WO2019172139A1 - Display element and display device using same - Google Patents

Display element and display device using same Download PDF

Info

Publication number
WO2019172139A1
WO2019172139A1 PCT/JP2019/008187 JP2019008187W WO2019172139A1 WO 2019172139 A1 WO2019172139 A1 WO 2019172139A1 JP 2019008187 W JP2019008187 W JP 2019008187W WO 2019172139 A1 WO2019172139 A1 WO 2019172139A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display element
voltage
element according
light emitting
Prior art date
Application number
PCT/JP2019/008187
Other languages
French (fr)
Japanese (ja)
Inventor
範久 小林
翔太 常安
一希 中村
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to JP2020504992A priority Critical patent/JP7313066B2/en
Publication of WO2019172139A1 publication Critical patent/WO2019172139A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a display element.
  • ECL electrochemiluminescence
  • EC electrochromism
  • Patent Document 1 a Ru (bpy) 3 2+ complex, which is well known as an ECL material, and an organic EC material are incorporated in a single element, and a monochromatic light emitting display by ECL is applied by applying an AC voltage, and EC by applying a DC voltage. Control of monochromatic reflection display is realized.
  • Non-Patent Document 1 to Non-Patent Document 4 focus on the EC reaction based on the electrolytic deposition of Ag particles for the purpose of realizing a multi-color reflective display that could not be realized by the above-described conventional technique 1. Yes. As a result, it is possible to construct a display device capable of controlling the color development of multiple colors by EC emission based on light emission by the ECL reaction of Ru (bpy) 3 2+ and electrolytic deposition of Ag + in a single element.
  • Patent Document 1 controls monochromatic light emission / reflection by an applied voltage in a single element, and has not been realized for color control of a plurality of colors. It is known that organic EC materials also exhibit multiple color changes by utilizing higher order redox reactions. However, since a higher-order redox state may cause an unnecessary electron transfer reaction between materials, it is very difficult to develop multiple colors.
  • Non-Patent Document 1 to Non-Patent Document 4 controls the color development of multiple colors by EC based on orange light emission by Ru (bpy) 3 2+ ECL and electrolytic deposition of Ag + by applied voltage.
  • Ru (bpy) 3 2+ since it has absorption due to Ru (bpy) 3 2+ , the device showed orange in the initial state. This problem can be solved by reducing the Ru (bpy) 3 2+ concentration, but the production of redox species of Ru (bpy) 3 2+ decreases accordingly, and ECL emission can be obtained. It will disappear.
  • an object of the present invention is to provide a display element capable of reversibly changing transparency, coloring of a plurality of colors, and a light emission state.
  • a display element includes a first electrode, a second electrode, and an electrolysis held between the first electrode and the second electrode.
  • the liquid and a voltage applying means capable of applying a voltage between the first electrode and the second voltage are provided, and the electrolytic solution contains an electrochromic material and a blue light emitting material.
  • the display element includes a first electrode, a second electrode, an electrolytic solution held between the first electrode and the second electrode, and a first electrode.
  • a voltage applying unit capable of applying a voltage between the electrode and the second voltage is provided, and the electrolytic solution contains an electrochromic material and DPA. Furthermore, it is preferable that the concentration of DPA in the electrolytic solution is 1 mM or more. Furthermore, it is preferable that the voltage applying means can apply an alternating voltage between the electrode 1 and the second electrode.
  • the electrochromic material preferably contains a silver compound or silver ions.
  • the display element according to the present invention uses a blue light-emitting material that does not absorb in the visible light region. There is a remarkable effect in that the transmittance is high in the initial state and the contrast ratio of the reflectance of the element is high. Furthermore, since the electrolyte solution is sandwiched between two transparent electrodes such as ITO electrodes, it is advantageous in terms of device manufacturing.
  • FIG. 6 is a diagram illustrating a schematic diagram of a display element of Example 2.
  • FIG. FIG. 7 is a diagram illustrating a schematic diagram of a display device of Example 3.
  • FIG. 1 shows a schematic diagram of the present invention.
  • An electrolytic solution 104 is sandwiched between two ITO electrodes, and the electrolytic solution 104 is held between the two ITO electrodes.
  • the working electrode is 102 and the counter electrode is 103.
  • a voltage can be applied between the working electrode 102 and the counter electrode 103, and the magnitude of the constant voltage can be changed or an alternating voltage can be applied.
  • the present invention relates to a reflective / light emitting display element capable of “transparent / mirror / black / yellow / green / cyan / blue light emission” within a single element. Since the element of the prior art has absorption due to Ru (bpy) 3 2+ which is an ECL material, there is a problem that the transmittance in the initial state is not sufficiently lowered.
  • a blue light-emitting material that exhibits a redox reaction such as 9,10 diphenylanthracene (DPA)
  • DPA 9,10 diphenylanthracene
  • the principle of electrochemiluminescent materials that emit light is that negative charges are generated at the high energy level (reduction), positive charges are generated at the low energy level (oxidation), and negative and positive charges are generated.
  • the energy generated when the two are combined is emitted as light to emit light.
  • DPA and an excessive amount of silver compound are mixed, negative electrons generated in the high energy ranking of DPA move (reduction) to silver ions, and the high energy state (reduced state) of DPA disappears. It is considered that no light emission occurs.
  • the concentration of DPA needs to be 10 mM or more and 50 mM or less, and more preferably 10 mM or more and 20 mM or less.
  • Electrolyte DMF (dimethylformamide, solvent), DPA 10 mM, AgNO 3 (electrochromic material) 10 mM, CuCl 2 10 mM, TBACl 100 mM
  • concentration of DPA needs to be included to the extent that light emission occurs when an AC voltage is applied, and is preferably 1 mM or more, and more preferably 5 mM or more.
  • the electrochromic material include, but are not limited to, inorganic materials containing metal ions such as AgNO 3 , AgClO 4 , and AgBr (silver compound), and organic materials such as bispyridine pyrrole derivatives, anthraquinones, and phenothiazines. It is not limited to this.
  • each electrochromic material is not particularly limited as long as it has the above functions, and can be appropriately adjusted depending on the material, but is preferably 5M or less, more preferably 1 mM or more and 1M or less, More desirably, it is 5 mM or more and 100 mM or less.
  • FIG. 2 shows the relationship between the voltage applied to the display element and the current. When the voltage was swept in the negative direction, a current peak due to the silver precipitation reaction appeared from -1.8V, and when the voltage was swept in the negative direction, a current peak due to the DPA reduction reaction was obtained at around -2.6V. . When the sweep was reversed in the positive direction, a current peak due to the oxidation and dissolution reaction of silver was observed around -0.4V, and an increase in the current value due to the oxidation reaction of DPA was observed after 0.7V.
  • FIG. 8 is a schematic diagram of the display element of Example 2.
  • a colored film 105 is pasted on the surface of the element (working electrode).
  • the light emitting material-containing film 105 for example, a green film can be used. If the film 105 containing a light emitting material is a green light emitting material-containing film, even if the light emitting material emits blue light, the blue light is converted into green by the green light emitting material in the film, and the light passing through the film is green. Thus, a display element that emits green light can be obtained.
  • the film containing the green light emitting material may contain, for example, alkynolinium or Ir complex at a concentration of 5 wt% to 10 wt%, and may use PMMA or PVB as a dispersion film (host polymer).
  • a red light emitting material-containing film can be used for the light emitting material-containing film 105.
  • the film 105 is a film containing a red light emitting material, even if the light emitting material emits blue light, the blue light is converted into red light by the red light emitting material in the film, and the light passing through the film becomes red, A display element that emits red light can be obtained.
  • the red light emitting material-containing film shall contain, for example, Eu (III) complex or D2849 dye (Tokyo Kasei) at a concentration of 5 wt% to 10 wt%, and use PMMA or PVB as the dispersion film (host polymer). Can do.
  • FIG. 9 shows the configuration of the display device (display) according to the third embodiment.
  • 21 is a blue light emitting element of Example 1
  • 22 is a green light emitting element having a green light emitting material containing film of Example 2 pasted on the surface
  • 23 is a red light emitting containing film according to Example 2 stuck on the surface. Red light emitting element.
  • the present invention can be used industrially as a display element and a display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

[Problem] To provide a display element capable of reversibly changing states of transparency, a plurality of coloring, and light emission with a single display element by varying an application voltage. [Solution] To address the problem described above, a display element according to one aspect of the present invention comprises a first electrode, a second electrode, an electrolyte held between the first electrode and the second electrode, and a voltage application means capable of applying a voltage between the first electrode and the second electrode, with the electrolyte containing an electrochromic material and a blue emission material. A display element according to another aspect of the present invention comprises a first electrode, a second electrode, an electrolyte held between the first electrode and the second electrode, and a voltage application means capable of applying a voltage between the first electrode and the second electrode, with the electrolyte containing a silver compound and DPA.

Description

表示素子及びこれを用いた表示装置Display element and display device using the same
 本発明は、表示素子に関するものである。 The present invention relates to a display element.
 表示素子への展開が期待されている電気化学反応として、発光反応である電気化学発光(ECL)と、着色反応であるエレクトロクロミズム(EC)が知られている。特許文献1では、ECL材料としてよく知られているRu(bpy)3 2+錯体と有機EC材料を単一素子内に組み込み、交流電圧印加によってECLによる単色発光表示を、直流電圧印加によってECによる単色反射表示の制御を実現している。 As electrochemical reactions expected to be applied to display elements, electrochemiluminescence (ECL) which is a luminescent reaction and electrochromism (EC) which is a coloring reaction are known. In Patent Document 1, a Ru (bpy) 3 2+ complex, which is well known as an ECL material, and an organic EC material are incorporated in a single element, and a monochromatic light emitting display by ECL is applied by applying an AC voltage, and EC by applying a DC voltage. Control of monochromatic reflection display is realized.
 非特許文献1から非特許文献4に記載の技術は、上述の従来技術1では実現できなかった複数色の反射表示の実現を目的として、Ag粒子の電解析出に基づくEC反応に着目している。その結果、単一素子においてRu(bpy)3 2+のECL反応による発光とAg+の電解析出に基づくEC反応による複数色の発色制御可能な表示デバイスが構築できることを実現している。 The techniques described in Non-Patent Document 1 to Non-Patent Document 4 focus on the EC reaction based on the electrolytic deposition of Ag particles for the purpose of realizing a multi-color reflective display that could not be realized by the above-described conventional technique 1. Yes. As a result, it is possible to construct a display device capable of controlling the color development of multiple colors by EC emission based on light emission by the ECL reaction of Ru (bpy) 3 2+ and electrolytic deposition of Ag + in a single element.
特開2017-016138号公報JP 2017-016138 A
 特許文献1に記載の技術は、単一素子内にて単色の発光・反射を印加電圧によって制御するものであり、複数色の発色制御については実現されていなかった。有機EC材料には、高次の酸化還元反応を利用することで複数色の色変化も示すことが知られている。しかしながら、高次の酸化還元状態は材料間での不要な電子移動反応を招いてしまう可能性があるため、複数色の発色は非常に困難である。 The technique described in Patent Document 1 controls monochromatic light emission / reflection by an applied voltage in a single element, and has not been realized for color control of a plurality of colors. It is known that organic EC materials also exhibit multiple color changes by utilizing higher order redox reactions. However, since a higher-order redox state may cause an unnecessary electron transfer reaction between materials, it is very difficult to develop multiple colors.
 非特許文献1から非特許文献4に記載の技術は、Ru(bpy)3 2+のECLよる橙色の発光とAg+の電解析出に基づくECによる複数色の発色を印加電圧によって制御するものだが、Ru(bpy)3 2+に起因する吸収を有しているため、初期状態において素子は橙色を示していた。この課題は、Ru(bpy)3 2+濃度を薄くすることで解決可能だが、それに伴いRu(bpy)3 2+の酸化還元種の生成量が減少してしまうため、ECLによる発光が得られなくなってしまう。 The technology described in Non-Patent Document 1 to Non-Patent Document 4 controls the color development of multiple colors by EC based on orange light emission by Ru (bpy) 3 2+ ECL and electrolytic deposition of Ag + by applied voltage. However, since it has absorption due to Ru (bpy) 3 2+ , the device showed orange in the initial state. This problem can be solved by reducing the Ru (bpy) 3 2+ concentration, but the production of redox species of Ru (bpy) 3 2+ decreases accordingly, and ECL emission can be obtained. It will disappear.
 そこで、本発明は、透明、複数色の発色、発光状態を可逆的に変化させることができる表示素子を提供することを目的とする。 Therefore, an object of the present invention is to provide a display element capable of reversibly changing transparency, coloring of a plurality of colors, and a light emission state.
 上記課題を解決するために、本発明の一つの観点によれば、表示素子を、第1の電極と、第2の電極と、第1の電極及び第2の電極の間に保持された電解液と、第1の電極と第2の電圧の間に電圧を印加することができる電圧印加手段とを備え、電解液は、エレクトロクロミック材料及び青色発光材料を含有するものとした。 In order to solve the above-described problem, according to one aspect of the present invention, a display element includes a first electrode, a second electrode, and an electrolysis held between the first electrode and the second electrode. The liquid and a voltage applying means capable of applying a voltage between the first electrode and the second voltage are provided, and the electrolytic solution contains an electrochromic material and a blue light emitting material.
 また、本発明の他の観点によれば、表示素子を、第1の電極と、第2の電極と、第1の電極及び第2の電極の間に保持された電解液と、第1の電極と第2の電圧の間に電圧を印加することができる電圧印加手段とを備え、電解液は、エレクトロクロミック材料及びDPAを含有するものとした。さらに、電解液中のDPAの濃度を、1mM以上とすると好ましい。さらに、電圧印加手段が、電極1の電極と第2の電極の間に交流電圧を印加することができるものとすると好ましい。また、エレクトロクロミック材料を、銀化合物又は銀イオンを含有するものとすると好ましい。 According to another aspect of the present invention, the display element includes a first electrode, a second electrode, an electrolytic solution held between the first electrode and the second electrode, and a first electrode. A voltage applying unit capable of applying a voltage between the electrode and the second voltage is provided, and the electrolytic solution contains an electrochromic material and DPA. Furthermore, it is preferable that the concentration of DPA in the electrolytic solution is 1 mM or more. Furthermore, it is preferable that the voltage applying means can apply an alternating voltage between the electrode 1 and the second electrode. The electrochromic material preferably contains a silver compound or silver ions.
 非特許文献1から非特許文献4に記載の表示素子と比較して、本発明による表示素子では、可視光域に吸収を持たない青色発光材料を用いているため、本発明による表示素子は、初期状態における高い透過率を示す点や、素子の反射率のコントラスト比が高い点で顕著な効果がある。さらに、2枚のITO電極等の透明電極で電解液を挟み込んだ構造であるため、素子製造面でも有利である。 Compared with the display elements described in Non-Patent Document 1 to Non-Patent Document 4, the display element according to the present invention uses a blue light-emitting material that does not absorb in the visible light region. There is a remarkable effect in that the transmittance is high in the initial state and the contrast ratio of the reflectance of the element is high. Furthermore, since the electrolyte solution is sandwiched between two transparent electrodes such as ITO electrodes, it is advantageous in terms of device manufacturing.
本実施形態に係る表示素子の概略を示す図である。It is a figure which shows the outline of the display element which concerns on this embodiment. 本実施形態に係る表示素子の電圧と電流の関係を示す図である。It is a figure which shows the relationship between the voltage of the display element which concerns on this embodiment, and an electric current. 本表示素子の透明状態を示す図である。It is a figure which shows the transparent state of this display element. 本表示素子の鏡状態を示す図である。It is a figure which shows the mirror state of this display element. 本表示素子の黒状態を示す図である。It is a figure which shows the black state of this display element. 本表示素子の発光状態を示す図である。It is a figure which shows the light emission state of this display element. 本表示素子が黄色、緑色、シアンに発色する様子を示す図である。It is a figure which shows a mode that this display element colors yellow, green, and cyan. 実施例2の表示素子の模式図を示す図である。6 is a diagram illustrating a schematic diagram of a display element of Example 2. FIG. 実施例3の表示装置の模式図を示す図である。FIG. 7 is a diagram illustrating a schematic diagram of a display device of Example 3.
 以下、本発明の実施例を説明するが、本発明の実施形態は以下に例示する実施例に限定されるものではない。 Examples of the present invention will be described below, but the embodiments of the present invention are not limited to the examples illustrated below.
 図1に本発明の概略図を示す。電解液104が、ITO電極2枚に挟まれており、2枚のITO電極の間に電解液104が保持されている。作用極が102、対極が103である。作用極102と対極103の間には電圧を印加することができ、定電圧の大きさを変化させたり、交流電圧を印加させたりすることができる。 FIG. 1 shows a schematic diagram of the present invention. An electrolytic solution 104 is sandwiched between two ITO electrodes, and the electrolytic solution 104 is held between the two ITO electrodes. The working electrode is 102 and the counter electrode is 103. A voltage can be applied between the working electrode 102 and the counter electrode 103, and the magnitude of the constant voltage can be changed or an alternating voltage can be applied.
 本発明は、単一素子内にて「透明・鏡・黒・イエロー・グリーン・シアン・青色発光」を可能とする反射・発光表示型素子に関するものである。従来技術の素子では、ECL材料であるRu(bpy)3 2+に起因する吸収を有しているため、初期状態の透過率が十分に低下しないという課題があった。 The present invention relates to a reflective / light emitting display element capable of “transparent / mirror / black / yellow / green / cyan / blue light emission” within a single element. Since the element of the prior art has absorption due to Ru (bpy) 3 2+ which is an ECL material, there is a problem that the transmittance in the initial state is not sufficiently lowered.
 そこで、電解液に9,10ジフェニルアントラセン(DPA)等の酸化還元反応を示す青色発光材料を添加し、その材料の酸化還元反応の有無を印加電圧制御によって析出銀粒子の成長速度の差が生み出すことで、透明状態から鏡状態と黒状態の可逆な色変化を実現するとともに、交流電圧の印加によってECLによる青色発光も取り出すことができる。
 しかしながら、単純に電解液にECL材料であるDPAとEC材料である銀化合物を溶解しても、銀化合物がDPAに影響を及ぼし、十分な青色発光が実現できないことが、発明者の検討により明らかになった。
 電気化学発光材料が発光する原理は、電気化学発光材料の高エネルギー準位に負の電荷が生じ(還元)、低エネルギー準位に正の電荷が生じ(酸化)、負の電荷と正の電荷が結合する際に生じるエネルギーが、光となって放出されて発光する。しかし、DPAと必要以上の銀化合物を混合すると、DPAの高エネルギー順位に生じた負の電子が銀イオンに移動(還元)し、DPAの高エネルギー状態(還元状態)が消失するため、DPAの発光が生じなくなると考えられる。
 そこで、本発明者により鋭意検討を行った結果、電解液中の銀化合物が、200mM以下の濃度であれば、銀イオンから生じた電子のDPAに対する影響が少なくなり、素子に交流電圧を印加した際にDPAが十分な強度で青色に発光することが判明した。
 また、銀化合物が発色材料として機能するためには、10mM以上の濃度が必要なことが分かった。
 すなわち、電解液に電気化学発光材料としてDPA、EC材料として銀化合物を溶解した場合、銀化合物の濃度は10mM以上200mM以下でないと、発光と多色発色を実現することができないことが分かった。
 さらに、発明者の検討の結果、DPAの濃度としては、10mM以上50mM以下である必要があり、さらに、10mM以上20mM以下であるとより好ましいことが分かった。
Therefore, a blue light-emitting material that exhibits a redox reaction, such as 9,10 diphenylanthracene (DPA), is added to the electrolyte, and the difference in the growth rate of the precipitated silver particles is created by controlling the applied voltage to determine whether the material has a redox reaction. As a result, reversible color change from the transparent state to the mirror state and the black state can be realized, and blue light emission by ECL can also be taken out by applying an AC voltage.
However, it is clear from the inventor's investigation that even if the ECL material DPA and the EC material silver compound are simply dissolved in the electrolyte, the silver compound affects the DPA and sufficient blue light emission cannot be realized. Became.
The principle of electrochemiluminescent materials that emit light is that negative charges are generated at the high energy level (reduction), positive charges are generated at the low energy level (oxidation), and negative and positive charges are generated. The energy generated when the two are combined is emitted as light to emit light. However, when DPA and an excessive amount of silver compound are mixed, negative electrons generated in the high energy ranking of DPA move (reduction) to silver ions, and the high energy state (reduced state) of DPA disappears. It is considered that no light emission occurs.
Therefore, as a result of intensive studies by the present inventors, when the silver compound in the electrolyte solution has a concentration of 200 mM or less, the influence of electrons generated from silver ions on DPA is reduced, and an AC voltage is applied to the device. It was found that DPA emitted blue light with sufficient intensity.
Further, it was found that a concentration of 10 mM or more is necessary for the silver compound to function as a coloring material.
That is, when DPA as an electrochemiluminescent material and a silver compound as an EC material are dissolved in an electrolytic solution, it has been found that light emission and multicolor coloring cannot be realized unless the concentration of the silver compound is 10 mM or more and 200 mM or less.
Furthermore, as a result of the inventors' investigation, it has been found that the concentration of DPA needs to be 10 mM or more and 50 mM or less, and more preferably 10 mM or more and 20 mM or less.
(1)素子構造
 電解液:DMF(ジメチルホルムアミド、溶媒。)、DPA 10 mM、AgNO(エレクトロクロミック材料)10mM、CuCl10 mM、TBACl 100mM
(1) Element structure Electrolyte: DMF (dimethylformamide, solvent), DPA 10 mM, AgNO 3 (electrochromic material) 10 mM, CuCl 2 10 mM, TBACl 100 mM
(2)CV測定
 Mは、濃度を表す単位であり、1M=mol・m-3である。DPAの濃度は、交流電圧印加時に、発光が生じる程度含まれる必要があり、1mM以上が好ましく、さらに5mM以上が好ましい。エレクトロクロミック材料としては限定されるわけではないが、AgNO、AgClO、AgBr(銀化合物)等の金属イオンを含む無機材料、ビスピリジンピロール誘導体、アントラキノン、フェノチアジン等の有機材料等を例示できるがこれに限定されない。それぞれのエレクトロクロミック材料の濃度については、上記機能を有する限りにおいて特に限定されるわけではなく、材料によって適宜調整が可能であるが、5M以下であることが望ましく、より望ましくは1mM以上1M以下、さらに望ましくは5mM以上100mM以下である。図2に、表示素子への印加電圧と電流の関係を示す。電圧を負方向に掃引すると、-1.8Vより銀の析出反応に起因する電流のピークが現れ、さらに負方向へと掃引すると-2.6V付近にDPAの還元反応に起因する電流ピークが得られた。また、正方向に掃引を折り返すと、-0.4V付近にて銀の酸化溶解反応に起因する電流ピークが認められ、0.7V以降ではDPAの酸化反応に起因する電流値の上昇も観測された。
(2) CV measurement M is a unit representing concentration, and 1M = mol · m −3 . The concentration of DPA needs to be included to the extent that light emission occurs when an AC voltage is applied, and is preferably 1 mM or more, and more preferably 5 mM or more. Examples of the electrochromic material include, but are not limited to, inorganic materials containing metal ions such as AgNO 3 , AgClO 4 , and AgBr (silver compound), and organic materials such as bispyridine pyrrole derivatives, anthraquinones, and phenothiazines. It is not limited to this. The concentration of each electrochromic material is not particularly limited as long as it has the above functions, and can be appropriately adjusted depending on the material, but is preferably 5M or less, more preferably 1 mM or more and 1M or less, More desirably, it is 5 mM or more and 100 mM or less. FIG. 2 shows the relationship between the voltage applied to the display element and the current. When the voltage was swept in the negative direction, a current peak due to the silver precipitation reaction appeared from -1.8V, and when the voltage was swept in the negative direction, a current peak due to the DPA reduction reaction was obtained at around -2.6V. . When the sweep was reversed in the positive direction, a current peak due to the oxidation and dissolution reaction of silver was observed around -0.4V, and an increase in the current value due to the oxidation reaction of DPA was observed after 0.7V.
(3)発光と複数色発色の実証
 電圧を印加しない初期状態では、本表示素子は透明である(図3)。-2.8Vの定電圧を印加すると、銀の還元析出反応によって素子は鏡状態を示した(図4)。それに対し、-3.5Vの定電圧を印加すると、素子は黒状態を示した(図5)。これは、DPAの還元反応も同時に発生することで、それがバルク中へと拡散する過程で銀イオンに電子を与え、従来とは異なる粒子の生成が生じたためと考えられる。この結果より、印加電圧の大きさを変えることで、光学状態を切り替えられることが明らかとなった。さらに、±3.5V、50Hzの矩形波交流電圧を印加すると波長430nm付近にピークを持つDPA由来の青色発光が観測された(図6)。
 次に、素子に-3.0Vから-2.0Vの間を周期20msで周期的に変化するステップ電圧を印加すると、約15s程度で黄色に発色した(図7)。素子に-3.5Vから-2.0Vの間を周期的に変化するステップ電圧を印加すると、約10sで緑色に発色した(図7)。素子に-4.0Vから-2.0Vの間を周期的に変化するステップ電圧を印加すると、約10sでシアンに発色した(図7)。
(3) Demonstration of light emission and color development In the initial state where no voltage is applied, the display element is transparent (FIG. 3). When a constant voltage of −2.8 V was applied, the device showed a mirror state due to the reduction precipitation reaction of silver (FIG. 4). On the other hand, when a constant voltage of −3.5 V was applied, the device showed a black state (FIG. 5). This is thought to be because the reduction reaction of DPA occurs at the same time, giving electrons to silver ions in the process of diffusion into the bulk, resulting in the generation of particles different from the conventional one. From this result, it became clear that the optical state can be switched by changing the magnitude of the applied voltage. Furthermore, when a square wave AC voltage of ± 3.5 V and 50 Hz was applied, blue light emission derived from DPA having a peak near a wavelength of 430 nm was observed (FIG. 6).
Next, when a step voltage that periodically changed between −3.0 V and −2.0 V with a period of 20 ms was applied to the device, the color developed yellow in about 15 s (FIG. 7). When a step voltage that periodically changes between −3.5 V and −2.0 V was applied to the device, the color developed in about 10 s (FIG. 7). When a step voltage changing periodically between −4.0 V and −2.0 V was applied to the device, the color developed to cyan in about 10 s (FIG. 7).
 以上の結果より、単一素子において透明状態から青色発光と銀の電解析出による複数色(ミラー・黒・黄色、緑色、シアン)の発色制御可能な表示デバイスが構築できることが実証された。 From the above results, it was demonstrated that a display device capable of controlling the color development of multiple colors (mirror, black, yellow, green, cyan) by blue light emission and silver electrolytic deposition from a transparent state in a single element can be constructed.
 本実施例は、ダウンコンバージョンによる波長変換を利用して、表示素子を青色以外に発光させるものである。図8に、実施例2の表示素子の模式図を示す。図1の表示素子と異なる点は、素子(作用極)の表面に有色のフィルム105を貼った点である。
 発光材料含有フィルム105には、例えば緑色のフィルムを使用することができる。発光材料を含むフィルム105を緑色発光材料含有フィルムとすれば、発光材料が青色に発光しても、青色の光がフィルム中の緑色発光材料で、緑色に変換され、フィルムを通過した光は緑色となり、緑色に発光する表示素子とすることができる。緑色発光材料を含むフィルムは、例えば、アルキノリニウム又はIr錯体を濃度5wt%から10wt%含有し、分散膜(ホスト高分子)として、PMMA、PVBを使用したものとすることができる。
In this embodiment, the display element emits light other than blue by using wavelength conversion by down-conversion. FIG. 8 is a schematic diagram of the display element of Example 2. The difference from the display element of FIG. 1 is that a colored film 105 is pasted on the surface of the element (working electrode).
As the light emitting material-containing film 105, for example, a green film can be used. If the film 105 containing a light emitting material is a green light emitting material-containing film, even if the light emitting material emits blue light, the blue light is converted into green by the green light emitting material in the film, and the light passing through the film is green. Thus, a display element that emits green light can be obtained. The film containing the green light emitting material may contain, for example, alkynolinium or Ir complex at a concentration of 5 wt% to 10 wt%, and may use PMMA or PVB as a dispersion film (host polymer).
 また、発光材料含有フィルム105に、赤色発光材料含有フィルムを用いることができる。フィルム105を赤色発光材料を含むフィルムとすれば、発光材料が青色に発光しても、青色の光がフィルム中の赤色発光材料で赤色の光に変換され、フィルムを通過した光は赤色となり、赤色に発光する表示素子とすることができる。赤色発光材料含有フィルムは、例えば、Eu(III)錯体又はD2849色素(東京化成)を濃度5wt%から10wt%含有し、分散膜(ホスト高分子)として、PMMA、PVBを使用したものとすることができる。 Further, a red light emitting material-containing film can be used for the light emitting material-containing film 105. If the film 105 is a film containing a red light emitting material, even if the light emitting material emits blue light, the blue light is converted into red light by the red light emitting material in the film, and the light passing through the film becomes red, A display element that emits red light can be obtained. The red light emitting material-containing film shall contain, for example, Eu (III) complex or D2849 dye (Tokyo Kasei) at a concentration of 5 wt% to 10 wt%, and use PMMA or PVB as the dispersion film (host polymer). Can do.
 青の発光スペクトルと赤、緑に発光する材料の吸収スペクトルの重なりが大きい必要がある(青が効率よく吸収されて他の色が光らなければならない。)ため、赤発光、緑発光のための発光材料含有フィルムの材料を選ぶ必要がある。 The overlap between the emission spectrum of blue and the absorption spectrum of materials emitting red and green must be large (blue must be absorbed efficiently and other colors must shine). It is necessary to select a material for the light emitting material-containing film.
 図9に実施例3の表示装置(ディスプレイ)の構成を示す。21は、実施例1の青色発光素子であり、22は実施例2の緑色発光材料含有フィルムを表面に貼った緑色発光素子であり、23は、実施例2による赤色発光含有フィルムを表面に貼った赤色発光素子である。このように、異なる色に発光する発光素子を混合して並置すれば、多色に発光する表示装置(ディスプレイ)を作成することができる。 FIG. 9 shows the configuration of the display device (display) according to the third embodiment. 21 is a blue light emitting element of Example 1, 22 is a green light emitting element having a green light emitting material containing film of Example 2 pasted on the surface, and 23 is a red light emitting containing film according to Example 2 stuck on the surface. Red light emitting element. Thus, if light emitting elements that emit light of different colors are mixed and juxtaposed, a display device (display) that emits light of multiple colors can be created.
 本発明は、表示素子及び表示装置として産業上の利用が可能である。 The present invention can be used industrially as a display element and a display device.
101 ITO電極
102 作用極
103 対極
104 電解液
105 発光材料含有フィルム
21 青色発光素子
22 緑色発光素子
23 赤色発光素子
101 ITO electrode 102 Working electrode 103 Counter electrode 104 Electrolyte solution 105 Light emitting material containing film 21 Blue light emitting element 22 Green light emitting element 23 Red light emitting element

Claims (9)

  1.  第1の電極と、第2の電極と、第1の電極及び第2の電極の間に保持された電解液と、第1の電極と第2の電極の間に電圧を印加することができる電圧印加手段とを備え、前記電解液は、エレクトロクロミック材料及び青色発光材料を含有する表示素子。 A voltage can be applied between the first electrode, the second electrode, the electrolytic solution held between the first electrode and the second electrode, and the first electrode and the second electrode. A display device including a voltage applying unit, wherein the electrolyte contains an electrochromic material and a blue light emitting material.
  2.  第1の電極と、第2の電極と、第1の電極及び第2の電極の間に保持された電解液と、第1の電極と第2の電極の間に電圧を印加することができる電圧印加手段とを備え、前記電解液は、エレクトロクロミック材料及びDPAを含有する表示素子。 A voltage can be applied between the first electrode, the second electrode, the electrolytic solution held between the first electrode and the second electrode, and the first electrode and the second electrode. And a voltage applying means, wherein the electrolyte contains an electrochromic material and DPA.
  3.  前記電解液中の前記DPAの濃度を、1mM以上としたことを特徴とする請求項2記載の表示素子。 The display element according to claim 2, wherein the concentration of the DPA in the electrolyte is 1 mM or more.
  4.  前記電圧印加手段が、前記第1の電極と前記第2の電極の間に交流電圧を印加することができることを特徴とする請求項1に記載の表示素子。 2. The display element according to claim 1, wherein the voltage applying means can apply an alternating voltage between the first electrode and the second electrode.
  5.  前記電圧印加手段が、前記第1の電極と前記第2の電極の間にステップ電圧を印加することができることを特徴とする請求項4に記載の表示素子。 The display element according to claim 4, wherein the voltage applying means can apply a step voltage between the first electrode and the second electrode.
  6.  前記エレクトロクロミック材料が、銀化合物又は銀イオンを含有することを特徴とする請求項1に記載の表示素子。 The display element according to claim 1, wherein the electrochromic material contains a silver compound or silver ions.
  7.  前記銀化合物又は銀イオンの濃度が、10mM以上200mM以下であることを特徴とする請求項6記載の表示素子。 The display element according to claim 6, wherein the concentration of the silver compound or silver ion is 10 mM or more and 200 mM or less.
  8.  前記表示素子の表面に発光材料含有フィルムを貼ったことを特徴とする請求項1記載の表示素子。 The display element according to claim 1, wherein a film containing a light emitting material is pasted on a surface of the display element.
  9.  請求項8に記載の第1の表示素子と、第1の表示素子とは異なる色に発光する発光材料含有フィルムを表面に貼った請求項8に記載の第2の表示素子を並置したことを特徴とする表示装置。 The first display element according to claim 8 and the second display element according to claim 8 in which a light emitting material-containing film that emits light in a color different from that of the first display element is attached to the surface. Characteristic display device.
PCT/JP2019/008187 2018-03-05 2019-03-01 Display element and display device using same WO2019172139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020504992A JP7313066B2 (en) 2018-03-05 2019-03-01 Display element and display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-038407 2018-03-05
JP2018038407 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019172139A1 true WO2019172139A1 (en) 2019-09-12

Family

ID=67846040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008187 WO2019172139A1 (en) 2018-03-05 2019-03-01 Display element and display device using same

Country Status (2)

Country Link
JP (1) JP7313066B2 (en)
WO (1) WO2019172139A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286561A (en) * 2006-04-20 2007-11-01 Toshiba Corp Display device
JP2010134303A (en) * 2008-12-08 2010-06-17 Sony Corp Color liquid crystal display assembly
WO2011111843A1 (en) * 2010-03-11 2011-09-15 国立大学法人 千葉大学 Display device
JP2016194734A (en) * 2011-03-02 2016-11-17 国立大学法人 千葉大学 Dimming element and product including the same
KR20170079626A (en) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 White light emitting device and hybrid display device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599873B2 (en) * 2012-05-28 2017-03-21 National University Corporation Chiba University Light control method for light control element
JP2015121657A (en) * 2013-12-24 2015-07-02 スタンレー電気株式会社 Display device
JP2016100182A (en) * 2014-11-21 2016-05-30 スタンレー電気株式会社 Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286561A (en) * 2006-04-20 2007-11-01 Toshiba Corp Display device
JP2010134303A (en) * 2008-12-08 2010-06-17 Sony Corp Color liquid crystal display assembly
WO2011111843A1 (en) * 2010-03-11 2011-09-15 国立大学法人 千葉大学 Display device
JP2016194734A (en) * 2011-03-02 2016-11-17 国立大学法人 千葉大学 Dimming element and product including the same
KR20170079626A (en) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 White light emitting device and hybrid display device using the same

Also Published As

Publication number Publication date
JP7313066B2 (en) 2023-07-24
JPWO2019172139A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US7532383B2 (en) Electrochromic device having improved color properties
JP6210500B2 (en) Display device
US7002723B2 (en) Display device
TW201042347A (en) Electrochromic display apparatus
JP2007279609A (en) Display method and display element
Kimura et al. An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles
JP2019525211A (en) PDLC display panel, PDLC display device and driving method thereof
JP2008116665A (en) Electrochromic device
JP6651334B2 (en) Electro-optical device
WO2019172139A1 (en) Display element and display device using same
TW201423245A (en) Control circuit and method for retaining transparence of electrochromic element
JP4244569B2 (en) ELECTROCHROMIC DISPLAY ELEMENT, ITS MANUFACTURING METHOD, ELECTROCHROMIC DISPLAY DEVICE
Nobeshima et al. Electrochemical materials for novel light emitting device and dual mode display
JP6761995B2 (en) Photovoltaic power generation hybrid element and power generation method using it
JP2016109853A (en) Electrochromic display device and drive method of the same
JP4765547B2 (en) Electrochromic device
JP5381428B2 (en) Electrochromic display device and driving method thereof
Tsuneyasu et al. Novel optical modulation device based on an electrochemical reaction with seven optical states: Clear colorless, mirror, black, yellow, green, cyan, and blue emission
JP2007047656A (en) Electrochromic device and display method using the same
JP2008096786A (en) Electrolytic solution for electrochemical display element and electrochemical display element
JP2005292258A (en) Display device
JP2015121657A (en) Display device
Kobayashi 12.2: Invited Paper: Electrochemical Display for Color e‐Paper and Dual Mode Display
EP4212949A1 (en) Light driven electrochromic display
JPH0458228A (en) Electrochromic display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764157

Country of ref document: EP

Kind code of ref document: A1