WO2019172390A1 - Biaxially stretched polypropylene film, metallized film, film capacitor and film roll - Google Patents

Biaxially stretched polypropylene film, metallized film, film capacitor and film roll Download PDF

Info

Publication number
WO2019172390A1
WO2019172390A1 PCT/JP2019/009166 JP2019009166W WO2019172390A1 WO 2019172390 A1 WO2019172390 A1 WO 2019172390A1 JP 2019009166 W JP2019009166 W JP 2019009166W WO 2019172390 A1 WO2019172390 A1 WO 2019172390A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially stretched
less
stretched polypropylene
polypropylene film
Prior art date
Application number
PCT/JP2019/009166
Other languages
French (fr)
Japanese (ja)
Inventor
道子 末葭
剛史 冨永
立治 石田
忠和 石渡
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to CN201980016778.2A priority Critical patent/CN111801373B/en
Priority to KR1020207022485A priority patent/KR20200130245A/en
Publication of WO2019172390A1 publication Critical patent/WO2019172390A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present disclosure relates to a biaxially stretched polypropylene film, a metallized film, a film capacitor, and a film roll.
  • the biaxially stretched polypropylene film has excellent electrical characteristics such as high voltage resistance and low dielectric loss characteristics, and has high moisture resistance, and is therefore used as a dielectric for film capacitors.
  • the metallized film 5 constituting the film capacitor includes a biaxially stretched polypropylene film 10 and a metal layer 30 provided on the biaxially stretched polypropylene film 10.
  • an insulating margin 21 extending continuously in the longitudinal direction D1 is provided at one end 51 in the width direction D2.
  • the insulation margin 21 is formed by covering a predetermined position of the biaxially stretched polypropylene film 10 with oil before metal deposition is performed on the biaxially stretched polypropylene film 10.
  • the metal layer 30 is located beside the insulation margin 21 (laterally in the width direction D2).
  • the metal layer 30 extends from the other end 52 in the width direction D2 to the insulation margin 21.
  • the area of the metal layer 30 is larger than that of the insulation margin 21.
  • the thickness of the metal layer 30 is large.
  • a portion 31 having a large thickness of the metal layer 30 may be referred to as a heavy edge portion.
  • the portion 31 is referred to as a heavy edge portion 31.
  • the heavy edge portion 31 extends continuously in the longitudinal direction D1.
  • the heavy edge portion 31 is provided in order to strengthen the bonding between the metallized film 5 and the metallicon electrode.
  • the portion 32 between the heavy edge portion 31 and the insulation margin 21 may be called an active portion.
  • the portion 32 is referred to as an active portion 32.
  • the thickness of the active part 32 is smaller than that of the heavy edge part 31.
  • a molten polypropylene resin is extruded into a sheet shape with a T-die to obtain a cast original fabric sheet, the cast original fabric sheet is biaxially stretched, and heat setting is performed. This is wound up to obtain a biaxially stretched polypropylene film, oil is attached to the biaxially stretched polypropylene film, and metal deposition is performed on this to produce a pre-slit metallized film 6 (see FIG. 3). .
  • the pre-slit metallized film 6 includes a plurality of insulating margins 21 extending continuously in the longitudinal direction D1, and a metal layer 300 having a plurality of heavy edge portions 31 extending continuously in the longitudinal direction D1. .
  • the insulation margins 21 and the metal layers 300 are alternately arranged in the width direction D2.
  • Each metal layer 300 includes two active portions 32 and a heavy edge portion 31 located between the active portions 32. That is, in each metal layer 300, the first active portion 32, the heavy edge portion 31, and the second active portion 32 are arranged in this order in the width direction D2.
  • a cutting blade is inserted at the center in the width direction of each insulating margin 21 (center in the width direction D2) and the center in the width direction of each heavy edge portion 31 in the pre-slit metallized film 6, and the pre-slit metallized film 6 in the width direction D2.
  • the metallized film 5 can be obtained by dividing it into a plurality of pieces (hereinafter referred to as “slit process”). If such a procedure is followed, the width of the insulating margin 21 in the metallized film 5 (the width in the width direction D2) becomes half of the width of the insulating margin 21 in the metallized film 6 before slitting.
  • the width of the heavy edge portion 31 in the metallized film 5 (width in the width direction D2) is also half the width of the heavy edge portion 31 in the pre-slit metalized film 6.
  • the bar-shaped arrow shown in FIG. 3 indicates the position of the cutting blade and the cutting direction.
  • the metallized film obtained by such a procedure desirably has the same width of the insulation margin at one end in the longitudinal direction (for example, the slit start end) and the other end in the longitudinal direction (for example, the slit end end). This is because a metallized film whose insulation margin width differs greatly at one end and the other end may have an unintended effect on the film capacitor.
  • the thickness of the biaxially stretched polypropylene film is 1.0 ⁇ m or more and 3.0 ⁇ m or less
  • the width of the insulation margin at one end in the longitudinal direction and the other end in the longitudinal direction is Misalignment is likely to occur. This is because the heat shrinkage ratio increases as the thickness of the biaxially oriented polypropylene film decreases.
  • the purpose of the present disclosure is that the metallized film after the slit process in the metallized film after the biaxially stretched polypropylene film is thin and the width difference in the insulation margin between one end in the longitudinal direction and the other end in the longitudinal direction ( Hereinafter, it is to provide a biaxially stretched polypropylene film capable of suppressing “insulation margin width shift”.
  • the biaxially stretched polypropylene film of the first present disclosure (the biaxially stretched polypropylene film according to the first present invention) has a thickness of 1.0 ⁇ m to 3.0 ⁇ m and a heat shrinkage rate of 140 ° C. in the first direction. And the difference between the heat shrinkage rate at 130 ° C. in the first direction is not less than 0% and less than 2.0%, and the heat shrinkage rate at 140 ° C. in the second direction perpendicular to the first direction, The difference from the heat shrinkage rate at 130 ° C. in the second direction is 0% or more and less than 2.3%.
  • the biaxially stretched polypropylene film of the second present disclosure (the biaxially stretched polypropylene film according to the second present invention) has a thickness of 1.0 ⁇ m to 3.0 ⁇ m and a width in the second direction of 1200 mm or less.
  • a biaxially stretched polypropylene film obtained by the following methods (1) to (3), wherein the difference between the maximum value and the minimum value of the slow axis angle is less than 6 °. ⁇ Determining the difference between the maximum and minimum values of the slow axis angle> (1) When the total length in the width direction is 100%, a sample for measurement of 50 mm ⁇ 50 mm, centering on every 10% position from both ends, is cut out. (2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured, (3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
  • the metal vapor for example, zinc vapor
  • the metal vapor for forming the heavy edge portion locally increases the temperature of the biaxially stretched polypropylene film, resulting in an in-plane temperature distribution and heat shrinkage. It was also considered that a large portion and a small portion were generated. The reason considered in this way is that the temperature of the metal vapor is high, for example, zinc vapor is about 600 ° C., so it can be considered that the thermal contraction is large at the portion where the metal vapor for forming the heavy edge portion is attached. There is.
  • the present inventor considered that the oil has a greater effect than the metal vapor on the local temperature rise in the biaxially stretched polypropylene film. Furthermore, in the process of attaching the metal vapor, the oil has a greater influence than the metal vapor because the surface opposite to the surface to which the metal vapor is attached of the biaxially stretched film is strongly cooled by the cooling roll. The inventor thought to give.
  • the heat shrinkage rate of 130 ° C. in the first direction and the heat of 130 ° C. in the second direction orthogonal to the first direction are referred with reference to the temperature of the oil for forming the insulation margin.
  • the inventor has focused on reducing the shrinkage rate.
  • the present inventors have found that the insulation margin width deviation does not necessarily depend on the heat shrinkage rate of 130 ° C. in the first direction and the second direction.
  • the insulation margin width shift is the difference between the heat shrinkage rate of 140 ° C. in the first direction and the heat shrinkage rate of 130 ° C. in the first direction, and the heat shrinkage rate of 140 ° C. in the second direction and the second
  • the present inventor has found that it largely depends on the difference in heat shrinkage rate at 130 ° C. in the direction.
  • the present inventor has come up with the biaxially stretched polypropylene film of the first present disclosure.
  • the biaxially stretched polypropylene film is And 140 ° C. thermal shrinkage S TD140 in the second direction, that the ratio S TD140 / S MD140 between the thermal shrinkage factor S MD140 of 140 ° C. in the first direction is 0.200 or more 0.325 or less preferable.
  • the in-plane heat shrinkage in the 140 ° C. region is well balanced (the heat shrinkage in the first direction and the second direction is balanced). It is more excellent in meat accuracy and can further suppress an insulation margin width shift.
  • the biaxially stretched polypropylene film is The width in the second direction is 1200 mm or less;
  • the difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is preferably less than 6 °.
  • ⁇ Determining the difference between the maximum and minimum values of the slow axis angle> (1) When the total length in the width direction is 100%, a sample for measurement of 50 mm ⁇ 50 mm, centering on every 10% position from both ends, is cut out. (2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured, (3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
  • the thickness deviation accuracy of the biaxially stretched polypropylene film is more excellent. Moreover, when a metallized film is produced with the biaxially stretched polypropylene film, shrinkage unevenness in the in-plane direction is small, and wrinkles and talmi are suppressed, which can be suitably used.
  • biaxially stretched polypropylene film of the first present disclosure can be used for a capacitor.
  • the first present disclosure also relates to a metallized film, wherein the metallized film of the first present disclosure is formed on one or both sides of the biaxially stretched polypropylene film of the first present disclosure and the biaxially stretched polypropylene film. And a laminated metal layer.
  • the first present disclosure also relates to a film capacitor, wherein the film capacitor of the first present disclosure has the metallized film of the first present disclosure wound or the metallization of the first present disclosure. It can have a configuration in which a plurality of films are laminated.
  • the first present disclosure also relates to a film roll, and the film roll of the first present disclosure may be configured such that the biaxially stretched polypropylene film of the first present disclosure is wound in a roll shape. .
  • the biaxially stretched polypropylene film is The difference between the heat shrinkage rate of 140 ° C. in the first direction and the heat shrinkage rate of 130 ° C. in the first direction is 0% or more and less than 2.0%, and the second direction perpendicular to the first direction It is preferable that the difference between the heat shrinkage rate at 140 ° C. and the heat shrinkage rate at 130 ° C. in the second direction is 0% or more and less than 2.3%.
  • the biaxially stretched polypropylene film of the second present disclosure can be used for a capacitor.
  • the second present disclosure also relates to a metallized film, and the metallized film of the second present disclosure is formed on one or both sides of the biaxially stretched polypropylene film of the second present disclosure and the biaxially stretched polypropylene film. And a laminated metal layer.
  • the second present disclosure also relates to a film capacitor, and the film capacitor of the second present disclosure has a metallized film of the present disclosure wound or a plurality of metallized films of the second present disclosure. It can have a stacked configuration.
  • 2nd this indication is related also with a film roll
  • the film roll of 2nd this indication can be set as the structure by which the biaxially stretched polypropylene film of 2nd this indication is wound by roll shape. .
  • the biaxially stretched polypropylene film of the present disclosure (the first present disclosure and the second present disclosure) is an insulating margin in the metallized film after the slitting process even though the biaxially stretched polypropylene film is thin.
  • the width shift can be suppressed.
  • FIG. 3 is a cross-sectional view of a metallized film, and more specifically, a cross-sectional view taken along line II in FIG. It is a top view of a metallized film. It is a top view of the metallized film before a slit. It is a top view of the metallized film before a slit produced in the Example and the comparative example.
  • the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
  • the expression “capacitor” includes the concept of “capacitor”, “capacitor element”, and “film capacitor”. Since the biaxially stretched polypropylene film of this embodiment is not a microporous film, it does not have a large number of pores.
  • the biaxially stretched polypropylene film of this embodiment may be composed of two or more layers, but is preferably composed of a single layer.
  • the biaxially stretched polypropylene film of the present embodiment achieves the above-described problem when the thickness is very small (thin) of 1.0 to 3.0 ⁇ m.
  • the biaxially stretched polypropylene film of the present embodiment does not assume a case where the thickness is large (thick) such as 4.5 ⁇ m and 5 ⁇ m.
  • the first direction refers to the same direction as the longitudinal direction of the biaxially stretched polypropylene film.
  • the first direction is also the same direction as Machine Direction (hereinafter referred to as “MD direction”).
  • MD direction Machine Direction
  • the first direction is mainly referred to as the MD direction.
  • the present invention is not limited to a form in which the first direction points to the same direction as the longitudinal direction, and is not limited to a form that points to the same direction as the MD direction.
  • the second direction refers to the same direction as the width direction of the biaxially stretched polypropylene film.
  • the second direction is also the same direction as Transverse Direction (hereinafter referred to as “TD direction”).
  • TD direction Transverse Direction
  • the second direction is mainly referred to as a TD direction.
  • the present invention is not limited to a form in which the second direction points to the same direction as the width direction, and is not limited to a form that points to the same direction as the TD direction.
  • the thickness (thickness) of the biaxially stretched polypropylene film according to this embodiment is in the range of 1.0 to 3.0 ⁇ m.
  • the thickness of the biaxially stretched polypropylene film according to this embodiment is preferably 1.2 ⁇ m or more, more preferably 1.5 ⁇ m or more, and further preferably 2.0 ⁇ m or more.
  • the thickness of the biaxially stretched polypropylene film according to this embodiment is preferably less than 3.0 ⁇ m, more preferably 2.9 ⁇ m or less, further preferably 2.8 ⁇ m or less, and particularly preferably 2.5 ⁇ m or less.
  • the insulation margin width in the metallized film after the slit process despite the thin thickness of the biaxially stretched polypropylene film It is possible to obtain the excellent effect of suppressing the deviation to the maximum, and to obtain a film capacitor that is reduced in size and increased in capacity. Further, since the polypropylene film has a thickness of 3.0 ⁇ m or less, the capacitance per unit volume when used as a capacitor element can be increased, so that it can be suitably used for a capacitor. This point will be described in detail below. The smaller the thickness of the polypropylene film, the larger the capacitance per unit volume.
  • the capacitance C is expressed as follows using the dielectric constant ⁇ , the electrode area S, and the dielectric thickness d (the thickness d of the polypropylene film).
  • C ⁇ S / d
  • the capacitance per unit volume (C / V) is inversely proportional to the square of the thickness of the polypropylene film.
  • the dielectric constant ⁇ is determined by the material used. If it does so, unless the material is changed, it turns out that the electrostatic capacitance (C / V) per unit volume cannot be improved other than reducing thickness. That is, assuming that a film capacitor is made of the same material, (1) When a film capacitor of the same size is made, a film capacitor having a larger capacity can be obtained by using a thin polypropylene film. Also, (2) when a film capacitor having the same capacity is produced, a smaller film capacitor can be obtained by using a thin polypropylene film, and space can be saved.
  • the thickness of the biaxially stretched polypropylene film refers to a value measured according to JIS-C2330 except that it was measured at 100 ⁇ 10 kPa using a paper thickness measuring device MEI-11 manufactured by Citizen Seimitsu.
  • the biaxially stretched polypropylene film according to this embodiment has a difference between the heat shrinkage rate of 140 ° C. in the MD direction and the heat shrinkage rate of 130 ° C. in the MD direction (hereinafter referred to as “MD heat shrinkage rate difference”). % And less than 2.0%, and the difference between the heat shrinkage rate at 140 ° C. in the TD direction and the heat shrinkage rate at 130 ° C. in the TD direction (hereinafter referred to as “TD heat shrinkage rate difference”) is 0% or more. Less than 2.3%.
  • the thermal shrinkage of 140 ° C. in the MD direction S MD140 the thermal shrinkage of 130 ° C. in the MD direction heat shrinkage 140 ° C.
  • S MD140 TD direction of 130 ° C. in S TD140, TD direction
  • the thermal contraction rate may be referred to as STD130 .
  • the MD thermal shrinkage rate difference herein S MD140 -S MD130, TD thermal shrinkage rate difference may be referred to as S TD140 -S TD130.
  • the biaxially stretched polypropylene film according to the present embodiment is thin in the range of 1.0 ⁇ m to 3.0 ⁇ m, in the metallized film after the slit process, one end in the longitudinal direction and the other end in the longitudinal direction Thus, the width shift in the insulation margin can be suppressed. Note that the width of the insulation margin is measured in the width direction of the biaxially stretched polypropylene film.
  • this temperature unevenness can be broadly classified into temperature unevenness in the TD direction and temperature unevenness in the MD direction.
  • the temperature at the center portion in the TD direction is higher than the temperature at both end portions in the TD direction in each insulation margin.
  • the oil vapor for forming the insulation margin is ejected in a fan shape from the slit of the nozzle, so that the amount of oil at the center portion in the TD direction in the insulation margin is larger than that at both end portions in the TD direction.
  • the temperature range of temperature unevenness in each insulation margin plane is about 130 ° C. to 140 ° C.
  • oil vapor for forming an insulation margin is normally injected at about 130 ° C. to 140 ° C.
  • a region considered to be about 140 ° C. region where the amount of oil is considered to be relatively large
  • a region considered to be about 130 ° C. region region where the amount of oil is considered to be relatively large
  • the region considered to be relatively small may be referred to as a 130 ° C. region.
  • the biaxially stretched polypropylene film according to this embodiment can suppress wrinkles and sagging that would have conventionally occurred due to such temperature unevenness. This is thought to be due to the fact that the biaxially stretched polypropylene film according to the present embodiment has a heat shrinkage rate at 140 ° C. that would correspond to the temperature in the high temperature region of the insulation margin and the temperature in the 130 ° C. region of the insulation margin.
  • the heat shrinkage rate at 130 ° C. which would correspond to the above, is close in two directions that form a right angle. In other words, when a temperature distribution occurs in each insulation margin with the oil for forming the insulation margin, a large distribution does not occur in the heat shrinkage rate at 130 ° C. and 140 ° C.
  • the biaxially stretched polypropylene film that is, biaxial stretching. Since the heat shrinkage rate at 130 ° C. and the heat shrinkage rate at 140 ° C. of the polypropylene film are close, it is considered that wrinkles and sagging can be suppressed.
  • S TD140 / S MD140 is preferably 0.200 or more and 0.385 or less, more preferably 0.240 or more and 0.360 or less, and more preferably 0.280 or more and 0.320 or less with respect to a range in which an upper limit and a lower limit are defined. Further preferred.
  • S TD140 / S MD140 is within the above range, in-plane heat shrinkage in the 140 ° C. region is well-balanced (the heat shrinkage in the TD direction and MD direction is balanced). It is excellent and the insulation margin width shift can be further suppressed.
  • S TD130 Heat shrinkage of 130 ° C. in the TD direction (S TD130), the ratio of the 130 ° C. thermal shrinkage in the MD direction (S MD130), i.e. S TD130 / S MD130 is preferably 0.140 or less, 0.070 or more 0.130 or less is more preferable, and 0.080 or more and 0.100 or less is more preferable.
  • S TD130 / S MD130 is within the above range, in-plane heat shrinkage in the 130 ° C. region is well-balanced (the heat shrinkage in the TD direction and MD direction is balanced). It is excellent and the insulation margin width shift can be further suppressed.
  • (S TD140 -S TD130 ) / (S MD140 -S MD130 ) is within the above range, the in-plane thermal shrinkage in the 130 to 140 ° C. region is well balanced (equal thermal shrinkage in the TD and MD directions). Therefore, the thickness accuracy is excellent and the insulation margin width deviation can be further suppressed.
  • Both the MD heat shrinkage difference (S MD140 -S MD130 ) and the TD heat shrinkage difference (S TD140 -S TD130 ) are the speed of the take-up roll that winds the biaxially stretched polypropylene film downstream of the tenter (Hereinafter referred to as “take-off speed”) and the MD-direction polypropylene film transport speed (hereinafter referred to as “film-forming line speed”) in the tenter stretching section and also affected by the heat setting temperature. . These will be described in detail when describing biaxial stretching.
  • the difference in MD heat shrinkage (S MD140 ⁇ S MD130 ) is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, and particularly preferably 1.5% or more.
  • the difference in MD heat shrinkage is preferably 1.9% or less, and more preferably 1.8% or less.
  • the TD heat shrinkage difference (S TD140 -S TD130 ) is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, and particularly preferably 1.5% or more. .
  • the TD heat shrinkage difference is preferably 2.2% or less, more preferably 2.0 or less, further preferably 1.9% or less, and particularly preferably 1.8% or less.
  • the heat shrinkage rate (S MD140 ) at 140 ° C. in the MD direction is preferably 10.0% or less, more preferably 9.0% or less, and even more preferably 8.5% or less.
  • the heat shrinkage rate (S MD140 ) at 140 ° C. in the MD direction is preferably 1.0% or more, more preferably 3.0% or more, further preferably 5.0% or more, and particularly preferably 7.0% or more.
  • the heat shrinkage rate (S TD140 ) at 140 ° C. in the TD direction is preferably 5.0% or less, more preferably 4.0% or less, still more preferably 3.5% or less, and particularly preferably 2. 7% or less.
  • the thermal shrinkage rate at 140 ° C. in the TD direction is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, and particularly preferably 2.0% or more.
  • the width in the TD direction (second direction) of the biaxially stretched polypropylene film is not particularly limited. However, when the difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is less than 6 °, the width in the TD direction (second direction) is 1200 mm or less. It is preferable.
  • the biaxially stretched polypropylene film is The width in the TD direction (second direction) is 1200 mm or less, The difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is preferably less than 6 °. This point will be described below.
  • the slow axis will be described.
  • the biaxially stretched polypropylene film according to this embodiment is stretched in the first direction and in the second direction perpendicular to the first direction. Since the polymer is oriented in-plane by the biaxial stretching, the biaxially stretched film has birefringence. In the film plane, the direction in which the refractive index is maximum is called a slow axis because the direction in which light travels is slow (the phase is delayed).
  • the sequential biaxial stretching method first, the original cast sheet is stretched in the flow direction (MD direction), and then the sheet is stretched in the transverse direction (TD direction).
  • the lateral refractive index in the second direction tends to be larger than the refractive index in the flow direction in the first direction.
  • the horizontal direction of the second direction is the slow axis.
  • the stretching in the transverse direction (TD direction) when the stretching is performed completely in the transverse direction (when the stretching is performed completely in the direction perpendicular to the flow direction), the slow phase defined in this specification is used.
  • the shaft angle is 0 °.
  • the film cannot be completely stretched in the transverse direction (TD direction), and the slow axis angle is from 0 °. Tend to be larger. In the sequential biaxial stretching method, the slow axis angle tends to increase toward both ends of the biaxially stretched film. In the present embodiment, the smaller the difference between the maximum value and the minimum value of the slow axis angle, the relative to two orthogonal directions of the first flow direction (MD direction) and the second horizontal direction (TD direction). It can be said that the deviation of the optical alignment axis is small.
  • the shrinkage in the oblique direction during heating is reduced, and the thermal shrinkage in the first direction and the second direction can be easily balanced.
  • wrinkles and talmi during processing are suppressed, and the film can be suitably used.
  • the thickness of the obtained film is excellent because the film is deformed in the transverse direction (TD direction) in which stretching stress acts.
  • TD direction transverse direction
  • the biaxially stretched polypropylene film of the present embodiment has a very small (thin) thickness of 1.0 to 3.0 ⁇ m, the effect is remarkable.
  • the difference between the maximum value and the minimum value of the slow axis angle according to the present embodiment is not anisotropy of the optical orientation strength indicated by birefringence or the like, that is, not the orientation size and direction itself, but the second direction.
  • the angle between the maximum value and the minimum value of the slow axis that is, the fluctuation range in the width direction of the slow axis angle. In the present embodiment, it is preferable to control the difference to be small.
  • the reason why it is preferable to control the difference to be small is that even if a flexible material such as polypropylene is given orientation strength by biaxial stretching to give a certain machining strength, thermal dimensional change that occurs during metal deposition processing. The amount is not sufficiently reduced, but rather it is clear from the result that suppressing the displacement and fluctuation in the orientation direction is useful for suppressing the shrinkage unevenness in the in-plane direction.
  • the polypropylene film of this embodiment has a very small (thin) characteristic of 1.0 to 3.0 ⁇ m, and is greatly affected by the temperature of metal deposition processing. For this reason, the orientation of the orientation is also important along with the thermal contraction rate.
  • the thermal shrinkage orientation can be maintained.
  • the second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured, (3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
  • the difference between the maximum value and the minimum value of the slow axis angle is preferably less than 6 °, more preferably 5.5 ° or less, further preferably 5 ° or less, and particularly preferably 4.5 ° or less.
  • the difference is less than 6 °, the thickness deviation accuracy of the biaxially stretched polypropylene film is more excellent.
  • shrinkage unevenness in the in-plane direction is small, and wrinkles and talmi are suppressed, which can be suitably used.
  • the maximum value of the slow axis angle is preferably less than 15 °, more preferably 14.5 ° or less, further preferably 13 ° or less, and particularly preferably 12 ° or less. When the maximum value is within the numerical range, the biaxially stretched polypropylene film tends to have few breaks and excellent continuous productivity.
  • the width in the TD direction (second direction) is preferably 1200 mm or less, more preferably 1100 mm or less, and 1000 mm or less. More preferably.
  • variety of TD direction (2nd direction) can be 500 mm or more, 550 mm or more, 600 mm or more, etc.
  • the measurement apparatus and measurement conditions for obtaining the difference between the maximum value and the minimum value of the slow axis angle are as follows. ⁇ Measurement equipment and measurement conditions> Measuring device: retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd. Light source: Laser light emitting diode (LED) Bandpass filter: 550 nm (measurement wavelength) Measurement interval: 0.1 sec Integration count: 10time Number of measurement points: 15 points Gain: 10dB Measurement environment: temperature 23 ° C, humidity 60%
  • the difference between the maximum value and the minimum value of the slow axis angle tends to increase as the heat setting temperature decreases, and tends to increase as the ratio of the take-up speed to the film forming line speed increases.
  • the maximum value of the slow axis angle tends to increase as the heat setting temperature decreases, and tends to increase as the ratio of the take-up speed to the film forming line speed increases.
  • the biaxially stretched polypropylene film and the metallized film are each wound in a roll shape, and are preferably in the form of a film roll.
  • the film roll may or may not have a winding core (core).
  • the film roll preferably has a winding core (core).
  • the material of the winding core of the film roll is not particularly limited. Examples of the material include paper (paper tube), resin, fiber reinforced plastic (FRP), metal, and the like.
  • the resin include polyvinyl chloride, polyethylene, polypropylene, phenol resin, epoxy resin, acrylonitrile-butadiene-styrene copolymer, and the like.
  • the plastic constituting the fiber reinforced plastic include polyester resin, epoxy resin, vinyl ester resin, phenol resin, and thermoplastic resin.
  • the fibers constituting the fiber reinforced plastic include glass fibers, aramid fibers (Kevlar (registered trademark) fibers), carbon fibers, polyparaphenylene benzoxazole fibers (Zylon (registered trademark) fibers), polyethylene fibers, and boron fibers. Can be mentioned.
  • Examples of the metal include iron, aluminum, and stainless steel.
  • the core of the film roll also includes a core formed by impregnating a paper tube with the resin. In this case, the material of the winding core is classified as a resin.
  • the suitable raw material and manufacturing method of the biaxially stretched polypropylene film according to this embodiment will be described below.
  • the raw material and manufacturing method of the biaxially stretched polypropylene film according to this embodiment are not limited to the following descriptions.
  • the biaxially stretched polypropylene film contains a polypropylene resin.
  • the content of the polypropylene resin is preferably 75% by mass or more, more preferably 90% by mass or more, based on the entire biaxially stretched polypropylene film (when the entire biaxially stretched polypropylene film is 100% by mass). More preferably, it is 95 mass% or more.
  • the upper limit of the content of the polypropylene resin is, for example, 100% by mass or 98% by mass with respect to the entire biaxially stretched polypropylene film.
  • the polypropylene resin and the biaxially stretched polypropylene film according to this embodiment may include a single type of polypropylene resin alone or may include two or more types of polypropylene resins.
  • the weight average molecular weight Mw of the polypropylene resin is preferably from 280,000 to 450,000, and more preferably from 280,000 to 400,000.
  • the weight average molecular weight Mw of the polypropylene resin is 280,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, it is easy to control the thickness of the cast raw sheet, and it becomes easy to produce a thin stretched film.
  • the molecular weight distribution (Mw / Mn) of the polypropylene resin is preferably 5 or more, more preferably 6.1 or more, still more preferably 6.5 or more, still more preferably 7.2 or more, and 7.5 or more. Is particularly preferred.
  • the molecular weight distribution of the polypropylene resin is preferably 12 or less, more preferably 11 or less, further preferably 10 or less, and particularly preferably 9.5 or less. It is preferably 5 or more and 12 or less, more preferably 5 or more and 11 or less, and further preferably 5 or more and 10 or less with respect to a range that defines the upper limit and the lower limit of the molecular weight distribution of the polypropylene resin.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of a polypropylene resin are values measured using a gel permeation chromatograph (GPC) apparatus. More specifically, it is a value measured using an HLC-8121 GPC-HT (trade name), a high-temperature GPC measuring machine with a built-in differential refractometer (RI) manufactured by Tosoh Corporation. As GPC columns, three TSKgel GMHHR-H (20) HT manufactured by Tosoh Corporation are connected and used.
  • GPC gel permeation chromatograph
  • the column temperature is set to 140 ° C., and trichlorobenzene is allowed to flow as an eluent at a flow rate of 1.0 ml / 10 minutes to obtain measured values of Mw and Mn.
  • a calibration curve related to the molecular weight M is prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured values are converted into polystyrene values to obtain Mw and Mn.
  • the logarithm of the bottom 10 of the molecular weight M of standard polystyrene is referred to as logarithmic molecular weight (“Log (M)”).
  • Differential distribution value difference D M of the polypropylene resin is preferably at -5% to 14% or less, more preferably 12% or less -4% or more, still be 10% less than -4% preferable.
  • the polypropylene resin has a wide molecular weight distribution and at the same time has a molecular weight of 10,000 to 100,000 in order to appropriately contain a low molecular weight component. It is preferable to use a polypropylene resin so that the component has a differential distribution value difference of -5% or more and 14% or less compared to a component having a molecular weight of 1,000,000.
  • the differential distribution value is a value obtained as follows using GPC.
  • a curve (generally also referred to as “elution curve”) showing the intensity with respect to time obtained by a differential refraction (RI) detector of GPC is used.
  • the elution curve is converted into a curve showing the intensity with respect to Log (M) by converting the time axis into logarithmic molecular weight (Log (M)). Since the RI detection intensity is proportional to the component concentration, an integral distribution curve with respect to the logarithmic molecular weight Log (M) can be obtained when the total area of the curve indicating the intensity is 100%.
  • the differential distribution curve is obtained by differentiating the integral distribution curve with Log (M). Therefore, “differential distribution” means a differential distribution with respect to the molecular weight of the concentration fraction. From this curve, the differential distribution value at a specific Log (M) is read.
  • the mesopentad fraction ([mmmm]) of the polypropylene resin is preferably 94% or more, more preferably 95% or more, further preferably more than 95%, particularly preferably more than 95.5%, particularly more preferably more than 96%. preferable.
  • the mesopentad fraction of the polypropylene resin is preferably 98.5% or less, more preferably 98.4% or less, still more preferably 98% or less, particularly preferably less than 98.0%, and 97.5% or less. Particularly preferred, 97.0% or less is particularly preferred.
  • the mesopentad fraction of the polypropylene resin is preferably 94% or more and 99% or less, and more preferably 95% or more and 98.5% or less.
  • the crystallinity of the resin is moderately improved by the reasonably high stereoregularity, and the initial voltage resistance and the voltage resistance over a long period are improved.
  • desired stretchability can be obtained by an appropriate solidification (crystallization) rate when the cast raw sheet is formed.
  • the mesopentad fraction ([mmmm]) is an index of stereoregularity that can be obtained by high temperature nuclear magnetic resonance (NMR) measurement. Specifically, it can be measured using, for example, JEOL Ltd., high temperature Fourier transform nuclear magnetic resonance apparatus (high temperature FT-NMR), JNM-ECP500.
  • the measurement method by high temperature NMR is, for example, the method described in “Japan Analytical Chemistry / Polymer Analysis Research Roundtable, New Edition, Polymer Analysis Handbook, Kinokuniya, 1995, p. 610”. Can be done with reference.
  • the pentad fraction representing the degree of stereoregularity is a combination of the quintet (pentad) of the consensus “meso (m)” arranged in the same direction and the consensus “rasemo (r)” arranged in the opposite direction (mmmm and mrrm). Etc.) based on the integrated value of the intensity of each signal derived from.
  • Each signal derived from mmmm, mrrm and the like can be assigned with reference to, for example, “T. Hayashi et al., Polymer, 29, 138 (1988)”.
  • the heptane insoluble content (HI) of the polypropylene resin is preferably 96.0% or more, more preferably 97.0% or more. Further, the heptane insoluble content (HI) of the polypropylene resin is preferably 99.5% or less, more preferably 99.0% or less.
  • the heptane-insoluble content indicates that the greater the stereoregularity of the resin, the greater the amount.
  • the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the voltage resistance at high temperature is improved. .
  • the rate of solidification (crystallization) at the time of forming the cast original fabric sheet becomes moderate, and it has moderate stretchability.
  • the melt flow rate (MFR) of the polypropylene resin is preferably 1.0 to 8.0 g / 10 min, more preferably 1.5 to 7.0 g / 10 min, and 2.0 to 6.0 g / min. More preferably, it is 10 minutes.
  • Polypropylene resin can be generally produced using a known polymerization method.
  • the polymerization method include a gas phase polymerization method, a bulk polymerization method, and a slurry polymerization method.
  • a polypropylene resin it is of course possible to use a commercially available product.
  • the total ash due to the polymerization catalyst residue contained in the polypropylene raw resin or in the biaxially stretched polypropylene film of the present embodiment is as small as possible in order to improve the electrical characteristics.
  • the total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, and particularly preferably 30 ppm or less, based on the polypropylene resin (100 parts by weight).
  • the polypropylene resin may contain an additive.
  • the additive include an antioxidant, a chlorine absorbent, an ultraviolet absorbent, a lubricant, a plasticizer, a flame retardant, and an antistatic agent.
  • the polypropylene resin may contain additives in an amount that does not adversely affect the biaxially oriented polypropylene film.
  • linear polypropylene resin A-1 and the following linear polypropylene resin B-1, the following linear polypropylene resin A-2, the following linear polypropylene resin B-2, and the following linear polypropylene Preferred examples include resin A-3 and the following linear polypropylene resin B-3, or a combination of the following linear polypropylene resin A-4 and the following linear polypropylene resin B-4.
  • the expression linear polypropylene resin A includes the concept of linear polypropylene resin A-1, linear polypropylene resin A-2, linear polypropylene resin A-3, and linear polypropylene resin A-4.
  • linear polypropylene resin B includes the concept of linear polypropylene resin B-1, linear polypropylene resin B-2, linear polypropylene resin B-3, and linear polypropylene resin B-4.
  • the polypropylene resin is not limited to the following resins.
  • ⁇ Linear polypropylene resin A> Linear polypropylene resin A-1) A linear polypropylene resin having a differential distribution value difference DM of 8.0% or more.
  • Linear polypropylene resin A-2) A linear polypropylene resin having a heptane-insoluble content (HI) of 98.5% or less.
  • Linear polypropylene resin A-3) A linear polypropylene resin having a melt flow rate (MFR) at 230 ° C.
  • Linear polypropylene resin A-4 A linear polypropylene resin having a weight average molecular weight Mw of 280,000 to 340,000.
  • Linear polypropylene resin B> Linear polypropylene resin B-1) Linear polypropylene differential distribution value difference D M is less than 8.0%.
  • Linear polypropylene resin B-2) A linear polypropylene resin having a heptane insoluble content (HI) exceeding 98.5%.
  • Linear polypropylene resin B-3) A linear polypropylene resin having a melt flow rate (MFR) at 230 ° C. of 0.1 to 3.9 g / 10 min.
  • Linear polypropylene resin B-4) A linear polypropylene resin having a weight average molecular weight Mw of more than 340,000.
  • the weight average molecular weight Mw of the linear polypropylene resin A is preferably 280,000 or more. Further, the weight average molecular weight Mw of the linear polypropylene resin A is preferably 450,000 or less, more preferably 400,000 or less, further preferably 350,000 or less, and 340,000 or less. Is particularly preferred. When the weight average molecular weight Mw of the linear polypropylene resin A is 280,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, it is easy to control the thickness of the cast original fabric sheet, and it becomes easy to produce a thin biaxially stretched polypropylene film. In addition, the thickness of the cast original fabric sheet and the biaxially stretched polypropylene film is less likely to cause unevenness, and an appropriate stretchability is obtained.
  • the molecular weight distribution Mw / Mn of the linear polypropylene resin A is preferably 8.5 or more and 12.0 or less, more preferably 8.5 or more and 11.0 or less, and 9.0 or more and 11.0 or less. More preferably.
  • the molecular weight distribution Mw / Mn of the linear polypropylene resin A is within the above-mentioned preferable range because unevenness is less likely to occur in the thicknesses of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability is obtained.
  • Differential distribution value difference D M of linear polypropylene resin A is preferably at least 8.0%, more preferably 8.0% or more and 18.0% or less, at least 9.0% 17.0 percent or less More preferably, it is more preferably 10.0% or more and 16.0% or less.
  • Differential distribution value difference D M is, if 18.0% or less 8.0% or more, the low molecular weight component, rich in a ratio of when compared to high molecular weight components, 18.0% 8.0% inclusive. Therefore, the surface of the biaxially stretched polypropylene film in this embodiment can be easily obtained, which is preferable.
  • the mesopentad fraction ([mmmm]) of the linear polypropylene resin A is preferably 99.8% or less, more preferably 99.5% or less, and further preferably 99.0% or less. preferable.
  • the mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, and further preferably 95.0% or more.
  • the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the voltage resistance at high temperatures is improved.
  • the rate of solidification (crystallization) during molding of the cast sheet is moderate, and it has moderate stretchability.
  • the heptane insoluble content (HI) of the linear polypropylene resin A is preferably 96.0% or more, more preferably 97.0% or more. Further, the heptane-insoluble content (HI) of the linear polypropylene resin A is preferably 99.5% or less, more preferably 98.5% or less, and further preferably 98.0% or less.
  • the melt flow rate (MFR) at 230 ° C. of the linear polypropylene resin A is preferably 1.0 to 15.0 g / 10 min, more preferably 2.0 to 10.0 g / 10 min. 0 to 10.0 g / 10 min is more preferable, and 4.3 to 6.0 g / 10 min is particularly preferable.
  • MFR at 230 ° C. of the linear polypropylene resin A is within the above range, the flow characteristics in the melted state are excellent, so that unstable flow such as melt fracture does not easily occur, and breakage during stretching can be suppressed. Therefore, since the film thickness uniformity is good, there is an advantage that the formation of a thin portion where dielectric breakdown is likely to occur is suppressed.
  • the content of the linear polypropylene resin A is preferably 55% by mass or more, and more preferably 60% by mass or more with respect to the entire biaxially stretched polypropylene film.
  • the content of the linear polypropylene resin A is preferably 99.9% by mass or less, more preferably 90% by mass or less, and 100% by mass with respect to 100% by mass of the entire polypropylene resin in the polypropylene film. % Or less is more preferable, and 80% by mass or less is particularly preferable.
  • the weight average molecular weight Mw of the linear polypropylene resin B is preferably 300,000 or more, more preferably 330,000 or more, further preferably more than 3340, and even more preferably 350,000 or more. Preferably, it is more preferably 350,000. Moreover, it is preferable that the weight average molecular weight Mw of the linear polypropylene resin B is 400,000 or less, and it is more preferable that it is 380,000 or less.
  • the molecular weight distribution Mw / Mn of the linear polypropylene resin B is preferably 6.0 or more and less than 8.5, more preferably 6.5 or more and 8.4 or less, and 7.0 or more and 8.3 or less. More preferably, it is 7.2 or more and 8.2 or less.
  • the molecular weight distribution Mw / Mn of the linear polypropylene resin B is within the above-mentioned preferable range because unevenness is hardly generated in the thickness of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability is obtained.
  • Differential distribution value difference D M of linear polypropylene resin B is preferably less than 8.0%, more preferably less than 8.0% or more -20.0%, or more -10.0% 7 It is more preferably 9% or less, and particularly preferably ⁇ 5.0% or more and 7.5% or less.
  • the mesopentad fraction ([mmmm]) of the linear polypropylene resin B is preferably less than 99.8%, more preferably 99.5% or less, and further preferably 99.0% or less. preferable.
  • the mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, and further preferably 95.0% or more.
  • the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the voltage resistance at high temperatures is improved.
  • the rate of solidification (crystallization) during molding of the cast sheet is moderate, and it has moderate stretchability.
  • the heptane-insoluble content (HI) of the linear polypropylene resin B is preferably 97.5% or more, more preferably 98% or more, still more preferably 98.5%, and particularly preferably 98.%. 6% or more. Further, the heptane-insoluble content (HI) of the linear polypropylene resin B is preferably 99.5% or less, more preferably 99% or less.
  • the melt flow rate (MFR) at 230 ° C. of the linear polypropylene resin B is preferably 0.1 to 6.0 g / 10 min, more preferably 0.1 to 5.0 g / 10 min, and More preferably, it is 1 to 3.9 g / 10 min.
  • the content of the linear polypropylene resin B is preferably 10% by mass or more when the entire polypropylene resin in the polypropylene film is 100% by mass, It is more preferably 15% by mass or more, and further preferably 20% by mass or more.
  • the content of the linear polypropylene resin B is preferably 45% by mass or less and more preferably 40% by mass or less, assuming that the total polypropylene resin in the polypropylene film is 100% by mass. .
  • linear polypropylene resin A and the linear polypropylene resin B are used in combination as the polypropylene resin, if the total polypropylene resin is 100% by mass, 55 to 90% by weight of the linear polypropylene resin A and 45 to 10% by weight of the polypropylene resin are used.
  • the linear polypropylene resin B is preferably included, more preferably 60 to 85% by weight of the linear polypropylene resin A and 40 to 15% by weight of the linear polypropylene resin B, and more preferably 60 to 80% by weight of the linear polypropylene resin B. It is particularly preferable that the chain polypropylene resin A and 40 to 20% by weight of the linear polypropylene resin B are included.
  • the polypropylene resin includes a linear polypropylene resin A and a linear polypropylene resin B
  • the biaxially stretched polypropylene film is in a finely mixed state (phase separated state) of the linear polypropylene resin A and the linear polypropylene resin B. Therefore, the voltage resistance (particularly body voltage at a high temperature) is improved, and the capacity of the film capacitor element is improved.
  • the biaxially stretched polypropylene film may contain a resin other than the polypropylene resin (hereinafter also referred to as “other resin”).
  • Other resins include polyolefins other than polypropylene such as polyethylene, poly (1-butene), polyisobutene, poly (1-pentene), poly (1-methylpentene); ethylene-propylene copolymer, propylene-butene copolymer Copolymers, copolymers of ⁇ -olefins such as ethylene-butene copolymer; vinyl monomers-diene monomer random copolymer such as styrene-butadiene random copolymer; styrene-butadiene-styrene block copolymer Examples thereof include vinyl monomers such as coalescence-diene monomer-vinyl monomer random copolymer.
  • the biaxially stretched polypropylene film may contain such other resin in an amount that does not adversely affect the biaxially stretched polypropylene film.
  • the biaxially stretched polypropylene film of this embodiment is preferably composed of a polypropylene resin as a resin.
  • the cast original sheet before stretching for producing a biaxially stretched polypropylene film can be produced as follows.
  • polypropylene resin pellets, dry-mixed polypropylene resin pellets, or mixed polypropylene resin pellets prepared by melting and kneading in advance are supplied to an extruder and melted by heating.
  • the rotation speed of the extruder during heating and melting is preferably 5 to 40 rpm, and more preferably 10 to 30 rpm.
  • the set temperature of the extruder at the time of heating and melting is preferably 220 to 280 ° C, and more preferably 230 to 270 ° C.
  • the resin temperature at the time of heating and melting is preferably 220 to 280 ° C., more preferably 230 to 270 ° C.
  • the resin temperature at the time of heating and melting is a value measured by a thermometer inserted in an extruder. Note that the number of revolutions of the extruder, the set temperature of the extruder, and the resin temperature during heating and melting are selected in consideration of the physical properties of the crystalline thermoplastic resin to be used. In addition, deterioration of resin can also be suppressed by making the resin temperature at the time of heat-melting in such a numerical range.
  • the molten resin is extruded into a sheet shape using a T die, and cooled and solidified with at least one metal drum to form an unstretched cast raw sheet.
  • the surface temperature of the metal drum (the temperature of the metal drum that first comes into contact after extrusion) is preferably 50 to 100 ° C., more preferably 90 to 100 ° C.
  • the surface temperature of the metal drum can be determined according to the physical properties of the polypropylene resin used.
  • the biaxially stretched polypropylene film can be produced by subjecting a cast raw sheet to stretching treatment.
  • the stretching is preferably biaxial stretching that is biaxially oriented longitudinally and laterally, and the sequential biaxial stretching method is preferred as the stretching method.
  • the sequential biaxial stretching method for example, first, the cast original fabric sheet is passed between rolls provided with a speed difference and stretched 3 to 7 times in the flow direction (MD direction). Subsequently, the sheet is guided to a tenter and stretched 3 to 11 times in the transverse direction (TD direction).
  • the temperature during stretching in the flow direction (also referred to as longitudinal stretching temperature) is preferably 130 to 150 ° C.
  • the temperature during stretching in the width direction (also referred to as transverse stretching temperature) is preferably 155 to 170 ° C. Thereafter, relaxation and heat fixation are performed, and the product is wound around a take-up roll. As described above, a biaxially stretched polypropylene film is obtained.
  • the difference between the MD heat shrinkage ratio and the TD heat shrinkage ratio of the biaxially stretched polypropylene film is the speed of the take-up roll that winds the biaxially stretched polypropylene film downstream of the tenter (take-off speed). And in the tenter stretching part, it is influenced by the transport speed (film forming line speed) of the polypropylene film in the MD direction. Further, the difference between the maximum value and the minimum value of the slow axis angle and the maximum value of the slow axis angle are affected by the take-up speed and the film forming line speed. Therefore, the ratio of the take-up speed to the film-formation line speed (take-off speed / film-formation line speed) will be described.
  • This ratio is preferably 1.01 or more and 1.20 or less, more preferably 1.02 or more and 1.18 or less, further preferably 1.03 or more and 1.15 or less, and particularly preferably 1.05 to 1.09. is there.
  • this ratio is preferably 1.01 or more and 1.20 or less, more preferably 1.02 or more and 1.18 or less, further preferably 1.03 or more and 1.15 or less, and particularly preferably 1.05 to 1.09. is there.
  • this ratio is preferably 1.01 or more and 1.20 or less, more preferably 1.02 or more and 1.18 or less, further preferably 1.03 or more and 1.15 or less, and particularly preferably 1.05 to 1.09. is there.
  • Both the MD heat shrinkage difference and the TD heat shrinkage difference are affected not only by the ratio of the take-up speed to the film forming line speed, but also by the heat setting temperature in heat setting after biaxial stretching. Further, the difference between the maximum value and the minimum value of the slow axis angle and the maximum value of the slow axis angle are affected by the heat setting temperature. Therefore, the heat setting temperature will be described.
  • the present inventor believes that the phenomenon that the mobility of the polymer molecular chain changes depending on the temperature affects the temperature dependency of the thermal shrinkage rate. That is, since the mobility of the polymer molecular chain with respect to the temperature change is considered to change depending on the heat setting temperature, the present invention is affected by both the MD heat shrinkage difference and the TD heat shrinkage difference. Guesses.
  • the heat setting temperature is preferably 159 ° C. or higher and 169 ° C. or lower, more preferably 161 ° C. or higher and 167 ° C. or lower, still more preferably 162 ° C. or higher and 166 ° C. or lower, and particularly preferably 162 ° C. or higher and 164 ° C. or lower.
  • 169 ° C. or less is preferable because the difference in MD heat shrinkage rate is less than 2.0% and the difference in TD heat shrinkage rate is less than 2.3%.
  • 169 ° C. or lower is preferable.
  • the uneven thickness accuracy refers to the degree of thickness uniformity in the TD direction in a biaxially stretched polypropylene film.
  • S MD140 -S MD130 , S TD140 -S TD130 , and S TD140 / S MD140 tend to decrease, and the heat setting temperature is increased.
  • S MD140 -S MD130 , S TD140 -S TD130 , and S TD140 / S MD140 tend to rise.
  • the polypropylene film after biaxial stretching is heat-set at 159 ° C. or more and 169 ° C. or less, and is further wound up at a ratio of the take-up speed to the film forming line speed of 1.01 or more and 1.20 or less.
  • the MD heat shrinkage difference can be less than 2.0% and the TD heat shrinkage difference can be less than 2.3%.
  • the biaxially stretched polypropylene film may be subjected to corona discharge treatment on-line or off-line after the end of the stretching and heat setting steps for the purpose of enhancing the adhesive properties in the subsequent steps such as a metal deposition process.
  • the corona discharge treatment can be performed using a known method. It is preferable to use air, carbon dioxide gas, nitrogen gas, or a mixed gas thereof as the atmospheric gas.
  • the oil mask for insulation margin is for preventing metal particles from adhering to the portion that becomes the insulation margin of the biaxially stretched polypropylene film in the vapor deposition process.
  • the oil mask for the insulation margin can be formed by evaporating the oil stored in the oil tank and directly applying the oil to the biaxially stretched polypropylene film from a nozzle provided in the tank.
  • direct application means that the oil is blown out from the slit of the nozzle, and this oil is adhered to the biaxially oriented polypropylene film.
  • the metal deposition is performed when the biaxially stretched polypropylene film after the formation of the oil mask for the insulation margin passes through the cooling roll.
  • the cooling roll is maintained at ⁇ 30 ° C. to ⁇ 20 ° C., for example. That is, metal vapor deposition is performed when a biaxially stretched polypropylene film having an insulating margin oil mask passes through a space between a cooling roll and a metal vapor deposition source.
  • metal vapor is emitted toward the surface of the biaxially stretched polypropylene film on which the insulation margin oil mask is formed, and adheres to the biaxially stretched polypropylene film.
  • the cooling roll is used to prevent the biaxially stretched polypropylene film from being deformed by the heat of the metal vapor.
  • metals used in metal deposition include simple metals such as zinc, lead, silver, chromium, aluminum, copper, and nickel, mixtures of these, and alloys thereof, but the environment, economy, and film In consideration of capacitor performance and the like, it is preferable to use aluminum for the active portion and zinc and aluminum for the heavy edge portion.
  • Such a metal layer is formed by, for example, depositing aluminum on both a region where an active portion is to be formed and a region where a heavy edge portion is to be formed in a biaxially stretched polypropylene film having an oil mask for an insulation margin. Further, it can be formed by further vapor-depositing zinc in a region where the heavy edge portion is to be formed.
  • aluminum may be deposited only in a region where the active part is to be formed, and zinc may be deposited only in a region where the heavy edge part is to be formed.
  • the oil mask for pattern is formed between the formation of the oil mask for the insulation margin and the metal deposition, that is, after the formation of the oil mask for the insulation margin and before the metal deposition.
  • the film can be formed on the surface on which the insulating margin oil mask is formed.
  • the pattern oil mask is usually formed by a plate roll.
  • the oil temperature for forming the pattern oil mask is lower than that for forming the insulation margin oil mask.
  • the oil for forming the pattern oil mask is applied to a biaxially oriented polypropylene film, for example, at room temperature (40 ° C. or lower as an example).
  • the pre-slit metallized film 6 includes a plurality of insulating margins 21 extending continuously in the MD direction D1 and a metal layer 300 extending continuously in the MD direction D1.
  • the insulation margins 21 and the metal layers 300 are alternately arranged in the TD direction D2.
  • Each metal layer 300 includes two active portions 32 and a heavy edge portion 31 located between the active portions 32. That is, in each metal layer 300, the first active portion 32, the heavy edge portion 31, and the second active portion 32 are arranged in this order in the TD direction D2.
  • the first active portion 32 extends in the TD direction D2 from one end of the heavy edge portion 31 in the TD direction D2, and the second active portion extends from the other end of the heavy edge portion 31 in the TD direction D2. 32 extends in the TD direction D2.
  • the first and second active portions 32 extend continuously in the MD direction D1.
  • the heavy edge portion 31 also extends continuously in the MD direction D1.
  • the insulation margins 21 are provided at both ends in the TD direction D2 in the pre-slit metallized film 6, the heavy edge portions 31 are provided at both ends or one of the both ends. It may be done.
  • a cutting blade is provided at the center in the TD direction D ⁇ b> 2 in each insulation margin 21 (hereinafter sometimes referred to as “TD direction center”) and the center in the TD direction of each heavy edge portion 31.
  • the pre-slit metallized film 6 is divided into a plurality of portions in the TD direction D2 to obtain a metallized film 5 (see FIGS. 1 and 2). Specifically, the pre-slit metallized film 6 in the form of a roll is unwound, a cutting blade is inserted into the center of each insulation margin 21 in the TD direction and the center of each heavy edge 31 in the TD direction, and the metallized film is cut. 5 is rolled up.
  • the width of the insulating margin 21 in the metallized film 5 is half the width of the insulating margin 21 in the pre-slit metalized film 6.
  • the width of the heavy edge portion 31 in the metallized film 5 is also half the width of the heavy edge portion 31 in the pre-slit metalized film 6.
  • the metallized film 5 has a capacitor element width.
  • the metallized film 5 thus obtained includes a biaxially stretched polypropylene film 10 and a metal layer 30 provided on one side of the biaxially stretched polypropylene film 10.
  • the thickness of the metal layer 30 is preferably within 1 to 200 nm.
  • an insulating margin 21 extending continuously in the MD direction D1 is provided at one end 51 in the TD direction D2.
  • the length of the insulation margin 21 is larger than the width of the insulation margin 21.
  • the metal layer 30 is located beside the insulation margin 21 in the TD direction D2.
  • the metal layer 30 extends from the other end 52 in the TD direction D2 to the insulation margin 21.
  • the metal layer 30 continuously extends between both ends of the metallized film 5 in the MD direction D1. That is, the metal layer 30 continuously extends from one end portion of the metallized film 5 in the MD direction D1 to the other end portion of the metallized film 5 in the MD direction D1.
  • the width of the metal layer 30 is larger than the width of the insulating margin 21.
  • the width of the metal layer 30 is preferably 1.5 to 300 times the width of the insulation margin 21.
  • the width of the metal layer 30 is a value measured by ignoring the margin pattern.
  • the width of the metal layer 30 is measured in the TD direction D2 of the metallized film 5.
  • the metal layer 30 of the metallized film 5 includes a heavy edge portion 31.
  • the heavy edge part 31 is located in the end part 52 of the metallized film 5 in the TD direction D2.
  • the heavy edge portion 31 extends continuously in the MD direction D1. More specifically, the heavy edge portion 31 continuously extends between both ends of the metallized film 5 in the MD direction D1. That is, the heavy edge portion 31 continuously extends from one end portion of the metallized film 5 in the MD direction D1 to the other end portion of the metallized film 5 in the MD direction D1.
  • the thickness of the heavy edge portion 31 is larger than the thickness of the active portion 32.
  • the heavy edge part 31 can have, for example, an aluminum film provided on the biaxially stretched polypropylene film 10 and a zinc part provided on the aluminum film. Thus, in the heavy edge part 31, an aluminum film can be located between the biaxially stretched polypropylene film 10 and the zinc part.
  • the metal layer 30 of the metallized film 5 includes an active portion 32.
  • the active part 32 extends continuously in the MD direction D1. More specifically, the active part 32 extends continuously between both ends of the metallized film 5 in the MD direction D1. That is, the active portion 32 continuously extends from one end portion of the metallized film 5 in the MD direction D1 to the other end portion of the metallized film 5 in the MD direction D1.
  • the active part 32 can have an aluminum film.
  • the aluminum film of the active part 32 is continuous with the aluminum film of the heavy edge part 31.
  • the active portion 32 may be formed with a margin pattern, such as a T margin pattern.
  • the film resistance of the heavy edge portion 31 is usually about 1 to 8 ⁇ / ⁇ , and preferably about 1 to 5 ⁇ / ⁇ .
  • the metallized film 5 can be laminated by a conventionally known method or wound to form a film capacitor.
  • a pair of metallized films 5 so that the metal layers 30 and the biaxially stretched polypropylene films 10 in the metallized film 5 are alternately laminated, and further the insulation margin 21 is on the opposite side. And roll them together.
  • two pairs of metallized films 5 are laminated while being shifted by 1 to 2 mm in the TD direction D2.
  • the winding machine to be used is not particularly limited.
  • an automatic winder 3KAW-N2 manufactured by Minato Seisakusho Co., Ltd. can be used.
  • the obtained wound product is usually pressed.
  • the optimum value of the applied pressure varies depending on the thickness of the biaxially stretched polypropylene film 10 and the like, but is, for example, 2 to 20 kg / cm 2 .
  • metal capacitors are sprayed on both end faces of the wound material to provide a metallicon electrode, thereby producing a film capacitor.
  • the film capacitor may have a configuration in which a plurality of metallized films 5 are laminated, or may have a wound metallized film 5.
  • a film capacitor can be suitably used as a capacitor for an inverter power supply device that controls a drive motor of an electric vehicle or a hybrid vehicle. Further, it can be suitably used for railway vehicles, wind power generation, solar power generation, general household appliances, and the like.
  • FIGS. 1 to 3 illustrate the metallized film 5 in which the metal layer 30 is provided on one side of the biaxially stretched polypropylene film 10, the metallized film of the present invention is limited to the metallized film 5 having such a structure. Of course you can't.
  • the metallized film of the present invention may be provided with metal layers on both sides of a biaxially stretched polypropylene film.
  • the metallized film having the heavy edge portion has been described, it is needless to say that the metallized film does not have to have the heavy edge portion.
  • the difference between the heat shrinkage rate at 140 ° C. in the first direction and the heat shrinkage rate at 130 ° C. in the first direction is 0% or more.
  • the difference between the heat shrinkage rate at 140 ° C. in the second direction perpendicular to the first direction and the heat shrinkage rate at 130 ° C. in the second direction is not less than 0% 2. It need not be less than 3%.
  • the polypropylene film according to the second embodiment of the present invention (hereinafter also referred to as “second embodiment”) has a thickness of 1.0 ⁇ m to 3.0 ⁇ m and a width in the second direction of 1200 mm or less.
  • a biaxially oriented polypropylene film having a difference between the maximum value and the minimum value of the slow axis angle of less than 6 ° obtained by the following methods (1) to (3). ⁇ Determining the difference between the maximum and minimum values of the slow axis angle> (1) When the total length in the width direction is 100%, a sample for measurement of 50 mm ⁇ 50 mm, centering on every 10% position from both ends, is cut out.
  • the second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured, (3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
  • the biaxially stretched polypropylene film according to the second embodiment of the present invention is excellent in uneven thickness accuracy. Moreover, when a metallized film is produced with the biaxially stretched polypropylene film, shrinkage unevenness in the in-plane direction is small, and wrinkles and talmi are suppressed. In the above configuration, the biaxially stretched polypropylene film has a difference between a heat shrinkage rate of 140 ° C. in the first direction and a heat shrinkage rate of 130 ° C.
  • the difference between the heat shrinkage rate of 140 ° C. in the second direction perpendicular to the first direction and the heat shrinkage rate of 130 ° C. in the second direction is preferably 0% or more and less than 2.3%.
  • other preferable heat shrinkage rates of the biaxially stretched polypropylene film according to the present embodiment and the difference between the heat shrinkage rates and the ratio of the heat shrinkage rates, refer to the “embodiment according to the first invention”. This is the same as described in the section. Therefore, description is abbreviate
  • the section “Embodiment according to the first present invention” can be cited for grounds for correction, technical explanation, and the like.
  • the preferable aspect of the biaxially stretched polypropylene film according to the present embodiment is the same as that of the “embodiment according to the first aspect of the present invention”.
  • each film physical property for example, thickness, total ash content, etc.
  • the type, physical property, ratio, combination, etc. Types other than the polypropylene resin included, physical properties, proportions, combinations, etc.
  • Measuring instrument manufactured by Tosoh Corporation, differential refractometer (RI) built-in high temperature GPC HLC-8121GPC / HT type column: manufactured by Tosoh Corporation, three TSKgel GMHhr-H (20) HT, connected column temperature: 145 ° C Eluent: Trichlorobenzene Flow rate: 1.0 ml / min A calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured molecular weight value was converted to a polystyrene value to obtain a weight average molecular weight (Mw) and a number average molecular weight (Mn). A molecular weight distribution (Mw / Mn) was obtained using the values of Mw and Mn.
  • Etc. was calculated as a percentage (%) from the integrated intensity of each signal.
  • attribution of each signal derived from mmmm, mrrm, etc. for example, the description of spectra such as “T. Hayashi et al., Polymer, 29, 138 (1988)” was referred to.
  • melt flow rate (MFR) in the form of raw material resin pellets was measured according to the condition M of JIS K 7210 using a melt indexer manufactured by Toyo Seiki Co., Ltd. Specifically, first, a sample weighed to 4 g was inserted into a cylinder set at a test temperature of 230 ° C., and preheated for 3.5 minutes under a load of 2.16 kg. Thereafter, the weight of the sample extruded from the bottom hole in 30 seconds was measured to obtain MFR (g / 10 min). The above measurement was repeated three times, and the average value was taken as the MFR measurement value.
  • the speed of the take-up roll was 1.09 times the film forming line speed. That is, the ratio of the take-up speed to the film-formation line speed (take-up speed / film-formation line speed) was 1.09.
  • the biaxially stretched polypropylene film was unwound from a roll to form an insulation margin oil mask on the biaxially stretched polypropylene film.
  • a pattern oil mask having a pattern corresponding to the electrode pattern was formed on the biaxially stretched polypropylene film on which the insulation margin oil mask was formed.
  • metal vapor deposition was performed on the biaxially stretched polypropylene film on which the pattern oil mask was formed. This obtained the metallized film before a slit.
  • an oil mask for an insulation margin fomblin oil vapor was sprayed onto one surface of both surfaces of the biaxially stretched polypropylene film with a nozzle slit.
  • the oil mask for insulation margin was formed in a striped shape (striped shape) on the entire surface of the biaxially stretched polypropylene film (see FIG. 4).
  • the pattern oil mask was formed by a plate roll.
  • the pattern oil mask was formed in a pattern substantially corresponding to the electrode pattern of the metal vapor deposition electrode in the region where the striped insulation margin oil mask was not formed on the entire surface of the biaxially stretched polypropylene film.
  • metal deposition aluminum was first deposited.
  • the vapor deposition of aluminum is performed on the entire surface of the biaxially stretched polypropylene film on which the insulation margin oil mask and the pattern oil mask are formed (hereinafter referred to as “oil mask formation surface”). It was. Subsequently, zinc was vapor-deposited in order to form a heavy edge part. Zinc was vapor-deposited aiming at a region where a heavy edge portion was to be formed on the oil mask forming surface.
  • Metal vapor deposition that is, aluminum vapor deposition and zinc vapor deposition, was performed while cooling the biaxially oriented polypropylene film with a cooling roll maintained at ⁇ 30 ° C. to ⁇ 20 ° C.
  • the pre-slit metallized film includes three insulating margins 21 that continuously extend in the MD direction D1, and two metal layers 300 that extend continuously in the MD direction D1. It was included. Each insulation margin 21 extends continuously from one end in the MD direction D1 of the pre-slit metallized film 6 to the other end in the MD direction D1 of the pre-slit metallized film 6.
  • Each metal layer 300 also extends continuously from one end in the MD direction D1 in the pre-slit metallized film 6 to the other end in the MD direction D1 in the pre-slit metallized film 6.
  • the insulation margins 21 and the metal layers 300 are alternately arranged in the TD direction D2.
  • Each metal layer 300 includes two active portions 32 and a heavy edge portion 31 located between the active portions 32. That is, in each metal layer 300, the first active portion 32, the heavy edge portion 31, and the second active portion 32 are arranged in this order in the TD direction D2.
  • the first and second active portions 32 extend continuously in the MD direction D1.
  • the heavy edge portion 31 also extends continuously in the MD direction D1.
  • Example 2 A biaxially stretched polypropylene film and a pre-slit metallized film prepared thereby were obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.4 ⁇ m.
  • Example 3 A biaxially stretched polypropylene film and a pre-slit metallized film prepared in this manner were obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.5 ⁇ m.
  • Example 4 A biaxially stretched polypropylene film and a pre-slit metallized film thus prepared were obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.8 ⁇ m.
  • Example 5 Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 162 ° C. and the speed of the take-up roll was 1.05 times the film forming line speed. And got.
  • Example 6 Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 4 except that the heat setting temperature was 166 ° C. and the speed of the take-up roll was 1.15 times the film forming line speed. And got.
  • Example 7 Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 161 ° C. and the speed of the take-up roll was 1.02 times the film forming line speed. And got.
  • a biaxially stretched polypropylene film and a pre-slit metallized film made of this biaxially stretched polypropylene film were obtained in the same manner as in Example 1 except that this cast raw sheet was used.
  • Example 9 Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 4 except that the heat setting temperature was 166 ° C. and the speed of the take-up roll was 1.12 times the film forming line speed. Got.
  • ⁇ Comparative Example 5> A biaxially stretched polypropylene film and a pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 170 ° C. and the speed of the take-up roll was 1.22 times the film forming line speed. And got.
  • a biaxially stretched polypropylene film and a pre-slit metallized film made of this biaxially stretched polypropylene film were obtained in the same manner as in Example 1 except that this cast raw sheet was used.
  • the thickness of the biaxially stretched polypropylene film was measured according to JIS-C2330 except that it was measured at 100 ⁇ 10 kPa using a paper thickness measuring device MEI-11 manufactured by Citizen Seimitsu.
  • Heat shrinkage rate (mark interval before heat treatment ⁇ mark line interval after heat treatment) / mark line interval before heat treatment ⁇ 100
  • a sample for measuring the thermal contraction rate in the TD direction was also prepared, and the above-described heat treatment was applied to the sample to calculate the thermal contraction rate. This sample is the same as the sample for MD direction measurement except that a side of 130 mm extends in the TD direction.
  • the heat shrinkage rate was measured by the same method as that at 130 ° C. except that the heat treatment temperature was changed to 140 ° C. instead of 130 ° C.
  • the heat shrinkage rate was measured by the same method as that at 130 ° C. except that the heat treatment temperature was changed to 120 ° C. instead of 130 ° C.
  • Deviation width is 0.1 mm or less
  • the difference between the maximum value and the minimum value of the slow axis angle was determined according to the following ⁇ How to determine the difference between the maximum value and the minimum value of the slow axis angle>.
  • the measurement apparatus and measurement conditions are as follows. ⁇ Measurement equipment and measurement conditions> Measuring device: retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.
  • the difference between the maximum value and the minimum value of the slow axis angle was less than 6 °. It is clear that the difference becomes smaller as the width (width in the TD direction) becomes narrower. Therefore, in this example, the example is shown only when the biaxially stretched polypropylene film has a width of 1200 mm. However, even if the width is 1200 mm or less (for example, a width of 600 mm), the difference is naturally. Is clearly less than 6 °.
  • the pre-slit metallized film prepared in the example was slit to a width of 60 mm. Next, the two metallized films were combined. Using the automatic winding machine 3KAW-N2 manufactured by Minato Seisakusho Co., Ltd., the combined metallized film was wound 1137 turns at a winding tension of 250 g, a contact pressure of 880 g, and a winding speed of 4 m / s. . The element wound was heat-treated at 120 ° C. for 15 hours while being pressed at a load of 5.9 kg / cm 2 . Thereafter, zinc metal was sprayed onto the element end face.
  • the feed rate was 15 mm / s
  • the spraying voltage was 22 V
  • the spraying pressure was 0.3 MPa
  • the spraying was performed to a thickness of 0.7 mm.
  • a flat capacitor was obtained. Lead wires were soldered to the end face of the flat capacitor. Thereafter, the flat capacitor was sealed with an epoxy resin. The epoxy resin was cured by heating at 90 ° C. for 2.5 hours and further heating at 120 ° C. for 2.5 hours. The capacitances of the completed film capacitors were all 75 ⁇ F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A biaxially stretched polypropylene film which has a thickness of from 1.0 μm to 3.0 μm, and wherein: the difference between the thermal shrinkage ratio at 140°C in a first direction and the thermal shrinkage ratio at 130°C in the first direction is 0% or more but less than 2.0%; and the difference between the thermal shrinkage ratio at 140°C in a second direction that is perpendicular to the first direction and the thermal shrinkage ratio at 130°C in the second direction is 0% or more but less than 2.3%.

Description

二軸延伸ポリプロピレンフィルム、金属化フィルム、フィルムコンデンサ、及び、フィルムロールBiaxially stretched polypropylene film, metallized film, film capacitor, and film roll
 本開示は、二軸延伸ポリプロピレンフィルム、金属化フィルム、フィルムコンデンサ、及び、フィルムロールに関する。 The present disclosure relates to a biaxially stretched polypropylene film, a metallized film, a film capacitor, and a film roll.
 二軸延伸ポリプロピレンフィルムは、高い耐電圧性や低い誘電損失特性などの優れた電気特性を有し、かつ高い耐湿性を有するため、フィルムコンデンサの誘電体として用いられている。 The biaxially stretched polypropylene film has excellent electrical characteristics such as high voltage resistance and low dielectric loss characteristics, and has high moisture resistance, and is therefore used as a dielectric for film capacitors.
 図1および図2に示すように、フィルムコンデンサを構成する金属化フィルム5は、二軸延伸ポリプロピレンフィルム10と、二軸延伸ポリプロピレンフィルム10に設けられた金属層30とを備える。二軸延伸ポリプロピレンフィルム10の両面のうち、一方の面に金属層30が設けられている。なお、図1は、図2におけるI-I線の断面図である。 1 and 2, the metallized film 5 constituting the film capacitor includes a biaxially stretched polypropylene film 10 and a metal layer 30 provided on the biaxially stretched polypropylene film 10. The metal layer 30 is provided on one surface of both surfaces of the biaxially stretched polypropylene film 10. 1 is a cross-sectional view taken along the line II in FIG.
 図2に示すように、金属化フィルム5では、幅方向D2における一方の端部51に、長手方向D1で連続で延びる絶縁マージン21が設けられている。通常、絶縁マージン21は、二軸延伸ポリプロピレンフィルム10に金属蒸着を施す前に、二軸延伸ポリプロピレンフィルム10の所定位置をオイルで覆うことで形成される。 As shown in FIG. 2, in the metallized film 5, an insulating margin 21 extending continuously in the longitudinal direction D1 is provided at one end 51 in the width direction D2. Usually, the insulation margin 21 is formed by covering a predetermined position of the biaxially stretched polypropylene film 10 with oil before metal deposition is performed on the biaxially stretched polypropylene film 10.
 絶縁マージン21の横(幅方向D2で横)には金属層30が位置している。金属層30は、幅方向D2における他方の端部52から絶縁マージン21まで延びている。金属層30の面積は、絶縁マージン21のそれとくらべて大きい。 The metal layer 30 is located beside the insulation margin 21 (laterally in the width direction D2). The metal layer 30 extends from the other end 52 in the width direction D2 to the insulation margin 21. The area of the metal layer 30 is larger than that of the insulation margin 21.
 金属化フィルム5の端部52では、金属層30の厚みが大きい。このような金属層30の厚みが大きい部分31は、ヘビーエッジ部と呼ばれることがある。以下、部分31をヘビーエッジ部31と呼ぶ。ヘビーエッジ部31は、長手方向D1で連続で延びている。ヘビーエッジ部31は、金属化フィルム5とメタリコン電極との接合を強固にするために設けられている。いっぽう、金属層30において、ヘビーエッジ部31と絶縁マージン21との間の部分32は、アクティブ部と呼ばれることがある。以下、部分32をアクティブ部32と呼ぶ。アクティブ部32の厚みは、ヘビーエッジ部31のそれより小さい。 At the end 52 of the metallized film 5, the thickness of the metal layer 30 is large. Such a portion 31 having a large thickness of the metal layer 30 may be referred to as a heavy edge portion. Hereinafter, the portion 31 is referred to as a heavy edge portion 31. The heavy edge portion 31 extends continuously in the longitudinal direction D1. The heavy edge portion 31 is provided in order to strengthen the bonding between the metallized film 5 and the metallicon electrode. On the other hand, in the metal layer 30, the portion 32 between the heavy edge portion 31 and the insulation margin 21 may be called an active portion. Hereinafter, the portion 32 is referred to as an active portion 32. The thickness of the active part 32 is smaller than that of the heavy edge part 31.
 このような金属化フィルム5を作製するために、たとえば、溶融したポリプロピレン樹脂をTダイでシート状に押し出し、キャスト原反シートを得ること、キャスト原反シートを二軸延伸し、熱固定をおこない、これを巻き取り、二軸延伸ポリプロピレンフィルムを得ること、二軸延伸ポリプロピレンフィルムにオイルを付着させ、これに金属蒸着を施し、スリット前金属化フィルム6(図3参照)を作製することがある。 In order to produce such a metallized film 5, for example, a molten polypropylene resin is extruded into a sheet shape with a T-die to obtain a cast original fabric sheet, the cast original fabric sheet is biaxially stretched, and heat setting is performed. This is wound up to obtain a biaxially stretched polypropylene film, oil is attached to the biaxially stretched polypropylene film, and metal deposition is performed on this to produce a pre-slit metallized film 6 (see FIG. 3). .
 図3に示すように、スリット前金属化フィルム6は、長手方向D1に連続で延びる複数の絶縁マージン21と、長手方向D1に連続で延びる複数のヘビーエッジ部31を有する金属層300とを含む。このように、スリット前金属化フィルム6では、絶縁マージン21と金属層300とが幅方向D2で交互に並んでいる。各金属層300は、二つのアクティブ部32と、これらアクティブ部32の間に位置するヘビーエッジ部31とを含む。すなわち、各金属層300においては、幅方向D2で、第一のアクティブ部32、ヘビーエッジ部31、第二のアクティブ部32がこの順で並んでいる。 As shown in FIG. 3, the pre-slit metallized film 6 includes a plurality of insulating margins 21 extending continuously in the longitudinal direction D1, and a metal layer 300 having a plurality of heavy edge portions 31 extending continuously in the longitudinal direction D1. . Thus, in the pre-slit metallized film 6, the insulation margins 21 and the metal layers 300 are alternately arranged in the width direction D2. Each metal layer 300 includes two active portions 32 and a heavy edge portion 31 located between the active portions 32. That is, in each metal layer 300, the first active portion 32, the heavy edge portion 31, and the second active portion 32 are arranged in this order in the width direction D2.
 スリット前金属化フィルム6における各絶縁マージン21の幅方向中央(幅方向D2で中央)と、各ヘビーエッジ部31の幅方向中央とに切断刃を入れ、スリット前金属化フィルム6を幅方向D2に複数に分割すること(以下、「スリット工程」という。)で、金属化フィルム5を得ることができる。このような手順を踏むと、金属化フィルム5における絶縁マージン21の幅(幅方向D2の幅)は、スリット前金属化フィルム6における絶縁マージン21の幅の半分になる。金属化フィルム5におけるヘビーエッジ部31の幅(幅方向D2の幅)も、スリット前金属化フィルム6におけるヘビーエッジ部31の幅の半分になる。ここで、図3に示された棒状の矢印は、切断刃の位置と切断方向とを示す。 A cutting blade is inserted at the center in the width direction of each insulating margin 21 (center in the width direction D2) and the center in the width direction of each heavy edge portion 31 in the pre-slit metallized film 6, and the pre-slit metallized film 6 in the width direction D2. The metallized film 5 can be obtained by dividing it into a plurality of pieces (hereinafter referred to as “slit process”). If such a procedure is followed, the width of the insulating margin 21 in the metallized film 5 (the width in the width direction D2) becomes half of the width of the insulating margin 21 in the metallized film 6 before slitting. The width of the heavy edge portion 31 in the metallized film 5 (width in the width direction D2) is also half the width of the heavy edge portion 31 in the pre-slit metalized film 6. Here, the bar-shaped arrow shown in FIG. 3 indicates the position of the cutting blade and the cutting direction.
特開2015-195367号公報Japanese Patent Application Laid-Open No. 2015-195367
 このような手順で得られた金属化フィルムは、長手方向の一端(たとえばスリット開始端)と、長手方向の他端(たとえばスリット終了端)とで、絶縁マージンの幅が等しいことが望ましい。絶縁マージンの幅が、一端と他端とで大きく異なる金属化フィルムは、フィルムコンデンサに、予定していない影響を与えることがあるためである。 The metallized film obtained by such a procedure desirably has the same width of the insulation margin at one end in the longitudinal direction (for example, the slit start end) and the other end in the longitudinal direction (for example, the slit end end). This is because a metallized film whose insulation margin width differs greatly at one end and the other end may have an unintended effect on the film capacitor.
 しかしながら、二軸延伸ポリプロピレンフィルムの厚みが1.0μm以上3.0μm以下である場合、スリット工程後の金属化フィルムにおいて、長手方向の一端と、長手方向の他端とで、絶縁マージンにおける幅のずれが生じやすい。これは、二軸延伸ポリプロピレンフィルムの厚みが薄いほど、熱収縮率が大きくなるためである。 However, when the thickness of the biaxially stretched polypropylene film is 1.0 μm or more and 3.0 μm or less, in the metallized film after the slitting process, the width of the insulation margin at one end in the longitudinal direction and the other end in the longitudinal direction is Misalignment is likely to occur. This is because the heat shrinkage ratio increases as the thickness of the biaxially oriented polypropylene film decreases.
 本開示の目的は、二軸延伸ポリプロピレンフィルムの厚みが薄いにもかかわらず、スリット工程後の金属化フィルムにおいて、長手方向の一端と、長手方向の他端とで、絶縁マージンにおける幅のずれ(以下、「絶縁マージン幅ずれ」ということがある。)を抑制することが可能な二軸延伸ポリプロピレンフィルムを提供することである。 The purpose of the present disclosure is that the metallized film after the slit process in the metallized film after the biaxially stretched polypropylene film is thin and the width difference in the insulation margin between one end in the longitudinal direction and the other end in the longitudinal direction ( Hereinafter, it is to provide a biaxially stretched polypropylene film capable of suppressing “insulation margin width shift”.
 第1の本開示の二軸延伸ポリプロピレンフィルム(第1の本発明に係る二軸延伸ポリプロピレンフィルム)は、厚さが1.0μm~3.0μmであり、第一方向における140℃の熱収縮率と、前記第一方向における130℃の熱収縮率との差が0%以上2.0%未満であり、前記第一方向に対して直角の第二方向における140℃の熱収縮率と、前記第二方向における130℃の熱収縮率との差が0%以上2.3%未満である。
 第2の本開示の二軸延伸ポリプロピレンフィルム(第2の本発明に係る二軸延伸ポリプロピレンフィルム)は、厚さが1.0μm~3.0μmであり、第二方向の幅が1200mm以下であり、
 下記(1)~(3)の手法により得られる、遅相軸角度の最大値と最小値の差が6°未満である二軸延伸ポリプロピレンフィルムである。
<遅相軸角度の最大値と最小値の差の求め方>
(1)幅方向全長を100%とした時、その両端から10%おきの位置を中心とする、50mm×50mmの測定用サンプルを切り出し、
(2)測定用サンプルの第二方向を0°とし、各測定用サンプルの第二方向と遅相軸との間の鋭角の角度を測定し、
(3)9枚の測定用サンプルのうち、前記(2)で測定した角度の最大と最小の差を求める。
The biaxially stretched polypropylene film of the first present disclosure (the biaxially stretched polypropylene film according to the first present invention) has a thickness of 1.0 μm to 3.0 μm and a heat shrinkage rate of 140 ° C. in the first direction. And the difference between the heat shrinkage rate at 130 ° C. in the first direction is not less than 0% and less than 2.0%, and the heat shrinkage rate at 140 ° C. in the second direction perpendicular to the first direction, The difference from the heat shrinkage rate at 130 ° C. in the second direction is 0% or more and less than 2.3%.
The biaxially stretched polypropylene film of the second present disclosure (the biaxially stretched polypropylene film according to the second present invention) has a thickness of 1.0 μm to 3.0 μm and a width in the second direction of 1200 mm or less. ,
A biaxially stretched polypropylene film obtained by the following methods (1) to (3), wherein the difference between the maximum value and the minimum value of the slow axis angle is less than 6 °.
<Determining the difference between the maximum and minimum values of the slow axis angle>
(1) When the total length in the width direction is 100%, a sample for measurement of 50 mm × 50 mm, centering on every 10% position from both ends, is cut out.
(2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured,
(3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
 ここからは、本開示の二軸延伸ポリプロピレンフィルムを本発明者が想到するに至った経緯を説明する。 From here, the background to which the present inventors have conceived the biaxially stretched polypropylene film of the present disclosure will be described.
 <第1の経緯とその発明(第1の発明)>
 スリット工程後の金属化フィルムにおいて、長手方向の一端と、長手方向の他端とで、絶縁マージンにおける幅がずれる原因を本発明者は鋭意検討し、その原因が、絶縁マージン形成用のオイルが付着した箇所で、二軸延伸ポリプロピレンフィルムの温度が高まり、その箇所で熱収縮が大きいことと、オイルが付着していない箇所で熱収縮が小さいこととにあると、本発明者は当初考えた。このように考えられたのは、このオイルが、二軸延伸ポリプロピレンフィルムに直接付着させるために通常、気化されており、130℃~140℃程度で付着することにある。
<First Process and its Invention (First Invention)>
In the metallized film after the slitting process, the present inventor has intensively studied the cause of the shift in the width of the insulation margin between one end in the longitudinal direction and the other end in the longitudinal direction, and the cause is the oil for forming the insulation margin. The inventor initially thought that the temperature of the biaxially stretched polypropylene film was increased at the adhering location, and that the heat shrinkage was large at that location and that the heat shrinkage was small at the location where no oil was adhered. . The reason for this is that this oil is usually vaporized in order to adhere directly to the biaxially stretched polypropylene film, and adheres at about 130 ° C to 140 ° C.
 絶縁マージン幅ずれのほかの原因として、ヘビーエッジ部を形成するための金属蒸気(たとえば亜鉛蒸気)によって、二軸延伸ポリプロピレンフィルムの温度が局所的に高まり、面内に温度分布が生じ、熱収縮が大きい箇所と小さい箇所とが発生することも考えられた。このように考えられた理由は、金属蒸気の温度は高く、たとえば亜鉛蒸気は600℃程度であるため、ヘビーエッジ部を形成するための金属蒸気が付着した部分で熱収縮が大きいと考えらえることにある。 Another cause of the deviation of the insulation margin width is that the metal vapor (for example, zinc vapor) for forming the heavy edge portion locally increases the temperature of the biaxially stretched polypropylene film, resulting in an in-plane temperature distribution and heat shrinkage. It was also considered that a large portion and a small portion were generated. The reason considered in this way is that the temperature of the metal vapor is high, for example, zinc vapor is about 600 ° C., so it can be considered that the thermal contraction is large at the portion where the metal vapor for forming the heavy edge portion is attached. There is.
 しかしながら、オイルの比熱と金属の比熱とを考慮すると、二軸延伸ポリプロピレンフィルムにおける局所的な温度上昇に対して、オイルが、金属蒸気よりも大きな影響を与えると本発明者は考えた。さらに、金属蒸気を付着させる工程では、冷却ロールにより二軸延伸フィルムの、金属蒸気を付着する面とは対向する面を強烈に冷却していることからも、金属蒸気よりもオイルが大きな影響を与えると本発明者は考えた。 However, considering the specific heat of the oil and the specific heat of the metal, the present inventor considered that the oil has a greater effect than the metal vapor on the local temperature rise in the biaxially stretched polypropylene film. Furthermore, in the process of attaching the metal vapor, the oil has a greater influence than the metal vapor because the surface opposite to the surface to which the metal vapor is attached of the biaxially stretched film is strongly cooled by the cooling roll. The inventor thought to give.
 よって、絶縁マージン幅ずれを抑制するために、絶縁マージン形成用のオイルの温度を参考に、第一方向における130℃の熱収縮率と、第一方向に直交する第二方向における130℃の熱収縮率の低減とに本発明者は着目した。 Therefore, in order to suppress the deviation of the insulation margin width, the heat shrinkage rate of 130 ° C. in the first direction and the heat of 130 ° C. in the second direction orthogonal to the first direction are referred with reference to the temperature of the oil for forming the insulation margin. The inventor has focused on reducing the shrinkage rate.
 しかしながら、第一方向および第二方向における130℃の熱収縮率に、絶縁マージン幅ずれは必ずしも依存しないことを本発明者は見出した。 However, the present inventors have found that the insulation margin width deviation does not necessarily depend on the heat shrinkage rate of 130 ° C. in the first direction and the second direction.
 より具体的には、絶縁マージン幅ずれは、第一方向における140℃の熱収縮率および第一方向における130℃の熱収縮率の差と、第二方向における140℃の熱収縮率および第二方向における130℃の熱収縮率の差とに大きく依存することを本発明者は見出した。 More specifically, the insulation margin width shift is the difference between the heat shrinkage rate of 140 ° C. in the first direction and the heat shrinkage rate of 130 ° C. in the first direction, and the heat shrinkage rate of 140 ° C. in the second direction and the second The present inventor has found that it largely depends on the difference in heat shrinkage rate at 130 ° C. in the direction.
 これらの知見に基づき、本発明者は、第1の本開示の二軸延伸ポリプロピレンフィルムを想到するに至った。 Based on these findings, the present inventor has come up with the biaxially stretched polypropylene film of the first present disclosure.
 前記構成において、二軸延伸ポリプロピレンフィルムは、
 前記第二方向における140℃の熱収縮率STD140と、前記第一方向における140℃の熱収縮率SMD140との比率STD140/SMD140が、0.200以上0.325以下であることが好ましい。
In the above configuration, the biaxially stretched polypropylene film is
And 140 ° C. thermal shrinkage S TD140 in the second direction, that the ratio S TD140 / S MD140 between the thermal shrinkage factor S MD140 of 140 ° C. in the first direction is 0.200 or more 0.325 or less preferable.
 前記比率STD140/SMD140が上記範囲内である場合、140℃領域での面内の熱収縮はバランスがよい(第一方向と第二方向の熱収縮の均整がとれている)ため、偏肉精度性により優れ、且つ、絶縁マージン幅ずれをより抑制することができる。 When the ratio S TD140 / S MD140 is within the above range, the in-plane heat shrinkage in the 140 ° C. region is well balanced (the heat shrinkage in the first direction and the second direction is balanced). It is more excellent in meat accuracy and can further suppress an insulation margin width shift.
 前記構成において、二軸延伸ポリプロピレンフィルムは、
 前記第二方向の幅が1200mm以下であり、
 下記(1)~(3)の手法により得られる、遅相軸角度の最大値と最小値の差が6°未満であることが好ましい。
<遅相軸角度の最大値と最小値の差の求め方>
(1)幅方向全長を100%とした時、その両端から10%おきの位置を中心とする、50mm×50mmの測定用サンプルを切り出し、
(2)測定用サンプルの第二方向を0°とし、各測定用サンプルの第二方向と遅相軸との間の鋭角の角度を測定し、
(3)9枚の測定用サンプルのうち、前記(2)で測定した角度の最大と最小の差を求める。
In the above configuration, the biaxially stretched polypropylene film is
The width in the second direction is 1200 mm or less;
The difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is preferably less than 6 °.
<Determining the difference between the maximum and minimum values of the slow axis angle>
(1) When the total length in the width direction is 100%, a sample for measurement of 50 mm × 50 mm, centering on every 10% position from both ends, is cut out.
(2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured,
(3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
 前記差が6°未満であると、二軸延伸ポリプロピレンフィルムの偏肉精度がより優れる。また、当該二軸延伸ポリプロピレンフィルムで金属化フィルムを作製すると、面内方向の収縮ムラが少なくシワやタルミが抑制され、好適に使用することができる。 When the difference is less than 6 °, the thickness deviation accuracy of the biaxially stretched polypropylene film is more excellent. Moreover, when a metallized film is produced with the biaxially stretched polypropylene film, shrinkage unevenness in the in-plane direction is small, and wrinkles and talmi are suppressed, which can be suitably used.
 なお、第1の本開示の二軸延伸ポリプロピレンフィルムはコンデンサ用であることができる。 Note that the biaxially stretched polypropylene film of the first present disclosure can be used for a capacitor.
 さらに、第1の本開示は、金属化フィルムにも関し、第1の本開示の金属化フィルムは、第1の本開示の二軸延伸ポリプロピレンフィルムと、二軸延伸ポリプロピレンフィルムの片面又は両面に積層された金属層とを有することができる。 Furthermore, the first present disclosure also relates to a metallized film, wherein the metallized film of the first present disclosure is formed on one or both sides of the biaxially stretched polypropylene film of the first present disclosure and the biaxially stretched polypropylene film. And a laminated metal layer.
 第1の本開示は、フィルムコンデンサにも関し、第1の本開示のフィルムコンデンサは、巻回された第1の本開示の金属化フィルムを有するか、又は、第1の本開示の金属化フィルムが複数積層された構成を有することができる。 The first present disclosure also relates to a film capacitor, wherein the film capacitor of the first present disclosure has the metallized film of the first present disclosure wound or the metallization of the first present disclosure. It can have a configuration in which a plurality of films are laminated.
 第1の本開示は、フィルムロールにも関し、第1の本開示のフィルムロールは、第1の本開示の二軸延伸ポリプロピレンフィルムが、ロール状に巻回されている構成とすることができる。 The first present disclosure also relates to a film roll, and the film roll of the first present disclosure may be configured such that the biaxially stretched polypropylene film of the first present disclosure is wound in a roll shape. .
  <第2の経緯とその発明(第2の発明)>
 本発明者、前記第1の経緯と同様にして、オイルの影響を検討した。その上で、絶縁マージン幅ずれを抑制するために、二軸延伸ポリプロピレンフィルムの遅相軸角度について本発明者は着目した。その結果、絶縁マージン幅ずれは、遅相軸角度の最大値と最小値の差に大きく依存することを本発明者は見出した。これらの知見に基づき、本発明者は、第2の本開示の二軸延伸ポリプロピレンフィルムを想到するに至った。
 前記構成において、二軸延伸ポリプロピレンフィルムは、
 前記第二方向における140℃の熱収縮率STD140と、前記第一方向における140℃の熱収縮率SMD140との比率STD140/SMD140が、0.200以上0.325以下であることが好ましい。その理由は、第1の発明の場合と同様である。
 前記構成において、二軸延伸ポリプロピレンフィルムは、
第一方向における140℃の熱収縮率と、前記第一方向における130℃の熱収縮率との差が0%以上2.0%未満であり、前記第一方向に対して直角の第二方向における140℃の熱収縮率と、前記第二方向における130℃の熱収縮率との差が0%以上2.3%未満であることが好ましい。
<Second Process and its Invention (Second Invention)>
The inventor examined the influence of oil in the same manner as the first process. In addition, the present inventor has focused on the slow axis angle of the biaxially stretched polypropylene film in order to suppress the insulation margin width shift. As a result, the present inventors have found that the insulation margin width deviation largely depends on the difference between the maximum value and the minimum value of the slow axis angle. Based on these findings, the present inventor has come up with the biaxially stretched polypropylene film of the second present disclosure.
In the above configuration, the biaxially stretched polypropylene film is
And 140 ° C. thermal shrinkage S TD140 in the second direction, that the ratio S TD140 / S MD140 between the thermal shrinkage factor S MD140 of 140 ° C. in the first direction is 0.200 or more 0.325 or less preferable. The reason is the same as in the case of the first invention.
In the above configuration, the biaxially stretched polypropylene film is
The difference between the heat shrinkage rate of 140 ° C. in the first direction and the heat shrinkage rate of 130 ° C. in the first direction is 0% or more and less than 2.0%, and the second direction perpendicular to the first direction It is preferable that the difference between the heat shrinkage rate at 140 ° C. and the heat shrinkage rate at 130 ° C. in the second direction is 0% or more and less than 2.3%.
 なお、第2の本開示の二軸延伸ポリプロピレンフィルムはコンデンサ用であることができる。 The biaxially stretched polypropylene film of the second present disclosure can be used for a capacitor.
 さらに、第2の本開示は、金属化フィルムにも関し、第2の本開示の金属化フィルムは、第2の本開示の二軸延伸ポリプロピレンフィルムと、二軸延伸ポリプロピレンフィルムの片面又は両面に積層された金属層とを有することができる。 Further, the second present disclosure also relates to a metallized film, and the metallized film of the second present disclosure is formed on one or both sides of the biaxially stretched polypropylene film of the second present disclosure and the biaxially stretched polypropylene film. And a laminated metal layer.
 第2の本開示は、フィルムコンデンサにも関し、第2の本開示のフィルムコンデンサは、巻回された本開示の金属化フィルムを有するか、又は、第2の本開示の金属化フィルムが複数積層された構成を有することができる。 The second present disclosure also relates to a film capacitor, and the film capacitor of the second present disclosure has a metallized film of the present disclosure wound or a plurality of metallized films of the second present disclosure. It can have a stacked configuration.
 第2の本開示は、フィルムロールにも関し、第2の本開示のフィルムロールは、第2の本開示の二軸延伸ポリプロピレンフィルムが、ロール状に巻回されている構成とすることができる。 2nd this indication is related also with a film roll, The film roll of 2nd this indication can be set as the structure by which the biaxially stretched polypropylene film of 2nd this indication is wound by roll shape. .
 本開示(第1の本開示、及び、第2の本開示)の二軸延伸ポリプロピレンフィルムは、二軸延伸ポリプロピレンフィルムの厚みが薄いにもかかわらず、スリット工程後の金属化フィルムにおいて、絶縁マージン幅ずれを抑制することができる。 The biaxially stretched polypropylene film of the present disclosure (the first present disclosure and the second present disclosure) is an insulating margin in the metallized film after the slitting process even though the biaxially stretched polypropylene film is thin. The width shift can be suppressed.
金属化フィルムの断面図であり、より詳しくは図2におけるI-I線の断面図である。FIG. 3 is a cross-sectional view of a metallized film, and more specifically, a cross-sectional view taken along line II in FIG. 金属化フィルムの平面図である。It is a top view of a metallized film. スリット前金属化フィルムの平面図である。It is a top view of the metallized film before a slit. 実施例および比較例で作製したスリット前金属化フィルムの平面図である。It is a top view of the metallized film before a slit produced in the Example and the comparative example.
 以下、本発明の実施形態について説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。
 本明細書中において、「含有」及び「含む」なる表現は、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本明細書中において、「コンデンサ」なる表現は、「コンデンサ」、「コンデンサ素子」及び「フィルムコンデンサ」という概念を含む。
 本実施形態の二軸延伸ポリプロピレンフィルムは、微孔性フィルムではないので、多数の空孔を有していない。
 本実施形態の二軸延伸ポリプロピレンフィルムは、2層以上の複数層で構成されていてもよいが、単層で構成されていることが好ましい。
 本実施形態の二軸延伸ポリプロピレンフィルムは、1.0~3.0μmという非常に厚さが小さい(薄い)場合における上記課題を達成したものである。本実施形態の二軸延伸ポリプロピレンフィルムは、厚さが4.5μm、5μm等の大きい(厚い)場合については想定していない。
Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited only to these embodiments.
In this specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
In this specification, the expression “capacitor” includes the concept of “capacitor”, “capacitor element”, and “film capacitor”.
Since the biaxially stretched polypropylene film of this embodiment is not a microporous film, it does not have a large number of pores.
The biaxially stretched polypropylene film of this embodiment may be composed of two or more layers, but is preferably composed of a single layer.
The biaxially stretched polypropylene film of the present embodiment achieves the above-described problem when the thickness is very small (thin) of 1.0 to 3.0 μm. The biaxially stretched polypropylene film of the present embodiment does not assume a case where the thickness is large (thick) such as 4.5 μm and 5 μm.
 本実施形態で登場する二つの方向を、まずここで説明する。本実施形態において、第一方向は、二軸延伸ポリプロピレンフィルムの長手方向と同じ方向を指す。本実施形態では、第一方向は、Machine Direction(以下、「MD方向」という。)と同じ方向でもある。以下では、第一方向を、主にMD方向と呼ぶ。ただし、本発明は、第一方向が、長手方向と同じ向きを指す形態に限られないし、MD方向と同じ向きを指す形態に限られない。いっぽう、第二方向は、二軸延伸ポリプロピレンフィルムの幅方向と同じ方向を指す。本実施形態では、第二方向は、TransverseDirection(以下、「TD方向」という。)と同じ方向でもある。以下では、第二方向を、主にTD方向と呼ぶ。ただし、本発明は、第二方向が、幅方向と同じ向きを指す形態に限られないし、TD方向と同じ向きを指す形態に限られない。 The two directions that appear in this embodiment will be described first. In the present embodiment, the first direction refers to the same direction as the longitudinal direction of the biaxially stretched polypropylene film. In the present embodiment, the first direction is also the same direction as Machine Direction (hereinafter referred to as “MD direction”). Hereinafter, the first direction is mainly referred to as the MD direction. However, the present invention is not limited to a form in which the first direction points to the same direction as the longitudinal direction, and is not limited to a form that points to the same direction as the MD direction. On the other hand, the second direction refers to the same direction as the width direction of the biaxially stretched polypropylene film. In the present embodiment, the second direction is also the same direction as Transverse Direction (hereinafter referred to as “TD direction”). Hereinafter, the second direction is mainly referred to as a TD direction. However, the present invention is not limited to a form in which the second direction points to the same direction as the width direction, and is not limited to a form that points to the same direction as the TD direction.
 <第1の本発明に係る実施形態>
 本実施形態に係る二軸延伸ポリプロピレンフィルムの厚さ(厚み)は、1.0~3.0μmの範囲内である。本実施形態に係る二軸延伸ポリプロピレンフィルムの厚さは、1.2μm以上が好ましく、1.5μm以上がより好ましく、2.0μm以上がさらに好ましい。また、本実施形態に係る二軸延伸ポリプロピレンフィルムの厚さは、3.0μm未満が好ましく、2.9μm以下がより好ましく、2.8μm以下がさらに好ましく、2.5μm以下が特に好ましい。本実施形態に係る二軸延伸ポリプロピレンフィルムの厚さが好ましい範囲含めて上記各範囲内である場合、二軸延伸ポリプロピレンフィルムの厚みが薄いにもかかわらずスリット工程後の金属化フィルムにおいて絶縁マージン幅ずれを抑制する、という優れた効果を最大限享受することができるとともに、小型化且つ大容量化されたフィルムコンデンサを得ることができる。
 また、前記ポリプロピレンフィルムの厚さが3.0μm以下であるため、コンデンサ素子としたときの単位体積当たりの静電容量を大きくすることができるため、コンデンサ用として好適に使用できる。
 この点について、以下に詳細に説明する。
 ポリプロピレンフィルムは、厚さが薄いほど、単位体積当たりの静電容量を大きくできる。より具体的に説明すると、静電容量Cは、誘電率ε、電極面積S、誘電体厚さd(ポリプロピレンフィルムの厚さd)を用いて、以下のように表される。
   C=εS/d
 ここで、フィルムコンデンサの場合、電極の厚さは、ポリプロピレンフィルム(誘電体)の厚さと比較して3桁以上薄いため、電極の体積を無視すると、コンデンサの体積Vは、以下のように表される。
   V=Sd
 従って、上記2つの式より、単位体積当たりの静電容量C/Vは、以下のように表される。
   C/V=ε/d
 上記式から分かるように、単位体積当たりの静電容量(C/V)は、ポリプロピレンフィルム厚さの自乗に反比例する。また、誘電率εは、使用する材料により決まる。そうすると、材料を変更しない限りは、厚さを薄くすること以外で単位体積当たりの静電容量(C/V)を向上させることはできないことが分かる。
 つまり、同じ材料でフィルムコンデンサを作製することを想定すると、(1)同じ大きさのフィルムコンデンサを作製する場合、薄いポリプロピレンフィルムを使用した方が、容量の大きいフィルムコンデンサが得られる。また、(2)同じ容量のフィルムコンデンサを作製する場合、薄いポリプロピレンフィルムを使用した方が大きさの小さいフィルムコンデンサが得られ、省スペース化が可能となる。
<Embodiment according to First Invention>
The thickness (thickness) of the biaxially stretched polypropylene film according to this embodiment is in the range of 1.0 to 3.0 μm. The thickness of the biaxially stretched polypropylene film according to this embodiment is preferably 1.2 μm or more, more preferably 1.5 μm or more, and further preferably 2.0 μm or more. Moreover, the thickness of the biaxially stretched polypropylene film according to this embodiment is preferably less than 3.0 μm, more preferably 2.9 μm or less, further preferably 2.8 μm or less, and particularly preferably 2.5 μm or less. In the case where the thickness of the biaxially stretched polypropylene film according to this embodiment is within the above ranges including the preferred range, the insulation margin width in the metallized film after the slit process despite the thin thickness of the biaxially stretched polypropylene film It is possible to obtain the excellent effect of suppressing the deviation to the maximum, and to obtain a film capacitor that is reduced in size and increased in capacity.
Further, since the polypropylene film has a thickness of 3.0 μm or less, the capacitance per unit volume when used as a capacitor element can be increased, so that it can be suitably used for a capacitor.
This point will be described in detail below.
The smaller the thickness of the polypropylene film, the larger the capacitance per unit volume. More specifically, the capacitance C is expressed as follows using the dielectric constant ε, the electrode area S, and the dielectric thickness d (the thickness d of the polypropylene film).
C = εS / d
Here, in the case of a film capacitor, the thickness of the electrode is three orders of magnitude thinner than the thickness of the polypropylene film (dielectric material). Therefore, when the volume of the electrode is ignored, the volume V of the capacitor is expressed as follows. Is done.
V = Sd
Therefore, the capacitance C / V per unit volume is expressed as follows from the above two formulas.
C / V = ε / d 2
As can be seen from the above formula, the capacitance per unit volume (C / V) is inversely proportional to the square of the thickness of the polypropylene film. The dielectric constant ε is determined by the material used. If it does so, unless the material is changed, it turns out that the electrostatic capacitance (C / V) per unit volume cannot be improved other than reducing thickness.
That is, assuming that a film capacitor is made of the same material, (1) When a film capacitor of the same size is made, a film capacitor having a larger capacity can be obtained by using a thin polypropylene film. Also, (2) when a film capacitor having the same capacity is produced, a smaller film capacitor can be obtained by using a thin polypropylene film, and space can be saved.
 二軸延伸ポリプロピレンフィルムの厚さは、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定したこと以外、JIS-C2330に準拠して測定した値をいう。 The thickness of the biaxially stretched polypropylene film refers to a value measured according to JIS-C2330 except that it was measured at 100 ± 10 kPa using a paper thickness measuring device MEI-11 manufactured by Citizen Seimitsu.
 本実施形態に係る二軸延伸ポリプロピレンフィルムは、MD方向における140℃の熱収縮率と、MD方向における130℃の熱収縮率との差(以下、「MD熱収縮率差」という。)が0%以上2.0%未満であり、TD方向における140℃の熱収縮率と、TD方向における130℃の熱収縮率との差(以下、「TD熱収縮率差」という。)が0%以上2.3%未満である。本明細書において、MD方向における140℃の熱収縮率をSMD140、MD方向における130℃の熱収縮率をSMD130、TD方向における140℃の熱収縮率をSTD140、TD方向における130℃の熱収縮率をSTD130と呼ぶことがある。本明細書におけるMD熱収縮率差をSMD140-SMD130、TD熱収縮率差はSTD140-STD130と呼ぶことがある。 The biaxially stretched polypropylene film according to this embodiment has a difference between the heat shrinkage rate of 140 ° C. in the MD direction and the heat shrinkage rate of 130 ° C. in the MD direction (hereinafter referred to as “MD heat shrinkage rate difference”). % And less than 2.0%, and the difference between the heat shrinkage rate at 140 ° C. in the TD direction and the heat shrinkage rate at 130 ° C. in the TD direction (hereinafter referred to as “TD heat shrinkage rate difference”) is 0% or more. Less than 2.3%. In the present specification, the thermal shrinkage of 140 ° C. in the MD direction S MD140, the thermal shrinkage of 130 ° C. in the MD direction heat shrinkage 140 ° C. in S MD130, TD direction of 130 ° C. in S TD140, TD direction The thermal contraction rate may be referred to as STD130 . The MD thermal shrinkage rate difference herein S MD140 -S MD130, TD thermal shrinkage rate difference may be referred to as S TD140 -S TD130.
 本実施形態に係る二軸延伸ポリプロピレンフィルムは、厚さが1.0μm~3.0μmの範囲内で薄いものの、スリット工程後の金属化フィルムにおいて、長手方向の一端と、長手方向の他端とで、絶縁マージンにおける幅のずれを抑制することができる。なお、絶縁マージンの幅は、二軸延伸ポリプロピレンフィルムの幅方向で測定される。 Although the biaxially stretched polypropylene film according to the present embodiment is thin in the range of 1.0 μm to 3.0 μm, in the metallized film after the slit process, one end in the longitudinal direction and the other end in the longitudinal direction Thus, the width shift in the insulation margin can be suppressed. Note that the width of the insulation margin is measured in the width direction of the biaxially stretched polypropylene film.
 絶縁マージン幅のずれを抑制可能な理由は次のように推測される。 The reason why the deviation of the insulation margin width can be suppressed is estimated as follows.
 まず、二軸延伸ポリプロピレンフィルムに絶縁マージンを形成する際に、絶縁マージン形成用のオイルによって、各絶縁マージンの面内に温度むらが生じていると考えられる。 First, when forming an insulation margin on a biaxially stretched polypropylene film, it is considered that the temperature unevenness occurs in the surface of each insulation margin due to the oil for forming the insulation margin.
 この温度むらは、TD方向温度むらとMD方向の温度むらとに大別できると考えられる。 It is considered that this temperature unevenness can be broadly classified into temperature unevenness in the TD direction and temperature unevenness in the MD direction.
 TD方向の温度むらにおいて、各絶縁マージンでは、TD方向中央部の温度が、TD方向両端部の温度よりも高いと考えられる。このように考えられるのは、絶縁マージン形成用のオイル蒸気が、ノズルのスリットから扇状に噴出されるため、絶縁マージンにおけるTD方向中央部のオイル量が、TD方向両端部のそれよりも多くなることにある。 In the temperature unevenness in the TD direction, it is considered that the temperature at the center portion in the TD direction is higher than the temperature at both end portions in the TD direction in each insulation margin. The reason is that the oil vapor for forming the insulation margin is ejected in a fan shape from the slit of the nozzle, so that the amount of oil at the center portion in the TD direction in the insulation margin is larger than that at both end portions in the TD direction. There is.
 いっぽう、MD方向の温度むらの発生に関して、絶縁マージン形成用のオイル蒸気が一定の勢いで噴射するように調整されるものの、厳密には一定とまでは言い切れず、勢いにわずかな変動が存在すると考えられ、この変動によってMD方向の温度むらが生じると推測される。 On the other hand, regarding the occurrence of temperature unevenness in the MD direction, although it is adjusted so that the oil vapor for forming the insulation margin is injected at a constant momentum, strictly speaking, it cannot be said that it is constant, and there is a slight fluctuation in momentum. Therefore, it is estimated that this variation causes temperature unevenness in the MD direction.
 さらに、各絶縁マージン面内における温度むらの温度範囲は、130℃程度~140℃程度だと考えられる。このように考えられるのは、通常、絶縁マージン形成用のオイル蒸気を、130℃程度~140℃程度で噴射することにある。以下、140℃程度だと考えらえる領域(オイル量が、比較的多いと考えられる領域)を140℃領域又は高温領域と呼ぶことがあり、130℃程度だと考えられる領域(オイル量が、比較的少ないと考えられる領域)を130℃領域と呼ぶことがある。 Furthermore, it is considered that the temperature range of temperature unevenness in each insulation margin plane is about 130 ° C. to 140 ° C. The reason for this is that oil vapor for forming an insulation margin is normally injected at about 130 ° C. to 140 ° C. Hereinafter, a region considered to be about 140 ° C. (region where the amount of oil is considered to be relatively large) may be referred to as a 140 ° C. region or a high temperature region, and a region considered to be about 130 ° C. The region considered to be relatively small) may be referred to as a 130 ° C. region.
 このような温度むらによって従来生じていたであろうシワやたるみを、本実施形態に係る二軸延伸ポリプロピレンフィルムは抑制できると考えられる。このように考えられるのは、本実施形態に係る二軸延伸ポリプロピレンフィルムでは、絶縁マージンの高温領域の温度に相当するであろう140℃での熱収縮率と、絶縁マージンの130℃領域の温度に相当するであろう130℃の熱収縮率とが、直角をなす二方向において近いことにある。言い換えれば、絶縁マージン形成用のオイルで各絶縁マージン内で温度分布が生じた場合に、二軸延伸ポリプロピレンフィルムの130℃及び140℃での熱収縮率に大きな分布が生じない、すなわち二軸延伸ポリプロピレンフィルムの130℃での熱収縮率と140℃での熱収縮率の値が近いため、シワやたるみを抑制できると考えられる。 It is considered that the biaxially stretched polypropylene film according to this embodiment can suppress wrinkles and sagging that would have conventionally occurred due to such temperature unevenness. This is thought to be due to the fact that the biaxially stretched polypropylene film according to the present embodiment has a heat shrinkage rate at 140 ° C. that would correspond to the temperature in the high temperature region of the insulation margin and the temperature in the 130 ° C. region of the insulation margin. The heat shrinkage rate at 130 ° C., which would correspond to the above, is close in two directions that form a right angle. In other words, when a temperature distribution occurs in each insulation margin with the oil for forming the insulation margin, a large distribution does not occur in the heat shrinkage rate at 130 ° C. and 140 ° C. of the biaxially stretched polypropylene film, that is, biaxial stretching. Since the heat shrinkage rate at 130 ° C. and the heat shrinkage rate at 140 ° C. of the polypropylene film are close, it is considered that wrinkles and sagging can be suppressed.
 このようなシワやたるみを抑制する結果として、絶縁マージン幅のずれを、本実施形態に係る二軸延伸ポリプロピレンフィルムが抑制できると推測される。 As a result of suppressing such wrinkles and sagging, it is presumed that the deviation of the insulation margin width can be suppressed by the biaxially stretched polypropylene film according to this embodiment.
 TD方向(第二方向)における140℃の熱収縮率(STD140)と、MD方向(第一方向)における140℃の熱収縮率(SMD140)の比率、すなわちSTD140/SMD140は、0.200以上が好ましく、0.240以上がより好ましく、0.280以上がさらに好ましく、0.290以上が特に好ましい。また、STD140/SMD140は、0.385以下が好ましく、0.360以下がより好ましく、0.330以下がさらに好ましく、0.325以下がさらに一層好ましく、0.320以下が特に好ましく、0.315以下が特に一層好ましい。また、STD140/SMD140は、上限及び下限を規定した範囲に関して、0.200以上0.385以下が好ましく、0.240以上0.360以下がより好ましく、0.280以上0.320以下がさらに好ましい。STD140/SMD140が上記範囲内である場合、140℃領域での面内の熱収縮はバランスがよい(TD方向とMD方向の熱収縮の均整がとれている)ため、偏肉精度性により優れ、且つ、絶縁マージン幅ずれをより抑制することができる。 TD direction 140 ° C. thermal shrinkage in the (second direction) and (S TD140), MD direction ratio of thermal shrinkage of 140 ° C. in (first direction) (S MD140), i.e. S TD140 / S MD140 is 0 200 or more is preferable, 0.240 or more is more preferable, 0.280 or more is further preferable, and 0.290 or more is particularly preferable. Further, S TD140 / S MD140 is preferably 0.385 or less, more preferably 0.360 or less, further preferably 0.330 or less, still more preferably 0.325 or less, particularly preferably 0.320 or less, 0 .315 or less is even more preferable. Further, S TD140 / S MD140 is preferably 0.200 or more and 0.385 or less, more preferably 0.240 or more and 0.360 or less, and more preferably 0.280 or more and 0.320 or less with respect to a range in which an upper limit and a lower limit are defined. Further preferred. When S TD140 / S MD140 is within the above range, in-plane heat shrinkage in the 140 ° C. region is well-balanced (the heat shrinkage in the TD direction and MD direction is balanced). It is excellent and the insulation margin width shift can be further suppressed.
 TD方向における130℃の熱収縮率(STD130)と、MD方向における130℃の熱収縮率(SMD130)の比率、すなわちSTD130/SMD130は、0.140以下が好ましく、0.070以上0.130以下がより好ましく、0.080以上0.100以下がさらに好ましい。STD130/SMD130が上記範囲内である場合、130℃領域での面内の熱収縮はバランスがよい(TD方向とMD方向の熱収縮の均整がとれている)ため、偏肉精度性により優れ、且つ、絶縁マージン幅ずれをより抑制することができる。 Heat shrinkage of 130 ° C. in the TD direction (S TD130), the ratio of the 130 ° C. thermal shrinkage in the MD direction (S MD130), i.e. S TD130 / S MD130 is preferably 0.140 or less, 0.070 or more 0.130 or less is more preferable, and 0.080 or more and 0.100 or less is more preferable. When S TD130 / S MD130 is within the above range, in-plane heat shrinkage in the 130 ° C. region is well-balanced (the heat shrinkage in the TD direction and MD direction is balanced). It is excellent and the insulation margin width shift can be further suppressed.
 TD熱収縮率差(STD140-STD130)と、MD熱収縮率差(SMD140-SMD130)の比率、すなわち(STD140-STD130)/(SMD140-SMD130)は0.920以上1.350以下が好ましく、0.930以上1.200以下が好ましく、0.960以上1.080以下がさらに好ましい。(STD140-STD130)/(SMD140-SMD130)が上記範囲内である場合、130~140℃領域での面内の熱収縮はバランスがよい(TD方向とMD方向の熱収縮の均整がとれている)ため、偏肉精度性により優れ、且つ、絶縁マージン幅ずれをより抑制することができる。 Ratio of TD heat shrinkage rate difference (S TD140 -S TD130 ) and MD heat shrinkage rate difference (S MD140 -S MD130 ), that is, (S TD140 -S TD130 ) / (S MD140 -S MD130 ) is 0.920 or more 1.350 or less is preferable, 0.930 or more and 1.200 or less are preferable, and 0.960 or more and 1.080 or less are more preferable. When (S TD140 -S TD130 ) / (S MD140 -S MD130 ) is within the above range, the in-plane thermal shrinkage in the 130 to 140 ° C. region is well balanced (equal thermal shrinkage in the TD and MD directions). Therefore, the thickness accuracy is excellent and the insulation margin width deviation can be further suppressed.
 MD熱収縮率差(SMD140-SMD130)とTD熱収縮率差(STD140-STD130)との両者は、テンターの下流で、二軸延伸後のポリプロピレンフィルムを巻き取る引取ロールの速度(以下、「引取速度」という。)と、テンター延伸部における、MD方向のポリプロピレンフィルムの搬送速度(以下、「製膜ライン速度」という。)との影響を受けるとともに、熱固定温度の影響も受ける。これらについては、二軸延伸を説明する際に詳述する。 Both the MD heat shrinkage difference (S MD140 -S MD130 ) and the TD heat shrinkage difference (S TD140 -S TD130 ) are the speed of the take-up roll that winds the biaxially stretched polypropylene film downstream of the tenter ( (Hereinafter referred to as “take-off speed”) and the MD-direction polypropylene film transport speed (hereinafter referred to as “film-forming line speed”) in the tenter stretching section and also affected by the heat setting temperature. . These will be described in detail when describing biaxial stretching.
 MD熱収縮率差(SMD140-SMD130)は、0.1%以上が好ましく、0.5%以上がより好ましく、1.0%以上がさらに好ましく、1.5%以上が特に好ましい。MD熱収縮率差は、1.9%以下が好ましく、1.8%以下がより好ましい。 The difference in MD heat shrinkage (S MD140 −S MD130 ) is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, and particularly preferably 1.5% or more. The difference in MD heat shrinkage is preferably 1.9% or less, and more preferably 1.8% or less.
 いっぽう、TD熱収縮率差(STD140-STD130)は、0.1%以上が好ましく、0.5%以上がより好ましく、1.0%以上がさらに好ましく、1.5%以上が特に好ましい。TD熱収縮率差は、2.2%以下が好ましく、2.0以下がより好ましく、1.9%以下がさらに好ましく、1.8%以下が特に好ましい。 On the other hand, the TD heat shrinkage difference (S TD140 -S TD130 ) is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, and particularly preferably 1.5% or more. . The TD heat shrinkage difference is preferably 2.2% or less, more preferably 2.0 or less, further preferably 1.9% or less, and particularly preferably 1.8% or less.
 MD方向における140℃の熱収縮率(SMD140)は、好ましくは10.0%以下、より好ましくは9.0%以下、さらに好ましくは8.5%以下である。MD方向における140℃の熱収縮率(SMD140)は、1.0%以上が好ましく、3.0%以上がより好ましく、5.0%以上がさらに好ましく、7.0%以上が特に好ましい。 The heat shrinkage rate (S MD140 ) at 140 ° C. in the MD direction is preferably 10.0% or less, more preferably 9.0% or less, and even more preferably 8.5% or less. The heat shrinkage rate (S MD140 ) at 140 ° C. in the MD direction is preferably 1.0% or more, more preferably 3.0% or more, further preferably 5.0% or more, and particularly preferably 7.0% or more.
 TD方向における140℃の熱収縮率(STD140)は、好ましくは5.0%以下、より好ましくは4.0%以下であり、さらに好ましくは3.5%以下であり、特に好ましくは2.7%以下である。TD方向における140℃の熱収縮率は、0.1%以上が好ましく、0.5%以上がより好ましく、1.0%以上がさらに好ましく、2.0%以上が特に好ましい。 The heat shrinkage rate (S TD140 ) at 140 ° C. in the TD direction is preferably 5.0% or less, more preferably 4.0% or less, still more preferably 3.5% or less, and particularly preferably 2. 7% or less. The thermal shrinkage rate at 140 ° C. in the TD direction is preferably 0.1% or more, more preferably 0.5% or more, further preferably 1.0% or more, and particularly preferably 2.0% or more.
 前記二軸延伸ポリプロピレンフィルムのTD方向(第二方向)の幅は特に限定されない。ただし、下記(1)~(3)の手法により得られる、遅相軸角度の最大値と最小値の差が6°未満である場合、TD方向(第二方向)の幅は1200mm以下であることが好ましい。 The width in the TD direction (second direction) of the biaxially stretched polypropylene film is not particularly limited. However, when the difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is less than 6 °, the width in the TD direction (second direction) is 1200 mm or less. It is preferable.
 すなわち、前記二軸延伸ポリプロピレンフィルムは、
 TD方向(第二方向)の幅が1200mm以下であり、
 下記(1)~(3)の手法により得られる、遅相軸角度の最大値と最小値の差が6°未満であることが好ましい。この点について以下説明する。
 ここで、前記遅相軸について説明する。
 本実施形態に係る二軸延伸ポリプロピレンフィルムは、第一方向およびこれと直交する第二方向の二軸に延伸が施されている。前記二軸延伸によって高分子が面内に配向されるため、二軸延伸フィルムは複屈折を有するようになる。フィルム面内において、屈折率が最大となる方位は、光の進む速度が遅い(位相が遅れる)方位となることから、遅相軸と呼ばれる。
 例えば、逐次二軸延伸方法では、まず、キャスト原反シートを流れ方向(MD方向)に延伸し、引き続き、当該シートを横方向(TD方向)に延伸する。この場合、二軸延伸ポリプロピレンフィルムの遅相軸に関して、第二方向の横方向の屈折率は第一方向の流れ方向の屈折率よりも大きくなる傾向にある。ここでは、第二方向の横方向が遅相軸となる。
 横方向(TD方向)の延伸において、完全に横方向へ延伸を施した場合には(完全に流れ方向に対して直交方向へ延伸を施した場合には)、本明細書で定義する遅相軸角度は0°となる。しかしながら、実施には、延伸時にポアソン収縮応力や機械的な外力、フィルムの熱可塑性などが作用し、完全に横方向(TD方向)へ延伸することが出来ず、遅相軸角度は0°よりも大きくなる傾向にある。また、逐次二軸延伸方法では、二軸延伸フィルムの両端ほど遅相軸角度が大きくなる傾向にある。
 本実施形態では、前記遅相軸角度の最大値と最小値の差が小さいほど、第一方向の流れ方向(MD方向)と第二方向の横方向(TD方向)の直交二方向の方位に対する光学的な配向軸のズレが小さいといえる。従って、金属化フィルムを作製する際、加熱時の斜め方向の収縮が少なくなり、第一方向と第二方向の熱収縮の均整がとれ易くなる。その結果、加工時におけるシワやタルミが抑制され、フィルムは好適に使用することができる。さらにフィルム延伸時においては、延伸応力が作用する横方向(TD方向)へフィルムが変形されるため、得られたフィルムの偏肉精度は優れる。
 また、前記遅相軸角度の最大値が小さいほど、二軸延伸ポリプロピレンフィルムの製膜の際、横方向(TD方向)と異なる斜め方向の変形力が加わり難いため、延伸破断が少なくなり連続製膜性に優れる傾向である。特に本実施形態の二軸延伸ポリプロピレンフィルムは、1.0~3.0μmという非常に厚さが小さい(薄い)ため、その効果は顕著に現れる。
 本実施形態に係る前記遅相軸角度の最大値と最小値の差は、複屈折などによって示される光学的配向強度の異方性ではなく、つまり配向の大きさと方向そのものではなく、第二方向と遅相軸の最大値と最小値が成す角度、即ち遅相軸角度の幅方向における変動幅を示す。本実施形態では、前記差を小さく制御することが好適な態様である。
 前記差を小さく制御することが好適である理由は、柔軟な素材であるポリプロピレンに二軸延伸による配向強度を付与させ一定の機械加工強度を与えたとしても、金属蒸着加工時に起こる熱的寸法変化量は十分に軽減されず、むしろ配向方向のズレや変動を抑制することが面内方向の収縮ムラの抑制に有用であるという結果から明らかである。
 さらに、本実施形態のポリプロピレンフィルムは、1.0~3.0μmという非常に厚さが小さい(薄い)特徴があり、金属蒸着加工の温度の影響を多大に受ける。そのため、熱収縮率に付随してその方位の均整も重要となる。本実施形態では、遅相軸角度の幅方向における変動幅を小さくすることで、熱収縮の方位の均整を維持することができる。
<遅相軸角度の最大値と最小値の差の求め方>
(1)幅方向全長を100%とした時、その両端から10%おきの位置を中心とする、50mm×50mmの測定用サンプルを切り出し、
(2)測定用サンプルの第二方向を0°とし、各測定用サンプルの第二方向と遅相軸との間の鋭角の角度を測定し、
(3)9枚の測定用サンプルのうち、前記(2)で測定した角度の最大と最小の差を求める。
That is, the biaxially stretched polypropylene film is
The width in the TD direction (second direction) is 1200 mm or less,
The difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is preferably less than 6 °. This point will be described below.
Here, the slow axis will be described.
The biaxially stretched polypropylene film according to this embodiment is stretched in the first direction and in the second direction perpendicular to the first direction. Since the polymer is oriented in-plane by the biaxial stretching, the biaxially stretched film has birefringence. In the film plane, the direction in which the refractive index is maximum is called a slow axis because the direction in which light travels is slow (the phase is delayed).
For example, in the sequential biaxial stretching method, first, the original cast sheet is stretched in the flow direction (MD direction), and then the sheet is stretched in the transverse direction (TD direction). In this case, with respect to the slow axis of the biaxially stretched polypropylene film, the lateral refractive index in the second direction tends to be larger than the refractive index in the flow direction in the first direction. Here, the horizontal direction of the second direction is the slow axis.
In the stretching in the transverse direction (TD direction), when the stretching is performed completely in the transverse direction (when the stretching is performed completely in the direction perpendicular to the flow direction), the slow phase defined in this specification is used. The shaft angle is 0 °. However, in practice, Poisson contraction stress, mechanical external force, film thermoplasticity, etc. act upon stretching, and the film cannot be completely stretched in the transverse direction (TD direction), and the slow axis angle is from 0 °. Tend to be larger. In the sequential biaxial stretching method, the slow axis angle tends to increase toward both ends of the biaxially stretched film.
In the present embodiment, the smaller the difference between the maximum value and the minimum value of the slow axis angle, the relative to two orthogonal directions of the first flow direction (MD direction) and the second horizontal direction (TD direction). It can be said that the deviation of the optical alignment axis is small. Therefore, when producing a metallized film, the shrinkage in the oblique direction during heating is reduced, and the thermal shrinkage in the first direction and the second direction can be easily balanced. As a result, wrinkles and talmi during processing are suppressed, and the film can be suitably used. Furthermore, when the film is stretched, the thickness of the obtained film is excellent because the film is deformed in the transverse direction (TD direction) in which stretching stress acts.
Also, as the maximum value of the slow axis angle is smaller, it is difficult to apply a deformation force in an oblique direction different from the transverse direction (TD direction) when forming a biaxially stretched polypropylene film, so that stretch breakage is reduced and continuous production is reduced. It tends to be excellent in film properties. In particular, since the biaxially stretched polypropylene film of the present embodiment has a very small (thin) thickness of 1.0 to 3.0 μm, the effect is remarkable.
The difference between the maximum value and the minimum value of the slow axis angle according to the present embodiment is not anisotropy of the optical orientation strength indicated by birefringence or the like, that is, not the orientation size and direction itself, but the second direction. And the angle between the maximum value and the minimum value of the slow axis, that is, the fluctuation range in the width direction of the slow axis angle. In the present embodiment, it is preferable to control the difference to be small.
The reason why it is preferable to control the difference to be small is that even if a flexible material such as polypropylene is given orientation strength by biaxial stretching to give a certain machining strength, thermal dimensional change that occurs during metal deposition processing. The amount is not sufficiently reduced, but rather it is clear from the result that suppressing the displacement and fluctuation in the orientation direction is useful for suppressing the shrinkage unevenness in the in-plane direction.
Furthermore, the polypropylene film of this embodiment has a very small (thin) characteristic of 1.0 to 3.0 μm, and is greatly affected by the temperature of metal deposition processing. For this reason, the orientation of the orientation is also important along with the thermal contraction rate. In the present embodiment, by reducing the fluctuation range in the width direction of the slow axis angle, the thermal shrinkage orientation can be maintained.
<Determining the difference between the maximum and minimum values of the slow axis angle>
(1) When the total length in the width direction is 100%, a sample for measurement of 50 mm × 50 mm, centered on the position every 10% from both ends, is cut out.
(2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured,
(3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
 遅相軸角度の最大値と最小値との前記差は、6°未満が好ましく、5.5°以下がより好ましく、5°以下がさらに好ましく、4.5°以下が特に好ましい。前記差が6°未満であると、二軸延伸ポリプロピレンフィルムの偏肉精度がより優れる。また、当該二軸延伸ポリプロピレンフィルムで金属化フィルムを作製すると、面内方向の収縮ムラが少なくシワやタルミが抑制され、好適に使用することができる。 The difference between the maximum value and the minimum value of the slow axis angle is preferably less than 6 °, more preferably 5.5 ° or less, further preferably 5 ° or less, and particularly preferably 4.5 ° or less. When the difference is less than 6 °, the thickness deviation accuracy of the biaxially stretched polypropylene film is more excellent. Moreover, when a metallized film is produced with the biaxially stretched polypropylene film, shrinkage unevenness in the in-plane direction is small, and wrinkles and talmi are suppressed, which can be suitably used.
 遅相軸角度の前記最大値は、15°未満が好ましく、14.5°以下がより好ましく、13°以下がさらに好ましく、12°以下が特に好ましい。前記最大値が、前記数値範囲内であると、二軸延伸ポリプロピレンフィルムの製膜の際、破断が少なく連続生産性に優れる傾向となる。 The maximum value of the slow axis angle is preferably less than 15 °, more preferably 14.5 ° or less, further preferably 13 ° or less, and particularly preferably 12 ° or less. When the maximum value is within the numerical range, the biaxially stretched polypropylene film tends to have few breaks and excellent continuous productivity.
 遅相軸角度の最大値と最小値の前記差が6°未満である場合、TD方向(第二方向)の幅は1200mm以下であることが好ましく、1100mm以下であることがより好ましく、1000mm以下であることがさらに好ましい。また、前記差が6°未満である場合、TD方向(第二方向)の幅は500mm以上、550mm以上、600mm以上等とすることができる。 When the difference between the maximum value and the minimum value of the slow axis angle is less than 6 °, the width in the TD direction (second direction) is preferably 1200 mm or less, more preferably 1100 mm or less, and 1000 mm or less. More preferably. Moreover, when the said difference is less than 6 degrees, the width | variety of TD direction (2nd direction) can be 500 mm or more, 550 mm or more, 600 mm or more, etc.
 遅相軸角度の最大値と最小値の前記差を求める際の測定装置、及び、測定条件は、以下の通りである。
<測定装置、測定条件>
測定装置:大塚電子株式会社製レタデーション測定装置 RE-100
光源:レーザー発光ダイオード(LED)
バンドパスフィルター:550nm(測定波長)
測定間隔:0.1sec
積算回数:10time
測定点数:15point
ゲイン:10dB
測定環境:温度23℃、湿度60%
The measurement apparatus and measurement conditions for obtaining the difference between the maximum value and the minimum value of the slow axis angle are as follows.
<Measurement equipment and measurement conditions>
Measuring device: retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.
Light source: Laser light emitting diode (LED)
Bandpass filter: 550 nm (measurement wavelength)
Measurement interval: 0.1 sec
Integration count: 10time
Number of measurement points: 15 points
Gain: 10dB
Measurement environment: temperature 23 ° C, humidity 60%
 遅相軸角度の最大値と最小値の前記差は、熱固定温度を下げると大きくなる傾向にあり、引取速度の製膜ライン速度に対する比を上げると大きくなる傾向にある。
 遅相軸角度の前記最大値は、熱固定温度を下げると大きくなる傾向にあり、引取速度の製膜ライン速度に対する比を上げると大きくなる傾向にある。
The difference between the maximum value and the minimum value of the slow axis angle tends to increase as the heat setting temperature decreases, and tends to increase as the ratio of the take-up speed to the film forming line speed increases.
The maximum value of the slow axis angle tends to increase as the heat setting temperature decreases, and tends to increase as the ratio of the take-up speed to the film forming line speed increases.
 前記二軸延伸ポリプロピレンフィルム及び金属化フィルムは、各々ロール状に巻回されており、フィルムロールの形態であることが好ましい。前記フィルムロールは、巻き芯(コア)を有していてもよいし、有していなくてもよい。前記フィルムロールは、巻き芯(コア)を有することが好ましい。前記フィルムロールの巻き芯の材質としては特に限定されない。前記材質としては、紙(紙管)、樹脂、繊維強化プラスチック(FRP)、金属等が挙げられる。前記樹脂としては、一例として、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、フェノール樹脂、エポキシ樹脂、アクリロニトリル-ブタジエン-スチレン共重合体等が挙げられる。前記繊維強化プラスチックを構成するプラスチックとしては、ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、熱可塑性樹脂等が挙げられる。前記繊維強化プラスチックを構成する繊維としては、ガラス繊維、アラミド繊維(ケブラー(登録商標)繊維)、カーボン繊維、ポリパラフェニレンベンズオキサゾール繊維(ザイロン(登録商標)繊維)、ポリエチレン繊維、ボロン繊維等が挙げられる。前記金属としては、鉄、アルミニウム、ステンレス等が挙げられる。前記フィルムロールの巻き芯は、前記樹脂を紙管に含浸させてなる巻き芯も包含する。この場合、前記巻き芯の材質は樹脂として分類される。 The biaxially stretched polypropylene film and the metallized film are each wound in a roll shape, and are preferably in the form of a film roll. The film roll may or may not have a winding core (core). The film roll preferably has a winding core (core). The material of the winding core of the film roll is not particularly limited. Examples of the material include paper (paper tube), resin, fiber reinforced plastic (FRP), metal, and the like. Examples of the resin include polyvinyl chloride, polyethylene, polypropylene, phenol resin, epoxy resin, acrylonitrile-butadiene-styrene copolymer, and the like. Examples of the plastic constituting the fiber reinforced plastic include polyester resin, epoxy resin, vinyl ester resin, phenol resin, and thermoplastic resin. Examples of the fibers constituting the fiber reinforced plastic include glass fibers, aramid fibers (Kevlar (registered trademark) fibers), carbon fibers, polyparaphenylene benzoxazole fibers (Zylon (registered trademark) fibers), polyethylene fibers, and boron fibers. Can be mentioned. Examples of the metal include iron, aluminum, and stainless steel. The core of the film roll also includes a core formed by impregnating a paper tube with the resin. In this case, the material of the winding core is classified as a resin.
 次に、以下、本実施形態に係る二軸延伸ポリプロピレンフィルムの好適な原料及び製造方法について説明する。ただし、本実施形態に係る二軸延伸ポリプロピレンフィルムの原料及び製造方法は、それぞれ、以下の記載に限定されない。 Next, the suitable raw material and manufacturing method of the biaxially stretched polypropylene film according to this embodiment will be described below. However, the raw material and manufacturing method of the biaxially stretched polypropylene film according to this embodiment are not limited to the following descriptions.
 二軸延伸ポリプロピレンフィルムは、ポリプロピレン樹脂を含む。ポリプロピレン樹脂の含有量は、二軸延伸ポリプロピレンフィルム全体に対して(二軸延伸ポリプロピレンフィルム全体を100質量%としたときに)、好ましくは75質量%以上であり、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。ポリプロピレン樹脂の含有量の上限は、二軸延伸ポリプロピレンフィルム全体に対して、たとえば、100質量%、98質量%などである。ポリプロピレン樹脂、及び本実施形態に係る二軸延伸ポリプロピレンフィルムは、一種のポリプロピレン樹脂を単独で含むものであってもよく、二種以上のポリプロピレン樹脂を含むものであってもよい。 The biaxially stretched polypropylene film contains a polypropylene resin. The content of the polypropylene resin is preferably 75% by mass or more, more preferably 90% by mass or more, based on the entire biaxially stretched polypropylene film (when the entire biaxially stretched polypropylene film is 100% by mass). More preferably, it is 95 mass% or more. The upper limit of the content of the polypropylene resin is, for example, 100% by mass or 98% by mass with respect to the entire biaxially stretched polypropylene film. The polypropylene resin and the biaxially stretched polypropylene film according to this embodiment may include a single type of polypropylene resin alone or may include two or more types of polypropylene resins.
 ポリプロピレン樹脂の重量平均分子量Mwは、28万以上45万以下であることが好ましく、28万以上40万以下であることがより好ましい。ポリプロピレン樹脂の重量平均分子量Mwが28万以上45万以下であると、樹脂流動性が適度となる。その結果、キャスト原反シートの厚さの制御が容易であり、薄い延伸フィルムを作製することが容易となる。 The weight average molecular weight Mw of the polypropylene resin is preferably from 280,000 to 450,000, and more preferably from 280,000 to 400,000. When the weight average molecular weight Mw of the polypropylene resin is 280,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, it is easy to control the thickness of the cast raw sheet, and it becomes easy to produce a thin stretched film.
 ポリプロピレン樹脂の分子量分布(Mw/Mn)は、5以上であることが好ましく、6.1以上がより好ましく、6.5以上がさらに好ましく、7.2以上がさらに一層に好ましく、7.5以上が特に好ましい。また、ポリプロピレン樹脂の分子量分布は、12以下であることが好ましく、11以下がより好ましく、10以下がさらに好ましく、9.5以下が特に好ましい。ポリプロピレン樹脂の分子量分布の上限及び下限を規定した範囲に関して、5以上12以下であることが好ましく、5以上11以下であることがより好ましく、5以上10以下であることがさらに好ましい。 The molecular weight distribution (Mw / Mn) of the polypropylene resin is preferably 5 or more, more preferably 6.1 or more, still more preferably 6.5 or more, still more preferably 7.2 or more, and 7.5 or more. Is particularly preferred. The molecular weight distribution of the polypropylene resin is preferably 12 or less, more preferably 11 or less, further preferably 10 or less, and particularly preferably 9.5 or less. It is preferably 5 or more and 12 or less, more preferably 5 or more and 11 or less, and further preferably 5 or more and 10 or less with respect to a range that defines the upper limit and the lower limit of the molecular weight distribution of the polypropylene resin.
 本明細書において、ポリプロピレン樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、および、分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフ(GPC)装置を用いて測定した値である。より具体的には、東ソー株式会社製、示差屈折計(RI)内蔵型高温GPC測定機のHLC-8121GPC-HT(商品名)を使用して測定した値である。GPCカラムとして、東ソー株式会社製の3本のTSKgel GMHHR-H(20)HTを連結して使用する。カラム温度を140℃に設定して、溶離液としてトリクロロベンゼンを1.0ml/10分の流速で流して、MwとMnの測定値を得る。東ソー株式会社製の標準ポリスチレンを用いてその分子量Mに関する検量線を作成して、測定値をポリスチレン値に換算して、Mw、およびMnを得る。ここで、標準ポリスチレンの分子量Mの底10の対数を、対数分子量(「Log(M)」)という。 In this specification, the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of a polypropylene resin are values measured using a gel permeation chromatograph (GPC) apparatus. . More specifically, it is a value measured using an HLC-8121 GPC-HT (trade name), a high-temperature GPC measuring machine with a built-in differential refractometer (RI) manufactured by Tosoh Corporation. As GPC columns, three TSKgel GMHHR-H (20) HT manufactured by Tosoh Corporation are connected and used. The column temperature is set to 140 ° C., and trichlorobenzene is allowed to flow as an eluent at a flow rate of 1.0 ml / 10 minutes to obtain measured values of Mw and Mn. A calibration curve related to the molecular weight M is prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured values are converted into polystyrene values to obtain Mw and Mn. Here, the logarithm of the bottom 10 of the molecular weight M of standard polystyrene is referred to as logarithmic molecular weight (“Log (M)”).
 ポリプロピレン樹脂の微分分布値差Dが、-5%以上14%以下であることが好ましく、-4%以上12%以下であることがより好ましく、-4%以上10%以下であることがさらに好ましい。ここで、「微分分布値差D」は、分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差である。
 なお、「微分分布値差Dが、-5%以上14%以下である」とは、ポリプロピレン樹脂の有するMwの値より、低分子量側の分子量1万から10万の成分(以下、「低分子量成分」ともいう)の代表的な分布値としての対数分子量Log(M)=4.5の成分と、高分子量側の分子量100万前後の成分(以下、「高分子量成分」ともいう)の代表的な分布値としてのLog(M)=6.0前後の成分とを比較したときに、差分が正の場合は低分子量成分の方が多く、差分が負の場合は高分子量成分の方が多いと理解できる。
Differential distribution value difference D M of the polypropylene resin is preferably at -5% to 14% or less, more preferably 12% or less -4% or more, still be 10% less than -4% preferable. Here, the “differential distribution value difference D M ” is a differential distribution value when Log (M) = 6.0 from a differential distribution value when the logarithmic molecular weight Log (M) = 4.5 in the molecular weight differential distribution curve. The difference minus.
“The differential distribution value difference DM is −5% or more and 14% or less” means that the component having a molecular weight of 10,000 to 100,000 on the lower molecular weight side than the Mw value of the polypropylene resin (hereinafter referred to as “low A component having a logarithmic molecular weight Log (M) = 4.5 as a typical distribution value of a molecular weight component) and a component having a molecular weight of about 1 million on the high molecular weight side (hereinafter also referred to as “high molecular weight component”). When comparing the components with Log (M) = 6.0, which is a typical distribution value, if the difference is positive, there are more low molecular weight components, and if the difference is negative, the higher molecular weight components. It can be understood that there are many.
 つまり、分子量分布Mw/Mnが5~12であるといっても単に分子量分布幅の広さを表しているに過ぎず、その中の高分子量成分、低分子量成分の量的な関係までは分からない。そこで、安定製膜性とキャスト原反シートの厚み均一性の観点から、ポリプロピレン樹脂は、広い分子量分布を有すると同時に、低分子量成分を適度に含むようにするために分子量1万から10万の成分を、分子量100万の成分と比較して、微分分布値差が-5%以上14%以下となるようにポリプロピレン樹脂を使用することが好ましい。 In other words, even though the molecular weight distribution Mw / Mn is 5 to 12, it merely represents the breadth of the molecular weight distribution width, and the quantitative relationship between the high molecular weight component and the low molecular weight component therein is unknown. Absent. Therefore, from the viewpoint of stable film forming properties and thickness uniformity of the cast raw sheet, the polypropylene resin has a wide molecular weight distribution and at the same time has a molecular weight of 10,000 to 100,000 in order to appropriately contain a low molecular weight component. It is preferable to use a polypropylene resin so that the component has a differential distribution value difference of -5% or more and 14% or less compared to a component having a molecular weight of 1,000,000.
 微分分布値は、GPCを用いて、次のようにして得た値である。GPCの示差屈折(RI)検出計によって得られる、時間に対する強度を示す曲線(一般には、「溶出曲線」ともいう)を使用する。標準ポリスチレンを用いて得た検量線を使用して、時間軸を対数分子量(Log(M))に変換することで、溶出曲線をLog(M)に対する強度を示す曲線に変換する。RI検出強度は、成分濃度と比例関係にあるので、強度を示す曲線の全面積を100%とすると、対数分子量Log(M)に対する積分分布曲線を得ることができる。微分分布曲線は、この積分分布曲線をLog(M)で、微分することによって得る。したがって、「微分分布」とは、濃度分率の分子量に対する微分分布を意味する。この曲線から、特定のLog(M)のときの微分分布値を読みとる。 The differential distribution value is a value obtained as follows using GPC. A curve (generally also referred to as “elution curve”) showing the intensity with respect to time obtained by a differential refraction (RI) detector of GPC is used. Using the calibration curve obtained with standard polystyrene, the elution curve is converted into a curve showing the intensity with respect to Log (M) by converting the time axis into logarithmic molecular weight (Log (M)). Since the RI detection intensity is proportional to the component concentration, an integral distribution curve with respect to the logarithmic molecular weight Log (M) can be obtained when the total area of the curve indicating the intensity is 100%. The differential distribution curve is obtained by differentiating the integral distribution curve with Log (M). Therefore, “differential distribution” means a differential distribution with respect to the molecular weight of the concentration fraction. From this curve, the differential distribution value at a specific Log (M) is read.
 ポリプロピレン樹脂のメソペンタッド分率([mmmm])は、94%以上が好ましく、95%以上がより好ましく、95%越えがさらに好ましく、95.5%以上が特に好ましく、96%超えが特にさらに特別に好ましい。また、ポリプロピレン樹脂の上記メソペンタッド分率は、98.5%以下が好ましく、98.4%以下がより好ましく、98%以下がさらに好ましく、98.0%未満が特に好ましく、97.5%以下が特別に好ましく、97.0%以下が特にさらに好ましい。ポリプロピレン樹脂の上記メソペンタッド分率は、94%以上99%以下であることが好ましく、95%以上98.5%以下であることがより好ましい。このようなポリプロピレン樹脂を用いることで、適度に高い立体規則性によって樹脂の結晶性が適度に向上し、初期耐電圧性及び長期間に渡る耐電圧性が向上する。一方で、キャスト原反シートを成形する際の適度な固化(結晶化)速度によって所望の延伸性を得ることができる。 The mesopentad fraction ([mmmm]) of the polypropylene resin is preferably 94% or more, more preferably 95% or more, further preferably more than 95%, particularly preferably more than 95.5%, particularly more preferably more than 96%. preferable. The mesopentad fraction of the polypropylene resin is preferably 98.5% or less, more preferably 98.4% or less, still more preferably 98% or less, particularly preferably less than 98.0%, and 97.5% or less. Particularly preferred, 97.0% or less is particularly preferred. The mesopentad fraction of the polypropylene resin is preferably 94% or more and 99% or less, and more preferably 95% or more and 98.5% or less. By using such a polypropylene resin, the crystallinity of the resin is moderately improved by the reasonably high stereoregularity, and the initial voltage resistance and the voltage resistance over a long period are improved. On the other hand, desired stretchability can be obtained by an appropriate solidification (crystallization) rate when the cast raw sheet is formed.
 メソペンタッド分率([mmmm])は、高温核磁気共鳴(NMR)測定によって得ることができる立体規則性の指標である。具体的には、例えば、日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500を使用して測定することができる。観測核は、13C(125MHz)であり、測定温度は、135℃、ポリプロピレン樹脂を溶解する溶媒にはオルト-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1)を用いることができる。高温NMRによる測定方法は、例えば、「日本分析化学・高分子分析研究懇談会編、新版 高分子分析ハンドブック、紀伊国屋書店、1995年、第610頁」に記載の方法を参照して行うことができる。 The mesopentad fraction ([mmmm]) is an index of stereoregularity that can be obtained by high temperature nuclear magnetic resonance (NMR) measurement. Specifically, it can be measured using, for example, JEOL Ltd., high temperature Fourier transform nuclear magnetic resonance apparatus (high temperature FT-NMR), JNM-ECP500. The observation nucleus is 13C (125 MHz), the measurement temperature is 135 ° C., and the solvent for dissolving the polypropylene resin is ortho-dichlorobenzene (ODCB: ODCB and deuterated ODCB mixed solvent (mixing ratio = 4/1). The measurement method by high temperature NMR is, for example, the method described in “Japan Analytical Chemistry / Polymer Analysis Research Roundtable, New Edition, Polymer Analysis Handbook, Kinokuniya, 1995, p. 610”. Can be done with reference.
 測定モードは、シングルパルスプロトンブロードバンドデカップリング、パルス幅は、9.1μsec(45°パルス)、パルス間隔5.5sec、積算回数4500回、シフト基準は、CH(mmmm)=21.7ppmとすることができる。
 立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmm及びmrrm等)に由来する各シグナルの強度の積分値に基づいて百分率で計算される。mmmm及びmrrm等に由来する各シグナルは、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」等を参照して帰属することができる。
The measurement mode is single pulse proton broadband decoupling, the pulse width is 9.1 μsec (45 ° pulse), the pulse interval is 5.5 sec, the number of integration is 4500 times, and the shift reference is CH 3 (mmmm) = 21.7 ppm. be able to.
The pentad fraction representing the degree of stereoregularity is a combination of the quintet (pentad) of the consensus “meso (m)” arranged in the same direction and the consensus “rasemo (r)” arranged in the opposite direction (mmmm and mrrm). Etc.) based on the integrated value of the intensity of each signal derived from. Each signal derived from mmmm, mrrm and the like can be assigned with reference to, for example, “T. Hayashi et al., Polymer, 29, 138 (1988)”.
 ポリプロピレン樹脂のヘプタン不溶分(HI)は、96.0%以上であることが好ましく、より好ましくは97.0%以上である。また、ポリプロピレン樹脂のヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは99.0%以下である。ここで、ヘプタン不溶分は、多いほど樹脂の立体規則性が高いことを示す。ヘプタン不溶分(HI)が、96.0%以上99.5%以下であると、適度に高い立体規則性により、樹脂の結晶性が適度に向上し、高温下での耐電圧性が向上する。一方、キャスト原反シート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。 The heptane insoluble content (HI) of the polypropylene resin is preferably 96.0% or more, more preferably 97.0% or more. Further, the heptane insoluble content (HI) of the polypropylene resin is preferably 99.5% or less, more preferably 99.0% or less. Here, the heptane-insoluble content indicates that the greater the stereoregularity of the resin, the greater the amount. When the heptane-insoluble content (HI) is 96.0% or more and 99.5% or less, the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the voltage resistance at high temperature is improved. . On the other hand, the rate of solidification (crystallization) at the time of forming the cast original fabric sheet becomes moderate, and it has moderate stretchability.
 ポリプロピレン樹脂のメルトフローレート(MFR)は、1.0~8.0g/10minであることが好ましく、1.5~7.0g/10minであることがより好ましく、2.0~6.0g/10minであることがさらに好ましい。 The melt flow rate (MFR) of the polypropylene resin is preferably 1.0 to 8.0 g / 10 min, more preferably 1.5 to 7.0 g / 10 min, and 2.0 to 6.0 g / min. More preferably, it is 10 minutes.
 ポリプロピレン樹脂は、一般的に公知の重合方法を用いて製造することができる。重合方法としては、たとえば、気相重合法、塊状重合法およびスラリー重合法を例示できる。いっぽう、ポリプロピレン樹脂として、市販品を使用することももちろん可能である。 Polypropylene resin can be generally produced using a known polymerization method. Examples of the polymerization method include a gas phase polymerization method, a bulk polymerization method, and a slurry polymerization method. On the other hand, as a polypropylene resin, it is of course possible to use a commercially available product.
 ポリプロピレン原料樹脂中又は本実施形態の二軸延伸ポリプロピレンフィルムに含まれる重合触媒残渣などに起因する総灰分は、電気特性を向上させるために可能な限り少ないことが好ましい。総灰分は、ポリプロピレン樹脂を基準(100重量部)として、50ppm以下であることが好ましく、40ppm以下であることがより好ましく、30ppm以下であることが特に好ましい。 It is preferable that the total ash due to the polymerization catalyst residue contained in the polypropylene raw resin or in the biaxially stretched polypropylene film of the present embodiment is as small as possible in order to improve the electrical characteristics. The total ash content is preferably 50 ppm or less, more preferably 40 ppm or less, and particularly preferably 30 ppm or less, based on the polypropylene resin (100 parts by weight).
 ポリプロピレン樹脂は、添加剤を含んでいてもよい。添加剤としては、たとえば、酸化防止剤、塩素吸収剤、紫外線吸収剤、滑剤、可塑剤、難燃化剤、帯電防止剤などが挙げられる。ポリプロピレン樹脂は、添加剤を、二軸延伸ポリプロピレンフィルムに悪影響を与えない量で含めてもよい。 The polypropylene resin may contain an additive. Examples of the additive include an antioxidant, a chlorine absorbent, an ultraviolet absorbent, a lubricant, a plasticizer, a flame retardant, and an antistatic agent. The polypropylene resin may contain additives in an amount that does not adversely affect the biaxially oriented polypropylene film.
 ここからしばらくは、ポリプロピレン樹脂を2種以上使用する場合における各ポリプロピレン樹脂について説明する。 For a while from here, each polypropylene resin when using two or more kinds of polypropylene resins will be described.
 ポリプロピレン樹脂を2種以上使用する場合、下記直鎖ポリプロピレン樹脂A-1と下記直鎖ポリプロピレン樹脂B-1、下記直鎖ポリプロピレン樹脂A-2と下記直鎖ポリプロピレン樹脂B-2、下記直鎖ポリプロピレン樹脂A-3と下記直鎖ポリプロピレン樹脂B-3、又は下記直鎖ポリプロピレン樹脂A-4と下記直鎖ポリプロピレン樹脂B-4の組み合わせが好適なものとして挙げられる。本実施形態において、直鎖ポリプロピレン樹脂Aという表現は、直鎖ポリプロピレン樹脂A-1、直鎖ポリプロピレン樹脂A-2、直鎖ポリプロピレン樹脂A-3および直鎖ポリプロピレン樹脂A-4という概念を含む。直鎖ポリプロピレン樹脂Bという表現は、直鎖ポリプロピレン樹脂B-1、直鎖ポリプロピレン樹脂B-2、直鎖ポリプロピレン樹脂B-3および直鎖ポリプロピレン樹脂B-4という概念を含む。但し、本発明では前記ポリプロピレン樹脂として以下の樹脂に限定されない。
 <直鎖ポリプロピレン樹脂A>
  (直鎖ポリプロピレン樹脂A-1)
 微分分布値差Dが8.0%以上である直鎖ポリプロピレン樹脂。
  (直鎖ポリプロピレン樹脂A-2)
 ヘプタン不溶分(HI)が98.5%以下である直鎖ポリプロピレン樹脂。
  (直鎖ポリプロピレン樹脂A-3)
 230℃におけるメルトフローレート(MFR)が4.0~10.0g/10minである直鎖ポリプロピレン樹脂。
  (直鎖ポリプロピレン樹脂A-4)
 重量平均分子量Mwが28万以上34万以下である直鎖ポリプロピレン樹脂。
 <直鎖ポリプロピレン樹脂B>
  (直鎖ポリプロピレン樹脂B-1)
 微分分布値差Dが8.0%未満である直鎖ポリプロピレン樹脂。
  (直鎖ポリプロピレン樹脂B-2)
 ヘプタン不溶分(HI)が98.5%を超える直鎖ポリプロピレン樹脂。
  (直鎖ポリプロピレン樹脂B-3)
 230℃におけるメルトフローレート(MFR)が0.1~3.9g/10minである直鎖ポリプロピレン樹脂。
  (直鎖ポリプロピレン樹脂B-4)
 重量平均分子量Mwが34万超えである直鎖ポリプロピレン樹脂。
When two or more kinds of polypropylene resins are used, the following linear polypropylene resin A-1 and the following linear polypropylene resin B-1, the following linear polypropylene resin A-2, the following linear polypropylene resin B-2, and the following linear polypropylene Preferred examples include resin A-3 and the following linear polypropylene resin B-3, or a combination of the following linear polypropylene resin A-4 and the following linear polypropylene resin B-4. In the present embodiment, the expression linear polypropylene resin A includes the concept of linear polypropylene resin A-1, linear polypropylene resin A-2, linear polypropylene resin A-3, and linear polypropylene resin A-4. The expression linear polypropylene resin B includes the concept of linear polypropylene resin B-1, linear polypropylene resin B-2, linear polypropylene resin B-3, and linear polypropylene resin B-4. However, in the present invention, the polypropylene resin is not limited to the following resins.
<Linear polypropylene resin A>
(Linear polypropylene resin A-1)
A linear polypropylene resin having a differential distribution value difference DM of 8.0% or more.
(Linear polypropylene resin A-2)
A linear polypropylene resin having a heptane-insoluble content (HI) of 98.5% or less.
(Linear polypropylene resin A-3)
A linear polypropylene resin having a melt flow rate (MFR) at 230 ° C. of 4.0 to 10.0 g / 10 min.
(Linear polypropylene resin A-4)
A linear polypropylene resin having a weight average molecular weight Mw of 280,000 to 340,000.
<Linear polypropylene resin B>
(Linear polypropylene resin B-1)
Linear polypropylene differential distribution value difference D M is less than 8.0%.
(Linear polypropylene resin B-2)
A linear polypropylene resin having a heptane insoluble content (HI) exceeding 98.5%.
(Linear polypropylene resin B-3)
A linear polypropylene resin having a melt flow rate (MFR) at 230 ° C. of 0.1 to 3.9 g / 10 min.
(Linear polypropylene resin B-4)
A linear polypropylene resin having a weight average molecular weight Mw of more than 340,000.
 直鎖ポリプロピレン樹脂Aの重量平均分子量Mwは、28万以上であることが好ましい。また、前記直鎖ポリプロピレン樹脂Aの重量平均分子量Mwは、45万以下であることが好ましく、40万以下であることがより好ましく、35万以下であることがさらに好ましく、34万以下であることが特に好ましい。直鎖ポリプロピレン樹脂Aの重量平均分子量Mwが28万以上45万以下であると、樹脂流動性が適度となる。その結果、キャスト原反シートの厚さの制御が容易であり、薄い二軸延伸ポリプロピレンフィルムを作製することが容易となる。また、キャスト原反シートおよび二軸延伸ポリプロピレンフィルムの厚みにムラが発生し難くなり、適度な延伸性が得られるので好ましい。 The weight average molecular weight Mw of the linear polypropylene resin A is preferably 280,000 or more. Further, the weight average molecular weight Mw of the linear polypropylene resin A is preferably 450,000 or less, more preferably 400,000 or less, further preferably 350,000 or less, and 340,000 or less. Is particularly preferred. When the weight average molecular weight Mw of the linear polypropylene resin A is 280,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, it is easy to control the thickness of the cast original fabric sheet, and it becomes easy to produce a thin biaxially stretched polypropylene film. In addition, the thickness of the cast original fabric sheet and the biaxially stretched polypropylene film is less likely to cause unevenness, and an appropriate stretchability is obtained.
 直鎖ポリプロピレン樹脂Aの分子量分布Mw/Mnは、8.5以上12.0以下であることが好ましく、8.5以上11.0以下であることがより好ましく、9.0以上11.0以下であることがさらに好ましい。 The molecular weight distribution Mw / Mn of the linear polypropylene resin A is preferably 8.5 or more and 12.0 or less, more preferably 8.5 or more and 11.0 or less, and 9.0 or more and 11.0 or less. More preferably.
 直鎖ポリプロピレン樹脂Aの分子量分布Mw/Mnが上記好ましい範囲内であると、キャスト原反シートおよび二軸延伸ポリプロピレンフィルムの厚みにムラが発生し難くなり、適度な延伸性が得られるので好ましい。 It is preferable that the molecular weight distribution Mw / Mn of the linear polypropylene resin A is within the above-mentioned preferable range because unevenness is less likely to occur in the thicknesses of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability is obtained.
 直鎖ポリプロピレン樹脂Aの微分分布値差Dは、8.0%以上が好ましく、8.0%以上18.0%以下であることがより好ましく、9.0%以上17.0%以下であることがさらに好ましく、10.0%以上16.0%以下であることが特に好ましい。 Differential distribution value difference D M of linear polypropylene resin A is preferably at least 8.0%, more preferably 8.0% or more and 18.0% or less, at least 9.0% 17.0 percent or less More preferably, it is more preferably 10.0% or more and 16.0% or less.
 微分分布値差Dが、8.0%以上18.0%以下である場合、低分子量成分を、高分子量成分と比較すると、8.0%以上18.0%以下の割合で多く含む。したがって、本実施形態における二軸延伸ポリプロピレンフィルムの表面を得やすくなり、好ましい。 Differential distribution value difference D M is, if 18.0% or less 8.0% or more, the low molecular weight component, rich in a ratio of when compared to high molecular weight components, 18.0% 8.0% inclusive. Therefore, the surface of the biaxially stretched polypropylene film in this embodiment can be easily obtained, which is preferable.
 前記直鎖ポリプロピレン樹脂Aのメソペンタッド分率([mmmm])は、99.8%以下であることが好ましく、99.5%以下であることがより好ましく、99.0%以下であることがさらに好ましい。また、前記メソペンタッド分率は、94.0%以上であることが好ましく、94.5%以上であることがより好ましく、95.0%以上がさらに好ましい。メソペンタッド分率が前記数値範囲内であると、適度に高い立体規則性により、樹脂の結晶性が適度に向上し、高温下での耐電圧性が向上する。一方、キャストシート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。 The mesopentad fraction ([mmmm]) of the linear polypropylene resin A is preferably 99.8% or less, more preferably 99.5% or less, and further preferably 99.0% or less. preferable. The mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, and further preferably 95.0% or more. When the mesopentad fraction is within the above numerical range, the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the voltage resistance at high temperatures is improved. On the other hand, the rate of solidification (crystallization) during molding of the cast sheet is moderate, and it has moderate stretchability.
 直鎖ポリプロピレン樹脂Aのヘプタン不溶分(HI)は、96.0%以上であることが好ましく、より好ましくは97.0%以上である。また、直鎖ポリプロピレン樹脂Aのヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは98.5%以下であり、さらに好ましくは98.0%以下である。 The heptane insoluble content (HI) of the linear polypropylene resin A is preferably 96.0% or more, more preferably 97.0% or more. Further, the heptane-insoluble content (HI) of the linear polypropylene resin A is preferably 99.5% or less, more preferably 98.5% or less, and further preferably 98.0% or less.
 直鎖ポリプロピレン樹脂Aの230℃におけるメルトフローレート(MFR)は、1.0~15.0g/10minであることが好ましく、2.0~10.0g/10minであることがより好ましく、4.0~10.0g/10minであることがさらに好ましく、4.3~6.0g/10minが特に好ましい。直鎖ポリプロピレン樹脂Aの230℃におけるMFRが上記範囲内である場合、熔融状態での流動特性に優れるため、メルトフラクチャーといった不安定流動が発生しにくく、また、延伸時の破断も抑えられる。したがって、膜厚均一性が良好であるため、絶縁破壊の起こり易い薄肉部の形成が抑制されるという利点がある。 The melt flow rate (MFR) at 230 ° C. of the linear polypropylene resin A is preferably 1.0 to 15.0 g / 10 min, more preferably 2.0 to 10.0 g / 10 min. 0 to 10.0 g / 10 min is more preferable, and 4.3 to 6.0 g / 10 min is particularly preferable. When the MFR at 230 ° C. of the linear polypropylene resin A is within the above range, the flow characteristics in the melted state are excellent, so that unstable flow such as melt fracture does not easily occur, and breakage during stretching can be suppressed. Therefore, since the film thickness uniformity is good, there is an advantage that the formation of a thin portion where dielectric breakdown is likely to occur is suppressed.
 直鎖ポリプロピレン樹脂Aの含有率は、二軸延伸ポリプロピレンフィルム全体に対して55質量%以上であることが好ましく、60質量%以上であることがより好ましい。前記直鎖ポリプロピレン樹脂Aの含有率は、ポリプロピレンフィルム中のポリプロピレン樹脂全体を100質量%とすると、99.9質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。 The content of the linear polypropylene resin A is preferably 55% by mass or more, and more preferably 60% by mass or more with respect to the entire biaxially stretched polypropylene film. The content of the linear polypropylene resin A is preferably 99.9% by mass or less, more preferably 90% by mass or less, and 100% by mass with respect to 100% by mass of the entire polypropylene resin in the polypropylene film. % Or less is more preferable, and 80% by mass or less is particularly preferable.
 直鎖ポリプロピレン樹脂Bの重量平均分子量Mwは、30万以上であることが好ましく、33万以上であることがより好ましく、34万超えであることがさらに好ましく、35万以上であることがさらに一層好ましく、35万超えであることが特に好ましい。また、直鎖ポリプロピレン樹脂Bの重量平均分子量Mwは、40万以下であることが好ましく、38万以下であることがより好ましい。 The weight average molecular weight Mw of the linear polypropylene resin B is preferably 300,000 or more, more preferably 330,000 or more, further preferably more than 3340, and even more preferably 350,000 or more. Preferably, it is more preferably 350,000. Moreover, it is preferable that the weight average molecular weight Mw of the linear polypropylene resin B is 400,000 or less, and it is more preferable that it is 380,000 or less.
 直鎖ポリプロピレン樹脂Bの分子量分布Mw/Mnは、6.0以上8.5未満であることが好ましく、6.5以上8.4以下であることがより好ましく、7.0以上8.3以下であることがさらに好ましく、7.2以上8.2以下であることが特に好ましい。 The molecular weight distribution Mw / Mn of the linear polypropylene resin B is preferably 6.0 or more and less than 8.5, more preferably 6.5 or more and 8.4 or less, and 7.0 or more and 8.3 or less. More preferably, it is 7.2 or more and 8.2 or less.
 直鎖ポリプロピレン樹脂Bの分子量分布Mw/Mnが上記好ましい範囲内であると、キャスト原反シートおよび二軸延伸ポリプロピレンフィルムの厚みにムラが発生し難くなり、適度な延伸性が得られるので好ましい。 It is preferable that the molecular weight distribution Mw / Mn of the linear polypropylene resin B is within the above-mentioned preferable range because unevenness is hardly generated in the thickness of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability is obtained.
 直鎖ポリプロピレン樹脂Bの微分分布値差Dは、8.0%未満であることが好ましく、-20.0%以上8.0%未満であることがより好ましく、-10.0%以上7.9%以下であることがさらに好ましく、-5.0%以上7.5%以下であることが特に好ましい。 Differential distribution value difference D M of linear polypropylene resin B is preferably less than 8.0%, more preferably less than 8.0% or more -20.0%, or more -10.0% 7 It is more preferably 9% or less, and particularly preferably −5.0% or more and 7.5% or less.
 前記直鎖ポリプロピレン樹脂Bのメソペンタッド分率([mmmm])は、99.8%未満であることが好ましく、99.5%以下であることがより好ましく、99.0%以下であることがさらに好ましい。また、前記メソペンタッド分率は、94.0%以上であることが好ましく、94.5%以上であることがより好ましく、95.0%以上がさらに好ましい。メソペンタッド分率が前記数値範囲内であると、適度に高い立体規則性により、樹脂の結晶性が適度に向上し、高温下での耐電圧性が向上する。一方、キャストシート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。 The mesopentad fraction ([mmmm]) of the linear polypropylene resin B is preferably less than 99.8%, more preferably 99.5% or less, and further preferably 99.0% or less. preferable. The mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, and further preferably 95.0% or more. When the mesopentad fraction is within the above numerical range, the crystallinity of the resin is moderately improved due to the reasonably high stereoregularity, and the voltage resistance at high temperatures is improved. On the other hand, the rate of solidification (crystallization) during molding of the cast sheet is moderate, and it has moderate stretchability.
 直鎖ポリプロピレン樹脂Bのヘプタン不溶分(HI)は、97.5%以上であることが好ましく、より好ましくは98%以上であり、さらに好ましくは98.5%超えであり、特に好ましくは98.6%以上である。また、直鎖ポリプロピレン樹脂Bのヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは99%以下である。 The heptane-insoluble content (HI) of the linear polypropylene resin B is preferably 97.5% or more, more preferably 98% or more, still more preferably 98.5%, and particularly preferably 98.%. 6% or more. Further, the heptane-insoluble content (HI) of the linear polypropylene resin B is preferably 99.5% or less, more preferably 99% or less.
 直鎖ポリプロピレン樹脂Bの230℃におけるメルトフローレート(MFR)は、0.1~6.0g/10minであることが好ましく、0.1~5.0g/10minであることがより好ましく、0.1~3.9g/10minであることがさらに好ましい。 The melt flow rate (MFR) at 230 ° C. of the linear polypropylene resin B is preferably 0.1 to 6.0 g / 10 min, more preferably 0.1 to 5.0 g / 10 min, and More preferably, it is 1 to 3.9 g / 10 min.
 前記ポリプロピレン樹脂として前記直鎖ポリプロピレン樹脂Bを使用する場合、前記直鎖ポリプロピレン樹脂Bの含有率は、ポリプロピレンフィルム中のポリプロピレン樹脂全体を100質量%とすると、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、同様に、前記直鎖ポリプロピレン樹脂Bの含有率は、ポリプロピレンフィルム中のポリプロピレン樹脂全体を100質量%とすると、45質量%以下であることが好ましく、40質量%以下であることがより好ましい。 When the linear polypropylene resin B is used as the polypropylene resin, the content of the linear polypropylene resin B is preferably 10% by mass or more when the entire polypropylene resin in the polypropylene film is 100% by mass, It is more preferably 15% by mass or more, and further preferably 20% by mass or more. Similarly, the content of the linear polypropylene resin B is preferably 45% by mass or less and more preferably 40% by mass or less, assuming that the total polypropylene resin in the polypropylene film is 100% by mass. .
 ポリプロピレン樹脂として、直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bとを併用する場合、ポリプロピレン樹脂全体を100質量%とすると、55~90重量%の直鎖ポリプロピレン樹脂Aと、45~10重量%の直鎖ポリプロピレン樹脂Bとを含むことが好ましく、60~85重量%の直鎖ポリプロピレン樹脂Aと、40~15重量%の直鎖ポリプロピレン樹脂Bと含むことがより好ましく、60~80重量%の直鎖ポリプロピレン樹脂Aと、40~20重量%の直鎖ポリプロピレン樹脂Bとを含むことが特に好ましい。 When the linear polypropylene resin A and the linear polypropylene resin B are used in combination as the polypropylene resin, if the total polypropylene resin is 100% by mass, 55 to 90% by weight of the linear polypropylene resin A and 45 to 10% by weight of the polypropylene resin are used. The linear polypropylene resin B is preferably included, more preferably 60 to 85% by weight of the linear polypropylene resin A and 40 to 15% by weight of the linear polypropylene resin B, and more preferably 60 to 80% by weight of the linear polypropylene resin B. It is particularly preferable that the chain polypropylene resin A and 40 to 20% by weight of the linear polypropylene resin B are included.
 ポリプロピレン樹脂が、直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bとを含む場合、二軸延伸ポリプロピレンフィルムは、直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bとの微細混合状態(相分離状態)となるため、耐電圧性(特に高温での体電圧性)が向上し、フィルムコンデンサ素子としたときの容量が向上する。 When the polypropylene resin includes a linear polypropylene resin A and a linear polypropylene resin B, the biaxially stretched polypropylene film is in a finely mixed state (phase separated state) of the linear polypropylene resin A and the linear polypropylene resin B. Therefore, the voltage resistance (particularly body voltage at a high temperature) is improved, and the capacity of the film capacitor element is improved.
 以上の説明が、ポリプロピレン樹脂を2種以上使用する場合における各ポリプロピレン樹脂についての説明である。 The above description is an explanation of each polypropylene resin when two or more polypropylene resins are used.
 二軸延伸ポリプロピレンフィルムは、ポリプロピレン樹脂以外の他の樹脂(以下「他の樹脂」ともいう)を含んでもよい。他の樹脂としては、ポリエチレン、ポリ(1-ブテン)、ポリイソブテン、ポリ(1-ペンテン)、ポリ(1-メチルペンテン)などのポリプロピレン以外のポリオレフィン;エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-ブテン共重合体などのα-オレフィン同士の共重合体;スチレン-ブタジエンランダム共重合体などのビニル単量体-ジエン単量体ランダム共重合体;スチレン-ブタジエン-スチレン ブロック共重合体などのビニル単量体-ジエン単量体-ビニル単量体ランダム共重合体などが挙げられる。二軸延伸ポリプロピレンフィルムは、このような他の樹脂を、二軸延伸ポリプロピレンフィルムに悪影響を与えない範囲の量で含めてよい。本実施形態の二軸延伸ポリプロピレンフィルムは、樹脂としてポリプロピレン樹脂で構成されることが好ましい。 The biaxially stretched polypropylene film may contain a resin other than the polypropylene resin (hereinafter also referred to as “other resin”). Other resins include polyolefins other than polypropylene such as polyethylene, poly (1-butene), polyisobutene, poly (1-pentene), poly (1-methylpentene); ethylene-propylene copolymer, propylene-butene copolymer Copolymers, copolymers of α-olefins such as ethylene-butene copolymer; vinyl monomers-diene monomer random copolymer such as styrene-butadiene random copolymer; styrene-butadiene-styrene block copolymer Examples thereof include vinyl monomers such as coalescence-diene monomer-vinyl monomer random copolymer. The biaxially stretched polypropylene film may contain such other resin in an amount that does not adversely affect the biaxially stretched polypropylene film. The biaxially stretched polypropylene film of this embodiment is preferably composed of a polypropylene resin as a resin.
 二軸延伸ポリプロピレンフィルムを製造するための延伸前のキャスト原反シートは、次のようにして作製することができる。 The cast original sheet before stretching for producing a biaxially stretched polypropylene film can be produced as follows.
 まず、ポリプロピレン樹脂ペレット、ドライ混合されたポリプロピレン樹脂ペレット、又は、予め溶融混練して作製した混合ポリプロピレン樹脂ペレットを押出機に供給して、加熱溶融する。
 加熱溶融時の押出機回転数は、5~40rpmが好ましく、10~30rpmがより好ましい。また、加熱溶融時の押出機設定温度は、220~280℃が好ましく、230~270℃がより好ましい。また、加熱溶融時の樹脂温度は、220~280℃が好ましく、230~270℃がより好ましい。加熱溶融時の樹脂温度は、押出機に挿入された温度計にて測定される値である。
 なお、加熱溶融時の押出機回転数、押出機設定温度、樹脂温度は、使用する結晶性熱可塑性樹脂の物性も考慮して選択する。なお、加熱溶融時の樹脂温度をそのような数値範囲内にすることにより、樹脂の劣化を抑制することもできる。
First, polypropylene resin pellets, dry-mixed polypropylene resin pellets, or mixed polypropylene resin pellets prepared by melting and kneading in advance are supplied to an extruder and melted by heating.
The rotation speed of the extruder during heating and melting is preferably 5 to 40 rpm, and more preferably 10 to 30 rpm. Further, the set temperature of the extruder at the time of heating and melting is preferably 220 to 280 ° C, and more preferably 230 to 270 ° C. The resin temperature at the time of heating and melting is preferably 220 to 280 ° C., more preferably 230 to 270 ° C. The resin temperature at the time of heating and melting is a value measured by a thermometer inserted in an extruder.
Note that the number of revolutions of the extruder, the set temperature of the extruder, and the resin temperature during heating and melting are selected in consideration of the physical properties of the crystalline thermoplastic resin to be used. In addition, deterioration of resin can also be suppressed by making the resin temperature at the time of heat-melting in such a numerical range.
 次に、Tダイを用いて溶融樹脂をシート状に押し出し、少なくとも1個以上の金属ドラムで、冷却、固化させることで、未延伸のキャスト原反シートを成形する。
 金属ドラムの表面温度(押し出し後、最初に接触する金属ドラムの温度)は、50~100℃であることが好ましく、より好ましくは、90~100℃である。金属ドラムの表面温度は、使用するポリプロピレン樹脂の物性などに応じて決定することができる。
Next, the molten resin is extruded into a sheet shape using a T die, and cooled and solidified with at least one metal drum to form an unstretched cast raw sheet.
The surface temperature of the metal drum (the temperature of the metal drum that first comes into contact after extrusion) is preferably 50 to 100 ° C., more preferably 90 to 100 ° C. The surface temperature of the metal drum can be determined according to the physical properties of the polypropylene resin used.
 二軸延伸ポリプロピレンフィルムは、キャスト原反シートに延伸処理を行って製造することができる。延伸は、縦および横に二軸に配向せしめる二軸延伸が好ましく、延伸方法としては逐次二軸延伸方法が好ましい。逐次二軸延伸方法としては、たとえば、まず、キャスト原反シートを速度差を設けたロール間に通して流れ方向(MD方向)に3~7倍に延伸する。引き続き、当該シートをテンターに導いて、横方向(TD方向)に、3~11倍に延伸する。流れ方向の延伸時の温度(縦延伸温度ともいう)は130~150℃が好ましい。また、幅方向の延伸時の温度(横延伸温度ともいう)は155~170℃が好ましい。その後、緩和、熱固定を施し、引取ロールに巻き取る。以上により、二軸延伸ポリプロピレンフィルムが得られる。 The biaxially stretched polypropylene film can be produced by subjecting a cast raw sheet to stretching treatment. The stretching is preferably biaxial stretching that is biaxially oriented longitudinally and laterally, and the sequential biaxial stretching method is preferred as the stretching method. As the sequential biaxial stretching method, for example, first, the cast original fabric sheet is passed between rolls provided with a speed difference and stretched 3 to 7 times in the flow direction (MD direction). Subsequently, the sheet is guided to a tenter and stretched 3 to 11 times in the transverse direction (TD direction). The temperature during stretching in the flow direction (also referred to as longitudinal stretching temperature) is preferably 130 to 150 ° C. Further, the temperature during stretching in the width direction (also referred to as transverse stretching temperature) is preferably 155 to 170 ° C. Thereafter, relaxation and heat fixation are performed, and the product is wound around a take-up roll. As described above, a biaxially stretched polypropylene film is obtained.
 二軸延伸ポリプロピレンフィルムのMD熱収縮率差とTD熱収縮率差との両者は、上述したように、二軸延伸後のポリプロピレンフィルムを、テンターの下流で巻き取る引取ロールの速度(引取速度)と、テンター延伸部における、MD方向のポリプロピレンフィルムの搬送速度(製膜ライン速度)との影響を受ける。また、遅相軸角度の最大値と最小値の差、及び、遅相軸角度の最大値は、引取速度と製膜ライン速度との影響を受ける。そこで、ため、引取速度の製膜ライン速度に対する比(引取速度/製膜ライン速度)について説明する。この比は、好ましくは1.01以上1.20以下、より好ましくは1.02以上1.18以下、さらに好ましくは1.03以上1.15以下、特に好ましくは1.05~1.09である。この比を1.20以下に調整することで、引取ロール直上において、二軸延伸後のポリプロピレンフィルムの張力を撓まない程度に低く抑えることが可能であり、熱寸法変形を好適に小さく抑えることができる。熱寸法変形を抑えることが可能な理由は、ポリマー分子鎖の配向の進行を抑えることができるためだと考えられる。この比を1.20以下に調整することで、引取ロール直上において、二軸延伸後のポリプロピレンフィルムの破断を好適に抑制することも可能である。引取速度の製膜ライン速度に対する比(引取速度/製膜ライン速度)を上げる(高くする)とSMD140-SMD130、STD140-STD130、及び、STD140/SMD140はいずれも上がる傾向にあり、前記比を下げる(低くする)とSMD140-SMD130、STD140-STD130、及び、STD140/SMD140はいずれも下がる傾向にある。 As described above, the difference between the MD heat shrinkage ratio and the TD heat shrinkage ratio of the biaxially stretched polypropylene film is the speed of the take-up roll that winds the biaxially stretched polypropylene film downstream of the tenter (take-off speed). And in the tenter stretching part, it is influenced by the transport speed (film forming line speed) of the polypropylene film in the MD direction. Further, the difference between the maximum value and the minimum value of the slow axis angle and the maximum value of the slow axis angle are affected by the take-up speed and the film forming line speed. Therefore, the ratio of the take-up speed to the film-formation line speed (take-off speed / film-formation line speed) will be described. This ratio is preferably 1.01 or more and 1.20 or less, more preferably 1.02 or more and 1.18 or less, further preferably 1.03 or more and 1.15 or less, and particularly preferably 1.05 to 1.09. is there. By adjusting this ratio to 1.20 or less, it is possible to keep the tension of the biaxially stretched polypropylene film just above the take-up roll so as not to bend, and to keep the thermal dimensional deformation suitably small. Can do. The reason why the thermal dimensional deformation can be suppressed is considered to be because the progress of the orientation of the polymer molecular chain can be suppressed. By adjusting this ratio to 1.20 or less, it is possible to suitably suppress breakage of the polypropylene film after biaxial stretching immediately above the take-up roll. When the ratio of the take-up speed to the film- formation line speed (take-up speed / film- formation line speed) is increased (increased), SMD140- SMD130 , STD140- STD130 , and STD140 / SMD140 all tend to increase. When the ratio is lowered (lowered), S MD140 -S MD130 , S TD140 -S TD130 , and S TD140 / S MD140 tend to decrease.
 MD熱収縮率差とTD熱収縮率差との両者は、引取速度の製膜ライン速度に対する比だけでなく、二軸延伸後の熱固定における熱固定温度の影響も受ける。また、遅相軸角度の最大値と最小値の差、及び、遅相軸角度の最大値は、熱固定温度の影響を受ける。そこで、熱固定温度について説明する。ポリマー分子鎖の運動性が温度に依存して変化するという現象が、熱収縮率の温度依存性に影響を与えると本発明者は考えている。すなわち、温度変化に対するポリマー分子鎖の運動性が、熱固定温度によって変わると考えられることから、熱固定温度の影響を、MD熱収縮率差とTD熱収縮率差との両者が受けると本発明者は推測している。熱固定温度は、好ましくは159℃以上169℃以下、より好ましくは161℃以上167℃以下、さらに好ましくは162℃以上166℃以下、特に好ましくは162℃以上164℃以下である。169℃以下が、MD熱収縮率差2.0%未満、かつTD熱収縮率差2.3%未満に収めるために好ましい。引取ロール直上で、二軸延伸後のポリプロピレンフィルムが破断することを抑制するため、及び良好な偏肉精度で製膜するためにも、169℃以下が好ましい。ここで、偏肉精度とは、二軸延伸ポリプロピレンフィルムにおける、TD方向の厚みの均一さの度合いをいう。二軸延伸後の熱固定における熱固定温度を上げる(高くする)とSMD140-SMD130、STD140-STD130、及び、STD140/SMD140はいずれも下がる傾向にあり、前記熱固定温度を下げる(低くする)とSMD140-SMD130、STD140-STD130、及び、STD140/SMD140はいずれも上がる傾向にある。 Both the MD heat shrinkage difference and the TD heat shrinkage difference are affected not only by the ratio of the take-up speed to the film forming line speed, but also by the heat setting temperature in heat setting after biaxial stretching. Further, the difference between the maximum value and the minimum value of the slow axis angle and the maximum value of the slow axis angle are affected by the heat setting temperature. Therefore, the heat setting temperature will be described. The present inventor believes that the phenomenon that the mobility of the polymer molecular chain changes depending on the temperature affects the temperature dependency of the thermal shrinkage rate. That is, since the mobility of the polymer molecular chain with respect to the temperature change is considered to change depending on the heat setting temperature, the present invention is affected by both the MD heat shrinkage difference and the TD heat shrinkage difference. Guesses. The heat setting temperature is preferably 159 ° C. or higher and 169 ° C. or lower, more preferably 161 ° C. or higher and 167 ° C. or lower, still more preferably 162 ° C. or higher and 166 ° C. or lower, and particularly preferably 162 ° C. or higher and 164 ° C. or lower. 169 ° C. or less is preferable because the difference in MD heat shrinkage rate is less than 2.0% and the difference in TD heat shrinkage rate is less than 2.3%. In order to prevent the polypropylene film after biaxial stretching from being broken immediately above the take-up roll and to form a film with good thickness deviation accuracy, 169 ° C. or lower is preferable. Here, the uneven thickness accuracy refers to the degree of thickness uniformity in the TD direction in a biaxially stretched polypropylene film. When the heat setting temperature in the heat setting after biaxial stretching is increased (increased), S MD140 -S MD130 , S TD140 -S TD130 , and S TD140 / S MD140 tend to decrease, and the heat setting temperature is increased. When lowered (lowered), all of S MD140 -S MD130 , S TD140 -S TD130 , and S TD140 / S MD140 tend to rise.
 このように、二軸延伸後のポリプロピレンフィルムを159℃以上169℃以下で熱固定し、さらに、これを、引取速度の製膜ライン速度に対する比1.01以上1.20以下で巻き取ることで、好適に、MD熱収縮率差を2.0%未満に収めることが可能であるとともにTD熱収縮率差を2.3%未満に収めることができる。 In this way, the polypropylene film after biaxial stretching is heat-set at 159 ° C. or more and 169 ° C. or less, and is further wound up at a ratio of the take-up speed to the film forming line speed of 1.01 or more and 1.20 or less. Preferably, the MD heat shrinkage difference can be less than 2.0% and the TD heat shrinkage difference can be less than 2.3%.
 二軸延伸ポリプロピレンフィルムには、金属蒸着加工工程などの後工程における接着特性を高める目的で、延伸および熱固定工程終了後に、オンライン又はオフラインにてコロナ放電処理を行ってもよい。コロナ放電処理は、公知の方法を用いて行うことができる。雰囲気ガスとして空気、炭酸ガス、窒素ガス、又は、これらの混合ガスを用いて行うことが好ましい。 The biaxially stretched polypropylene film may be subjected to corona discharge treatment on-line or off-line after the end of the stretching and heat setting steps for the purpose of enhancing the adhesive properties in the subsequent steps such as a metal deposition process. The corona discharge treatment can be performed using a known method. It is preferable to use air, carbon dioxide gas, nitrogen gas, or a mixed gas thereof as the atmospheric gas.
 二軸延伸ポリプロピレンフィルムの片面に、絶縁マージンのパターンに対応するパターンのオイルを塗布して絶縁マージン用オイルマスクを形成し、これに金属蒸着を施し、スリット前金属化フィルムを得る。絶縁マージン用オイルマスクは、二軸延伸ポリプロピレンフィルムの絶縁マージンとなる部分に、蒸着工程で金属粒子が付着するのを防止するためのものである。絶縁マージン用オイルマスクは、オイルタンクに貯蔵しているオイルを気化してタンクに設けたノズルより、オイルを、二軸延伸ポリプロピレンフィルムに直接塗布することで形成できる。ここで、「直接塗布」は、ノズルのスリットからオイルを吹き出し、このオイルを二軸延伸ポリプロピレンフィルムに付着させることをいう。いっぽう、金属蒸着は、絶縁マージン用オイルマスク形成後の二軸延伸ポリプロピレンフィルムが冷却ロールを通過する際に施される。冷却ロールは、たとえば-30℃~-20℃に維持されている。すなわち、冷却ロールと金属蒸着の蒸発源との間の空間を、絶縁マージン用オイルマスクを有する二軸延伸ポリプロピレンフィルムが通過する際に金属蒸着が施される。このように、この空間で、金属の蒸気が、二軸延伸ポリプロピレンフィルムの両面うち、絶縁マージン用オイルマスクが形成された面に向かって放たれ、二軸延伸ポリプロピレンフィルムに付着する。冷却ロールは、金属蒸気の熱によって、二軸延伸ポリプロピレンフィルムが変形することを防止するために使用される。金属蒸着で使用する金属として、亜鉛、鉛、銀、クロム、アルミニウム、銅、ニッケルなどの金属単体、それらの複数種の混合物、それらの合金などを挙げることができるものの、環境、経済性およびフィルムコンデンサ性能などを考慮すると、アクティブ部には、アルミニウムを使用し、ヘビーエッジ部には、亜鉛とアルミニウムとを使用することが好ましい。このような金属層は、たとえば、絶縁マージン用オイルマスクを有する二軸延伸ポリプロピレンフィルムにおける、アクティブ部を形成しようとする領域とヘビーエッジ部を形成しようとする領域との両者に、アルミニウムを蒸着し、ヘビーエッジ部を形成しようとする領域に亜鉛をさらに蒸着することで形成できる。これに代えて、たとえば、アクティブ部を形成しようとする領域にのみ、アルミニウムを蒸着し、ヘビーエッジ部を形成しようとする領域にのみ亜鉛を蒸着することで形成することも可能である。なお、アクティブ部にマージンパターンを設ける場合は、絶縁マージン用オイルマスク形成と金属蒸着との間に、すなわち絶縁マージン用オイルマスク形成後かつ金属蒸着前に、パターン用オイルマスクを、二軸延伸ポリプロピレンフィルムの両面うち、絶縁マージン用オイルマスクが形成された面に形成することができる。パターン用オイルマスクは、通常、版ロールで形成される。パターン用オイルマスクを形成するためのオイルの温度は、絶縁マージン用オイルマスクを形成するためのそれよりも低い。パターン用オイルマスクを形成するためのオイルはたとえば室温(一例として40℃以下)で、二軸延伸ポリプロピレンフィルムに塗り付けられる。 オ イ ル Apply oil of a pattern corresponding to the pattern of the insulation margin on one side of the biaxially stretched polypropylene film to form an oil mask for the insulation margin, and perform metal deposition on this to obtain a pre-slit metallized film. The oil mask for insulation margin is for preventing metal particles from adhering to the portion that becomes the insulation margin of the biaxially stretched polypropylene film in the vapor deposition process. The oil mask for the insulation margin can be formed by evaporating the oil stored in the oil tank and directly applying the oil to the biaxially stretched polypropylene film from a nozzle provided in the tank. Here, “direct application” means that the oil is blown out from the slit of the nozzle, and this oil is adhered to the biaxially oriented polypropylene film. On the other hand, the metal deposition is performed when the biaxially stretched polypropylene film after the formation of the oil mask for the insulation margin passes through the cooling roll. The cooling roll is maintained at −30 ° C. to −20 ° C., for example. That is, metal vapor deposition is performed when a biaxially stretched polypropylene film having an insulating margin oil mask passes through a space between a cooling roll and a metal vapor deposition source. Thus, in this space, metal vapor is emitted toward the surface of the biaxially stretched polypropylene film on which the insulation margin oil mask is formed, and adheres to the biaxially stretched polypropylene film. The cooling roll is used to prevent the biaxially stretched polypropylene film from being deformed by the heat of the metal vapor. Examples of metals used in metal deposition include simple metals such as zinc, lead, silver, chromium, aluminum, copper, and nickel, mixtures of these, and alloys thereof, but the environment, economy, and film In consideration of capacitor performance and the like, it is preferable to use aluminum for the active portion and zinc and aluminum for the heavy edge portion. Such a metal layer is formed by, for example, depositing aluminum on both a region where an active portion is to be formed and a region where a heavy edge portion is to be formed in a biaxially stretched polypropylene film having an oil mask for an insulation margin. Further, it can be formed by further vapor-depositing zinc in a region where the heavy edge portion is to be formed. Alternatively, for example, aluminum may be deposited only in a region where the active part is to be formed, and zinc may be deposited only in a region where the heavy edge part is to be formed. In the case where a margin pattern is provided in the active portion, the oil mask for pattern is formed between the formation of the oil mask for the insulation margin and the metal deposition, that is, after the formation of the oil mask for the insulation margin and before the metal deposition. Of the both sides of the film, the film can be formed on the surface on which the insulating margin oil mask is formed. The pattern oil mask is usually formed by a plate roll. The oil temperature for forming the pattern oil mask is lower than that for forming the insulation margin oil mask. The oil for forming the pattern oil mask is applied to a biaxially oriented polypropylene film, for example, at room temperature (40 ° C. or lower as an example).
 このようにして得られたスリット前金属化フィルムと、スリット前金属化フィルムを分割して得られる金属化フィルムとを、ここからは図面を参照しながら説明する。 The pre-slit metallized film thus obtained and the metallized film obtained by dividing the pre-slit metallized film will now be described with reference to the drawings.
 図3に示すように、スリット前金属化フィルム6は、MD方向D1に連続で延びる複数の絶縁マージン21と、MD方向D1に連続で延びる金属層300とを含む。スリット前金属化フィルム6では、絶縁マージン21と金属層300とがTD方向D2で交互に並んでいる。各金属層300は、二つのアクティブ部32と、これらアクティブ部32の間に位置するヘビーエッジ部31とを含む。すなわち、各金属層300においては、TD方向D2で、第一のアクティブ部32、ヘビーエッジ部31、第二のアクティブ部32がこの順で並んでいる。このように、ヘビーエッジ部31のTD方向D2の一方の端から、第一のアクティブ部32がTD方向D2に延び、ヘビーエッジ部31のTD方向D2の他方の端から、第二のアクティブ部32がTD方向D2に延びている。第一および第二のアクティブ部32は、MD方向D1に連続で延びる。ヘビーエッジ部31も、MD方向D1に連続で延びる。なお、図3に示す例では、スリット前金属化フィルム6におけるTD方向D2の両端に絶縁マージン21が設けられているものの、この両端、またはこの両端のうちの一方に、ヘビーエッジ部31が設けられていてもよい。 As shown in FIG. 3, the pre-slit metallized film 6 includes a plurality of insulating margins 21 extending continuously in the MD direction D1 and a metal layer 300 extending continuously in the MD direction D1. In the pre-slit metallized film 6, the insulation margins 21 and the metal layers 300 are alternately arranged in the TD direction D2. Each metal layer 300 includes two active portions 32 and a heavy edge portion 31 located between the active portions 32. That is, in each metal layer 300, the first active portion 32, the heavy edge portion 31, and the second active portion 32 are arranged in this order in the TD direction D2. As described above, the first active portion 32 extends in the TD direction D2 from one end of the heavy edge portion 31 in the TD direction D2, and the second active portion extends from the other end of the heavy edge portion 31 in the TD direction D2. 32 extends in the TD direction D2. The first and second active portions 32 extend continuously in the MD direction D1. The heavy edge portion 31 also extends continuously in the MD direction D1. In the example shown in FIG. 3, although the insulation margins 21 are provided at both ends in the TD direction D2 in the pre-slit metallized film 6, the heavy edge portions 31 are provided at both ends or one of the both ends. It may be done.
 スリット前金属化フィルム6のスリット工程では、各絶縁マージン21におけるTD方向D2で中央(以下、「TD方向中央」ということがある。)と、各ヘビーエッジ部31のTD方向中央とに切断刃を入れ、スリット前金属化フィルム6をTD方向D2に複数に分割し、金属化フィルム5(図1・2参照)を得る。具体的には、ロール状をなすスリット前金属化フィルム6を巻き出し、各絶縁マージン21のTD方向中央と、各ヘビーエッジ部31のTD方向中央とに切断刃を入れ切断し、金属化フィルム5をロール状に巻き取る。これによって、複数個の金属化フィルム5を得ることができる。金属化フィルム5における絶縁マージン21の幅は、スリット前金属化フィルム6における絶縁マージン21の幅の半分である。金属化フィルム5におけるヘビーエッジ部31の幅も、スリット前金属化フィルム6におけるヘビーエッジ部31の幅の半分である。なお、金属化フィルム5は、コンデンサ素子幅を有する。 In the slit process of the pre-slit metallized film 6, a cutting blade is provided at the center in the TD direction D <b> 2 in each insulation margin 21 (hereinafter sometimes referred to as “TD direction center”) and the center in the TD direction of each heavy edge portion 31. The pre-slit metallized film 6 is divided into a plurality of portions in the TD direction D2 to obtain a metallized film 5 (see FIGS. 1 and 2). Specifically, the pre-slit metallized film 6 in the form of a roll is unwound, a cutting blade is inserted into the center of each insulation margin 21 in the TD direction and the center of each heavy edge 31 in the TD direction, and the metallized film is cut. 5 is rolled up. Thereby, a plurality of metallized films 5 can be obtained. The width of the insulating margin 21 in the metallized film 5 is half the width of the insulating margin 21 in the pre-slit metalized film 6. The width of the heavy edge portion 31 in the metallized film 5 is also half the width of the heavy edge portion 31 in the pre-slit metalized film 6. The metallized film 5 has a capacitor element width.
 図1および図2に示すように、このようにして得られた金属化フィルム5は、二軸延伸ポリプロピレンフィルム10と、二軸延伸ポリプロピレンフィルム10の片面に設けられた金属層30とを備える。金属層30の厚みは、1~200nmに収まることが好ましい。 As shown in FIGS. 1 and 2, the metallized film 5 thus obtained includes a biaxially stretched polypropylene film 10 and a metal layer 30 provided on one side of the biaxially stretched polypropylene film 10. The thickness of the metal layer 30 is preferably within 1 to 200 nm.
 金属化フィルム5では、TD方向D2における一方の端部51に、MD方向D1で連続で延びる絶縁マージン21が設けられている。絶縁マージン21の長さは、絶縁マージン21の幅に対して大きい。 In the metallized film 5, an insulating margin 21 extending continuously in the MD direction D1 is provided at one end 51 in the TD direction D2. The length of the insulation margin 21 is larger than the width of the insulation margin 21.
 絶縁マージン21のTD方向D2で横には金属層30が位置している。金属層30は、TD方向D2における他方の端部52から絶縁マージン21まで延びている。図示していないものの、金属層30は、金属化フィルム5におけるMD方向D1の両端間を連続で延びている。つまり、金属層30は、金属化フィルム5におけるMD方向D1の一方の端部から、金属化フィルム5におけるMD方向D1の他方の端部まで連続で延びている。金属層30の幅は、絶縁マージン21の幅とくらべて大きい。たとえば、金属層30の幅は、絶縁マージン21の幅に対して1.5倍~300倍であることが好ましい。ここで、金属層30の幅は、マージンパターンを無視して測定する値をいう。なお、金属層30の幅は、金属化フィルム5のTD方向D2で測定される。 The metal layer 30 is located beside the insulation margin 21 in the TD direction D2. The metal layer 30 extends from the other end 52 in the TD direction D2 to the insulation margin 21. Although not shown, the metal layer 30 continuously extends between both ends of the metallized film 5 in the MD direction D1. That is, the metal layer 30 continuously extends from one end portion of the metallized film 5 in the MD direction D1 to the other end portion of the metallized film 5 in the MD direction D1. The width of the metal layer 30 is larger than the width of the insulating margin 21. For example, the width of the metal layer 30 is preferably 1.5 to 300 times the width of the insulation margin 21. Here, the width of the metal layer 30 is a value measured by ignoring the margin pattern. The width of the metal layer 30 is measured in the TD direction D2 of the metallized film 5.
 金属化フィルム5の金属層30は、ヘビーエッジ部31を含む。ヘビーエッジ部31は、金属化フィルム5におけるTD方向D2の端部52に位置している。ヘビーエッジ部31は、MD方向D1に連続で延びている。より詳しくは、ヘビーエッジ部31は、金属化フィルム5におけるMD方向D1の両端間を連続で延びている。つまり、ヘビーエッジ部31は、金属化フィルム5におけるMD方向D1の一方の端部から、金属化フィルム5におけるMD方向D1の他方の端部まで連続で延びている。ヘビーエッジ部31の厚みは、アクティブ部32の厚みにくらべて大きい。ヘビーエッジ部31は、たとえば二軸延伸ポリプロピレンフィルム10上に設けられたアルミニウム膜と、アルミニウム膜上に設けられた亜鉛部とを有することができる。このように、ヘビーエッジ部31では、二軸延伸ポリプロピレンフィルム10と亜鉛部との間に、アルミニウム膜が位置することができる。 The metal layer 30 of the metallized film 5 includes a heavy edge portion 31. The heavy edge part 31 is located in the end part 52 of the metallized film 5 in the TD direction D2. The heavy edge portion 31 extends continuously in the MD direction D1. More specifically, the heavy edge portion 31 continuously extends between both ends of the metallized film 5 in the MD direction D1. That is, the heavy edge portion 31 continuously extends from one end portion of the metallized film 5 in the MD direction D1 to the other end portion of the metallized film 5 in the MD direction D1. The thickness of the heavy edge portion 31 is larger than the thickness of the active portion 32. The heavy edge part 31 can have, for example, an aluminum film provided on the biaxially stretched polypropylene film 10 and a zinc part provided on the aluminum film. Thus, in the heavy edge part 31, an aluminum film can be located between the biaxially stretched polypropylene film 10 and the zinc part.
 金属化フィルム5の金属層30は、アクティブ部32を含む。アクティブ部32は、MD方向D1に連続で延びている。より詳しくは、アクティブ部32は、金属化フィルム5におけるMD方向D1の両端間を連続で延びている。つまり、アクティブ部32は、金属化フィルム5におけるMD方向D1の一方の端部から、金属化フィルム5におけるMD方向D1の他方の端部まで連続で延びている。アクティブ部32は、アルミニウム膜を有することができる。アクティブ部32のアルミニウム膜は、ヘビーエッジ部31のアルミニウム膜と一続きになっている。アクティブ部32には、マージンパターン、たとえばTマージンパターンなどが形成されていてもよい。ヘビーエッジ部31の膜抵抗は通常1~8Ω/□程度であり、1~5Ω/□程度であることが好ましい。 The metal layer 30 of the metallized film 5 includes an active portion 32. The active part 32 extends continuously in the MD direction D1. More specifically, the active part 32 extends continuously between both ends of the metallized film 5 in the MD direction D1. That is, the active portion 32 continuously extends from one end portion of the metallized film 5 in the MD direction D1 to the other end portion of the metallized film 5 in the MD direction D1. The active part 32 can have an aluminum film. The aluminum film of the active part 32 is continuous with the aluminum film of the heavy edge part 31. The active portion 32 may be formed with a margin pattern, such as a T margin pattern. The film resistance of the heavy edge portion 31 is usually about 1 to 8Ω / □, and preferably about 1 to 5Ω / □.
 金属化フィルム5は、従来公知の方法で積層するか、巻回してフィルムコンデンサとすることができる。たとえば、金属化フィルム5における金属層30と二軸延伸ポリプロピレンフィルム10とが交互に積層されるように、さらには、絶縁マージン21が逆サイドとなるように、2枚1対の金属化フィルム5を重ね合わせて巻回する。この際、2枚1対の金属化フィルム5をTD方向D2に1~2mmずらして積層することが好ましい。用いる巻回機は特に制限されず、たとえば、株式会社皆藤製作所製の自動巻取機3KAW-N2型などを利用することができる。扁平型コンデンサを作製する場合、巻回後、通常、得られた巻回物に対してプレスが施される。プレスによってフィルムコンデンサの巻締まり・コンデンサ素子成形を促す。層間ギャップの制御・安定化を施す点から、与える圧力は、二軸延伸ポリプロピレンフィルム10の厚みなどによってその最適値は変わるが、例えば2~20kg/cmである。プレスに続いて、巻回物の両端面に金属を溶射してメタリコン電極を設けることによって、フィルムコンデンサ作製する。 The metallized film 5 can be laminated by a conventionally known method or wound to form a film capacitor. For example, a pair of metallized films 5 so that the metal layers 30 and the biaxially stretched polypropylene films 10 in the metallized film 5 are alternately laminated, and further the insulation margin 21 is on the opposite side. And roll them together. At this time, it is preferable that two pairs of metallized films 5 are laminated while being shifted by 1 to 2 mm in the TD direction D2. The winding machine to be used is not particularly limited. For example, an automatic winder 3KAW-N2 manufactured by Minato Seisakusho Co., Ltd. can be used. When producing a flat capacitor, after winding, the obtained wound product is usually pressed. Press to facilitate film capacitor winding and capacitor element molding. From the viewpoint of controlling / stabilizing the interlayer gap, the optimum value of the applied pressure varies depending on the thickness of the biaxially stretched polypropylene film 10 and the like, but is, for example, 2 to 20 kg / cm 2 . Subsequent to pressing, metal capacitors are sprayed on both end faces of the wound material to provide a metallicon electrode, thereby producing a film capacitor.
 このように、フィルムコンデンサは、金属化フィルム5が複数積層された構成を有していてもよいし、巻回された金属化フィルム5を有していてもよい。このようなフィルムコンデンサは、電気自動車やハイブリッド自動車などの駆動モーターを制御するインバーター電源機器用コンデンサなどに好適に使用できる。また、鉄道車両用、風力発電用、太陽光発電用、一般家電用などにおいても好適に使用できる。 Thus, the film capacitor may have a configuration in which a plurality of metallized films 5 are laminated, or may have a wound metallized film 5. Such a film capacitor can be suitably used as a capacitor for an inverter power supply device that controls a drive motor of an electric vehicle or a hybrid vehicle. Further, it can be suitably used for railway vehicles, wind power generation, solar power generation, general household appliances, and the like.
 図1~3では、二軸延伸ポリプロピレンフィルム10の片面に金属層30が設けられた金属化フィルム5を説明したものの、本発明の金属化フィルムが、このような構造の金属化フィルム5に限られないことはもちろんである。たとえば、本発明の金属化フィルムは、二軸延伸ポリプロピレンフィルムの両面に金属層が設けられていてもよい。 Although FIGS. 1 to 3 illustrate the metallized film 5 in which the metal layer 30 is provided on one side of the biaxially stretched polypropylene film 10, the metallized film of the present invention is limited to the metallized film 5 having such a structure. Of course you can't. For example, the metallized film of the present invention may be provided with metal layers on both sides of a biaxially stretched polypropylene film.
 本実施形態では、ヘビーエッジ部を有する金属化フィルムを説明したものの、金属化フィルムがヘビーエッジ部を有さなくともよいことはもちろんである。 In this embodiment, although the metallized film having the heavy edge portion has been described, it is needless to say that the metallized film does not have to have the heavy edge portion.
 <第2の本発明に係る実施形態>
 以下、第2の本発明に係る実施形態について説明する。なお、第2の本発明の実施形態に係る二軸延伸ポリプロピレンフィルムは、第一方向における140℃の熱収縮率と、前記第一方向における130℃の熱収縮率との差が0%以上2.0%未満である必要はなく、前記第一方向に対して直角の第二方向における140℃の熱収縮率と、前記第二方向における130℃の熱収縮率との差が0%以上2.3%未満である必要はない。
 第2の本発明に係る実施形態(以下、「第2の実施形態」ともいう)に係るポリプロピレンフィルムは、厚さが1.0μm~3.0μmであり、第二方向の幅が1200mm以下であり、下記(1)~(3)の手法により得られる、遅相軸角度の最大値と最小値の差が6°未満である二軸延伸ポリプロピレンフィルムである。
<遅相軸角度の最大値と最小値の差の求め方>
(1)幅方向全長を100%とした時、その両端から10%おきの位置を中心とする、50mm×50mmの測定用サンプルを切り出し、
(2)測定用サンプルの第二方向を0°とし、各測定用サンプルの第二方向と遅相軸との間の鋭角の角度を測定し、
(3)9枚の測定用サンプルのうち、前記(2)で測定した角度の最大と最小の差を求める。第2の本発明の実施形態に係る二軸延伸ポリプロピレンフィルムは、偏肉精度に優れる。また、当該二軸延伸ポリプロピレンフィルムで金属化フィルムを作製すると、面内方向の収縮ムラが少なくシワやタルミが抑制される。
 前記構成において、二軸延伸ポリプロピレンフィルムは、第一方向における140℃の熱収縮率と、前記第一方向における130℃の熱収縮率との差が0%以上2.0%未満であり、前記第一方向に対して直角の第二方向における140℃の熱収縮率と、前記第二方向における130℃の熱収縮率との差が0%以上2.3%未満であることが好ましい。本実施形態に係る二軸延伸ポリプロピレンフィルムの、その他の好ましい熱収縮率、並びに前記熱収縮率の差および前記熱収縮率の比率の説明については、「第1の本発明に係る実施形態」の項での説明と同じである。そのため、ここでは説明を省略する。第2の本発明に係る実施形態において、補正の根拠、技術説明等のために、「第1の本発明に係る実施形態」の項を引用することができることをここで付記する。
 本実施形態に係る二軸延伸ポリプロピレンフィルムの、好ましい態様は、「第1の本発明に係る実施形態」の項と同じである。たとえば、本実施形態に係る二軸延伸ポリプロピレンフィルムの、(1)各フィルム物性(例えば、厚さ、総灰分等)、(2)含まれるポリプロピレン樹脂の種類、物性、割合、組み合わせ等、(3)含まれるポリプロピレン樹脂以外の種類、物性、割合、組み合わせ等、(4)本実施形態に係る二軸延伸ポリプロピレンフィルムの作製方法、などの説明については、それぞれ、「第1の本発明に係る実施形態」の項での説明と同じである。また、本実施形態に係る(5)金属化フィルムの各物性、構成およびその作製方法、(6)フィルムコンデンサの各物性、構成およびその作製方法、などの説明については、それぞれ、「第1の本発明に係る実施形態」の項での説明と同じである。そのため、ここでは説明を省略する。第2の本発明に係る実施形態において、補正の根拠、技術説明等のために、「第1の本発明に係る実施形態」の項を引用することができることをここで付記する。
<Embodiment according to Second Invention>
The second embodiment of the present invention will be described below. In the biaxially stretched polypropylene film according to the second embodiment of the present invention, the difference between the heat shrinkage rate at 140 ° C. in the first direction and the heat shrinkage rate at 130 ° C. in the first direction is 0% or more. The difference between the heat shrinkage rate at 140 ° C. in the second direction perpendicular to the first direction and the heat shrinkage rate at 130 ° C. in the second direction is not less than 0% 2. It need not be less than 3%.
The polypropylene film according to the second embodiment of the present invention (hereinafter also referred to as “second embodiment”) has a thickness of 1.0 μm to 3.0 μm and a width in the second direction of 1200 mm or less. A biaxially oriented polypropylene film having a difference between the maximum value and the minimum value of the slow axis angle of less than 6 ° obtained by the following methods (1) to (3).
<Determining the difference between the maximum and minimum values of the slow axis angle>
(1) When the total length in the width direction is 100%, a sample for measurement of 50 mm × 50 mm, centering on every 10% position from both ends, is cut out.
(2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured,
(3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained. The biaxially stretched polypropylene film according to the second embodiment of the present invention is excellent in uneven thickness accuracy. Moreover, when a metallized film is produced with the biaxially stretched polypropylene film, shrinkage unevenness in the in-plane direction is small, and wrinkles and talmi are suppressed.
In the above configuration, the biaxially stretched polypropylene film has a difference between a heat shrinkage rate of 140 ° C. in the first direction and a heat shrinkage rate of 130 ° C. in the first direction of 0% or more and less than 2.0%, The difference between the heat shrinkage rate of 140 ° C. in the second direction perpendicular to the first direction and the heat shrinkage rate of 130 ° C. in the second direction is preferably 0% or more and less than 2.3%. Regarding other preferable heat shrinkage rates of the biaxially stretched polypropylene film according to the present embodiment, and the difference between the heat shrinkage rates and the ratio of the heat shrinkage rates, refer to the “embodiment according to the first invention”. This is the same as described in the section. Therefore, description is abbreviate | omitted here. In the second embodiment according to the present invention, it is added here that the section “Embodiment according to the first present invention” can be cited for grounds for correction, technical explanation, and the like.
The preferable aspect of the biaxially stretched polypropylene film according to the present embodiment is the same as that of the “embodiment according to the first aspect of the present invention”. For example, in the biaxially stretched polypropylene film according to this embodiment, (1) each film physical property (for example, thickness, total ash content, etc.), (2) the type, physical property, ratio, combination, etc. ) Types other than the polypropylene resin included, physical properties, proportions, combinations, etc. (4) For the production method of the biaxially stretched polypropylene film according to the present embodiment, etc. This is the same as the description in the section “form”. Further, (5) each physical property and configuration of the metallized film according to the present embodiment, and production method thereof, and (6) each physical property, configuration and production method thereof of the film capacitor, respectively, “first This is the same as the description in the section “Embodiment according to the present invention”. Therefore, description is abbreviate | omitted here. In the second embodiment according to the present invention, it is added here that the section “Embodiment according to the first present invention” can be cited for grounds for correction, technical explanation, and the like.
 次に、本発明(第1の本発明、及び、第2の本発明)を実施例によってさらに具体的に説明するが、これらの例は本発明を説明するためのものであり、本発明を何ら限定するものではない。また、特に断らない限り、例中の「部」及び「%」はそれぞれ「質量部」及び「質量%」を示す。 Next, the present invention (the first invention and the second invention) will be described more specifically with reference to examples. However, these examples are for explaining the present invention. It is not limited at all. Unless otherwise specified, “part” and “%” in the examples represent “part by mass” and “% by mass”, respectively.
 <ポリプロピレン樹脂の重量平均分子量(Mw)、分子量分布(Mw/Mn)、および微分分布値の測定>
 GPC(ゲルパーミエーションクロマトグラフィー)を用いて、以下の条件で測定し、算出した。
測定器:東ソー株式会社製、示差屈折計(RI)内蔵高温GPC HLC-8121GPC/HT型
カラム:東ソー株式会社製、TSKgel GMHhr-H(20)HTを3本連結
カラム温度:145℃
溶離液:トリクロロベンゼン
流速:1.0ml/min
 検量線を、東ソー株式会社製の標準ポリスチレンを用いて作製し、測定された分子量の値をポリスチレンの値に換算して、重量平均分子量(Mw)及び数平均分子量(Mn)を得た。このMwとMnの値を用いて分子量分布(Mw/Mn)を得た。
 微分分布値は、次のような方法で得た。まず、RI検出計を用いて検出される強度分布の時間曲線(溶出曲線)を、上記標準ポリスチレンを用いて作製した検量線を用いて標準ポリスチレンの分子量M(Log(M))に対する分布曲線に変換した。次に、分布曲線の全面積を100%とした場合のLog(M)に対する積分分布曲線を得た後、この積分分布曲線をLog(M)で、微分することによってLog(M)に対する微分分布曲線を得ることが出来た。この微分分布曲線から、Log(M)=4.5およびLog(M)=6.0のときの微分分布値を読んだ。なお、微分分布曲線を得るまでの一連の操作は、使用したGPC測定装置に内蔵されている解析ソフトウェアを用いて行った。
<Measurement of Weight Average Molecular Weight (Mw), Molecular Weight Distribution (Mw / Mn), and Differential Distribution Value of Polypropylene Resin>
Using GPC (gel permeation chromatography), the measurement was performed under the following conditions.
Measuring instrument: manufactured by Tosoh Corporation, differential refractometer (RI) built-in high temperature GPC HLC-8121GPC / HT type column: manufactured by Tosoh Corporation, three TSKgel GMHhr-H (20) HT, connected column temperature: 145 ° C
Eluent: Trichlorobenzene Flow rate: 1.0 ml / min
A calibration curve was prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured molecular weight value was converted to a polystyrene value to obtain a weight average molecular weight (Mw) and a number average molecular weight (Mn). A molecular weight distribution (Mw / Mn) was obtained using the values of Mw and Mn.
The differential distribution value was obtained by the following method. First, a time curve (elution curve) of an intensity distribution detected using an RI detector is converted into a distribution curve with respect to the molecular weight M (Log (M)) of standard polystyrene using a calibration curve prepared using the standard polystyrene. Converted. Next, after obtaining an integral distribution curve for Log (M) when the total area of the distribution curve is 100%, the differential distribution for Log (M) is obtained by differentiating the integral distribution curve with Log (M). I was able to get a curve. From this differential distribution curve, differential distribution values when Log (M) = 4.5 and Log (M) = 6.0 were read. A series of operations until obtaining the differential distribution curve was performed using analysis software built in the GPC measurement apparatus used.
 <メソペンタッド分率>
 ポリプロピレン樹脂を溶媒に溶解し、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)を用いて、以下の条件で測定した。
高温型核磁気共鳴(NMR)装置:日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500
観測核:13C(125MHz)
測定温度:135℃
溶媒:オルト-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1))
測定モード:シングルパルスプロトンブロードバンドデカップリング
パルス幅:9.1μsec(45°パルス)
パルス間隔:5.5sec
積算回数:4,500回
シフト基準:CH(mmmm)=21.7ppm
 立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmmやmrrmなど)に由来する各シグナルの強度積分値より、百分率(%)で算出した。mmmmやmrrmなどに由来する各シグナルの帰属に関し、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」などのスペクトルの記載を参考とした。
<Mesopentad fraction>
Polypropylene resin was dissolved in a solvent and measured using a high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR) under the following conditions.
High-temperature nuclear magnetic resonance (NMR) apparatus: JEOL Ltd., high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR), JNM-ECP500
Observation nucleus: 13 C (125 MHz)
Measurement temperature: 135 ° C
Solvent: ortho-dichlorobenzene (ODCB: mixed solvent of ODCB and deuterated ODCB (mixing ratio = 4/1))
Measurement mode: Single pulse proton broadband decoupling pulse width: 9.1 μsec (45 ° pulse)
Pulse interval: 5.5 sec
Integration count: 4,500 shift standard: CH 3 (mmmm) = 21.7 ppm
The pentad fraction representing the degree of stereoregularity is a combination of a quintet (pentad) of a consensus “meso (m)” arranged in the same direction and a consensus “rasemo (r)” arranged in the same direction (mmmm or mrrm). Etc.) was calculated as a percentage (%) from the integrated intensity of each signal. Regarding the attribution of each signal derived from mmmm, mrrm, etc., for example, the description of spectra such as “T. Hayashi et al., Polymer, 29, 138 (1988)” was referred to.
 <メルトフローレート(MFR)の測定>
 各樹脂について原料樹脂ペレットの形態でのメルトフローレート(MFR)を、東洋精機株式会社のメルトインデックサを用いてJIS K 7210の条件Mに準じて測定した。具体的には、まず、試験温度230℃にしたシリンダ内に、4gに秤りとった試料を挿入し、2.16kgの荷重下で3.5分予熱した。その後、30秒間で底穴より押出された試料の重量を測定し、MFR(g/10min)を求めた。上記の測定を3回繰り返し、その平均値をMFRの測定値とした。
<Measurement of melt flow rate (MFR)>
For each resin, the melt flow rate (MFR) in the form of raw material resin pellets was measured according to the condition M of JIS K 7210 using a melt indexer manufactured by Toyo Seiki Co., Ltd. Specifically, first, a sample weighed to 4 g was inserted into a cylinder set at a test temperature of 230 ° C., and preheated for 3.5 minutes under a load of 2.16 kg. Thereafter, the weight of the sample extruded from the bottom hole in 30 seconds was measured to obtain MFR (g / 10 min). The above measurement was repeated three times, and the average value was taken as the MFR measurement value.
 <ヘプタン不溶分(HI)の測定>
 各樹脂について、10mm×35mm×0.3mmにプレス成形して約3gの測定用サンプルを作製した。次に、ヘプタン約150mLを加えてソックスレー抽出を8時間行った。抽出前後の試料質量よりヘプタン不溶分を算出した。
<Measurement of heptane insoluble matter (HI)>
Each resin was press-molded to 10 mm × 35 mm × 0.3 mm to prepare a measurement sample of about 3 g. Next, about 150 mL of heptane was added and Soxhlet extraction was performed for 8 hours. The heptane-insoluble content was calculated from the sample mass before and after extraction.
 <実施例1>
 [キャスト原反シートの作製]
 PP樹脂A1〔Mw=32万、Mw/Mn=9.3、微分分布値差D=11.2、メソペンタッド分率[mmmm]=95%、HI=97.3%、MFR=4.9g/10min、プライムポリマー製〕と、PP樹脂B1〔Mw=35万、Mw/Mn=7.7、微分分布値差D=7.2、メソペンタッド分率[mmmm]=96.5%、HI=98.6%、MFR=3.8g/10min、大韓油化製〕とを、65:35の比で押出機へ供給し、樹脂温度250℃で溶融した後、Tダイを用いて押出し、表面温度を95℃に保持した金属ドラムに巻きつけて固化させてキャスト原反シートを作製した。
 [二軸延伸ポリプロピレンフィルムの作製]
 得られたキャスト原反シートを140℃の温度に保ち、速度差を設けたロール間に通して流れ方向に4.5倍に延伸し、直ちに室温に冷却した。引き続き、延伸フィルムをテンターに導いて、160℃で幅方向に10倍に延伸した後、緩和、及び、熱固定を施し、厚み2.3μmの二軸延伸ポリプロピレンフィルムをテンター出口の引取ロールに巻き取った。前記熱固定の際の熱固定温度は164℃とした。引取ロールの速度は、製膜ライン速度に対して1.09倍にした。すなわち、引取速度の製膜ライン速度に対する比(引取速度/製膜ライン速度)を1.09とした。
 [スリット前金属化フィルムの作製]
 二軸延伸ポリプロピレンフィルムをロールから繰り出し、二軸延伸ポリプロピレンフィルムに、絶縁マージン用オイルマスクを形成した。次に、前記絶縁マージン用オイルマスクが形成された二軸延伸ポリプロピレンフィルムに対して、電極パターンに対応するパターンを有するパターン用オイルマスクを形成した。次に、前記パターン用オイルマスクが形成された二軸延伸ポリプロピレンフィルムに対して、金属蒸着を行った。これにより、スリット前金属化フィルムを得た。
 ここで、絶縁マージン用オイルマスクを形成するために、二軸延伸ポリプロピレンフィルムの両面のうちの一方の面に、フォンブリンオイルの蒸気をノズルスリットで吹き付けた。絶縁マージン用オイルマスクは、二軸延伸ポリプロピレンフィルム全面のうち、縞状(ストライプ状)に形成された(図4参照)。
 パターン用オイルマスクは、版ロールで形成した。パターン用オイルマスクは、二軸延伸ポリプロピレンフィルム全面のうち、前記縞状の絶縁マージン用オイルマスクが形成されていない領域に対して金属蒸着電極の電極パターンに概ね対応するパターンで形成された。
 金属蒸着では、まずアルミニウムを蒸着した。アルミニウムの蒸着は、二軸延伸ポリプロピレンフィルムの両面のうち、絶縁マージン用オイルマスクとパターン用オイルマスクとが形成された面(以下、「オイルマスク形成面」という。)の全体に対して行われた。次いで、ヘビーエッジ部を形成するために亜鉛を蒸着した。亜鉛は、オイルマスク形成面において、ヘビーエッジ部を形成しようとする領域を狙って蒸着した。金属蒸着、すなわちアルミニウム蒸着および亜鉛蒸着は、二軸延伸ポリプロピレンフィルムを、-30℃~-20℃に維持された冷却ロールで冷却しながらおこなった。すなわち、冷却ロールと金属蒸着の蒸発源との間の空間を、二軸延伸ポリプロピレンフィルムを通過させる際に、アルミニウムを蒸着し、次いで亜鉛を蒸着した。
 このようにして得られたスリット前金属化フィルムについて、図4を参照して説明する。図4に示すように、スリット前金属化フィルム(スリット前金属化フィルム6)は、MD方向D1に連続で延びる三つの絶縁マージン21と、MD方向D1に連続で延びる二つの金属層300とを含むものであった。各絶縁マージン21は、スリット前金属化フィルム6におけるMD方向D1の一方の端部から、スリット前金属化フィルム6におけるMD方向D1の他方の端部まで連続で延びている。各金属層300も、スリット前金属化フィルム6におけるMD方向D1の一方の端部から、スリット前金属化フィルム6におけるMD方向D1の他方の端部まで連続で延びている。スリット前金属化フィルム6では、絶縁マージン21と金属層300とがTD方向D2で交互に並んでいる。各金属層300は、二つのアクティブ部32と、これらアクティブ部32の間に位置するヘビーエッジ部31とを含む。すなわち、各金属層300においては、TD方向D2で、第一のアクティブ部32、ヘビーエッジ部31、第二のアクティブ部32がこの順で並んでいる。第一および第二のアクティブ部32は、MD方向D1に連続で延びている。ヘビーエッジ部31も、MD方向D1に連続で延びている。
 なお、スリット前金属化フィルム6のマージン精度を評価する際は、三つの絶縁マージン21のうち、TD方向D2で中央に位置する絶縁マージン21に切断刃を入れ、絶縁マージン幅を測定した。
<Example 1>
[Preparation of cast sheet]
PP resin A1 [Mw = 320,000, Mw / Mn = 9.3, differential distribution value difference D M = 11.2, mesopentad fraction [mmmm] = 95%, HI = 97.3%, MFR = 4.9 g / 10 min, made of prime polymer] and PP resin B1 [Mw = 350,000, Mw / Mn = 7.7, differential distribution value difference D M = 7.2, mesopentad fraction [mmmm] = 96.5%, HI = 98.6%, MFR = 3.8 g / 10 min, manufactured by Korea Oil Chemical Co., Ltd.], and fed to the extruder at a ratio of 65:35, melted at a resin temperature of 250 ° C., and then extruded using a T-die. It was wound around a metal drum maintained at a surface temperature of 95 ° C. and solidified to produce a cast original fabric sheet.
[Production of biaxially oriented polypropylene film]
The obtained cast sheet was kept at a temperature of 140 ° C., passed between rolls provided with a speed difference, stretched 4.5 times in the flow direction, and immediately cooled to room temperature. Subsequently, the stretched film was guided to a tenter, stretched 10 times in the width direction at 160 ° C., then relaxed and heat-set, and a 2.3 μm thick biaxially stretched polypropylene film was wound around a take-out roll at the exit of the tenter. I took it. The heat setting temperature during the heat setting was 164 ° C. The speed of the take-up roll was 1.09 times the film forming line speed. That is, the ratio of the take-up speed to the film-formation line speed (take-up speed / film-formation line speed) was 1.09.
[Preparation of pre-slit metallized film]
The biaxially stretched polypropylene film was unwound from a roll to form an insulation margin oil mask on the biaxially stretched polypropylene film. Next, a pattern oil mask having a pattern corresponding to the electrode pattern was formed on the biaxially stretched polypropylene film on which the insulation margin oil mask was formed. Next, metal vapor deposition was performed on the biaxially stretched polypropylene film on which the pattern oil mask was formed. This obtained the metallized film before a slit.
Here, in order to form an oil mask for an insulation margin, fomblin oil vapor was sprayed onto one surface of both surfaces of the biaxially stretched polypropylene film with a nozzle slit. The oil mask for insulation margin was formed in a striped shape (striped shape) on the entire surface of the biaxially stretched polypropylene film (see FIG. 4).
The pattern oil mask was formed by a plate roll. The pattern oil mask was formed in a pattern substantially corresponding to the electrode pattern of the metal vapor deposition electrode in the region where the striped insulation margin oil mask was not formed on the entire surface of the biaxially stretched polypropylene film.
In metal deposition, aluminum was first deposited. The vapor deposition of aluminum is performed on the entire surface of the biaxially stretched polypropylene film on which the insulation margin oil mask and the pattern oil mask are formed (hereinafter referred to as “oil mask formation surface”). It was. Subsequently, zinc was vapor-deposited in order to form a heavy edge part. Zinc was vapor-deposited aiming at a region where a heavy edge portion was to be formed on the oil mask forming surface. Metal vapor deposition, that is, aluminum vapor deposition and zinc vapor deposition, was performed while cooling the biaxially oriented polypropylene film with a cooling roll maintained at −30 ° C. to −20 ° C. That is, when the biaxially stretched polypropylene film was passed through the space between the cooling roll and the evaporation source for metal deposition, aluminum was deposited and then zinc was deposited.
The pre-slit metallized film thus obtained will be described with reference to FIG. As shown in FIG. 4, the pre-slit metallized film (pre-slit metallized film 6) includes three insulating margins 21 that continuously extend in the MD direction D1, and two metal layers 300 that extend continuously in the MD direction D1. It was included. Each insulation margin 21 extends continuously from one end in the MD direction D1 of the pre-slit metallized film 6 to the other end in the MD direction D1 of the pre-slit metallized film 6. Each metal layer 300 also extends continuously from one end in the MD direction D1 in the pre-slit metallized film 6 to the other end in the MD direction D1 in the pre-slit metallized film 6. In the pre-slit metallized film 6, the insulation margins 21 and the metal layers 300 are alternately arranged in the TD direction D2. Each metal layer 300 includes two active portions 32 and a heavy edge portion 31 located between the active portions 32. That is, in each metal layer 300, the first active portion 32, the heavy edge portion 31, and the second active portion 32 are arranged in this order in the TD direction D2. The first and second active portions 32 extend continuously in the MD direction D1. The heavy edge portion 31 also extends continuously in the MD direction D1.
When evaluating the margin accuracy of the pre-slit metallized film 6, a cutting blade was inserted into the insulating margin 21 located at the center in the TD direction D2 among the three insulating margins 21, and the insulating margin width was measured.
 <実施例2>
 二軸延伸ポリプロピレンフィルムの厚みを2.4μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Example 2>
A biaxially stretched polypropylene film and a pre-slit metallized film prepared thereby were obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.4 μm.
 <実施例3>
 二軸延伸ポリプロピレンフィルムの厚みを2.5μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Example 3>
A biaxially stretched polypropylene film and a pre-slit metallized film prepared in this manner were obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.5 μm.
 <実施例4>
 二軸延伸ポリプロピレンフィルムの厚みを2.8μmとした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Example 4>
A biaxially stretched polypropylene film and a pre-slit metallized film thus prepared were obtained in the same manner as in Example 1 except that the thickness of the biaxially stretched polypropylene film was 2.8 μm.
 <実施例5>
 熱固定温度を162℃とし、引取ロールの速度を製膜ライン速度の1.05倍にした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Example 5>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 162 ° C. and the speed of the take-up roll was 1.05 times the film forming line speed. And got.
 <実施例6>
 熱固定温度を166℃とし、引取ロールの速度を製膜ライン速度の1.15倍にした以外は実施例4と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Example 6>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 4 except that the heat setting temperature was 166 ° C. and the speed of the take-up roll was 1.15 times the film forming line speed. And got.
 <実施例7>
 熱固定温度を161℃とし、引取ロールの速度を製膜ライン速度の1.02倍にした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Example 7>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 161 ° C. and the speed of the take-up roll was 1.02 times the film forming line speed. And got.
 <実施例8>
 ポリプロピレン樹脂B1に代えてポリプロピレン樹脂B2(Mw=38万、Mw/Mn=8.3、D=0.6、メソペンタッド分率[mmmm]=96.7%、HI=98.8%、MFR=2.3g/10min、大韓油化製)を用いた以外は実施例1と同様にして、キャスト原反シートを作製した。このキャスト原反シートを用いた以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、この二軸延伸ポリプロピレンフィルムで作成したスリット前金属化フィルムとを得た。
<Example 8>
Instead of polypropylene resin B1, polypropylene resin B2 (Mw = 380,000, Mw / Mn = 8.3, D M = 0.6, mesopentad fraction [mmmm] = 96.7%, HI = 98.8%, MFR = 2.3 g / 10 min, manufactured by Korea Oil Chemical Co., Ltd.) was used in the same manner as in Example 1 to prepare a cast raw sheet. A biaxially stretched polypropylene film and a pre-slit metallized film made of this biaxially stretched polypropylene film were obtained in the same manner as in Example 1 except that this cast raw sheet was used.
 <実施例9>
 熱固定温度を166℃とし、引取ロールの速度を製膜ライン速度の1.12倍にした以外は実施例4と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムを得た。
<Example 9>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 4 except that the heat setting temperature was 166 ° C. and the speed of the take-up roll was 1.12 times the film forming line speed. Got.
 <比較例1>
 熱固定温度を158℃とし、引取ロールの速度を製膜ライン速度の1.10倍にした以外は実施例3と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Comparative Example 1>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 3 except that the heat setting temperature was 158 ° C. and the speed of the take-up roll was 1.10 times the film forming line speed. And got.
 <比較例2>
 熱固定温度を160℃とし、引取ロールの速度を製膜ライン速度の1.21倍にした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Comparative example 2>
A biaxially stretched polypropylene film and a pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 160 ° C. and the speed of the take-up roll was 1.21 times the film forming line speed. And got.
 <比較例3>
 熱固定温度を160℃とし、引取ロールの速度を製膜ライン速度の1.21倍にした以外は実施例4と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Comparative Example 3>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 4 except that the heat setting temperature was 160 ° C. and the speed of the take-up roll was 1.21 times the film forming line speed. And got.
 <比較例4>
 熱固定温度を160℃とし、引取ロールの速度を製膜ライン速度の1.21倍にした以外は実施例8と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
<Comparative example 4>
Biaxially stretched polypropylene film and pre-slit metallized film prepared in the same manner as in Example 8 except that the heat setting temperature was 160 ° C. and the speed of the take-up roll was 1.21 times the film forming line speed. And got.
 <比較例5>
 熱固定温度を170℃とし、引取ロールの速度を製膜ライン速度の1.22倍にした以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、これで作成したスリット前金属化フィルムとを得た。
 <比較例6>
 ポリプロピレン樹脂A1に代えてポリプロピレン樹脂A2(Mw=27万、Mw/Mn=5.7、D=8.8、HI=97.8%、MFR=5.6g/10min)を用い、ポリプロピレン樹脂B1に代えてポリプロピレン樹脂B2(Mw=38万、Mw/Mn=8.3、D=0.6、メソペンタッド分率[mmmm]=96.7%、HI=98.8%、MFR=2.3g/10min、大韓油化製)を用いた以外は実施例1と同様にして、キャスト原反シートを作製した。このキャスト原反シートを用いた以外は実施例1と同様にして、二軸延伸ポリプロピレンフィルムと、この二軸延伸ポリプロピレンフィルムで作成したスリット前金属化フィルムとを得た。
<Comparative Example 5>
A biaxially stretched polypropylene film and a pre-slit metallized film prepared in the same manner as in Example 1 except that the heat setting temperature was 170 ° C. and the speed of the take-up roll was 1.22 times the film forming line speed. And got.
<Comparative Example 6>
Polypropylene resin A2 (Mw = 270,000, Mw / Mn = 5.7, D M = 8.8, HI = 97.8%, MFR = 5.6 g / 10 min) was used instead of polypropylene resin A1. Instead of B1, polypropylene resin B2 (Mw = 380,000, Mw / Mn = 8.3, D M = 0.6, mesopentad fraction [mmmm] = 96.7%, HI = 98.8%, MFR = 2 .3 g / 10 min, manufactured by Korea Oil Chemical Co., Ltd.) was used in the same manner as in Example 1 to prepare a cast raw sheet. A biaxially stretched polypropylene film and a pre-slit metallized film made of this biaxially stretched polypropylene film were obtained in the same manner as in Example 1 except that this cast raw sheet was used.
 <厚さ測定>
 シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定すること以外、JIS-C2330に準拠して、二軸延伸ポリプロピレンフィルムの厚さを測定した。
<Thickness measurement>
The thickness of the biaxially stretched polypropylene film was measured according to JIS-C2330 except that it was measured at 100 ± 10 kPa using a paper thickness measuring device MEI-11 manufactured by Citizen Seimitsu.
 <連続生産性>
 所定の厚みに設定した二軸延伸装置を用いて二軸延伸ポリプロピレンフィルムの製造を開始し、得られる二軸延伸ポリプロピレンフィルムの厚みが目標とする厚み±2%に到達した時点から二軸延伸ポリプロピレンフィルムが破断するまでの連続して製膜可能な時間(以下、「連続製膜時間」という。)を計測した。なお、厚みが目標とする厚み±2%に到達した時点は、二軸延伸ポリプロピレンフィルムの幅方向中央からサンプルを切り出して、マイクロメーター(JIS‐B7502)を用いてJIS‐C2330に準拠してこのサンプルの厚みを測定し、確認した。得られた連続製膜時間に基づき次の評価基準に従い連続生産性を評価した。
   A:8時間を超えても延伸破断なく製膜できた。
   B:1時間を超え8時間未満で延伸破断なく製膜できた。
   C:1時間以内に延伸破断し、1時間を超える製膜が不可能であった。
<Continuous productivity>
Biaxially stretched polypropylene film was started using a biaxially stretched apparatus set to a predetermined thickness, and biaxially stretched polypropylene from the point when the thickness of the obtained biaxially stretched polypropylene film reached the target thickness ± 2%. The time for continuous film formation until the film broke (hereinafter referred to as “continuous film formation time”) was measured. When the thickness reaches the target thickness ± 2%, a sample is cut out from the center in the width direction of the biaxially oriented polypropylene film, and this is measured in accordance with JIS-C2330 using a micrometer (JIS-B7502). The thickness of the sample was measured and confirmed. Based on the obtained continuous film formation time, continuous productivity was evaluated according to the following evaluation criteria.
A: Even if it exceeded 8 hours, the film could be formed without stretching.
B: The film could be formed without stretching and breaking in more than 1 hour and less than 8 hours.
C: The film was stretched and broken within 1 hour, and film formation exceeding 1 hour was impossible.
 <偏肉精度>
 まず、二軸延伸ポリプロピレンフィルムからサンプルを切り出し、マイクロメーター(JIS‐B7502)を用いてJIS‐C2330に準拠して、このサンプルの厚さを測定し、幅方向30点の平均と標準偏差を求めた。次に、式Aに基づいて、変動係数を算出した。得られた変動係数に基づき次の評価基準に従い偏肉精度を評価した。
 変動係数=標準偏差/平均×100 …式A
 (偏肉精度の評価基準)
   A:0.9%未満
   B:0.9%以上、1.5%未満
   C:1.5%以上
<Uneven thickness accuracy>
First, a sample is cut out from a biaxially oriented polypropylene film, the thickness of this sample is measured using a micrometer (JIS-B7502) in accordance with JIS-C2330, and the average and standard deviation of 30 points in the width direction are obtained. It was. Next, the coefficient of variation was calculated based on Formula A. Based on the obtained coefficient of variation, the thickness deviation accuracy was evaluated according to the following evaluation criteria.
Coefficient of variation = standard deviation / average × 100 Equation A
(Evaluation standard for uneven thickness accuracy)
A: Less than 0.9% B: 0.9% or more, less than 1.5% C: 1.5% or more
 <130℃熱収縮率>
 まず、MD方向の熱収縮率を測定するために、二軸延伸ポリプロピレンフィルムを、20mm×130mmサイズの長方形にカットし、定規を用いて100mmの標線をつけ、サンプルを得た。このサンプルでは、130mmの辺がMD方向に延びている。このサンプルの上端をクリップではさみ、乾燥機内に吊るして130℃15分間、熱処理を施した。サンプルを乾燥機から取り出し、標線の間隔を定規で測定し、以下の式を用いて、熱収縮率を算出した。
熱収縮率=(熱処理前の標線間隔-熱処理後の標線間隔)/熱処理前の標線間隔×100
 TD方向の熱収縮率を測定するためのサンプルも準備し、これに上述の熱処理を施し、熱収縮率を算出した。このサンプルでは、130mmの辺がTD方向に延びていること以外は、MD方向測定用のサンプルと同じである。
<130 ° C heat shrinkage>
First, in order to measure the heat shrinkage rate in the MD direction, a biaxially stretched polypropylene film was cut into a 20 mm × 130 mm size rectangle, and a 100 mm marked line was attached using a ruler to obtain a sample. In this sample, a side of 130 mm extends in the MD direction. The upper end of this sample was sandwiched between clips, suspended in a dryer, and heat-treated at 130 ° C. for 15 minutes. The sample was taken out from the dryer, the interval between the marked lines was measured with a ruler, and the heat shrinkage rate was calculated using the following formula.
Heat shrinkage rate = (mark interval before heat treatment−mark line interval after heat treatment) / mark line interval before heat treatment × 100
A sample for measuring the thermal contraction rate in the TD direction was also prepared, and the above-described heat treatment was applied to the sample to calculate the thermal contraction rate. This sample is the same as the sample for MD direction measurement except that a side of 130 mm extends in the TD direction.
 <140℃熱収縮率>
 熱処理の温度を130℃に代えて140℃にした以外は、130℃熱収縮率と同じ方法で測定した。
<140 ° C. heat shrinkage>
The heat shrinkage rate was measured by the same method as that at 130 ° C. except that the heat treatment temperature was changed to 140 ° C. instead of 130 ° C.
 <120℃熱収縮率>
 熱処理の温度を130℃に代えて120℃にした以外は、130℃熱収縮率と同じ方法で測定した。
<120 ° C. heat shrinkage>
The heat shrinkage rate was measured by the same method as that at 130 ° C. except that the heat treatment temperature was changed to 120 ° C. instead of 130 ° C.
 <マージン精度>
 スリット前金属化フィルムのロールから、スリット前金属化フィルムを巻き出して、切断刃により2.0mm幅の絶縁マージンを中央で割って、左右どちらかの端部に、1.0mm幅の絶縁マージンを有し、且つ60mm幅のコンデンサ素子幅を有する金属化フィルムをロール状に巻き取った。3000mスリットした後で絶縁マージン幅を測定し、1.0mm幅に対するズレ幅を差分計算により求めた。このズレ幅に基づき、次の評価基準に従いマージン精度を評価した。
(マージン精度の評価基準)
  AA:ズレ幅が0.1mm以下
   A:ズレ幅が0.1mm超え、0.2mm以下
   B:ズレ幅が0.2mm超え、0.3mm以下
   C:ズレ幅が0.3mm超え
<Margin accuracy>
Unroll the metallized film before slit from the roll of the metallized film before slit, divide the 2.0 mm width insulation margin at the center by the cutting blade, and place the 1.0 mm width insulation margin at the left or right end. And a metallized film having a capacitor element width of 60 mm was wound into a roll. After slitting 3000 m, the insulation margin width was measured, and the deviation width with respect to the 1.0 mm width was determined by difference calculation. Based on this gap width, the margin accuracy was evaluated according to the following evaluation criteria.
(Evaluation criteria for margin accuracy)
A: Deviation width is 0.1 mm or less A: Deviation width exceeds 0.1 mm, 0.2 mm or less B: Deviation width exceeds 0.2 mm, 0.3 mm or less C: Deviation width exceeds 0.3 mm
 <遅相軸角度の最大値と最小値の差>
 実施例、比較例で作製した二軸延伸ポリプロピレンフィルムを、幅1200mmのロールとなるように等分した(スリットした)。
 得られた複数本の幅1200mmのロールのうち、スリット前のロールの幅方向で最も端のロールをロール1とした。
また、得られた複数本の幅1200mmのロールのうち、中心部分を含むロール(中心部分がスリットと重複する場合は、中心部分の両隣のいずれかのロール)を、ロール2とした。
 ロール1、及び、ロール2に対して、下記の<遅相軸角度の最大値と最小値の差の求め方>に従って、遅相軸角度の最大値と最小値との差を求めた。
また、測定装置、及び、測定条件は、以下の通りである。
<測定装置、測定条件>
測定装置:大塚電子株式会社製レタデーション測定装置 RE-100
光源:レーザー発光ダイオード(LED)
バンドパスフィルター:550nm(測定波長)
測定間隔:0.1sec
積算回数:10time
測定点数:15point
ゲイン:10dB
測定環境:温度23℃、湿度60%
<遅相軸角度の最大値と最小値の差の求め方>
(1)幅方向全長を100%とした時、その両端から10%おきの位置を中心とする、50mm×50mmの測定用サンプルを切り出した。つまり、ロールの一端から、(1200/9)mm、([1200/9]×2)mm、([1200/9]×3)mm、([1200/9]×4)mm、([1200/9]×5)mm、([1200/9]×6)mm、([1200/9]×7)mm、([1200/9]×8)mm、([1200/9]×9)mmの地点を中心とする50mm×50mmの測定用サンプルを合計9枚切り出した。
(2)次に、測定用サンプルの第二方向を0°とし、各測定用サンプル(合計9枚の測定用サンプル)の第二方向と遅相軸との間の鋭角の角度を測定した。
(3)最後に、9枚の測定用サンプルのうち、前記(2)で測定した角度の最大と最小の差を求めた。結果を表5に示す。表5には、最大と最小の値も示した。
<Difference between maximum and minimum values of slow axis angle>
The biaxially stretched polypropylene films prepared in Examples and Comparative Examples were equally divided (slit) so as to form a roll having a width of 1200 mm.
Of the plurality of rolls having a width of 1200 mm, the roll at the end in the width direction of the roll before the slit was designated as roll 1.
Further, among the obtained plurality of rolls having a width of 1200 mm, a roll including the central portion (one roll adjacent to the central portion when the central portion overlaps with the slit) was designated as roll 2.
For rolls 1 and 2, the difference between the maximum value and the minimum value of the slow axis angle was determined according to the following <How to determine the difference between the maximum value and the minimum value of the slow axis angle>.
Moreover, the measurement apparatus and measurement conditions are as follows.
<Measurement equipment and measurement conditions>
Measuring device: retardation measuring device RE-100 manufactured by Otsuka Electronics Co., Ltd.
Light source: Laser light emitting diode (LED)
Bandpass filter: 550 nm (measurement wavelength)
Measurement interval: 0.1 sec
Integration count: 10time
Number of measurement points: 15 points
Gain: 10dB
Measurement environment: temperature 23 ° C, humidity 60%
<Determining the difference between the maximum and minimum values of the slow axis angle>
(1) When the total length in the width direction was set to 100%, a measurement sample of 50 mm × 50 mm was cut out centering on a position every 10% from both ends. That is, from one end of the roll, (1200/9) mm, ([1200/9] × 2) mm, ([1200/9] × 3) mm, ([1200/9] × 4) mm, ([1200 / 9] × 5) mm, ([1200/9] × 6) mm, ([1200/9] × 7) mm, ([1200/9] × 8) mm, ([1200/9] × 9) A total of nine measurement samples measuring 50 mm × 50 mm centered on a point of mm were cut out.
(2) Next, the second direction of the measurement sample was set to 0 °, and the acute angle between the second direction of each measurement sample (total nine measurement samples) and the slow axis was measured.
(3) Finally, among the nine measuring samples, the difference between the maximum and minimum angles measured in (2) was determined. The results are shown in Table 5. Table 5 also shows the maximum and minimum values.
 本実施例では、二軸延伸ポリプロピレンフィルムを、幅1200mmとした場合に、遅相軸角度の最大値と最小値の差が6°未満であることを示した。前記差は、幅(TD方向の幅)が狭いほど小さくなることは明らかである。従って、本実施例では、二軸延伸ポリプロピレンフィルムを、幅1200mmとした場合についてしか実施例を示していないが、幅1200mm以下(例えば、幅600mm)とした場合であっても、当然に前記差が6°未満となることは明らかである。 In this example, when the biaxially stretched polypropylene film had a width of 1200 mm, the difference between the maximum value and the minimum value of the slow axis angle was less than 6 °. It is clear that the difference becomes smaller as the width (width in the TD direction) becomes narrower. Therefore, in this example, the example is shown only when the biaxially stretched polypropylene film has a width of 1200 mm. However, even if the width is 1200 mm or less (for example, a width of 600 mm), the difference is naturally. Is clearly less than 6 °.
 <灰分の測定>
 実施例及び比較例の二軸延伸ポリプロピレンフィルムについて、下記のように測定した。
 試料約200gを秤量し、白金皿へ移して800℃で40分間で灰化した。得られた灰分残渣から灰分の割合(ppm)を測定した。
 その結果、実施例及び比較例の二軸延伸ポリプロピレンフィルムの灰分は、いずれも、20ppmであった。
<Measurement of ash content>
About the biaxially stretched polypropylene film of an Example and a comparative example, it measured as follows.
About 200 g of the sample was weighed, transferred to a platinum dish, and incinerated at 800 ° C. for 40 minutes. The ratio (ppm) of ash was measured from the obtained ash residue.
As a result, the ash content of the biaxially stretched polypropylene films of Examples and Comparative Examples was 20 ppm.
[コンデンサの作製]
 実施例で作成したスリット前金属化フィルムを60mm幅にスリットした。次に、2枚の金属化フィルムを相合わせた。株式会社皆藤製作所製自動巻取機3KAW-N2型を用い、相合わせた前記金属化フィルムを、巻き取り張力250g、接圧880g、巻き取り速度4m/sにて、1137ターン巻回を行った。素子巻きした素子は、荷重5.9kg/cmでプレスしながら120℃にて15時間熱処理を施した。その後、素子端面に亜鉛金属を溶射した。溶射条件としては、フィード速度15mm/s、溶射電圧22V、溶射圧力0.3MPaとし、厚さ0.7mmになるよう溶射を行った。こうして扁平型コンデンサを得た。扁平型コンデンサの端面にリード線をはんだ付けした。その後、扁平型コンデンサをエポキシ樹脂で封止した。エポキシ樹脂の硬化は、90℃で2.5時間加熱した後、さらに、120℃で2.5時間加熱して行った。出来上がったフィルムコンデンサの静電容量は、いずれも、75μFであった。
[Production of capacitors]
The pre-slit metallized film prepared in the example was slit to a width of 60 mm. Next, the two metallized films were combined. Using the automatic winding machine 3KAW-N2 manufactured by Minato Seisakusho Co., Ltd., the combined metallized film was wound 1137 turns at a winding tension of 250 g, a contact pressure of 880 g, and a winding speed of 4 m / s. . The element wound was heat-treated at 120 ° C. for 15 hours while being pressed at a load of 5.9 kg / cm 2 . Thereafter, zinc metal was sprayed onto the element end face. As the spraying conditions, the feed rate was 15 mm / s, the spraying voltage was 22 V, the spraying pressure was 0.3 MPa, and the spraying was performed to a thickness of 0.7 mm. Thus, a flat capacitor was obtained. Lead wires were soldered to the end face of the flat capacitor. Thereafter, the flat capacitor was sealed with an epoxy resin. The epoxy resin was cured by heating at 90 ° C. for 2.5 hours and further heating at 120 ° C. for 2.5 hours. The capacitances of the completed film capacitors were all 75 μF.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
   5 金属化フィルム
   6 スリット前金属化フィルム
  10 二軸延伸ポリプロピレンフィルム
  21 絶縁マージン
  30 金属層
  31 ヘビーエッジ部
  32 アクティブ部
  51 金属化フィルムにおける一方の端部
  52 金属化フィルムにおける他方の端部
 300 金属層
DESCRIPTION OF SYMBOLS 5 Metallized film 6 Metallized film before slit 10 Biaxially stretched polypropylene film 21 Insulation margin 30 Metal layer 31 Heavy edge part 32 Active part 51 One edge part in a metallized film 52 The other edge part in a metallized film 300 Metal layer

Claims (7)

  1.  厚さが1.0μm~3.0μmであり、
     第一方向における140℃の熱収縮率と、前記第一方向における130℃の熱収縮率との差が0%以上2.0%未満であり、
     前記第一方向に対して直角の第二方向における140℃の熱収縮率と、前記第二方向における130℃の熱収縮率との差が0%以上2.3%未満である、
     二軸延伸ポリプロピレンフィルム。
    The thickness is 1.0 μm to 3.0 μm,
    The difference between the heat shrinkage rate of 140 ° C. in the first direction and the heat shrinkage rate of 130 ° C. in the first direction is 0% or more and less than 2.0%,
    The difference between the heat shrinkage rate of 140 ° C. in the second direction perpendicular to the first direction and the heat shrinkage rate of 130 ° C. in the second direction is 0% or more and less than 2.3%.
    Biaxially stretched polypropylene film.
  2.  前記第二方向における140℃の熱収縮率STD140と、前記第一方向における140℃の熱収縮率SMD140との比率STD140/SMD140が、0.200以上0.325以下である請求項1に記載の二軸延伸ポリプロピレンフィルム。 Wherein the 140 ° C. thermal shrinkage S TD140 in a second direction, wherein the ratio S TD140 / S MD140 between 140 ° C. thermal shrinkage S MD140 in the first direction, claim is 0.200 or more 0.325 or less 2. A biaxially stretched polypropylene film according to 1.
  3.  前記第二方向の幅が1200mm以下であり、
     下記(1)~(3)の手法により得られる、遅相軸角度の最大値と最小値の差が6°未満である請求項1又は2に記載の二軸延伸ポリプロピレンフィルム。
    <遅相軸角度の最大値と最小値の差の求め方>
    (1)幅方向全長を100%とした時、その両端から10%おきの位置を中心とする、50mm×50mmの測定用サンプルを切り出し、
    (2)測定用サンプルの第二方向を0°とし、各測定用サンプルの第二方向と遅相軸との間の鋭角の角度を測定し、
    (3)9枚の測定用サンプルのうち、前記(2)で測定した角度の最大と最小の差を求める。
    The width in the second direction is 1200 mm or less;
    The biaxially stretched polypropylene film according to claim 1 or 2, wherein the difference between the maximum value and the minimum value of the slow axis angle obtained by the following methods (1) to (3) is less than 6 °.
    <Determining the difference between the maximum and minimum values of the slow axis angle>
    (1) When the total length in the width direction is 100%, a sample for measurement of 50 mm × 50 mm, centered on the position every 10% from both ends, is cut out.
    (2) The second direction of the measurement sample is 0 °, and the acute angle between the second direction of each measurement sample and the slow axis is measured,
    (3) Among the nine measurement samples, the difference between the maximum and minimum angles measured in (2) is obtained.
  4.  コンデンサ用である、請求項1~3のいずれか1に記載の二軸延伸ポリプロピレンフィルム。 The biaxially stretched polypropylene film according to any one of claims 1 to 3, which is used for a capacitor.
  5.  請求項1~4のいずれか1に記載の二軸延伸ポリプロピレンフィルムと、
     前記二軸延伸ポリプロピレンフィルムの片面又は両面に積層された金属層とを有する、
     金属化フィルム。
    Biaxially stretched polypropylene film according to any one of claims 1 to 4,
    Having a metal layer laminated on one or both sides of the biaxially oriented polypropylene film,
    Metallized film.
  6.  巻回された請求項5に記載の金属化フィルムを有するか、又は、請求項5に記載の金属化フィルムが複数積層された構成を有する、フィルムコンデンサ。 A film capacitor having a wound metallized film according to claim 5 or a structure in which a plurality of metallized films according to claim 5 are laminated.
  7.  請求項1~4のいずれか1に記載の二軸延伸ポリプロピレンフィルムが、ロール状に巻回されていることを特徴とするフィルムロール。 A film roll, wherein the biaxially stretched polypropylene film according to any one of claims 1 to 4 is wound into a roll.
PCT/JP2019/009166 2018-03-07 2019-03-07 Biaxially stretched polypropylene film, metallized film, film capacitor and film roll WO2019172390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980016778.2A CN111801373B (en) 2018-03-07 2019-03-07 Biaxially stretched polypropylene film, metallized film, film capacitor, and film roll
KR1020207022485A KR20200130245A (en) 2018-03-07 2019-03-07 Biaxially oriented polypropylene film, metallized film, film capacitor, and film roll

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-041236 2018-03-07
JP2018041236 2018-03-07
JP2018-168000 2018-09-07
JP2018168000 2018-09-07

Publications (1)

Publication Number Publication Date
WO2019172390A1 true WO2019172390A1 (en) 2019-09-12

Family

ID=67847120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009166 WO2019172390A1 (en) 2018-03-07 2019-03-07 Biaxially stretched polypropylene film, metallized film, film capacitor and film roll

Country Status (4)

Country Link
JP (1) JP7261389B2 (en)
KR (1) KR20200130245A (en)
CN (1) CN111801373B (en)
WO (1) WO2019172390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240123717A1 (en) * 2021-03-31 2024-04-18 Toray Industries, Inc. Polypropylene film, laminate, packaging material, and packing body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093688A (en) * 2004-08-26 2006-04-06 Toray Ind Inc Polypropylene film for capacitor and capacitor using the same
JP2008127460A (en) * 2006-11-21 2008-06-05 Toray Ind Inc Biaxially oriented polypropylene film for capacitor, and metallized film and capacitor by using the same
WO2009060944A1 (en) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. Biaxially stretched polypropylene film for capacitor, deposition-coated film obtained from the same, and capacitor employing the same
WO2015129851A1 (en) * 2014-02-28 2015-09-03 東レ株式会社 Biaxially oriented polypropylene film
WO2016018200A1 (en) * 2014-07-27 2016-02-04 Sonova Ag Batteries and battery manufacturing methods
WO2017064909A1 (en) * 2015-10-13 2017-04-20 東レ株式会社 Biaxially oriented polypropylene film, multilayered film including metal film, and film capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149240B2 (en) * 2009-06-04 2013-02-20 王子ホールディングス株式会社 Biaxially oriented polypropylene film for capacitors, metal-deposited film thereof, and cast raw sheet
CN105793937B (en) * 2013-12-03 2020-09-15 Abb电网瑞士股份公司 Multilayered dielectric polymer material, capacitor, use of material and method of forming same
JP2015195367A (en) 2014-03-27 2015-11-05 東レ株式会社 Polypropylene film roll for capacitor
CN106795300B (en) * 2014-09-30 2020-01-21 王子控股株式会社 Biaxially stretched polypropylene film for capacitor
KR102500999B1 (en) * 2015-05-12 2023-02-17 도레이 카부시키가이샤 Polypropylene film, metal film laminated film and film capacitor and their manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093688A (en) * 2004-08-26 2006-04-06 Toray Ind Inc Polypropylene film for capacitor and capacitor using the same
JP2008127460A (en) * 2006-11-21 2008-06-05 Toray Ind Inc Biaxially oriented polypropylene film for capacitor, and metallized film and capacitor by using the same
WO2009060944A1 (en) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. Biaxially stretched polypropylene film for capacitor, deposition-coated film obtained from the same, and capacitor employing the same
WO2015129851A1 (en) * 2014-02-28 2015-09-03 東レ株式会社 Biaxially oriented polypropylene film
WO2016018200A1 (en) * 2014-07-27 2016-02-04 Sonova Ag Batteries and battery manufacturing methods
WO2017064909A1 (en) * 2015-10-13 2017-04-20 東レ株式会社 Biaxially oriented polypropylene film, multilayered film including metal film, and film capacitor

Also Published As

Publication number Publication date
CN111801373A (en) 2020-10-20
JP7261389B2 (en) 2023-04-20
JP2020041120A (en) 2020-03-19
CN111801373B (en) 2022-12-27
KR20200130245A (en) 2020-11-18

Similar Documents

Publication Publication Date Title
KR102184883B1 (en) Biaxially oriented polypropylene film, metallized film for capacitors, and capacitors
US20160024641A1 (en) Biaxially oriented polypropylene film, metallized film and film capacitor
EP3069850B1 (en) Biaxially oriented polypropylene film and method for producing same
KR102386611B1 (en) polypropylene film roll
US11795282B2 (en) Polypropylene film, metal film laminated film using same, and film capacitor
KR102194446B1 (en) Biaxially oriented polypropylene film, metallized film and capacitor
WO2016158590A1 (en) Biaxially oriented polypropylene film for capacitor, metal laminated film, and film capacitor
JP2020200188A (en) Polypropylene film roll and metalized polypropylene film roll
JP7182080B2 (en) Biaxially Oriented Polypropylene Films, Metallized Films, Metallized Film Rolls and Film Capacitors
WO2019172390A1 (en) Biaxially stretched polypropylene film, metallized film, film capacitor and film roll
WO2020217930A1 (en) Polypropylene film, polypropylene film with integrated metal layer, and film capacitor
JP2023095855A (en) Polypropylene film, metal-layer integrated polypropylene film, film capacitor, and film roll
JP7265228B2 (en) Polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll
JP7265227B2 (en) Polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll
WO2020246322A1 (en) Polypropylene film roll and metallized polypropylene film roll
JP2001048998A (en) Biaxially oriented polypropylene film
JP7265229B2 (en) Polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll
US20240181749A1 (en) Metallized polypropylene film
JP7228132B2 (en) Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method
JP7256960B2 (en) Manufacturing method of metal layer integrated polypropylene film
JP7456535B1 (en) Biaxially oriented polypropylene film
JP2023056484A (en) Biaxially stretched polypropylene film, polypropylene film roll and metallized polypropylene film
JP2020200189A (en) Polypropylene film roll and metalized polypropylene film roll
JP2023095854A (en) Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll
JPH02145626A (en) Polypropylene film for electrical appliance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764182

Country of ref document: EP

Kind code of ref document: A1