-01 Solaredge Technologies Ltd. Enhanced Capacitor Tabs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103432A (en) * 2008-03-28 2009-10-01 엘지마이크론 주식회사 Electro Double Layer Capacitor And Method Thereof
KR20160006535A (en) * 2014-07-09 2016-01-19 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising the same
KR101675786B1 (en) * 2016-03-14 2016-11-16 주식회사 비츠로셀 Electrical double layer capacitor with excellent impact resistance
KR20170113772A (en) * 2016-03-25 2017-10-13 비나텍주식회사 Current collector for Electrochemical energy storage device and Manufacturing method thereof
KR20170113782A (en) * 2016-03-25 2017-10-13 비나텍주식회사 Electric Double Layer Capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103432A (en) * 2008-03-28 2009-10-01 엘지마이크론 주식회사 Electro Double Layer Capacitor And Method Thereof
KR20160006535A (en) * 2014-07-09 2016-01-19 주식회사 엘지화학 Electrode assembly and lithium secondary battery comprising the same
KR101675786B1 (en) * 2016-03-14 2016-11-16 주식회사 비츠로셀 Electrical double layer capacitor with excellent impact resistance
KR20170113772A (en) * 2016-03-25 2017-10-13 비나텍주식회사 Current collector for Electrochemical energy storage device and Manufacturing method thereof
KR20170113782A (en) * 2016-03-25 2017-10-13 비나텍주식회사 Electric Double Layer Capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210202185A1 (en) * 2019-12-30 2021-07-01 Solaredge Technologies Ltd. Enhanced Capacitor Tabs
US11705286B2 (en) * 2019-12-30 2023-07-18 Solaredge Technologies Ltd. Enhanced capacitor tabs

Similar Documents

Publication Publication Date Title
JP5081214B2 (en) Organic electrolyte capacitor
TWI426635B (en) Lithium battery with external positive thermal coefficient layer
KR20000076975A (en) Secondary battery
KR20000017635A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN101501882B (en) Lithium battery with external positive thermal coefficient layer
WO2018097500A1 (en) Battery pack comprising gasket compression limiter
KR101495953B1 (en) Pouch for secondary battery and secondary battery using the same
KR102028597B1 (en) Current collector for Electrochemical energy storage device and Manufacturing method thereof
CN111864252A (en) Secondary battery device
CN1186846C (en) Non-aqueous electrolyte secondary battery and mfg. method
WO2019172465A1 (en) Electric double-layer capacitor
JP2004199994A (en) Battery
KR20170070339A (en) Electrochemical energy storage device and manufacturing method thereof
KR102079677B1 (en) Electric Double Layer Capacitor
KR101508646B1 (en) Electrochemical energy storage device and method thereof
US10998591B2 (en) Battery and capacitor hybrid assembly structure
US11075397B2 (en) Bipolar secondary battery
WO2019093735A1 (en) Method for improving lifespan of lithium secondary battery
CN110462874A (en) The insulation board of secondary cell and secondary cell
JP2009272585A (en) Electrochemical capacitor
CN115101898A (en) Connection structure of secondary battery's utmost point ear and apron and secondary battery
JP4202549B2 (en) Electrochemical device and manufacturing method thereof
WO2019172466A1 (en) Current collector for electrochemical energy storage device and method for manufacturing same
CN212967848U (en) Button cell
KR20130126107A (en) Secondary battery comprising the same lead member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908948

Country of ref document: EP

Kind code of ref document: A1