WO2020217930A1 - Polypropylene film, polypropylene film with integrated metal layer, and film capacitor - Google Patents

Polypropylene film, polypropylene film with integrated metal layer, and film capacitor Download PDF

Info

Publication number
WO2020217930A1
WO2020217930A1 PCT/JP2020/015351 JP2020015351W WO2020217930A1 WO 2020217930 A1 WO2020217930 A1 WO 2020217930A1 JP 2020015351 W JP2020015351 W JP 2020015351W WO 2020217930 A1 WO2020217930 A1 WO 2020217930A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene film
less
polypropylene
film
resin
Prior art date
Application number
PCT/JP2020/015351
Other languages
French (fr)
Japanese (ja)
Inventor
道子 末葭
剛史 冨永
忠和 石渡
佳宗 奥山
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to CN202080029772.1A priority Critical patent/CN113710734A/en
Priority to JP2021515938A priority patent/JP7192973B2/en
Publication of WO2020217930A1 publication Critical patent/WO2020217930A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to a polypropylene film, a polypropylene film integrated with a metal layer, and a film capacitor.
  • Polypropylene film has excellent electrical characteristics such as high withstand voltage and low dielectric loss characteristics, and also has high moisture resistance. Therefore, it is widely used in electronic devices and electrical devices. Specifically, it is used as a film used for, for example, high-voltage capacitors, various switching power supplies, filter capacitors (for example, converters, inverters, etc.), smoothing capacitors, and the like.
  • Patent Documents 1 to 4 have been disclosed as polypropylene films for capacitors.
  • Patent Document 1 describes a biaxially stretched polypropylene film for a capacitor having a refractive index Nz in the film thickness direction of 1.47 or more and 1.50 or less in the optical orientation measurement of the film (see, for example, claim 1). ).
  • Patent Document 3 describes a biaxially stretched polypropylene film having a tensile strength in the longitudinal direction of 120 MPa to 250 MPa and a tensile strength in the width direction of 250 MPa to 400 MPa (see, for example, claim 1).
  • Patent Document 4 describes a biaxially stretched polypropylene film having a ratio of tensile elastic modulus in the TD direction to tensile elastic modulus in the MD direction M TD / M MD of 0.85 or more and 1.8 or less (for example, claim). 3). Further, there is a description that the lower limit value of the birefringence value ⁇ Nxy is preferably 0.009 or more, and the upper limit value is preferably 0.014 or less (paragraph [0041]). Further, there is a description that the lower limit value of the birefringence value ⁇ Nxz is preferably 0.015 or more, and the upper limit value is preferably 0.023 or less (paragraph [0042]).
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a polypropylene film capable of forming a metal layer with high accuracy and a uniform thickness. Another object of the present invention is to provide a metal layer integrated polypropylene film having the polypropylene film and a film capacitor having the metal layer integrated polypropylene film.
  • the present inventors diligently investigated the cause of the non-uniform thickness of the metal layer.
  • the thin polypropylene film in the vapor deposition process of forming a metal layer on the polypropylene film, when the polypropylene film is unwound from the film roll, tension is applied in the MD direction (flow direction) of the film, and the polypropylene film shrinks due to Poisson shrinkage. It was found that the film contracted in the TD direction (width direction), resulting in wrinkles on the film. Then, it was found that when wrinkles occur, the metal deposition becomes non-uniform, the thickness of the metal layer becomes non-uniform, and shading occurs.
  • the present inventors have diligently studied a method for making the thickness of the metal layer uniform in the vapor deposition process of forming the metal layer on the polypropylene film. As a result, if the structure is isotropic at any temperature and has excellent mechanical properties, it is possible to suppress the occurrence of wrinkles in the film when the metal layer is formed. We have found that it is possible to make the thickness of the metal layer uniform, and have completed the present invention.
  • the polypropylene film according to the present invention is The difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] between the birefringence value ⁇ nxz and the birefringence value ⁇ nyz is 0.009 or less.
  • the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction is 1.20 or less.
  • the tensile elastic modulus MD is 3.1 GPa or more, and the tensile elastic modulus MD is 3.1 GPa or more.
  • the thickness is 0.8 ⁇ m or more and 5 ⁇ m or less.
  • the double refractive index ⁇ nxz is three-dimensional in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis
  • the TD direction is the y-axis
  • the thickness direction is the z-axis. It is a value obtained by subtracting the refractive index
  • the double refractive index ⁇ nyz is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] is 0.009 or less, it is isotropic with respect to the in-plane direction from the viewpoint of molecular orientation.
  • the fact that the molecular orientation is isotropic means that it is isotropic at any temperature without depending on the temperature.
  • the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] is 1.20 or less and the tensile elastic modulus MD is 3.1 GPa or more, the mechanical properties are in the in-plane direction. It is isotropic and has excellent mechanical properties in any direction in the plane.
  • the tensile elastic modulus MD is relatively large at 3.1 GPa or more, the contraction in the TD direction due to Poisson contraction can be reduced, and the tensile elastic modulus TD is also about the same as the tensile elastic modulus MD and is relatively large. Therefore, even if the polypropylene film is stretched in the MD direction, the shrinkage in the TD direction associated therewith can be reduced. As described above, since there is no temperature dependence and the mechanical properties are isotropic at any temperature, wrinkles are suppressed in the polypropylene film in the vapor deposition process of forming the metal layer on the polypropylene film. This makes it possible to make the thickness of the metal layer more uniform.
  • the thickness is 5 ⁇ m or less, the capacitance per unit volume of a capacitor element can be increased, and it can be suitably used for a capacitor. Moreover, since the thickness is 0.8 ⁇ m or more, it is excellent from the viewpoint of film formation stability.
  • Patent Document 1 does not describe the refractive index Nx and the refractive index Ny of the polypropylene film, and the difference between the birefringence value ⁇ nxz and the birefringence value ⁇ nyz [( ⁇ nyz) ⁇ ( ⁇ nxz)] is unknown. is there.
  • a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched.
  • the sequential biaxial stretching the polypropylene film is isotropic in a temperature-independent manner and has a high area stretching ratio, that is, isotropic and thin in a temperature-independent manner. Polypropylene film cannot be obtained.
  • the sequential biaxial stretching if the area stretching ratio is as low as 45 times or less, the polypropylene film having isotropic property can be produced without tearing the film during stretching.
  • an isotropic polypropylene film cannot be produced when the stretching ratio is as high as 46 times or more.
  • sequential biaxial stretching first stretching in the MD direction and then in the TD direction, but in the case of a high area stretching ratio, if the stretching ratio in the MD direction is increased, the stretching in the TD direction is performed. The film tears at the time. Therefore, in the case of sequential biaxial stretching, the stretching ratio in the MD direction must be about half as compared with the stretching ratio in the TD direction.
  • the polypropylene film of Patent Document 1 produced by sequential biaxial stretching is isotropic in a temperature-independent manner as in the present invention, and a thin polypropylene film cannot be obtained.
  • Patent Document 1 does not describe the tensile elastic modulus. Therefore, the polypropylene film of Patent Document 1 is clearly different in composition from the present invention.
  • a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched. As described above, the polypropylene film of Patent Document 2 produced by sequential biaxial stretching is isotropic in a temperature-independent manner and is thin as described above. I can't get it.
  • Patent Document 2 does not describe the tensile elastic modulus. Therefore, the polypropylene film of Patent Document 2 is clearly different in composition from the present invention.
  • Patent Document 3 does not describe the birefringence value ⁇ nxz or the birefringence value ⁇ nyz, and it is unclear whether [( ⁇ nyz) ⁇ ( ⁇ nxz)] is 0.009 or less.
  • a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched. As described above, the polypropylene film of Patent Document 3 produced by sequential biaxial stretching is isotropic in a temperature-independent manner and is thin as described above. I can't get it.
  • Patent Document 3 does not describe the tensile elastic modulus. Therefore, the polypropylene film of Patent Document 3 is clearly different in composition from the present invention.
  • Patent Document 4 describes the birefringence value ⁇ Nxy and the birefringence value ⁇ Nxz, but does not describe the birefringence value ⁇ nyz, and [( ⁇ nyz) ⁇ ( ⁇ nxz)] is 0.009 or less. I don't know. Further, in Patent Document 4, a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched. As described above, the polypropylene film of Patent Document 4 produced by sequential biaxial stretching is isotropic in a temperature-independent manner and is thin as described above. I can't get it.
  • Patent Document 4 describes the tensile elastic modulus at 23 ° C.
  • the ratio of the tensile elastic modulus at 23 ° C. [(tensile elastic modulus TD) / (tensile elastic modulus MD) ] Is 3.4 / 3.3 (about 1.03).
  • the polypropylene film of Patent Document 4 is manufactured by sequential biaxial stretching, it cannot be said that it is isotropic with respect to the in-plane direction from the viewpoint of molecular orientation. Therefore, even if the tensile elastic modulus is close to each other in the TD direction and the MD direction at 23 ° C., since the molecular orientation is not isotropic, the temperature other than 23 ° C. (particularly, such as in the vapor deposition step). At high temperatures), the tensile modulus is very likely to be significantly different in the TD and MD directions. Therefore, the polypropylene film of Patent Document 4 is clearly different in composition from the present invention.
  • the number of fibrils when measuring 470.92 ⁇ m ⁇ 353.16 ⁇ m (640 pixels ⁇ 480 pixels) per field using a light interference type non-contact surface shape measuring device is determined. It is preferable to have a surface having 20 or more and 50 or less and an area per number of the fibrils of 200 ⁇ m 2 / piece or more and 1000 ⁇ m 2 / piece or less.
  • "VertScan2.0 (model: R5500GML)" manufactured by Ryoka System Co., Ltd. is used as the optical interference type non-contact surface shape measuring device.
  • the polypropylene film after biaxial stretching or the metal layer having the polypropylene film is one.
  • the slipperiness with respect to the transport roll is improved. As a result, suitable transportability is obtained, and wrinkles and unwinding are suppressed.
  • the polypropylene film having the above configuration is preferably for a capacitor.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the polypropylene film in which the tensile modulus MD is within the numerical range are temperature-dependent. Since it has no property and its mechanical properties are isotropic at any temperature, it is possible to suppress the occurrence of wrinkles on the polypropylene film in the vapor deposition process for forming the metal layer on the polypropylene film, and the metal layer can be suppressed. It becomes possible to make the thickness of the above uniform. Therefore, it can be suitably used for capacitors.
  • the polypropylene film having the above structure is preferably biaxially stretched at the same time.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the tensile modulus MD are in the numerical range. It is easy to obtain a polypropylene film having a thickness of 0.8 ⁇ m or more and 5 ⁇ m or less.
  • the polypropylene film integrated with a metal layer according to the present invention is with the polypropylene film It is characterized by having a metal layer laminated on one side or both sides of the polypropylene film.
  • the polypropylene film since it has a metal layer laminated on one side or both sides of the polypropylene film, it can be used for a film capacitor in which the polypropylene film is a dielectric and the metal layer is an electrode. Further, since the polypropylene film is not temperature-dependent and has isotropic mechanical properties at any temperature, wrinkles may occur in the polypropylene film in the vapor deposition process of forming a metal layer on the polypropylene film. Can be suppressed, and the thickness of the metal layer can be made more uniform. Therefore, in the polypropylene film integrated with the metal layer having the polypropylene film, the thickness of the metal layer is highly accurate and uniform.
  • the film capacitor according to the present invention is characterized by having the wound metal layer integrated polypropylene film or having a structure in which a plurality of the metal layer integrated polypropylene films are laminated.
  • the method for producing a polypropylene film according to the present invention is as follows.
  • the method for producing a polypropylene film according to the above. It has a step A of simultaneously biaxially stretching a cast sheet, and has In the step A, the ratio of the draw ratio MD in the MD direction to the draw ratio TD in the TD direction [(stretch ratio TD) / (stretch ratio MD)] is 1.0 or more and 1.7 or less.
  • the area stretch ratio which is the product of the stretch ratio TD and the stretch ratio MD, is 46 times or more and 72 times or less.
  • the film is first stretched in the MD direction and then in the TD direction.
  • the stretching ratio in the MD direction is increased, the stretching in the TD direction occurs.
  • a polypropylene film capable of forming a metal layer with high accuracy and a uniform thickness. Further, it is possible to provide a metal layer integrated polypropylene film having the polypropylene film and a film capacitor having the metal layer integrated polypropylene film.
  • the polypropylene film of the present embodiment is not a microporous film, it does not have a large number of pores.
  • the polypropylene film of the present embodiment may be composed of a plurality of layers of two or more layers, but is preferably composed of a single layer.
  • the polypropylene film according to this embodiment is The difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] between the birefringence value ⁇ nxz and the birefringence value ⁇ nyz is 0.009 or less.
  • the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction is 1.20 or less.
  • the tensile elastic modulus MD is 3.1 GPa or more, and the tensile elastic modulus MD is 3.1 GPa or more.
  • the thickness is 0.8 ⁇ m or more and 5 ⁇ m or less.
  • the double refractive index ⁇ nxz is three-dimensional in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis
  • the TD direction is the y-axis
  • the thickness direction is the z-axis. It is a value obtained by subtracting the refractive index
  • the double refractive index ⁇ nyz is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.
  • the difference between the birefringence value ⁇ nxz and the birefringence value ⁇ nyz [( ⁇ nyz) ⁇ ( ⁇ nxz)] is 0.009 or less, preferably 0.006 or less, preferably 0.003 or less. More preferred.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] is preferably ⁇ 0.009 or more, more preferably ⁇ 0.005 or more, and further preferably 0.000 or more. Since the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] is 0.009 or less, it is isotropic with respect to the in-plane direction from the viewpoint of molecular orientation. The fact that the molecular orientation is isotropic means that it is isotropic at any temperature without depending on the temperature.
  • the birefringence value ⁇ nxz is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.015 or less.
  • the birefringence value ⁇ nxz is preferably 0.009 or more, more preferably 0.010 or more, and further preferably 0.012 or more.
  • the elastic modulus in the MD direction is maintained high, so that the dimensional change of the film is small due to the mechanical tension applied during the metal vapor deposition process, and the flatness of the film during the metal vapor deposition process is small. As a result, unevenness of the thin-film deposition film can be further suppressed.
  • the birefringence value ⁇ nyz is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.016 or less.
  • the birefringence value ⁇ nyz is preferably 0.090 or more, more preferably 0.011 or more, and even more preferably 0.013 or more.
  • the value P calculated from the birefringence value ⁇ Nyz and the birefringence value ⁇ Nxz by the following formula 1 is preferably 0.0141 or more, more preferably 0.0142 or more, still more preferably 0.0143 or more.
  • the value P is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.015 or less.
  • Equation 1 P ( ⁇ Nyz + ⁇ Nxz) / 2
  • the birefringence value ⁇ nxz is the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis, the TD direction is the y-axis, and the thickness direction is the z-axis. It is a value obtained by subtracting the birefringence value ⁇ nyz, which is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.
  • the specific measurement method of the birefringence value ⁇ nxz and the birefringence value ⁇ nyz is based on the method described in Examples.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the birefringence value ⁇ nxz, and the birefringence value ⁇ nyz depend on the film forming conditions (stretching magnification adjustment, etc.) and the characteristics of the polypropylene resin (molecular weight, degree of polymerization, molecular weight distribution, etc.). Can be controlled.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] is controlled by the stretching ratio
  • the birefringence value ⁇ nxz and the birefringence are required to reduce the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)] to 0.009 or less.
  • a draw ratio may be adopted so that the value ⁇ nyz is about the same.
  • the stretching ratio in the MD direction and the stretching ratio in the TD direction may be set to be about the same.
  • the polypropylene film has a ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction. It is 20 or less, preferably 1.19 or less, and more preferably 1.17 or less.
  • the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] is preferably 0.85 or more, more preferably 0.90 or more, and further preferably 0.95 or more. ..
  • the tensile elastic modulus MD is 3.1 GPa or more, preferably 3.2 GPa or more, and more preferably 3.3 GPa or more.
  • the tensile elastic modulus MD is preferably 4.5 GPa or less, more preferably 4.4 GPa or less, and further preferably 4.2 GPa or less.
  • the tensile elastic modulus TD is preferably 3.1 GPa or more, more preferably 3.3 GPa or more, and further preferably 3.6 GPa or more.
  • the tensile elastic modulus TD is preferably 4.5 GPa or less, more preferably 4.4 GPa or less, and further preferably 4.2 GPa or less. Since the ratio [(tensile modulus TD) / (tensile modulus MD)] is 1.20 or less and the tensile modulus MD is 3.1 GPa or more, the mechanical properties are in the in-plane direction.
  • the tensile elastic modulus MD is relatively large at 3.1 GPa or more, the contraction in the TD direction due to Poisson contraction can be reduced, and the tensile elastic modulus TD is also about the same as the tensile elastic modulus MD. Since it is relatively large, even if the polypropylene film is stretched in the MD direction, the shrinkage in the TD direction associated therewith can be reduced.
  • the specific measurement method of the tensile elastic modulus MD and the tensile elastic modulus TD is based on the method described in Examples.
  • the polypropylene film is not temperature-dependent and has isotropic mechanical properties at any temperature, wrinkles occur in the polypropylene film in the vapor deposition process for forming a metal layer on the polypropylene film. This can be suppressed and the thickness of the metal layer can be made more uniform.
  • the polypropylene film has a ratio [(breaking strength TD) / (breaking strength MD)] of the breaking strength MD at 25 ° C. in the MD direction and the breaking strength TD at 25 ° C. in the TD direction of 1.55 or less. It is preferably 1.40 or less, more preferably 1.25 or less.
  • the ratio [(breaking strength TD) / (breaking strength MD)] is preferably 0.70 or more, more preferably 0.80 or more, and further preferably 0.90 or more.
  • the breaking strength MD is preferably 175 MPa or more, more preferably 177 MPa or more, and even more preferably 180 MPa or more.
  • the breaking strength MD is preferably 280 MPa or less, more preferably 260 MPa or less, and even more preferably 240 MPa or less.
  • the breaking strength TD is preferably 165 MPa or more, more preferably 167 MPa or more, and further preferably 170 MPa or more.
  • the breaking strength TD is preferably 280 MPa or less, more preferably 260 MPa or less, and even more preferably 240 MPa or less.
  • the mechanical properties are more isotropic with respect to the in-plane direction. And the mechanical properties are better in any direction in the plane. That is, if the breaking strength MD is relatively large at 175 MPa or more, the shrinkage in the TD direction due to Poisson shrinkage can be reduced, and the breaking strength TD is also about the same as the breaking strength MD and is relatively large. Even if the polypropylene film is stretched in the MD direction, the shrinkage in the TD direction associated therewith can be reduced.
  • the specific measurement method of the breaking strength MD and the breaking strength TD is based on the method described in Examples.
  • the polypropylene film has a ratio [(breaking elongation TD) / (breaking elongation MD)] of the breaking elongation MD at 25 ° C. in the MD direction and the breaking elongation TD at 25 ° C. in the TD direction. It is preferably 50 or less, more preferably 1.45 or less, and even more preferably 1.40 or less.
  • the ratio [(breaking elongation TD) / (breaking elongation MD)] is preferably 0.55 or more, more preferably 0.60 or more, and further preferably 0.65 or more. ..
  • the elongation at break MD is preferably 30% or more, more preferably 34% or more, and further preferably 38% or more.
  • the elongation at break MD is preferably 100% or less, more preferably 85% or less, and even more preferably 65% or less.
  • the elongation at break TD is preferably 20% or more, more preferably 24% or more, and even more preferably 28% or more.
  • the elongation at break TD is preferably 100% or less, more preferably 85% or less, and even more preferably 65% or less.
  • the specific measuring method of the breaking elongation MD and the breaking elongation TD is based on the method described in Examples.
  • the method for keeping the breaking strength TD, the ratio [breaking elongation TD) / (breaking elongation MD)], the breaking elongation MD, and the breaking elongation TD within the numerical range is not particularly limited, but polypropylene. It can be controlled by the film forming conditions of the film (for example, stretching ratio, etc.) and the characteristics of the polypropylene resin (molecular weight, degree of polymerization, molecular weight distribution, etc.).
  • the ratio [(tensile modulus TD) / (tensile modulus MD)] is controlled by the draw ratio, the ratio [(tensile modulus TD) / (tensile modulus MD)] is set to 1.20 or less.
  • the draw ratio may be such that the tensile elastic modulus MD and the tensile elastic modulus TD are about the same.
  • the stretching ratio in the MD direction and the stretching ratio in the TD direction may be set to be about the same.
  • the polypropylene film has 20 or more and 50 or less fibrils when measured at 470.92 ⁇ m ⁇ 353.16 ⁇ m (640 pixels ⁇ 480 pixels) per field of view using a light interference type non-contact surface shape measuring device. It is preferable to have a surface in which the area per number of the fibrils is 200 ⁇ m 2 / piece or more and 1000 ⁇ m 2 / piece or less.
  • the number of fibrils is more preferably 24 or more, and even more preferably 28 or more.
  • the number of fibrils is more preferably 48 or less, and even more preferably 46 or less.
  • the area per number of the fibrils is more preferably 210 .mu.m 2 / number or more, and still more preferably 223 ⁇ m 2 / FOB.
  • Area per number of the fibrils is more preferably 900 .mu.m 2 / number less, still more preferably 850 .mu.m 2 / number less. Further, the fibril area when measuring 470.92 ⁇ m ⁇ 353.16 ⁇ m (640 pixels ⁇ 480 pixels) per visual field is preferably 9000 ⁇ m 2 or more, and more preferably 10000 ⁇ m 3 or more. The fibril area is preferably 30,000 ⁇ m 2 or less, and more preferably 25,000 ⁇ m 3 or less.
  • the number of the fibrils is 20 or more and 50 or less and the area per number of the fibrils is 200 ⁇ m 2 / piece or more and 1000 ⁇ m 2 / piece or less, at least one side of the polypropylene film is large. Since the surface is roughened by the fibrils having a relatively small area, the slipperiness to the transport roll becomes good when the polypropylene film after being biaxially stretched is wound into a roll shape. As a result, suitable transportability is obtained, and wrinkles and unwinding are suppressed.
  • the method for measuring the number of fibrils, the fibril area, and the area per number of fibrils is as follows.
  • the obtained data is subjected to noise removal processing by a median filter (3 ⁇ 3), and then Gaussian filter treatment with a cutoff value of 30 ⁇ m is performed to remove undulation components.
  • a region having a mountain side height of 0.05 ⁇ m or more is painted white, and a region having a mountain side height smaller than 0.05 ⁇ m is painted black to obtain binary values.
  • a converted image (262 pixels ⁇ 194 pixels) is obtained.
  • image analysis software Image Pro Plus 5.1J manufactured by Nippon Rover
  • the number of objects having a brightness range of 128 or more and 255 or less in the binarized image obtained above and their areas are measured.
  • the number of objects having an area of 50 pixels or more is defined as the number of fibrils
  • the sum of the areas of objects having an area of 50 pixels or more is defined as the fibril area. Objects with an area smaller than 50 pixels are removed as noise.
  • the calculated sum divided by the number of fibrils is defined as the area (pixels / piece) per number of fibrils. Finally, with respect to the area per number of fibrils, the unit is converted to ⁇ m 2 / piece.
  • the method for setting the number of fibrils, the fibril area, and the area per number of fibrils within the numerical range is not particularly limited, but the film forming conditions of the cast sheet (for example, cast cooling temperature, etc.) and polypropylene resin are not particularly limited. It can be controlled by the characteristics of (molecular weight, degree of polymerization, molecular weight distribution, etc.).
  • the cast cooling temperature can be controlled by the resin temperature at the time of forming the cast sheet film, the air gap, the surface temperature of the metal drum, and the like.
  • DC breakdown strength ES in 100 ° C. of the polypropylene film is preferably at 510V DC / [mu] m or more, more preferably 525V DC / [mu] m or more, and still more preferably 540V DC / [mu] m or more.
  • DC breakdown strength ES in 100 ° C. of the polypropylene film is preferably as high, for example, 600V DC / [mu] m or less, 570V DC / [mu] m or less, or less 550V DC / ⁇ m.
  • DC breakdown strength ES in 120 ° C. of the polypropylene film is preferably at 485V DC / ⁇ m or more, and more preferably 490V DC / [mu] m or more.
  • the ash content of the polypropylene film is preferably 6 ⁇ 10 ppm or less (60 ppm or less), more preferably 5 ⁇ 10 ppm or less (50 ppm or less), and 4 ⁇ 10 ppm or less (40 ppm or less) with respect to the polypropylene film. Is more preferable, and 3 ⁇ 10 ppm or less (30 ppm or less) is particularly preferable.
  • the ash content is preferably 0 ⁇ 10 ppm or more, more preferably 1 ppm or more, further preferably 5 ppm or more, and particularly preferably 1 ⁇ 10 ppm or more (10 ppm or more). When the ash content is within the numerical range, the electrical characteristics of the capacitor are further improved while suppressing the formation of polar low molecular weight components.
  • the ash content refers to a value obtained by the method described in Examples.
  • the polypropylene film has a thickness of 0.8 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the polypropylene film is preferably 4.0 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the thickness of the polypropylene film is preferably 1.5 ⁇ m or more, more preferably 2.0 ⁇ m or more. Since the thickness of the polypropylene film is 5 ⁇ m or less, the capacitance per unit volume of a capacitor element can be increased, and the polypropylene film can be suitably used for a capacitor. Further, since the thickness of the polypropylene film is 0.8 ⁇ m or more, it is excellent from the viewpoint of film formation stability.
  • the thickness of the polypropylene film refers to a value measured in accordance with JIS-C2330, except that it is measured at 100 ⁇ 10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu.
  • the polypropylene film is basically a simultaneous biaxially stretched film.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the tensile modulus It is easy to obtain a polypropylene film having an MD within the numerical range and having a thin thickness (within the numerical range).
  • the polypropylene film has the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], the tensile modulus MD, and the thickness of the polypropylene film.
  • it includes a case where it is a sequentially biaxially stretched film, a case where it is a uniaxially stretched film, and a case where it is a non-stretched film.
  • the polypropylene film and the polypropylene film integrated with a metal layer, which will be described later, are each wound in a roll shape, and are preferably in the form of a film roll.
  • the film roll may or may not have a winding core.
  • the film roll preferably has a winding core.
  • the material of the winding core of the film roll is not particularly limited. Examples of the material include paper (paper tube), resin, fiber reinforced plastic (FRP), metal and the like.
  • the resin include polyvinyl chloride, polyethylene, polypropylene, phenol resin, epoxy resin, acrylonitrile-butadiene-styrene copolymer and the like.
  • Examples of the plastic constituting the fiber reinforced plastic include polyester resin, epoxy resin, vinyl ester resin, phenol resin, and thermoplastic resin.
  • Examples of the fibers constituting the fiber-reinforced plastic include glass fibers, aramid fibers (Kevlar (registered trademark) fibers), carbon fibers, polyparaphenylene benzoxazole fibers (Zylon (registered trademark) fibers), polyethylene fibers, and boron fibers. Can be mentioned.
  • Examples of the metal include iron, aluminum, stainless steel and the like.
  • the winding core of the film roll also includes a winding core formed by impregnating a paper tube with the resin. In this case, the material of the winding core is classified as resin.
  • the polypropylene film contains a polypropylene resin as a main component.
  • the inclusion of polypropylene resin as a main component means that the polypropylene resin is contained in an amount of 50% by mass or more with respect to the entire polypropylene film (when the entire polypropylene film is 100% by mass).
  • the content of the polypropylene resin with respect to the entire polypropylene film is preferably 75% by mass or more, and more preferably 90% by mass or more.
  • the upper limit of the content of the polypropylene resin is, for example, 100% by mass, 98% by mass, or the like with respect to the entire polypropylene film.
  • the polypropylene resin is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
  • a polypropylene resin that forms ⁇ -type spherulites when used as a cast sheet is preferable.
  • the weight average molecular weight Mw of the polypropylene resin is preferably 250,000 or more and 450,000 or less, and more preferably 250,000 or more and 400,000 or less.
  • the resin fluidity becomes appropriate.
  • the thickness of the cast sheet can be easily controlled, and a thin stretched film can be easily produced.
  • the cast sheet can be provided with appropriate stretchability.
  • the molecular weight distribution [(weight average molecular weight Mw) / (number average molecular weight Mn)] of the polypropylene resin is preferably 5 or more and 12 or less, more preferably 5 or more and 11 or less, and 5 or more and 10 or less. Is even more preferable.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) of the polypropylene resin are values measured using a gel permeation chromatograph (GPC) apparatus. is there. More specifically, it is a value measured using HLC-8121GPC-HT (trade name) of a high temperature GPC measuring machine with a built-in differential refractometer (RI) manufactured by Tosoh Corporation. As a GPC column, three TSKgel GMHHR-H (20) HTs manufactured by Tosoh Corporation are connected and used.
  • GPC gel permeation chromatograph
  • the column temperature is set to 140 ° C., and trichlorobenzene is flowed as an eluent at a flow rate of 1.0 ml / 10 minutes to obtain measured values of Mw and Mn.
  • a calibration curve relating to the molecular weight M is prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured values are converted into polystyrene values to obtain Mw and Mn.
  • the logarithm of the base 10 of the molecular weight M of standard polystyrene is referred to as a logarithmic molecular weight (“Log (M)”).
  • “differential distribution value difference DM is -5% or more and 14% or less” means a component having a molecular weight of 10,000 to 100,000 on the low molecular weight side of the Mw value of the polypropylene resin (hereinafter, "low”).
  • a component having a logarithmic molecular weight Log (M) 4.5 as a typical distribution value of (also referred to as “molecular weight component”) and a component having a molecular weight of about 1 million on the high molecular weight side (hereinafter, also referred to as "high molecular weight component”).
  • polypropylene resin has a wide molecular weight distribution and at the same time has a molecular weight of 10,000 to 100,000 in order to appropriately contain low molecular weight components. It is preferable to use a polypropylene resin so that the difference in differential distribution value is -5% or more and 14% or less as compared with the component having a molecular weight of 1 million.
  • the differential distribution value is a value obtained as follows using GPC.
  • a curve (commonly referred to as the "elution curve") indicating the intensity over time obtained by a GPC differential refractometer (RI) detector is used.
  • the time axis is converted to a logarithmic molecular weight (Log (M)) to convert the elution curve into a curve showing the strength against Log (M). Since the RI detection intensity is proportional to the component concentration, an integral distribution curve with respect to the logarithmic molecular weight Log (M) can be obtained, assuming that the total area of the curve showing the intensity is 100%.
  • the differential distribution curve is obtained by differentiating this integral distribution curve with Log (M). Therefore, the "differential distribution” means the differential distribution of the concentration fraction with respect to the molecular weight. From this curve, the differential distribution value at a specific Log (M) is read.
  • the heptane insoluble content (HI) of the polypropylene resin is preferably 96.0% or more, more preferably 97.0% or more.
  • the heptane insoluble content (HI) of the polypropylene resin is preferably 99.5% or less, more preferably 99.0% or less.
  • the larger the amount of heptane insoluble the higher the stereoregularity of the resin.
  • the heptane insoluble content (HI) is 96.0% or more and 99.5% or less, the crystallinity of the resin is appropriately improved due to the moderately high stereoregularity, and the withstand voltage at high temperature is improved. To do.
  • the rate of solidification (crystallization) during molding of the cast sheet becomes appropriate, and the cast sheet has an appropriate stretchability.
  • the method for measuring heptane insoluble matter (HI) is as described in Examples.
  • the melt flow rate (MFR) of the polypropylene resin is preferably 1.0 to 8.0 g / 10 min, more preferably 1.5 to 7.0 g / 10 min, and 2.0 to 6.0 g. It is more preferably / 10 min.
  • the method for measuring the melt flow rate of the polypropylene resin is as described in Examples.
  • the mesopentad fraction ([mmmm]) of the polypropylene resin is preferably 99.8% or less, more preferably 99.5% or less, and further preferably 99.0% or less.
  • the mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, still more preferably 95.0% or more.
  • the rate of solidification (crystallization) during molding of the cast sheet becomes appropriate, and the cast sheet has an appropriate stretchability.
  • the mesopentad fraction ([mm mm]) is an index of stereoregularity that can be obtained by high temperature nuclear magnetic resonance (NMR) measurements.
  • the mesopentad fraction ([mm mm]) refers to a value measured using a high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR) manufactured by JEOL Ltd., JNM-ECP500.
  • the measurement method by high-temperature NMR can be performed by referring to the method described in, for example, "Japan Analytical Chemistry / Polymer Analysis Research Council, New Edition Polymer Analysis Handbook, Kinokuniya Bookstore, 1995, p. 610". it can.
  • a more detailed method for measuring the mesopentad fraction ([mm mm]) is as described in Examples.
  • the ash content of the polypropylene resin is preferably 6 ⁇ 10 ppm or less (60 ppm or less), more preferably 5 ⁇ 10 ppm or less (50 ppm or less), further preferably 4 ⁇ 10 ppm or less (40 ppm or less), and 3 ⁇ 10 ppm or less (3 ⁇ 10 ppm or less). 30 ppm or less) is particularly preferable.
  • the ash content of the polypropylene resin is preferably 0 ⁇ 10 ppm or more, more preferably 1 ppm or more, further preferably 5 ppm or more, and particularly preferably 1 ⁇ 10 ppm or more (10 ppm or more).
  • the electrical characteristics as a capacitor are further improved while suppressing the formation of polar low molecular weight components.
  • the ash content refers to a value obtained by the method described in Examples.
  • the polypropylene resin can be produced by using a generally known polymerization method.
  • the polymerization method include a vapor phase polymerization method, a massive polymerization method and a slurry polymerization method.
  • the polymerization may be a single-stage (one-stage) polymerization using one polymerization reactor, or a multi-stage polymerization using two or more polymerization reactors. Further, the polymerization may be carried out by adding hydrogen or a comonomer as a molecular weight adjusting agent to the reactor.
  • a generally known Ziegler-Natta catalyst can be used as the catalyst for polymerization, and the polypropylene resin is not particularly limited as long as it can be obtained.
  • the catalyst may include a co-catalyst component or a donor. By adjusting the catalyst and polymerization conditions, the molecular weight, molecular weight distribution, stereoregularity, etc. can be controlled.
  • the molecular weight distribution of the polypropylene resin can be adjusted by mixing (blending) the resins.
  • a method of mixing two or more kinds of resins having different molecular weights and molecular weight distributions from each other can be mentioned.
  • the main resin is a resin having a higher average molecular weight or a resin having a lower average molecular weight, and the total amount of the resin is 100% by mass
  • the main resin is a mixture of two types of polypropylene having 55% by mass or more and 90% by mass or less.
  • the system is preferable because the amount of low molecular weight components can be easily adjusted.
  • the melt flow rate (MFR) may be used as a guideline for the average molecular weight.
  • the difference in MFR between the main resin and the added resin is preferably about 1 to 30 g / 10 minutes from the viewpoint of convenience at the time of adjustment.
  • the method of mixing the resins is not particularly limited, but a method of dry-blending the polymer powder or pellets of the main resin and the additive resin using a mixer or the like, the polymer powder of the main resin and the additive resin, or pellets. Is supplied to a kneader and melt-kneaded to obtain a blended resin.
  • the mixer and the kneader are not particularly limited.
  • the kneader may be a single-screw type, a double-screw type, or a multi-screw type or more.
  • a screw type with two or more axes either a kneading type that rotates in the same direction or in a different direction may be used.
  • the kneading temperature is not particularly limited as long as a good kneaded product is obtained.
  • the temperature is in the range of 200 ° C. to 300 ° C., preferably 230 ° C. to 270 ° C. from the viewpoint of suppressing deterioration of the resin.
  • the kneader may be purged with an inert gas such as nitrogen.
  • the melt-kneaded resin may be pelletized to an appropriate size using a generally known granulator. As a result, mixed polypropylene raw material resin pellets can be obtained.
  • polypropylene resin A includes the concepts of polypropylene resin A-1, polypropylene resin A-2, and polypropylene resin A-3.
  • polypropylene resin B includes the concepts of polypropylene resin B-1, polypropylene resin B-2 and polypropylene resin B-3.
  • the polypropylene resins A, A-1, A-2, A-3, polypropylene resins B, B-1, B-2, and B-3 are all preferably linear polypropylene resins.
  • ⁇ Polypropylene resin A> (Polypropylene resin A-1) A polypropylene resin having a differential distribution value difference DM of 8.0% or more.
  • Polypropylene resin A-2) A polypropylene resin having a heptane insoluble content (HI) of 98.5% or less.
  • Polypropylene resin A-3) A polypropylene resin having a melt flow rate (MFR) of 4.0 to 10.0 g / 10 min at 230 ° C.
  • Polypropylene resin B > (Polypropylene resin B-1) Polypropylene differential distribution value difference D M is less than 8.0%. (Polypropylene resin B-2) Polypropylene resin with heptane insoluble content (HI) exceeding 98.5%. (Polypropylene resin B-3) A polypropylene resin having a melt flow rate (MFR) of 0.1 to 3.9 g / 10 min at 230 ° C.
  • the weight average molecular weight Mw of the polypropylene resin A is preferably 250,000 or more and 450,000 or less, more preferably 250,000 or more and 400,000 or less, and further preferably 250,000 or more and 340,000 or less.
  • the resin fluidity becomes appropriate.
  • the thickness of the cast raw sheet can be easily controlled, and a thin biaxially stretched polypropylene film can be easily produced.
  • the thickness of the cast raw sheet and the biaxially stretched polypropylene film is less likely to be uneven, and appropriate stretchability can be obtained, which is preferable.
  • the molecular weight distribution Mw / Mn of the polypropylene resin A is preferably 8.5 or more and 12.0 or less, more preferably 8.5 or more and 11.0 or less, and 9.0 or more and 11.0 or less. Is even more preferable.
  • the molecular weight distribution Mw / Mn of the polypropylene resin A is within the above-mentioned preferable range, unevenness is less likely to occur in the thickness of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability can be obtained, which is preferable.
  • Polypropylene differential distribution value difference D M of the resin A is preferably at least 8.0%, more preferably 8.0% or more and 18.0% or less, or less 17.0 percent 8.5% or more Is more preferable, and 9.0% or more and 16.0% or less are particularly preferable.
  • Differential distribution value difference D M is, if 18.0% or less 8.0% or more, the low molecular weight component, rich in a ratio of when compared to high molecular weight components, 18.0% 8.0% inclusive. Therefore, it is preferable because the frequency of breakage in the stretching step can be reduced and the continuous film forming property is improved.
  • the heptane insoluble content (HI) of polypropylene resin A is preferably 96.0% or more, more preferably 97.0% or more.
  • the heptane insoluble content (HI) of the polypropylene resin A is preferably 99.5% or less, more preferably 98.5% or less, still more preferably 98.0% or less.
  • the melt flow rate (MFR) of the polypropylene resin A at 230 ° C. is preferably 1.0 to 15.0 g / 10 min, more preferably 2.0 to 10.0 g / 10 min, and 4.0 to 10.0 to 10. It is more preferably 10.0 g / 10 min, and particularly preferably 4.3 to 6.0 g / 10 min.
  • MFR melt flow rate
  • the content of the polypropylene resin A is preferably 55% by mass or more and 90% by mass or less, more preferably 60% by mass or more and 85% by mass or less, and 60% by mass or more with respect to the entire biaxially stretched polypropylene film. It is more preferably 80% by mass or less.
  • the weight average molecular weight Mw of the polypropylene resin B is preferably 300,000 or more and 400,000 or less, more preferably 330,000 or more and 380,000 or less, and further preferably 350,000 or more and 380,000 or less.
  • the molecular weight distribution Mw / Mn of the polypropylene resin B is preferably 6.0 or more and less than 8.5, more preferably 6.5 or more and 8.4 or less, and 7.0 or more and 8.3 or less. Is even more preferable.
  • the molecular weight distribution Mw / Mn of the polypropylene resin B is within the above preferable range, unevenness is less likely to occur in the thickness of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability can be obtained, which is preferable.
  • Differential distribution value difference D M of the polypropylene resin B is preferably less than 8.0%, more preferably less than 8.0% or more -20.0%, -10.0% over 7.9 % Or less is more preferable, and ⁇ 5.0% or more and 7.5% or less is particularly preferable.
  • the heptane insoluble content (HI) of the polypropylene resin B is preferably 97.5% or more, more preferably 98% or more, still more preferably 98.5% or more, and particularly preferably 98.6%. That is all.
  • the heptane insoluble content (HI) of the polypropylene resin B is preferably 99.5% or less, more preferably 99% or less.
  • the melt flow rate (MFR) of the polypropylene resin B at 230 ° C. is preferably 0.1 to 6.0 g / 10 min, more preferably 0.1 to 5.0 g / 10 min, and 0.1 to 6.0 g / 10 min. It is more preferably 3.9 g / 10 min.
  • the content of polypropylene resin B is preferably 10% by mass or more and 45% by mass or less, preferably 15% by mass or more and 40% by mass or less, assuming that the polypropylene resin is 100% by mass. It is more preferable that it is 20% by mass or more and 40% by mass or less.
  • polypropylene resin A and polypropylene resin B are used in combination as the polypropylene resin, 55 to 90% by weight of polypropylene resin A and 45 to 10% by weight of polypropylene resin B are contained, assuming that the total weight of the polypropylene resin is 100% by mass. More preferably, it contains 60 to 85% by weight of polypropylene resin A and 40 to 15% by weight of polypropylene resin B, and more preferably 60 to 80% by weight of polypropylene resin A and 40 to 20% by weight of polypropylene resin. It is particularly preferable to include B.
  • the biaxially stretched polypropylene film is in a finely mixed state (phase-separated state) of polypropylene resin A and polypropylene resin B, so that it has withstand voltage at high temperatures. Is improved.
  • the polypropylene film may contain a resin other than the polypropylene resin (hereinafter, also referred to as "other resin”).
  • the "other resin” is generally a resin other than the polypropylene resin which is the main component resin, and is not particularly limited as long as the target polypropylene film can be obtained.
  • other resins include polyolefins other than polypropylene such as polyethylene, poly (1-butene), polyisobutene, poly (1-pentene), and poly (1-methylpentene), ethylene-propylene copolymers, and propylene-.
  • the polypropylene film can be contained in an amount that does not adversely affect the target polypropylene film.
  • the polypropylene film may contain 10 parts by mass or less, and more preferably 5 parts by mass or less of another resin with respect to 100 parts by mass of the polypropylene resin. Further, the polypropylene film may contain 0.1 part by mass or more of another resin, more preferably 1 part by mass or more, based on 100 parts by mass of the polypropylene resin.
  • the polypropylene film may contain an additive.
  • the additive include a nucleating agent ( ⁇ crystal nucleating agent, ⁇ crystal nucleating agent), an antioxidant, a necessary stabilizer such as a chlorine absorber and an ultraviolet absorber, a lubricant, a plasticizer, and a flame retardant.
  • a nucleating agent ⁇ crystal nucleating agent, ⁇ crystal nucleating agent
  • an antioxidant e.g., a necessary stabilizer such as a chlorine absorber and an ultraviolet absorber
  • a lubricant e.g., a lubricant, a plasticizer, and a flame retardant.
  • the inorganic filler include barium titanate, strontium titanate, and aluminum oxide.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the tensile modulus MD are in the numerical range.
  • a polypropylene film having a thickness within the above numerical range it is not particularly limited, but can be suitably produced by simultaneous biaxial stretching.
  • the polypropylene film is a simultaneous biaxially stretched polypropylene film, it can be produced by preparing a cast sheet from a polypropylene resin composition and then simultaneously biaxially stretching the cast sheet.
  • the method for preparing the polypropylene resin composition is not particularly limited, but a method of dry-blending the polymer powder or pellets of the polypropylene resin together with other resins, additives, etc., if necessary, using a mixer or the like. Alternatively, a method of supplying the polypropylene resin polymer powder or pellet together with other resins, additives and the like to a kneader, melt-kneading and melt-blending, and the like can be mentioned.
  • the mixer and kneader are not particularly limited.
  • the kneader may be a single-screw type, a double-screw type, or a multi-screw type or more.
  • a screw type with two or more axes either a kneading type that rotates in the same direction or in a different direction may be used.
  • the kneading temperature is not particularly limited as long as good kneading can be obtained, but is preferably in the range of 170 to 320 ° C, more preferably in the range of 200 ° C to 300 ° C, and more preferably. Is in the range of 230 ° C to 270 ° C.
  • the kneader may be purged with an inert gas such as nitrogen.
  • the melt-kneaded resin can be melt-blended to obtain pellets of the polypropylene resin composition by pelletizing the melt-kneaded resin to an appropriate size using a generally known granulator.
  • pellets of a polypropylene resin composition (dry blend resin composition and / or melt blend resin composition) prepared in advance are supplied to an extruder and heated and melted.
  • the resin temperature at the time of heating and melting is preferably 170 ° C. or higher, more preferably 175 ° C. or higher, and even more preferably 180 ° C. or higher.
  • the resin temperature is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, and even more preferably 285 ° C. or lower.
  • the cast cooling temperature described later can be adjusted within a suitable range.
  • a cast sheet is obtained by melt-extruding the heat-melted resin composition from the T-die, winding it around a metal drum, and solidifying it. At this time, it is preferable to press the melt-extruded resin composition against the metal drum with an air knife.
  • the cast cooling rate at the time of producing the cast sheet is preferably 8 ° C./sec or higher, more preferably 8.5 ° C./sec or higher, and even more preferably 9.0 ° C./sec or higher.
  • the cast cooling rate is preferably 16 ° C./sec or less, more preferably 15.6 ° C./sec or less, and even more preferably 15.4 ° C./sec or less.
  • the cast cooling rate means the rate at which the resin composition melt-extruded from the T-die is cooled until it becomes a cast sheet.
  • the cast cooling rate refers to a value obtained by the following method.
  • ⁇ Cast cooling rate> The heat-melted resin composition is melt-extruded from a T-die and wound around a metal drum to be solidified, and the surface temperature of the central portion in the width direction is measured.
  • the time when the cast sheet is in close contact with the metal drum is 0 seconds, and it is 0 seconds, 0.5 seconds, 1.5 seconds, 2.5 seconds, 3.5 seconds, 4.5 seconds, 5.5 seconds.
  • the surface temperature of that point (measured as 0 seconds) after seconds is measured, and the average of [temperature decrease / time] between each measurement point is calculated as the "cast cooling rate".
  • the value obtained by subtracting the temperature after 0.5 seconds from the temperature at 0 seconds is the temperature decrease amount A, and the value obtained by subtracting the temperature after 1.5 seconds from the temperature after 0.5 seconds is used.
  • Temperature decrease amount B the value obtained by subtracting the temperature after 2.5 seconds from the temperature after 1.5 seconds, and the value obtained by subtracting the temperature after 3.5 seconds from the temperature decrease amount C, the temperature after 2.5 seconds
  • Temperature drop D the value obtained by subtracting the temperature after 4.5 seconds from the temperature after 3.5 seconds
  • the temperature drop E the value obtained by subtracting the temperature after 5.5 seconds from the temperature after 4.5 seconds
  • the arithmetic mean of the quantity F / 1] is calculated as the "cast cooling rate".
  • the cast cooling temperature can be controlled by adjusting the resin temperature at the time of
  • the surface temperature of the metal drum is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and even more preferably 92 ° C. or higher.
  • the surface temperature is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 105 ° C. or lower.
  • the air gap at the time of producing the cast sheet is preferably 3.0 mm or more, more preferably 3.5 mm or more, and further preferably 4.0 mm or more.
  • the air gap is preferably 10.0 mm or less, more preferably 8.0 mm or less, and even more preferably 6.0 mm or less.
  • the cast cooling temperature can be adjusted within a suitable range.
  • the air gap refers to the distance between the discharge port of the T-die and the position on the metal drum where the resin composition discharged from the discharge port of the T-die first touches.
  • the thickness of the cast sheet is not particularly limited as long as the target polypropylene film can be obtained, but is preferably 0.05 mm to 2 mm, more preferably 0.1 mm to 1 mm.
  • polypropylene undergoes not a little thermal deterioration (oxidative deterioration) and shear deterioration during the casting sheet manufacturing process (particularly in the extruder).
  • the degree of progress of such deterioration that is, changes in molecular weight distribution and stereoregularity, are the nitrogen purge in the extruder (suppression of oxidation), the screw shape in the extruder (shearing force), and the internal shape of the T-die during casting ( It can be suppressed by (shearing force), the amount of antioxidant added (suppression of oxidation), the winding speed at the time of casting (extension force), and the like.
  • the cast sheet is simultaneously biaxially stretched (step A). That is, the simultaneous biaxially stretched polypropylene film can be produced by simultaneously stretching the cast sheet in the MD direction and the TD direction.
  • both ends of the cast sheet are gripped by a movable clip that moves on the rail, guided to a tenter, and stretched simultaneously in the MD direction and the TD direction.
  • the stretching temperature at the time of simultaneous stretching is preferably 160 ° C. or higher, more preferably 164 ° C. or higher, and even more preferably 168 ° C. or higher.
  • the stretching temperature is preferably 180 ° C. or lower, more preferably 178 ° C. or lower, and even more preferably 175 ° C. or lower.
  • Simultaneous stretching is the ratio of the stretching ratio in the MD direction (hereinafter, also referred to as “MD stretching ratio”) to the stretching ratio in the TD direction (hereinafter, also referred to as “TD stretching ratio”) [(TD stretching ratio) / (MD stretching ratio) / (MD stretching ratio). Magnification)] is preferably in the range of 1.0 to 1.7, and the product of the TD stretching ratio and the MD stretching ratio (hereinafter, also referred to as “area stretching ratio”) is preferably 46 times or more.
  • the ratio [(TD stretching ratio) / (MD stretching ratio)] is preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.2 or more.
  • the ratio [(TD stretching ratio) / (MD stretching ratio)] is preferably 1.7 or less, more preferably 1.6 or less, and even more preferably 1.5 or less.
  • the area stretching ratio is preferably 46 times or more, more preferably 47 times or more, still more preferably 48 times or more.
  • the area stretching ratio is preferably 72 times or less, more preferably 65 times or less, still more preferably 58 times or less.
  • the difference [( ⁇ nyz) ⁇ ( ⁇ nxz)], the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)], and the tensile elastic modulus MD are within the numerical range and the thickness.
  • a polypropylene film having a thin thickness (within the above numerical range) can be easily obtained.
  • the number of the fibrils. By setting the cast cooling temperature within a predetermined range and setting the ratio [(TD stretching ratio) / (MD stretching ratio)] and the area stretching ratio within the numerical range, the number of the fibrils. , And the area per number of the fibrils can be easily set within the numerical range. According to the present inventors, the number of the fibrils and the area per number of the fibrils could be relatively easily within the numerical range by sequentially biaxially stretching. However, in the case of simultaneous biaxial stretching, it is difficult to keep the number of the fibrils and the area per number of the fibrils within the numerical range.
  • the cast cooling temperature is within a predetermined range, and the ratio [(TD stretching ratio) / (MD stretching ratio)] and the area stretching ratio are within the numerical range.
  • the MD stretch ratio is preferably 5.0 times or more, more preferably 5.5 times or more, and further preferably 6.0 times or more.
  • the MD stretching ratio is preferably 9.0 times or less, more preferably 8.0 times or less, and further preferably 7.0 times or less.
  • the TD stretching ratio is preferably 6.0 times or more, more preferably 7.0 times or more, and further preferably 8.0 times or more.
  • the TD stretching ratio is preferably 10.0 times or less, more preferably 9.0 times or less, and further preferably 8.0 times or less.
  • At least one surface of the polypropylene film is roughened by a large number of relatively small-area fibrils. Therefore, when the polypropylene film after being biaxially stretched is wound in a roll shape, the slipperiness with respect to the transport roll is improved. As a result, suitable transportability is obtained, and wrinkles and unwinding are suppressed.
  • the film wound in a roll shape is subjected to an aging treatment in an atmosphere of about 20 to 45 ° C., and then slit (cut) to a desired product width with a slitter or the like while being rewound (while being unwound). , Each is wound again.
  • the polypropylene film may be subjected to corona discharge treatment online or offline after the stretching and heat fixing steps are completed.
  • corona discharge treatment By performing the corona discharge treatment, the adhesive properties in the post-process such as the metal vapor deposition processing process can be improved.
  • the corona discharge treatment can be performed by using a known method. It is preferable to use air, carbon dioxide gas, nitrogen gas, or a mixed gas thereof as the atmospheric gas.
  • a metal layer may be laminated on one side or both sides of the polypropylene film to form a polypropylene film integrated with a metal layer.
  • the metal layer functions as an electrode.
  • elemental metals such as zinc, lead, silver, chromium, aluminum, copper and nickel, a mixture of a plurality of kinds thereof, an alloy thereof and the like can be used, but the environment. Zinc and aluminum are preferable in consideration of economic efficiency and capacitor performance.
  • a vacuum vapor deposition method or a sputtering method As a method of laminating a metal layer on one side or both sides of the polypropylene film, for example, a vacuum vapor deposition method or a sputtering method can be exemplified.
  • the vacuum vapor deposition method is preferable from the viewpoint of productivity and economy.
  • a crucible method, a wire method, or the like As the vacuum vapor deposition method, a crucible method, a wire method, or the like can be generally exemplified, but the method is not particularly limited, and the optimum method can be appropriately selected.
  • the metal layers are laminated by the vacuum deposition method or the sputtering method, the polypropylene film receives heat of about 130 to 140 ° C.
  • the polypropylene film is not temperature-dependent and has isotropic mechanical properties at any temperature, the polypropylene film is wrinkled in the vapor deposition process and the sputtering process for forming a metal layer on the polypropylene film. It is possible to suppress the occurrence and make the thickness of the metal layer more uniform.
  • the margin pattern when laminating metal layers by vapor deposition or sputtering is not particularly limited, but includes so-called special margins such as a fishnet pattern or a T-margin pattern from the viewpoint of improving characteristics such as capacitor safety. It is preferable to apply the pattern on one side of the film. It is effective in terms of improving security, destroying capacitors, preventing short circuits, and so on.
  • a generally known method such as a tape method or an oil method can be used without any limitation.
  • the polypropylene film wound in a roll shape is rewound (unwound), and a metal layer such as a thin-film deposition film is formed on one or both surfaces, and again. It is wound.
  • the metal layer integrated polypropylene film can be laminated by a conventionally known method, or can be element-wound (wound) to form a film capacitor.
  • a blade is inserted in the center of each margin portion of the metal layer integrated polypropylene film and slit processing is performed to produce a take-up reel having a margin on one surface of the surface.
  • slit processing is performed to produce a take-up reel having a margin on one surface of the surface.
  • two reels are overlapped and wound so that the vapor-deposited portion protrudes from the margin portion in the width direction (element winding processing).
  • the core material is removed from the winding body and pressed.
  • external electrodes are formed on both end faces, and lead wires are further provided on the external electrodes. From the above, a winding type film capacitor can be obtained.
  • Table 1 shows the polypropylene resins used to produce the polypropylene films of Examples and Comparative Examples.
  • the resin A1 shown in Table 1 is a product manufactured by Prime Polymer Co., Ltd.
  • Resin B1 is HPT-1 manufactured by Korea Yuka Co., Ltd.
  • the resin C1 is HC300BF manufactured by Borealis.
  • Table 1 shows the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of each resin. These values are values in the form of raw material resin pellets.
  • the measurement method is as follows.
  • Trichlorobenzene was flowed as an eluent at a flow rate of 1.0 ml / min at a column temperature of 140 ° C. for measurement.
  • a calibration curve for the molecular weight M was created using standard polystyrene manufactured by Tosoh Corporation, and the measured values were converted to the molecular weight of polypropylene using the Q-factor to convert the number average molecular weight (Mn) and the weight average molecular weight (Mn). Mw) was obtained.
  • the molecular weight distribution (Mw / Mn) was obtained using the values of Mw and Mn.
  • the time curve (elution curve) of the intensity distribution detected by the RI detector is used as the distribution curve for the molecular weight M (Log (M)) of the standard polystyrene using the calibration curve prepared using the standard polystyrene. Converted.
  • melt flow rate (MFR) ⁇ Measurement of melt flow rate (MFR)>
  • MFR melt flow rate in the form of raw material resin pellets
  • M melt indexer manufactured by Toyo Seiki Co., Ltd. according to the condition M of JIS K 7210. Specifically, first, a sample weighed to 4 g was inserted into a cylinder having a test temperature of 230 ° C., and preheated for 3.5 minutes under a load of 2.16 kg. Then, the weight of the sample extruded from the bottom hole was measured in 30 seconds to determine the MFR (g / 10 min). The above measurement was repeated 3 times, and the average value was taken as the measured value of MFR. The results are shown in Table 1.
  • Etc. calculated as a percentage (%) from the integrated intensity of each signal.
  • attribution of each signal derived from mmmm, mrrm, etc. for example, the description of the spectrum such as "T. Hayashi et al., Polymer, Vol. 29, p. 138 (1988)" was referred to.
  • polypropylene films of Examples and Comparative Examples were prepared and their physical properties were evaluated.
  • a cast sheet was prepared by winding it around a metal drum whose surface temperature was maintained at 95 ° C. and solidifying it. The obtained unstretched cast sheet is gripped at both ends with a movable clip that moves on the rail, guided to a tenter, stretched 6 times in the MD direction (flow direction) at a temperature of 170 ° C., and at the same time, TD. After stretching 8 times in the direction (width direction), the film was relaxed in the flow direction and the width direction, heat-fixed and wound to obtain a biaxially stretched polypropylene film having a thickness of 2.8 ⁇ m according to Example 1.
  • Example 2 A biaxially stretched polypropylene film according to Example 2 was obtained in the same manner as in Example 1 except that the resin temperature was set to 180 ° C. in the preparation of the cast sheet.
  • Example 3 A biaxially stretched polypropylene film according to Example 3 was obtained in the same manner as in Example 2 except that the draw ratio in the flow direction was increased to 7 times in the preparation of the biaxially stretched polypropylene film.
  • Example 4 A biaxially stretched polypropylene film according to Example 4 was obtained in the same manner as in Example 1 except that resin C1 was used alone instead of using a mixture of resin A1 and resin B1 in the preparation of the cast sheet. ..
  • Example 5 Examples were the same as in Example 4 except that the resin temperature was set to 280 ° C. in the production of the cast sheet and the draw ratio in the flow direction was increased to 7 times in the production of the biaxially stretched polypropylene film. A biaxially stretched polypropylene film according to No. 5 was obtained.
  • Example 6 A biaxially stretched polypropylene film according to Example 6 was obtained in the same manner as in Example 5 except that the air gap was set to 6 mm in the production of the cast sheet.
  • Example 7 In the production of the biaxially stretched polypropylene film, the same as in Example 4 except that the draw ratio in the flow direction was set to 6.5 times and the thickness was set to 2.5 ⁇ m, according to Example 7. A shaft-stretched polypropylene film was obtained.
  • Example 8 In the production of the biaxially stretched polypropylene film, the same as in Example 4 except that the draw ratio in the flow direction was 6.5 times and the thickness was 2.0 ⁇ m, according to Example 8. A shaft-stretched polypropylene film was obtained.
  • Comparative Example 1 A biaxially stretched polypropylene film according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the stretch ratio in the flow direction was 4.5 times in the preparation of the biaxially stretched polypropylene film.
  • Comparative Example 2 In the production of the biaxially stretched polypropylene film, Comparative Example 2 was carried out in the same manner as in Example 1 except that the stretching ratio in the flow direction was 4.5 times and the stretching ratio in the width direction was 10 times. A biaxially stretched polypropylene film according to the above was obtained.
  • a cast sheet was prepared by winding it around a metal drum whose surface temperature was maintained at 95 ° C. and solidifying it. The obtained unstretched cast sheet was kept at a temperature of 140 ° C., passed between rolls provided with a speed difference, stretched 4.5 times in the flow direction, and immediately cooled to room temperature.
  • the stretched film was led to a tenter, stretched 10 times in the width direction at a temperature of 158 ° C., then relaxed, heat-fixed and wound, and aged in an atmosphere of about 30 ° C. to achieve a thickness of 2.
  • An 8 ⁇ m biaxially stretched polypropylene film was obtained.
  • Comparative Example 4 A biaxially stretched polypropylene film according to Comparative Example 4 was obtained in the same manner as in Comparative Example 3 except that the thickness was 2.5 ⁇ m in the preparation of the biaxially stretched polypropylene film.
  • Comparative Example 5 According to Comparative Example 5 in the same manner as in Comparative Example 3 except that the resin temperature was set to 240 ° C. in the production of the cast sheet and the thickness was 2.3 ⁇ m in the production of the biaxially stretched polypropylene film. A biaxially stretched polypropylene film was obtained.
  • Comparative Example 6 A biaxially stretched polypropylene film according to Comparative Example 6 was obtained in the same manner as in Comparative Example 4 except that the resin C1 was used in the preparation of the cast sheet.
  • Table 2 summarizes the production conditions of the polypropylene films of Examples and Comparative Examples described above.
  • the area stretching ratio means the product of the MD stretching ratio and the TD stretching ratio.
  • the cast cooling rate, the thickness of the cast sheet, and the thickness of the polypropylene film are values obtained by the following methods.
  • ⁇ Measurement of thickness of cast sheet and polypropylene film The thicknesses of the cast sheets of Examples and Comparative Examples and the polypropylene film were measured. Specifically, the measurement was performed in accordance with JIS-C2330 except that the measurement was performed at 100 ⁇ 10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu.
  • the MD direction of the polypropylene film is the x-axis
  • the TD direction is the y-axis
  • the thickness direction is the z-axis
  • the x-axis is the tilt axis
  • the z-axis is in the range of 0 ° to 50 °.
  • Each retardation value when tilted by 10 ° was obtained.
  • the method described in the non-patent document "Yu Awaya, Introduction to Birefringence Microscopes for Polymer Materials, pp. 105-120, 2001” was used with respect to the thickness direction (z-axis direction).
  • the average value of the birefringence ⁇ Nyz at ⁇ 20 °, 30 °, 40 °, and 50 ° was calculated and used as the birefringence value ⁇ Nyz.
  • the value of the refraction angle r at each inclination angle the value described on page 109 of the above-mentioned document was used. The results are shown in Table 3.
  • the breaking strength TD, the breaking elongation MD at 25 ° C. in the MD direction, and the breaking elongation TD at 25 ° C. in the TD direction were measured as follows.
  • the break point elongation was measured according to JIS K-7127 (1999). Specifically, a tensile compression tester (manufactured by Minebea Co., Ltd.) is used to perform a tensile test under test conditions (measurement temperature 23 ° C., test piece length 140 mm, test length 100 mm, test piece width 15 mm, tensile speed 100 mm / min). went.
  • the obtained data was subjected to noise removal processing by a median filter (3 ⁇ 3), and then Gaussian filter treatment with a cutoff value of 30 ⁇ m was performed to remove undulation components.
  • a region having a mountain side height of 0.05 ⁇ m or more is painted white, and a region having a mountain side height smaller than 0.05 ⁇ m is painted black to obtain binary values.
  • a converted image (262 ⁇ 194 pixels) was obtained.
  • Image Pro Plus 5.1J manufactured by Nippon Rover
  • the winding deviation is A to A to the following. It was evaluated on a scale of C.
  • the diameter of the winding core is 17.6 cm, and the length of the biaxially stretched polypropylene film wound around the winding core is 30,000 m.
  • C The maximum and minimum values of the film roll width Difference is 1 mm or more
  • the cut-out film piece is divided into 100 areas of 10 mm square, and the color value (L *) is used for the central portion of each of the 100 areas using a print density measuring machine (Type 938 manufactured by X-Rite). Value, a * value, b * value) were measured. The measurement diameter used was 8 mm. For each of the L * value, a * value, and b * value, the variation was calculated from the maximum value and the minimum value at 100 points and the average value at 100 points using the following formula.
  • L * value (%) [(L * maximum value-L * minimum value) / L * average value at 100 locations] x 100
  • Variation of a * value (%) [(a * maximum value-a * minimum value) / a * average value at 100 locations] x 100
  • Variation of b * value (%) [(b * maximum value-b * minimum value) / 100 b * average values] x 100
  • A The largest variation of L * value, a * value, and b * value is less than 10%.
  • B The largest variation of L * value, a * value, and b * value is 10% or more and 20%.
  • Less than C The largest variation of L * value, a * value, and b * value is 20% or more.
  • Capacitors were produced as follows using the polypropylene films obtained in Examples 1 to 6 and Comparative Examples 1 to 3.
  • a polypropylene film By subjecting a polypropylene film to a T-margin thin-film deposition pattern with an aluminum vapor deposition with a vapor deposition resistance of 15 ⁇ / ⁇ , a metal layer-integrated polypropylene film containing a metal film on one side of the polypropylene film was obtained.
  • a winding machine 3KAW-N2 type manufactured by Minato Seisakusho Co., Ltd. is used to wind 1158 turns at a winding tension of 250 g.
  • the element wound element was heat-treated at 120 ° C. for 15 hours while being pressed, and then zinc metal was sprayed on the element end face to obtain a flat capacitor.
  • the lead wire was soldered to the end face of the flat capacitor, and then sealed with epoxy resin.
  • the capacitors according to Examples 1 to 6 and Comparative Examples 1 to 3 were obtained.
  • the capacitors according to Example 7, Comparative Example 4, and Comparative Example 6 were obtained in the same manner as the capacitors of Example 1 except that the capacitors were wound for 1137 turns at a winding tension of 250 g.
  • a capacitor according to Example 8 was obtained in the same manner as the capacitor of Example 4 except that the capacitor was wound for 1137 turns at a winding tension of 250 g.
  • a capacitor according to Comparative Example 5 was obtained in the same manner as the capacitor of Example 1 except that the capacitor was wound for 1076 turns at a winding tension of 250 g. The number of turns of the winding was changed in order to evaluate the capacitance under the same conditions because the thickness of the polypropylene film is different. The capacitance of the completed capacitors was 75 ⁇ F ( ⁇ 5 ⁇ F).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A polypropylene film wherein the difference [(Δnyz) – (Δnxz)] between a birefringence value Δnxz and a birefringence value Δnyz is 0.009 or less, the ratio [(tensile modulus TD)/(tensile modulus MD)] of a machine-directional tensile modulus MD thereof at 25°C and a transverse-directional tensile modulus TD thereof at 25°C is 1.20 or less, the tensile modulus MD is 3.1 GPa or greater, and the thickness thereof is 0.8 μm to 5 μm, inclusive.

Description

ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサPolypropylene film, metal layer integrated polypropylene film, and film capacitors
 本発明は、ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサに関する。 The present invention relates to a polypropylene film, a polypropylene film integrated with a metal layer, and a film capacitor.
 ポリプロピレンフィルムは、高い耐電圧性や低い誘電損失特性等の優れた電気特性を有し、且つ、高い耐湿性を有する。そのため、広く電子機器や電気機器に用いられている。具体的には、例えば、高電圧コンデンサ、各種スイッチング電源、フィルター用コンデンサ(例えば、コンバーター、インバーター等)、平滑用コンデンサ等に使用されるフィルムとして利用されている。 Polypropylene film has excellent electrical characteristics such as high withstand voltage and low dielectric loss characteristics, and also has high moisture resistance. Therefore, it is widely used in electronic devices and electrical devices. Specifically, it is used as a film used for, for example, high-voltage capacitors, various switching power supplies, filter capacitors (for example, converters, inverters, etc.), smoothing capacitors, and the like.
 近年、コンデンサの小型化及び高容量化が更に要求されている。コンデンサの体積を変えないで静電容量を向上させるためには、誘電体としてのフィルムを薄くすることが好ましい。そのため、厚さがより薄いフィルムが求められている。 In recent years, there has been a further demand for smaller capacitors and higher capacities. In order to improve the capacitance without changing the volume of the capacitor, it is preferable to make the film as a dielectric thin. Therefore, there is a demand for a film having a thinner thickness.
 従来、コンデンサ用のポリプロピレンフィルムとして、特許文献1~4が開示されている。 Conventionally, Patent Documents 1 to 4 have been disclosed as polypropylene films for capacitors.
 特許文献1には、フィルムの光学的配向測定におけるフィルム厚さ方向の屈折率Nzが1.47以上1.50以下であるコンデンサー用二軸延伸ポリプロピレンフィルムの記載がある(例えば、請求項1参照)。 Patent Document 1 describes a biaxially stretched polypropylene film for a capacitor having a refractive index Nz in the film thickness direction of 1.47 or more and 1.50 or less in the optical orientation measurement of the film (see, for example, claim 1). ).
 特許文献2には、105℃で200時間処理後の、光学的複屈折測定により求めた厚さ方向に対する複屈折値ΔNyz及びΔNxzの値から算出される面配向係数ΔPa(ただし、ΔPa=(ΔNyz+ΔNxz)/2)が、0.013以上である二軸延伸ポリプロピレンフィルムの記載がある(例えば、請求項1参照)。 In Patent Document 2, the plane orientation coefficient ΔPa calculated from the values of the birefringence values ΔNyz and ΔNxz in the thickness direction obtained by the optical birefringence measurement after the treatment at 105 ° C. for 200 hours (where ΔPa = (ΔNyz + ΔNxz)). ) / 2) is described as a birefringent polypropylene film having a value of 0.013 or more (see, for example, claim 1).
 特許文献3には、長手方向の引張強度が120MPa~250MPaであり、かつ幅手方向の引張強度が250MPa~400MPaである二軸延伸ポリプロピレンフィルムの記載がある(例えば、請求項1参照)。 Patent Document 3 describes a biaxially stretched polypropylene film having a tensile strength in the longitudinal direction of 120 MPa to 250 MPa and a tensile strength in the width direction of 250 MPa to 400 MPa (see, for example, claim 1).
 特許文献4には、TD方向の引張弾性率とMD方向の引張弾性率の比率MTD/MMDが0.85以上1.8以下の二軸延伸ポリプロピレンフィルムの記載がある(例えば、請求項3参照)。また、複屈折値ΔNxyの下限値に関して、好ましくは0.009以上、上限値に関して、好ましくは0.014以下との記載がある(段落[0041])。また、複屈折値ΔNxzの下限値に関して、好ましくは0.015以上、上限値に関して、好ましくは0.023以下との記載がある(段落[0042])。 Patent Document 4 describes a biaxially stretched polypropylene film having a ratio of tensile elastic modulus in the TD direction to tensile elastic modulus in the MD direction M TD / M MD of 0.85 or more and 1.8 or less (for example, claim). 3). Further, there is a description that the lower limit value of the birefringence value ΔNxy is preferably 0.009 or more, and the upper limit value is preferably 0.014 or less (paragraph [0041]). Further, there is a description that the lower limit value of the birefringence value ΔNxz is preferably 0.015 or more, and the upper limit value is preferably 0.023 or less (paragraph [0042]).
特開2010-254868号公報JP-A-2010-254868 国際公開第2018/056404号International Publication No. 2018/056404 特許5472461号Patent No. 5472461 国際公開第2018/124300号International Publication No. 2018/124300
 従来、ポリプロピレンフィルムに金属層を形成する蒸着工程において、金属層の厚みが不均一になり、濃淡が生じてしまうという問題があった。また、近年では、従来と比較して、金属層の厚みをより均一に形成することが可能な薄いポリプロピレンフィルムの開発が切望されている。しかしながら、特許文献1~5のポリプロピレンフィルムを用いた場合、金属層の厚みが高精度に均一に制御された金属層一体型ポリプロピレンフィルムを得ることはできなかった。 Conventionally, in the vapor deposition process of forming a metal layer on a polypropylene film, there is a problem that the thickness of the metal layer becomes non-uniform and shading occurs. Further, in recent years, the development of a thin polypropylene film capable of forming a more uniform thickness of a metal layer as compared with the conventional one has been desired. However, when the polypropylene films of Patent Documents 1 to 5 are used, it is not possible to obtain a polypropylene film integrated with a metal layer in which the thickness of the metal layer is uniformly controlled with high accuracy.
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、高精度に均一な厚みに金属層を形成することが可能なポリプロピレンフィルムを提供することにある。また、本発明は、当該ポリプロピレンフィルムを有する金属層一体型ポリプロピレンフィルム、及び、当該金属層一体型ポリプロピレンフィルムを有するフィルムコンデンサを提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a polypropylene film capable of forming a metal layer with high accuracy and a uniform thickness. Another object of the present invention is to provide a metal layer integrated polypropylene film having the polypropylene film and a film capacitor having the metal layer integrated polypropylene film.
 本発明者らは、金属層の厚みが不均一となる原因について鋭意検討を行った。その結果、薄いポリプロピレンフィルムは、ポリプロピレンフィルムに金属層を形成する蒸着工程において、ポリプロピレンフィルムをフィルムロールから巻き出す際に、フィルムのMD方向(流れ方向)に張力がかかり、ポアソン収縮によってポリプロピレンフィルムがTD方向(幅方向)に収縮し、その結果、フィルムにシワが発生することを突き止めた。そして、シワが発生すると、金属の蒸着が不均一となって、金属層の厚みが不均一になり、濃淡が生じてしまうことを突き止めた。 The present inventors diligently investigated the cause of the non-uniform thickness of the metal layer. As a result, in the thin polypropylene film, in the vapor deposition process of forming a metal layer on the polypropylene film, when the polypropylene film is unwound from the film roll, tension is applied in the MD direction (flow direction) of the film, and the polypropylene film shrinks due to Poisson shrinkage. It was found that the film contracted in the TD direction (width direction), resulting in wrinkles on the film. Then, it was found that when wrinkles occur, the metal deposition becomes non-uniform, the thickness of the metal layer becomes non-uniform, and shading occurs.
 さらに、本発明者らは、ポリプロピレンフィルムに金属層を形成する蒸着工程において、金属層の厚みを均一とする方法について鋭意検討を行った。その結果、温度に依存せず、どのような温度においても等方性を有し、且つ、機械的特性に優れる構成とすれば、金属層の形成時にフィルムにシワが発生することを抑制でき、金属層の厚みを均一とすることが可能となることを見出し、本発明を完成するに至った。 Furthermore, the present inventors have diligently studied a method for making the thickness of the metal layer uniform in the vapor deposition process of forming the metal layer on the polypropylene film. As a result, if the structure is isotropic at any temperature and has excellent mechanical properties, it is possible to suppress the occurrence of wrinkles in the film when the metal layer is formed. We have found that it is possible to make the thickness of the metal layer uniform, and have completed the present invention.
 すなわち、本発明に係るポリプロピレンフィルムは、
 複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、
 MD方向の25℃での引張弾性率MDとTD方向の25℃での引張弾性率TDとの比[(引張弾性率TD)/(引張弾性率MD)]が、1.20以下であり、
 前記引張弾性率MDが、3.1GPa以上であり、
 厚さが0.8μm以上5μm以下であることを特徴とする。
(ただし、前記複屈折値Δnxzは、ポリプロピレンフィルムのMD方向をx軸、TD方向をy軸、厚さ方向をz軸としたとき、x軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値であり、前記複屈折値Δnyzは、y軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値である。)
That is, the polypropylene film according to the present invention is
The difference [(Δnyz) − (Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz is 0.009 or less.
The ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction is 1.20 or less.
The tensile elastic modulus MD is 3.1 GPa or more, and the tensile elastic modulus MD is 3.1 GPa or more.
It is characterized in that the thickness is 0.8 μm or more and 5 μm or less.
(However, the double refractive index Δnxz is three-dimensional in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis, the TD direction is the y-axis, and the thickness direction is the z-axis. It is a value obtained by subtracting the refractive index, and the double refractive index Δnyz is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.)
 本発明に係るポリプロピレンフィルムによれば、差[(Δnyz)-(Δnxz)]が0.009以下であるため、分子配向の観点で面内方向に対して等方性を有する。なお、分子配向が等方性を有することは、温度に依存せず、どのような温度においても等方性を有することを意味する。
 また、比[(引張弾性率TD)/(引張弾性率MD)]が、1.20以下であり、且つ、引張弾性率MDが3.1GPa以上であるため、機械特性が面内方向に対して等方性を有し、且つ、機械特性が面内のいずれの方向に対しても優れる。
 すなわち、引張弾性率MDが3.1GPa以上と比較的大きいため、ポアソン収縮によるTD方向の収縮を減少させることができ、引張弾性率TDも、引張弾性率MDと同程度であり、比較的大きいため、ポリプロピレンフィルムがMD方向に伸ばされたとしてもそれに連動するTD方向の収縮を小さくすることができる。
 このように、温度依存性がなく、どのような温度においても機械的特性が等方性を有するため、ポリプロピレンフィルムに金属層を形成する蒸着工程において、ポリプロピレンフィルムにシワが発生することを抑制することができ、金属層の厚みをより均一とすることが可能となる。
 また、厚さが5μm以下であるため、コンデンサ素子としたときの単位体積当たりの静電容量を大きくすることができ、コンデンサ用として好適に使用できる。また、厚さが0.8μm以上であるため、フィルムの製膜安定性の観点で優れる。
According to the polypropylene film according to the present invention, since the difference [(Δnyz) − (Δnxz)] is 0.009 or less, it is isotropic with respect to the in-plane direction from the viewpoint of molecular orientation. The fact that the molecular orientation is isotropic means that it is isotropic at any temperature without depending on the temperature.
Further, since the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] is 1.20 or less and the tensile elastic modulus MD is 3.1 GPa or more, the mechanical properties are in the in-plane direction. It is isotropic and has excellent mechanical properties in any direction in the plane.
That is, since the tensile elastic modulus MD is relatively large at 3.1 GPa or more, the contraction in the TD direction due to Poisson contraction can be reduced, and the tensile elastic modulus TD is also about the same as the tensile elastic modulus MD and is relatively large. Therefore, even if the polypropylene film is stretched in the MD direction, the shrinkage in the TD direction associated therewith can be reduced.
As described above, since there is no temperature dependence and the mechanical properties are isotropic at any temperature, wrinkles are suppressed in the polypropylene film in the vapor deposition process of forming the metal layer on the polypropylene film. This makes it possible to make the thickness of the metal layer more uniform.
Further, since the thickness is 5 μm or less, the capacitance per unit volume of a capacitor element can be increased, and it can be suitably used for a capacitor. Moreover, since the thickness is 0.8 μm or more, it is excellent from the viewpoint of film formation stability.
 なお、特許文献1には、ポリプロピレンフィルムの屈折率Nx、屈折率Nyについて記載されておらず、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]については不明である。
 ここで、特許文献1では、原反シートに延伸処理を行ってポリプロピレンフィルムを作製しているが、延伸処理は逐次二軸延伸としている。
 しかしながら、逐次二軸延伸では、温度依存性のない態様で等方性があり、且つ、高面積延伸倍率を有するポリプロピレンフィルム、すなわち、温度依存性のない態様で等方性があり、且つ、薄いポリプロピレンフィルムを得ることはできない。逐次二軸延伸では、45倍以下程度の低面積延伸倍率であれば、延伸時にフィルムが裂けることなく、等方性を有するポリプロピレンフィルムを製造し得る。しかしながら、逐次二軸延伸では、46倍以上の高面積延伸倍率とする場合、等方性を有するポリプロピレンフィルムを製造することはできない。一般的に、逐次二軸延伸の場合、まず、MD方向に延伸し、次に、TD方向に延伸するが、高面積延伸倍率とする場合、MD方向の延伸倍率を大きくすると、TD方向の延伸の際にフィルムが裂けてしまう。そのため、逐次二軸延伸の場合には、MD方向の延伸倍率は、TD方向の延伸倍率と比較して半分程度としなければならない。
 つまり、逐次二軸延伸で製造される特許文献1のポリプロピレンフィルムは、本発明のように、温度依存性のない態様で等方性があり、且つ、薄いポリプロピレンフィルムは得られない。具体的には、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、且つ、厚さが0.8μm以上5μm以下という薄いポリプロピレンフィルムは得られない。
 さらに、特許文献1には、引張弾性率についても記載がない。
 従って、特許文献1のポリプロピレンフィルムは、本発明とは構成が明らかに異なる。
Note that Patent Document 1 does not describe the refractive index Nx and the refractive index Ny of the polypropylene film, and the difference between the birefringence value Δnxz and the birefringence value Δnyz [(Δnyz) − (Δnxz)] is unknown. is there.
Here, in Patent Document 1, a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched.
However, in the sequential biaxial stretching, the polypropylene film is isotropic in a temperature-independent manner and has a high area stretching ratio, that is, isotropic and thin in a temperature-independent manner. Polypropylene film cannot be obtained. In the sequential biaxial stretching, if the area stretching ratio is as low as 45 times or less, the polypropylene film having isotropic property can be produced without tearing the film during stretching. However, in the sequential biaxial stretching, an isotropic polypropylene film cannot be produced when the stretching ratio is as high as 46 times or more. Generally, in the case of sequential biaxial stretching, first stretching in the MD direction and then in the TD direction, but in the case of a high area stretching ratio, if the stretching ratio in the MD direction is increased, the stretching in the TD direction is performed. The film tears at the time. Therefore, in the case of sequential biaxial stretching, the stretching ratio in the MD direction must be about half as compared with the stretching ratio in the TD direction.
That is, the polypropylene film of Patent Document 1 produced by sequential biaxial stretching is isotropic in a temperature-independent manner as in the present invention, and a thin polypropylene film cannot be obtained. Specifically, a thin polypropylene film having a difference [(Δnyz)-(Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz of 0.009 or less and a thickness of 0.8 μm or more and 5 μm or less. Cannot be obtained.
Further, Patent Document 1 does not describe the tensile elastic modulus.
Therefore, the polypropylene film of Patent Document 1 is clearly different in composition from the present invention.
 また、特許文献2には、ΔPa=((ΔNyz+ΔNxz)/2)が、0.013以上であることは記載されているが、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であるか不明である。
 また、特許文献2では、原反シートに延伸処理を行ってポリプロピレンフィルムを作製しているが、延伸処理は逐次二軸延伸としている。そして、逐次二軸延伸で製造される特許文献2のポリプロピレンフィルムは、上記にて説明した通り、本発明のように、温度依存性のない態様で等方性があり、且つ、薄いポリプロピレンフィルムは得られない。具体的には、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、且つ、厚さが0.8μm以上5μm以下という薄いポリプロピレンフィルムは得られない。
 さらに、特許文献2には、引張弾性率についても記載がない。
 従って、特許文献2のポリプロピレンフィルムは、本発明とは構成が明らかに異なる。
Further, Patent Document 2 describes that ΔPa = ((ΔNyz + ΔNxz) / 2) is 0.013 or more, but the difference between the birefringence value Δnxz and the birefringence value Δnyz [(Δnyz) − (Δnxz)] is not clear whether it is 0.009 or less.
Further, in Patent Document 2, a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched. As described above, the polypropylene film of Patent Document 2 produced by sequential biaxial stretching is isotropic in a temperature-independent manner and is thin as described above. I can't get it. Specifically, a thin polypropylene film having a difference [(Δnyz)-(Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz of 0.009 or less and a thickness of 0.8 μm or more and 5 μm or less. Cannot be obtained.
Further, Patent Document 2 does not describe the tensile elastic modulus.
Therefore, the polypropylene film of Patent Document 2 is clearly different in composition from the present invention.
 また、特許文献3には、複屈折値Δnxzや、複屈折値Δnyzの記載がなく、[(Δnyz)-(Δnxz)]が、0.009以下であるか不明である。
 また、特許文献3では、原反シートに延伸処理を行ってポリプロピレンフィルムを作製しているが、延伸処理は逐次二軸延伸としている。そして、逐次二軸延伸で製造される特許文献3のポリプロピレンフィルムは、上記にて説明した通り、本発明のように、温度依存性のない態様で等方性があり、且つ、薄いポリプロピレンフィルムは得られない。具体的には、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、且つ、厚さが0.8μm以上5μm以下という薄いポリプロピレンフィルムは得られない。
 さらに、特許文献3には、引張弾性率についても記載がない。
 従って、特許文献3のポリプロピレンフィルムは、本発明とは構成が明らかに異なる。
Further, Patent Document 3 does not describe the birefringence value Δnxz or the birefringence value Δnyz, and it is unclear whether [(Δnyz) − (Δnxz)] is 0.009 or less.
Further, in Patent Document 3, a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched. As described above, the polypropylene film of Patent Document 3 produced by sequential biaxial stretching is isotropic in a temperature-independent manner and is thin as described above. I can't get it. Specifically, a thin polypropylene film having a difference [(Δnyz)-(Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz of 0.009 or less and a thickness of 0.8 μm or more and 5 μm or less. Cannot be obtained.
Further, Patent Document 3 does not describe the tensile elastic modulus.
Therefore, the polypropylene film of Patent Document 3 is clearly different in composition from the present invention.
 また、特許文献4には、複屈折値ΔNxy、複屈折値ΔNxzについて記載されているが、複屈折値Δnyzの記載がなく、[(Δnyz)-(Δnxz)]が、0.009以下であるか不明である。
 また、特許文献4では、原反シートに延伸処理を行ってポリプロピレンフィルムを作製しているが、延伸処理は逐次二軸延伸としている。そして、逐次二軸延伸で製造される特許文献4のポリプロピレンフィルムは、上記にて説明した通り、本発明のように、温度依存性のない態様で等方性があり、且つ、薄いポリプロピレンフィルムは得られない。具体的には、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、且つ、厚さが0.8μm以上5μm以下という薄いポリプロピレンフィルムは得られない。
 なお、特許文献4では、23℃での引張弾性率について記載されており、例えば、実施例9では、23℃での引張弾性率の比[(引張弾性率TD)/(引張弾性率MD)]は、3.4/3.3(約1.03)である。しかしながら、上記の通り、特許文献4のポリプロピレンフィルムは、逐次二軸延伸で製造されているため、分子配向の観点で面内方向に対して等方性を有するとはいえない。そのため、23℃では引張弾性率がTD方向とMD方向とで近しい値であったとしても、分子配向が等方性を有していないため、23℃以外の温度(特に、蒸着工程のような高温)では、引張弾性率はTD方向とMD方向とで大きく異なる値となる可能性が極めて高い。
 従って、特許文献4のポリプロピレンフィルムは、本発明とは構成が明らかに異なる。
Further, Patent Document 4 describes the birefringence value ΔNxy and the birefringence value ΔNxz, but does not describe the birefringence value Δnyz, and [(Δnyz) − (Δnxz)] is 0.009 or less. I don't know.
Further, in Patent Document 4, a polypropylene film is produced by stretching a raw sheet, but the stretching treatment is sequentially biaxially stretched. As described above, the polypropylene film of Patent Document 4 produced by sequential biaxial stretching is isotropic in a temperature-independent manner and is thin as described above. I can't get it. Specifically, a thin polypropylene film having a difference [(Δnyz)-(Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz of 0.009 or less and a thickness of 0.8 μm or more and 5 μm or less. Cannot be obtained.
In addition, Patent Document 4 describes the tensile elastic modulus at 23 ° C. For example, in Example 9, the ratio of the tensile elastic modulus at 23 ° C. [(tensile elastic modulus TD) / (tensile elastic modulus MD) ] Is 3.4 / 3.3 (about 1.03). However, as described above, since the polypropylene film of Patent Document 4 is manufactured by sequential biaxial stretching, it cannot be said that it is isotropic with respect to the in-plane direction from the viewpoint of molecular orientation. Therefore, even if the tensile elastic modulus is close to each other in the TD direction and the MD direction at 23 ° C., since the molecular orientation is not isotropic, the temperature other than 23 ° C. (particularly, such as in the vapor deposition step). At high temperatures), the tensile modulus is very likely to be significantly different in the TD and MD directions.
Therefore, the polypropylene film of Patent Document 4 is clearly different in composition from the present invention.
 前記本発明のポリプロピレンフィルムにおいては、光干渉式非接触表面形状測定装置を用い、一視野あたり470.92μm×353.16μm(640ピクセル×480ピクセル)の計測を行った際のフィブリルの数が、20以上50以下であり、前記フィブリルの個数当たりの面積が、200μm/個以上1000μm/個以下である面を有することが好ましい。本発明においては、光干渉式非接触表面形状測定装置として、(株)菱化システム製の「VertScan2.0(型式:R5500GML)」を使用する。 In the polypropylene film of the present invention, the number of fibrils when measuring 470.92 μm × 353.16 μm (640 pixels × 480 pixels) per field using a light interference type non-contact surface shape measuring device is determined. It is preferable to have a surface having 20 or more and 50 or less and an area per number of the fibrils of 200 μm 2 / piece or more and 1000 μm 2 / piece or less. In the present invention, "VertScan2.0 (model: R5500GML)" manufactured by Ryoka System Co., Ltd. is used as the optical interference type non-contact surface shape measuring device.
 前記構成によれば、ポリプロピレンフィルムの少なくとも一方の面が、多数の比較的面積の小さいフィブリルによって粗面化されているため、二軸延伸された後のポリプロピレンフィルムや当該ポリプロピレンフィルムを有する金属層一体型ポリプロピレンフィルムをロール状に巻回する際に、搬送用ロールに対する滑り性が良好となる。その結果、好適な搬送性が得られ、シワや巻きずれが抑制される。 According to the above configuration, since at least one surface of the polypropylene film is roughened by a large number of relatively small fibrils, the polypropylene film after biaxial stretching or the metal layer having the polypropylene film is one. When the body polypropylene film is wound in a roll shape, the slipperiness with respect to the transport roll is improved. As a result, suitable transportability is obtained, and wrinkles and unwinding are suppressed.
 前記構成のポリプロピレンフィルムは、コンデンサ用であることが好ましい。 The polypropylene film having the above configuration is preferably for a capacitor.
 前記差[(Δnyz)-(Δnxz)]、前記比[(引張弾性率TD)/(引張弾性率MD)]、及び、前記引張弾性率MDが前記数値範囲内であるポリプロピレンフィルムは、温度依存性がなく、どのような温度においても機械的特性が等方性を有するため、ポリプロピレンフィルムに金属層を形成する蒸着工程において、ポリプロピレンフィルムにシワが発生することを抑制することができ、金属層の厚みをより均一とすることが可能となる。従って、コンデンサ用として好適に使用できる。 The difference [(Δnyz) − (Δnxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the polypropylene film in which the tensile modulus MD is within the numerical range are temperature-dependent. Since it has no property and its mechanical properties are isotropic at any temperature, it is possible to suppress the occurrence of wrinkles on the polypropylene film in the vapor deposition process for forming the metal layer on the polypropylene film, and the metal layer can be suppressed. It becomes possible to make the thickness of the above uniform. Therefore, it can be suitably used for capacitors.
 前記構成のポリプロピレンフィルムは、同時二軸延伸されていることが好ましい。 The polypropylene film having the above structure is preferably biaxially stretched at the same time.
 同時二軸延伸されていると、前記差[(Δnyz)-(Δnxz)]、前記比[(引張弾性率TD)/(引張弾性率MD)]、及び、前記引張弾性率MDが前記数値範囲内であり、且つ、厚さが0.8μm以上5μm以下であるポリプロピレンフィルムとし易い。 When simultaneously biaxially stretched, the difference [(Δnyz) − (Δnxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the tensile modulus MD are in the numerical range. It is easy to obtain a polypropylene film having a thickness of 0.8 μm or more and 5 μm or less.
 また、本発明に係る金属層一体型ポリプロピレンフィルムは、
 前記ポリプロピレンフィルムと、
 前記ポリプロピレンフィルムの片面又は両面に積層された金属層とを有することを特徴とする。
Further, the polypropylene film integrated with a metal layer according to the present invention is
With the polypropylene film
It is characterized by having a metal layer laminated on one side or both sides of the polypropylene film.
 前記構成によれば、前記ポリプロピレンフィルムの片面又は両面に積層された金属層を有するため、ポリプロピレンフィルムを誘電体とし、金属層を電極としたフィルムコンデンサに使用することができる。また、前記ポリプロピレンフィルムは、温度依存性がなく、どのような温度においても機械的特性が等方性を有するため、ポリプロピレンフィルムに金属層を形成する蒸着工程において、ポリプロピレンフィルムにシワが発生することを抑制することができ、金属層の厚みをより均一とすることが可能となる。従って、当該ポリプロピレンフィルムを有する金属層一体型ポリプロピレンフィルムは、金属層の厚みが高精度で均一である。 According to the above configuration, since it has a metal layer laminated on one side or both sides of the polypropylene film, it can be used for a film capacitor in which the polypropylene film is a dielectric and the metal layer is an electrode. Further, since the polypropylene film is not temperature-dependent and has isotropic mechanical properties at any temperature, wrinkles may occur in the polypropylene film in the vapor deposition process of forming a metal layer on the polypropylene film. Can be suppressed, and the thickness of the metal layer can be made more uniform. Therefore, in the polypropylene film integrated with the metal layer having the polypropylene film, the thickness of the metal layer is highly accurate and uniform.
 また、本発明に係るフィルムコンデンサは、巻回された前記金属層一体型ポリプロピレンフィルムを有するか、又は、前記金属層一体型ポリプロピレンフィルムが複数積層された構成を有することを特徴とする。 Further, the film capacitor according to the present invention is characterized by having the wound metal layer integrated polypropylene film or having a structure in which a plurality of the metal layer integrated polypropylene films are laminated.
 また、本発明に係るポリプロピレンフィルムの製造方法は、
 前記に記載のポリプロピレンフィルムの製造方法であって、
 キャストシートを同時二軸延伸する工程Aを有し、
 前記工程Aは、MD方向の延伸倍率MDとTD方向の延伸倍率TDとの比[(延伸倍率TD)/(延伸倍率MD)]が1.0以上1.7以下であり、
 前記延伸倍率TDと前記延伸倍率MDとの積である面積延伸倍率が、46倍以上72倍以下であることを特徴とする。
Further, the method for producing a polypropylene film according to the present invention is as follows.
The method for producing a polypropylene film according to the above.
It has a step A of simultaneously biaxially stretching a cast sheet, and has
In the step A, the ratio of the draw ratio MD in the MD direction to the draw ratio TD in the TD direction [(stretch ratio TD) / (stretch ratio MD)] is 1.0 or more and 1.7 or less.
The area stretch ratio, which is the product of the stretch ratio TD and the stretch ratio MD, is 46 times or more and 72 times or less.
 コンデンサ素子としたときの単位体積当たりの静電容量を大きくすることができる薄いポリプロピレンフィルムを得るためには、延伸工程において高面積延伸倍率とする必要がある。
 前記構成によれば、実施例からも分かるように、等方性を有し、且つ、薄いポリプロピレンフィルムを得ることが可能となる。
 なお、逐次延伸では、等方性があり、且つ、高面積延伸倍率を有するポリプロピレンフィルムを得ることはできない。逐次延伸では、45倍以下程度の低面積延伸倍率であれば、延伸時にフィルムが裂けることなく、等方性を有するポリプロピレンフィルムを製造し得る。しかしながら、逐次延伸では、46倍以上の高面積延伸倍率とする場合、等方性を有するポリプロピレンフィルムを製造することはできない。一般的に、逐次延伸の場合、まず、MD方向に延伸し、次に、TD方向に延伸するが、高面積延伸倍率とする場合、MD方向の延伸倍率を大きくすると、TD方向の延伸の際にフィルムが裂けてしまう。そのため、逐次延伸の場合には、MD方向の延伸倍率は、TD方向の延伸倍率と比較して半分程度としなければならない。つまり、逐次延伸では、等方性があり、且つ、高面積延伸倍率を有するポリプロピレンフィルムを得ることはできない。
In order to obtain a thin polypropylene film capable of increasing the capacitance per unit volume when used as a capacitor element, it is necessary to set a high area stretching ratio in the stretching step.
According to the above configuration, as can be seen from the examples, it is possible to obtain a thin polypropylene film having isotropic properties.
In addition, it is not possible to obtain a polypropylene film which is isotropic and has a high area draw ratio by sequential stretching. In the sequential stretching, if the area stretching ratio is as low as 45 times or less, the polypropylene film having isotropic property can be produced without tearing the film during stretching. However, in the sequential stretching, an isotropic polypropylene film cannot be produced when the area stretching ratio is 46 times or more. Generally, in the case of sequential stretching, the film is first stretched in the MD direction and then in the TD direction. However, in the case of a high area stretching ratio, if the stretching ratio in the MD direction is increased, the stretching in the TD direction occurs. The film tears. Therefore, in the case of sequential stretching, the stretching ratio in the MD direction must be about half as compared with the stretching ratio in the TD direction. That is, it is not possible to obtain a polypropylene film that is isotropic and has a high area draw ratio by sequential stretching.
 本発明によれば、高精度に均一な厚みに金属層を形成することが可能なポリプロピレンフィルムを提供することができる。また、当該ポリプロピレンフィルムを有する金属層一体型ポリプロピレンフィルム、及び、当該金属層一体型ポリプロピレンフィルムを有するフィルムコンデンサを提供することができる。 According to the present invention, it is possible to provide a polypropylene film capable of forming a metal layer with high accuracy and a uniform thickness. Further, it is possible to provide a metal layer integrated polypropylene film having the polypropylene film and a film capacitor having the metal layer integrated polypropylene film.
 以下、本発明の実施形態について、説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to these embodiments.
 本明細書中において、「含有」、「含む」という表現は、「含有」、「含む」、「実質的にからなる」、「のみからなる」という概念を含む。
 本明細書において、「素子」、「コンデンサ」、「コンデンサ素子」、「フィルムコンデンサ」は同じものを意味する。
In the present specification, the expressions "contains" and "contains" include the concepts of "contains", "contains", "substantially consists", and "consists of only".
In the present specification, "element", "capacitor", "capacitor element", and "film capacitor" mean the same thing.
 本実施形態のポリプロピレンフィルムは、微孔性フィルムではないので、多数の空孔を有していない。
 本実施形態のポリプロピレンフィルムは、2層以上の複数層で構成されていてもよいが、単層で構成されていることが好ましい。
Since the polypropylene film of the present embodiment is not a microporous film, it does not have a large number of pores.
The polypropylene film of the present embodiment may be composed of a plurality of layers of two or more layers, but is preferably composed of a single layer.
 本実施形態に係るポリプロピレンフィルムは、
 複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、
 MD方向の25℃での引張弾性率MDとTD方向の25℃での引張弾性率TDとの比[(引張弾性率TD)/(引張弾性率MD)]が、1.20以下であり、
 前記引張弾性率MDが、3.1GPa以上であり、
 厚さが0.8μm以上5μm以下であることを特徴とする。
(ただし、前記複屈折値Δnxzは、ポリプロピレンフィルムのMD方向をx軸、TD方向をy軸、厚さ方向をz軸としたとき、x軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値であり、前記複屈折値Δnyzは、y軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値である。)
The polypropylene film according to this embodiment is
The difference [(Δnyz) − (Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz is 0.009 or less.
The ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction is 1.20 or less.
The tensile elastic modulus MD is 3.1 GPa or more, and the tensile elastic modulus MD is 3.1 GPa or more.
It is characterized in that the thickness is 0.8 μm or more and 5 μm or less.
(However, the double refractive index Δnxz is three-dimensional in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis, the TD direction is the y-axis, and the thickness direction is the z-axis. It is a value obtained by subtracting the refractive index, and the double refractive index Δnyz is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.)
 本実施形態に係るポリプロピレンフィルムは、複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、0.006以下が好ましく0.003以下がより好ましい。前記差[(Δnyz)-(Δnxz)]は、-0.009以上であることが好ましく、-0.005以上であることがより好ましく、0.000以上であることがさらに好ましい。前記差[(Δnyz)-(Δnxz)]が0.009以下であるため、分子配向の観点で面内方向に対して等方性を有する。なお、分子配向が等方性を有することは、温度に依存せず、どのような温度においても等方性を有することを意味する。 In the polypropylene film according to the present embodiment, the difference between the birefringence value Δnxz and the birefringence value Δnyz [(Δnyz) − (Δnxz)] is 0.009 or less, preferably 0.006 or less, preferably 0.003 or less. More preferred. The difference [(Δnyz) − (Δnxz)] is preferably −0.009 or more, more preferably −0.005 or more, and further preferably 0.000 or more. Since the difference [(Δnyz) − (Δnxz)] is 0.009 or less, it is isotropic with respect to the in-plane direction from the viewpoint of molecular orientation. The fact that the molecular orientation is isotropic means that it is isotropic at any temperature without depending on the temperature.
 前記複屈折値Δnxzは、0.020以下が好ましく、0.018以下がより好ましく、0.015以下がさらに好ましい。前記複屈折値Δnxzが0.02以下であるとフィルムの延伸成形において面内方向の配向バランスがとり易く、等方的な機械特性を具備させ易い傾向にあるため、結果としてロールの巻きズレをより抑制することができる。前記複屈折値Δnxzは、0.009以上が好ましく、0.010以上がより好ましく、0.012以上がさらに好ましい。前記複屈折値Δnxzが0.009以上であるとMD方向の弾性率が高く維持されるため、金属蒸着加工の時にかかる機械張力によってフィルムの寸法変化が少なく、金属蒸着加工時のフィルムの平面性は維持され易い傾向にあるため、結果として蒸着膜ムラをより抑制することができる。 The birefringence value Δnxz is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.015 or less. When the birefringence value Δnxz is 0.02 or less, it is easy to balance the orientation in the in-plane direction in the stretch molding of the film, and it is easy to provide isotropic mechanical properties. As a result, the roll is miswound. It can be more suppressed. The birefringence value Δnxz is preferably 0.009 or more, more preferably 0.010 or more, and further preferably 0.012 or more. When the birefringence value Δnxz is 0.009 or more, the elastic modulus in the MD direction is maintained high, so that the dimensional change of the film is small due to the mechanical tension applied during the metal vapor deposition process, and the flatness of the film during the metal vapor deposition process is small. As a result, unevenness of the thin-film deposition film can be further suppressed.
 前記複屈折値Δnyzは、0.020以下が好ましく、0.018以下がより好ましく、0.016以下がさらに好ましい。前記複屈折値Δnyzが0.02以下であるとフィルムの延伸成形において面内方向の配向バランスがとり易く、等方的な機械特性を具備させ易い傾向にあるため、結果としてロールの巻きズレをより抑制することができる。前記複屈折値Δnyzは、0.090以上が好ましく、0.011以上がより好ましく、0.013以上がさらに好ましい。前記複屈折値Δnyzが0.090以上であると金属蒸着加工の時にかかる機械張力によるポアソン変形の影響が少なく、金属蒸着加工時のフィルムの平面性は維持され易い傾向にある。 The birefringence value Δnyz is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.016 or less. When the birefringence value Δnyz is 0.02 or less, it is easy to balance the orientation in the in-plane direction in the stretch molding of the film, and it is easy to provide isotropic mechanical properties. As a result, the roll is miswound. It can be more suppressed. The birefringence value Δnyz is preferably 0.090 or more, more preferably 0.011 or more, and even more preferably 0.013 or more. When the birefringence value Δnyz is 0.090 or more, the influence of Poisson deformation due to the mechanical tension applied during the metal vapor deposition process is small, and the flatness of the film during the metal vapor deposition process tends to be easily maintained.
 前記複屈折値ΔNyz及び前記複屈折値ΔNxzから下記式1にて算出される値Pは、0.0141以上が好ましく、0.0142以上がより好ましく、0.0143以上がさらに好ましい。前記値Pは、0.020以下が好ましく、0.018以下がより好ましく、0.015以下がさらに好ましい。
  (式1)  P=(ΔNyz+ΔNxz)/2
 前記値Pが上記好ましい範囲内である場合、フィルムの延伸成形における面内方向の配向バランスがとり易いことによるより好ましい等方的な機械特性と、金属蒸着加工時のフィルム寸法変化が少なことによるより好ましい平面性とを有するため、結果としてロールの巻きズレと蒸着膜ムラをさらに抑制することができる。
The value P calculated from the birefringence value ΔNyz and the birefringence value ΔNxz by the following formula 1 is preferably 0.0141 or more, more preferably 0.0142 or more, still more preferably 0.0143 or more. The value P is preferably 0.020 or less, more preferably 0.018 or less, and even more preferably 0.015 or less.
(Equation 1) P = (ΔNyz + ΔNxz) / 2
When the value P is within the above preferable range, it is due to more preferable isotropic mechanical properties due to easy in-plane orientation balance in stretch molding of the film and little change in film size during metal vapor deposition processing. Since it has more preferable flatness, it is possible to further suppress the winding deviation of the roll and the unevenness of the vapor-deposited film as a result.
 前記複屈折値Δnxzは、ポリプロピレンフィルムのMD方向をx軸、TD方向をy軸、厚さ方向をz軸としたとき、x軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値であり、前記複屈折値Δnyzは、y軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値である。
 前記複屈折値Δnxz、及び、前記複屈折値Δnyzの具体的な測定方法は、実施例記載の方法による。
The birefringence value Δnxz is the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis, the TD direction is the y-axis, and the thickness direction is the z-axis. It is a value obtained by subtracting the birefringence value Δnyz, which is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.
The specific measurement method of the birefringence value Δnxz and the birefringence value Δnyz is based on the method described in Examples.
 前記差[(Δnyz)-(Δnxz)]、前記複屈折値Δnxz、前記複屈折値Δnyzは、製膜条件(延伸倍率調整など)やポリプロピレン樹脂の特性(分子量、重合度、分子量分布等)により制御することができる。延伸倍率で前記差[(Δnyz)-(Δnxz)]を制御する場合、前記差[(Δnyz)-(Δnxz)]を0.009以下とするためには、前記複屈折値Δnxzと前記複屈折値Δnyzとが同程度となるような延伸倍率を採用すればよい。具体的には、MD方向の延伸倍率とTD方向の延伸倍率とを同程度とすればよい。 The difference [(Δnyz) − (Δnxz)], the birefringence value Δnxz, and the birefringence value Δnyz depend on the film forming conditions (stretching magnification adjustment, etc.) and the characteristics of the polypropylene resin (molecular weight, degree of polymerization, molecular weight distribution, etc.). Can be controlled. When the difference [(Δnyz) − (Δnxz)] is controlled by the stretching ratio, the birefringence value Δnxz and the birefringence are required to reduce the difference [(Δnyz) − (Δnxz)] to 0.009 or less. A draw ratio may be adopted so that the value Δnyz is about the same. Specifically, the stretching ratio in the MD direction and the stretching ratio in the TD direction may be set to be about the same.
 前記ポリプロピレンフィルムは、MD方向の25℃での引張弾性率MDとTD方向の25℃での引張弾性率TDとの比[(引張弾性率TD)/(引張弾性率MD)]が、1.20以下であり、1.19以下であることが好ましく、1.17以下であることがより好ましい。前記比[(引張弾性率TD)/(引張弾性率MD)]は、0.85以上であることが好ましく、0.90以上であることがより好ましく、0.95以上であることがさらに好ましい。
 前記引張弾性率MDは、3.1GPa以上であり、3.2GPa以上であることが好ましく、3.3GPa以上であることがより好ましい。前記引張弾性率MDは、4.5GPa以下であることが好ましく、4.4GPa以下であることがより好ましく、4.2GPa以下であることがさらに好ましい。
 前記引張弾性率TDは、3.1GPa以上であることが好ましく、3.3GPa以上であることがより好ましく、3.6GPa以上であることがさらに好ましい。前記引張弾性率TDは、4.5GPa以下であることが好ましく、4.4GPa以下であることがより好ましく、4.2GPa以下であることがさらに好ましい。
 前記比[(引張弾性率TD)/(引張弾性率MD)]が、1.20以下であり、且つ、前記引張弾性率MDが3.1GPa以上であるため、機械特性が面内方向に対して等方性を有し、且つ、機械特性が面内のいずれの方向に対しても優れる。
 すなわち、前記引張弾性率MDが3.1GPa以上と比較的大きいため、ポアソン収縮によるTD方向の収縮を減少させることができ、前記引張弾性率TDも、前記引張弾性率MDと同程度であり、比較的大きいため、ポリプロピレンフィルムがMD方向に伸ばされたとしてもそれに連動するTD方向の収縮を小さくすることができる。
 前記引張弾性率MD、前記引張弾性率TDの具体的な測定方法は、実施例記載の方法による。
The polypropylene film has a ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction. It is 20 or less, preferably 1.19 or less, and more preferably 1.17 or less. The ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] is preferably 0.85 or more, more preferably 0.90 or more, and further preferably 0.95 or more. ..
The tensile elastic modulus MD is 3.1 GPa or more, preferably 3.2 GPa or more, and more preferably 3.3 GPa or more. The tensile elastic modulus MD is preferably 4.5 GPa or less, more preferably 4.4 GPa or less, and further preferably 4.2 GPa or less.
The tensile elastic modulus TD is preferably 3.1 GPa or more, more preferably 3.3 GPa or more, and further preferably 3.6 GPa or more. The tensile elastic modulus TD is preferably 4.5 GPa or less, more preferably 4.4 GPa or less, and further preferably 4.2 GPa or less.
Since the ratio [(tensile modulus TD) / (tensile modulus MD)] is 1.20 or less and the tensile modulus MD is 3.1 GPa or more, the mechanical properties are in the in-plane direction. It is isotropic and has excellent mechanical properties in any direction in the plane.
That is, since the tensile elastic modulus MD is relatively large at 3.1 GPa or more, the contraction in the TD direction due to Poisson contraction can be reduced, and the tensile elastic modulus TD is also about the same as the tensile elastic modulus MD. Since it is relatively large, even if the polypropylene film is stretched in the MD direction, the shrinkage in the TD direction associated therewith can be reduced.
The specific measurement method of the tensile elastic modulus MD and the tensile elastic modulus TD is based on the method described in Examples.
 このように、前記ポリプロピレンフィルムは、温度依存性がなく、どのような温度においても機械的特性が等方性を有するため、ポリプロピレンフィルムに金属層を形成する蒸着工程において、ポリプロピレンフィルムにシワが発生することを抑制することができ、金属層の厚みをより均一とすることが可能となる。 As described above, since the polypropylene film is not temperature-dependent and has isotropic mechanical properties at any temperature, wrinkles occur in the polypropylene film in the vapor deposition process for forming a metal layer on the polypropylene film. This can be suppressed and the thickness of the metal layer can be made more uniform.
 前記ポリプロピレンフィルムは、MD方向の25℃での破断強度MDとTD方向の25℃での破断強度TDとの比[(破断強度TD)/(破断強度MD)]が、1.55以下であることが好ましく、1.40以下であることがより好ましく、1.25以下であることがさらに好ましい。前記比[(破断強度TD)/(破断強度MD)]は、0.70以上であることが好ましく、0.80以上であることがより好ましく、0.90以上であることがさらに好ましい。
 前記破断強度MDは、175MPa以上であることが好ましく、177MPa以上であることがより好ましく、180MPa以上であることがさらに好ましい。前記破断強度MDは、280MPa以下であることが好ましく、260MPa以下であることがより好ましく、240MPa以下であることがさらに好ましい。
 前記破断強度TDは、165MPa以上であることが好ましく、167MPa以上であることがより好ましく、170MPa以上であることがさらに好ましい。前記破断強度TDは、280MPa以下であることが好ましく、260MPa以下であることがより好ましく、240MPa以下であることがさらに好ましい。
The polypropylene film has a ratio [(breaking strength TD) / (breaking strength MD)] of the breaking strength MD at 25 ° C. in the MD direction and the breaking strength TD at 25 ° C. in the TD direction of 1.55 or less. It is preferably 1.40 or less, more preferably 1.25 or less. The ratio [(breaking strength TD) / (breaking strength MD)] is preferably 0.70 or more, more preferably 0.80 or more, and further preferably 0.90 or more.
The breaking strength MD is preferably 175 MPa or more, more preferably 177 MPa or more, and even more preferably 180 MPa or more. The breaking strength MD is preferably 280 MPa or less, more preferably 260 MPa or less, and even more preferably 240 MPa or less.
The breaking strength TD is preferably 165 MPa or more, more preferably 167 MPa or more, and further preferably 170 MPa or more. The breaking strength TD is preferably 280 MPa or less, more preferably 260 MPa or less, and even more preferably 240 MPa or less.
 前記比[(破断強度TD)/(破断強度MD)]が、1.55以下であり、且つ、前記破断強度MDが175MPa以上であれば、機械特性が面内方向に対してより等方性を有し、且つ、機械特性が面内のいずれの方向に対してもより優れる。
 すなわち、前記破断強度MDが175MPa以上と比較的大きければ、ポアソン収縮によるTD方向の収縮を減少させることができ、前記破断強度TDも、前記破断強度MDと同程度であり、比較的大きいため、ポリプロピレンフィルムがMD方向に伸ばされたとしてもそれに連動するTD方向の収縮を小さくすることができる。
 前記破断強度MD、前記破断強度TDの具体的な測定方法は、実施例記載の方法による。
When the ratio [(breaking strength TD) / (breaking strength MD)] is 1.55 or less and the breaking strength MD is 175 MPa or more, the mechanical properties are more isotropic with respect to the in-plane direction. And the mechanical properties are better in any direction in the plane.
That is, if the breaking strength MD is relatively large at 175 MPa or more, the shrinkage in the TD direction due to Poisson shrinkage can be reduced, and the breaking strength TD is also about the same as the breaking strength MD and is relatively large. Even if the polypropylene film is stretched in the MD direction, the shrinkage in the TD direction associated therewith can be reduced.
The specific measurement method of the breaking strength MD and the breaking strength TD is based on the method described in Examples.
 前記ポリプロピレンフィルムは、MD方向の25℃での破断伸度MDとTD方向の25℃での破断伸度TDとの比[(破断伸度TD)/(破断伸度MD)]が、1.50以下であることが好ましく、1.45以下であることがより好ましく、1.40以下であることがさらに好ましい。前記比[(破断伸度TD)/(破断伸度MD)]は、0.55以上であることが好ましく、0.60以上であることがより好ましく、0.65以上であることがさらに好ましい。
 前記破断伸度MDは、30%以上であることが好ましく、34%以上であることがより好ましく、38%以上であることがさらに好ましい。前記破断伸度MDは、100%以下であることが好ましく、85%以下であることがより好ましく、65%以下であることがさらに好ましい。
 前記破断伸度TDは、20%以上であることが好ましく、24%以上であることがより好ましく、28%以上であることがさらに好ましい。前記破断伸度TDは、100%以下であることが好ましく、85%以下であることがより好ましく、65%以下であることがさらに好ましい。
 前記破断伸度MD、前記破断伸度TDの具体的な測定方法は、実施例記載の方法による。
The polypropylene film has a ratio [(breaking elongation TD) / (breaking elongation MD)] of the breaking elongation MD at 25 ° C. in the MD direction and the breaking elongation TD at 25 ° C. in the TD direction. It is preferably 50 or less, more preferably 1.45 or less, and even more preferably 1.40 or less. The ratio [(breaking elongation TD) / (breaking elongation MD)] is preferably 0.55 or more, more preferably 0.60 or more, and further preferably 0.65 or more. ..
The elongation at break MD is preferably 30% or more, more preferably 34% or more, and further preferably 38% or more. The elongation at break MD is preferably 100% or less, more preferably 85% or less, and even more preferably 65% or less.
The elongation at break TD is preferably 20% or more, more preferably 24% or more, and even more preferably 28% or more. The elongation at break TD is preferably 100% or less, more preferably 85% or less, and even more preferably 65% or less.
The specific measuring method of the breaking elongation MD and the breaking elongation TD is based on the method described in Examples.
 前記比[(引張弾性率TD)/(引張弾性率MD)]、前記引張弾性率MD、前記引張弾性率TD、前記比[破断強度TD)/(破断強度MD)]、前記破断強度MD、前記破断強度TD、前記比[破断伸度TD)/(破断伸度MD)]、前記破断伸度MD、前記破断伸度TDを前記数値範囲内とする方法については、特に限定されないが、ポリプロピレンフィルムの製膜条件(例えば、延伸倍率等)やポリプロピレン樹脂の特性(分子量、重合度、分子量分布等)により制御することができる。延伸倍率で前記比[(引張弾性率TD)/(引張弾性率MD)]を制御する場合、前記比[(引張弾性率TD)/(引張弾性率MD)]を1.20以下とするためには、前記引張弾性率MDと前記引張弾性率TDとが同程度となるような延伸倍率を採用すればよい。具体的には、MD方向の延伸倍率とTD方向の延伸倍率とを同程度とすればよい。 The ratio [(tensile elasticity TD) / (tensile elasticity MD)], the tensile elasticity MD, the tensile elasticity TD, the ratio [breaking strength TD) / (breaking strength MD)], the breaking strength MD, The method for keeping the breaking strength TD, the ratio [breaking elongation TD) / (breaking elongation MD)], the breaking elongation MD, and the breaking elongation TD within the numerical range is not particularly limited, but polypropylene. It can be controlled by the film forming conditions of the film (for example, stretching ratio, etc.) and the characteristics of the polypropylene resin (molecular weight, degree of polymerization, molecular weight distribution, etc.). When the ratio [(tensile modulus TD) / (tensile modulus MD)] is controlled by the draw ratio, the ratio [(tensile modulus TD) / (tensile modulus MD)] is set to 1.20 or less. The draw ratio may be such that the tensile elastic modulus MD and the tensile elastic modulus TD are about the same. Specifically, the stretching ratio in the MD direction and the stretching ratio in the TD direction may be set to be about the same.
 前記ポリプロピレンフィルムは、光干渉式非接触表面形状測定装置を用い、一視野あたり470.92μm×353.16μm(640ピクセル×480ピクセル)の計測を行った際のフィブリルの数が、20以上50以下であり、前記フィブリルの個数当たりの面積が、200μm/個以上1000μm/個以下である面を有することが好ましい。
 前記フィブリルの数は、24以上であることがより好ましく、28以上であることがさらに好ましい。前記フィブリルの数は、48以下であることがより好ましく、46以下であることがさらに好ましい。
 また、前記フィブリルの個数当たりの面積は、210μm/個以上であることがより好ましく、223μm/個以上であることがさらに好ましい。前記フィブリルの個数当たりの面積は、900μm/個以下であることがより好ましく、850μm/個以下であることがさらに好ましい。
 また、一視野あたり470.92μm×353.16μm(640ピクセル×480ピクセル)の計測を行った際のフィブリル面積は、9000μm以上が好ましく、10000μm以上がより好ましい。また、前記フィブリル面積は、30000μm以下が好ましく、25000μm以下がより好ましい。
 前記フィブリルの数が、20以上50以下であり、前記フィブリルの個数当たりの面積が、200μm/個以上1000μm/個以下である面を有すれば、ポリプロピレンフィルムの少なくとも一方の面が、多数の比較的面積の小さいフィブリルによって粗面化されているため、二軸延伸された後のポリプロピレンフィルムをロール状に巻回する際に、搬送用ロールに対する滑り性が良好となる。その結果、好適な搬送性が得られ、シワや巻きずれが抑制される。
 前記フィブリル数、前記フィブリル面積、及び、前記フィブリルの個数当たりの面積の測定方法は下記の通りである。
The polypropylene film has 20 or more and 50 or less fibrils when measured at 470.92 μm × 353.16 μm (640 pixels × 480 pixels) per field of view using a light interference type non-contact surface shape measuring device. It is preferable to have a surface in which the area per number of the fibrils is 200 μm 2 / piece or more and 1000 μm 2 / piece or less.
The number of fibrils is more preferably 24 or more, and even more preferably 28 or more. The number of fibrils is more preferably 48 or less, and even more preferably 46 or less.
The area per number of the fibrils is more preferably 210 .mu.m 2 / number or more, and still more preferably 223μm 2 / FOB. Area per number of the fibrils is more preferably 900 .mu.m 2 / number less, still more preferably 850 .mu.m 2 / number less.
Further, the fibril area when measuring 470.92 μm × 353.16 μm (640 pixels × 480 pixels) per visual field is preferably 9000 μm 2 or more, and more preferably 10000 μm 3 or more. The fibril area is preferably 30,000 μm 2 or less, and more preferably 25,000 μm 3 or less.
If the number of the fibrils is 20 or more and 50 or less and the area per number of the fibrils is 200 μm 2 / piece or more and 1000 μm 2 / piece or less, at least one side of the polypropylene film is large. Since the surface is roughened by the fibrils having a relatively small area, the slipperiness to the transport roll becomes good when the polypropylene film after being biaxially stretched is wound into a roll shape. As a result, suitable transportability is obtained, and wrinkles and unwinding are suppressed.
The method for measuring the number of fibrils, the fibril area, and the area per number of fibrils is as follows.
<フィブリル数、フィブリル面積、及び、フィブリルの個数当たりの面積の測定方法>
 光干渉式非接触表面形状測定装置として、(株)菱化システム製の「VertScan2.0(型式:R5500GML)」を使用する。
 まず、WAVEモードを用い、530whiteフィルタ及び1×BODYの鏡筒を適用し、×10対物レンズを用いて、一視野あたり470.92μm×353.16μm(640ピクセル×480ピクセル)の計測を行う。この操作を対象試料(ポリプロピレンフィルム)の流れ方向・幅方向ともに中央となる箇所から流れ方向に1cm間隔で10箇所について行う。
 次に、得られたデータに対して、メディアンフィルタ(3×3)によるノイズ除去処理を行ない、その後、カットオフ値30μmによるガウシアンフィルタ処理を行い、うねり成分を除去する。
 上述のようにして得られた10箇所の各表面形状データについて、山側高さが0.05μm以上の領域を白塗りし、山側高さが0.05μmより小さい領域を黒塗りして、二値化画像(262ピクセル×194ピクセル)を得る。
 次に、画像解析ソフトImage Pro Plus5.1J(日本ローバー製)を使用して、上記で得た二値化画像の輝度レンジが128以上255以下のオブジェクトの個数とその面積を測定する。なお、オブジェクトの抽出の際、画像の下側の境界上にあるものと左側の境界上にあるものは除外する。抽出したオブジェクトについて、面積が50ピクセル以上のオブジェクトの個数をフィブリル数とし、面積が50ピクセル以上のオブジェクトの面積の和をフィブリル面積とする。50ピクセルより面積が小さいオブジェクトはノイズとして除去する。また、面積が50ピクセル以上のオブジェクトについて面積の和を算出したのち、算出した和をフィブリル数で除算したものをフィブリルの個数当たりの面積(ピクセル/個)とする。最後に、フィブリルの個数当たりの面積に関して、単位をμm/個に換算する。
<Measuring method of number of fibrils, area of fibrils, and area per number of fibrils>
As the optical interference type non-contact surface shape measuring device, "VertScan 2.0 (model: R5500GML)" manufactured by Ryoka System Co., Ltd. is used.
First, using the WAVE mode, a 530-white filter and a 1 × BODY lens barrel are applied, and a measurement of 470.92 μm × 353.16 μm (640 pixels × 480 pixels) per field of view is performed using an × 10 objective lens. This operation is performed at 10 locations at 1 cm intervals in the flow direction from the central location in both the flow direction and the width direction of the target sample (polypropylene film).
Next, the obtained data is subjected to noise removal processing by a median filter (3 × 3), and then Gaussian filter treatment with a cutoff value of 30 μm is performed to remove undulation components.
For each surface shape data of the 10 locations obtained as described above, a region having a mountain side height of 0.05 μm or more is painted white, and a region having a mountain side height smaller than 0.05 μm is painted black to obtain binary values. A converted image (262 pixels × 194 pixels) is obtained.
Next, using the image analysis software Image Pro Plus 5.1J (manufactured by Nippon Rover), the number of objects having a brightness range of 128 or more and 255 or less in the binarized image obtained above and their areas are measured. When extracting objects, those on the lower boundary of the image and those on the left boundary are excluded. For the extracted objects, the number of objects having an area of 50 pixels or more is defined as the number of fibrils, and the sum of the areas of objects having an area of 50 pixels or more is defined as the fibril area. Objects with an area smaller than 50 pixels are removed as noise. Further, after calculating the sum of the areas of an object having an area of 50 pixels or more, the calculated sum divided by the number of fibrils is defined as the area (pixels / piece) per number of fibrils. Finally, with respect to the area per number of fibrils, the unit is converted to μm 2 / piece.
 前記フィブリル数、前記フィブリル面積、及び、前記フィブリルの個数当たりの面積を前記数値範囲内とする方法については、特に限定されないが、キャストシートの製膜条件(例えば、キャスト冷却温度等)やポリプロピレン樹脂の特性(分子量、重合度、分子量分布等)により制御することができる。前記キャスト冷却温度は、キャストシート製膜時の樹脂温度、エアギャップ、金属ドラムの表面温度等により制御することができる。 The method for setting the number of fibrils, the fibril area, and the area per number of fibrils within the numerical range is not particularly limited, but the film forming conditions of the cast sheet (for example, cast cooling temperature, etc.) and polypropylene resin are not particularly limited. It can be controlled by the characteristics of (molecular weight, degree of polymerization, molecular weight distribution, etc.). The cast cooling temperature can be controlled by the resin temperature at the time of forming the cast sheet film, the air gap, the surface temperature of the metal drum, and the like.
 前記ポリプロピレンフィルムの100℃での直流絶縁破壊強度ESは、510VDC/μm以上であることが好ましく、525VDC/μm以上であることがより好ましく、540VDC/μm以上であることがさらに好ましい。前記ポリプロピレンフィルムの100℃での直流絶縁破壊強度ESは、高いほど好ましいが、例えば、600VDC/μm以下、570VDC/μm以下、550VDC/μm以下である。 DC breakdown strength ES in 100 ° C. of the polypropylene film is preferably at 510V DC / [mu] m or more, more preferably 525V DC / [mu] m or more, and still more preferably 540V DC / [mu] m or more. DC breakdown strength ES in 100 ° C. of the polypropylene film is preferably as high, for example, 600V DC / [mu] m or less, 570V DC / [mu] m or less, or less 550V DC / μm.
 前記ポリプロピレンフィルムの120℃での直流絶縁破壊強度ESは、485VDC/μm以上であることが好ましく、490VDC/μm以上であることがより好ましい。前記ポリプロピレンフィルムの125℃での直流絶縁破壊強度ESは、高いほど好ましいが、例えば、600VDC/μm以下、550VDC/μm以下である。 DC breakdown strength ES in 120 ° C. of the polypropylene film is preferably at 485V DC / μm or more, and more preferably 490V DC / [mu] m or more. The higher the DC dielectric breakdown strength ES of the polypropylene film at 125 ° C. is, the more preferable, but for example, it is 600 V DC / μm or less and 550 V DC / μm or less.
 前記ポリプロピレンフィルムの灰分は、前記ポリプロピレンフィルムに対して6×10ppm以下(60ppm以下)であることが好ましく、5×10ppm以下(50ppm以下)であることがより好ましく、4×10ppm以下(40ppm以下)であることがさらに好ましく、3×10ppm以下(30ppm以下)が特に好ましい。前記灰分は、0×10ppm以上が好ましく、1ppm以上がより好ましく、5ppm以上がさらに好ましく、1×10ppm以上(10ppm以上)が特に好ましい。前記灰分が前記数値範囲内であると、極性をもった低分子成分の生成を抑制しつつコンデンサとしての電気特性がより向上する。前記灰分は、実施例に記載の方法により得られる値をいう。 The ash content of the polypropylene film is preferably 6 × 10 ppm or less (60 ppm or less), more preferably 5 × 10 ppm or less (50 ppm or less), and 4 × 10 ppm or less (40 ppm or less) with respect to the polypropylene film. Is more preferable, and 3 × 10 ppm or less (30 ppm or less) is particularly preferable. The ash content is preferably 0 × 10 ppm or more, more preferably 1 ppm or more, further preferably 5 ppm or more, and particularly preferably 1 × 10 ppm or more (10 ppm or more). When the ash content is within the numerical range, the electrical characteristics of the capacitor are further improved while suppressing the formation of polar low molecular weight components. The ash content refers to a value obtained by the method described in Examples.
 前記ポリプロピレンフィルムは、厚さが0.8μm以上5μm以下である。前記ポリプロピレンフィルムの厚さは、4.0μm以下が好ましく、3.0μm以下がより好ましい。
また、前記ポリプロピレンフィルムの厚さは、1.5μm以上が好ましく、2.0μm以上がより好ましい。前記ポリプロピレンフィルムの厚さが5μm以下であるため、コンデンサ素子としたときの単位体積当たりの静電容量を大きくすることができ、コンデンサ用として好適に使用できる。また、前記ポリプロピレンフィルムの厚さが0.8μm以上であるため、フィルムの製膜安定性の観点で優れる。
The polypropylene film has a thickness of 0.8 μm or more and 5 μm or less. The thickness of the polypropylene film is preferably 4.0 μm or less, more preferably 3.0 μm or less.
The thickness of the polypropylene film is preferably 1.5 μm or more, more preferably 2.0 μm or more. Since the thickness of the polypropylene film is 5 μm or less, the capacitance per unit volume of a capacitor element can be increased, and the polypropylene film can be suitably used for a capacitor. Further, since the thickness of the polypropylene film is 0.8 μm or more, it is excellent from the viewpoint of film formation stability.
 前記ポリプロピレンフィルムの厚さは、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定すること以外、JIS-C2330に準拠して測定した値をいう。 The thickness of the polypropylene film refers to a value measured in accordance with JIS-C2330, except that it is measured at 100 ± 10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu.
 前記ポリプロピレンフィルムは、基本的には、同時二軸延伸フィルムである。前記ポリプロピレンフィルムが、同時二軸延伸フィルムであると、前記差[(Δnyz)-(Δnxz)]、前記比[(引張弾性率TD)/(引張弾性率MD)]、及び、前記引張弾性率MDが前記数値範囲内であり、且つ、厚さが薄い(前記数値範囲内である)ポリプロピレンフィルムとし易い。ただし、前記ポリプロピレンフィルムは、前記差[(Δnyz)-(Δnxz)]、前記比[(引張弾性率TD)/(引張弾性率MD)]、前記引張弾性率MD、及び、前記ポリプロピレンフィルムの厚さが、前記数値範囲内である限り、逐次二軸延伸フィルムである場合、一軸延伸フィルムである場合、無延伸フィルムである場合を含む。 The polypropylene film is basically a simultaneous biaxially stretched film. When the polypropylene film is a simultaneous biaxially stretched film, the difference [(Δnyz) − (Δnxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the tensile modulus It is easy to obtain a polypropylene film having an MD within the numerical range and having a thin thickness (within the numerical range). However, the polypropylene film has the difference [(Δnyz) − (Δnxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], the tensile modulus MD, and the thickness of the polypropylene film. As long as it is within the above numerical range, it includes a case where it is a sequentially biaxially stretched film, a case where it is a uniaxially stretched film, and a case where it is a non-stretched film.
 前記ポリプロピレンフィルム及び後述する金属層一体型ポリプロピレンフィルムは、各々ロール状に巻回されており、フィルムロールの形態であることが好ましい。前記フィルムロールは、巻き芯(コア)を有していてもよいし、有していなくてもよい。前記フィルムロールは、巻き芯(コア)を有することが好ましい。前記フィルムロールの巻き芯の材質としては特に限定されない。前記材質としては、紙(紙管)、樹脂、繊維強化プラスチック(FRP)、金属等が挙げられる。前記樹脂としては、一例として、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、フェノール樹脂、エポキシ樹脂、アクリロニトリル-ブタジエン-スチレン共重合体等が挙げられる。前記繊維強化プラスチックを構成するプラスチックとしては、ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、熱可塑性樹脂等が挙げられる。前記繊維強化プラスチックを構成する繊維としては、ガラス繊維、アラミド繊維(ケブラー(登録商標)繊維)、カーボン繊維、ポリパラフェニレンベンズオキサゾール繊維(ザイロン(登録商標)繊維)、ポリエチレン繊維、ボロン繊維等が挙げられる。前記金属としては、鉄、アルミニウム、ステンレス等が挙げられる。前記フィルムロールの巻き芯は、前記樹脂を紙管に含浸させてなる巻き芯も包含する。この場合、前記巻き芯の材質は樹脂として分類される。 The polypropylene film and the polypropylene film integrated with a metal layer, which will be described later, are each wound in a roll shape, and are preferably in the form of a film roll. The film roll may or may not have a winding core. The film roll preferably has a winding core. The material of the winding core of the film roll is not particularly limited. Examples of the material include paper (paper tube), resin, fiber reinforced plastic (FRP), metal and the like. Examples of the resin include polyvinyl chloride, polyethylene, polypropylene, phenol resin, epoxy resin, acrylonitrile-butadiene-styrene copolymer and the like. Examples of the plastic constituting the fiber reinforced plastic include polyester resin, epoxy resin, vinyl ester resin, phenol resin, and thermoplastic resin. Examples of the fibers constituting the fiber-reinforced plastic include glass fibers, aramid fibers (Kevlar (registered trademark) fibers), carbon fibers, polyparaphenylene benzoxazole fibers (Zylon (registered trademark) fibers), polyethylene fibers, and boron fibers. Can be mentioned. Examples of the metal include iron, aluminum, stainless steel and the like. The winding core of the film roll also includes a winding core formed by impregnating a paper tube with the resin. In this case, the material of the winding core is classified as resin.
 前記ポリプロピレンフィルムは、主成分としてポリプロピレン樹脂を含有する。本明細書において、主成分としてポリプロピレン樹脂を含有する、とは、ポリプロピレンフィルム全体に対して(ポリプロピレンフィルム全体を100質量%としたときに)、ポリプロピレン樹脂を50質量%以上含有することをいう。ポリプロピレンフィルム全体に対する前記ポリプロピレン樹脂の含有量は、好ましくは、75質量%以上であり、より好ましくは、90質量%以上である。前記ポリプロピレン樹脂の含有量の上限は、ポリプロピレンフィルム全体に対して、例えば、100質量%、98質量%等である。 The polypropylene film contains a polypropylene resin as a main component. In the present specification, the inclusion of polypropylene resin as a main component means that the polypropylene resin is contained in an amount of 50% by mass or more with respect to the entire polypropylene film (when the entire polypropylene film is 100% by mass). The content of the polypropylene resin with respect to the entire polypropylene film is preferably 75% by mass or more, and more preferably 90% by mass or more. The upper limit of the content of the polypropylene resin is, for example, 100% by mass, 98% by mass, or the like with respect to the entire polypropylene film.
 前記ポリプロピレン樹脂は、特に限定されず、1種類を単独で使用してもよく、2種類以上を併用してもよい。前記ポリプロピレン樹脂は、なかでも、キャストシートとした際にβ型球晶を形成するポリプロピレン樹脂が好適である。 The polypropylene resin is not particularly limited, and one type may be used alone, or two or more types may be used in combination. Among the polypropylene resins, a polypropylene resin that forms β-type spherulites when used as a cast sheet is preferable.
 前記ポリプロピレン樹脂の重量平均分子量Mwは、25万以上45万以下であることが好ましく、25万以上40万以下であることがより好ましい。前記ポリプロピレン樹脂の重量平均分子量Mwが25万以上45万以下であると、樹脂流動性が適度となる。その結果、キャストシートの厚さの制御が容易であり、薄い延伸フィルムを作製することが容易となる。また、キャストシートに適度な延伸性を与えることができる。ポリプロピレン樹脂を2種以上使用する場合、上記Mwが25万以上33万未満のポリプロピレン樹脂と上記Mwが33万以上45万以下のポリプロピレン樹脂を併用することが好ましい。 The weight average molecular weight Mw of the polypropylene resin is preferably 250,000 or more and 450,000 or less, and more preferably 250,000 or more and 400,000 or less. When the weight average molecular weight Mw of the polypropylene resin is 250,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, the thickness of the cast sheet can be easily controlled, and a thin stretched film can be easily produced. In addition, the cast sheet can be provided with appropriate stretchability. When two or more kinds of polypropylene resins are used, it is preferable to use the polypropylene resin having Mw of 250,000 or more and less than 330,000 and the polypropylene resin having Mw of 330,000 or more and 450,000 or less in combination.
 前記ポリプロピレン樹脂の分子量分布[(重量平均分子量Mw)/(数平均分子量Mn)]は、5以上12以下であることが好ましく、5以上11以下であることがより好ましく、5以上10以下であることがさらに好ましい。ポリプロピレン樹脂を2種以上使用する場合、上記分子量分布が5以上8.5未満のポリプロピレン樹脂と上記分子量分布が8.5以上11以下のポリプロピレン樹脂を併用することが好ましい。 The molecular weight distribution [(weight average molecular weight Mw) / (number average molecular weight Mn)] of the polypropylene resin is preferably 5 or more and 12 or less, more preferably 5 or more and 11 or less, and 5 or more and 10 or less. Is even more preferable. When two or more kinds of polypropylene resins are used, it is preferable to use the polypropylene resin having a molecular weight distribution of 5 or more and less than 8.5 and the polypropylene resin having a molecular weight distribution of 8.5 or more and 11 or less in combination.
 本明細書において、前記ポリプロピレン樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、及び、分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフ(GPC)装置を用いて測定した値である。より具体的には、東ソー株式会社製、示差屈折計(RI)内蔵型高温GPC測定機のHLC-8121GPC-HT(商品名)を使用して測定した値である。GPCカラムとして、東ソー株式会社製の3本のTSKgel GMHHR-H(20)HTを連結して使用する。カラム温度を140℃に設定して、溶離液としてトリクロロベンゼンを1.0ml/10分の流速で流して、MwとMnの測定値を得る。東ソー株式会社製の標準ポリスチレンを用いてその分子量Mに関する検量線を作成して、測定値をポリスチレン値に換算して、Mw、及び、Mnを得る。ここで、標準ポリスチレンの分子量Mの底10の対数を、対数分子量(「Log(M)」)という。 In the present specification, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) of the polypropylene resin are values measured using a gel permeation chromatograph (GPC) apparatus. is there. More specifically, it is a value measured using HLC-8121GPC-HT (trade name) of a high temperature GPC measuring machine with a built-in differential refractometer (RI) manufactured by Tosoh Corporation. As a GPC column, three TSKgel GMHHR-H (20) HTs manufactured by Tosoh Corporation are connected and used. The column temperature is set to 140 ° C., and trichlorobenzene is flowed as an eluent at a flow rate of 1.0 ml / 10 minutes to obtain measured values of Mw and Mn. A calibration curve relating to the molecular weight M is prepared using standard polystyrene manufactured by Tosoh Corporation, and the measured values are converted into polystyrene values to obtain Mw and Mn. Here, the logarithm of the base 10 of the molecular weight M of standard polystyrene is referred to as a logarithmic molecular weight (“Log (M)”).
 ポリプロピレン樹脂の微分分布値差Dが、-5%以上14%以下であることが好まく、-4%以上12%以下であることがより好ましく、-4%以上10%以下であることがさらに好ましい。ここで、「微分分布値差D」は、分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差である。
 なお、「微分分布値差Dが、-5%以上14%以下である」とは、ポリプロピレン樹脂の有するMwの値より、低分子量側の分子量1万から10万の成分(以下、「低分子量成分」ともいう)の代表的な分布値としての対数分子量Log(M)=4.5の成分と、高分子量側の分子量100万前後の成分(以下、「高分子量成分」ともいう)の代表的な分布値としてのLog(M)=6.0前後の成分とを比較したときに、差分が正の場合は低分子量成分の方が多く、差分が負の場合は高分子量成分の方が多いと理解できる。
Differential distribution value difference D M of the polypropylene resin, rather preferred that at most 5% to 14%, more preferably at most 12% -4% or more, that is 10% less than -4% More preferred. Here, the "differential distribution value difference DM " is the differential distribution value when the logarithmic molecular weight Log (M) = 4.5 to the differential distribution value when Log (M) = 6.0 in the molecular weight differential distribution curve. Is the difference minus.
In addition, "differential distribution value difference DM is -5% or more and 14% or less" means a component having a molecular weight of 10,000 to 100,000 on the low molecular weight side of the Mw value of the polypropylene resin (hereinafter, "low"). A component having a logarithmic molecular weight Log (M) = 4.5 as a typical distribution value of (also referred to as "molecular weight component") and a component having a molecular weight of about 1 million on the high molecular weight side (hereinafter, also referred to as "high molecular weight component"). When comparing the components with Log (M) = 6.0 as a typical distribution value, if the difference is positive, there are more low molecular weight components, and if the difference is negative, there are more high molecular weight components. It can be understood that there are many.
 つまり、分子量分布Mw/Mnが5~12であるといっても単に分子量分布幅の広さを表しているに過ぎず、その中の高分子量成分、低分子量成分の量的な関係までは分からない。そこで、安定製膜性とキャスト原反シートの厚み均一性の観点から、ポリプロピレン樹脂は、広い分子量分布を有すると同時に、低分子量成分を適度に含むようにするために分子量1万から10万の成分を、分子量100万の成分と比較して、微分分布値差が-5%以上14%以下となるようにポリプロピレン樹脂を使用することが好ましい。 That is, even if the molecular weight distribution Mw / Mn is 5 to 12, it merely indicates the width of the molecular weight distribution, and the quantitative relationship between the high molecular weight component and the low molecular weight component in it is not known. Absent. Therefore, from the viewpoint of stable film forming property and thickness uniformity of cast raw sheet, polypropylene resin has a wide molecular weight distribution and at the same time has a molecular weight of 10,000 to 100,000 in order to appropriately contain low molecular weight components. It is preferable to use a polypropylene resin so that the difference in differential distribution value is -5% or more and 14% or less as compared with the component having a molecular weight of 1 million.
 微分分布値は、GPCを用いて、次のようにして得た値である。GPCの示差屈折(RI)検出計によって得られる、時間に対する強度を示す曲線(一般には、「溶出曲線」ともいう)を使用する。標準ポリスチレンを用いて得た検量線を使用して、時間軸を対数分子量(Log(M))に変換することで、溶出曲線をLog(M)に対する強度を示す曲線に変換する。RI検出強度は、成分濃度と比例関係にあるので、強度を示す曲線の全面積を100%とすると、対数分子量Log(M)に対する積分分布曲線を得ることができる。微分分布曲線は、この積分分布曲線をLog(M)で、微分することによって得る。したがって、「微分分布」とは、濃度分率の分子量に対する微分分布を意味する。この曲線から、特定のLog(M)のときの微分分布値を読みとる。 The differential distribution value is a value obtained as follows using GPC. A curve (commonly referred to as the "elution curve") indicating the intensity over time obtained by a GPC differential refractometer (RI) detector is used. Using a calibration curve obtained using standard polystyrene, the time axis is converted to a logarithmic molecular weight (Log (M)) to convert the elution curve into a curve showing the strength against Log (M). Since the RI detection intensity is proportional to the component concentration, an integral distribution curve with respect to the logarithmic molecular weight Log (M) can be obtained, assuming that the total area of the curve showing the intensity is 100%. The differential distribution curve is obtained by differentiating this integral distribution curve with Log (M). Therefore, the "differential distribution" means the differential distribution of the concentration fraction with respect to the molecular weight. From this curve, the differential distribution value at a specific Log (M) is read.
 前記ポリプロピレン樹脂のヘプタン不溶分(HI)は、96.0%以上であることが好ましく、より好ましくは97.0%以上である。また、前記ポリプロピレン樹脂のヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは99.0%以下である。ここで、ヘプタン不溶分は、多いほど樹脂の立体規則性が高いことを示す。前記ヘプタン不溶分(HI)が、96.0%以上99.5%以下であると、適度に高い立体規則性により、樹脂の結晶性が適度に向上し、高温下での耐電圧性が向上する。一方、キャストシート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。ヘプタン不溶分(HI)の測定方法は、実施例記載の方法による。 The heptane insoluble content (HI) of the polypropylene resin is preferably 96.0% or more, more preferably 97.0% or more. The heptane insoluble content (HI) of the polypropylene resin is preferably 99.5% or less, more preferably 99.0% or less. Here, the larger the amount of heptane insoluble, the higher the stereoregularity of the resin. When the heptane insoluble content (HI) is 96.0% or more and 99.5% or less, the crystallinity of the resin is appropriately improved due to the moderately high stereoregularity, and the withstand voltage at high temperature is improved. To do. On the other hand, the rate of solidification (crystallization) during molding of the cast sheet becomes appropriate, and the cast sheet has an appropriate stretchability. The method for measuring heptane insoluble matter (HI) is as described in Examples.
 前記ポリプロピレン樹脂のメルトフローレート(MFR)は、1.0~8.0g/10minであることが好ましく、1.5~7.0g/10minであることがより好ましく、2.0~6.0g/10minであることがさらに好ましい。前記ポリプロピレン樹脂のメルトフローレートの測定方法は、実施例記載の方法による。 The melt flow rate (MFR) of the polypropylene resin is preferably 1.0 to 8.0 g / 10 min, more preferably 1.5 to 7.0 g / 10 min, and 2.0 to 6.0 g. It is more preferably / 10 min. The method for measuring the melt flow rate of the polypropylene resin is as described in Examples.
 前記ポリプロピレン樹脂のメソペンタッド分率([mmmm])は、99.8%以下であることが好ましく、99.5%以下であることがより好ましく、99.0%以下であることがさらに好ましい。また、前記メソペンタッド分率は、94.0%以上であることが好ましく、94.5%以上であることがより好ましく、95.0%以上がさらに好ましい。メソペンタッド分率が前記数値範囲内であると、適度に高い立体規則性により、樹脂の結晶性が適度に向上し、高温下での耐電圧性が向上する。一方、キャストシート成形の際の固化(結晶化)の速度が適度となり、適度の延伸性を有する。 The mesopentad fraction ([mmmm]) of the polypropylene resin is preferably 99.8% or less, more preferably 99.5% or less, and further preferably 99.0% or less. The mesopentad fraction is preferably 94.0% or more, more preferably 94.5% or more, still more preferably 95.0% or more. When the mesopentad fraction is within the above numerical range, the crystallinity of the resin is appropriately improved due to the moderately high stereoregularity, and the withstand voltage resistance at a high temperature is improved. On the other hand, the rate of solidification (crystallization) during molding of the cast sheet becomes appropriate, and the cast sheet has an appropriate stretchability.
 メソペンタッド分率([mmmm])は、高温核磁気共鳴(NMR)測定によって得ることができる立体規則性の指標である。本明細書において、メソペンタッド分率([mmmm])は、日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500を利用して測定した値をいう。観測核は、13C(125MHz)であり、測定温度は、135℃、ポリプロピレン樹脂を溶解する溶媒にはo-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1))を用いる。高温NMRによる測定方法は、例えば、「日本分析化学・高分子分析研究懇談会編、新版  高分子分析ハンドブック、紀伊国屋書店、1995年、第610頁」に記載の方法を参照して行うことができる。メソペンタッド分率([mmmm])のより詳細な測定方法は、実施例に記載の方法による。 The mesopentad fraction ([mm mm]) is an index of stereoregularity that can be obtained by high temperature nuclear magnetic resonance (NMR) measurements. In the present specification, the mesopentad fraction ([mm mm]) refers to a value measured using a high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR) manufactured by JEOL Ltd., JNM-ECP500. The observation nucleus is 13 C (125 MHz), the measurement temperature is 135 ° C., and the solvent for dissolving the polypropylene resin is o-dichlorobenzene (ODCB: ODCB and deuterated ODCB mixed solvent (mixing ratio = 4/1). )) Is used. The measurement method by high-temperature NMR can be performed by referring to the method described in, for example, "Japan Analytical Chemistry / Polymer Analysis Research Council, New Edition Polymer Analysis Handbook, Kinokuniya Bookstore, 1995, p. 610". it can. A more detailed method for measuring the mesopentad fraction ([mm mm]) is as described in Examples.
 前記ポリプロピレン樹脂の灰分は、6×10ppm以下(60ppm以下)が好ましく、5×10ppm以下(50ppm以下)がより好ましく、4×10ppm以下(40ppm以下)であることがさらに好ましく、3×10ppm以下(30ppm以下)が特に好ましい。また、前記ポリプロピレン樹脂の灰分は、0×10ppm以上が好ましく、1ppm以上がより好ましく、5ppm以上がさらに好ましく、1×10ppm以上(10ppm以上)が特に好ましい。前記ポリプロピレン樹脂の灰分が上記好ましい範囲内である場合、極性をもった低分子成分の生成を抑制しつつコンデンサとしての電気特性がより向上する。前記灰分は、実施例に記載の方法により得られる値をいう。 The ash content of the polypropylene resin is preferably 6 × 10 ppm or less (60 ppm or less), more preferably 5 × 10 ppm or less (50 ppm or less), further preferably 4 × 10 ppm or less (40 ppm or less), and 3 × 10 ppm or less (3 × 10 ppm or less). 30 ppm or less) is particularly preferable. The ash content of the polypropylene resin is preferably 0 × 10 ppm or more, more preferably 1 ppm or more, further preferably 5 ppm or more, and particularly preferably 1 × 10 ppm or more (10 ppm or more). When the ash content of the polypropylene resin is within the above preferable range, the electrical characteristics as a capacitor are further improved while suppressing the formation of polar low molecular weight components. The ash content refers to a value obtained by the method described in Examples.
 前記ポリプロピレン樹脂は、一般的に公知の重合方法を用いて製造することができる。前記重合方法としては、例えば、気相重合法、塊状重合法及びスラリー重合法を例示できる。 The polypropylene resin can be produced by using a generally known polymerization method. Examples of the polymerization method include a vapor phase polymerization method, a massive polymerization method and a slurry polymerization method.
 重合は、1つの重合反応機を用いる単段(一段)重合であってもよく、2つ以上の重合反応器を用いた多段重合であってもよい。また、重合は、反応器中に水素又はコモノマーを分子量調整剤として添加して行ってもよい。 The polymerization may be a single-stage (one-stage) polymerization using one polymerization reactor, or a multi-stage polymerization using two or more polymerization reactors. Further, the polymerization may be carried out by adding hydrogen or a comonomer as a molecular weight adjusting agent to the reactor.
 重合の際の触媒には、一般的に公知のチーグラー・ナッタ触媒を使用することができ、前記ポリプロピレン樹脂を得ることができる限り特に限定されない。前記触媒は、助触媒成分やドナーを含んでもよい。触媒や重合条件を調整することによって、分子量、分子量分布、立体規則性等を制御することができる。 A generally known Ziegler-Natta catalyst can be used as the catalyst for polymerization, and the polypropylene resin is not particularly limited as long as it can be obtained. The catalyst may include a co-catalyst component or a donor. By adjusting the catalyst and polymerization conditions, the molecular weight, molecular weight distribution, stereoregularity, etc. can be controlled.
 前記ポリプロピレン樹脂の分子量分布等は、樹脂混合(ブレンド)により調整することができる。例えば、互いに分子量や分子量分布の異なるもの2種類以上の樹脂を混合する方法が挙げられる。一般的には、主樹脂に、それより平均分子量が高い樹脂、又は、低い樹脂を、樹脂全体を100質量%とすると、主樹脂が55質量%以上90質量%以下である2種のポリプロピレン混合系が、低分子量成分量の調整が行い易いため、好ましい。 The molecular weight distribution of the polypropylene resin can be adjusted by mixing (blending) the resins. For example, a method of mixing two or more kinds of resins having different molecular weights and molecular weight distributions from each other can be mentioned. Generally, when the main resin is a resin having a higher average molecular weight or a resin having a lower average molecular weight, and the total amount of the resin is 100% by mass, the main resin is a mixture of two types of polypropylene having 55% by mass or more and 90% by mass or less. The system is preferable because the amount of low molecular weight components can be easily adjusted.
 なお、前記の混合調整方法を採用する場合、平均分子量の目安として、メルトフローレート(MFR)を用いても構わない。この場合、主樹脂と添加樹脂のMFRの差は、1~30g/10分程度としておくのが、調整の際の利便性の観点から好ましい。 When the above mixing adjustment method is adopted, the melt flow rate (MFR) may be used as a guideline for the average molecular weight. In this case, the difference in MFR between the main resin and the added resin is preferably about 1 to 30 g / 10 minutes from the viewpoint of convenience at the time of adjustment.
 樹脂混合する方法としては、特に制限はないが、主樹脂と添加樹脂の重合粉、又は、ペレットを、ミキサー等を用いてドライブレンドする方法や、主樹脂と添加樹脂の重合粉、又は、ペレットを、混練機に供給し、溶融混練してブレンド樹脂を得る方法が挙げられる。 The method of mixing the resins is not particularly limited, but a method of dry-blending the polymer powder or pellets of the main resin and the additive resin using a mixer or the like, the polymer powder of the main resin and the additive resin, or pellets. Is supplied to a kneader and melt-kneaded to obtain a blended resin.
 前記ミキサーや前記混練機は、特に制限されない。前記混練機は、1軸スクリュータイプ、2軸スクリュータイプ、それ以上の多軸スクリュータイプの何れでもよい。2軸以上のスクリュータイプの場合、同方向回転、異方向回転のどちらの混練タイプでも構わない。 The mixer and the kneader are not particularly limited. The kneader may be a single-screw type, a double-screw type, or a multi-screw type or more. In the case of a screw type with two or more axes, either a kneading type that rotates in the same direction or in a different direction may be used.
 溶融混練によるブレンドの場合は、良好な混練物が得られれば、混練温度は特に制限されない。一般的には、200℃から300℃の範囲であり、樹脂の劣化を抑制する観点から、230℃から270℃が好ましい。また、樹脂の混練混合の際の劣化を抑制するため、混練機に窒素などの不活性ガスをパージしても構わない。溶融混練された樹脂は、一般的に公知の造粒機を用いて、適当な大きさにペレタイズしてもよい。これにより、混合ポリプロピレン原料樹脂ペレットを得ることができる。 In the case of blending by melt kneading, the kneading temperature is not particularly limited as long as a good kneaded product is obtained. Generally, the temperature is in the range of 200 ° C. to 300 ° C., preferably 230 ° C. to 270 ° C. from the viewpoint of suppressing deterioration of the resin. Further, in order to suppress deterioration during kneading and mixing of the resin, the kneader may be purged with an inert gas such as nitrogen. The melt-kneaded resin may be pelletized to an appropriate size using a generally known granulator. As a result, mixed polypropylene raw material resin pellets can be obtained.
 以下、ポリプロピレン樹脂を2種以上使用する場合における各ポリプロピレン樹脂について説明する。 Hereinafter, each polypropylene resin when two or more kinds of polypropylene resins are used will be described.
 ポリプロピレン樹脂を2種以上使用する場合、下記ポリプロピレン樹脂A-1と下記ポリプロピレン樹脂B-1、下記ポリプロピレン樹脂A-2と下記ポリプロピレン樹脂B-2、又は、下記ポリプロピレン樹脂A-3と下記ポリプロピレン樹脂B-3の組み合わせが好適なものとして挙げられる。本実施形態において、ポリプロピレン樹脂Aという表現は、ポリプロピレン樹脂A-1、ポリプロピレン樹脂A-2及びポリプロピレン樹脂A-3という概念を含む。ポリプロピレン樹脂Bという表現は、ポリプロピレン樹脂B-1、ポリプロピレン樹脂B-2及びポリプロピレン樹脂B-3という概念を含む。ポリプロピレン樹脂A、A-1、A-2、A-3、ポリプロピレン樹脂B、B-1、B-2、B-3は、いずれも直鎖ポリプロピレン樹脂であることが好ましい。
 <ポリプロピレン樹脂A>
  (ポリプロピレン樹脂A-1)
 微分分布値差Dが8.0%以上であるポリプロピレン樹脂。
  (ポリプロピレン樹脂A-2)
 ヘプタン不溶分(HI)が98.5%以下であるポリプロピレン樹脂。
  (ポリプロピレン樹脂A-3)
 230℃におけるメルトフローレート(MFR)が4.0~10.0g/10minであるポリプロピレン樹脂。
 <ポリプロピレン樹脂B>
  (ポリプロピレン樹脂B-1)
 微分分布値差Dが8.0%未満であるポリプロピレン樹脂。
  (ポリプロピレン樹脂B-2)
 ヘプタン不溶分(HI)が98.5%を超えるポリプロピレン樹脂。
  (ポリプロピレン樹脂B-3)
 230℃におけるメルトフローレート(MFR)が0.1~3.9g/10minであるポリプロピレン樹脂。
When two or more kinds of polypropylene resins are used, the following polypropylene resin A-1 and the following polypropylene resin B-1, the following polypropylene resin A-2 and the following polypropylene resin B-2, or the following polypropylene resin A-3 and the following polypropylene resin The combination of B-3 is mentioned as a suitable one. In the present embodiment, the expression polypropylene resin A includes the concepts of polypropylene resin A-1, polypropylene resin A-2, and polypropylene resin A-3. The expression polypropylene resin B includes the concepts of polypropylene resin B-1, polypropylene resin B-2 and polypropylene resin B-3. The polypropylene resins A, A-1, A-2, A-3, polypropylene resins B, B-1, B-2, and B-3 are all preferably linear polypropylene resins.
<Polypropylene resin A>
(Polypropylene resin A-1)
A polypropylene resin having a differential distribution value difference DM of 8.0% or more.
(Polypropylene resin A-2)
A polypropylene resin having a heptane insoluble content (HI) of 98.5% or less.
(Polypropylene resin A-3)
A polypropylene resin having a melt flow rate (MFR) of 4.0 to 10.0 g / 10 min at 230 ° C.
<Polypropylene resin B>
(Polypropylene resin B-1)
Polypropylene differential distribution value difference D M is less than 8.0%.
(Polypropylene resin B-2)
Polypropylene resin with heptane insoluble content (HI) exceeding 98.5%.
(Polypropylene resin B-3)
A polypropylene resin having a melt flow rate (MFR) of 0.1 to 3.9 g / 10 min at 230 ° C.
 ポリプロピレン樹脂Aの重量平均分子量Mwは、25万以上45万以下であることが好ましく、25万以上40万以下であることがより好ましく、25万以上34万以下であることがさらに好ましい。ポリプロピレン樹脂Aの重量平均分子量Mwが25万以上45万以下であると、樹脂流動性が適度となる。その結果、キャスト原反シートの厚さの制御が容易であり、薄い二軸延伸ポリプロピレンフィルムを作製することが容易となる。また、キャスト原反シートおよび二軸延伸ポリプロピレンフィルムの厚みにムラが発生し難くなり、適度な延伸性が得られるので好ましい。 The weight average molecular weight Mw of the polypropylene resin A is preferably 250,000 or more and 450,000 or less, more preferably 250,000 or more and 400,000 or less, and further preferably 250,000 or more and 340,000 or less. When the weight average molecular weight Mw of the polypropylene resin A is 250,000 or more and 450,000 or less, the resin fluidity becomes appropriate. As a result, the thickness of the cast raw sheet can be easily controlled, and a thin biaxially stretched polypropylene film can be easily produced. In addition, the thickness of the cast raw sheet and the biaxially stretched polypropylene film is less likely to be uneven, and appropriate stretchability can be obtained, which is preferable.
 ポリプロピレン樹脂Aの分子量分布Mw/Mnは、8.5以上12.0以下であることが好ましく、8.5以上11.0以下であることがより好ましく、9.0以上11.0以下であることがさらに好ましい。 The molecular weight distribution Mw / Mn of the polypropylene resin A is preferably 8.5 or more and 12.0 or less, more preferably 8.5 or more and 11.0 or less, and 9.0 or more and 11.0 or less. Is even more preferable.
 ポリプロピレン樹脂Aの分子量分布Mw/Mnが上記好ましい範囲内であると、キャスト原反シートおよび二軸延伸ポリプロピレンフィルムの厚みにムラが発生し難くなり、適度な延伸性が得られるので好ましい。 When the molecular weight distribution Mw / Mn of the polypropylene resin A is within the above-mentioned preferable range, unevenness is less likely to occur in the thickness of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability can be obtained, which is preferable.
 ポリプロピレン樹脂Aの微分分布値差Dは、8.0%以上が好ましく、8.0%以上18.0%以下であることがより好ましく、8.5%以上17.0%以下であることがさらに好ましく、9.0%以上16.0%以下であることが特に好ましい。 Polypropylene differential distribution value difference D M of the resin A is preferably at least 8.0%, more preferably 8.0% or more and 18.0% or less, or less 17.0 percent 8.5% or more Is more preferable, and 9.0% or more and 16.0% or less are particularly preferable.
 微分分布値差Dが、8.0%以上18.0%以下である場合、低分子量成分を、高分子量成分と比較すると、8.0%以上18.0%以下の割合で多く含む。したがって、延伸工程での破断頻度を低減することができ、連続成膜性が向上するため、好ましい。 Differential distribution value difference D M is, if 18.0% or less 8.0% or more, the low molecular weight component, rich in a ratio of when compared to high molecular weight components, 18.0% 8.0% inclusive. Therefore, it is preferable because the frequency of breakage in the stretching step can be reduced and the continuous film forming property is improved.
 ポリプロピレン樹脂Aのヘプタン不溶分(HI)は、96.0%以上であることが好ましく、より好ましくは97.0%以上である。また、ポリプロピレン樹脂Aのヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは98.5%以下であり、さらに好ましくは98.0%以下である。 The heptane insoluble content (HI) of polypropylene resin A is preferably 96.0% or more, more preferably 97.0% or more. The heptane insoluble content (HI) of the polypropylene resin A is preferably 99.5% or less, more preferably 98.5% or less, still more preferably 98.0% or less.
 ポリプロピレン樹脂Aの230℃におけるメルトフローレート(MFR)は、1.0~15.0g/10minであることが好ましく、2.0~10.0g/10minであることがより好ましく、4.0~10.0g/10minであることがさらに好ましく、4.3~6.0g/10minが特に好ましい。ポリプロピレン樹脂Aの230℃におけるMFRが上記範囲内である場合、溶融状態での流動特性に優れるため、メルトフラクチャーといった不安定流動が発生しにくく、また、延伸時の破断も抑えられる。したがって、膜厚均一性が良好であるため、絶縁破壊の起こり易い薄肉部の形成が抑制されるという利点がある。 The melt flow rate (MFR) of the polypropylene resin A at 230 ° C. is preferably 1.0 to 15.0 g / 10 min, more preferably 2.0 to 10.0 g / 10 min, and 4.0 to 10.0 to 10. It is more preferably 10.0 g / 10 min, and particularly preferably 4.3 to 6.0 g / 10 min. When the MFR of the polypropylene resin A at 230 ° C. is within the above range, the flow characteristics in the molten state are excellent, so that unstable flow such as melt fracture is unlikely to occur, and fracture during stretching is suppressed. Therefore, since the film thickness uniformity is good, there is an advantage that the formation of a thin-walled portion where dielectric breakdown is likely to occur is suppressed.
 ポリプロピレン樹脂Aの含有率は、二軸延伸ポリプロピレンフィルム全体に対して55質量%以上90質量%以下であることが好ましく、60質量%以上85質量%以下であることがより好ましく、60質量%以上80質量%以下であることがさらに好ましい。 The content of the polypropylene resin A is preferably 55% by mass or more and 90% by mass or less, more preferably 60% by mass or more and 85% by mass or less, and 60% by mass or more with respect to the entire biaxially stretched polypropylene film. It is more preferably 80% by mass or less.
 ポリプロピレン樹脂Bの重量平均分子量Mwは、30万以上40万以下であることが好ましく、33万以上38万以下であることがより好ましく、35万以上38万以下であることがさらに好ましい。 The weight average molecular weight Mw of the polypropylene resin B is preferably 300,000 or more and 400,000 or less, more preferably 330,000 or more and 380,000 or less, and further preferably 350,000 or more and 380,000 or less.
 ポリプロピレン樹脂Bの分子量分布Mw/Mnは、6.0以上8.5未満であることが好ましく、6.5以上8.4以下であることがより好ましく、7.0以上8.3以下であることがさらに好ましい。 The molecular weight distribution Mw / Mn of the polypropylene resin B is preferably 6.0 or more and less than 8.5, more preferably 6.5 or more and 8.4 or less, and 7.0 or more and 8.3 or less. Is even more preferable.
 ポリプロピレン樹脂Bの分子量分布Mw/Mnが上記好ましい範囲内であると、キャスト原反シートおよび二軸延伸ポリプロピレンフィルムの厚みにムラが発生し難くなり、適度な延伸性が得られるので好ましい。 When the molecular weight distribution Mw / Mn of the polypropylene resin B is within the above preferable range, unevenness is less likely to occur in the thickness of the cast raw sheet and the biaxially stretched polypropylene film, and appropriate stretchability can be obtained, which is preferable.
 ポリプロピレン樹脂Bの微分分布値差Dは、8.0%未満であることが好ましく、-20.0%以上8.0%未満であることがより好ましく、-10.0%以上7.9%以下であることがさらに好ましく、-5.0%以上7.5%以下であることが特に好ましい。 Differential distribution value difference D M of the polypropylene resin B is preferably less than 8.0%, more preferably less than 8.0% or more -20.0%, -10.0% over 7.9 % Or less is more preferable, and −5.0% or more and 7.5% or less is particularly preferable.
 ポリプロピレン樹脂Bのヘプタン不溶分(HI)は、97.5%以上であることが好ましく、より好ましくは98%以上であり、さらに好ましくは98.5%超えであり、特に好ましくは98.6%以上である。また、ポリプロピレン樹脂Bのヘプタン不溶分(HI)は、99.5%以下であることが好ましく、より好ましくは99%以下である。 The heptane insoluble content (HI) of the polypropylene resin B is preferably 97.5% or more, more preferably 98% or more, still more preferably 98.5% or more, and particularly preferably 98.6%. That is all. The heptane insoluble content (HI) of the polypropylene resin B is preferably 99.5% or less, more preferably 99% or less.
 ポリプロピレン樹脂Bの230℃におけるメルトフローレート(MFR)は、0.1~6.0g/10minであることが好ましく、0.1~5.0g/10minであることがより好ましく、0.1~3.9g/10minであることがさらに好ましい。 The melt flow rate (MFR) of the polypropylene resin B at 230 ° C. is preferably 0.1 to 6.0 g / 10 min, more preferably 0.1 to 5.0 g / 10 min, and 0.1 to 6.0 g / 10 min. It is more preferably 3.9 g / 10 min.
 ポリプロピレン樹脂としてポリプロピレン樹脂Bを使用する場合、ポリプロピレン樹脂Bの含有率は、ポリプロピレン樹脂を100質量%とすると、10質量%以上45質量%以下であることが好ましく、15質量%以上40質量%以下であることがより好ましく、20質量%以上40質量%以下であることがさらに好ましい。 When polypropylene resin B is used as the polypropylene resin, the content of polypropylene resin B is preferably 10% by mass or more and 45% by mass or less, preferably 15% by mass or more and 40% by mass or less, assuming that the polypropylene resin is 100% by mass. It is more preferable that it is 20% by mass or more and 40% by mass or less.
 ポリプロピレン樹脂として、ポリプロピレン樹脂Aとポリプロピレン樹脂Bとを併用する場合、ポリプロピレン樹脂全体を100質量%とすると、55~90重量%のポリプロピレン樹脂Aと、45~10重量%のポリプロピレン樹脂Bとを含むことが好ましく、60~85重量%のポリプロピレン樹脂Aと、40~15重量%のポリプロピレン樹脂Bと含むことがより好ましく、60~80重量%のポリプロピレン樹脂Aと、40~20重量%のポリプロピレン樹脂Bとを含むことが特に好ましい。 When polypropylene resin A and polypropylene resin B are used in combination as the polypropylene resin, 55 to 90% by weight of polypropylene resin A and 45 to 10% by weight of polypropylene resin B are contained, assuming that the total weight of the polypropylene resin is 100% by mass. More preferably, it contains 60 to 85% by weight of polypropylene resin A and 40 to 15% by weight of polypropylene resin B, and more preferably 60 to 80% by weight of polypropylene resin A and 40 to 20% by weight of polypropylene resin. It is particularly preferable to include B.
 ポリプロピレン樹脂が、ポリプロピレン樹脂Aとポリプロピレン樹脂Bとを含む場合、二軸延伸ポリプロピレンフィルムは、ポリプロピレン樹脂Aとポリプロピレン樹脂Bとの微細混合状態(相分離状態)となるため、高温での耐電圧性が向上する。 When the polypropylene resin contains polypropylene resin A and polypropylene resin B, the biaxially stretched polypropylene film is in a finely mixed state (phase-separated state) of polypropylene resin A and polypropylene resin B, so that it has withstand voltage at high temperatures. Is improved.
 以上、ポリプロピレン樹脂を2種以上使用する場合における各ポリプロピレン樹脂について、説明した。 Above, each polypropylene resin when two or more kinds of polypropylene resins are used has been described.
 前記ポリプロピレンフィルムは、ポリプロピレン樹脂以外の他の樹脂(以下「他の樹脂」ともいう)を含んでもよい。「他の樹脂」とは、一般的に、主成分の樹脂とされるポリプロピレン樹脂以外の樹脂であって、目的とするポリプロピレンフィルムを得ることができる限り特に制限されることはない。他の樹脂としては、例えばポリエチレン、ポリ(1-ブテン)、ポリイソブテン、ポリ(1-ペンテン)、ポリ(1-メチルペンテン)などのポリプロピレン以外の他のポリオレフィン、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-ブテン共重合体等のα-オレフィン同士の共重合体、スチレン-ブタジエンランダム共重合体などのビニル単量体-ジエン単量体ランダム共重合体、スチレン-ブタジエン-スチレンブロック共重合体などのビニル単量体-ジエン単量体-ビニル単量体ランダム共重合体等が挙げられる。前記ポリプロピレンフィルムは、目的とするポリプロピレンフィルムに悪影響を与えない量で含むことができる。前記ポリプロピレンフィルムは、ポリプロピレン樹脂100質量部に対して、他の樹脂を好ましくは10質量部以下含んでよく、より好ましくは5質量部以下含んでよい。また、前記ポリプロピレンフィルムは、ポリプロピレン樹脂100質量部に対して、他の樹脂を好ましくは0.1質量部以上含んでよく、より好ましくは1質量部以上含んでよい。 The polypropylene film may contain a resin other than the polypropylene resin (hereinafter, also referred to as "other resin"). The "other resin" is generally a resin other than the polypropylene resin which is the main component resin, and is not particularly limited as long as the target polypropylene film can be obtained. Examples of other resins include polyolefins other than polypropylene such as polyethylene, poly (1-butene), polyisobutene, poly (1-pentene), and poly (1-methylpentene), ethylene-propylene copolymers, and propylene-. Butene copolymers, α-olefin copolymers such as ethylene-butene copolymers, vinyl monomer-diene monomer random copolymers such as styrene-butadiene random copolymers, styrene-butadiene-styrene Examples thereof include vinyl monomer-diene monomer-vinyl monomer random copolymer such as block copolymer. The polypropylene film can be contained in an amount that does not adversely affect the target polypropylene film. The polypropylene film may contain 10 parts by mass or less, and more preferably 5 parts by mass or less of another resin with respect to 100 parts by mass of the polypropylene resin. Further, the polypropylene film may contain 0.1 part by mass or more of another resin, more preferably 1 part by mass or more, based on 100 parts by mass of the polypropylene resin.
 前記ポリプロピレンフィルムは、添加剤を含有してもよい。前記添加剤としては、例えば、造核剤(α晶造核剤、β晶造核剤)、酸化防止剤、塩素吸収剤や紫外線吸収剤等の必要な安定剤、滑剤、可塑剤、難燃化剤、帯電防止剤、無機フィラー、有機フィラー等が含まれる。前記無機フィラーとしては、チタン酸バリウム、チタン酸ストロンチウム、酸化アルミニウム等が挙げられる。前記添加剤を用いる場合、目的とするポリプロピレンフィルムに悪影響を与えない量で含むことができる。 The polypropylene film may contain an additive. Examples of the additive include a nucleating agent (α crystal nucleating agent, β crystal nucleating agent), an antioxidant, a necessary stabilizer such as a chlorine absorber and an ultraviolet absorber, a lubricant, a plasticizer, and a flame retardant. Includes agents, antistatic agents, inorganic fillers, organic fillers and the like. Examples of the inorganic filler include barium titanate, strontium titanate, and aluminum oxide. When the additive is used, it can be contained in an amount that does not adversely affect the target polypropylene film.
<ポリプロピレンフィルムの製造方法>
 前記ポリプロピレンフィルムの製造方法としては、前記差[(Δnyz)-(Δnxz)]、前記比[(引張弾性率TD)/(引張弾性率MD)]、及び、前記引張弾性率MDが前記数値範囲内であり、且つ、厚さが前記数値範囲内であるポリプロピレンフィルムが得られる限り、特に限定されないが、同時二軸延伸により好適に製造することができる。前記ポリプロピレンフィルムを同時二軸延伸ポリプロピレンフィルムとする場合、ポリプロピレン樹脂組成物からキャストシートを作製し、次いでキャストシートを同時二軸延伸することにより製造することができる。
<Manufacturing method of polypropylene film>
As a method for producing the polypropylene film, the difference [(Δnyz) − (Δnxz)], the ratio [(tensile modulus TD) / (tensile modulus MD)], and the tensile modulus MD are in the numerical range. As long as a polypropylene film having a thickness within the above numerical range can be obtained, it is not particularly limited, but can be suitably produced by simultaneous biaxial stretching. When the polypropylene film is a simultaneous biaxially stretched polypropylene film, it can be produced by preparing a cast sheet from a polypropylene resin composition and then simultaneously biaxially stretching the cast sheet.
<ポリプロピレン樹脂組成物の調製>
 前記ポリプロピレン樹脂組成物を調製する方法としては、特に制限はないが、前記ポリプロピレン樹脂の重合粉あるいはペレットを、必要に応じて他の樹脂、添加剤等と共に、ミキサー等を用いてドライブレンドする方法や、前記ポリプロピレン樹脂の重合粉あるいはペレットを、必要に応じて他の樹脂、添加剤等と共に、混練機に供給し、溶融混練してメルトブレンドする方法などが挙げられる。
<Preparation of polypropylene resin composition>
The method for preparing the polypropylene resin composition is not particularly limited, but a method of dry-blending the polymer powder or pellets of the polypropylene resin together with other resins, additives, etc., if necessary, using a mixer or the like. Alternatively, a method of supplying the polypropylene resin polymer powder or pellet together with other resins, additives and the like to a kneader, melt-kneading and melt-blending, and the like can be mentioned.
 ミキサー、混練機は、特に制限されない。混練機は、1軸スクリュータイプ、2軸スクリュータイプ、それ以上の多軸スクリュータイプの何れでもよい。2軸以上のスクリュータイプの場合、同方向回転、異方向回転のどちらの混練タイプでも構わない。 The mixer and kneader are not particularly limited. The kneader may be a single-screw type, a double-screw type, or a multi-screw type or more. In the case of a screw type with two or more axes, either a kneading type that rotates in the same direction or in a different direction may be used.
 溶融混練によるブレンドの場合、混練温度は、良好な混練さえ得られれば特に制限はないが、好ましくは170~320℃の範囲であり、より好ましくは200℃~300℃の範囲であり、さらに好ましくは230℃~270℃の範囲内である。樹脂の混練混合の際の劣化を抑制するため、混練機に窒素などの不活性ガスをパージしても構わない。溶融混練された樹脂は、一般的に公知の造粒機を用いて、適当な大きさにペレタイズすることによって、メルトブレンドされたポリプロピレン樹脂組成物のペレットを得ることができる。 In the case of blending by melt kneading, the kneading temperature is not particularly limited as long as good kneading can be obtained, but is preferably in the range of 170 to 320 ° C, more preferably in the range of 200 ° C to 300 ° C, and more preferably. Is in the range of 230 ° C to 270 ° C. In order to suppress deterioration during kneading and mixing of the resin, the kneader may be purged with an inert gas such as nitrogen. The melt-kneaded resin can be melt-blended to obtain pellets of the polypropylene resin composition by pelletizing the melt-kneaded resin to an appropriate size using a generally known granulator.
<キャストシートの作製>
 キャストシートは、まず、予め作製したポリプロピレン樹脂組成物(ドライブレンド樹脂組成物および/またはメルトブレンド樹脂組成物)のペレット類を押出機に供給して、加熱溶融させる。加熱溶融時の樹脂温度は、170℃以上が好ましく、175℃以上がより好ましく、180℃以上がさらに好ましい。また、前記樹脂温度は、300℃以下が好ましく、290℃以下がより好ましく、285℃以下がさらに好ましい。前記樹脂温度を前記数値範囲内でコントロールすることにより、後述するキャスト冷却温度を好適な範囲内に調整することができる。
<Making a cast sheet>
In the cast sheet, first, pellets of a polypropylene resin composition (dry blend resin composition and / or melt blend resin composition) prepared in advance are supplied to an extruder and heated and melted. The resin temperature at the time of heating and melting is preferably 170 ° C. or higher, more preferably 175 ° C. or higher, and even more preferably 180 ° C. or higher. The resin temperature is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, and even more preferably 285 ° C. or lower. By controlling the resin temperature within the numerical range, the cast cooling temperature described later can be adjusted within a suitable range.
 次に、加熱溶融した樹脂組成物をTダイから溶融押し出し、金属ドラムに巻きつけて固化させることにより、キャストシートが得られる。この際、溶融押し出しされた樹脂組成物をエアーナイフで金属ドラムに押さえつけることが好ましい。 Next, a cast sheet is obtained by melt-extruding the heat-melted resin composition from the T-die, winding it around a metal drum, and solidifying it. At this time, it is preferable to press the melt-extruded resin composition against the metal drum with an air knife.
 キャストシート製造時のキャスト冷却速度は、8℃/秒以上が好ましく、8.5℃/秒以上がより好ましく、9.0℃/秒以上がさらに好ましい。また、前記キャスト冷却速度は、16℃/秒以下が好ましく、15.6℃/秒以下がより好ましく、15.4℃/秒以下がさらに好ましい。前記キャスト冷却速度を前記数値範囲内とすることにより、前記フィブリルの数、及び、前記フィブリルの個数当たりの面積を容易に前記数値範囲内とすることができる。
 本明細書において、キャスト冷却速度とは、Tダイから溶融押し出しされた樹脂組成物がキャストシートになるまでの間に冷却される速度をいう。具体的に、前記キャスト冷却速度は、下記方法により求められる値をいう。
The cast cooling rate at the time of producing the cast sheet is preferably 8 ° C./sec or higher, more preferably 8.5 ° C./sec or higher, and even more preferably 9.0 ° C./sec or higher. The cast cooling rate is preferably 16 ° C./sec or less, more preferably 15.6 ° C./sec or less, and even more preferably 15.4 ° C./sec or less. By setting the cast cooling rate within the numerical range, the number of the fibrils and the area per number of the fibrils can be easily set within the numerical range.
As used herein, the cast cooling rate means the rate at which the resin composition melt-extruded from the T-die is cooled until it becomes a cast sheet. Specifically, the cast cooling rate refers to a value obtained by the following method.
 <キャスト冷却速度>
 加熱溶融した樹脂組成物をTダイから溶融押出し、金属ドラムに巻きつけて固化させているキャストシートの幅方向中央部の表面温度を測定する。キャストシートが金属ドラムに密着した時点を0秒として、0秒、0.5秒後、1.5秒後、2.5秒後、3.5秒後、4.5秒後、5.5秒後のその箇所(0秒として測定した箇所)の表面温度を測定し、各測定点間の[温度低下量/時間]の平均を「キャスト冷却速度」として算出する。
 より具体例には、0秒の時点の温度から0.5秒後の温度を引いた値を温度低下量A、0.5秒後の温度から1.5秒後の温度を引いた値を温度低下量B、1.5秒後の温度から2.5秒後の温度を引いた値を温度低下量C、2.5秒後の温度から3.5秒後の温度を引いた値を温度低下量D、3.5秒後の温度から4.5秒後の温度を引いた値を温度低下量E、4.5秒後の温度から5.5秒後の温度を引いた値を温度低下量F、とすると、
 [温度低下量A/0.5]、[温度低下量B/1]、[温度低下量C/1]、[温度低下量D/1]、[温度低下量E/1]及び[温度低下量F/1]の相加平均を「キャスト冷却速度」として算出する。
 前記キャスト冷却温度は、加熱溶融時の樹脂温度、金属ドラムの表面温度、エアギャップ等を調整することによりコントロールすることができる。
<Cast cooling rate>
The heat-melted resin composition is melt-extruded from a T-die and wound around a metal drum to be solidified, and the surface temperature of the central portion in the width direction is measured. The time when the cast sheet is in close contact with the metal drum is 0 seconds, and it is 0 seconds, 0.5 seconds, 1.5 seconds, 2.5 seconds, 3.5 seconds, 4.5 seconds, 5.5 seconds. The surface temperature of that point (measured as 0 seconds) after seconds is measured, and the average of [temperature decrease / time] between each measurement point is calculated as the "cast cooling rate".
More specifically, the value obtained by subtracting the temperature after 0.5 seconds from the temperature at 0 seconds is the temperature decrease amount A, and the value obtained by subtracting the temperature after 1.5 seconds from the temperature after 0.5 seconds is used. Temperature decrease amount B, the value obtained by subtracting the temperature after 2.5 seconds from the temperature after 1.5 seconds, and the value obtained by subtracting the temperature after 3.5 seconds from the temperature decrease amount C, the temperature after 2.5 seconds Temperature drop D, the value obtained by subtracting the temperature after 4.5 seconds from the temperature after 3.5 seconds, the temperature drop E, the value obtained by subtracting the temperature after 5.5 seconds from the temperature after 4.5 seconds If the temperature drop amount F,
[Temperature drop A / 0.5], [Temperature drop B / 1], [Temperature drop C / 1], [Temperature drop D / 1], [Temperature drop E / 1] and [Temperature drop] The arithmetic mean of the quantity F / 1] is calculated as the "cast cooling rate".
The cast cooling temperature can be controlled by adjusting the resin temperature at the time of heating and melting, the surface temperature of the metal drum, the air gap, and the like.
 前記金属ドラムの表面温度としては、80℃以上が好ましく、90℃以上がより好ましく、92℃以上がさらに好ましい。また、前記表面温度は、140℃以下が好ましく、120℃以下がより好ましく、105℃以下がさらに好ましい。前記表面温度を前記数値範囲内でコントロールすることにより、前記キャスト冷却温度を好適な範囲内に調整することができる。 The surface temperature of the metal drum is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and even more preferably 92 ° C. or higher. The surface temperature is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 105 ° C. or lower. By controlling the surface temperature within the numerical range, the cast cooling temperature can be adjusted within a suitable range.
 また、キャストシート作製時のエアギャップは、3.0mm以上が好ましく、3.5mm以上がより好ましく、4.0mm以上がさらに好ましい。前記エアギャップは、10.0mm以下が好ましく、8.0mm以下がより好ましく、6.0mm以下がさらに好ましい。前記エアギャップを前記数値範囲内でコントロールすることにより、前記キャスト冷却温度を好適な範囲内に調整することができる。
 本明細書において、エアギャップとは、Tダイの吐出口と、Tダイの吐出口から吐出された樹脂組成物が最初に触れる金属ドラム上の位置との間の距離をいう。
The air gap at the time of producing the cast sheet is preferably 3.0 mm or more, more preferably 3.5 mm or more, and further preferably 4.0 mm or more. The air gap is preferably 10.0 mm or less, more preferably 8.0 mm or less, and even more preferably 6.0 mm or less. By controlling the air gap within the numerical range, the cast cooling temperature can be adjusted within a suitable range.
As used herein, the air gap refers to the distance between the discharge port of the T-die and the position on the metal drum where the resin composition discharged from the discharge port of the T-die first touches.
 前記キャストシートの厚みは、目的とするポリプロピレンフィルムを得ることができる限り、特に制限されることはないが、好ましくは0.05mm~2mm、より好ましくは0.1mm~1mmである。 The thickness of the cast sheet is not particularly limited as long as the target polypropylene film can be obtained, but is preferably 0.05 mm to 2 mm, more preferably 0.1 mm to 1 mm.
 なお、キャストシートの作製工程中(特に、押出機内)においては、ポリプロピレンは、少なからず熱劣化(酸化劣化)やせん断劣化を受ける。このような劣化の進行度合い、即ち分子量分布や立体規則性の変化は、押出器内の窒素パージ(酸化の抑制)、押出機内のスクリュー形状(せん断力)、キャスト時のTダイの内部形状(せん断力)、酸化防止剤の添加量(酸化の抑制)、キャスト時の巻き取り速度(伸長力)などにより抑制することが可能である。 Note that polypropylene undergoes not a little thermal deterioration (oxidative deterioration) and shear deterioration during the casting sheet manufacturing process (particularly in the extruder). The degree of progress of such deterioration, that is, changes in molecular weight distribution and stereoregularity, are the nitrogen purge in the extruder (suppression of oxidation), the screw shape in the extruder (shearing force), and the internal shape of the T-die during casting ( It can be suppressed by (shearing force), the amount of antioxidant added (suppression of oxidation), the winding speed at the time of casting (extension force), and the like.
<延伸処理>
 次に、キャストシートを同時二軸延伸する(工程A)。つまり、前記同時二軸延伸ポリプロピレンフィルムは、前記キャストシートに、MD方向及びTD方向に対して同時に延伸処理を施すことによって製造することができる。
<Stretching treatment>
Next, the cast sheet is simultaneously biaxially stretched (step A). That is, the simultaneous biaxially stretched polypropylene film can be produced by simultaneously stretching the cast sheet in the MD direction and the TD direction.
 同時二軸延伸方法としては、例えば、レール上を移動する可動式のクリップでキャストシートの両端を把持し、テンターに導いて、MD方向とTD方向とに同時に延伸する。 As a simultaneous biaxial stretching method, for example, both ends of the cast sheet are gripped by a movable clip that moves on the rail, guided to a tenter, and stretched simultaneously in the MD direction and the TD direction.
 同時延伸時の延伸温度は、160℃以上であることが好ましく、164℃以上であることがより好ましく、168℃以上であることがさらに好ましい。前記延伸温度は、180℃以下であることが好ましく、178℃以下であることがより好ましく、175℃以下であることがさらに好ましい。 The stretching temperature at the time of simultaneous stretching is preferably 160 ° C. or higher, more preferably 164 ° C. or higher, and even more preferably 168 ° C. or higher. The stretching temperature is preferably 180 ° C. or lower, more preferably 178 ° C. or lower, and even more preferably 175 ° C. or lower.
 同時延伸は、MD方向の延伸倍率(以下、「MD延伸倍率」ともいう)とTD方向の延伸倍率(以下、「TD延伸倍率」ともいう)との比[(TD延伸倍率)/(MD延伸倍率)]を、1.0~1.7の範囲内とし、且つ、TD延伸倍率とMD延伸倍率との積(以下、「面積延伸倍率」ともいう)を46倍以上とすることが好ましい。
 前記比[(TD延伸倍率)/(MD延伸倍率)]は、1.0以上が好ましく、1.1以上がより好ましく、1.2以上がさらに好ましい。前記比[(TD延伸倍率)/(MD延伸倍率)]は、1.7以下が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましい。
 前記面積延伸倍率は、46倍以上が好ましく、47倍以上がより好ましく、48倍以上がさらに好ましい。前記面積延伸倍率は、72倍以下が好ましく、65倍以下がより好ましく、58倍以下がさらに好ましい。
 前記比[(TD延伸倍率)/(MD延伸倍率)]、及び、前記面積延伸倍率を前記数値範囲内とすることにより、どのような温度においても等方性を有し、機械的特性に優れる薄いポリプロピレンフィルムを容易に得ることができる。つまり、前記差[(Δnyz)-(Δnxz)]、前記比[(引張弾性率TD)/(引張弾性率MD)]、及び、前記引張弾性率MDが前記数値範囲内であり、且つ、厚さが薄い(前記数値範囲内である)ポリプロピレンフィルムを容易に得ることができる。
Simultaneous stretching is the ratio of the stretching ratio in the MD direction (hereinafter, also referred to as “MD stretching ratio”) to the stretching ratio in the TD direction (hereinafter, also referred to as “TD stretching ratio”) [(TD stretching ratio) / (MD stretching ratio) / (MD stretching ratio). Magnification)] is preferably in the range of 1.0 to 1.7, and the product of the TD stretching ratio and the MD stretching ratio (hereinafter, also referred to as “area stretching ratio”) is preferably 46 times or more.
The ratio [(TD stretching ratio) / (MD stretching ratio)] is preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.2 or more. The ratio [(TD stretching ratio) / (MD stretching ratio)] is preferably 1.7 or less, more preferably 1.6 or less, and even more preferably 1.5 or less.
The area stretching ratio is preferably 46 times or more, more preferably 47 times or more, still more preferably 48 times or more. The area stretching ratio is preferably 72 times or less, more preferably 65 times or less, still more preferably 58 times or less.
By setting the ratio [(TD stretching ratio) / (MD stretching ratio)] and the area stretching ratio within the numerical range, it has isotropic properties at any temperature and is excellent in mechanical properties. A thin polypropylene film can be easily obtained. That is, the difference [(Δnyz) − (Δnxz)], the ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)], and the tensile elastic modulus MD are within the numerical range and the thickness. A polypropylene film having a thin thickness (within the above numerical range) can be easily obtained.
 また、前記キャスト冷却温度を所定範囲内とし、且つ、前記比[(TD延伸倍率)/(MD延伸倍率)]、及び、前記面積延伸倍率を前記数値範囲内とすることにより、前記フィブリルの数、及び、前記フィブリルの個数当たりの面積を容易に前記数値範囲内とすることができる。
 本発明者らによれば、逐次二軸延伸をすれば、前記フィブリルの数、及び、前記フィブリルの個数当たりの面積は、比較的容易に前記数値範囲内とすることができていた。しかしながら、同時二軸延伸とした場合、前記フィブリルの数、及び、前記フィブリルの個数当たりの面積を前記数値範囲内とすることが困難であった。
 しかしながら、本発明者らの鋭意検討の結果、前記キャスト冷却温度を所定範囲内とし、且つ、前記比[(TD延伸倍率)/(MD延伸倍率)]、及び、前記面積延伸倍率を前記数値範囲内とすることにより、同時二軸延伸した場合にも、前記フィブリルの数、及び、前記フィブリルの個数当たりの面積を容易に前記数値範囲内とすることが可能となった。
Further, by setting the cast cooling temperature within a predetermined range and setting the ratio [(TD stretching ratio) / (MD stretching ratio)] and the area stretching ratio within the numerical range, the number of the fibrils. , And the area per number of the fibrils can be easily set within the numerical range.
According to the present inventors, the number of the fibrils and the area per number of the fibrils could be relatively easily within the numerical range by sequentially biaxially stretching. However, in the case of simultaneous biaxial stretching, it is difficult to keep the number of the fibrils and the area per number of the fibrils within the numerical range.
However, as a result of diligent studies by the present inventors, the cast cooling temperature is within a predetermined range, and the ratio [(TD stretching ratio) / (MD stretching ratio)] and the area stretching ratio are within the numerical range. By setting the temperature to the inside, the number of the fibrils and the area per number of the fibrils can be easily set within the numerical range even in the case of simultaneous biaxial stretching.
 前記MD延伸倍率は、5.0倍以上であることが好ましく、5.5倍以上であることがより好ましく、6.0倍以上であることがさらに好ましい。前記MD延伸倍率は、9.0倍以下であることが好ましく、8.0倍以下であることがより好ましく、7.0倍以下であることがさらに好ましい。
 前記TD延伸倍率は、6.0倍以上であることが好ましく、7.0倍以上であることがより好ましく、8.0倍以上であることがさらに好ましい。前記TD延伸倍率は、10.0倍以下であることが好ましく、9.0倍以下であることがより好ましく、8.0倍以下であることがさらに好ましい。
 前記MD延伸倍率、及び、前記TD延伸倍率を前記数値範囲内とすることにより、前記比[(TD延伸倍率)/(MD延伸倍率)]、及び、前記面積延伸倍率を前記数値範囲内とすることが容易となる。
The MD stretch ratio is preferably 5.0 times or more, more preferably 5.5 times or more, and further preferably 6.0 times or more. The MD stretching ratio is preferably 9.0 times or less, more preferably 8.0 times or less, and further preferably 7.0 times or less.
The TD stretching ratio is preferably 6.0 times or more, more preferably 7.0 times or more, and further preferably 8.0 times or more. The TD stretching ratio is preferably 10.0 times or less, more preferably 9.0 times or less, and further preferably 8.0 times or less.
By setting the MD stretching ratio and the TD stretching ratio within the numerical range, the ratio [(TD stretching ratio) / (MD stretching ratio)] and the area stretching ratio are within the numerical range. It becomes easy.
 同時延伸の後、必要に応じて、緩和、熱固定を施して、ロール状に巻回する。 After simultaneous stretching, relax and heat-fix as necessary, and wind in a roll.
 前記ポリプロピレンフィルムは、少なくとも一方の面が、多数の比較的面積の小さいフィブリルによって粗面化されている。従って、二軸延伸された後のポリプロピレンフィルムをロール状に巻回する際に、搬送用ロールに対する滑り性が良好となる。その結果、好適な搬送性が得られ、シワや巻きずれが抑制される。 At least one surface of the polypropylene film is roughened by a large number of relatively small-area fibrils. Therefore, when the polypropylene film after being biaxially stretched is wound in a roll shape, the slipperiness with respect to the transport roll is improved. As a result, suitable transportability is obtained, and wrinkles and unwinding are suppressed.
 ロール状に巻回されたフィルムは、20~45℃程度の雰囲気中でエージング処理を施した後、巻き戻されながら(繰り出されながら)、スリッター等で所望の製品幅にスリット加工(断裁)され、各々、再び巻回される。 The film wound in a roll shape is subjected to an aging treatment in an atmosphere of about 20 to 45 ° C., and then slit (cut) to a desired product width with a slitter or the like while being rewound (while being unwound). , Each is wound again.
 前記ポリプロピレンフィルムには、延伸及び熱固定工程終了後に、オンラインもしくはオフラインにてコロナ放電処理を行ってもよい。コロナ放電処理を行うことにより、金属蒸着加工工程などの後工程における接着特性を高めることができる。コロナ放電処理は、公知の方法を用いて行うことができる。雰囲気ガスとして空気、炭酸ガス、窒素ガス、及びこれらの混合ガスを用いて行うことが好ましい。 The polypropylene film may be subjected to corona discharge treatment online or offline after the stretching and heat fixing steps are completed. By performing the corona discharge treatment, the adhesive properties in the post-process such as the metal vapor deposition processing process can be improved. The corona discharge treatment can be performed by using a known method. It is preferable to use air, carbon dioxide gas, nitrogen gas, or a mixed gas thereof as the atmospheric gas.
 コンデンサとして加工するために、前記ポリプロピレンフィルムの片面又は両面に金属層を積層し、金属層一体型ポリプロピレンフィルムとしてもよい。前記金属層は、電極として機能する。前記金属層に用いられる金属としては、例えば、亜鉛、鉛、銀、クロム、アルミニウム、銅、ニッケルなどの金属単体、それらの複数種の混合物、それらの合金などを使用することができるが、環境、経済性及びコンデンサ性能などを考慮すると、亜鉛、アルミニウムが好ましい。 In order to process it as a capacitor, a metal layer may be laminated on one side or both sides of the polypropylene film to form a polypropylene film integrated with a metal layer. The metal layer functions as an electrode. As the metal used for the metal layer, for example, elemental metals such as zinc, lead, silver, chromium, aluminum, copper and nickel, a mixture of a plurality of kinds thereof, an alloy thereof and the like can be used, but the environment. Zinc and aluminum are preferable in consideration of economic efficiency and capacitor performance.
 前記ポリプロピレンフィルムの片面又は両面に金属層を積層する方法としては、例えば、真空蒸着法やスパッタリング法を例示することができる。生産性及び経済性などの観点から、真空蒸着法が好ましい。真空蒸着法として、一般的にるつぼ法式やワイヤー方式などを例示することができるが、特に限定されることはなく、適宜最適なものを選択することができる。前記真空蒸着法やスパッタリング法で金属層を積層する場合、ポリプロピレンフィルムは、130~140℃程度の熱を受けることになる。
 しかしながら、前記ポリプロピレンフィルムは、温度依存性がなく、どのような温度においても機械的特性が等方性を有するため、ポリプロピレンフィルムに金属層を形成する蒸着工程やスパッタリング工程において、ポリプロピレンフィルムにシワが発生することを抑制することができ、金属層の厚みをより均一とすることが可能となる。
As a method of laminating a metal layer on one side or both sides of the polypropylene film, for example, a vacuum vapor deposition method or a sputtering method can be exemplified. The vacuum vapor deposition method is preferable from the viewpoint of productivity and economy. As the vacuum vapor deposition method, a crucible method, a wire method, or the like can be generally exemplified, but the method is not particularly limited, and the optimum method can be appropriately selected. When the metal layers are laminated by the vacuum deposition method or the sputtering method, the polypropylene film receives heat of about 130 to 140 ° C.
However, since the polypropylene film is not temperature-dependent and has isotropic mechanical properties at any temperature, the polypropylene film is wrinkled in the vapor deposition process and the sputtering process for forming a metal layer on the polypropylene film. It is possible to suppress the occurrence and make the thickness of the metal layer more uniform.
 蒸着やスパッタリングにより金属層を積層する際のマージンパターンも特に限定されるものではないが、コンデンサの保安性等の特性を向上させる点から、フィッシュネットパターンないしはTマージンパターンといった、いわゆる特殊マージンを含むパターンをフィルムの片方の面上に施すことが好ましい。保安性が高まり、コンデンサの破壊、ショートの防止、などの点からも効果的である。 The margin pattern when laminating metal layers by vapor deposition or sputtering is not particularly limited, but includes so-called special margins such as a fishnet pattern or a T-margin pattern from the viewpoint of improving characteristics such as capacitor safety. It is preferable to apply the pattern on one side of the film. It is effective in terms of improving security, destroying capacitors, preventing short circuits, and so on.
 マージンを形成する方法はテープ法、オイル法など、一般に公知の方法が、何ら制限無く使用することができる。 As a method for forming a margin, a generally known method such as a tape method or an oil method can be used without any limitation.
 前記ポリプロピレンフィルムに金属層を形成する際には、ロール状に巻回されたポリプロピレンフィルムが、巻き戻され(繰り出され)、蒸着膜等の金属層が一方又は両方の面に形成され、再び、巻回される。 When forming a metal layer on the polypropylene film, the polypropylene film wound in a roll shape is rewound (unwound), and a metal layer such as a thin-film deposition film is formed on one or both surfaces, and again. It is wound.
 前記金属層一体型ポリプロピレンフィルムは、従来公知の方法で複数積層するか、素子巻き加工(巻回)してフィルムコンデンサとすることができる。 The metal layer integrated polypropylene film can be laminated by a conventionally known method, or can be element-wound (wound) to form a film capacitor.
 具体的に、金属層一体型ポリプロピレンフィルムの各マージン部の中央に刃を入れてスリット加工し、表面の一方の面にマージンを有する巻取リールを作製する。
 次に、左マージンの巻取リールと右マージンの巻取リールを用い、幅方向に蒸着部分がマージン部よりもはみ出すように2枚重ね合わせて巻回する(素子巻き加工)。次に、巻回体から芯材を抜いてプレスする。次に、両端面に外部電極を形成し、さらに、外部電極にリード線を設ける。以上により、巻回型のフィルムコンデンサが得られる。
Specifically, a blade is inserted in the center of each margin portion of the metal layer integrated polypropylene film and slit processing is performed to produce a take-up reel having a margin on one surface of the surface.
Next, using a take-up reel with a left margin and a take-up reel with a right margin, two reels are overlapped and wound so that the vapor-deposited portion protrudes from the margin portion in the width direction (element winding processing). Next, the core material is removed from the winding body and pressed. Next, external electrodes are formed on both end faces, and lead wires are further provided on the external electrodes. From the above, a winding type film capacitor can be obtained.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
〔ポリプロピレン樹脂〕
 実施例及び比較例のポリプロピレンフィルムを製造するために使用したポリプロピレン樹脂を、表1に示す。
 表1に示す樹脂A1は、プライムポリマー株式会社製の製品である。樹脂B1は、大韓油化社製のHPT-1である。樹脂C1は、ボレアリス社製のHC300BFである。
 表1に、各樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、及び、分子量分布(Mw/Mn)、を示した。これらの値は、原料樹脂ペレットの形態での値である。測定方法は以下の通りである。
[Polypropylene resin]
Table 1 shows the polypropylene resins used to produce the polypropylene films of Examples and Comparative Examples.
The resin A1 shown in Table 1 is a product manufactured by Prime Polymer Co., Ltd. Resin B1 is HPT-1 manufactured by Korea Yuka Co., Ltd. The resin C1 is HC300BF manufactured by Borealis.
Table 1 shows the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of each resin. These values are values in the form of raw material resin pellets. The measurement method is as follows.
 <ポリプロピレン樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、及び、分子量分布(Mw/Mn)の測定>
 GPC(ゲルパーミエーションクロマトグラフィー)を用い、以下の条件で、各樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、及び、分子量分布(Mw/Mn)を測定した。
 具体的に、東ソー株式会社製、示差屈折計(RI)内蔵高温GPC装置であるHLC-8121GPC-HT型を使用した。カラムとして、東ソー株式会社製のTSKgel GMHHR-H(20)HTを3本連結して使用した。140℃のカラム温度で、溶離液として、トリクロロベンゼンを、1.0ml/minの流速で流して測定した。東ソー株式会社製の標準ポリスチレンを用いてその分子量Mに関する検量線を作成し、測定値をQ-ファクターを用いてポリプロピレンの分子量へ換算して、数平均分子量(Mn)、及び、重量平均分子量(Mw)を得た。このMwとMnの値を用いて分子量分布(Mw/Mn)を得た。
<Measurement of number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of polypropylene resin>
Using GPC (gel permeation chromatography), the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of each resin were measured under the following conditions.
Specifically, an HLC-8121 GPC-HT type, which is a high temperature GPC device with a built-in differential refractometer (RI) manufactured by Tosoh Corporation, was used. As a column, three TSKgel GMHHR-H (20) HTs manufactured by Tosoh Corporation were connected and used. Trichlorobenzene was flowed as an eluent at a flow rate of 1.0 ml / min at a column temperature of 140 ° C. for measurement. A calibration curve for the molecular weight M was created using standard polystyrene manufactured by Tosoh Corporation, and the measured values were converted to the molecular weight of polypropylene using the Q-factor to convert the number average molecular weight (Mn) and the weight average molecular weight (Mn). Mw) was obtained. The molecular weight distribution (Mw / Mn) was obtained using the values of Mw and Mn.
 <対数分子量log(M)=4.5のときの微分分布値、対数分子量log(M)=6.0のときの微分分布値、及び、微分分布値差Dの測定>
 各樹脂について、対数分子量log(M)=4.5のときの微分分布値、対数分子量log(M)=6.0のときの微分分布値を、次のような方法で得た。まず、RI検出計を用いて検出される強度分布の時間曲線(溶出曲線)を、上記標準ポリスチレンを用いて作製した検量線を用いて標準ポリスチレンの分子量M(Log(M))に対する分布曲線に変換した。次に、分布曲線の全面積を100%とした場合のLog(M)に対する積分分布曲線を得た後、この積分分布曲線をLog(M)で、微分することによってLog(M)に対する微分分布曲線を得た。この微分分布曲線から、Log(M)=4.5およびLog(M)=6.0のときの微分分布値を読んだ。また、Log(M)=4.5のときの微分分布値とLog(M)=6.0のときの微分分布値との差を微分分布値差Dとした。なお、微分分布曲線を得るまでの一連の操作は、使用したGPC測定装置に内蔵されている解析ソフトウェアを用いて行った。結果を表1に示す。
<Differential distribution value when the log molecular weight log (M) = 4.5, the differential distribution value when the log molecular weight log (M) = 6.0, and the measurement of the differential distribution value difference D M>
For each resin, the differential distribution value when the logarithmic molecular weight log (M) = 4.5 and the differential distribution value when the logarithmic molecular weight log (M) = 6.0 were obtained by the following methods. First, the time curve (elution curve) of the intensity distribution detected by the RI detector is used as the distribution curve for the molecular weight M (Log (M)) of the standard polystyrene using the calibration curve prepared using the standard polystyrene. Converted. Next, after obtaining an integral distribution curve for Log (M) when the total area of the distribution curve is 100%, the differential distribution for Log (M) is obtained by differentiating this integral distribution curve with Log (M). I got a curve. From this differential distribution curve, the differential distribution values when Log (M) = 4.5 and Log (M) = 6.0 were read. In addition, the Log (M) = 4.5 different differential distribution value difference D M of the differential distribution value when the differential distribution value and Log (M) = 6.0 when the. A series of operations until the differential distribution curve was obtained was performed using the analysis software built in the GPC measuring device used. The results are shown in Table 1.
 <ヘプタン不溶分(HI)の測定>
 各樹脂について、10mm×35mm×0.3mmにプレス成形して約3gの測定用サンプルを作製した。次に、ヘプタン約150mLを加えてソックスレー抽出を8時間行った。抽出前後の試料質量よりヘプタン不溶分を算出した。結果を表1に示す。
<Measurement of heptane insoluble matter (HI)>
Each resin was press-molded to 10 mm × 35 mm × 0.3 mm to prepare a measurement sample of about 3 g. Next, about 150 mL of heptane was added and Soxhlet extraction was performed for 8 hours. The heptane insoluble content was calculated from the sample mass before and after extraction. The results are shown in Table 1.
 <メルトフローレート(MFR)の測定>
 各樹脂について原料樹脂ペレットの形態でのメルトフローレート(MFR)を、東洋精機株式会社のメルトインデックサを用いてJIS K 7210の条件Mに準じて測定した。具体的には、まず、試験温度230℃にしたシリンダ内に、4gに秤りとった試料を挿入し、2.16kgの荷重下で3.5分予熱した。その後、30秒間で底穴より押出された試料の重量を測定し、MFR(g/10min)を求めた。上記の測定を3回繰り返し、その平均値をMFRの測定値とした。結果を表1に示す。
<Measurement of melt flow rate (MFR)>
For each resin, the melt flow rate (MFR) in the form of raw material resin pellets was measured using a melt indexer manufactured by Toyo Seiki Co., Ltd. according to the condition M of JIS K 7210. Specifically, first, a sample weighed to 4 g was inserted into a cylinder having a test temperature of 230 ° C., and preheated for 3.5 minutes under a load of 2.16 kg. Then, the weight of the sample extruded from the bottom hole was measured in 30 seconds to determine the MFR (g / 10 min). The above measurement was repeated 3 times, and the average value was taken as the measured value of MFR. The results are shown in Table 1.
 <メソペンタッド分率>
 各樹脂を溶媒に溶解し、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)を用いて、以下の条件で測定した。
高温型核磁気共鳴(NMR)装置:日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500
観測核:13C(125MHz)
測定温度:135℃
溶媒:オルト-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1))
測定モード:シングルパルスプロトンブロードバンドデカップリング
パルス幅:9.1μsec(45°パルス)
パルス間隔:5.5sec
積算回数:4,500回
シフト基準:CH3(mmmm)=21.7ppm
 立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmmやmrrm等)に由来する各シグナルの強度積分値より、百分率(%)で算出した。mmmmやmrrm等に由来する各シグナルの帰属に関し、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」等のスペクトルの記載を参考とした。
<Mesopentad fraction>
Each resin was dissolved in a solvent and measured under the following conditions using a high-temperature Fourier transform nuclear magnetic resonance apparatus (high-temperature FT-NMR).
High Temperature Nuclear Magnetic Resonance (NMR) Device: JEOL Ltd., High Temperature Fourier Transform Nuclear Magnetic Resonance Device (High Temperature FT-NMR), JNM-ECP500
Observation nucleus: 13C (125MHz)
Measurement temperature: 135 ° C
Solvent: Ortho-dichlorobenzene (ODCB: mixed solvent of ODCB and deuterated ODCB (mixing ratio = 4/1))
Measurement mode: Single pulse Proton broadband decoupling Pulse width: 9.1 μsec (45 ° pulse)
Pulse interval: 5.5 sec
Number of integrations: 4,500 times Shift reference: CH3 (mmmm) = 21.7 ppm
The pentad fraction, which represents the degree of stereoregularity, is a combination (mmmm or mrrm) of the quintuplets (pentads) of the "meso (m)" aligned in the same direction and the "racemo (r)" aligned in different directions. Etc.), calculated as a percentage (%) from the integrated intensity of each signal. Regarding the attribution of each signal derived from mmmm, mrrm, etc., for example, the description of the spectrum such as "T. Hayashi et al., Polymer, Vol. 29, p. 138 (1988)" was referred to.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述の樹脂を用いて、実施例、及び、比較例のポリプロピレンフィルムを作製し、その物性を評価した。 Using the above-mentioned resin, polypropylene films of Examples and Comparative Examples were prepared and their physical properties were evaluated.
 <ポリプロピレンフィルムの作製>
(実施例1)
 樹脂A1と樹脂B1とを、樹脂A1:樹脂B1=65:35の質量比で押出機へ供給し、樹脂温度230℃で溶融した後、Tダイを用いて押出し、エアギャップを4mmに調整し、表面温度を95℃に保持した金属ドラムに巻きつけて固化させてキャストシートを作製した。
 得られた未延伸のキャストシートを、レール上を移動する可動式のクリップで両端を把持し、テンターに導いて、170℃の温度でMD方向(流れ方向)に6倍に延伸すると同時に、TD方向(幅方向)に8倍延伸した後、流れ方向および幅方向に緩和させ、熱固定を施して巻き取り、厚み2.8μmの実施例1に係る二軸延伸ポリプロピレンフィルムを得た。
<Making polypropylene film>
(Example 1)
Resin A1 and resin B1 are supplied to an extruder at a mass ratio of resin A1: resin B1 = 65:35, melted at a resin temperature of 230 ° C., and then extruded using a T-die to adjust the air gap to 4 mm. A cast sheet was prepared by winding it around a metal drum whose surface temperature was maintained at 95 ° C. and solidifying it.
The obtained unstretched cast sheet is gripped at both ends with a movable clip that moves on the rail, guided to a tenter, stretched 6 times in the MD direction (flow direction) at a temperature of 170 ° C., and at the same time, TD. After stretching 8 times in the direction (width direction), the film was relaxed in the flow direction and the width direction, heat-fixed and wound to obtain a biaxially stretched polypropylene film having a thickness of 2.8 μm according to Example 1.
(実施例2)
 キャストシートの作製において、樹脂温度を180℃にしたこと以外は、実施例1と同様にして、実施例2に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 2)
A biaxially stretched polypropylene film according to Example 2 was obtained in the same manner as in Example 1 except that the resin temperature was set to 180 ° C. in the preparation of the cast sheet.
(実施例3)
 二軸延伸ポリプロピレンフィルムの作製において、流れ方向の延伸倍率を7倍にしたこと以外は、実施例2と同様にして、実施例3に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 3)
A biaxially stretched polypropylene film according to Example 3 was obtained in the same manner as in Example 2 except that the draw ratio in the flow direction was increased to 7 times in the preparation of the biaxially stretched polypropylene film.
(実施例4)
 キャストシートの作製において、樹脂A1と樹脂B1との混合物を用いる代わりに、樹脂C1を単独で用いたこと以外は、実施例1と同様にして実施例4に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 4)
A biaxially stretched polypropylene film according to Example 4 was obtained in the same manner as in Example 1 except that resin C1 was used alone instead of using a mixture of resin A1 and resin B1 in the preparation of the cast sheet. ..
(実施例5)
 キャストシートの作製において、樹脂温度を280℃にしたこと、及び、二軸延伸ポリプロピレンフィルムの作製において、流れ方向の延伸倍率を7倍にしたこと以外は、実施例4と同様にして、実施例5に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 5)
Examples were the same as in Example 4 except that the resin temperature was set to 280 ° C. in the production of the cast sheet and the draw ratio in the flow direction was increased to 7 times in the production of the biaxially stretched polypropylene film. A biaxially stretched polypropylene film according to No. 5 was obtained.
(実施例6)
 キャストシートの作製において、エアギャップを6mmにしたこと以外は、実施例5と同様にして、実施例6に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 6)
A biaxially stretched polypropylene film according to Example 6 was obtained in the same manner as in Example 5 except that the air gap was set to 6 mm in the production of the cast sheet.
(実施例7)
 二軸延伸ポリプロピレンフィルムの作製において、流れ方向の延伸倍率を6.5倍にしたこと、及び、厚みを2.5μmにしたこと以外は、実施例4と同様にして、実施例7に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 7)
In the production of the biaxially stretched polypropylene film, the same as in Example 4 except that the draw ratio in the flow direction was set to 6.5 times and the thickness was set to 2.5 μm, according to Example 7. A shaft-stretched polypropylene film was obtained.
(実施例8)
 二軸延伸ポリプロピレンフィルムの作製において、流れ方向の延伸倍率を6.5倍にしたこと、及び、厚みを2.0μmにしたこと以外は、実施例4と同様にして、実施例8に係る二軸延伸ポリプロピレンフィルムを得た。
(Example 8)
In the production of the biaxially stretched polypropylene film, the same as in Example 4 except that the draw ratio in the flow direction was 6.5 times and the thickness was 2.0 μm, according to Example 8. A shaft-stretched polypropylene film was obtained.
(比較例1)
 二軸延伸ポリプロピレンフィルムの作製において、流れ方向の延伸倍率を4.5倍にしたこと以外は、実施例1と同様にして、比較例1に係る二軸延伸ポリプロピレンフィルムを得た。
(Comparative Example 1)
A biaxially stretched polypropylene film according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the stretch ratio in the flow direction was 4.5 times in the preparation of the biaxially stretched polypropylene film.
(比較例2)
 二軸延伸ポリプロピレンフィルムの作製において、流れ方向の延伸倍率を4.5倍にしたこと、及び、幅方向の延伸倍率を10倍にしたこと以外は、実施例1と同様にして、比較例2に係る二軸延伸ポリプロピレンフィルムを得た。
(Comparative Example 2)
In the production of the biaxially stretched polypropylene film, Comparative Example 2 was carried out in the same manner as in Example 1 except that the stretching ratio in the flow direction was 4.5 times and the stretching ratio in the width direction was 10 times. A biaxially stretched polypropylene film according to the above was obtained.
(比較例3)
 樹脂A1と樹脂B1とを、樹脂A1:樹脂B1=65:35の質量比で押出機へ供給し、樹脂温度250℃で溶融した後、Tダイを用いて押出し、エアギャップを5mmに調整し、表面温度を95℃に保持した金属ドラムに巻きつけて固化させてキャストシートを作製した。
 得られた未延伸のキャストシートを140℃の温度に保ち、速度差を設けたロール間に通して流れ方向に4.5倍に延伸し、直ちに室温に冷却した。引き続き、延伸フィルムをテンターに導いて、158℃の温度で幅方向に10倍に延伸した後、緩和、熱固定を施して巻き取り、30℃程度の雰囲気中でエージング処理を施して厚み2.8μmの二軸延伸ポリプロピレンフィルムを得た。
(Comparative Example 3)
Resin A1 and resin B1 are supplied to an extruder at a mass ratio of resin A1: resin B1 = 65:35, melted at a resin temperature of 250 ° C., and then extruded using a T-die to adjust the air gap to 5 mm. A cast sheet was prepared by winding it around a metal drum whose surface temperature was maintained at 95 ° C. and solidifying it.
The obtained unstretched cast sheet was kept at a temperature of 140 ° C., passed between rolls provided with a speed difference, stretched 4.5 times in the flow direction, and immediately cooled to room temperature. Subsequently, the stretched film was led to a tenter, stretched 10 times in the width direction at a temperature of 158 ° C., then relaxed, heat-fixed and wound, and aged in an atmosphere of about 30 ° C. to achieve a thickness of 2. An 8 μm biaxially stretched polypropylene film was obtained.
(比較例4)
 二軸延伸ポリプロピレンフィルムの作製において、厚みを2.5μmにしたこと以外は、比較例3と同様にして、比較例4に係る二軸延伸ポリプロピレンフィルムを得た。
(Comparative Example 4)
A biaxially stretched polypropylene film according to Comparative Example 4 was obtained in the same manner as in Comparative Example 3 except that the thickness was 2.5 μm in the preparation of the biaxially stretched polypropylene film.
(比較例5)
 キャストシートの作製において、樹脂温度を240℃にしたこと、及び、二軸延伸ポリプロピレンフィルムの作製において、厚みを2.3μmにしたこと以外は、比較例3と同様にして、比較例5に係る二軸延伸ポリプロピレンフィルムを得た。
(Comparative Example 5)
According to Comparative Example 5 in the same manner as in Comparative Example 3 except that the resin temperature was set to 240 ° C. in the production of the cast sheet and the thickness was 2.3 μm in the production of the biaxially stretched polypropylene film. A biaxially stretched polypropylene film was obtained.
(比較例6)
 キャストシートの作製において、樹脂C1を用いたこと以外は、比較例4と同様にして、比較例6に係る二軸延伸ポリプロピレンフィルムを得た。
(Comparative Example 6)
A biaxially stretched polypropylene film according to Comparative Example 6 was obtained in the same manner as in Comparative Example 4 except that the resin C1 was used in the preparation of the cast sheet.
 上述した実施例、比較例のポリプロピレンフィルムの製造条件につき、表2にまとめた。なお、表2中、面積延伸倍率とは、MD延伸倍率とTD延伸倍率との積をいう。
 ここで、キャスト冷却速度、キャストシートの厚さ、及び、ポリプロピレンフィルムの厚さは、下記方法により得られた値である。
Table 2 summarizes the production conditions of the polypropylene films of Examples and Comparative Examples described above. In Table 2, the area stretching ratio means the product of the MD stretching ratio and the TD stretching ratio.
Here, the cast cooling rate, the thickness of the cast sheet, and the thickness of the polypropylene film are values obtained by the following methods.
 <キャスト冷却速度の算出>
 Tダイを用いて押出し、金属ドラムに巻きつけて固化させているキャストシートの幅方向中央部の表面温度を測定した。キャストシートが金属ドラムに密着した時点を0秒として、0.5秒後、1.5秒後、2.5秒後、3.5秒後、4.5秒後、5.5秒後の表面温度を測定し、各測定点間の「温度低下量÷時間」の平均を「冷却速度」として算出した。
<Calculation of cast cooling rate>
The surface temperature of the central portion in the width direction of the cast sheet extruded using a T-die and wound around a metal drum to be solidified was measured. The time when the cast sheet is in close contact with the metal drum is 0 seconds, and 0.5 seconds, 1.5 seconds, 2.5 seconds, 3.5 seconds, 4.5 seconds, and 5.5 seconds later. The surface temperature was measured, and the average of "temperature decrease amount ÷ time" between each measurement point was calculated as "cooling rate".
 <キャストシート、及び、ポリプロピレンフィルムの厚さ測定>
 実施例、比較例のキャストシート、及び、ポリプロピレンフィルムの厚さを測定した。具体的に、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定すること以外、JIS-C2330に準拠して測定した。
<Measurement of thickness of cast sheet and polypropylene film>
The thicknesses of the cast sheets of Examples and Comparative Examples and the polypropylene film were measured. Specifically, the measurement was performed in accordance with JIS-C2330 except that the measurement was performed at 100 ± 10 kPa using a paper thickness measuring instrument MEI-11 manufactured by Citizen Seimitsu.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<複屈折値Δnxz、複屈折値Δnyzの測定、及び、差[(Δnyz)-(Δnxz)]の算出>
 まず、二軸延伸ポリプロピレンフィルムのレタデーション(位相差)値を、下記の通り、傾斜法により測定した。
測定機:大塚電子社製レタデーション測定装置 RE-100
光源:波長550nmのLED光源
測定方法:ポリプロピレンフィルムのMD方向をx軸、TD方向をy軸、厚さ方向をz軸とし、x軸を傾斜軸として、0°~50°の範囲でz軸に対して10°ずつ傾斜させたときの各レタデーション値を求めた。
 次に、得られたレタデーション値から、非特許文献「粟屋裕、高分子素材の偏光顕微鏡入門,105~120頁、2001年」に記載の方法を用いて、厚さ方向(z軸方向)に対するy軸方向の複屈折値ΔNyzを計算した。
 まず、各傾斜角φに対し、測定されたレタデーション値Rを、傾斜補正が施された厚さdで割ったR/dを求めた。φ=10°、20°、30°、40°、50°のそれぞれのR/dについて、φ=0°のR/dとの差を求め、それらをさらにsin2r(r:屈折角)で割ったものを、それぞれのφにおける複屈折ΔNzyとし、正負の符号を逆にして複屈折ΔNyzとした。φ=20°、30°、40°、50°における複屈折ΔNyzの平均値を算出し、これを複屈折値ΔNyzとした。
 次に、傾斜角φ=0°で測定されたレタデーション値Rを、厚さdで割った値より、前述で求めたΔNzyを除算し、複屈折値ΔNxzを算出した。
 なお、各傾斜角における屈折角rの値は、前記文献の109頁に記載されているものを用いた。
 結果を表3に示す。
<Measurement of birefringence value Δnxz and birefringence value Δnyz, and calculation of difference [(Δnyz)-(Δnxz)]>
First, the retardation (phase difference) value of the biaxially stretched polypropylene film was measured by the inclination method as follows.
Measuring machine: Otsuka Electronics Co., Ltd. retardation measuring device RE-100
Light source: LED light source with a wavelength of 550 nm Measuring method: The MD direction of the polypropylene film is the x-axis, the TD direction is the y-axis, the thickness direction is the z-axis, and the x-axis is the tilt axis, and the z-axis is in the range of 0 ° to 50 °. Each retardation value when tilted by 10 ° was obtained.
Next, from the obtained retardation values, the method described in the non-patent document "Yu Awaya, Introduction to Birefringence Microscopes for Polymer Materials, pp. 105-120, 2001" was used with respect to the thickness direction (z-axis direction). The birefringence value ΔNyz in the y-axis direction was calculated.
First, for each inclination angle φ, the measured retardation value R was divided by the inclination-corrected thickness d to obtain R / d. For each R / d of φ = 10 °, 20 °, 30 °, 40 °, and 50 °, find the difference from the R / d of φ = 0 °, and divide them by sin2r (r: refraction angle). The birefringence ΔNyz at each φ was used, and the positive and negative signs were reversed to obtain the birefringence ΔNyz. The average value of the birefringence ΔNyz at φ = 20 °, 30 °, 40 °, and 50 ° was calculated and used as the birefringence value ΔNyz.
Next, the birefringence value ΔNxz was calculated by dividing the retardation value R measured at the inclination angle φ = 0 ° by the thickness d by dividing ΔNzy obtained above.
As the value of the refraction angle r at each inclination angle, the value described on page 109 of the above-mentioned document was used.
The results are shown in Table 3.
<MD方向の25℃での引張弾性率MD、TD方向の25℃での引張弾性率TD、MD方向の25℃での破断強度MD、TD方向の25℃での破断強度TD、MD方向の25℃での破断伸度MD、TD方向の25℃での破断伸度TDの測定>
 実施例、比較例のポリプロピレンフィルムのMD方向の25℃での引張弾性率MD、TD方向の25℃での引張弾性率TD、MD方向の25℃での破断強度MD、TD方向の25℃での破断強度TD、MD方向の25℃での破断伸度MD、TD方向の25℃での破断伸度TDにつき、以下のようにして測定した。
 破断点伸度は、JIS K-7127(1999)に準拠して測定した。具体的には、引張圧縮試験機(ミネベア株式会社製)を用いて、試験条件(測定温度23℃、試験片長140mm、試験長100mm、試験片幅15mm、引張速度100mm/分)で引張試験を行った。次いで、同試験機に内蔵されたデータ処理ソフトによる自動解析より、破断点伸度(%)、及び引張弾性率(GPa)を求めた。
 また、比[(引張弾性率TD)/(引張弾性率MD)]、比[(破断強度TD)/(破断強度MD)]、比[(破断伸度TD)/(破断伸度MD)]を算出した。結果を表3に示す。
<Tensile modulus MD at 25 ° C. in the MD direction, tensile modulus TD at 25 ° C. in the TD direction, breaking strength MD at 25 ° C. in the MD direction, breaking strength TD at 25 ° C. in the TD direction, in the MD direction Measurement of breaking elongation MD at 25 ° C and breaking elongation TD at 25 ° C in the TD direction>
Tensile elastic modulus MD at 25 ° C. in the MD direction, tensile elastic modulus TD at 25 ° C. in the TD direction, breaking strength MD at 25 ° C. in the MD direction, and 25 ° C. in the TD direction of the polypropylene films of Examples and Comparative Examples. The breaking strength TD, the breaking elongation MD at 25 ° C. in the MD direction, and the breaking elongation TD at 25 ° C. in the TD direction were measured as follows.
The break point elongation was measured according to JIS K-7127 (1999). Specifically, a tensile compression tester (manufactured by Minebea Co., Ltd.) is used to perform a tensile test under test conditions (measurement temperature 23 ° C., test piece length 140 mm, test length 100 mm, test piece width 15 mm, tensile speed 100 mm / min). went. Next, the elongation at break (%) and the tensile elastic modulus (GPa) were determined by automatic analysis using the data processing software built into the testing machine.
In addition, the ratio [(tensile modulus TD) / (tensile modulus MD)], ratio [(breaking strength TD) / (breaking strength MD)], ratio [(breaking elongation TD) / (breaking elongation MD)] Was calculated. The results are shown in Table 3.
 <灰分の測定>
 実施例、比較例のポリプロピレンフィルムについて、下記のように測定した。
 試料約200gを秤量し、白金皿へ移して800℃で40分間で灰化した。得られた灰分残渣から灰分の割合(ppm)を測定した。結果を表3に示す。
<Measurement of ash>
The polypropylene films of Examples and Comparative Examples were measured as follows.
About 200 g of the sample was weighed, transferred to a platinum dish and incinerated at 800 ° C. for 40 minutes. The ratio of ash (ppm) was measured from the obtained ash residue. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<フィブリル数、フィブリル面積、及び、フィブリルの個数当たりの面積の測定>
 光干渉式非接触表面形状測定装置として、(株)菱化システム製の「VertScan2.0(型式:R5500GML)」を使用した。
 まず、WAVEモードを用い、530whiteフィルタ及び1×BODYの鏡筒を適用し、×10対物レンズを用いて、一視野あたり470.92μm×353.16μm(640ピクセル×480ピクセル)の計測を行った。この操作を対象試料(ポリプロピレンフィルム)の流れ方向・幅方向ともに中央となる箇所から流れ方向に1cm間隔で10箇所について行った。
 次に、得られたデータに対して、メディアンフィルタ(3×3)によるノイズ除去処理を行ない、その後、カットオフ値30μmによるガウシアンフィルタ処理を行い、うねり成分を除去した。
 上述のようにして得られた10箇所の各表面形状データについて、山側高さが0.05μm以上の領域を白塗りし、山側高さが0.05μmより小さい領域を黒塗りして、二値化画像(262×194ピクセル)を得た。
 次に、画像解析ソフトImage Pro Plus5.1J(日本ローバー製)を使用して、上記で得た二値化画像の輝度レンジが128以上255以下のオブジェクトの個数とその面積を測定した。なお、オブジェクトの抽出の際、画像の下側の境界上にあるものと左側の境界上にあるものは除外した。抽出したオブジェクトについて、面積が50ピクセル以上のオブジェクトの個数をフィブリル数とし、面積が50ピクセル以上のオブジェクトの面積の和をフィブリル面積とした。50ピクセルより面積が小さいオブジェクトはノイズとして除去した。また、面積が50ピクセル以上のオブジェクトについて面積の和を算出したのち、算出した和をフィブリル数で除算したものをフィブリルの個数当たりの面積(ピクセル/個)とした。最後に、フィブリルの個数当たりの面積に関して、単位をμm/個に換算した。結果を表4に示す。
 なお、フィブリルの個数当たりの面積に関する単位の換算方法では、二値化画像が一視野あたり470.92μm×353.16μm(262×194ピクセル)であることから、262×194ピクセル=470.92×353.16μmを計算することで得られる1ピクセル=3.272μmという式を用いている。
<Measurement of the number of fibrils, the area of fibrils, and the area per number of fibrils>
As a light interference type non-contact surface shape measuring device, "VertScan2.0 (model: R5500GML)" manufactured by Ryoka System Co., Ltd. was used.
First, using the WAVE mode, a 530-white filter and a 1 × BODY lens barrel were applied, and a measurement of 470.92 μm × 353.16 μm (640 pixels × 480 pixels) per field of view was performed using an × 10 objective lens. .. This operation was performed at 10 locations at 1 cm intervals in the flow direction from the central location in both the flow direction and the width direction of the target sample (polypropylene film).
Next, the obtained data was subjected to noise removal processing by a median filter (3 × 3), and then Gaussian filter treatment with a cutoff value of 30 μm was performed to remove undulation components.
For each surface shape data of the 10 locations obtained as described above, a region having a mountain side height of 0.05 μm or more is painted white, and a region having a mountain side height smaller than 0.05 μm is painted black to obtain binary values. A converted image (262 × 194 pixels) was obtained.
Next, using the image analysis software Image Pro Plus 5.1J (manufactured by Nippon Rover), the number of objects having a brightness range of 128 or more and 255 or less in the binarized image obtained above and their areas were measured. When extracting the objects, those on the lower boundary of the image and those on the left boundary were excluded. For the extracted objects, the number of objects having an area of 50 pixels or more was defined as the number of fibrils, and the sum of the areas of objects having an area of 50 pixels or more was defined as the fibril area. Objects with an area smaller than 50 pixels were removed as noise. Further, after calculating the sum of the areas of an object having an area of 50 pixels or more, the calculated sum divided by the number of fibrils was defined as the area (pixels / piece) per number of fibrils. Finally, for the area per number of fibrils, the unit was converted to μm 2 / piece. The results are shown in Table 4.
In the unit conversion method for the area per number of fibrils, the binarized image is 470.92 μm × 353.16 μm (262 × 194 pixels) per field, so 262 × 194 pixels = 470.92 ×. and using the equation of 1 pixel = 3.272μm 2 obtained by calculating the 353.16μm 2.
<フィルムロール巻きズレ評価>
 実施例1~8、比較例1~6で得られたポリプロピレンフィルムに、Tマージン蒸着パターンを蒸着抵抗15Ω/□にてアルミニウム蒸着を施すことにより、ポリプロピレンフィルムの片面に金属膜を含む金属層一体型ポリプロピレンフィルムを得た。
 得られた金属層一体型ポリプロピレンフィルムについて、以下の方法により、フィルムロールの巻きズレを評価した。すなわち、フィルムロールを側面から観察したときに、フィルムロール幅が最大になる箇所と最小になる箇所の長さを測定し、最大値と最小値の差から、以下のように巻ズレをA~Cの3段階で評価した。なお、巻き芯の直径は17.6cmであり、前記巻き芯に巻回されている二軸延伸ポリプロピレンフィルムの長さは、30000mである。
A:フィルムロール幅の最大値と最小値の差が0.5mm未満
B:フィルムロール幅の最大値と最小値の差が0.5mm以上1mm未満
C:フィルムロール幅の最大値と最小値の差が1mm以上
<Evaluation of film roll misalignment>
By applying a T-margin thin-film deposition pattern to the polypropylene films obtained in Examples 1 to 8 and Comparative Examples 1 to 6 with aluminum vapor deposition with a vapor deposition resistance of 15 Ω / □, a metal layer containing a metal film on one side of the polypropylene film. A body polypropylene film was obtained.
With respect to the obtained polypropylene film integrated with a metal layer, the winding deviation of the film roll was evaluated by the following method. That is, when the film roll is observed from the side, the lengths of the portion where the film roll width is maximized and the portion where the film roll width is minimized are measured, and from the difference between the maximum value and the minimum value, the winding deviation is A to A to the following. It was evaluated on a scale of C. The diameter of the winding core is 17.6 cm, and the length of the biaxially stretched polypropylene film wound around the winding core is 30,000 m.
A: The difference between the maximum and minimum values of the film roll width is less than 0.5 mm B: The difference between the maximum and minimum values of the film roll width is 0.5 mm or more and less than 1 mm C: The maximum and minimum values of the film roll width Difference is 1 mm or more
<蒸着膜ムラ評価>
  実施例1~8、比較例1~6で得られたポリプロピレンフィルムに、Tマージン蒸着パターンを蒸着抵抗15Ω/□にてアルミニウム蒸着を施すことにより、ポリプロピレンフィルムの片面に金属膜を含む金属層一体型ポリプロピレンフィルムを得た。
 得られた金属層一体型ポリプロピレンフィルムから、ロール1周分の全幅フィルムをロールの長さ方向中央から1枚剥がし取った後、剥がし取った全幅フィルムのロール幅方向中央部から100mm角のフィルム片を切り出した。切り出したフィルム片を、10mm角の100箇所の領域に分割し、100箇所の各領域の中央部について、印字濃度測定機(X-Rite社製938型)を用いて、それぞれ色彩値(L*値、a*値、b*値)を測定した。なお、測定径は8mmのものを使用した。L*値、a*値、b*値のそれぞれについて、100箇所の最大値、最小値、および100箇所の平均値から、以下の式を用いてばらつきを求めた。
  L*値のばらつき(%)=[(L*最大値-L*最小値)/100箇所のL*平均値]×100
  a*値のばらつき(%)=[(a*最大値-a*最小値)/100箇所のa*平均値]×100
  b*値のばらつき(%)=[(b*最大値-b*最小値)/100箇所のb*平均値]×100
 L*値、a*値、b*値のばらつきのうち、最もばらつきが大きいものについて、以下のようにA~Cの3段階で評価した。結果を表4に示す。
 A:L*値、a*値、b*値のばらつきのうち最も大きいものが10%未満
 B:L*値、a*値、b*値のばらつきのうち最も大きいものが10%以上20%未満
 C:L*値、a*値、b*値のばらつきのうち最も大きいものが20%以上
<Evaluation of thin film unevenness>
By applying a T-margin thin-film deposition pattern to the polypropylene films obtained in Examples 1 to 8 and Comparative Examples 1 to 6 with aluminum vapor deposition with a vapor deposition resistance of 15 Ω / □, a metal layer containing a metal film on one side of the polypropylene film. A body polypropylene film was obtained.
From the obtained polypropylene film integrated with a metal layer, one full-width film for one roll was peeled off from the center in the length direction of the roll, and then a 100 mm square film piece from the center in the roll width direction of the peeled full-width film. Was cut out. The cut-out film piece is divided into 100 areas of 10 mm square, and the color value (L *) is used for the central portion of each of the 100 areas using a print density measuring machine (Type 938 manufactured by X-Rite). Value, a * value, b * value) were measured. The measurement diameter used was 8 mm. For each of the L * value, a * value, and b * value, the variation was calculated from the maximum value and the minimum value at 100 points and the average value at 100 points using the following formula.
Variation of L * value (%) = [(L * maximum value-L * minimum value) / L * average value at 100 locations] x 100
Variation of a * value (%) = [(a * maximum value-a * minimum value) / a * average value at 100 locations] x 100
Variation of b * value (%) = [(b * maximum value-b * minimum value) / 100 b * average values] x 100
Among the variations of the L * value, the a * value, and the b * value, the one having the largest variation was evaluated on a scale of A to C as follows. The results are shown in Table 4.
A: The largest variation of L * value, a * value, and b * value is less than 10%. B: The largest variation of L * value, a * value, and b * value is 10% or more and 20%. Less than C: The largest variation of L * value, a * value, and b * value is 20% or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <コンデンサの作製、及び、静電容量>
 実施例1~6、比較例1~3で得られたポリプロピレンフィルムを用いて、以下の通りコンデンサを作製した。ポリプロピレンフィルムに、Tマージン蒸着パターンを蒸着抵抗15Ω/□にてアルミニウム蒸着を施すことにより、ポリプロピレンフィルムの片面に金属膜を含む金属層一体型ポリプロピレンフィルムを得た。60mm幅にスリットした後に、2枚の金属層一体型ポリプロピレンフィルムを相合わせて、株式会社皆藤製作所製、自動巻取機3KAW-N2型を用い、巻き取り張力250gにて、1158ターン巻回を行った。素子巻きした素子は、プレスしながら120℃にて15時間熱処理を施した後、素子端面に亜鉛金属を溶射し、扁平型コンデンサを得た。扁平型コンデンサの端面にリード線をはんだ付けし、その後エポキシ樹脂で封止した。以上により、実施例1~6、比較例1~3に係るコンデンサを得た。
 巻き取り張力250gにて、1137ターン巻回を行ったこと以外は、実施例1のコンデンサと同様にして実施例7、比較例4、比較例6に係るコンデンサを得た。
 巻き取り張力250gにて、1137ターン巻回を行ったこと以外は、実施例4のコンデンサと同様にして実施例8に係るコンデンサを得た。
 巻き取り張力250gにて、1076ターン巻回を行ったこと以外は、実施例1のコンデンサと同様にして比較例5に係るコンデンサを得た。
 なお、巻回のターン数を変更したのは、ポリプロピレンフィルムの厚みが異なるため、静電容量を同条件で評価するためである。
 出来上がったコンデンサの静電容量は、いずれも75μF(±5μF)であった。
<Manufacturing of capacitors and capacitance>
Capacitors were produced as follows using the polypropylene films obtained in Examples 1 to 6 and Comparative Examples 1 to 3. By subjecting a polypropylene film to a T-margin thin-film deposition pattern with an aluminum vapor deposition with a vapor deposition resistance of 15 Ω / □, a metal layer-integrated polypropylene film containing a metal film on one side of the polypropylene film was obtained. After slitting to a width of 60 mm, two metal layer integrated polypropylene films are combined, and a winding machine 3KAW-N2 type manufactured by Minato Seisakusho Co., Ltd. is used to wind 1158 turns at a winding tension of 250 g. went. The element wound element was heat-treated at 120 ° C. for 15 hours while being pressed, and then zinc metal was sprayed on the element end face to obtain a flat capacitor. The lead wire was soldered to the end face of the flat capacitor, and then sealed with epoxy resin. From the above, the capacitors according to Examples 1 to 6 and Comparative Examples 1 to 3 were obtained.
The capacitors according to Example 7, Comparative Example 4, and Comparative Example 6 were obtained in the same manner as the capacitors of Example 1 except that the capacitors were wound for 1137 turns at a winding tension of 250 g.
A capacitor according to Example 8 was obtained in the same manner as the capacitor of Example 4 except that the capacitor was wound for 1137 turns at a winding tension of 250 g.
A capacitor according to Comparative Example 5 was obtained in the same manner as the capacitor of Example 1 except that the capacitor was wound for 1076 turns at a winding tension of 250 g.
The number of turns of the winding was changed in order to evaluate the capacitance under the same conditions because the thickness of the polypropylene film is different.
The capacitance of the completed capacitors was 75 μF (± 5 μF).

Claims (6)

  1.  複屈折値Δnxzと複屈折値Δnyzとの差[(Δnyz)-(Δnxz)]が、0.009以下であり、
     MD方向の25℃での引張弾性率MDとTD方向の25℃での引張弾性率TDとの比[(引張弾性率TD)/(引張弾性率MD)]が、1.20以下であり、
     前記引張弾性率MDが、3.1GPa以上であり、
     厚さが0.8μm以上5μm以下であることを特徴とするポリプロピレンフィルム。
    (ただし、前記複屈折値Δnxzは、ポリプロピレンフィルムのMD方向をx軸、TD方向をy軸、厚さ方向をz軸としたとき、x軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値であり、前記複屈折値Δnyzは、y軸方向の三次元屈折率からz軸方向の三次元屈折率を差し引いた値である。)
    The difference [(Δnyz) − (Δnxz)] between the birefringence value Δnxz and the birefringence value Δnyz is 0.009 or less.
    The ratio [(tensile elastic modulus TD) / (tensile elastic modulus MD)] of the tensile elastic modulus MD at 25 ° C. in the MD direction and the tensile elastic modulus TD at 25 ° C. in the TD direction is 1.20 or less.
    The tensile elastic modulus MD is 3.1 GPa or more, and the tensile elastic modulus MD is 3.1 GPa or more.
    A polypropylene film having a thickness of 0.8 μm or more and 5 μm or less.
    (However, the double refractive index Δnxz is three-dimensional in the z-axis direction from the three-dimensional refractive index in the x-axis direction when the MD direction of the polypropylene film is the x-axis, the TD direction is the y-axis, and the thickness direction is the z-axis. It is a value obtained by subtracting the refractive index, and the double refractive index Δnyz is a value obtained by subtracting the three-dimensional refractive index in the z-axis direction from the three-dimensional refractive index in the y-axis direction.)
  2.  光干渉式非接触表面形状測定装置を用い、一視野あたり470.92μm×353.16μm(640ピクセル×480ピクセル)の計測を行った際のフィブリルの数が、20以上50以下であり、前記フィブリルの個数当たりの面積が、200μm/個以上1000μm/個以下である面を有することを特徴とする請求項1に記載のポリプロピレンフィルム。 The number of fibrils when measuring 470.92 μm × 353.16 μm (640 pixels × 480 pixels) per field using a light interference type non-contact surface shape measuring device is 20 or more and 50 or less, and the fibrils The polypropylene film according to claim 1, wherein the polypropylene film has a surface having an area of 200 μm 2 / piece or more and 1000 μm 2 / piece or less.
  3.  コンデンサ用であることを特徴とする請求項1又は2に記載のポリプロピレンフィルム。 The polypropylene film according to claim 1 or 2, characterized in that it is for a capacitor.
  4.  同時二軸延伸されていることを特徴とする請求項1~3のいずれか1に記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 3, wherein the polypropylene film is biaxially stretched at the same time.
  5.  請求項1~4のいずれか1に記載のポリプロピレンフィルムと、
     前記ポリプロピレンフィルムの片面又は両面に積層された金属層と
    を有する金属層一体型ポリプロピレンフィルム。
    The polypropylene film according to any one of claims 1 to 4,
    A polypropylene film integrated with a metal layer having a metal layer laminated on one side or both sides of the polypropylene film.
  6.  巻回された請求項5に記載の金属層一体型ポリプロピレンフィルムを有するか、又は、請求項5に記載の金属層一体型ポリプロピレンフィルムが複数積層された構成を有することを特徴とするフィルムコンデンサ。 A film capacitor having a wound metal layer-integrated polypropylene film according to claim 5, or having a configuration in which a plurality of metal layer-integrated polypropylene films according to claim 5 are laminated.
PCT/JP2020/015351 2019-04-22 2020-04-03 Polypropylene film, polypropylene film with integrated metal layer, and film capacitor WO2020217930A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080029772.1A CN113710734A (en) 2019-04-22 2020-04-03 Polypropylene film, polypropylene film with integrated metal layer, and film capacitor
JP2021515938A JP7192973B2 (en) 2019-04-22 2020-04-03 Polypropylene film, metal layer integrated polypropylene film, and film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-080757 2019-04-22
JP2019080757 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020217930A1 true WO2020217930A1 (en) 2020-10-29

Family

ID=72942328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015351 WO2020217930A1 (en) 2019-04-22 2020-04-03 Polypropylene film, polypropylene film with integrated metal layer, and film capacitor

Country Status (3)

Country Link
JP (1) JP7192973B2 (en)
CN (1) CN113710734A (en)
WO (1) WO2020217930A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107706A1 (en) * 2020-11-17 2022-05-27 王子ホールディングス株式会社 Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
WO2023162557A1 (en) * 2022-02-25 2023-08-31 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231584A (en) * 2013-05-30 2014-12-11 王子ホールディングス株式会社 Biaxially oriented polypropylene film for capacitor
JP2016199686A (en) * 2015-04-10 2016-12-01 三井化学東セロ株式会社 Biaxially oriented polypropylene film and method for producing the same
WO2018056404A1 (en) * 2016-09-23 2018-03-29 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film for capacitors, and capacitor
WO2018124300A1 (en) * 2016-12-28 2018-07-05 王子ホールディングス株式会社 Biaxially oriented polypropylene film, metallized film, and capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110605B2 (en) * 2009-04-28 2012-12-26 王子ホールディングス株式会社 Biaxially stretched polypropylene film for capacitors and metallized film thereof
JP6217542B2 (en) * 2014-03-31 2017-10-25 王子ホールディングス株式会社 Biaxially oriented polypropylene film for capacitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231584A (en) * 2013-05-30 2014-12-11 王子ホールディングス株式会社 Biaxially oriented polypropylene film for capacitor
JP2016199686A (en) * 2015-04-10 2016-12-01 三井化学東セロ株式会社 Biaxially oriented polypropylene film and method for producing the same
WO2018056404A1 (en) * 2016-09-23 2018-03-29 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film for capacitors, and capacitor
WO2018124300A1 (en) * 2016-12-28 2018-07-05 王子ホールディングス株式会社 Biaxially oriented polypropylene film, metallized film, and capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107706A1 (en) * 2020-11-17 2022-05-27 王子ホールディングス株式会社 Polypropylene film, polypropylene film integrated with metal layer, and film capacitor
WO2023162557A1 (en) * 2022-02-25 2023-08-31 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor

Also Published As

Publication number Publication date
JP7192973B2 (en) 2022-12-20
JPWO2020217930A1 (en) 2020-10-29
CN113710734A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
JP5110605B2 (en) Biaxially stretched polypropylene film for capacitors and metallized film thereof
JP4653852B2 (en) Biaxially stretched polypropylene film for capacitor, vapor-deposited film using the same, and capacitor
US10910164B2 (en) Biaxially stretched polypropylene film for capacitors, metallized film, and capacitor
JP6304470B1 (en) Biaxially oriented polypropylene film, metallized film for capacitors, and capacitors
JP6365918B1 (en) Biaxially oriented polypropylene film, metallized film and capacitor
CN112585197A (en) Polypropylene film, and metal film laminated film and film capacitor using same
WO2020217930A1 (en) Polypropylene film, polypropylene film with integrated metal layer, and film capacitor
CN115135703B (en) Polypropylene film, metal film laminate film and film capacitor
WO2019026958A1 (en) Polypropylene film, metal layer-integrated polypropylene film, and film capacitor
JP5929685B2 (en) Polypropylene film and method for producing the same
JP7265227B2 (en) Polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll
JP6137513B2 (en) Polypropylene film and method for producing the same
JP7334719B2 (en) Polyolefin Microporous Membrane, Multilayer Polyolefin Microporous Membrane, Battery
CN112638645B (en) Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
JP7261389B2 (en) Biaxially oriented polypropylene film, metallized film, film capacitor and film roll
WO2020045482A1 (en) Metal layer-integrated polypropylene film, film capacitor, and method for producing metal layer-integrated polypropylene film
JP7228132B2 (en) Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film production method
JP7256960B2 (en) Manufacturing method of metal layer integrated polypropylene film
KR20190065361A (en) Vinylidene fluoride resin film
KR20190076012A (en) Vinylidene fluoride resin film
JP2022056903A (en) Polypropylene film with integrated metal layer, film capacitor, and manufacturing method of propylene film with integrated metal layer
JP7265229B2 (en) Polypropylene film, metal layer integrated polypropylene film, film capacitor, and film roll
JP7245026B2 (en) Resin film, metal layer integrated resin film, and film capacitor
JP2023007667A (en) Metal layer-integrated type polypropylene film
JPH0299528A (en) Polypropylene film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794031

Country of ref document: EP

Kind code of ref document: A1