WO2019172119A1 - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
WO2019172119A1
WO2019172119A1 PCT/JP2019/008091 JP2019008091W WO2019172119A1 WO 2019172119 A1 WO2019172119 A1 WO 2019172119A1 JP 2019008091 W JP2019008091 W JP 2019008091W WO 2019172119 A1 WO2019172119 A1 WO 2019172119A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
lithium ion
storage device
ion capacitor
Prior art date
Application number
PCT/JP2019/008091
Other languages
French (fr)
Japanese (ja)
Inventor
巧美 三尾
直輝 大参
雄輔 木元
幸弘 小松原
健太郎 飯塚
西 幸二
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to JP2020504985A priority Critical patent/JP7375742B2/en
Publication of WO2019172119A1 publication Critical patent/WO2019172119A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an electricity storage device.
  • An electricity storage device including an active material capable of occluding and releasing alkali metal ions is widely used because it exhibits excellent characteristics such as high operating voltage and excellent energy density. And in order to improve the safety
  • JP 2013-541131A discloses a technique for extinguishing a fired power storage device by disposing a fire extinguishing agent around the power storage device.
  • the fired power storage device cannot be easily extinguished even by using the technology described in Japanese Patent Publication No. 2013-541131.
  • a high-temperature power storage device ignites and the temperature of the power storage device further increases.
  • the organic solvent of the electricity storage device is vaporized and diffused to the surroundings.
  • a plurality of power storage devices can ignite in a chain. If the power storage devices are ignited in this way, there is a possibility that the technology described in Japanese Patent Publication No. 2013-541131 cannot be easily extinguished. Therefore, there is a demand for highly flame retardant power storage devices.
  • One feature of the present disclosure is an electricity storage device including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolytic solution, a sealing body, and a fire extinguishing agent.
  • the electrolytic solution contacts the positive electrode and the negative electrode and contains alkali metal ions.
  • a sealing body contacts electrolyte solution inside, and seals electrolyte solution. At least one of the positive electrode active material and the negative electrode active material can occlude and release alkali metal ions.
  • the fire extinguishing agent is disposed in the internal space of the sealed body and exhibits a flame retarding function.
  • the fire extinguisher has a RED value greater than 1 based on the Hansen solubility parameter for the electrolyte.
  • the electricity storage device is provided with a fire extinguishing agent in the internal space of the sealed body. Therefore, the fire-extinguishing function of the fire extinguishing agent to make the electricity storage device flame retardant can be exhibited not from the outside of the sealed body but from the inside.
  • the fire extinguisher since the RED value based on the Hansen solubility parameter with respect to the electrolyte is larger than 1, the amount of the fire extinguisher dissolved in the electrolyte is negligibly small. Therefore, the fire extinguisher is stable in the electricity storage device. Accordingly, the fire extinguisher stably increases the flame retardance of the electricity storage device over time and does not significantly affect the charge / discharge process of the electricity storage device.
  • the electrolytic solution includes an organic solvent and an imide-based lithium salt.
  • the positive electrode has a current collector foil.
  • the positive electrode active material is held on the current collector foil through a binder containing a polymer having a RED value greater than 1 based on the Hansen solubility parameter for the electrolytic solution. Therefore, the binder is stable against the electrolytic solution even in a high temperature environment. Therefore, the power storage device can maintain the capacity even in an environment of 85 ° C. required for installation in the vehicle interior of the automobile, and the increase in internal resistance is small.
  • Another feature of the present disclosure is that an enclosure provided so as to surround the positive electrode and the negative electrode is provided inside the sealed body.
  • the fire extinguishing agent is provided on the enclosure. Therefore, the fire extinguisher can effectively enhance the flame retardancy of the electricity storage device.
  • a lithium ion capacitor In general, a single lithium metal is used in a pre-doping process included in a method of manufacturing a lithium ion capacitor. Since single lithium ions cause ignition, a pre-doping process is performed so that no single lithium metal remains in the lithium ion capacitor. In the unlikely event that a single lithium metal remains in the lithium ion capacitor, the fire extinguishing agent disposed in the internal space of the sealed body exerts a flame retarding function, thereby preventing the ignition of the lithium ion capacitor. Moreover, it is not necessary to spend time in the pre-doping process so that metallic lithium does not precipitate as in the prior art, and the time of the pre-doping process can be shortened.
  • FIG. 3 is a schematic diagram of a cross section taken along line III-III in the electricity storage device of FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in the positive electrode plate of FIG. 4.
  • FIG. 7 is a sectional view taken along line VII-VII in the negative electrode plate of FIG.
  • FIG. 9 is a sectional view taken along line IX-IX in the separator of FIG.
  • FIG. 9 is a sectional view taken along line IX-IX in the separator of FIG.
  • 1st Embodiment it is a figure explaining the external appearance of the other example of a separator provided with a fire extinguisher.
  • 1st Embodiment it is a figure explaining the positional relationship of the positive electrode plate of a positive electrode, the negative electrode plate of a negative electrode, a separator, electrolyte solution, and a fire extinguishing agent.
  • it is an example of the flowchart which shows the manufacture process of an electrical storage device.
  • FIG. 15 is a sectional view taken along the line XV-XV in the pre-doping electrode plate of FIG. 14. It is a figure explaining the roll press process for electrode preparation for pre dope in the manufacture process of the electrical storage device of 1st Embodiment. It is a figure explaining the state which performs pre dope in the manufacture process of the electrical storage device of 1st Embodiment.
  • the electricity storage device in the first embodiment is a lithium ion capacitor 1.
  • the lithium ion capacitor 1 includes a plurality of plate-like positive electrode plates 11 and a plurality of plate-like negative electrode plates 21.
  • the plurality of plate-like positive electrode plates 11 and the plurality of plate-like negative electrode plates 21 are alternately stacked.
  • Each positive electrode plate 11 includes an electrode terminal connection portion 12b protruding in one direction.
  • Each negative electrode plate 21 also includes an electrode terminal connection portion 22b that protrudes in the same direction as the direction in which the electrode terminal connection portion 12b of the positive electrode plate 11 protrudes.
  • FIG. 1 the lithium ion capacitor 1 includes a plurality of plate-like positive electrode plates 11 and a plurality of plate-like negative electrode plates 21.
  • Each positive electrode plate 11 includes an electrode terminal connection portion 12b protruding in one direction.
  • Each negative electrode plate 21 also includes an electrode terminal connection portion 22b that protrudes in the same direction as the direction in which the electrode terminal connection portion 12b of the positive
  • the direction in which the electrode terminal connecting portion 12b of the positive electrode plate 11 projects is the X-axis direction
  • the stacked direction is the Z-axis direction
  • the direction perpendicular to the X-axis and the Z-axis is the Y-axis direction.
  • These X axis, Y axis, and Z axis are orthogonal to each other.
  • these axial directions indicate the same direction, and in the following description, descriptions regarding directions may be based on these axial directions. It should be noted that in the present embodiment and the embodiments described below, the illustration and detailed description of the incidental configuration are omitted.
  • the lithium ion capacitor 1 includes a plurality of positive plates 11, a plurality of negative plates 21, a plurality of separators 30, an electrolytic solution 40, and a laminate member 50.
  • the positive plates 11 and the negative plates 21 are alternately stacked, and the separators 30 are sandwiched between the positive plates 11 and the negative plates 21.
  • the electrolyte solution 40 is encased in two laminate members 50 (sealing bodies) together with a part of the plurality of positive electrode plates 11, a part of the plurality of negative electrode plates 21, and the plurality of separators 30 laminated in this manner.
  • the lithium ion capacitor 1 is sealed.
  • the electrolytic solution 40 is in contact with the inside of the positive electrode plate 11, the negative electrode plate 21, and the laminate member 50.
  • the separator 30 includes a fire extinguishing agent 32 (see FIG. 3), and the fire extinguishing agent 32 improves the flame retardance of the lithium ion capacitor 1.
  • the lithium ion capacitor 1 may further include separators 30 in the uppermost layer and the lowermost layer in the Z-axis direction, and the negative electrode plates 21 may be disposed so as to be sandwiched between the separators 30.
  • the electrode terminal connection portions 12 b of the plurality of positive electrode plates 11 protrude in the same direction and are electrically connected to the positive electrode terminal 14.
  • the positive electrode side conductor members such as the positive electrode terminal 14 and the plurality of positive electrode plates 11 connected thereto are collectively referred to as a positive electrode 10.
  • the electrode terminal connection portions 22b of the plurality of negative electrode plates 21 and the negative electrode terminals 24 are electrically connected.
  • Conductive members on the negative electrode side such as the negative electrode terminal 24 and the plurality of negative electrode plates 21 connected thereto are collectively referred to as the negative electrode 20.
  • the lithium ion capacitor 1 has the above-described configuration inside, and its external appearance is shown in FIG.
  • FIG. 3 schematically shows a III-III cross section of the lithium ion capacitor 1 shown in FIG. In FIG. 3, for easy understanding, the members in the lithium ion capacitor 1 are illustrated with a space therebetween.
  • the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked with almost no gap.
  • the positive electrode plate 11 can be a positive electrode plate of a conventional lithium ion capacitor. That is, the positive electrode plate 11 includes a thin plate-like current collector 12 and a positive electrode active material layer 13 coated on the current collector 12. As shown in FIG. 4, the current collector 12 includes a rectangular current collector 12 a and an electrode terminal connection portion 12 b protruding from one end of the current collector 12 a (the left end of the upper side in the example of FIG. 4). Is formed.
  • the current collector 12a is a metal foil having a plurality of holes 12c penetrating in the Z-axis direction.
  • the electrode terminal connecting portion 12b may or may not have a plurality of holes similar to the holes 12c of the current collecting portion 12a.
  • the width variety of the Y-axis direction of the electrode terminal connection part 12b shown to FIG. 1 and FIG. 4 can be changed suitably.
  • the width may be, for example, the same width as the current collector 12a.
  • the positive electrode active material layer 13 is coated on both surfaces of the current collection part 12a, the coated surface may be either one surface.
  • the current collector 12a has a plurality of holes 12c, cations and anions of the electrolytic solution 40 can pass through the current collector 12a.
  • the positive electrode active material layer 13 includes a positive electrode active material having a large specific surface area and high conductivity, a conductive auxiliary agent for increasing the electric conductivity of the positive electrode active material layer 13, binding of the positive electrode active material, and collection of the positive electrode active material. And a binder that binds the current collector 12a of the electric body 12.
  • the positive electrode active material layer 13 may further include other components such as a thickener.
  • As the positive electrode active material for example, activated carbon, carbon nanotube, polyacene, or the like can be used.
  • the conductive auxiliary agent for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used.
  • the thickener for example, carboxymethyl cellulose [CMC] can be used.
  • the binder is used to bind the material constituting the positive electrode.
  • the binder is mainly composed of a polymer that is an adhesive component.
  • the polymer is selected from polyvinylidene fluoride, styrene-butadiene rubber [SBR], polyacrylic acid, and the like.
  • the polymer preferably has a RED value (relative energy difference) based on a Hansen solubility parameter (HSP) in the electrolytic solution 40 of greater than 1.
  • HSP Hansen solubility parameter
  • polyacrylic acid An example of such a polymer is polyacrylic acid.
  • the polyacrylic acid here is a broad concept including not only unneutralized polyacrylic acid but also neutralized polyacrylic acid salts and cross-linked ones.
  • Polyacrylic acid may be used alone or in combination of two or more.
  • a solvent for dissolving the polymer water or an organic solvent can be used.
  • An aqueous binder using water as a solvent is preferable because it can reduce the environmental burden in the manufacturing process.
  • Polyacrylic acid is also suitable in that it can constitute an aqueous binder using water as a solvent. A detailed description of the RED value based on the Hansen solubility parameter will be described later.
  • the binder is preferably added in an amount of 1 to 10% by mass with respect to the positive electrode active material.
  • the binder is less than 1% by mass, the binding force tends to be insufficient.
  • the binder exceeds 10% by mass, the internal resistance of the lithium ion capacitor 1 may increase.
  • the negative electrode plate 21 can be a negative electrode plate of a conventional lithium ion capacitor.
  • the negative electrode plate 21 roughly has the same structure as the positive electrode plate 11 described above. That is, the negative electrode plate 21 includes a thin plate-like current collector 22 and a negative electrode active material layer 23.
  • the negative electrode active material layer 23 includes a negative electrode active material capable of occluding and releasing lithium ions Li + . As will be described later, the negative electrode active material is adsorbed with lithium ions Li + during manufacturing (so-called pre-doped).
  • the current collector 22 includes a rectangular current collector 22 a and an electrode terminal connection 22 b that protrudes outward from one end of the current collector 22 a (the right end of the upper side in the example of FIG. 6). It is integrally formed.
  • the current collector 22a is a metal foil having a plurality of holes 22c penetrating in the Z-axis direction (see FIG. 7).
  • the electrode terminal connecting portion 22b may or may not have a plurality of holes similar to the holes 22c of the current collecting portion 22a.
  • the negative electrode active material layer 23 is coated on both surfaces of the current collection part 22a, the coated surface may be either one surface.
  • the current collector 22a is formed with a plurality of holes 22c, so that cations and anions of the electrolytic solution 40 can pass through the current collector 22a.
  • the electrode terminal connecting portion 12b of the positive electrode plate 11 and the electrode terminal connecting portion 22b of the negative electrode plate 21 are provided at positions spaced from each other in the Z-axis direction. Therefore, it can prevent that the electrode terminal connection part 12b and the electrode terminal connection part 22b contact each other.
  • the width in the Y-axis direction of the electrode terminal connecting portion 22b shown in FIGS. 1 and 6 can be changed as appropriate, and may be, for example, the same width as the current collecting portion 22a.
  • the negative electrode active material layer 23 includes a negative electrode active material capable of adsorbing and desorbing lithium ions Li + and a binder for binding the negative electrode active material and binding the negative electrode active material and the current collector 22 a of the current collector 22.
  • the negative electrode active material layer 23 may include other components such as a conductive additive and a thickener for increasing the electrical conductivity of the negative electrode active material layer 23.
  • graphite can be used as the negative electrode active material.
  • the same material as the positive electrode plate 11 described above can be used as the conductive additive, binder, and thickener.
  • ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used as the conductive assistant.
  • the binder for example, polyvinylidene fluoride, styrene-butadiene rubber [SBR], or polyacrylic acid can be used.
  • SBR styrene-butadiene rubber
  • the thickener for example, carboxymethyl cellulose [CMC] can be used.
  • the separator 30 has a plate shape (see FIGS. 1 and 8).
  • the vertical and horizontal lengths of the separator 30 are longer than the vertical and horizontal lengths of the current collector 12a of the current collector 12 of the positive electrode plate 11 and the vertical and horizontal lengths of the current collector 22a of the current collector 22 of the negative electrode plate 21. It has been set (see FIGS. 1, 4 and 6).
  • the separator 30 includes a porous sheet-like separator sheet 31 for separating the positive electrode plate 11 and the negative electrode plate 21, and a fire extinguishing agent 32 coated on both surfaces of the separator sheet 31. And have.
  • the separator 30 is configured to allow the cation and anion of the electrolytic solution 40 to pass therethrough.
  • the fire extinguishing agent 32 only needs to be coated on the separator sheet 31. That is, the fire extinguishing agent 32 may be applied on one side of the separator sheet 31 or may be partially applied on the separator sheet 31. For example, as shown in FIG. 10, a fire extinguishing agent 32 may be applied on the outer side excluding the center of the separator sheet 31. The fire extinguishing agent 32 may be applied to a part of the outer side of the separator sheet 31. The fire extinguishing agent 32 may be applied to the separator sheet 31 in a plurality of strips or dots.
  • the separator sheet 31 may be a conventional lithium ion capacitor separator.
  • the fire extinguishing agent 32 exhibits a flame retarding function and has a RED value greater than 1 based on the Hansen solubility parameter (HSP) for the electrolytic solution 40.
  • HSP Hansen solubility parameter
  • the Hansen solubility parameter was published by Charles M Hansen and is known as a solubility index indicating how much a certain substance is dissolved in a certain substance. For example, water and oil generally do not melt together because the “properties” of water and oil are different.
  • the “property” of the substance relating to the solubility in the Hansen solubility parameter, three items of the dispersion term D, the polar term P, and the hydrogen bond term H are expressed numerically for each substance.
  • the dispersion term D is a value representing the magnitude of Van der Waals force.
  • the polar term P is a value representing the magnitude of the dipole moment.
  • the hydrogen bond term H is a value representing the size of the hydrogen bond. The basic idea is explained below. For this reason, explanation of handling the hydrogen bond term H divided into donor and acceptor properties is omitted.
  • Hansen solubility parameters are plotted in a three-dimensional orthogonal coordinate system (Hansen space, HSP space) in order to study solubility.
  • the Hansen solubility parameter for each of the solution A and the solid B can be plotted on two coordinates (coordinate A and coordinate B) corresponding to the solution A and the solid B, respectively, in the Hansen space.
  • Ra HSP distance, Ra
  • the solutions A and the solids B have the above-mentioned “properties”, so the solid B is more likely to dissolve in the solution A. it can.
  • the solution A corresponds to the electrolytic solution 40 and the solid B corresponds to the extinguishing agent 32. Since the RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 is greater than 1, the fire extinguisher 32 can be regarded as not dissolving in the electrolytic solution 40. Conversely, a fire extinguisher that is sparingly soluble in the electrolytic solution 40 can also be considered to have a RED value greater than 1 based on the Hansen solubility parameter.
  • the Hansen solubility parameter and the interaction radius R0 can be calculated using the chemical structure and composition ratio of the components and experimental results. In that case, it can be obtained using software HSPiP developed by Hansen et al. (Hansen Solubility Parameters in Practice: Windows [registered trademark] software for efficiently handling HSP).
  • the software HSPiP is available as of March 5, 2018 from http://www.hansen-solubility.com/.
  • the Hansen solubility parameters (D, P, H) can be calculated for a mixed solvent in which a plurality of solvents are mixed.
  • a fire extinguisher that exhibits a flame retarding function and has a RED value greater than 1 based on the Hansen solubility parameter with respect to the electrolyte 40 can be used among known fire extinguishers.
  • the fire extinguisher containing the fuel component A, the oxidizing agent component B, and the organic salt component C which are demonstrated below can be used, for example.
  • This fire extinguisher is 15 to 50 parts by mass of fuel component A, 85 to 50 parts by mass of oxidant component B, and 7 to 7 parts of organic salt component C with respect to 100 parts by mass of fuel component A and oxidant component B in total. It contains 1000 parts by mass.
  • this fire extinguisher When this fire extinguisher is heated, the fuel component A and the oxidant component B are combusted, so that an aerosol containing potassium radicals can be generated from the organic salt component C.
  • the potassium radical contained in this aerosol has a fire extinguishing action and a flame retarding function that suppresses ignition.
  • the flame-retarding function of this fire extinguishing agent is a function that immediately generates potassium radicals when starting to ignite, and suppresses ignition by the fire extinguishing action of the potassium radicals.
  • the temperature at which the fuel component A and the oxidant component B burn can be set by appropriately changing the composition of the fuel component A, the oxidant component B, and the organic salt component C.
  • this fire extinguisher can generate a potassium radical having a fire extinguishing action and a flame retarding function to suppress ignition, but the generated radical is a radical having a fire extinguishing action or a flame retarding function other than the potassium radical. It may be. That is, the fire extinguishing agent may be a fire extinguishing agent that generates a radical having a fire extinguishing action or a flame retarding function other than the potassium radical.
  • the extinguishing agent only needs to have a flame-retarding function to prevent ignition as described above, and a radical that stops a chain reaction of combustion that occurs when a pyrolysis reaction, an oxidation reaction, or the like is ignited by a radical trap. It does not have to generate an aerosol.
  • the fire extinguishing agent may have a flame retarding function that stops the chain reaction of combustion by generating an inert gas such as nitrogen, argon, or carbon dioxide. It is also possible to use an occlusion alloy that occludes an inert gas in advance and can be released at a predetermined temperature.
  • Extinguishing agents other than halogen and phosphorus-based flame retardants are preferable in terms of increasing safety to the environment. Moreover, if it is set as the structure which discharge
  • Fuel component A includes dicyandiamide, nitroguanidine, guanidine nitrate, urea, melamine, melamine cyanurate, Avicel, guar gum, sodium carboxymethylcellulose, carboxymethylcellulose potassium, carboxymethylcellulose ammonium, nitrocellulose, aluminum, boron, magnesium, magnalium, zirconium, Titanium, titanium hydride, tungsten, silicon and the like.
  • the fuel component A may be used alone or in combination of two or more.
  • Examples of the oxidizing agent component B include inorganic oxidizing agents.
  • Inorganic oxidizers include potassium nitrate, sodium nitrate, strontium nitrate, ammonium perchlorate, potassium perchlorate, basic copper nitrate, copper (I) oxide, copper (II) oxide, iron (II) oxide, iron oxide (III ), Molybdenum trioxide and the like. Only 1 type may be used for the oxidizing agent component B, and 2 or more types may be mixed.
  • organic salt component C examples include organic carboxylic acid potassium salts.
  • Organic carboxylic acid potassium salt is potassium acetate, potassium propionate, monopotassium citrate, dipotassium citrate, tripotassium citrate, ethylenediaminetetraacetic acid monopotassium dihydrogen, ethylenediaminetetraacetic acid dipotassium dihydrogen, ethylenediaminetetraacetic acid monohydrogen Examples include tripotassium, tetrapotassium ethylenediaminetetraacetate, potassium hydrogen phthalate, dipotassium phthalate, potassium hydrogen oxalate, and dipotassium oxalate. Only 1 type may be used for the organic salt component C, and 2 or more types may be mixed.
  • Electrolytic solution 40 a conventional lithium ion capacitor electrolytic solution can be used. That is, the electrolytic solution 40 includes an organic solvent (nonaqueous solvent) and an electrolyte. You may add an additive to the electrolyte solution 40 suitably. Examples of the additive include vinylene carbonate [VC].
  • organic solvents carbonate organic solvents, nitrile organic solvents, lactone organic solvents, ether organic solvents, alcohol organic solvents, ester organic solvents, amide organic solvents, sulfone organic solvents, ketone organic solvents, aromatic
  • organic solvent preferably has a heat resistance of 85 ° C. or higher.
  • carbonate-based organic solvents examples include cyclic carbonates such as ethylene carbonate [EC], propylene carbonate [PC], and fluoroethylene carbonate [FEC], and chains such as ethyl methyl carbonate [EMC], diethyl carbonate [DEC], and dimethyl carbonate [DMC]. Examples of the carbonates.
  • dimethyl carbonate having a low boiling point and poor heat resistance. That is, when dimethyl carbonate (DMC) is contained in an organic solvent, dimethyl carbonate (DMC) is thermally decomposed into diethyl carbonate (DEC), and decomposition by-products at this time cause an increase in internal resistance and a deterioration in heat resistance. (Note that this inference does not limit the technology of the present disclosure).
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • cyclic carbonates can be used as the cyclic carbonate. From the viewpoint of improving the oxidation resistance of the electrolytic solution, it is preferable to use ethylene carbonate (EC) having a solid electrolyte phase (SEI) film forming ability. And as a cyclic carbonate, when mixing and using ethylene carbonate (EC) and another cyclic carbonate (for example, PC), it is preferable to contain ethylene carbonate (EC) more than other cyclic carbonates (for example, PC). . When ethylene carbonate (EC) is relatively contained in this manner, ethylene carbonate (EC) is reduced and decomposed, and an SEI film is generated on the negative electrode surface. Thereby, the electrolytic solution is not directly exposed to the potential of lithium (Li).
  • ethylene carbonate (EC) having a solid electrolyte phase (SEI) film forming ability.
  • SEI solid electrolyte phase
  • nitrile organic solvents include acetonitrile, acrylonitrile, adiponitrile, valeronitrile, and isobutyronitrile.
  • lactone organic solvent include ⁇ -butyrolactone and ⁇ -valerolactone.
  • ether organic solvents include cyclic ethers such as tetrahydrofuran and dioxane, and chain ethers such as 1,2-dimethoxyethane, dimethyl ether, and triglyme.
  • the alcohol organic solvent include ethyl alcohol and ethylene glycol.
  • ester organic solvent examples include phosphate esters such as methyl acetate, propyl acetate and trimethyl phosphate, sulfate esters such as dimethyl sulfate, and sulfite esters such as dimethyl sulfite.
  • amide organic solvent examples include N-methyl-2-pyrrolidone and ethylenediamine.
  • sulfone-based organic solvent examples include chain sulfones such as dimethyl sulfone and cyclic sulfones such as 3-sulfolene.
  • ketone organic solvent examples include methyl ethyl ketone, and toluene as the aromatic organic solvent.
  • the above-mentioned various organic solvents excluding the carbonate-based organic solvent are preferably used by mixing cyclic carbonates, and particularly preferably used by mixing with ethylene carbonate [EC] capable of forming a protective film.
  • the electrolyte uses a lithium salt of Li ions, which are cations (cations), and anions (anions).
  • Examples of the electrolyte include lithium perchlorate [LiClO 4 ], lithium hexafluorophosphate [LiPF 6 ], lithium tetrafluoroborate [LiBF 4 ], lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI.
  • Lithium bis (trifluoromethanesulfonyl) imide LiN (SO 2 CF 3 ) 2 , LiTFSI]
  • lithium bis (pentafluoroethanesulfonyl) imide LiN (SO 2 CF 2 CF 3 ) 2 , LiBETI] it can.
  • These lithium salts may be used alone or in combination of two or more.
  • lithium having a partial structure of an imide-based lithium salt such as lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, and lithium bis (pentafluoroethanesulfonyl) imide Salt
  • an imide-based lithium salt such as lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, and lithium bis (pentafluoroethanesulfonyl) imide Salt
  • the concentration of the electrolyte in the electrolytic solution 40 is preferably 0.5 to 10.0 mol / L. From the viewpoint of an appropriate viscosity of the electrolytic solution 40 and ion conductivity, the concentration of the electrolyte in the electrolytic solution 40 is more preferably 0.5 to 2.0 mol / L. When the concentration of the electrolyte is less than 0.5 mol / L, the ionic conductivity of the electrolytic solution 40 is too low due to a decrease in the concentration of ions from which the electrolyte is dissociated. Moreover, it is not preferable that the concentration of the electrolyte is higher than 10.0 mol / L because the ionic conductivity of the electrolytic solution 40 is too low due to an increase in the viscosity of the electrolytic solution 40.
  • the laminate member 50 includes a core material sheet 51, an outer sheet 52, and an inner sheet 53.
  • the outer sheet 52 is bonded to the outer surface of the core material sheet 51
  • the inner sheet 53 is bonded to the inner surface of the core material sheet 51.
  • the core material sheet 51 is an aluminum foil.
  • the outer sheet 52 is a resin sheet such as a nylon pet film.
  • the inner sheet 53 is a resin sheet such as polypropylene.
  • the current collector 12a of the current collector 12 of the positive electrode plate 11 includes a plurality of holes 12c penetrating in the Z direction.
  • the current collector 22a of the current collector 22 of the negative electrode plate 21 is also provided with a plurality of holes 22c penetrating in the Z direction. Therefore, the anions and cations of the electrolytic solution 40 can pass through the current collector 12 a of the positive electrode plate 11 and the current collector 22 a of the negative electrode plate 21.
  • the separator 30 is also configured to allow the anion and cation of the electrolytic solution 40 to pass therethrough.
  • the positional relationship among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 30, the electrolytic solution 40, and the extinguishing agent 32 of the lithium ion capacitor 1 is schematically shown in FIG.
  • the positive electrode plate 11 and the negative electrode plate 21 sandwich a separator 30 having a fire extinguishing agent 32 therebetween.
  • the lithium ion capacitor 1 is formed by forming an electric double layer with the positive electrode active material and the anion of the electrolyte on the surface of the positive electrode plate 11 and adsorbing and desorbing lithium ions Li + on the negative electrode active material with the negative electrode plate 21. Discharge.
  • lithium ion Li + is adsorbed on the negative electrode active material of the negative electrode plate 21 (pre-doping). Since the lithium ion Li + is adsorbed on the negative electrode active material, the potential difference between the positive electrode plate 11 and the negative electrode plate 21 is increased, and the energy density of the electric double layer formed on the positive electrode plate 11 can be increased. . As a result, the lithium ion capacitor 1 is increased in capacity and output.
  • lithium ions Li + are adsorbed in advance on the negative electrode active material of the negative electrode plate 21.
  • the lithium ion Li + supply source is lithium metal that is disposed in the internal space where the electrolyte solution of the lithium ion capacitor is present and is converted to Li + .
  • How to lithium metal to the lithium ion Li + is generally dissolved electrochemical method for the lithium metal to the lithium ion Li + by applying a voltage to the lithium metal and the negative electrode plate 21, the lithium metal to the electrolyte And a chemical method for producing lithium ion Li + .
  • a single lithium metal is generally used in the pre-doping step included in the method of manufacturing a lithium ion capacitor.
  • a pre-doping process is performed so that no single lithium metal remains in the lithium ion capacitor.
  • the lithium ion capacitor 1 of the present embodiment can prevent ignition because the extinguishing agent 32 that exhibits the flame retarding function is provided in the internal space of the laminate member 50 (sealing body). .
  • the fire extinguishing agent 32 is provided in the internal space of the laminate member 50 (sealing body). Therefore, the flame retarding function of the fire extinguishing agent 32 to make the lithium ion capacitor 1 (electric storage device) flame retardant can be exhibited not from the outside of the laminate member 50 (sealing body) but from the inside. Therefore, the fire extinguisher 32 can improve the flame retardance of the lithium ion capacitor 1 (electric storage device) with certainty.
  • the fire extinguishing agent 32 is provided on the separator 30 that separates the positive electrode plate 11 (positive electrode) and the negative electrode plate 21 (negative electrode). Therefore, ignition due to a short circuit between the positive electrode plate 11 (positive electrode) and the negative electrode plate 21 (negative electrode) can be reliably suppressed, and the fire extinguishing agent 32 more effectively reduces the flame retardancy of the lithium ion capacitor 1 (electric storage device). Can increase.
  • the extinguishing agent 32 has a RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 larger than 1, so that the amount of the extinguishing agent 32 dissolved in the electrolytic solution 40 is negligibly small. Therefore, it can be considered that the extinguishing agent 32 is stable. Therefore, the fire extinguishing agent 32 stably increases the flame retardance of the lithium ion capacitor 1 (power storage device) over time, and does not significantly affect the charge / discharge process of the lithium ion capacitor 1 (power storage device).
  • the pre-doping method for adsorbing lithium ions Li + on the negative electrode active material layer 23 of the negative electrode plate 21 is generally selected from an electrochemical method and a chemical method.
  • the electrochemical method a voltage is applied to the lithium metal and the negative electrode plate 21 to change the lithium metal to lithium ion Li + .
  • the chemical method dissolves lithium metal in the electrolyte.
  • the positive electrode plate 11 and the negative electrode plate 21 are prepared (S1). Either the positive electrode plate 11 or the negative electrode plate 21 may be produced in parallel or in any order.
  • the positive electrode plate 11 includes a thin metal plate-like current collector 12 in which a plurality of holes 12 c are formed, and a positive electrode active material layer 13 coated on both surfaces or one surface of the current collector 12.
  • a material for the positive electrode active material layer 13 is prepared. That is, the slurry which mixed the positive electrode active material mentioned above, a conductive support agent, a binder, solvents, such as water and an organic solvent, and components, such as a thickener as needed, is prepared. To do. Then, this slurry is applied to one side or both sides of a thin metal plate in which a plurality of holes as materials for the current collector 12 are formed. Next, the slurry is dried to remove the solvent from the slurry, and pressed to make the thickness uniform (see FIG. 13). When applying a slurry to a metal thin plate, you may apply one side at a time, and may apply both surfaces simultaneously.
  • the coating method examples include gravure coating, bar coating, spray coating, spin coating, air knife coating, roll coating, blade coating, gate roll coating, and die coating. It can. Among these, the blade coating method and the die coating method are preferable.
  • a drying method the method of heat-drying with a hot air drying furnace etc. can be used, for example.
  • a roll press machine for example, a roll press machine can be used.
  • the positive electrode plate 11 may be created as follows.
  • the metal thin plate used as the material of the current collector 12 to which the slurry is applied is a metal thin plate having a plurality of holes wound in a roll shape, and the slurry is applied to the metal thin plate. Then, the metal thin plate coated with the slurry is dried and pressed, and after the pressing, it is cut into the size of the positive electrode plate 11 (see FIG. 4), and further coated on the portion (see FIG. 4) that becomes the electrode terminal connection portion 12b.
  • the positive electrode active material layer may be peeled off.
  • the metal thin plate to which the slurry is applied is a metal thin plate having a plurality of holes wound in a roll shape, and the slurry is applied to a portion to be the current collecting portion 12a on the metal thin plate, where the electrode terminal connection portion
  • the portion to be 12b is not coated with slurry, and may be cut into the size of the positive electrode plate 11 (see FIG. 4) before or after pressing.
  • the negative electrode plate 21 roughly has the same structure as the positive electrode plate 11.
  • the major difference between the negative electrode plate 21 and the positive electrode plate 11 is that the material of the negative electrode active material of the negative electrode active material layer 23 is different from the material of the positive electrode active material of the positive electrode active material layer 13. Therefore, the negative electrode plate 21 can be manufactured in the same manner as the positive electrode plate 11. That is, first, the negative electrode active material, which is the material of the negative electrode active material layer 23, a binder, a solvent such as water or an organic solvent, and components such as a conductive additive or a thickener as necessary. Is prepared using a mixer.
  • this slurry is applied to one side or both sides of a thin metal plate in which a plurality of holes serving as the material of the current collector 22 are formed.
  • the slurry is dried to remove the solvent from the slurry, and pressed to make the thickness uniform (see FIG. 13).
  • the extinguishing agent 32 is processed into a predetermined shape (S2).
  • the extinguishing agent 32 is applied on the separator sheet 31 (see FIGS. 3 and 9).
  • This coating can be performed in the same manner as the method of applying the positive electrode active material layer 13 to the current collector 12 of the positive electrode plate 11 described above.
  • the fire extinguishing agent 32 is applied to both surfaces of the separator sheet 31, the coating may be performed on each side or simultaneously on both sides. Further, the pressing can be performed in the same manner as the pressing of the positive electrode plate 11 described above.
  • the negative electrode plate 21p for pre dope is produced as the example.
  • the pre-doping negative electrode plate 21p is prepared by placing a lithium metal foil LiS1 having a predetermined shape on the negative electrode active material layer 23 of the negative electrode plate 21 (see FIGS. 14 and 15), and further pressing the negative electrode active material of the negative electrode plate 21.
  • the layer 23 and the lithium metal foil LiS1 are pressure-bonded (see FIG. 16).
  • a roll press machine may be used for example.
  • powdered lithium metal may be used instead of the lithium metal foil LiS1.
  • one negative electrode plate 21 is used.
  • S3 can be performed after one negative electrode plate 21 is formed in S1, S1 and S3 can be performed in parallel. Further, if one negative electrode plate 21 is created in S1, S1, S2, and S3 can be performed in parallel, and the order in which S1, S2, and S3 are performed can be changed as appropriate.
  • a laminate in which lithium metal, a plurality of positive electrode plates 11, a plurality of negative electrode plates 21, and a plurality of separators 30 are laminated, and the positive electrode terminal 14 and the negative electrode terminal 24 are assembled is prepared (S4).
  • the plurality of positive plates 11 and the plurality of negative plates 21 are alternately stacked, and the separators 30 are sandwiched between the positive plates 11 and the negative plates 21.
  • the negative electrode plate 21p for pre-doping, the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are laminated.
  • the pre-doping negative electrode plate 21p is laminated on the uppermost layer in the Z-axis direction.
  • the positive electrode terminal 14 is assembled to the plurality of positive electrode plates 11, and the negative electrode terminal 24 is assembled to the pre-doping negative electrode plate 21 p and the plurality of negative electrode plates 21 to form a laminate.
  • the separator 30 may be further arranged in the uppermost layer in the Z-axis direction of the laminated body, and the separator 30 may be further arranged in the lowermost layer in the Z-axis direction of the laminated body.
  • the negative electrode plate 21p for pre-doping, the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked, and then the positive electrode terminal 14 and the negative electrode terminal 24 are assembled. The order of assembly and assembly may be changed as appropriate.
  • connection between the positive electrode terminal 14 and the positive electrode plate 11 and the connection between the negative electrode terminal 24 and the negative electrode plate 21 may be performed in parallel with the lamination.
  • S3 for processing the lithium metal used for pre-doping into a predetermined shape is simply a step of preparing lithium metal foil LiS1, and lithium metal foil is used instead of disposing the negative electrode plate 21p for pre-doping in the laminate produced in step S4. LiS1 and one negative electrode plate 21 may be disposed.
  • the above laminate is included in the laminate member 50 (S5).
  • the laminate is included in the laminate member 50 so that a part of the positive electrode terminal 14 and a part of the negative electrode terminal 24 are exposed to the outside of the laminate member 50, and the peripheral part excluding a part of the laminate member 50 is welded. To do.
  • pre-doping is performed to adsorb lithium ion Li + on the negative electrode active material layer 23 (S6).
  • the electrolyte solution 40 prepared in advance is injected into the internal space of the laminate member 50.
  • the laminate member 50 is sealed, and the electrolytic solution 40 is sealed.
  • the lithium metal foil LiS1 on the pre-doping negative electrode plate 21p, the negative electrode active material layers 23 of the plurality of negative electrode plates 21, and the electrolytic solution 40 are sealed in the internal space of the laminate member 50.
  • Lithium ion Li + in the electrolytic solution 40 is adsorbed by the negative electrode active material layer 23, and the lithium metal foil LiS 1 is dissolved in the electrolytic solution 40 as lithium ion Li + .
  • the current collector 12a of the current collector 12 of the positive electrode plate 11 includes a plurality of holes 12c
  • the current collector 22a of the current collector 22 of the negative electrode plate 21 includes a plurality of holes 22c. Therefore, lithium ions Li + in the electrolytic solution 40 can pass through the positive electrode plate 11 and the negative electrode plate 21.
  • the separator 30 is also configured so that lithium ions Li + in the electrolytic solution 40 can pass therethrough. For this reason, lithium ion Li + can be adsorbed to the negative electrode active material layers 23 of all the negative electrode plates 21.
  • the lithium metal foil LiS1 may be heated together with the electrolytic solution 40 in order to easily dissolve the lithium metallic foil LiS1 in the electrolytic solution 40. Even if the lithium metal is easily ignited by heating, the fire extinguishing agent 32 is included in the internal space of the laminate member 50 together with the lithium metal, so that the ignition of the lithium metal can be suppressed.
  • charge / discharge and aging are performed (S7).
  • Charging / discharging and aging are performed by connecting the positive electrode terminal 14 and the negative electrode terminal 24 exposed to the outside from the laminate member 50 to an external electric circuit. In general, gas is generated during the charge / discharge process.
  • the gas is discharged to the outside of the laminate member 50 (S8).
  • the sealed laminate member 50 is opened, and the gas generated by charging / discharging is discharged to the outside of the laminate member 50.
  • the gas to be discharged may include a gas present in the internal space of the laminate member 50 before charging / discharging.
  • the internal space of the laminate member 50 is sealed (S9). Thereby, manufacture of the lithium ion capacitor 1 is completed.
  • a negative electrode plate 21p for pre-doping in which the lithium metal foil LiS1 was pressure-bonded on the negative electrode active material layer 23 of the negative electrode plate 21 was created.
  • a pre-doping electrode (not shown) in which an electrode terminal (not shown) and a lithium metal foil (not shown) are assembled on a metal foil (for example, copper foil, not shown) is created.
  • this pre-doping electrode In the step of creating a laminate (S4), this pre-doping electrode, a plurality of positive plates 11, a plurality of negative plates 21, a plurality of separators 30 are stacked, and the positive terminals 14 and negative terminals 24 are assembled. I do.
  • the pre-doping electrode In this stacking, for example, the pre-doping electrode is placed in the uppermost layer in the Z-axis direction, and includes including the separator 30 between the pre-doping electrode and the negative electrode plate 21.
  • a part of the positive electrode terminal 14, a part of the negative electrode terminal 24, and a part of the electrode terminal of the pre-doping electrode are external to the laminate member 50.
  • the laminate is included in the laminate member 50 so as to be exposed to the surface.
  • a voltage is applied between the pre-doping electrode and the plurality of negative electrode plates 21 (that is, one negative electrode 20). Then, lithium metal is changed to lithium ion Li + and pre-doping is performed. Further, S1, S2, S7, S8, and S9 are performed as described above.
  • the manufacturing method including S1 to S9 described above with reference to FIG. 12 includes a manufacturing method in which pre-doping is performed by a chemical method and a manufacturing method in which pre-doping is performed by an electrochemical method. Further, in this manufacturing method, the fire extinguishing agent 32 is accommodated together with the lithium metal foil LiS1 in the internal space of the laminate member 50 in the step (S5) of including the laminate in the laminate member 50 before pre-doping. For this reason, after this enclosing step (S5), the fire extinguishing agent 32 is accommodated in the internal space of the laminate member 50 together with the lithium metal foil LiS1. Therefore, this manufacturing method (S1 to S9) is a manufacturing method that can manufacture the lithium ion capacitor 1 more safely because the flame retardance of the lithium ion capacitor being manufactured is high in the steps after the enclosing step (S5). It has become.
  • the electricity storage device according to the second embodiment is a lithium ion capacitor 2.
  • the lithium ion capacitor 2 has substantially the same configuration as that of the lithium ion capacitor 1 according to the first embodiment, the same reference numeral is given to the configuration and description thereof is omitted.
  • the lithium ion capacitor 2 of the present embodiment has two plate-like extinguishing agents 60 formed by hardening the extinguishing agent having the same component as the extinguishing agent 32 of the first embodiment into a plate shape (see FIG. 18). ). And the lithium ion capacitor 2 has the separator 130 equivalent to the separator sheet 31 of 1st Embodiment (refer FIG. 19).
  • a plurality of stacked positive electrode plates 11, a plurality of negative electrode plates 21, and a plurality of separators 130 are provided between two plate-like extinguishing agents 60 (see FIGS. 18 and 19).
  • FIG. 19 showing a schematic cross section of the lithium ion capacitor 2 of the present embodiment, the members in the lithium ion capacitor 2 are illustrated with a space therebetween for the sake of clarity.
  • the positive electrode plate 11, the negative electrode plate 21, and the separator 130 are stacked with almost no gap.
  • the number of the plate-shaped fire extinguishing agents 60 is not limited to two, and may be three or more.
  • the configuration of the positive electrode 10 and the negative electrode 20 is the same in the lithium ion capacitor 2 (see FIG. 19) of the present embodiment and the lithium ion capacitor 1 (see FIG. 3) of the first embodiment.
  • the positional relationship among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 130, the electrolytic solution 40, and the extinguishing agent (plate-shaped extinguishing agent 60) of the lithium ion capacitor 2 is schematically shown in FIG. 20. It was shown to.
  • the positive electrode plate 11 and the negative electrode plate 21 are arranged with the separator 130 interposed therebetween.
  • the lithium ion capacitor 2 forms an electric double layer on the surface of the positive electrode plate 11 with the positive electrode active material and the anion of the electrolytic solution 40, and the negative electrode plate 21 uses lithium as the negative electrode active material. Charge and discharge are performed by adsorbing and desorbing ions Li + .
  • the plate-like extinguishing agent 60 is used for charging / discharging of the lithium ion capacitor 2 (electric storage device), similarly to the lithium ion capacitor 1 of the first embodiment described above. High flame retardancy without significant impact on the process.
  • the plate-like extinguishing agent 60 is configured as a single plate-like component. For this reason, the quantity of the extinguishing agent provided in the lithium ion capacitor 2 (electric storage device) can be easily adjusted.
  • the lithium ion capacitor 2 of the present embodiment can be manufactured by substantially the same manufacturing method as the manufacturing method (see FIG. 12) including S1 to S9 of the first embodiment described above. .
  • the lithium ion capacitor 2 differs from the lithium ion capacitor 1 (see FIG. 3) of the first embodiment in that the separator 130 and the plate-like fire extinguishing agent 60 are provided. Therefore, the manufacturing method of the lithium ion capacitor 2 of the present embodiment includes S2 which is a process of extinguishing agent in the manufacturing method including S1 to S9 of the first embodiment (see FIG. 12), S4 which is a process by which the separator 130 and a fire extinguisher are arrange
  • positioned is demonstrated.
  • the step (S2) of processing the fire extinguisher into a predetermined shape in the present embodiment is a step of creating a plate fire extinguisher 60 in which the fire extinguisher is formed into a plate shape by press molding or the like. Further, the step (S4) of creating a laminate in which the lithium metal, the plurality of positive plates, the plurality of negative plates, and the plurality of separators in the present embodiment are laminated and the positive terminal and the negative terminal are assembled, A separator 130 is laminated instead of the separator 30, and two plate-like fire extinguishing agents 60 are also added to the laminated body.
  • the difference between the lithium ion capacitor 2 of the present embodiment and the lithium ion capacitor 1 of the first embodiment is due to the form of the extinguishing agent and the separator, and is not related to the lithium metal used for pre-doping. . Therefore, the difference between the case where pre-doping is performed by a chemical method and the case where pre-doping is performed electrochemically is the same as in the case of the first embodiment.
  • the flame retardance of the lithium ion capacitor (power storage device) being manufactured is increased in the steps after the step (S5) of enclosing the laminate in the laminate member 50. be able to. That is, the lithium ion capacitor 2 (power storage device) can be manufactured more safely.
  • the electrical storage device of 3rd Embodiment is demonstrated using FIG.
  • the electricity storage device of the third embodiment is a lithium ion capacitor 3.
  • the lithium ion capacitor 3 has substantially the same configuration as the lithium ion capacitor 1 according to the first embodiment, the same reference numeral is given to the configuration and the description is omitted.
  • FIG. 21 Structure of lithium ion capacitor 3 (FIG. 21)>
  • the fire extinguishing agent 32 is provided in the separator 30.
  • the fire extinguishing agent should just be provided in the internal space of the laminate member 50 (sealing body).
  • a schematic cross section of the lithium ion capacitor 3 of the present embodiment is shown in FIG.
  • the lithium ion capacitor 3 of the present embodiment has a separator 130 corresponding to the separator sheet 31 of the first embodiment (see FIG. 21).
  • the lithium ion capacitor 3 includes a surrounding body 70 that surrounds the outer periphery of the plurality of positive plates 11 of the positive electrode 10, the plurality of negative plates 21 of the negative electrode 20, and the plurality of separators 130.
  • the surrounding body 70 surrounds the periphery of the multilayer body including the plurality of stacked positive electrode plates 11, the plurality of negative electrode plates 21, and the plurality of separators 130, and the uppermost layer in the Z-axis direction of the multilayer body.
  • the lowest layer is the negative electrode plate 21.
  • the members in the lithium ion capacitor 3 are illustrated with an interval.
  • the positive electrode plate 11, the negative electrode plate 21, and the separator 130 are stacked with almost no gap.
  • the enclosure 70 includes an enclosure core 71 and a fire extinguishing agent 72 coated on both sides thereof.
  • the enclosure 70 has the same configuration as that of the separator 30 of the first embodiment (see FIGS. 8 and 9). That is, the envelope core 71 corresponds to a lengthened separator sheet 31 of the first embodiment.
  • the extinguishing agent 72 (not shown) applied to the envelope core 71, the same component as the extinguishing agent 32 of the first embodiment can be used.
  • the envelope core 71 can be the same as the separator of the conventional lithium ion capacitor, similarly to the separator sheet 31.
  • the envelope core 71 is made of paper such as viscose rayon or natural cellulose, or a nonwoven fabric such as polyethylene or polypropylene.
  • the fire extinguishing agent 72 may be coated on the envelope core 71.
  • the fire extinguishing agent 72 may be applied to one side of the envelope core material 71 in the same manner as the extinguishing agent 32 applied on the separator sheet 31 of the first embodiment. It may be partially coated.
  • the fire extinguishing agent 72 may be applied to the outside except the center of the envelope core 71.
  • the fire extinguishing agent 72 may be applied to a part of the outer side of the envelope core 71.
  • the fire extinguishing agent 72 may be coated on the envelope core 71 in a plurality of strips or dots.
  • the configurations of the positive electrode 10 and the negative electrode 20 are the same in the lithium ion capacitor 3 (see FIG. 21) of the present embodiment and the lithium ion capacitor 1 (see FIG. 3) of the first embodiment. Further, the separator 130 of the lithium ion capacitor 3 is the same as the separator sheet 31 of the first embodiment.
  • the positional relationship among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 130, and the electrolytic solution 40 of the lithium ion capacitor 3 is schematically the positional relationship according to the second embodiment. The same applies (see FIG. 20).
  • the positive electrode plate 11 and the negative electrode plate 21 are disposed so as to sandwich the separator 130 therebetween.
  • the lithium ion capacitor 3 forms an electric double layer on the surface of the positive electrode plate 11 with the positive electrode active material and the anion of the electrolytic solution 40, and the negative electrode plate 21 adsorbs and desorbs lithium ions Li + on the negative electrode active material. Charge and discharge with.
  • the lithium ion capacitor 3 has high flame resistance without the fire extinguishing agent 72 having a great influence on the charge / discharge process of the lithium ion capacitor 3 (power storage device).
  • the fire extinguishing agent 72 of the lithium ion capacitor 3 is provided in an enclosure 70 provided in the internal space of the laminate member 50 (sealing body), and the enclosure 70 includes the positive electrode plate 11 of the positive electrode 10 and the negative electrode 20. It arrange
  • the lithium ion capacitor 3 of the present embodiment can be manufactured by substantially the same manufacturing method as the manufacturing method (see FIG. 12) including S1 to S9 of the first embodiment.
  • the lithium ion capacitor 3 differs from the lithium ion capacitor 1 (see FIG. 3) of the first embodiment in that it includes a separator 130 and an enclosure 70 including a fire extinguishing agent 72. Therefore, the manufacturing method of the lithium ion capacitor 3 of the present embodiment includes S2 which is a process of extinguishing agent in the manufacturing method including S1 to S9 of the first embodiment (see FIG. 12), S4 which is a process by which the separator 130 and a fire extinguisher are arrange
  • positioned is demonstrated.
  • the enclosure 70 is created in the same manner as the method for creating the separator 30 of the lithium ion capacitor 1 of the first embodiment. More specifically, the fire extinguishing agent 72 is applied to the envelope core material 71 in the same manner as the method of applying the positive electrode active material layer 13 to the current collector 12 of the positive electrode plate 11 of S1 described above.
  • the step (S4) of creating a laminate in which lithium metal, a plurality of positive electrode plates, a plurality of negative electrode plates, and a plurality of separators are laminated and the positive electrode terminals and the negative electrode terminals are assembled is replaced with the separator 30 to be assembled.
  • the step of laminating the separator 130 and winding the envelope 70 around the laminate is due to the form of the extinguishing agent and the separator, and is not related to the lithium metal used for pre-doping. .
  • the difference between the case where the pre-doping is performed by the chemical method and the case where the pre-doping is performed by the electrochemical method is considered in the same manner as the manufacturing methods S1 to S9 of the lithium ion capacitor 1 of the first embodiment. be able to. That is, the lithium metal foil used for pre-doping is surrounded by the enclosure 70 in the same manner as the positive electrode plate 11 and the negative electrode plate 21.
  • the lithium ion capacitor 3 (power storage device) being manufactured is highly flame-retardant in the steps after the step (S5) of enclosing the laminate in the laminate member 50. Therefore, the lithium ion capacitor 3 (electric storage device) can be manufactured more safely.
  • the electricity storage device of the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
  • the electricity storage device of the above embodiment is a lithium ion capacitor
  • the technology of the present disclosure can be applied to various electricity storage devices using materials that can occlude and release alkali metal ions.
  • the alkali metal include lithium having a standard electrode potential of ⁇ 3.045V, sodium having a standard electrode potential of ⁇ 2.714V, potassium having a standard electrode potential of ⁇ 2.925V, and the like.
  • the electricity storage device using these alkali metals includes a carbon material in the negative electrode and an alkali metal oxide in the positive electrode so that the standard electrode potential difference is relatively large.
  • Specific examples thereof include various power storage devices such as lithium ion secondary batteries, lithium polymer secondary batteries, sodium ion secondary batteries, potassium ion secondary batteries, and all solid state batteries.
  • the technology of the present disclosure can suppress ignition of various power storage devices that use alkali metal ions, and can be kept safe.
  • the extinguishing agent can be dispersed in the electrolyte 40 as a powder extinguishing agent instead of the extinguishing agent 32, the plate-like extinguishing agent 60, and the extinguishing agent 72 of the above-described embodiment.
  • the plate-shaped fire extinguisher 60 of the second embodiment and the enclosure 70 or the enclosure core 71 of the third embodiment may be added.
  • the separator 30 of the first embodiment may be used instead of the separator 130, and the envelope 70 or the envelope core material of the third embodiment. 71 may be added.
  • the separator 30 of the first embodiment may be used instead of the separator 130, and the plate-like extinguishing agent 60 of the second embodiment is added. Also good.
  • the lithium ion capacitors 1 to 3 are stacked cells in which the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked, but the long positive electrode and the long negative electrode And it can be set as the wound type cell which wound the long separator.
  • ⁇ Test of fire-retardant function of fire extinguishing agent (FIG. 22)> Mixing 15% by mass of dicyandiamide as the fuel component A, 77% by mass of potassium nitrate as the oxidant component B, and 8% by mass of potassium acetate as the organic salt component C, forming into a plate shape, and then drying naturally, Obtained.
  • the case where the lithium metal foil is heated in the air collection bottle 101 is compared with the case where the plate-shaped fire extinguishing agent 103 and the lithium metal foil 102 are heated in the air collection bottle 101, and the effect of the fire extinguishing agent is examined. It was.
  • the spontaneous ignition temperature (ignition point) of lithium metal is about 180 ° C.
  • the plate-shaped fire extinguisher 103 and the lithium metal foil 102 were heated in the air collection bottle 101, they were heated as shown in FIG. That is, the air collection bottle 101 was installed in the heating furnace 100. Then, the plate-shaped fire extinguisher 103 pressed into a plate shape and the lithium metal foil 102 were put in the air collection bottle 101. Moreover, the thermometer 104 was installed so that the temperature measurement part of the thermometer 104 might touch the lithium metal foil 102 so that the temperature of the lithium metal foil 102 could be measured. And the temperature in a heating furnace was raised. As a result, even when the temperature of the lithium metal foil 102 rose to 280 ° C., the lithium metal foil 102 did not ignite.
  • the temperature in the heating furnace 100 was increased from the state shown in FIG. As a result, the lithium metal foil ignited when the temperature of the lithium metal foil was 182 ° C. As described above, when a fire extinguishing agent is present around the lithium metal foil, the ignition of the lithium metal foil was suppressed by the fire extinguishing agent.
  • a positive electrode slurry A using polyacrylic acid as a binder was prepared by the following procedure.
  • a pre-slurry was prepared by mixing all materials and water with a mixer a (Shinky Co., Ltd. Awatori Nertaro ARE-310).
  • the pre-slurry obtained in (1) was further mixed with a mixer b (Filmix 40-L manufactured by PRIMIX Co., Ltd.) to prepare an intermediate slurry.
  • the intermediate slurry obtained in (2) was mixed again with the mixer a to prepare a positive electrode slurry A.
  • an aluminum foil (porous foil) having a thickness of 15 ⁇ m was used as the current collector foil, and the positive electrode slurry A was applied to the current collector foil and dried to prepare the positive electrode A.
  • the coating amount of the positive electrode slurry A was adjusted so that the mass of the activated carbon after drying was 3 mg / cm 2 .
  • a blade coater or a die coater was used for coating the positive electrode slurry A on the current collector foil.
  • a copper foil (porous foil) having a thickness of 10 ⁇ m was used as the current collector foil, and the negative electrode slurry was applied to the current collector foil and dried to prepare a negative electrode.
  • the coating amount of the negative electrode slurry was adjusted so that the mass of graphite after drying was 3 mg / cm 2 .
  • a blade coater was used for coating the negative electrode slurry on the current collector foil.
  • a mixed solvent of 30% by volume of ethylene carbonate (EC), 30% by volume of dimethyl carbonate (DMC) and 40% by volume of ethyl methyl carbonate (EMC) was used.
  • 1 mol / L of lithium bis (fluorosulfonylimide) (LiFSI) was added to the mixed solvent to prepare an electrolytic solution I.
  • a fire extinguisher was prepared by mixing 15% by mass of dicyandiamide as fuel component A, 77% by mass of potassium nitrate as oxidant component B, and 8% by mass of potassium acetate as organic salt component C.
  • the RED value based on the Hansen solubility parameter for the electrolyte solution I of the fire extinguisher was calculated, it was confirmed that the value was larger than 1.
  • This fire extinguisher was applied on both sides of cellulose having a thickness of 20 ⁇ m, and naturally dried to form an enclosure.
  • the lithium ion capacitors of Test Examples 1 and 2 were produced by the following procedure. (1) The positive electrode and the negative electrode are each punched out into a rectangle of 60 mm ⁇ 40 mm, and the current collecting tab is formed by stripping off the 20 mm ⁇ 40 mm region of the coating on the long side, leaving the 40 mm ⁇ 40 mm coating film. Attached. (2) A laminate was prepared by making the coating portions of the positive electrode and the negative electrode face each other with a cellulose separator having a thickness of 20 ⁇ m interposed therebetween.
  • the lithium ion capacitor was pre-doped, charged / discharged, and aged. Thereafter, the internal resistance of the lithium ion capacitor was measured at room temperature (25 ° C.) with a cut-off voltage of 2.2 to 3.8 V and a measurement current of 10 C, and the internal resistance ratio was determined. The internal resistance ratio was 98.1% in Test Example 1, assuming that Test Example 2 was 100%. There was no significant difference in internal resistance between Test Example 1 and Test Example 2, and the fire extinguishing agent did not deteriorate the performance of the capacitor.
  • ⁇ Nail penetration test> A nail was pierced into the lithium ion capacitor, the presence or absence of ignition was observed, and the surface temperature was measured.
  • a 3 mm diameter nail was inserted into the lithium ion capacitor at a speed of 80 mm / sec.
  • the position where the nail is pierced is a position where two diagonal lines intersect on a surface having a large area parallel to the height direction of the lithium ion capacitor.
  • the temperature at a position of 10 mm from the position where the nail was pierced to the side opposite to the current collecting tab side was measured for 1 hour from the time when the nail was pierced.
  • Test Example 1 had a maximum surface temperature of 146 ° C. and did not ignite.
  • the maximum surface temperature was 332 ° C.
  • the lithium ion capacitor of Test Example 1 was able to sufficiently exhibit the flame retarding function by including a fire extinguisher. Since Test Example 1 did not ignite even at a surface temperature of 146 ° C, it was put into a nail penetration test or a crush test (such as an automobile accident) with the lithium ion capacitor operating normally in a high-temperature environment of 85 ° C or higher. Even if it was encountered, it was confirmed that it could remain safe without igniting.
  • the positive electrode slurries B and C using acrylic ester or SBR as a binder were prepared by the following procedure.
  • a material excluding the binder and water were mixed in a mixer a to prepare a pre-slurry.
  • the pre-slurry obtained in (1) was further mixed with a mixer b to prepare an intermediate slurry.
  • a binder was added to the intermediate slurry obtained in (2) and mixed by a mixer a to prepare positive electrode slurry B or C.
  • each positive electrode slurry B was applied to a current collector foil and dried to prepare positive electrode B.
  • the current collector foil is an aluminum foil (porous foil) having a thickness of 15 ⁇ m.
  • the coating amount of the positive electrode slurry B was adjusted so that the mass of the activated carbon after drying was 3 mg / cm 2 .
  • a blade coater or a die coater was used for coating the positive electrode slurry B onto the current collector foil.
  • a positive electrode C was prepared using the positive electrode slurry C.
  • An electrolyte solution P was prepared by adding lithium hexafluorophosphate (LiPF6) to a mixed solvent of ethylene carbonate (EC) 30 vol%, dimethyl carbonate (DMC) 30 vol%, and ethyl methyl carbonate (EMC) 40 vol%.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • LiFSI lithium bis (fluorosulfonylimide)
  • Lithium ion capacitors were produced with combinations of positive electrodes and electrolytes shown in Table 2. Table 2 also shows the RED value for the electrolyte solution of the polymer constituting the binder in each combination. Note that the lithium ion capacitors of Test Examples 3 to 6 include an enclosure coated with a fire extinguishing agent.
  • the lithium ion capacitors of Test Examples 1 and 3 to 6 were subjected to lithium pre-doping, charge / discharge, and aging. Thereafter, the internal resistance and discharge capacity of each lithium ion capacitor were measured at room temperature (25 ° C.) with a cut-off voltage of 2.2 to 3.8 V and a measurement current of 10 C, and the results were used as initial performance.

Abstract

The present disclosure provides an electricity storage device (1) which has high flame retardancy. This electricity storage device (1) comprises: a positive electrode (10) that is provided with a positive electrode active material; a negative electrode (20) that is provided with a negative electrode active material; an electrolyte solution (40) that contains alkali metal ions; and a hermetic sealing body (50) which is internally in contact with the electrolyte solution, and in which the electrolyte solution (40) is hermetically sealed. At least one of the positive electrode active material and the negative electrode active material is capable of absorbing and desorbing the alkali metal ions. This electricity storage device (1) is additionally provided with an extinguishing agent in the internal space of the hermetic sealing body (50), said extinguishing agent exhibiting a flameproofing function. The extinguishing agent has an RED value of more than 1 on the basis of the Hansen solubility parameter with respect to the electrolyte solution (40).

Description

蓄電デバイスElectricity storage device
 本開示は、蓄電デバイスに関する。 This disclosure relates to an electricity storage device.
 アルカリ金属イオンを吸蔵可能および放出可能な活物質を備える蓄電デバイスは、動作電圧が高いことや、エネルギー密度に優れることなど、優れた特性を示すため広く普及している。そして、蓄電デバイスの安全性を向上させるために、検討が重ねられており、多数の安全性試験が行われている。安全性試験としては、蓄電デバイスの内部短絡を模擬した釘刺し試験や圧壊試験、蓄電デバイスが外部から加熱されることを模擬した加熱試験が挙げられる。 An electricity storage device including an active material capable of occluding and releasing alkali metal ions is widely used because it exhibits excellent characteristics such as high operating voltage and excellent energy density. And in order to improve the safety | security of an electrical storage device, examination is repeated and many safety tests are done. Examples of the safety test include a nail penetration test and a crushing test that simulate an internal short circuit of the power storage device, and a heating test that simulates that the power storage device is heated from the outside.
 蓄電デバイスが内部短絡を起こした場合や、加熱された場合において、蓄電デバイスが発火することを防止するための技術が提案されている。例えば、特表2013-541131号公報は、蓄電デバイスの周囲に消火剤を配置することで、発火した蓄電デバイスを消火する技術を開示している。 A technology has been proposed for preventing an electricity storage device from igniting when the electricity storage device has an internal short circuit or is heated. For example, JP 2013-541131A discloses a technique for extinguishing a fired power storage device by disposing a fire extinguishing agent around the power storage device.
 しかし、特表2013-541131号公報に記載の技術を用いても、発火した蓄電デバイスを容易に消火できないおそれがあった。例えば、高温の蓄電デバイスが発火して蓄電デバイスの温度がさらに高まる。そのため、蓄電デバイスの有する有機溶媒が気化して周囲に拡散する。この気化した有機溶媒に引火した場合、複数の蓄電デバイスが連鎖的に発火しうる。この様に連鎖的に蓄電デバイスが発火すると、特表2013-541131号公報に記載の技術では容易に消火できない恐れがある。そのため難燃性の高い蓄電デバイスに対する需要が存在している。 However, there is a possibility that the fired power storage device cannot be easily extinguished even by using the technology described in Japanese Patent Publication No. 2013-541131. For example, a high-temperature power storage device ignites and the temperature of the power storage device further increases. For this reason, the organic solvent of the electricity storage device is vaporized and diffused to the surroundings. When ignited by the vaporized organic solvent, a plurality of power storage devices can ignite in a chain. If the power storage devices are ignited in this way, there is a possibility that the technology described in Japanese Patent Publication No. 2013-541131 cannot be easily extinguished. Therefore, there is a demand for highly flame retardant power storage devices.
 本開示の1つの特徴は、正極活物質を備える正極と、負極活物質を備える負極と、電解液と、密封体と、消火剤とを有する蓄電デバイスである。電解液は、正極および負極に接触するとともにアルカリ金属イオンを含む。密封体は、内側で電解液に接触するとともに電解液を密封する。正極活物質および負極活物質の少なくともいずれか一方は、アルカリ金属イオンを吸蔵可能および放出可能である。消火剤は、密封体の内部空間に配置されており、難燃化機能を発揮する。消火剤は、電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きい。 One feature of the present disclosure is an electricity storage device including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolytic solution, a sealing body, and a fire extinguishing agent. The electrolytic solution contacts the positive electrode and the negative electrode and contains alkali metal ions. A sealing body contacts electrolyte solution inside, and seals electrolyte solution. At least one of the positive electrode active material and the negative electrode active material can occlude and release alkali metal ions. The fire extinguishing agent is disposed in the internal space of the sealed body and exhibits a flame retarding function. The fire extinguisher has a RED value greater than 1 based on the Hansen solubility parameter for the electrolyte.
 上記特徴によると、蓄電デバイスは、消火剤が密封体の内部空間に設けられている。従って、消火剤が蓄電デバイスを難燃化する難燃化機能は、密封体の外部からではなく、内部から発揮できるため、消火剤が蓄電デバイスの難燃性を確実に高めることができる。 According to the above characteristics, the electricity storage device is provided with a fire extinguishing agent in the internal space of the sealed body. Therefore, the fire-extinguishing function of the fire extinguishing agent to make the electricity storage device flame retardant can be exhibited not from the outside of the sealed body but from the inside.
 また消火剤は、電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きいため、消火剤の電解液への溶解量は無視できるほど小さい。そのため消火剤は、蓄電デバイス内で安定している。従って消火剤は、蓄電デバイスの難燃性を経時的に安定して高め、かつ、蓄電デバイスの充放電の過程へ大きな影響を及ぼさない。 Moreover, since the RED value based on the Hansen solubility parameter with respect to the electrolyte is larger than 1, the amount of the fire extinguisher dissolved in the electrolyte is negligibly small. Therefore, the fire extinguisher is stable in the electricity storage device. Accordingly, the fire extinguisher stably increases the flame retardance of the electricity storage device over time and does not significantly affect the charge / discharge process of the electricity storage device.
 本開示の他の特徴は、電解液は、有機溶媒およびイミド系リチウム塩を含む。正極は、集電箔を有する。正極活物質は、電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きいポリマーを含むバインダを介して集電箔に保持されている。したがって、バインダが高温環境においても電解液に対して安定している。そのため蓄電デバイスは、自動車の車室内に設置するために要求される85℃の環境においても容量を維持することができ、且つ内部抵抗の増加が小さい。 Another feature of the present disclosure is that the electrolytic solution includes an organic solvent and an imide-based lithium salt. The positive electrode has a current collector foil. The positive electrode active material is held on the current collector foil through a binder containing a polymer having a RED value greater than 1 based on the Hansen solubility parameter for the electrolytic solution. Therefore, the binder is stable against the electrolytic solution even in a high temperature environment. Therefore, the power storage device can maintain the capacity even in an environment of 85 ° C. required for installation in the vehicle interior of the automobile, and the increase in internal resistance is small.
 本開示の他の特徴は、密封体の内側に、正極および負極を囲うように設けられた包囲体が設けられている。消火剤は、包囲体上に設けられている。したがって、消火剤が蓄電デバイスの難燃性を効果的に高めることができる。 Another feature of the present disclosure is that an enclosure provided so as to surround the positive electrode and the negative electrode is provided inside the sealed body. The fire extinguishing agent is provided on the enclosure. Therefore, the fire extinguisher can effectively enhance the flame retardancy of the electricity storage device.
 本開示の他の特徴は、リチウムイオンキャパシタである。一般的にリチウムイオンキャパシタの製造方法に含まれるプレドープの工程では、単体のリチウム金属が使用される。単体のリチウムイオンは発火の原因になるため、リチウムイオンキャパシタ内に単体のリチウム金属が残らないようにプレドープの工程が行われている。万が一、リチウムイオンキャパシタ内に単体のリチウム金属が残った場合も、密封体の内部空間に配置された消火剤が難燃化機能を発揮することによりリチウムイオンキャパシタの発火が防止される。また、従来のように金属リチウムが析出しないようプレドープの工程に時間をかける必要がなくなり、プレドープ工程の時間を短縮できる。 Another feature of the present disclosure is a lithium ion capacitor. In general, a single lithium metal is used in a pre-doping process included in a method of manufacturing a lithium ion capacitor. Since single lithium ions cause ignition, a pre-doping process is performed so that no single lithium metal remains in the lithium ion capacitor. In the unlikely event that a single lithium metal remains in the lithium ion capacitor, the fire extinguishing agent disposed in the internal space of the sealed body exerts a flame retarding function, thereby preventing the ignition of the lithium ion capacitor. Moreover, it is not necessary to spend time in the pre-doping process so that metallic lithium does not precipitate as in the prior art, and the time of the pre-doping process can be shortened.
第1の実施の形態の蓄電デバイスの分解斜視図である。It is a disassembled perspective view of the electrical storage device of 1st Embodiment. 第1の実施の形態の蓄電デバイスの斜視図である。It is a perspective view of the electrical storage device of a 1st embodiment. 図2の蓄電デバイスにおけるIII-III線断面の模式的な図である。FIG. 3 is a schematic diagram of a cross section taken along line III-III in the electricity storage device of FIG. 2. 第1の実施の形態において、正極板の外観の例を説明する図である。In 1st Embodiment, it is a figure explaining the example of the external appearance of a positive electrode plate. 図4の正極板におけるV-V線断面図である。FIG. 5 is a cross-sectional view taken along line VV in the positive electrode plate of FIG. 4. 第1の実施の形態において、負極板の外観の例を説明する図である。In 1st Embodiment, it is a figure explaining the example of the external appearance of a negative electrode plate. 図6の負極板におけるVII-VII線断面図である。FIG. 7 is a sectional view taken along line VII-VII in the negative electrode plate of FIG. 第1の実施の形態において、消火剤を備えるセパレータの外観の例を説明する図である。In 1st Embodiment, it is a figure explaining the example of the external appearance of a separator provided with a fire extinguisher. 図8のセパレータにおけるIX-IX線断面図である。FIG. 9 is a sectional view taken along line IX-IX in the separator of FIG. 第1の実施の形態において、消火剤を備えるセパレータの他の例の外観を説明する図である。In 1st Embodiment, it is a figure explaining the external appearance of the other example of a separator provided with a fire extinguisher. 第1の実施の形態において、正極の正極板と、負極の負極板と、セパレータと、電解液と、消火剤との位置関係を説明する図である。In 1st Embodiment, it is a figure explaining the positional relationship of the positive electrode plate of a positive electrode, the negative electrode plate of a negative electrode, a separator, electrolyte solution, and a fire extinguishing agent. 第1の実施の形態において、蓄電デバイスの製造過程を示すフローチャートの例である。In 1st Embodiment, it is an example of the flowchart which shows the manufacture process of an electrical storage device. 第1の実施の形態の蓄電デバイスの製造過程において、正極板作成、および負極板作成のためのロールプレス加工を説明する図である。It is a figure explaining the roll press process for positive electrode plate preparation and negative electrode plate preparation in the manufacture process of the electrical storage device of 1st Embodiment. 第1の実施の形態の蓄電デバイスの製造過程において、プレドープ用電極板の外観の例を説明する図である。It is a figure explaining the example of the external appearance of the electrode plate for pre dope in the manufacture process of the electrical storage device of 1st Embodiment. 図14のプレドープ用電極板におけるXV-XV線断面図である。FIG. 15 is a sectional view taken along the line XV-XV in the pre-doping electrode plate of FIG. 14. 第1の実施の形態の蓄電デバイスの製造過程において、プレドープ用電極作成のためのロールプレス加工を説明する図である。It is a figure explaining the roll press process for electrode preparation for pre dope in the manufacture process of the electrical storage device of 1st Embodiment. 第1の実施の形態の蓄電デバイスの製造過程において、プレドープを行う状態を説明する図である。It is a figure explaining the state which performs pre dope in the manufacture process of the electrical storage device of 1st Embodiment. 第2の実施の形態の蓄電デバイスの分解斜視図である。It is a disassembled perspective view of the electrical storage device of 2nd Embodiment. 第2の実施の形態の蓄電デバイスの模式的な断面図である。It is typical sectional drawing of the electrical storage device of 2nd Embodiment. 第2の実施の形態において、正極板と、負極板と、セパレータと、電解液と、消火剤との位置関係を説明する図である。In 2nd Embodiment, it is a figure explaining the positional relationship of a positive electrode plate, a negative electrode plate, a separator, electrolyte solution, and a fire extinguisher. 第3の実施の形態の蓄電デバイスの模式的な断面図である。It is typical sectional drawing of the electrical storage device of 3rd Embodiment. 消火剤の難燃化機能の試験方法を説明する図である。It is a figure explaining the test method of the flame-retardant function of a fire extinguisher.
[第1の実施の形態]
 以下、第1の実施の形態について図1~図17を用いて説明する。第1の実施の形態における蓄電デバイスは、リチウムイオンキャパシタ1である。図1の分解斜視図に示す様に、リチウムイオンキャパシタ1は、複数の板状の正極板11と、複数の板状の負極板21とを備えている。複数の板状の正極板11と、複数の板状の負極板21とは交互に積層されている。各正極板11は一方向に突出する電極端子接続部12bを備える。各負極板21も、正極板11の電極端子接続部12bが突出する方向と同一の方向に突出する電極端子接続部22bを備えている。図1に示す様に、正極板11の電極端子接続部12bが突出する方向をX軸方向とし、積層される方向をZ軸方向とし、X軸およびZ軸に直交する方向をY軸方向とする。これらのX軸、Y軸、Z軸は互いに直交している。X軸、Y軸、Z軸が記載されているすべての図において、これらの軸方向は同一の方向を示し、以下の説明において方向に関する記述はこれらの軸方向を基準とすることがある。なお、本実施の形態および以下に説明する実施の形態において、付随的な構成については、その図示および詳細な説明を省略する。
[First Embodiment]
Hereinafter, the first embodiment will be described with reference to FIGS. The electricity storage device in the first embodiment is a lithium ion capacitor 1. As shown in the exploded perspective view of FIG. 1, the lithium ion capacitor 1 includes a plurality of plate-like positive electrode plates 11 and a plurality of plate-like negative electrode plates 21. The plurality of plate-like positive electrode plates 11 and the plurality of plate-like negative electrode plates 21 are alternately stacked. Each positive electrode plate 11 includes an electrode terminal connection portion 12b protruding in one direction. Each negative electrode plate 21 also includes an electrode terminal connection portion 22b that protrudes in the same direction as the direction in which the electrode terminal connection portion 12b of the positive electrode plate 11 protrudes. As shown in FIG. 1, the direction in which the electrode terminal connecting portion 12b of the positive electrode plate 11 projects is the X-axis direction, the stacked direction is the Z-axis direction, and the direction perpendicular to the X-axis and the Z-axis is the Y-axis direction. To do. These X axis, Y axis, and Z axis are orthogonal to each other. In all of the drawings in which the X axis, the Y axis, and the Z axis are described, these axial directions indicate the same direction, and in the following description, descriptions regarding directions may be based on these axial directions. It should be noted that in the present embodiment and the embodiments described below, the illustration and detailed description of the incidental configuration are omitted.
<1.リチウムイオンキャパシタ1の全体構造(図1~図3)>
 リチウムイオンキャパシタ1は、図1に示すように、複数の正極板11と、複数の負極板21と、複数のセパレータ30と、電解液40と、ラミネート部材50とを備えている。ここで、図1に示す様に、正極板11と負極板21とは交互に積層されており、正極板11と負極板21との間それぞれにセパレータ30が挟まれている。電解液40は、この様に積層された、複数の正極板11の一部と、複数の負極板21の一部と、複数のセパレータ30と共に、2つのラミネート部材50(密封体)に包まれてリチウムイオンキャパシタ1内に密封されている。電解液40は、正極板11、負極板21及びラミネート部材50の内側に接触している。詳細は後述するが、セパレータ30は、消火剤32を備えており(図3参照)、消火剤32はリチウムイオンキャパシタ1の難燃性を向上させる。なお、リチウムイオンキャパシタ1は、Z軸方向の最上層と最下層とにセパレータ30を更に有し、各負極板21がセパレータ30で挟まれるように配置してもよい。
<1. Overall structure of lithium ion capacitor 1 (FIGS. 1 to 3)>
As shown in FIG. 1, the lithium ion capacitor 1 includes a plurality of positive plates 11, a plurality of negative plates 21, a plurality of separators 30, an electrolytic solution 40, and a laminate member 50. Here, as shown in FIG. 1, the positive plates 11 and the negative plates 21 are alternately stacked, and the separators 30 are sandwiched between the positive plates 11 and the negative plates 21. The electrolyte solution 40 is encased in two laminate members 50 (sealing bodies) together with a part of the plurality of positive electrode plates 11, a part of the plurality of negative electrode plates 21, and the plurality of separators 30 laminated in this manner. The lithium ion capacitor 1 is sealed. The electrolytic solution 40 is in contact with the inside of the positive electrode plate 11, the negative electrode plate 21, and the laminate member 50. Although details will be described later, the separator 30 includes a fire extinguishing agent 32 (see FIG. 3), and the fire extinguishing agent 32 improves the flame retardance of the lithium ion capacitor 1. The lithium ion capacitor 1 may further include separators 30 in the uppermost layer and the lowermost layer in the Z-axis direction, and the negative electrode plates 21 may be disposed so as to be sandwiched between the separators 30.
 複数の正極板11の電極端子接続部12bは、同一方向に突出し、正極端子14に導通している。この正極端子14やこれと接続されている複数の正極板11など、正極側の導体部材をまとめて正極10と呼ぶ。複数の負極板21の電極端子接続部22bと、負極端子24とは導通している。負極端子24やこれと接続されている複数の負極板21など、負極側の導体部材をまとめて負極20と呼ぶ。リチウムイオンキャパシタ1は、その内部に上述の構成を備え、その外観を図2に示した。図2に示すリチウムイオンキャパシタ1のIII-III断面を模式的に図3に示す。図3では、わかりやすくするためにリチウムイオンキャパシタ1内における各部材の間に間隔を開けて図示している。しかし、実際には、正極板11と負極板21とセパレータ30とがほとんど隙間無く積層されている。 The electrode terminal connection portions 12 b of the plurality of positive electrode plates 11 protrude in the same direction and are electrically connected to the positive electrode terminal 14. The positive electrode side conductor members such as the positive electrode terminal 14 and the plurality of positive electrode plates 11 connected thereto are collectively referred to as a positive electrode 10. The electrode terminal connection portions 22b of the plurality of negative electrode plates 21 and the negative electrode terminals 24 are electrically connected. Conductive members on the negative electrode side such as the negative electrode terminal 24 and the plurality of negative electrode plates 21 connected thereto are collectively referred to as the negative electrode 20. The lithium ion capacitor 1 has the above-described configuration inside, and its external appearance is shown in FIG. FIG. 3 schematically shows a III-III cross section of the lithium ion capacitor 1 shown in FIG. In FIG. 3, for easy understanding, the members in the lithium ion capacitor 1 are illustrated with a space therebetween. However, in practice, the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked with almost no gap.
<2.リチウムイオンキャパシタ1の各部について(図1、図3~図10)>
<2-1.正極板11の構造(図1、図3~図5)>
 正極板11は、従来のリチウムイオンキャパシタの正極板を用いることができる。すなわち、正極板11は、薄板状の集電体12と、集電体12に塗工されている正極活物質層13とを備えている。図4に示すように集電体12は、矩形状の集電部12aと、集電部12aの一端(図4の例では、上辺の左端)から突出する電極端子接続部12bとが一体に形成されている。集電部12aは、Z軸方向に貫通する複数の孔12cを有する金属箔である。電極端子接続部12bは集電部12aの孔12cと同様の複数の孔を有してもよいし、有していなくてもよい。そして、図1および図4に示す、電極端子接続部12bのY軸方向の幅は適宜変更できる。その幅は、例えば集電部12aと同じ幅としても良い。また、正極活物質層13は、集電部12aの両面に塗工されているが、塗工されている面はどちらかの片面であってもよい。ここで、集電部12aは、複数の孔12cが形成されているため、電解液40の陽イオンおよび陰イオンが集電部12aを透過できる。
<2. Each part of the lithium ion capacitor 1 (FIGS. 1, 3 to 10)>
<2-1. Structure of the positive electrode plate 11 (FIGS. 1, 3 to 5)>
The positive electrode plate 11 can be a positive electrode plate of a conventional lithium ion capacitor. That is, the positive electrode plate 11 includes a thin plate-like current collector 12 and a positive electrode active material layer 13 coated on the current collector 12. As shown in FIG. 4, the current collector 12 includes a rectangular current collector 12 a and an electrode terminal connection portion 12 b protruding from one end of the current collector 12 a (the left end of the upper side in the example of FIG. 4). Is formed. The current collector 12a is a metal foil having a plurality of holes 12c penetrating in the Z-axis direction. The electrode terminal connecting portion 12b may or may not have a plurality of holes similar to the holes 12c of the current collecting portion 12a. And the width | variety of the Y-axis direction of the electrode terminal connection part 12b shown to FIG. 1 and FIG. 4 can be changed suitably. The width may be, for example, the same width as the current collector 12a. Moreover, although the positive electrode active material layer 13 is coated on both surfaces of the current collection part 12a, the coated surface may be either one surface. Here, since the current collector 12a has a plurality of holes 12c, cations and anions of the electrolytic solution 40 can pass through the current collector 12a.
 集電体12は、例えば、アルミニウム、ステンレス鋼、銅、ニッケルからなる金属箔を用いることができる。正極活物質層13は、比表面積が大きく導電性の高い正極活物質と、正極活物質層13の電気伝導性を高めるための導電助剤と、正極活物質の結着および正極活物質と集電体12の集電部12aとを結着させるバインダとを含む。正極活物質層13は、さらに増粘剤等の他の成分を含んでも良い。正極活物質は、例えば、活性炭、カーボンナノチューブ、ポリアセン等を用いることができる。導電助剤は、例えば、ケッチェンブラック、アセチレンブラック、グラファイトの微粒子、グラファイトの微細線維を用いることができる。増粘剤は、例えば、カルボキシルメチルセルロース[CMC]を用いることができる。 As the current collector 12, for example, a metal foil made of aluminum, stainless steel, copper, or nickel can be used. The positive electrode active material layer 13 includes a positive electrode active material having a large specific surface area and high conductivity, a conductive auxiliary agent for increasing the electric conductivity of the positive electrode active material layer 13, binding of the positive electrode active material, and collection of the positive electrode active material. And a binder that binds the current collector 12a of the electric body 12. The positive electrode active material layer 13 may further include other components such as a thickener. As the positive electrode active material, for example, activated carbon, carbon nanotube, polyacene, or the like can be used. As the conductive auxiliary agent, for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used. As the thickener, for example, carboxymethyl cellulose [CMC] can be used.
 バインダは、正極を構成する材料を結着するために用いられる。バインダは、接着成分であるポリマーを主成分としている。ポリマーは、ポリフッ化ビニリデン、スチレン-ブタジエンゴム[SBR]、ポリアクリル酸等から選択される。ポリマーは、電解液40に対するハンセン溶解度パラメータ(HSP)に基づくRED値(相対エネルギー差)が1より大きいことが好ましい。電解液40に対するRED値が1より大きいポリマーは、電解液40に溶解しないため、リチウムイオンキャパシタ1を高温環境で長時間使用しても内部抵抗の増加率が小さい。このようなポリマーとして、ポリアクリル酸が挙げられる。ここでのポリアクリル酸とは、未中和のポリアクリル酸だけでなくポリアクリル酸の中和塩及び架橋したものも含む広義の概念である。ポリアクリル酸は、1種のみでも2種以上を組み合わせて用いてもよい。ポリマーを溶解する溶媒としては、水や有機溶媒を用いることができる。溶媒として水を用いる水系バインダは、製造工程での環境負荷を低減することができるため好ましい。ポリアクリル酸は、水を溶媒として水系バインダを構成することができる点でも好適である。なお、ハンセン溶解度パラメータに基づくRED値の詳しい説明は後述する。 The binder is used to bind the material constituting the positive electrode. The binder is mainly composed of a polymer that is an adhesive component. The polymer is selected from polyvinylidene fluoride, styrene-butadiene rubber [SBR], polyacrylic acid, and the like. The polymer preferably has a RED value (relative energy difference) based on a Hansen solubility parameter (HSP) in the electrolytic solution 40 of greater than 1. A polymer having a RED value larger than 1 with respect to the electrolytic solution 40 does not dissolve in the electrolytic solution 40, and therefore the increase rate of the internal resistance is small even when the lithium ion capacitor 1 is used in a high temperature environment for a long time. An example of such a polymer is polyacrylic acid. The polyacrylic acid here is a broad concept including not only unneutralized polyacrylic acid but also neutralized polyacrylic acid salts and cross-linked ones. Polyacrylic acid may be used alone or in combination of two or more. As a solvent for dissolving the polymer, water or an organic solvent can be used. An aqueous binder using water as a solvent is preferable because it can reduce the environmental burden in the manufacturing process. Polyacrylic acid is also suitable in that it can constitute an aqueous binder using water as a solvent. A detailed description of the RED value based on the Hansen solubility parameter will be described later.
 バインダは、正極活物質に対して1~10質量%添加するのが好ましい。バインダが1質量%未満であると結着力が不足しやすい。一方バインダが10質量%を超えるとリチウムイオンキャパシタ1の内部抵抗の増加原因となる可能性がある。 The binder is preferably added in an amount of 1 to 10% by mass with respect to the positive electrode active material. When the binder is less than 1% by mass, the binding force tends to be insufficient. On the other hand, if the binder exceeds 10% by mass, the internal resistance of the lithium ion capacitor 1 may increase.
<2-2.負極板21の構造(図1、図3、図6、図7)>
 負極板21は、従来のリチウムイオンキャパシタの負極板を用いることができる。そして、負極板21は、大まかには上述した正極板11と同様の構造を備えている。つまり負極板21は、薄板状の集電体22と、負極活物質層23とを備えている。負極活物質層23は、リチウムイオンLiを吸蔵可能及び放出可能な負極活物質を備える。そして、後述する様に、負極活物質は、製造時にリチウムイオンLiが吸着される(いわゆるプレドープされる)。
<2-2. Structure of Negative Electrode Plate 21 (FIGS. 1, 3, 6, and 7)>
The negative electrode plate 21 can be a negative electrode plate of a conventional lithium ion capacitor. The negative electrode plate 21 roughly has the same structure as the positive electrode plate 11 described above. That is, the negative electrode plate 21 includes a thin plate-like current collector 22 and a negative electrode active material layer 23. The negative electrode active material layer 23 includes a negative electrode active material capable of occluding and releasing lithium ions Li + . As will be described later, the negative electrode active material is adsorbed with lithium ions Li + during manufacturing (so-called pre-doped).
 図6に示すように集電体22は、矩形状の集電部22aと、集電部22aの一端(図6の例では、上辺の右端)から外側に突出する電極端子接続部22bとが一体に形成されている。集電部22aは、Z軸方向に貫通する複数の孔22cを有する金属箔である(図7参照)。電極端子接続部22bは、集電部22aの孔22cと同様の複数の孔を有してもよく、有していなくてもよい。また、負極活物質層23は、集電部22aの両面に塗工されているが、塗工されている面はどちらかの片面であってもよい。ここで、上述した正極板11と同様に、集電部22aは、複数の孔22cが形成されているため、電解液40の陽イオンおよび陰イオンが集電部22aを透過できる。また図1に示す様に、正極板11の電極端子接続部12bと、負極板21の電極端子接続部22bとは、Z軸方向に互いに間隔を開けた位置に設けられている。そのため、電極端子接続部12bと電極端子接続部22bとが相互に接触することを防止できる。ここで、図1および図6に示す、電極端子接続部22bのY軸方向の幅は適宜変更でき、例えば集電部22aと同じ幅としても良い。 As shown in FIG. 6, the current collector 22 includes a rectangular current collector 22 a and an electrode terminal connection 22 b that protrudes outward from one end of the current collector 22 a (the right end of the upper side in the example of FIG. 6). It is integrally formed. The current collector 22a is a metal foil having a plurality of holes 22c penetrating in the Z-axis direction (see FIG. 7). The electrode terminal connecting portion 22b may or may not have a plurality of holes similar to the holes 22c of the current collecting portion 22a. Moreover, although the negative electrode active material layer 23 is coated on both surfaces of the current collection part 22a, the coated surface may be either one surface. Here, like the positive electrode plate 11 described above, the current collector 22a is formed with a plurality of holes 22c, so that cations and anions of the electrolytic solution 40 can pass through the current collector 22a. As shown in FIG. 1, the electrode terminal connecting portion 12b of the positive electrode plate 11 and the electrode terminal connecting portion 22b of the negative electrode plate 21 are provided at positions spaced from each other in the Z-axis direction. Therefore, it can prevent that the electrode terminal connection part 12b and the electrode terminal connection part 22b contact each other. Here, the width in the Y-axis direction of the electrode terminal connecting portion 22b shown in FIGS. 1 and 6 can be changed as appropriate, and may be, for example, the same width as the current collecting portion 22a.
 集電体22は、正極板11の集電体12と同様に、例えば、アルミニウム、ステンレス鋼、銅からなる金属箔を用いることができる。負極活物質層23は、リチウムイオンLiを吸脱着可能な負極活物質と、負極活物質の結着および負極活物質と集電体22の集電部22aとを結着させるバインダとを含む。負極活物質層23は、負極活物質層23の電気伝導性を高めるための導電助剤や、増粘剤等、他の成分を含んでも良い。負極活物質は、例えば、グラファイトを用いることができる。導電助剤、バインダ、増粘剤は、上述した正極板11と同様の物質を用いることができる。すなわち、導電助剤に、例えば、ケッチェンブラック、アセチレンブラック、グラファイトの微粒子、グラファイトの微細線維を用いることができる。バインダは、例えば、ポリフッ化ビニリデン、スチレン-ブタジエンゴム[SBR]、ポリアクリル酸を用いることができる。増粘剤は、例えば、カルボキシルメチルセルロース[CMC]を用いることができる。 As the current collector 22, for example, a metal foil made of aluminum, stainless steel, or copper can be used in the same manner as the current collector 12 of the positive electrode plate 11. The negative electrode active material layer 23 includes a negative electrode active material capable of adsorbing and desorbing lithium ions Li + and a binder for binding the negative electrode active material and binding the negative electrode active material and the current collector 22 a of the current collector 22. . The negative electrode active material layer 23 may include other components such as a conductive additive and a thickener for increasing the electrical conductivity of the negative electrode active material layer 23. For example, graphite can be used as the negative electrode active material. The same material as the positive electrode plate 11 described above can be used as the conductive additive, binder, and thickener. That is, for example, ketjen black, acetylene black, graphite fine particles, and graphite fine fibers can be used as the conductive assistant. As the binder, for example, polyvinylidene fluoride, styrene-butadiene rubber [SBR], or polyacrylic acid can be used. As the thickener, for example, carboxymethyl cellulose [CMC] can be used.
<2-3.セパレータ30の構造(図1、図3、図8~図10)>
 セパレータ30は、板状である(図1、図8参照)。セパレータ30の縦横の長さは、正極板11の集電体12の集電部12aの縦横の長さ、および、負極板21の集電体22の集電部22aの縦横の長さよりも長く設定されている(図1、図4、図6参照)。図9に示す様に、セパレータ30は、正極板11と負極板21の間を隔離するための多孔質でシート状のセパレータシート31と、セパレータシート31の両面に塗工されている消火剤32とを有している。セパレータ30は、電解液40の陽イオンおよび陰イオンが透過できるように構成されている。
<2-3. Structure of Separator 30 (FIGS. 1, 3, and 8 to 10)>
The separator 30 has a plate shape (see FIGS. 1 and 8). The vertical and horizontal lengths of the separator 30 are longer than the vertical and horizontal lengths of the current collector 12a of the current collector 12 of the positive electrode plate 11 and the vertical and horizontal lengths of the current collector 22a of the current collector 22 of the negative electrode plate 21. It has been set (see FIGS. 1, 4 and 6). As shown in FIG. 9, the separator 30 includes a porous sheet-like separator sheet 31 for separating the positive electrode plate 11 and the negative electrode plate 21, and a fire extinguishing agent 32 coated on both surfaces of the separator sheet 31. And have. The separator 30 is configured to allow the cation and anion of the electrolytic solution 40 to pass therethrough.
 消火剤32は、セパレータシート31上に塗工されていればよい。つまり消火剤32は、セパレータシート31の片面に塗工されていてもよく、セパレータシート31上に部分的に塗工されていても良い。例えば図10に示す様に、セパレータシート31の中心を除く外側に消火剤32を塗工してもよい。消火剤32は、セパレータシート31の外側の一部に塗工してもよい。消火剤32は、セパレータシート31上に複数の帯状やドット状に塗工してもよい。 The fire extinguishing agent 32 only needs to be coated on the separator sheet 31. That is, the fire extinguishing agent 32 may be applied on one side of the separator sheet 31 or may be partially applied on the separator sheet 31. For example, as shown in FIG. 10, a fire extinguishing agent 32 may be applied on the outer side excluding the center of the separator sheet 31. The fire extinguishing agent 32 may be applied to a part of the outer side of the separator sheet 31. The fire extinguishing agent 32 may be applied to the separator sheet 31 in a plurality of strips or dots.
 セパレータシート31は、従来のリチウムイオンキャパシタのセパレータを用いることができる。セパレータシート31は、例えば、ビスコースレイヨンや天然セルロース等の抄紙、ポリエチレンやポリプロピレン等の不織布などを用いることができる。 The separator sheet 31 may be a conventional lithium ion capacitor separator. As the separator sheet 31, for example, papermaking such as viscose rayon or natural cellulose, non-woven fabric such as polyethylene or polypropylene can be used.
 消火剤32は、難燃化機能を発揮し、かつ、電解液40に対するハンセン溶解度パラメータ(HSP)に基づくRED値が1より大きい。ハンセン溶解度パラメータは、Charles M Hansen氏により発表され、ある物質がある物質にどのくらい溶けるのかを示す溶解性の指標として知られている。例えば、一般的に水と油は溶け合わないが、これは水と油の「性質」が違うからである。この溶解性に関する物質の「性質」として、ハンセン溶解度パラメータでは、分散項D、極性項P、水素結合項Hの3つの項目を、物質毎に数値で表す。ここで、分散項Dはファンデルワールス力の大きさを表す値である。極性項Pはダイポール・モーメントの大きさを表す値である。水素結合項Hは水素結合の大きさを表す値である。以下では基本的な考えを説明する。このため、水素結合項Hをドナー性とアクセプター性に分割して扱うこと等の説明を省略する。 The fire extinguishing agent 32 exhibits a flame retarding function and has a RED value greater than 1 based on the Hansen solubility parameter (HSP) for the electrolytic solution 40. The Hansen solubility parameter was published by Charles M Hansen and is known as a solubility index indicating how much a certain substance is dissolved in a certain substance. For example, water and oil generally do not melt together because the “properties” of water and oil are different. As the “property” of the substance relating to the solubility, in the Hansen solubility parameter, three items of the dispersion term D, the polar term P, and the hydrogen bond term H are expressed numerically for each substance. Here, the dispersion term D is a value representing the magnitude of Van der Waals force. The polar term P is a value representing the magnitude of the dipole moment. The hydrogen bond term H is a value representing the size of the hydrogen bond. The basic idea is explained below. For this reason, explanation of handling the hydrogen bond term H divided into donor and acceptor properties is omitted.
 ハンセン溶解度パラメータ(D,P,H)は、溶解性を検討するために、3次元の直交座標系(ハンセン空間、HSP空間)にプロットされる。例えば、溶液Aおよび固体Bそれぞれハンセン溶解度パラメータは、ハンセン空間上で溶液Aおよび固体Bそれぞれに対応する2つの座標(座標A,座標B)にプロットできる。そして、座標Aと座標Bとの距離Ra(HSP distance, Ra)が短い程、溶液Aと固体Bは互いに似た上記「性質」をもつため溶液Aに固体Bが溶解しやすいと考えることができる。この逆に、この距離Raが長い程、溶液Aと固体Bは互いに似ていない「性質」をもつため、溶液Aに固体Bが溶解しにくいと考えることができる。 Hansen solubility parameters (D, P, H) are plotted in a three-dimensional orthogonal coordinate system (Hansen space, HSP space) in order to study solubility. For example, the Hansen solubility parameter for each of the solution A and the solid B can be plotted on two coordinates (coordinate A and coordinate B) corresponding to the solution A and the solid B, respectively, in the Hansen space. And, the shorter the distance Ra (HSP distance, Ra) between the coordinates A and B, the solutions A and the solids B have the above-mentioned “properties”, so the solid B is more likely to dissolve in the solution A. it can. On the contrary, it can be considered that the longer the distance Ra is, the more difficult the solution A and the solid B are dissolved in the solution A because the solution A and the solid B have “properties” that are not similar to each other.
 また、溶液Aに対して、溶解する物質と溶解しない物質との境目となる距離Raを相互作用半径R0とする。従って、溶液Aと固体Bについて、距離Raが相互作用半径R0より小さい場合(Ra<R0)は溶液Aに固体Bが溶解すると考えることができる。一方、このRaが相互作用半径R0より大きい場合(R0<Ra)は溶液Aに固体Bが溶解しないと考えることができる。さらに、距離Raを相互作用半径R0で割った値をRED値(=Ra/Ro)とする。すると、RED値が1より小さい場合(RED=Ra/Ro<1)には、Ra<R0となり、溶液Aに固体Bが溶解すると考えることができる。一方、RED値が1より大きい場合(RED=Ra/Ro>1)には、R0<Raとなり、溶液Aに固体Bが溶解しないと考えることができる。この様に、溶液Aおよび固体Bに関するRED値を元に、固体Bが溶液Aに溶けるか否かを判断できる。 Further, a distance Ra that becomes a boundary between a substance that dissolves and a substance that does not dissolve in the solution A is defined as an interaction radius R0. Therefore, for the solution A and the solid B, when the distance Ra is smaller than the interaction radius R0 (Ra <R0), it can be considered that the solid B is dissolved in the solution A. On the other hand, when this Ra is larger than the interaction radius R0 (R0 <Ra), it can be considered that the solid B does not dissolve in the solution A. Further, a value obtained by dividing the distance Ra by the interaction radius R0 is defined as a RED value (= Ra / Ro). Then, when the RED value is smaller than 1 (RED = Ra / Ro <1), Ra <R0 and it can be considered that the solid B is dissolved in the solution A. On the other hand, when the RED value is larger than 1 (RED = Ra / Ro> 1), R0 <Ra, and it can be considered that the solid B does not dissolve in the solution A. In this way, it can be determined whether or not the solid B is dissolved in the solution A based on the RED values relating to the solution A and the solid B.
 ここで、本実施の形態では、溶液Aが電解液40に対応し、固体Bが消火剤32に対応する。消火剤32は、電解液40に対するハンセン溶解度パラメータに基づくRED値が1より大きいため、電解液40に溶解しないとみなすことができる。この逆に、電解液40に難溶性を示す消火剤も、ハンセン溶解度パラメータに基づくRED値が1より大きいと考えることができる。 Here, in the present embodiment, the solution A corresponds to the electrolytic solution 40 and the solid B corresponds to the extinguishing agent 32. Since the RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 is greater than 1, the fire extinguisher 32 can be regarded as not dissolving in the electrolytic solution 40. Conversely, a fire extinguisher that is sparingly soluble in the electrolytic solution 40 can also be considered to have a RED value greater than 1 based on the Hansen solubility parameter.
 ハンセン溶解度パラメータおよび相互作用半径R0は、成分の化学構造及び組成比や、実験結果を用いて算出することができる。その場合、Hansen氏らにより開発されたソフトウエアHSPiP(Hansen Solubility Parameters in Practice:HSPを効率よく扱うためのWindows〔登録商標〕用ソフト)を用いて求めることができる。このソフトウエアHSPiPは、2018年3月5日現在 http://www.hansen-solubility.com/から入手可能である。また、複数の溶媒が混合された混合溶媒の場合等に対しても、ハンセン溶解度パラメータ(D,P,H)を算出することができる。 The Hansen solubility parameter and the interaction radius R0 can be calculated using the chemical structure and composition ratio of the components and experimental results. In that case, it can be obtained using software HSPiP developed by Hansen et al. (Hansen Solubility Parameters in Practice: Windows [registered trademark] software for efficiently handling HSP). The software HSPiP is available as of March 5, 2018 from http://www.hansen-solubility.com/. Also, the Hansen solubility parameters (D, P, H) can be calculated for a mixed solvent in which a plurality of solvents are mixed.
 消火剤32は、公知の消火剤のうち、難燃化機能を発揮し、かつ、電解液40に対するハンセン溶解度パラメータに基づくRED値が1より大きい消火剤を用いることができる。このような消火剤32は、例えば、以下に説明する、燃料成分Aと、酸化剤成分Bと、有機塩成分Cとを含む消火剤を用いることができる。この消火剤は、燃料成分Aと酸化剤成分Bの合計100質量部に対して、燃料成分Aを15~50質量部、酸化剤成分Bを85~50質量部、有機塩成分Cを7~1000質量部を含有している。 As the fire extinguisher 32, a fire extinguisher that exhibits a flame retarding function and has a RED value greater than 1 based on the Hansen solubility parameter with respect to the electrolyte 40 can be used among known fire extinguishers. As such a fire extinguisher 32, the fire extinguisher containing the fuel component A, the oxidizing agent component B, and the organic salt component C which are demonstrated below can be used, for example. This fire extinguisher is 15 to 50 parts by mass of fuel component A, 85 to 50 parts by mass of oxidant component B, and 7 to 7 parts of organic salt component C with respect to 100 parts by mass of fuel component A and oxidant component B in total. It contains 1000 parts by mass.
 この消火剤は、加熱されると燃料成分Aおよび酸化剤成分Bが燃焼することで、有機塩成分Cからカリウムラジカルを含むエアロゾルを生成することができる。このエアロゾルに含まれるカリウムラジカルは、消火作用および、発火を抑止する難燃化機能を備える。ここで、この消火剤の難燃化機能とは、発火し始めたときに直ちにカリウムラジカルを生成し、このカリウムラジカルの消火作用により発火を抑止する機能である。なお、燃料成分Aおよび酸化剤成分Bが燃焼する温度は、燃料成分Aと、酸化剤成分Bと、有機塩成分Cとの組成を適宜変更することにより設定することができる。また、この消火剤は、消火作用および、発火を抑止する難燃化機能を備えるカリウムラジカルを生成することができるが、生成するラジカルは、カリウムラジカル以外の消火作用または難燃化機能をそなえるラジカルであってもよい。すなわち、消火剤は、カリウムラジカル以外の消火作用または難燃化機能をそなえるラジカルを生成する消火剤であってもよい。また、消火剤は、上述のように発火を防ぐ難燃化機能を有していればよく、熱分解反応や酸化反応等の発火した際に生じる燃焼の連鎖反応をラジカルトラップによって停止するラジカルを含むエアロゾルを発生するものでなくてもよい。例えば消火剤は、窒素、アルゴン、二酸化炭素等の不活性ガスを生成することによって燃焼の連鎖反応を停止させる難燃化機能を有してもよい。また、事前に不活性ガスを吸蔵し、所定温度で放出可能な吸蔵合金等を用いることもできる。ハロゲン及びリン系難燃剤以外の消火剤は、環境への安全性が高くなる点で好ましい。また、上記の構成で、二酸化炭素以外の不活性ガスを放出する構成とすれば、人に対する安全性を高めることもできる。 When this fire extinguisher is heated, the fuel component A and the oxidant component B are combusted, so that an aerosol containing potassium radicals can be generated from the organic salt component C. The potassium radical contained in this aerosol has a fire extinguishing action and a flame retarding function that suppresses ignition. Here, the flame-retarding function of this fire extinguishing agent is a function that immediately generates potassium radicals when starting to ignite, and suppresses ignition by the fire extinguishing action of the potassium radicals. The temperature at which the fuel component A and the oxidant component B burn can be set by appropriately changing the composition of the fuel component A, the oxidant component B, and the organic salt component C. In addition, this fire extinguisher can generate a potassium radical having a fire extinguishing action and a flame retarding function to suppress ignition, but the generated radical is a radical having a fire extinguishing action or a flame retarding function other than the potassium radical. It may be. That is, the fire extinguishing agent may be a fire extinguishing agent that generates a radical having a fire extinguishing action or a flame retarding function other than the potassium radical. In addition, the extinguishing agent only needs to have a flame-retarding function to prevent ignition as described above, and a radical that stops a chain reaction of combustion that occurs when a pyrolysis reaction, an oxidation reaction, or the like is ignited by a radical trap. It does not have to generate an aerosol. For example, the fire extinguishing agent may have a flame retarding function that stops the chain reaction of combustion by generating an inert gas such as nitrogen, argon, or carbon dioxide. It is also possible to use an occlusion alloy that occludes an inert gas in advance and can be released at a predetermined temperature. Extinguishing agents other than halogen and phosphorus-based flame retardants are preferable in terms of increasing safety to the environment. Moreover, if it is set as the structure which discharge | releases inert gas other than a carbon dioxide with said structure, the safety | security with respect to a person can also be improved.
 燃料成分Aは、ジシアンジアミド、ニトログアニジン、硝酸グアニジン、尿素、メラミン、メラミンシアヌレート、アビセル、グアガム、カルボキシルメチルセルロースナトリウム、カルボキシルメチルセルロースカリウム、カルボキシルメチルセルロースアンモニウム、ニトロセルロース、アルミニウム、ホウ素、マグネシウム、マグナリウム、ジルコニウム、チタン、水素化チタン、タングステン、ケイ素等である。燃料成分Aは、1種のみを用いてもよいし、2種以上を混合してもよい。 Fuel component A includes dicyandiamide, nitroguanidine, guanidine nitrate, urea, melamine, melamine cyanurate, Avicel, guar gum, sodium carboxymethylcellulose, carboxymethylcellulose potassium, carboxymethylcellulose ammonium, nitrocellulose, aluminum, boron, magnesium, magnalium, zirconium, Titanium, titanium hydride, tungsten, silicon and the like. The fuel component A may be used alone or in combination of two or more.
 酸化剤成分Bとしては、無機酸化剤等が挙げられる。無機酸化剤は、硝酸カリウム、硝酸ナトリウム、硝酸ストロンチウム、過塩素酸アンモニウム、過塩素酸カリウム、塩基性硝酸銅、酸化銅(I)、酸化銅(II)、酸化鉄(II)、酸化鉄(III)、三酸化モリブデン等である。酸化剤成分Bは、1種のみを用いてもよいし、2種以上を混合してもよい。 Examples of the oxidizing agent component B include inorganic oxidizing agents. Inorganic oxidizers include potassium nitrate, sodium nitrate, strontium nitrate, ammonium perchlorate, potassium perchlorate, basic copper nitrate, copper (I) oxide, copper (II) oxide, iron (II) oxide, iron oxide (III ), Molybdenum trioxide and the like. Only 1 type may be used for the oxidizing agent component B, and 2 or more types may be mixed.
 有機塩成分Cとしては、有機カルボン酸カリウム塩等が挙げられる。有機カルボン酸カリウム塩は、酢酸カリウム、プロピオン酸カリウム、クエン酸一カリウム、クエン酸二カリウム、クエン酸三カリウム、エチレンジアミン四酢酸三水素一カリウム、エチレンジアミン四酢酸二水素二カリウム、エチレンジアミン四酢酸一水素三カリウム、エチレンジアミン四酢酸四カリウム、フタル酸水素カリウム、フタル酸二カリウム、シュウ酸水素カリウム、シュウ酸二カリウム等である。有機塩成分Cは、1種のみを用いてもよいし、2種以上を混合してもよい。 Examples of the organic salt component C include organic carboxylic acid potassium salts. Organic carboxylic acid potassium salt is potassium acetate, potassium propionate, monopotassium citrate, dipotassium citrate, tripotassium citrate, ethylenediaminetetraacetic acid monopotassium dihydrogen, ethylenediaminetetraacetic acid dipotassium dihydrogen, ethylenediaminetetraacetic acid monohydrogen Examples include tripotassium, tetrapotassium ethylenediaminetetraacetate, potassium hydrogen phthalate, dipotassium phthalate, potassium hydrogen oxalate, and dipotassium oxalate. Only 1 type may be used for the organic salt component C, and 2 or more types may be mixed.
<2-4.電解液40の組成>
 電解液40は、従来のリチウムイオンキャパシタの電解液を用いることができる。すなわち、電解液40は、有機溶媒(非水溶媒)と、電解質とを含む。電解液40には、適宜添加剤を添加してもよい。添加剤としては、例えば、ビニレンカーボネート[VC]が挙げられる。
<2-4. Composition of Electrolytic Solution 40>
As the electrolytic solution 40, a conventional lithium ion capacitor electrolytic solution can be used. That is, the electrolytic solution 40 includes an organic solvent (nonaqueous solvent) and an electrolyte. You may add an additive to the electrolyte solution 40 suitably. Examples of the additive include vinylene carbonate [VC].
 有機溶媒として、カーボネート系有機溶媒、ニトリル系有機溶媒、ラクトン系有機溶媒、エーテル系有機溶媒、アルコール系有機溶媒、エステル系有機溶媒、アミド系有機溶媒、スルホン系有機溶媒、ケトン系有機溶媒、芳香族系有機溶媒を例示できる。溶媒は、1種のみを用いてもよいし、2種以上を混合してもよい。有機溶媒は85℃以上の耐熱性を有することが好ましい。 As organic solvents, carbonate organic solvents, nitrile organic solvents, lactone organic solvents, ether organic solvents, alcohol organic solvents, ester organic solvents, amide organic solvents, sulfone organic solvents, ketone organic solvents, aromatic A group organic solvent can be exemplified. Only 1 type may be used for a solvent and 2 or more types may be mixed. The organic solvent preferably has a heat resistance of 85 ° C. or higher.
 カーボネート系有機溶媒として、エチレンカーボネート[EC]やプロピレンカーボネート[PC]やフルオロエチレンカーボネート[FEC]などの環状カーボネート、エチルメチルカーボネート[EMC]やジエチルカーボネート[DEC]やジメチルカーボネート[DMC]などの鎖状カーボネートを例示できる。 Examples of carbonate-based organic solvents include cyclic carbonates such as ethylene carbonate [EC], propylene carbonate [PC], and fluoroethylene carbonate [FEC], and chains such as ethyl methyl carbonate [EMC], diethyl carbonate [DEC], and dimethyl carbonate [DMC]. Examples of the carbonates.
 ここで鎖状カーボネートとして各種の鎖状カーボネートを用いることができるが、電解液の耐熱性向上の観点から、沸点が低く耐熱性に劣るジメチルカーボネート(DMC)を用いないことが好ましい。すなわち有機溶媒中にジメチルカーボネート(DMC)が含まれる場合、ジメチルカーボネート(DMC)が熱分解してジエチルカーボネート(DEC)となり、その際の分解副産物が内部抵抗の増加や耐熱性の悪化を引き起こすことが懸念される(なおこの推察は本開示の技術を限定するものではない)。そしてリチウムイオンキャパシタを高温環境下で使用することを考慮すると、鎖状カーボネートとして、比較的高沸点且つ低粘度のエチルメチルカーボネート(EMC)や、より高沸点のジエチルカーボネート(DEC)を用いることが好ましい。そして耐熱性を向上させる観点から、エチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)を混合して用いることがさらに好ましい。なお有機溶媒中におけるエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)の比率は特に限定しないが、例えばEMC:DEC=2:1~1:2の範囲に設定できる。 Here, various chain carbonates can be used as the chain carbonate, but from the viewpoint of improving the heat resistance of the electrolytic solution, it is preferable not to use dimethyl carbonate (DMC) having a low boiling point and poor heat resistance. That is, when dimethyl carbonate (DMC) is contained in an organic solvent, dimethyl carbonate (DMC) is thermally decomposed into diethyl carbonate (DEC), and decomposition by-products at this time cause an increase in internal resistance and a deterioration in heat resistance. (Note that this inference does not limit the technology of the present disclosure). Considering the use of a lithium ion capacitor in a high temperature environment, it is possible to use ethyl methyl carbonate (EMC) having a relatively high boiling point and low viscosity or diethyl carbonate (DEC) having a higher boiling point as the chain carbonate. preferable. From the viewpoint of improving heat resistance, it is more preferable to use a mixture of ethyl methyl carbonate (EMC) and diethyl carbonate (DEC). The ratio of ethyl methyl carbonate (EMC) to diethyl carbonate (DEC) in the organic solvent is not particularly limited, but can be set, for example, in the range of EMC: DEC = 2: 1 to 1: 2.
 また環状カーボネートとして各種の環状カーボネートを用いることができるが、電解液の酸化耐性向上の観点から固体電解液相間(SEI)膜生成能力を備えたエチレンカーボネート(EC)を用いることが好ましい。そして環状カーボネートとして、エチレンカーボネート(EC)と他の環状カーボネート(例えばPC)を混合して用いる場合には、エチレンカーボネート(EC)を、他の環状カーボネート(例えばPC)よりも多く含むことが好ましい。このようにエチレンカーボネート(EC)を相対的に多く含む場合、エチレンカーボネート(EC)が還元分解され、SEI膜が負極表面に生成される。それにより、電解液がリチウム(Li)の電位に直接さらされなくなる。 Various cyclic carbonates can be used as the cyclic carbonate. From the viewpoint of improving the oxidation resistance of the electrolytic solution, it is preferable to use ethylene carbonate (EC) having a solid electrolyte phase (SEI) film forming ability. And as a cyclic carbonate, when mixing and using ethylene carbonate (EC) and another cyclic carbonate (for example, PC), it is preferable to contain ethylene carbonate (EC) more than other cyclic carbonates (for example, PC). . When ethylene carbonate (EC) is relatively contained in this manner, ethylene carbonate (EC) is reduced and decomposed, and an SEI film is generated on the negative electrode surface. Thereby, the electrolytic solution is not directly exposed to the potential of lithium (Li).
 またニトリル系有機溶媒として、アセトニトリル、アクリロニトリル、アジポニトリル、バレロニトリル、イソブチロ二トリルを例示できる。またラクトン系有機溶媒として、γ‐ブチロラクトン、γ‐バレロラクトンを例示できる。またエーテル系有機溶媒として、テトラヒドロフランやジオキサンなどの環状エーテル、1,2-ジメトキシエタンやジメチルエーテルやトリグライムなどの鎖状エーテルを例示できる。またアルコール系有機溶媒として、エチルアルコール、エチレングリコールを例示できる。またエステル系有機溶媒として、酢酸メチル、酢酸プロピル、リン酸トリメチルなどのリン酸エステル、ジメチルサルフェートなどの硫酸エステル、ジメチルサルファイトなどの亜硫酸エステルを例示できる。アミド系有機溶媒として、N‐メチル‐2‐ピロリドン、エチレンジアミンを例示できる。スルホン系有機溶媒として、ジメチルスルホンなどの鎖状スルホン、3‐スルホレンなどの環状スルホンを例示できる。ケトン系有機溶媒としてメチルエチルケトン、芳香族系有機溶媒としてトルエンを例示できる。そしてカーボネート系有機溶媒を除く上記各種の有機溶媒は、環状カーボネートを混合して用いることが好ましく、特に、保護被膜を生成可能なエチレンカーボネート[EC]と混合して用いることが好ましい。 Examples of nitrile organic solvents include acetonitrile, acrylonitrile, adiponitrile, valeronitrile, and isobutyronitrile. Examples of the lactone organic solvent include γ-butyrolactone and γ-valerolactone. Examples of ether organic solvents include cyclic ethers such as tetrahydrofuran and dioxane, and chain ethers such as 1,2-dimethoxyethane, dimethyl ether, and triglyme. Examples of the alcohol organic solvent include ethyl alcohol and ethylene glycol. Examples of the ester organic solvent include phosphate esters such as methyl acetate, propyl acetate and trimethyl phosphate, sulfate esters such as dimethyl sulfate, and sulfite esters such as dimethyl sulfite. Examples of the amide organic solvent include N-methyl-2-pyrrolidone and ethylenediamine. Examples of the sulfone-based organic solvent include chain sulfones such as dimethyl sulfone and cyclic sulfones such as 3-sulfolene. Examples of the ketone organic solvent include methyl ethyl ketone, and toluene as the aromatic organic solvent. The above-mentioned various organic solvents excluding the carbonate-based organic solvent are preferably used by mixing cyclic carbonates, and particularly preferably used by mixing with ethylene carbonate [EC] capable of forming a protective film.
 電解質は、陽イオン(カチオン)であるLiイオンと、陰イオン(アニオン)とのリチウム塩を用いる。電解質として、例えば、過塩素酸リチウム[LiClO]、ヘキサフルオロリン酸リチウム[LiPF]、テトラフルオロホウ酸リチウム[LiBF]、リチウムビス(フルオロスルホニル)イミド[LiN(FSO、LiFSI]、リチウムビス(トリフルオロメタンスルホニル)イミド[LiN(SOCF、LiTFSI]、リチウムビス(ペンタフルオロエタンスルホニル)イミド[LiN(SOCFCF、LiBETI]を用いることができる。これらのリチウム塩を1種のみを用いても2種以上を用いてもよい。特に、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド等のイミド系リチウム塩(-SO-N-SO-を部分構造に有するリチウム塩)は、85℃以上の耐熱性を備えているため好ましい。 The electrolyte uses a lithium salt of Li ions, which are cations (cations), and anions (anions). Examples of the electrolyte include lithium perchlorate [LiClO 4 ], lithium hexafluorophosphate [LiPF 6 ], lithium tetrafluoroborate [LiBF 4 ], lithium bis (fluorosulfonyl) imide [LiN (FSO 2 ) 2 , LiFSI. ], Lithium bis (trifluoromethanesulfonyl) imide [LiN (SO 2 CF 3 ) 2 , LiTFSI], lithium bis (pentafluoroethanesulfonyl) imide [LiN (SO 2 CF 2 CF 3 ) 2 , LiBETI] it can. These lithium salts may be used alone or in combination of two or more. In particular, lithium having a partial structure of an imide-based lithium salt (—SO 2 —N—SO 2 —) such as lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, and lithium bis (pentafluoroethanesulfonyl) imide Salt) is preferable because it has a heat resistance of 85 ° C. or higher.
 電解液40中の電解質の濃度は、0.5~10.0mol/Lが好ましい。電解液40の適切な粘度および、イオン伝導度の観点から、電解液40中の電解質の濃度は、0.5~2.0mol/Lがより好ましい。電解質の濃度が0.5mol/Lより少ない場合、電解質が解離したイオンの濃度の低下により、電解液40のイオン伝導度が低すぎるため好ましくない。また、電解質の濃度が10.0mol/Lより大きいと電解液40の粘度の増加により電解液40のイオン伝導度が低すぎるため好ましくない。 The concentration of the electrolyte in the electrolytic solution 40 is preferably 0.5 to 10.0 mol / L. From the viewpoint of an appropriate viscosity of the electrolytic solution 40 and ion conductivity, the concentration of the electrolyte in the electrolytic solution 40 is more preferably 0.5 to 2.0 mol / L. When the concentration of the electrolyte is less than 0.5 mol / L, the ionic conductivity of the electrolytic solution 40 is too low due to a decrease in the concentration of ions from which the electrolyte is dissociated. Moreover, it is not preferable that the concentration of the electrolyte is higher than 10.0 mol / L because the ionic conductivity of the electrolytic solution 40 is too low due to an increase in the viscosity of the electrolytic solution 40.
<2-5.ラミネート部材50の構造(図1、図3)>
 ラミネート部材50は、図3に示すように、心材シート51、外側シート52、内側シート53を備えている。そして、心材シート51の外側となる面に外側シート52が接着され、心材シート51の内側となる面に内側シート53が接着されている。例えば心材シート51はアルミニウム箔である。外側シート52はナイロンペットフィルム等の樹脂シートである。内側シート53はポリプロピレン等の樹脂シートである。
<2-5. Structure of Laminate Member 50 (FIGS. 1 and 3)>
As shown in FIG. 3, the laminate member 50 includes a core material sheet 51, an outer sheet 52, and an inner sheet 53. The outer sheet 52 is bonded to the outer surface of the core material sheet 51, and the inner sheet 53 is bonded to the inner surface of the core material sheet 51. For example, the core material sheet 51 is an aluminum foil. The outer sheet 52 is a resin sheet such as a nylon pet film. The inner sheet 53 is a resin sheet such as polypropylene.
<3.リチウムイオンキャパシタ1の充放電の過程について(図3、図11)>
 上述した様に、正極板11の集電体12の集電部12aはZ方向に貫通する複数の孔12cを備える。負極板21の集電体22の集電部22aもZ方向に貫通する複数の孔22cを備える。そのため、電解液40の陰イオン及び陽イオンは、正極板11の集電部12aと負極板21の集電部22aとを透過できる。また、セパレータ30も電解液40の陰イオン及び陽イオンが透過できるように構成されている。リチウムイオンキャパシタ1の、正極10の正極板11と、負極20の負極板21と、セパレータ30と、電解液40と、消火剤32との位置関係を図11に模式的に示した。図11に示す様に、正極板11と負極板21とが、消火剤32を備えるセパレータ30を間に挟んでいる。リチウムイオンキャパシタ1は、正極板11の表面では、正極活物質と電解質の陰イオンとで電気二重層を形成し、負極板21では、負極活物質にリチウムイオンLiを吸脱着することで充放電を行う。また、後述する様に、リチウムイオンキャパシタ1の製造時には、負極板21の負極活物質にリチウムイオンLiを吸着させる(プレドープ)。負極活物質にリチウムイオンLiが吸着していることで、正極板11と負極板21との間の電位差が大きくなり、正極板11に形成される電気二重層のエネルギー密度を高めることができる。その結果、リチウムイオンキャパシタ1は、大容量化および高出力化される。
<3. Regarding the charging / discharging process of the lithium ion capacitor 1 (FIGS. 3 and 11)>
As described above, the current collector 12a of the current collector 12 of the positive electrode plate 11 includes a plurality of holes 12c penetrating in the Z direction. The current collector 22a of the current collector 22 of the negative electrode plate 21 is also provided with a plurality of holes 22c penetrating in the Z direction. Therefore, the anions and cations of the electrolytic solution 40 can pass through the current collector 12 a of the positive electrode plate 11 and the current collector 22 a of the negative electrode plate 21. The separator 30 is also configured to allow the anion and cation of the electrolytic solution 40 to pass therethrough. The positional relationship among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 30, the electrolytic solution 40, and the extinguishing agent 32 of the lithium ion capacitor 1 is schematically shown in FIG. As shown in FIG. 11, the positive electrode plate 11 and the negative electrode plate 21 sandwich a separator 30 having a fire extinguishing agent 32 therebetween. The lithium ion capacitor 1 is formed by forming an electric double layer with the positive electrode active material and the anion of the electrolyte on the surface of the positive electrode plate 11 and adsorbing and desorbing lithium ions Li + on the negative electrode active material with the negative electrode plate 21. Discharge. Further, as will be described later, when the lithium ion capacitor 1 is manufactured, lithium ion Li + is adsorbed on the negative electrode active material of the negative electrode plate 21 (pre-doping). Since the lithium ion Li + is adsorbed on the negative electrode active material, the potential difference between the positive electrode plate 11 and the negative electrode plate 21 is increased, and the energy density of the electric double layer formed on the positive electrode plate 11 can be increased. . As a result, the lithium ion capacitor 1 is increased in capacity and output.
<4.消火剤の効果について>
 一般的に、製造時におけるプレドープの過程では、負極板21の負極活物質にあらかじめリチウムイオンLiを吸着させる。このリチウムイオンLiの供給源は、リチウムイオンキャパシタの電解液の存在する内部空間に配置され、Liに変換されるリチウム金属である。リチウム金属をリチウムイオンLiにする方法は、一般的に、リチウム金属と負極板21とに電圧をかけてリチウム金属をリチウムイオンLiにする電気化学方法と、リチウム金属を電解液に溶解させてリチウムイオンLiにする化学的方法とである。
<4. About the effects of fire extinguishing agents>
Generally, in the pre-doping process at the time of manufacture, lithium ions Li + are adsorbed in advance on the negative electrode active material of the negative electrode plate 21. The lithium ion Li + supply source is lithium metal that is disposed in the internal space where the electrolyte solution of the lithium ion capacitor is present and is converted to Li + . How to lithium metal to the lithium ion Li + is generally dissolved electrochemical method for the lithium metal to the lithium ion Li + by applying a voltage to the lithium metal and the negative electrode plate 21, the lithium metal to the electrolyte And a chemical method for producing lithium ion Li + .
 これらのいずれの方法がなされる場合でも、一般的にリチウムイオンキャパシタの製造方法に含まれるプレドープの工程では、単体のリチウム金属が使用される。そして、通常では、リチウムイオンキャパシタ内に単体のリチウム金属が残らないように、プレドープの工程が行われている。しかし、万が一、リチウムイオンキャパシタ内に単体のリチウム金属が残ったときや、リチウムイオンキャパシタに内部短絡が生じるときや、リチウムイオンキャパシタが加熱されたときにおいて、リチウムイオンキャパシタの発火の可能性がある。この様な場合についても、本実施の形態のリチウムイオンキャパシタ1は、難燃化機能を発揮する消火剤32がラミネート部材50(密封体)の内部空間に設けられているため、発火を防止できる。また、従来のように金属リチウムが析出しないようプレドープの工程に時間をかける必要がなくなり、プレドープ工程の時間を短縮できる。 In any of these methods, a single lithium metal is generally used in the pre-doping step included in the method of manufacturing a lithium ion capacitor. In general, a pre-doping process is performed so that no single lithium metal remains in the lithium ion capacitor. However, in the unlikely event that a single lithium metal remains in the lithium ion capacitor, an internal short circuit occurs in the lithium ion capacitor, or the lithium ion capacitor is heated, the lithium ion capacitor may be ignited. . Also in such a case, the lithium ion capacitor 1 of the present embodiment can prevent ignition because the extinguishing agent 32 that exhibits the flame retarding function is provided in the internal space of the laminate member 50 (sealing body). . Moreover, it is not necessary to spend time in the pre-doping process so that metallic lithium does not precipitate as in the prior art, and the time of the pre-doping process can be shortened.
 リチウムイオンキャパシタ1(蓄電デバイス)は、消火剤32がラミネート部材50(密封体)の内部空間に設けられている。従って、消火剤32がリチウムイオンキャパシタ1(蓄電デバイス)を難燃化する難燃化機能は、ラミネート部材50(密封体)の外部からではなく、内部から発揮できる。そのため、消火剤32がリチウムイオンキャパシタ1(蓄電デバイス)の難燃性を確実に高めることができる。 In the lithium ion capacitor 1 (power storage device), the fire extinguishing agent 32 is provided in the internal space of the laminate member 50 (sealing body). Therefore, the flame retarding function of the fire extinguishing agent 32 to make the lithium ion capacitor 1 (electric storage device) flame retardant can be exhibited not from the outside of the laminate member 50 (sealing body) but from the inside. Therefore, the fire extinguisher 32 can improve the flame retardance of the lithium ion capacitor 1 (electric storage device) with certainty.
 また、消火剤32は、正極板11(正極)と負極板21(負極)とを隔離するセパレータ30上に設けられている。従って、正極板11(正極)と負極板21(負極)とのショートによる発火を確実に抑えることができ、消火剤32は、より効果的にリチウムイオンキャパシタ1(蓄電デバイス)の難燃性を高め得る。 The fire extinguishing agent 32 is provided on the separator 30 that separates the positive electrode plate 11 (positive electrode) and the negative electrode plate 21 (negative electrode). Therefore, ignition due to a short circuit between the positive electrode plate 11 (positive electrode) and the negative electrode plate 21 (negative electrode) can be reliably suppressed, and the fire extinguishing agent 32 more effectively reduces the flame retardancy of the lithium ion capacitor 1 (electric storage device). Can increase.
 また、消火剤32は、電解液40に対するハンセン溶解度パラメータに基づくRED値が1より大きいため、消火剤32の電解液40への溶解量は無視できるほど小さい。そのため、消火剤32は、安定していると考えることができる。従って、消火剤32は、リチウムイオンキャパシタ1(蓄電デバイス)の難燃性を経時的に安定して高め、かつ、リチウムイオンキャパシタ1(蓄電デバイス)の充放電の過程へ大きな影響を及ぼさない。 Further, the extinguishing agent 32 has a RED value based on the Hansen solubility parameter with respect to the electrolytic solution 40 larger than 1, so that the amount of the extinguishing agent 32 dissolved in the electrolytic solution 40 is negligibly small. Therefore, it can be considered that the extinguishing agent 32 is stable. Therefore, the fire extinguishing agent 32 stably increases the flame retardance of the lithium ion capacitor 1 (power storage device) over time, and does not significantly affect the charge / discharge process of the lithium ion capacitor 1 (power storage device).
<5.リチウムイオンキャパシタ1の製造方法について(図12~図17)>
 本実施の形態のリチウムイオンキャパシタ1の製造方法を説明する。上述した様に、リチウムイオンLiを負極板21の負極活物質層23に吸着させるプレドープの方法は、一般に電気化学的方法と化学的方法から選択される。電気化学的方法は、リチウム金属と負極板21とに電圧をかけてリチウム金属をリチウムイオンLiにする。化学的方法は、リチウム金属を電解液に溶解させる。以下では、まず、化学的方法でプレドープを行うものとして説明し、その後、電気化学的方法でプレドープを行う場合について説明する。リチウムイオンキャパシタ1は、図12に示す様に製造することができる。
<5. Manufacturing Method for Lithium Ion Capacitor 1 (FIGS. 12 to 17)>
A method for manufacturing the lithium ion capacitor 1 of the present embodiment will be described. As described above, the pre-doping method for adsorbing lithium ions Li + on the negative electrode active material layer 23 of the negative electrode plate 21 is generally selected from an electrochemical method and a chemical method. In the electrochemical method, a voltage is applied to the lithium metal and the negative electrode plate 21 to change the lithium metal to lithium ion Li + . The chemical method dissolves lithium metal in the electrolyte. Below, it demonstrates as what performs pre dope with a chemical method first, and demonstrates the case where pre dope is performed with an electrochemical method after that. The lithium ion capacitor 1 can be manufactured as shown in FIG.
 リチウムイオンキャパシタ1の製造では、まず、正極板11および負極板21を作成する(S1)。正極板11と負極板21の作成の順番はどちらが先でも、並行して行ってもよい。 In the manufacture of the lithium ion capacitor 1, first, the positive electrode plate 11 and the negative electrode plate 21 are prepared (S1). Either the positive electrode plate 11 or the negative electrode plate 21 may be produced in parallel or in any order.
 正極板11の作成方法について説明する。正極板11は、複数の孔12cが形成された金属薄板状の集電体12と、集電体12の両面又は片面に塗工されている正極活物質層13とを備える。まず、正極活物質層13の材料を準備する。すなわち、上述した、正極活物質と、導電助剤と、バインダと、水や有機溶媒等の溶媒と、および必要に応じて増粘剤等の成分とを、ミキサーを用いて混合したスラリーを調製する。そして、このスラリーを集電体12の材料となる複数の孔が形成された金属薄板の片面もしくは両面に塗工する。次に、スラリーの溶媒を除去するために乾燥し、厚みを均一にするためにプレスする(図13参照)。金属薄板にスラリーを塗工する時に、片面ずつ塗工を行ってもよいし、両面同時に塗工を行ってもよい。 A method for producing the positive electrode plate 11 will be described. The positive electrode plate 11 includes a thin metal plate-like current collector 12 in which a plurality of holes 12 c are formed, and a positive electrode active material layer 13 coated on both surfaces or one surface of the current collector 12. First, a material for the positive electrode active material layer 13 is prepared. That is, the slurry which mixed the positive electrode active material mentioned above, a conductive support agent, a binder, solvents, such as water and an organic solvent, and components, such as a thickener as needed, is prepared. To do. Then, this slurry is applied to one side or both sides of a thin metal plate in which a plurality of holes as materials for the current collector 12 are formed. Next, the slurry is dried to remove the solvent from the slurry, and pressed to make the thickness uniform (see FIG. 13). When applying a slurry to a metal thin plate, you may apply one side at a time, and may apply both surfaces simultaneously.
 塗工方法としては、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法、エアーナイフコート法、ロールコート法、ブレードコート法、ゲートロールコート法、及びダイコート法などを用いることができる。これらの中でも、ブレードコート法及びダイコート法が好ましい。また、乾燥方法としては、例えば、熱風乾燥炉などで熱乾燥する方法を用いることができる。プレスには、例えば、ロールプレス機を用いることができる。 Examples of the coating method include gravure coating, bar coating, spray coating, spin coating, air knife coating, roll coating, blade coating, gate roll coating, and die coating. it can. Among these, the blade coating method and the die coating method are preferable. Moreover, as a drying method, the method of heat-drying with a hot air drying furnace etc. can be used, for example. For the press, for example, a roll press machine can be used.
 また、正極板11の作成は、次の様に行っても良い。スラリーを塗工する集電体12の材料となる金属薄板を、ロール状に巻かれた複数の孔を備える金属薄板とし、この金属薄板にスラリーを塗工する。そして、スラリーを塗工した金属薄板の乾燥とプレスを行い、プレス後に正極板11の大きさ(図4参照)に切り分け、さらに、電極端子接続部12bとなる部分(図4参照)に塗工されている正極活物質層をはぎ落しても良い。また、スラリーを塗工する金属薄板を、ロール状に巻かれた複数の孔を備える金属薄板とし、金属薄板上で集電部12aとなる部分にスラリーを塗工し、ここで電極端子接続部12bとなる部分にはスラリーを塗工しないものとし、プレスの前または後に正極板11の大きさ(図4参照)に切り分けてもよい。また、スラリーを塗工する金属薄板を、スラリーを塗工する前に正極板11の大きさに切り分けてもよい。 Moreover, the positive electrode plate 11 may be created as follows. The metal thin plate used as the material of the current collector 12 to which the slurry is applied is a metal thin plate having a plurality of holes wound in a roll shape, and the slurry is applied to the metal thin plate. Then, the metal thin plate coated with the slurry is dried and pressed, and after the pressing, it is cut into the size of the positive electrode plate 11 (see FIG. 4), and further coated on the portion (see FIG. 4) that becomes the electrode terminal connection portion 12b. The positive electrode active material layer may be peeled off. Further, the metal thin plate to which the slurry is applied is a metal thin plate having a plurality of holes wound in a roll shape, and the slurry is applied to a portion to be the current collecting portion 12a on the metal thin plate, where the electrode terminal connection portion The portion to be 12b is not coated with slurry, and may be cut into the size of the positive electrode plate 11 (see FIG. 4) before or after pressing. Moreover, you may cut | divide the metal thin plate which applies a slurry into the magnitude | size of the positive electrode plate 11, before applying a slurry.
 負極板21は、上述した様に、大まかには正極板11と同様の構造を備えている。負極板21と正極板11との大きな違いは、負極活物質層23の負極活物質の材質が正極活物質層13の正極活物質の材質と異なることにある。そこで、負極板21は、正極板11と同様に製造することができる。すなわち、まず、上述した、負極活物質層23の材料である、負極活物質と、バインダと、水や有機溶媒等の溶媒と、および必要に応じて導電助剤や増粘剤等の成分とを、ミキサーを用いて混合したスラリーを調製する。そして、このスラリーを集電体22の材料となる複数の孔が形成された金属薄板の片面もしくは両面に塗工する。次に、スラリーの溶媒を除去するために乾燥し、厚みを均一にするためにプレスする(図13参照)。金属薄板にスラリーを塗工する時に、片面ずつ塗工を行ってもよいし、両面同時に塗工を行ってもよい。 As described above, the negative electrode plate 21 roughly has the same structure as the positive electrode plate 11. The major difference between the negative electrode plate 21 and the positive electrode plate 11 is that the material of the negative electrode active material of the negative electrode active material layer 23 is different from the material of the positive electrode active material of the positive electrode active material layer 13. Therefore, the negative electrode plate 21 can be manufactured in the same manner as the positive electrode plate 11. That is, first, the negative electrode active material, which is the material of the negative electrode active material layer 23, a binder, a solvent such as water or an organic solvent, and components such as a conductive additive or a thickener as necessary. Is prepared using a mixer. Then, this slurry is applied to one side or both sides of a thin metal plate in which a plurality of holes serving as the material of the current collector 22 are formed. Next, the slurry is dried to remove the solvent from the slurry, and pressed to make the thickness uniform (see FIG. 13). When applying a slurry to a metal thin plate, you may apply one side at a time, and may apply both surfaces simultaneously.
 次に、消火剤32を所定の形状に加工する(S2)。消火剤32を、セパレータシート31上に塗工する(図3および図9参照)。また、厚みを均一にするためにプレス(図13参照)してもよい。この塗工は、上述した正極板11の集電体12に正極活物質層13を塗工する方法と同様に行うことができる。セパレータシート31の両面に消火剤32を塗工する場合は、片面ずつ塗工を行ってもよいし、両面同時に塗工を行ってもよい。また、プレスは、上述した正極板11のプレスと同様に行うことができる。 Next, the extinguishing agent 32 is processed into a predetermined shape (S2). The extinguishing agent 32 is applied on the separator sheet 31 (see FIGS. 3 and 9). Moreover, you may press (refer FIG. 13) in order to make thickness uniform. This coating can be performed in the same manner as the method of applying the positive electrode active material layer 13 to the current collector 12 of the positive electrode plate 11 described above. When the fire extinguishing agent 32 is applied to both surfaces of the separator sheet 31, the coating may be performed on each side or simultaneously on both sides. Further, the pressing can be performed in the same manner as the pressing of the positive electrode plate 11 described above.
 次に、プレドープに用いるリチウム金属を所定の形状に加工する(S3)。ここでは、その例として、プレドープ用負極板21pを作成する。プレドープ用負極板21pの作成は、負極板21の負極活物質層23上に所定の形状のリチウム金属箔LiS1を配置し(図14、図15参照)、さらにプレスにより負極板21の負極活物質層23とリチウム金属箔LiS1を圧着(図16参照)する。ここで、プレスには、例えば、ロールプレス機を用いてもよい。また、リチウム金属箔LiS1の代わりに粉末状のリチウム金属を用いても良い。また、このS3では、1枚の負極板21を用いるが、S1で1枚の負極板21を作成した後に、このS3を行うことができるので、S1とこのS3を並行して行うこともできる。また、S1で1枚の負極板21を作成した後であれば、S1とS2とS3とを並行して行うことができ、S1とS2とS3とを行う順番は適宜変更できる。 Next, lithium metal used for pre-doping is processed into a predetermined shape (S3). Here, the negative electrode plate 21p for pre dope is produced as the example. The pre-doping negative electrode plate 21p is prepared by placing a lithium metal foil LiS1 having a predetermined shape on the negative electrode active material layer 23 of the negative electrode plate 21 (see FIGS. 14 and 15), and further pressing the negative electrode active material of the negative electrode plate 21. The layer 23 and the lithium metal foil LiS1 are pressure-bonded (see FIG. 16). Here, for the press, for example, a roll press machine may be used. Further, powdered lithium metal may be used instead of the lithium metal foil LiS1. Further, in S3, one negative electrode plate 21 is used. However, since S3 can be performed after one negative electrode plate 21 is formed in S1, S1 and S3 can be performed in parallel. . Further, if one negative electrode plate 21 is created in S1, S1, S2, and S3 can be performed in parallel, and the order in which S1, S2, and S3 are performed can be changed as appropriate.
 次に、リチウム金属、複数の正極板11、複数の負極板21、複数のセパレータ30が積層され、また、正極端子14および負極端子24が組付けられた積層体を作成する(S4)。まず、図17に示す様に、複数の正極板11と複数の負極板21とは交互に積層されており、かつ、正極板11と負極板21との間それぞれにセパレータ30が挟まれる様に、プレドープ用負極板21pと、正極板11と、負極板21と、セパレータ30とを積層する。ここで、プレドープ用負極板21pは、Z軸方向最上層に積層する。次に、正極端子14を複数の正極板11へ組付け、さらに、負極端子24をプレドープ用負極板21pおよび複数の負極板21へ組付けることで積層体を作成する。なお、積層体のZ軸方向最上層に更にセパレータ30を配置してもよいし、積層体のZ軸方向最下層に更にセパレータ30を配置してもよい。以上では、プレドープ用負極板21pと、正極板11と、負極板21と、セパレータ30との積層を行った後、正極端子14および負極端子24の組付けを行うものとして説明したが、この積層と組付けとの順番は適宜変更しても良い。例えば、積層と並行して、正極端子14と正極板11との接続と、負極端子24と負極板21との接続を行っても良い。また、プレドープに用いるリチウム金属を所定の形状に加工するS3を、単にリチウム金属箔LiS1を用意する工程とし、S4の工程で作成する積層体にプレドープ用負極板21pを配置する代わりにリチウム金属箔LiS1と1枚の負極板21とを配置してもよい。 Next, a laminate in which lithium metal, a plurality of positive electrode plates 11, a plurality of negative electrode plates 21, and a plurality of separators 30 are laminated, and the positive electrode terminal 14 and the negative electrode terminal 24 are assembled is prepared (S4). First, as shown in FIG. 17, the plurality of positive plates 11 and the plurality of negative plates 21 are alternately stacked, and the separators 30 are sandwiched between the positive plates 11 and the negative plates 21. The negative electrode plate 21p for pre-doping, the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are laminated. Here, the pre-doping negative electrode plate 21p is laminated on the uppermost layer in the Z-axis direction. Next, the positive electrode terminal 14 is assembled to the plurality of positive electrode plates 11, and the negative electrode terminal 24 is assembled to the pre-doping negative electrode plate 21 p and the plurality of negative electrode plates 21 to form a laminate. In addition, the separator 30 may be further arranged in the uppermost layer in the Z-axis direction of the laminated body, and the separator 30 may be further arranged in the lowermost layer in the Z-axis direction of the laminated body. In the above description, the negative electrode plate 21p for pre-doping, the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked, and then the positive electrode terminal 14 and the negative electrode terminal 24 are assembled. The order of assembly and assembly may be changed as appropriate. For example, the connection between the positive electrode terminal 14 and the positive electrode plate 11 and the connection between the negative electrode terminal 24 and the negative electrode plate 21 may be performed in parallel with the lamination. Further, S3 for processing the lithium metal used for pre-doping into a predetermined shape is simply a step of preparing lithium metal foil LiS1, and lithium metal foil is used instead of disposing the negative electrode plate 21p for pre-doping in the laminate produced in step S4. LiS1 and one negative electrode plate 21 may be disposed.
 次に、上記の積層体をラミネート部材50に内包する(S5)。まず、正極端子14の一部及び負極端子24の一部がラミネート部材50の外部に露出する様に、積層体をラミネート部材50に内包し、ラミネート部材50の一部を除いた周辺部分を溶着する。 Next, the above laminate is included in the laminate member 50 (S5). First, the laminate is included in the laminate member 50 so that a part of the positive electrode terminal 14 and a part of the negative electrode terminal 24 are exposed to the outside of the laminate member 50, and the peripheral part excluding a part of the laminate member 50 is welded. To do.
 次に、負極活物質層23にリチウムイオンLiを吸着させるプレドープを行う(S6)。まず、あらかじめ調製した電解液40をラミネート部材50の内部空間に注入する。そして、ラミネート部材50を封止し、電解液40を密封する。これにより、プレドープ用負極板21p上のリチウム金属箔LiS1と、複数の負極板21の負極活物質層23と、電解液40とは、ラミネート部材50の内部空間に密封される。電解液40中のリチウムイオンLiは、負極活物質層23に吸着されてゆくと共に、リチウム金属箔LiS1がリチウムイオンLiとなって電解液40に溶解する。上述した様に、正極板11の集電体12の集電部12aは複数の孔12cを備え、負極板21の集電体22の集電部22aは複数の孔22cを備える。そのため、電解液40内のリチウムイオンLiは、正極板11および負極板21を透過できる。さらに、セパレータ30も電解液40内のリチウムイオンLiが透過できる様に構成されている。このため、すべての負極板21の負極活物質層23にリチウムイオンLiを吸着させることができる。ここで、リチウム金属箔LiS1を電解液40に溶解しやすくするために、リチウム金属箔LiS1を電解液40と共に加温してもよい。万が一、加温によりリチウム金属が発火しやすい状態になったとしても、リチウム金属と共に消火剤32がラミネート部材50の内部空間に内包されているため、リチウム金属の発火は抑えられる。 Next, pre-doping is performed to adsorb lithium ion Li + on the negative electrode active material layer 23 (S6). First, the electrolyte solution 40 prepared in advance is injected into the internal space of the laminate member 50. Then, the laminate member 50 is sealed, and the electrolytic solution 40 is sealed. Thereby, the lithium metal foil LiS1 on the pre-doping negative electrode plate 21p, the negative electrode active material layers 23 of the plurality of negative electrode plates 21, and the electrolytic solution 40 are sealed in the internal space of the laminate member 50. Lithium ion Li + in the electrolytic solution 40 is adsorbed by the negative electrode active material layer 23, and the lithium metal foil LiS 1 is dissolved in the electrolytic solution 40 as lithium ion Li + . As described above, the current collector 12a of the current collector 12 of the positive electrode plate 11 includes a plurality of holes 12c, and the current collector 22a of the current collector 22 of the negative electrode plate 21 includes a plurality of holes 22c. Therefore, lithium ions Li + in the electrolytic solution 40 can pass through the positive electrode plate 11 and the negative electrode plate 21. Further, the separator 30 is also configured so that lithium ions Li + in the electrolytic solution 40 can pass therethrough. For this reason, lithium ion Li + can be adsorbed to the negative electrode active material layers 23 of all the negative electrode plates 21. Here, the lithium metal foil LiS1 may be heated together with the electrolytic solution 40 in order to easily dissolve the lithium metallic foil LiS1 in the electrolytic solution 40. Even if the lithium metal is easily ignited by heating, the fire extinguishing agent 32 is included in the internal space of the laminate member 50 together with the lithium metal, so that the ignition of the lithium metal can be suppressed.
 次に、充放電およびエージングを行う(S7)。充放電およびエージングは、ラミネート部材50から外部に露出している正極端子14および負極端子24を外部の電気回路と接続して行う。一般的に、この充放電の過程では、ガスが発生する。 Next, charge / discharge and aging are performed (S7). Charging / discharging and aging are performed by connecting the positive electrode terminal 14 and the negative electrode terminal 24 exposed to the outside from the laminate member 50 to an external electric circuit. In general, gas is generated during the charge / discharge process.
 次に、ガスをラミネート部材50の外側へ排出する(S8)。まず、密封されたラミネート部材50を開封し、充放電によって発生するガスをラミネート部材50の外側へ排出する。排出するガスは、充放電を行う前にラミネート部材50の内部空間に存在するガスを含んでもよい。 Next, the gas is discharged to the outside of the laminate member 50 (S8). First, the sealed laminate member 50 is opened, and the gas generated by charging / discharging is discharged to the outside of the laminate member 50. The gas to be discharged may include a gas present in the internal space of the laminate member 50 before charging / discharging.
 最後に、ラミネート部材50の内部空間を密封する(S9)。これにより、リチウムイオンキャパシタ1の製造が完了する。ここで、必要に応じて他の工程を含めても良い。例えば、リチウムイオンキャパシタ1を検査し、検査が完了した時点を、リチウムイオンキャパシタ1の製造が完了した時点とすることができる。 Finally, the internal space of the laminate member 50 is sealed (S9). Thereby, manufacture of the lithium ion capacitor 1 is completed. Here, you may include another process as needed. For example, the time when the lithium ion capacitor 1 is inspected and the inspection is completed can be set as the time when the manufacture of the lithium ion capacitor 1 is completed.
<6.リチウムイオンキャパシタ1の製造方法の他の例について>
 以上の製造方法では、上述した様に、プレドープは、リチウム金属を電解液に溶解させてリチウムイオンLiにする化学的方法で行った。これに対して、プレドープを電気化学方法で行う場合のリチウムイオンキャパシタ1の製造方法について、以下に説明する。この製造方法は、以下に説明する点を除いて、上述したS1~S9を含む方法(図12参照)と実質的に同じである。すなわち、上述したプレドープに用いるリチウム金属を所定の形状に加工する工程(S3)では、負極板21の負極活物質層23上にリチウム金属箔LiS1を圧着させたプレドープ用負極板21pを作成した。この方法では、その代わりに、金属箔(例えば銅箔、図示省略)に、電極端子(図示省略)とリチウム金属箔(図示省略)を組付けたプレドープ用電極(図示省略)を作成する。そして、積層体を作成する工程(S4)で、このプレドープ用電極と、複数の正極板11、複数の負極板21、複数のセパレータ30の積層と、正極端子14および負極端子24の組付けとを行う。この積層では、例えば、プレドープ用電極は、Z軸方向の最上層におかれ、このプレドープ用電極と負極板21との間にセパレータ30を挟むことを含める。そして、積層体をラミネート部材50に内包する工程(S5)では、正極端子14の一部と、負極端子24の一部と、およびプレドープ用電極の電極端子の一部とがラミネート部材50の外部に露出する様に、積層体をラミネート部材50に内包する。そして、上述した、プレドープを行う工程(S6)では、上述した様に電解液40を密封した後、プレドープ用電極と、複数の負極板21(すなわち1つの負極20)との間に電圧をかけてリチウム金属をリチウムイオンLiにし、プレドープを行うものとする。また、S1,S2,S7,S8,S9は、上述した様に行う。
<6. Other Examples of Manufacturing Method of Lithium Ion Capacitor 1>
In the above manufacturing method, as described above, pre-doping was performed by a chemical method in which lithium metal was dissolved in an electrolytic solution to form lithium ion Li + . On the other hand, the manufacturing method of the lithium ion capacitor 1 when pre-doping is performed by an electrochemical method will be described below. This manufacturing method is substantially the same as the method including S1 to S9 described above (see FIG. 12) except for the points described below. That is, in the step (S3) of processing the lithium metal used for the pre-doping described above into a predetermined shape, a negative electrode plate 21p for pre-doping in which the lithium metal foil LiS1 was pressure-bonded on the negative electrode active material layer 23 of the negative electrode plate 21 was created. In this method, instead, a pre-doping electrode (not shown) in which an electrode terminal (not shown) and a lithium metal foil (not shown) are assembled on a metal foil (for example, copper foil, not shown) is created. In the step of creating a laminate (S4), this pre-doping electrode, a plurality of positive plates 11, a plurality of negative plates 21, a plurality of separators 30 are stacked, and the positive terminals 14 and negative terminals 24 are assembled. I do. In this stacking, for example, the pre-doping electrode is placed in the uppermost layer in the Z-axis direction, and includes including the separator 30 between the pre-doping electrode and the negative electrode plate 21. In the step of enclosing the laminate in the laminate member 50 (S5), a part of the positive electrode terminal 14, a part of the negative electrode terminal 24, and a part of the electrode terminal of the pre-doping electrode are external to the laminate member 50. The laminate is included in the laminate member 50 so as to be exposed to the surface. In the pre-doping step (S6) described above, after the electrolyte solution 40 is sealed as described above, a voltage is applied between the pre-doping electrode and the plurality of negative electrode plates 21 (that is, one negative electrode 20). Then, lithium metal is changed to lithium ion Li + and pre-doping is performed. Further, S1, S2, S7, S8, and S9 are performed as described above.
 従って、図12を用いて上述したS1~S9を含む製造方法は、プレドープを化学的方法で行う製造方法と、プレドープを電気化学的方法で行う製造方法とを含む。また、この製造方法は、プレドープを行う前の、積層体をラミネート部材50に内包する工程(S5)で、ラミネート部材50の内部空間に消火剤32がリチウム金属箔LiS1と共に収容される。このため、この内包する工程(S5)の後は、ラミネート部材50の内部空間に消火剤32がリチウム金属箔LiS1と共に収容される。従って、この製造方法(S1~S9)は、内包する工程(S5)以降の工程で、製造中のリチウムイオンキャパシタの難燃性が高いため、より安全にリチウムイオンキャパシタ1を製造できる製造方法となっている。 Therefore, the manufacturing method including S1 to S9 described above with reference to FIG. 12 includes a manufacturing method in which pre-doping is performed by a chemical method and a manufacturing method in which pre-doping is performed by an electrochemical method. Further, in this manufacturing method, the fire extinguishing agent 32 is accommodated together with the lithium metal foil LiS1 in the internal space of the laminate member 50 in the step (S5) of including the laminate in the laminate member 50 before pre-doping. For this reason, after this enclosing step (S5), the fire extinguishing agent 32 is accommodated in the internal space of the laminate member 50 together with the lithium metal foil LiS1. Therefore, this manufacturing method (S1 to S9) is a manufacturing method that can manufacture the lithium ion capacitor 1 more safely because the flame retardance of the lithium ion capacitor being manufactured is high in the steps after the enclosing step (S5). It has become.
 [第2の実施の形態]
 続いて、第2の実施の形態の蓄電デバイスについて、図18~図20を用いて説明する。第2の実施の形態係る蓄電デバイスは、リチウムイオンキャパシタ2である。なお、リチウムイオンキャパシタ2が第1の実施の形態に係るリチウムイオンキャパシタ1と実質的に同一の構成を有する場合、その構成には同一の符号を付して説明を省略する。
[Second Embodiment]
Next, an electricity storage device according to the second embodiment will be described with reference to FIGS. The electricity storage device according to the second embodiment is a lithium ion capacitor 2. When the lithium ion capacitor 2 has substantially the same configuration as that of the lithium ion capacitor 1 according to the first embodiment, the same reference numeral is given to the configuration and description thereof is omitted.
<1.リチウムイオンキャパシタ2の構造(図18、図19)>
 上述した第1の実施の形態では、消火剤32は、セパレータシート31上に設けられていた。しかし、消火剤は、ラミネート部材50(密封体)の内部空間に設けられていればよい。本実施の形態のリチウムイオンキャパシタ2は、第1の実施の形態の消火剤32と同じ成分の消火剤が板状に固められて形成された2つの板状消火剤60を有する(図18参照)。そして、リチウムイオンキャパシタ2は、第1の実施の形態のセパレータシート31に相当するセパレータ130を有する(図19参照)。リチウムイオンキャパシタ2は、積層された複数の正極板11、複数の負極板21、および複数のセパレータ130が、2つの板状消火剤60の間に設けられる(図18および図19参照)。なお、本実施の形態のリチウムイオンキャパシタ2の模式的な断面を示す図19では、わかりやすくするためにリチウムイオンキャパシタ2内における各部材の間に間隔を開けて図示している。しかし、実際には、正極板11と負極板21とセパレータ130とがほとんど隙間無く積層されている。また、板状消火剤60の数は2つに限らず、3つ以上としてもよい。また、1つの板状消火剤60を複数の板状消火剤を積み重ねたものとしてもよい。
<1. Structure of Lithium Ion Capacitor 2 (FIGS. 18 and 19)>
In the first embodiment described above, the fire extinguishing agent 32 is provided on the separator sheet 31. However, the fire extinguishing agent should just be provided in the internal space of the laminate member 50 (sealing body). The lithium ion capacitor 2 of the present embodiment has two plate-like extinguishing agents 60 formed by hardening the extinguishing agent having the same component as the extinguishing agent 32 of the first embodiment into a plate shape (see FIG. 18). ). And the lithium ion capacitor 2 has the separator 130 equivalent to the separator sheet 31 of 1st Embodiment (refer FIG. 19). In the lithium ion capacitor 2, a plurality of stacked positive electrode plates 11, a plurality of negative electrode plates 21, and a plurality of separators 130 are provided between two plate-like extinguishing agents 60 (see FIGS. 18 and 19). Note that, in FIG. 19 showing a schematic cross section of the lithium ion capacitor 2 of the present embodiment, the members in the lithium ion capacitor 2 are illustrated with a space therebetween for the sake of clarity. However, in practice, the positive electrode plate 11, the negative electrode plate 21, and the separator 130 are stacked with almost no gap. Moreover, the number of the plate-shaped fire extinguishing agents 60 is not limited to two, and may be three or more. Moreover, it is good also as what laminated | stacked the several plate-shaped fire extinguishing agent for one plate-shaped fire extinguishing agent 60. FIG.
<2.リチウムイオンキャパシタ2の充放電の過程について(図19、図20)>
 本実施の形態のリチウムイオンキャパシタ2(図19参照)と、第1の実施の形態のリチウムイオンキャパシタ1(図3参照)とで、正極10と負極20との構成は同様である。リチウムイオンキャパシタ2の、正極10の正極板11と、負極20の負極板21と、セパレータ130と、電解液40と、消火剤(板状消火剤60)との位置関係を図20に模式的に示した。図20に示す様に、正極板11と負極板21とが、セパレータ130を間に挟んで配置されている。リチウムイオンキャパシタ2は、リチウムイオンキャパシタ1と同様に、正極板11の表面では、正極活物質と電解液40の陰イオンとで電気二重層を形成し、負極板21では、負極活物質にリチウムイオンLiを吸脱着することで充放電を行う。
<2. Regarding the charging / discharging process of the lithium ion capacitor 2 (FIGS. 19 and 20)>
The configuration of the positive electrode 10 and the negative electrode 20 is the same in the lithium ion capacitor 2 (see FIG. 19) of the present embodiment and the lithium ion capacitor 1 (see FIG. 3) of the first embodiment. The positional relationship among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 130, the electrolytic solution 40, and the extinguishing agent (plate-shaped extinguishing agent 60) of the lithium ion capacitor 2 is schematically shown in FIG. 20. It was shown to. As shown in FIG. 20, the positive electrode plate 11 and the negative electrode plate 21 are arranged with the separator 130 interposed therebetween. Similarly to the lithium ion capacitor 1, the lithium ion capacitor 2 forms an electric double layer on the surface of the positive electrode plate 11 with the positive electrode active material and the anion of the electrolytic solution 40, and the negative electrode plate 21 uses lithium as the negative electrode active material. Charge and discharge are performed by adsorbing and desorbing ions Li + .
<3.リチウムイオンキャパシタ2の消火剤の効果について(図18~図20)>
 本実施の形態のリチウムイオンキャパシタ2は、上述した第1の実施の形態のリチウムイオンキャパシタ1と同様に、板状消火剤60(消火剤)がリチウムイオンキャパシタ2(蓄電デバイス)の充放電の過程へ大きな影響を及ぼすことなく、難燃性が高い。ここで、板状消火剤60(消火剤)は、単独の板状の部品として構成されている。このため、リチウムイオンキャパシタ2(蓄電デバイス)に設ける消火剤の量を容易に調整し得る。
<3. Effect of fire extinguishing agent for lithium ion capacitor 2 (FIGS. 18 to 20)>
In the lithium ion capacitor 2 of the present embodiment, the plate-like extinguishing agent 60 (extinguishing agent) is used for charging / discharging of the lithium ion capacitor 2 (electric storage device), similarly to the lithium ion capacitor 1 of the first embodiment described above. High flame retardancy without significant impact on the process. Here, the plate-like extinguishing agent 60 (extinguishing agent) is configured as a single plate-like component. For this reason, the quantity of the extinguishing agent provided in the lithium ion capacitor 2 (electric storage device) can be easily adjusted.
<4.リチウムイオンキャパシタ2の製造方法について>
 以下に詳細を説明するが、本実施の形態のリチウムイオンキャパシタ2は、上述した第1の実施の形態のS1~S9を含む製造方法(図12参照)と実質的に同じ製造方法で製造できる。上述した様に、リチウムイオンキャパシタ2(図19参照)は、セパレータ130と板状消火剤60とを備える点において、第1の実施の形態のリチウムイオンキャパシタ1(図3参照)と異なる。そのため本実施の形態のリチウムイオンキャパシタ2の製造方法は、上述した第1の実施の形態のS1~S9を含む製造方法(図12参照)のうち、消火剤の加工の工程であるS2と、セパレータ130および消火剤が配置される工程であるS4とについて説明する。
<4. About manufacturing method of lithium ion capacitor 2>
Although the details will be described below, the lithium ion capacitor 2 of the present embodiment can be manufactured by substantially the same manufacturing method as the manufacturing method (see FIG. 12) including S1 to S9 of the first embodiment described above. . As described above, the lithium ion capacitor 2 (see FIG. 19) differs from the lithium ion capacitor 1 (see FIG. 3) of the first embodiment in that the separator 130 and the plate-like fire extinguishing agent 60 are provided. Therefore, the manufacturing method of the lithium ion capacitor 2 of the present embodiment includes S2 which is a process of extinguishing agent in the manufacturing method including S1 to S9 of the first embodiment (see FIG. 12), S4 which is a process by which the separator 130 and a fire extinguisher are arrange | positioned is demonstrated.
 本実施の形態における消火剤を所定の形状に加工する工程(S2)は、消火剤をプレス成型などで板状にした板状消火剤60を作成する工程である。また、本実施の形態におけるリチウム金属、複数の正極板、複数の負極板、複数のセパレータが積層され、また、正極端子および負極端子が組付けられた積層体を作成する工程(S4)は、セパレータ30の代わりにセパレータ130を積層し、さらに、積層体に2つの板状消火剤60も加えられる。なお、本実施の形態のリチウムイオンキャパシタ2と、第1の実施の形態のリチウムイオンキャパシタ1との差異は、消火剤およびセパレータの形態によるものであって、プレドープに用いるリチウム金属に関するものではない。従って、プレドープが化学的方法で行われる場合と、プレドープが電気化学的に行われる場合との差異は、上記の第1の実施の形態の場合と同様である。 The step (S2) of processing the fire extinguisher into a predetermined shape in the present embodiment is a step of creating a plate fire extinguisher 60 in which the fire extinguisher is formed into a plate shape by press molding or the like. Further, the step (S4) of creating a laminate in which the lithium metal, the plurality of positive plates, the plurality of negative plates, and the plurality of separators in the present embodiment are laminated and the positive terminal and the negative terminal are assembled, A separator 130 is laminated instead of the separator 30, and two plate-like fire extinguishing agents 60 are also added to the laminated body. Note that the difference between the lithium ion capacitor 2 of the present embodiment and the lithium ion capacitor 1 of the first embodiment is due to the form of the extinguishing agent and the separator, and is not related to the lithium metal used for pre-doping. . Therefore, the difference between the case where pre-doping is performed by a chemical method and the case where pre-doping is performed electrochemically is the same as in the case of the first embodiment.
 従って、リチウムイオンキャパシタ2の製造方法(S1~S9)は、積層体をラミネート部材50に内包する工程(S5)以降の工程で、製造中のリチウムイオンキャパシタ(蓄電デバイス)の難燃性を高めることができる。つまり、より安全にリチウムイオンキャパシタ2(蓄電デバイス)を製造できる。 Therefore, in the manufacturing method (S1 to S9) of the lithium ion capacitor 2, the flame retardance of the lithium ion capacitor (power storage device) being manufactured is increased in the steps after the step (S5) of enclosing the laminate in the laminate member 50. be able to. That is, the lithium ion capacitor 2 (power storage device) can be manufactured more safely.
 [第3の実施の形態]
 第3の実施の形態の蓄電デバイスについて、図21を用いて説明する。第3の実施の形態の蓄電デバイスは、リチウムイオンキャパシタ3である。なお、リチウムイオンキャパシタ3が第1の実施の形態に係るリチウムイオンキャパシタ1と実質的に同一の構成を有する場合、その構成に同一の符号を付して説明を省略する。
[Third Embodiment]
The electrical storage device of 3rd Embodiment is demonstrated using FIG. The electricity storage device of the third embodiment is a lithium ion capacitor 3. In addition, when the lithium ion capacitor 3 has substantially the same configuration as the lithium ion capacitor 1 according to the first embodiment, the same reference numeral is given to the configuration and the description is omitted.
<1.リチウムイオンキャパシタ3の構造(図21)>
 第1の実施の形態では、消火剤32は、セパレータ30に設けられていた。しかし、消火剤は、ラミネート部材50(密封体)の内部空間に設けられていればよい。本実施の形態のリチウムイオンキャパシタ3の模式的な断面を図21に示した。本実施の形態のリチウムイオンキャパシタ3は、第1の実施の形態のセパレータシート31に相当するセパレータ130を有する(図21参照)。また、リチウムイオンキャパシタ3は、積層された、正極10の複数の正極板11と、負極20の複数の負極板21と、複数のセパレータ130との外周を囲む包囲体70を有する。より詳しくは、包囲体70は、積層された複数の正極板11と複数の負極板21と複数のセパレータ130とを有する積層体の周囲を囲んでおり、積層体のZ軸方向の最上層と最下層とは負極板21である。なお、図21では、わかりやすくするためにリチウムイオンキャパシタ3内における各部材の間に間隔を開けて図示している。しかし、実際には、正極板11と負極板21とセパレータ130とがほとんど隙間無く積層されている。
<1. Structure of lithium ion capacitor 3 (FIG. 21)>
In the first embodiment, the fire extinguishing agent 32 is provided in the separator 30. However, the fire extinguishing agent should just be provided in the internal space of the laminate member 50 (sealing body). A schematic cross section of the lithium ion capacitor 3 of the present embodiment is shown in FIG. The lithium ion capacitor 3 of the present embodiment has a separator 130 corresponding to the separator sheet 31 of the first embodiment (see FIG. 21). In addition, the lithium ion capacitor 3 includes a surrounding body 70 that surrounds the outer periphery of the plurality of positive plates 11 of the positive electrode 10, the plurality of negative plates 21 of the negative electrode 20, and the plurality of separators 130. More specifically, the surrounding body 70 surrounds the periphery of the multilayer body including the plurality of stacked positive electrode plates 11, the plurality of negative electrode plates 21, and the plurality of separators 130, and the uppermost layer in the Z-axis direction of the multilayer body. The lowest layer is the negative electrode plate 21. In FIG. 21, for easy understanding, the members in the lithium ion capacitor 3 are illustrated with an interval. However, in practice, the positive electrode plate 11, the negative electrode plate 21, and the separator 130 are stacked with almost no gap.
 包囲体70は、包囲体芯材71と、その両面に塗工された消火剤72とからなる。包囲体70は、第1の実施の形態のセパレータ30と同様の構成(図8および図9参照)を備える。すなわち、包囲体芯材71は第1の実施の形態のセパレータシート31を長くしたものに相当する。包囲体芯材71に塗工された消火剤72(不図示)は、第1の実施の形態の消火剤32と同じ成分のものを用いることができる。包囲体芯材71は、セパレータシート31と同じく、従来のリチウムイオンキャパシタのセパレータと同じものを用いることができる。例えば、包囲体芯材71は、ビスコースレイヨンや天然セルロース等の抄紙、ポリエチレンやポリプロピレン等の不織布などで構成される。 The enclosure 70 includes an enclosure core 71 and a fire extinguishing agent 72 coated on both sides thereof. The enclosure 70 has the same configuration as that of the separator 30 of the first embodiment (see FIGS. 8 and 9). That is, the envelope core 71 corresponds to a lengthened separator sheet 31 of the first embodiment. As the extinguishing agent 72 (not shown) applied to the envelope core 71, the same component as the extinguishing agent 32 of the first embodiment can be used. The envelope core 71 can be the same as the separator of the conventional lithium ion capacitor, similarly to the separator sheet 31. For example, the envelope core 71 is made of paper such as viscose rayon or natural cellulose, or a nonwoven fabric such as polyethylene or polypropylene.
 ここで、消火剤72は、包囲体芯材71上に塗工されていればよい。消火剤72は、第1の実施の形態のセパレータシート31上に塗工された消火剤32と同様に、包囲体芯材71の片面に塗工されていてもよく、包囲体芯材71に部分的に塗工されていても良い。例えば、図10のセパレータ30と同様に、包囲体芯材71の中心を除く外側に消火剤72を塗工してもよい。また、消火剤72は、包囲体芯材71の外側の一部に塗工してもよい。消火剤72は、包囲体芯材71上に複数の帯状やドット状に塗工してもよい。 Here, the fire extinguishing agent 72 may be coated on the envelope core 71. The fire extinguishing agent 72 may be applied to one side of the envelope core material 71 in the same manner as the extinguishing agent 32 applied on the separator sheet 31 of the first embodiment. It may be partially coated. For example, as in the separator 30 of FIG. 10, the fire extinguishing agent 72 may be applied to the outside except the center of the envelope core 71. The fire extinguishing agent 72 may be applied to a part of the outer side of the envelope core 71. The fire extinguishing agent 72 may be coated on the envelope core 71 in a plurality of strips or dots.
<2.リチウムイオンキャパシタ3の充放電の過程について(図20、図21)>
 本実施の形態のリチウムイオンキャパシタ3(図21参照)と、第1の実施の形態のリチウムイオンキャパシタ1(図3参照)とで、正極10と負極20との構成は同様である。また、リチウムイオンキャパシタ3のセパレータ130は、第1の実施の形態のセパレータシート31と同一である。リチウムイオンキャパシタ3の、正極10の正極板11と、負極20の負極板21と、セパレータ130と、電解液40との位置関係は、模式的には第2の実施の形態に係る位置関係と同様である(図20参照)。正極板11と負極板21とは、セパレータ130を間に挟むように配置されている。リチウムイオンキャパシタ3は、正極板11の表面では、正極活物質と電解液40の陰イオンとで電気二重層を形成し、負極板21では、負極活物質にリチウムイオンLiを吸脱着することで充放電を行う。
<2. Regarding the charging / discharging process of the lithium ion capacitor 3 (FIGS. 20 and 21)>
The configurations of the positive electrode 10 and the negative electrode 20 are the same in the lithium ion capacitor 3 (see FIG. 21) of the present embodiment and the lithium ion capacitor 1 (see FIG. 3) of the first embodiment. Further, the separator 130 of the lithium ion capacitor 3 is the same as the separator sheet 31 of the first embodiment. The positional relationship among the positive electrode plate 11 of the positive electrode 10, the negative electrode plate 21 of the negative electrode 20, the separator 130, and the electrolytic solution 40 of the lithium ion capacitor 3 is schematically the positional relationship according to the second embodiment. The same applies (see FIG. 20). The positive electrode plate 11 and the negative electrode plate 21 are disposed so as to sandwich the separator 130 therebetween. The lithium ion capacitor 3 forms an electric double layer on the surface of the positive electrode plate 11 with the positive electrode active material and the anion of the electrolytic solution 40, and the negative electrode plate 21 adsorbs and desorbs lithium ions Li + on the negative electrode active material. Charge and discharge with.
<3.リチウムイオンキャパシタ3の消火剤の効果について(図12、図21)>
 リチウムイオンキャパシタ3は、第1の実施の形態のリチウムイオンキャパシタ1と同様に、消火剤72がリチウムイオンキャパシタ3(蓄電デバイス)の充放電の過程へ大きな影響を及ぼすことなく、高い難燃性を有する。ここで、リチウムイオンキャパシタ3の消火剤72は、ラミネート部材50(密封体)の内部空間に設けられた包囲体70に設けられており、包囲体70は正極10の正極板11および負極20の負極板21を囲うように配置されている。そのため、消火剤72がリチウムイオンキャパシタ3(蓄電デバイス)の難燃性を効果的に高めることができる。
<3. About the effect of the fire-extinguishing agent of the lithium ion capacitor 3 (FIGS. 12 and 21)>
Like the lithium ion capacitor 1 of the first embodiment, the lithium ion capacitor 3 has high flame resistance without the fire extinguishing agent 72 having a great influence on the charge / discharge process of the lithium ion capacitor 3 (power storage device). Have Here, the fire extinguishing agent 72 of the lithium ion capacitor 3 is provided in an enclosure 70 provided in the internal space of the laminate member 50 (sealing body), and the enclosure 70 includes the positive electrode plate 11 of the positive electrode 10 and the negative electrode 20. It arrange | positions so that the negative electrode plate 21 may be enclosed. Therefore, the fire extinguishing agent 72 can effectively enhance the flame retardance of the lithium ion capacitor 3 (electric storage device).
<4.リチウムイオンキャパシタ3の製造方法について(図21)>
 本実施の形態のリチウムイオンキャパシタ3は、第1の実施の形態のS1~S9を含む製造方法(図12参照)と実質的に同じ製造方法で製造できる。リチウムイオンキャパシタ3(図21参照)は、セパレータ130と、消火剤72を備える包囲体70とを備える点において第1の実施の形態のリチウムイオンキャパシタ1(図3参照)と異なる。そのため本実施の形態のリチウムイオンキャパシタ3の製造方法は、上述した第1の実施の形態のS1~S9を含む製造方法(図12参照)のうち、消火剤の加工の工程であるS2と、セパレータ130および消火剤が配置される工程であるS4とについて説明する。
<4. About the manufacturing method of the lithium ion capacitor 3 (FIG. 21)>
The lithium ion capacitor 3 of the present embodiment can be manufactured by substantially the same manufacturing method as the manufacturing method (see FIG. 12) including S1 to S9 of the first embodiment. The lithium ion capacitor 3 (see FIG. 21) differs from the lithium ion capacitor 1 (see FIG. 3) of the first embodiment in that it includes a separator 130 and an enclosure 70 including a fire extinguishing agent 72. Therefore, the manufacturing method of the lithium ion capacitor 3 of the present embodiment includes S2 which is a process of extinguishing agent in the manufacturing method including S1 to S9 of the first embodiment (see FIG. 12), S4 which is a process by which the separator 130 and a fire extinguisher are arrange | positioned is demonstrated.
 消火剤を所定の形状に加工する工程(S2)では、第1の実施の形態のリチウムイオンキャパシタ1のセパレータ30の作成方法と同様に、包囲体70を作成する。より詳しくは、上述したS1の正極板11の集電体12に正極活物質層13を塗工する方法と同様に、包囲体芯材71に消火剤72を塗工する。 In the step (S2) of processing the fire extinguisher into a predetermined shape, the enclosure 70 is created in the same manner as the method for creating the separator 30 of the lithium ion capacitor 1 of the first embodiment. More specifically, the fire extinguishing agent 72 is applied to the envelope core material 71 in the same manner as the method of applying the positive electrode active material layer 13 to the current collector 12 of the positive electrode plate 11 of S1 described above.
 また、リチウム金属、複数の正極板、複数の負極板、複数のセパレータが積層され、また、正極端子および負極端子が組付けられた積層体を作成する工程(S4)は、組み付けるセパレータ30の代わりにセパレータ130を積層し、さらに、積層体に包囲体70を巻く工程を含める。なお、本実施の形態のリチウムイオンキャパシタ3と、第1の実施の形態のリチウムイオンキャパシタ1との差異は、消火剤およびセパレータの形態によるものであって、プレドープに用いるリチウム金属に関するものではない。従って、プレドープが化学的方法に行われる場合と、プレドープが電気化学的に行われる場合との差異は、上記の第1の実施の形態のリチウムイオンキャパシタ1の製造方法S1~S9と同様に考えることができる。つまり、プレドープに用いられるリチウム金属箔は、正極板11及び負極板21と同様に包囲体70で囲われる。 The step (S4) of creating a laminate in which lithium metal, a plurality of positive electrode plates, a plurality of negative electrode plates, and a plurality of separators are laminated and the positive electrode terminals and the negative electrode terminals are assembled is replaced with the separator 30 to be assembled. And the step of laminating the separator 130 and winding the envelope 70 around the laminate. Note that the difference between the lithium ion capacitor 3 of the present embodiment and the lithium ion capacitor 1 of the first embodiment is due to the form of the extinguishing agent and the separator, and is not related to the lithium metal used for pre-doping. . Accordingly, the difference between the case where the pre-doping is performed by the chemical method and the case where the pre-doping is performed by the electrochemical method is considered in the same manner as the manufacturing methods S1 to S9 of the lithium ion capacitor 1 of the first embodiment. be able to. That is, the lithium metal foil used for pre-doping is surrounded by the enclosure 70 in the same manner as the positive electrode plate 11 and the negative electrode plate 21.
 従って、この製造方法(S1~S9)は、積層体をラミネート部材50に内包する工程(S5)以降の工程で、製造中のリチウムイオンキャパシタ3(蓄電デバイス)の難燃性が高い。そのため、より安全にリチウムイオンキャパシタ3(蓄電デバイス)を製造できる。 Therefore, in this manufacturing method (S1 to S9), the lithium ion capacitor 3 (power storage device) being manufactured is highly flame-retardant in the steps after the step (S5) of enclosing the laminate in the laminate member 50. Therefore, the lithium ion capacitor 3 (electric storage device) can be manufactured more safely.
[その他の実施の形態]
 本開示の蓄電デバイスは、上記の実施の形態に限定されるものではなく、本開示の要旨を逸脱することなく様々な変更が可能である。
[Other embodiments]
The electricity storage device of the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
 例えば、上記の実施の形態の蓄電デバイスはリチウムイオンキャパシタであるが、本開示の技術は、アルカリ金属イオンを吸蔵及び放出できる材料を用いた種々の蓄電デバイスに適用可能である。アルカリ金属としては、標準電極電位が-3.045Vであるリチウム、標準電極電位が-2.714Vであるナトリウム、標準電極電位が-2.925Vであるカリウム等が挙げられる。これらのアルカリ金属を利用する蓄電デバイスは、標準電極電位差が比較的大きくなるように負極に炭素材、正極にアルカリ金属酸化物等を備える。その具体例としては、リチウムイオン2次電池や、リチウムポリマー2次電池や、ナトリウムイオン2次電池や、カリウムイオン2次電池や、全固体電池等、種々の蓄電デバイスが挙げられる。リチウムイオンキャパシタ以外のアルカリ金属を利用する2次電池においても、長期間の使用等によりアルカリ金属のデンドライトが発生し、短絡発火の原因となる。そのため、本開示の技術はアルカリ金属イオンを利用する種々の蓄電デバイスに対して発火を抑制し、安全に保つことが可能である。 For example, although the electricity storage device of the above embodiment is a lithium ion capacitor, the technology of the present disclosure can be applied to various electricity storage devices using materials that can occlude and release alkali metal ions. Examples of the alkali metal include lithium having a standard electrode potential of −3.045V, sodium having a standard electrode potential of −2.714V, potassium having a standard electrode potential of −2.925V, and the like. The electricity storage device using these alkali metals includes a carbon material in the negative electrode and an alkali metal oxide in the positive electrode so that the standard electrode potential difference is relatively large. Specific examples thereof include various power storage devices such as lithium ion secondary batteries, lithium polymer secondary batteries, sodium ion secondary batteries, potassium ion secondary batteries, and all solid state batteries. Even in secondary batteries using alkali metals other than lithium ion capacitors, dendrites of alkali metals are generated due to long-term use and the like, causing short circuit ignition. Therefore, the technology of the present disclosure can suppress ignition of various power storage devices that use alkali metal ions, and can be kept safe.
 また、消火剤を、上記の実施の形態の消火剤32、板状消火剤60、消火剤72の代わりに、粉末状の消火剤とし、電解液40内に分散させることができる。また、第1の実施の形態のリチウムイオンキャパシタ1において、第2の実施の形態の板状消火剤60や、第3の実施の形態の包囲体70もしくは包囲体芯材71を加えてもよい。また、第2の実施の形態のリチウムイオンキャパシタ2において、セパレータ130の代わりに第1の実施の形態のセパレータ30を用いてもよく、第3の実施の形態の包囲体70もしくは包囲体芯材71を加えてもよい。また、第3の実施の形態のリチウムイオンキャパシタ3において、セパレータ130の代わりに第1の実施の形態のセパレータ30を用いてもよく、第2の実施の形態の板状消火剤60を加えても良い。また、第1~3の実施の形態では、リチウムイオンキャパシタ1~3は、正極板11と負極板21とセパレータ30と積層した積層型セルであるが、長尺の正極と、長尺の負極と、長尺のセパレータを捲回した捲回型セルとすることができる。 Further, the extinguishing agent can be dispersed in the electrolyte 40 as a powder extinguishing agent instead of the extinguishing agent 32, the plate-like extinguishing agent 60, and the extinguishing agent 72 of the above-described embodiment. Further, in the lithium ion capacitor 1 of the first embodiment, the plate-shaped fire extinguisher 60 of the second embodiment and the enclosure 70 or the enclosure core 71 of the third embodiment may be added. . Further, in the lithium ion capacitor 2 of the second embodiment, the separator 30 of the first embodiment may be used instead of the separator 130, and the envelope 70 or the envelope core material of the third embodiment. 71 may be added. Further, in the lithium ion capacitor 3 of the third embodiment, the separator 30 of the first embodiment may be used instead of the separator 130, and the plate-like extinguishing agent 60 of the second embodiment is added. Also good. In the first to third embodiments, the lithium ion capacitors 1 to 3 are stacked cells in which the positive electrode plate 11, the negative electrode plate 21, and the separator 30 are stacked, but the long positive electrode and the long negative electrode And it can be set as the wound type cell which wound the long separator.
[実施例]
 以下に、実施例を挙げて本開示の技術をさらに具体的に説明するが、本開示の技術はこれら実施例の範囲に限定されるものではない。
[Example]
Hereinafter, the technology of the present disclosure will be described more specifically with reference to examples. However, the technology of the present disclosure is not limited to the scope of the examples.
<消火剤の難燃化機能の試験(図22)>
 燃料成分Aとしてジシアンジアミド15質量%、酸化剤成分Bとして硝酸カリウム77質量%、有機塩成分Cとして酢酸カリウム8質量%を混合し、板状に成形した後に自然乾燥することで板状消火剤103を得た。以下では、リチウム金属箔を集気瓶101内で加熱した場合と、板状消火剤103とリチウム金属箔102とを集気瓶101内で加熱した場合とを比較し、消火剤の効果を調べた。なお、リチウム金属の自然発火温度(発火点)は約180℃であることが知られている。
<Test of fire-retardant function of fire extinguishing agent (FIG. 22)>
Mixing 15% by mass of dicyandiamide as the fuel component A, 77% by mass of potassium nitrate as the oxidant component B, and 8% by mass of potassium acetate as the organic salt component C, forming into a plate shape, and then drying naturally, Obtained. Below, the case where the lithium metal foil is heated in the air collection bottle 101 is compared with the case where the plate-shaped fire extinguishing agent 103 and the lithium metal foil 102 are heated in the air collection bottle 101, and the effect of the fire extinguishing agent is examined. It was. In addition, it is known that the spontaneous ignition temperature (ignition point) of lithium metal is about 180 ° C.
 板状消火剤103とリチウム金属箔102とを集気瓶内101で加熱した場合は、図22に示す様に加熱した。すなわち、加熱炉100内に集気瓶101を設置した。そして、板状に押し固めた板状消火剤103と、リチウム金属箔102とを、集気瓶101に入れた。また、リチウム金属箔102の温度を計測できるように、温度計104の温度計測部がリチウム金属箔102に触れるよう温度計104を設置した。そして、加熱炉内の温度を上昇させた。その結果、リチウム金属箔102の温度が280℃にまで上昇しても、リチウム金属箔102は発火しなかった。これは、板状消火剤103の温度が150℃以上になると、消火作用をもつカリウムラジカルを含む白煙(エアロゾル)が生じ、このカリウムラジカルによりリチウム金属箔102の発火が抑制されたためと考えられる。 When the plate-shaped fire extinguisher 103 and the lithium metal foil 102 were heated in the air collection bottle 101, they were heated as shown in FIG. That is, the air collection bottle 101 was installed in the heating furnace 100. Then, the plate-shaped fire extinguisher 103 pressed into a plate shape and the lithium metal foil 102 were put in the air collection bottle 101. Moreover, the thermometer 104 was installed so that the temperature measurement part of the thermometer 104 might touch the lithium metal foil 102 so that the temperature of the lithium metal foil 102 could be measured. And the temperature in a heating furnace was raised. As a result, even when the temperature of the lithium metal foil 102 rose to 280 ° C., the lithium metal foil 102 did not ignite. This is considered to be because when the temperature of the plate-like fire extinguishing agent 103 is 150 ° C. or higher, white smoke (aerosol) containing potassium radicals having a fire extinguishing action is generated, and ignition of the lithium metal foil 102 is suppressed by the potassium radicals. .
 次に、リチウム金属箔を集気瓶101内で加熱した場合は、上述した図22に示す状態から、板状消火剤103を除き、加熱炉100内の温度を上昇させた。その結果、リチウム金属箔の温度が182℃の時にリチウム金属箔が発火した。以上の様に、リチウム金属箔の周囲に消火剤が存在する場合は、消火剤によってリチウム金属箔の発火が抑制された。 Next, when the lithium metal foil was heated in the air collection bottle 101, the temperature in the heating furnace 100 was increased from the state shown in FIG. As a result, the lithium metal foil ignited when the temperature of the lithium metal foil was 182 ° C. As described above, when a fire extinguishing agent is present around the lithium metal foil, the ignition of the lithium metal foil was suppressed by the fire extinguishing agent.
<リチウムイオンキャパシタの作成>
[正極の作成]
 まず、正極活物質として粉体の活性炭88質量部、バインダとしてポリアクリル酸(ポリアクリル酸のナトリウム中和塩)6質量部、導電助剤としてアセチレンブラック15質量部、溶媒として水345質量部を用いて正極活物質を含む正極用スラリーAを調製した。
<Creation of lithium ion capacitor>
[Creation of positive electrode]
First, 88 parts by mass of powdered activated carbon as a positive electrode active material, 6 parts by mass of polyacrylic acid (polyacrylic acid sodium neutralized salt) as a binder, 15 parts by mass of acetylene black as a conductive assistant, and 345 parts by mass of water as a solvent. A positive electrode slurry A containing a positive electrode active material was prepared.
 バインダとしてポリアクリル酸を用いた正極用スラリーAは、以下の手順にて調製した。
(1)全ての材料と水とを、ミキサーa(株式会社シンキー製あわとり練太郎ARE-310)にて混合してプレスラリーを調製した。
(2)(1)で得たプレスラリーを、ミキサーb(プライミクス株式会社製フィルミックス40-L)にて更に混合して中間スラリーを調製した。
(3)(2)で得た中間スラリーを再度ミキサーaで混合して正極用スラリーAを調製した。
A positive electrode slurry A using polyacrylic acid as a binder was prepared by the following procedure.
(1) A pre-slurry was prepared by mixing all materials and water with a mixer a (Shinky Co., Ltd. Awatori Nertaro ARE-310).
(2) The pre-slurry obtained in (1) was further mixed with a mixer b (Filmix 40-L manufactured by PRIMIX Co., Ltd.) to prepare an intermediate slurry.
(3) The intermediate slurry obtained in (2) was mixed again with the mixer a to prepare a positive electrode slurry A.
 次に、集電箔として厚み15μmのアルミニウム箔(多孔箔)を用い、正極用スラリーAをそれぞれ集電箔に塗工し、乾燥させて正極Aを作成した。正極用スラリーAの塗布量は、乾燥後の活性炭の質量が3mg/cmとなるように調整した。集電箔への正極用スラリーAの塗工には、ブレードコーターやダイコーターを用いた。 Next, an aluminum foil (porous foil) having a thickness of 15 μm was used as the current collector foil, and the positive electrode slurry A was applied to the current collector foil and dried to prepare the positive electrode A. The coating amount of the positive electrode slurry A was adjusted so that the mass of the activated carbon after drying was 3 mg / cm 2 . A blade coater or a die coater was used for coating the positive electrode slurry A on the current collector foil.
[負極の作成]
 まず、負極活物質としてのグラファイト95質量部、バインダとしてのSBR1質量部、増粘材としてのCMC1質量部、溶媒としての水100質量部を混合し、以下の手順にて負極用スラリーを調製した。
(1)バインダを除く材料と水とを、ミキサーaにて混合してプレスラリーを調製した。
(2)(1)で得たプレスラリーを、ミキサーbにて更に混合して中間スラリーを調製した。
(3)(2)で得た中間スラリーにバインダを添加し、ミキサーaにて混合して負極用スラリーを調製した。
[Creation of negative electrode]
First, 95 parts by mass of graphite as a negative electrode active material, 1 part by mass of SBR as a binder, 1 part by mass of CMC as a thickener, and 100 parts by mass of water as a solvent were mixed, and a slurry for negative electrode was prepared by the following procedure. .
(1) A material excluding the binder and water were mixed in a mixer a to prepare a pre-slurry.
(2) The pre-slurry obtained in (1) was further mixed with a mixer b to prepare an intermediate slurry.
(3) A binder was added to the intermediate slurry obtained in (2) and mixed by a mixer a to prepare a negative electrode slurry.
 次に、集電箔として厚み10μmの銅箔(多孔箔)を用い、負極用スラリーを集電箔に塗工し、乾燥させて負極を作成した。負極用スラリーの塗布量は、乾燥後のグラファイトの質量が3mg/cmとなるように調整した。集電箔への負極用スラリーの塗工には、ブレードコーターを用いた。 Next, a copper foil (porous foil) having a thickness of 10 μm was used as the current collector foil, and the negative electrode slurry was applied to the current collector foil and dried to prepare a negative electrode. The coating amount of the negative electrode slurry was adjusted so that the mass of graphite after drying was 3 mg / cm 2 . A blade coater was used for coating the negative electrode slurry on the current collector foil.
[電解液の調製]
 溶媒として、エチレンカーボネート(EC)30vol%、ジメチルカーボネート(DMC)30vol%及びエチルメチルカーボネート(EMC)40vol%の混合溶媒を用いた。混合溶媒にリチウムビス(フルオロスルホニルイミド)(LiFSI)を1mol/L添加して電解液Iを調製した。
[Preparation of electrolyte]
As a solvent, a mixed solvent of 30% by volume of ethylene carbonate (EC), 30% by volume of dimethyl carbonate (DMC) and 40% by volume of ethyl methyl carbonate (EMC) was used. 1 mol / L of lithium bis (fluorosulfonylimide) (LiFSI) was added to the mixed solvent to prepare an electrolytic solution I.
[包囲体の作成]
 燃料成分Aとしてジシアンジアミド15質量%、酸化剤成分Bとして硝酸カリウム77質量%、有機塩成分Cとして酢酸カリウム8質量%を混合し、消火剤を調製した。消火剤の電解液Iに対するハンセン溶解度パラメータに基づくRED値を算出したところ、1より大きいことが確認できた。この消火剤を厚さ20μmのセルロースの両面に塗布し、自然乾燥して包囲体を形成した。
[Creating an enclosure]
A fire extinguisher was prepared by mixing 15% by mass of dicyandiamide as fuel component A, 77% by mass of potassium nitrate as oxidant component B, and 8% by mass of potassium acetate as organic salt component C. When the RED value based on the Hansen solubility parameter for the electrolyte solution I of the fire extinguisher was calculated, it was confirmed that the value was larger than 1. This fire extinguisher was applied on both sides of cellulose having a thickness of 20 μm, and naturally dried to form an enclosure.
[リチウムイオンキャパシタの組立]
 試験例1,2のリチウムイオンキャパシタを、次の手順にて作製した。
(1)正極、負極をそれぞれ打ち抜き、60mm×40mmのサイズの長方形とし、40mm×40mmの塗膜を残して長辺の一端側の20mm×40mmの領域の塗膜を剥ぎ落として集電用タブを取り付けた。
(2)厚さ20μmのセルロース製セパレータを間に介した状態で正極と負極の塗膜部分を対向させて積層体を作製した。
(3)(2)で作製した積層体と、リチウムプレドープ用の金属リチウム箔を包囲体で囲み、アルミラミネート箔に内包し、電解液を注入し、封止して試験例1のリチウムイオンキャパシタを作製した。
 なお、試験例2のリチウムイオンキャパシタは、上記(3)において消火剤が塗布されていない厚さ20μmのセルロースを包囲体として用いて作成した。
[Assembly of lithium ion capacitor]
The lithium ion capacitors of Test Examples 1 and 2 were produced by the following procedure.
(1) The positive electrode and the negative electrode are each punched out into a rectangle of 60 mm × 40 mm, and the current collecting tab is formed by stripping off the 20 mm × 40 mm region of the coating on the long side, leaving the 40 mm × 40 mm coating film. Attached.
(2) A laminate was prepared by making the coating portions of the positive electrode and the negative electrode face each other with a cellulose separator having a thickness of 20 μm interposed therebetween.
(3) The laminate prepared in (2) and the lithium metal foil for lithium pre-doping are surrounded by an enclosure, enclosed in an aluminum laminate foil, injected with an electrolytic solution, sealed, and the lithium ion of Test Example 1 A capacitor was produced.
In addition, the lithium ion capacitor of Test Example 2 was prepared using cellulose having a thickness of 20 μm to which the fire extinguishing agent was not applied in (3) as an enclosure.
<加熱試験>
 リチウムイオンキャパシタを加熱炉内で加熱した。その結果、試験例1のリチウムイオンキャパシタは消火剤を備えるため、210℃でも発火しなかった。一方、試験例2のリチウムイオンキャパシタは、消火剤を備えないため183℃で発火した。
<Heating test>
The lithium ion capacitor was heated in a heating furnace. As a result, since the lithium ion capacitor of Test Example 1 was provided with a fire extinguisher, it did not ignite even at 210 ° C. On the other hand, the lithium ion capacitor of Test Example 2 ignited at 183 ° C. because it did not include a fire extinguishing agent.
<内部抵抗>
 リチウムイオンキャパシタのプレドープ、充放電、エージングを行った。その後、常温(25℃)にて、カットオフ電圧:2.2~3.8V、測定電流10Cでリチウムイオンキャパシタの内部抵抗を測定し、その内部抵抗比を求めた。内部抵抗比は、試験例2を100%とすると、試験例1は98.1%であった。試験例1と試験例2との間で内部抵抗に有意な差はみられず、消火剤がキャパシタの性能を低下させることがなかった。
<Internal resistance>
The lithium ion capacitor was pre-doped, charged / discharged, and aged. Thereafter, the internal resistance of the lithium ion capacitor was measured at room temperature (25 ° C.) with a cut-off voltage of 2.2 to 3.8 V and a measurement current of 10 C, and the internal resistance ratio was determined. The internal resistance ratio was 98.1% in Test Example 1, assuming that Test Example 2 was 100%. There was no significant difference in internal resistance between Test Example 1 and Test Example 2, and the fire extinguishing agent did not deteriorate the performance of the capacitor.
<釘刺し試験>
 リチウムイオンキャパシタに釘を刺し、発火等の有無を観察すると共に、表面温度を測定した。3mm径の釘を80mm/秒の速度でリチウムイオンキャパシタに刺した。釘を刺した位置は、リチウムイオンキャパシタの高さ方向に平行な面積の大きい面における、2つの対角線が交差する位置である。釘を刺した位置から集電用タブ側と反対側へ10mmの位置の温度を、釘を刺した時点から1時間測定した。
<Nail penetration test>
A nail was pierced into the lithium ion capacitor, the presence or absence of ignition was observed, and the surface temperature was measured. A 3 mm diameter nail was inserted into the lithium ion capacitor at a speed of 80 mm / sec. The position where the nail is pierced is a position where two diagonal lines intersect on a surface having a large area parallel to the height direction of the lithium ion capacitor. The temperature at a position of 10 mm from the position where the nail was pierced to the side opposite to the current collecting tab side was measured for 1 hour from the time when the nail was pierced.
 釘刺し試験の結果、試験例1は、表面温度の最高値が146℃であり、発火もしなかった。試験例2は、表面温度の最高値が332℃であり、釘を刺した直後にリチウムイオンキャパシタが爆発した。試験例1のリチウムイオンキャパシタは、消火剤を内包することにより難燃化機能を十分に発揮できた。試験例1は表面温度が146℃でも発火しなかったことから、85℃以上の高温環境でリチウムイオンキャパシタが正常に動作している状態で釘刺し試験や圧壊試験の状態(自動車事故など)に遭遇したとしても、発火しないで、安全な状態を保てると確認できた。 As a result of the nail penetration test, Test Example 1 had a maximum surface temperature of 146 ° C. and did not ignite. In Test Example 2, the maximum surface temperature was 332 ° C., and the lithium ion capacitor exploded immediately after the nail was stabbed. The lithium ion capacitor of Test Example 1 was able to sufficiently exhibit the flame retarding function by including a fire extinguisher. Since Test Example 1 did not ignite even at a surface temperature of 146 ° C, it was put into a nail penetration test or a crush test (such as an automobile accident) with the lithium ion capacitor operating normally in a high-temperature environment of 85 ° C or higher. Even if it was encountered, it was confirmed that it could remain safe without igniting.
<他のリチウムイオンキャパシタの作成>
 リチウムイオンキャパシタの高温耐久性を調べるために、バインダ及び電解液を変更した複数のリチウムイオンキャパシタを以下の手順で作成した。なお、基本的な作成方法は上記試験例1と同じであるため、相違点のみを以下に示す。
<Creation of other lithium ion capacitors>
In order to investigate the high temperature durability of the lithium ion capacitor, a plurality of lithium ion capacitors with different binders and electrolytes were prepared by the following procedure. In addition, since the basic preparation method is the same as the said Test example 1, only a different point is shown below.
[正極の作成]
 下記表1に示される組成にて正極活物質を含む正極用スラリーB及びCを調製した。増粘材としてカルボキシメチルセルロース〔CMC〕を用いた。表1における「SBR」は、スチレン-ブタジエンゴムを示し、「部」は質量部を示し、「%」は質量%を示す。
[Creation of positive electrode]
Positive electrode slurries B and C containing a positive electrode active material having the composition shown in Table 1 below were prepared. Carboxymethylcellulose [CMC] was used as a thickener. In Table 1, “SBR” indicates styrene-butadiene rubber, “part” indicates part by mass, and “%” indicates mass%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 バインダとしてアクリル酸エステル又はSBRを用いた正極用スラリーBとCとは、以下の手順にて調製した。
(1)バインダを除く材料と水とを、ミキサーaにて混合してプレスラリーを調製した。
(2)(1)で得たプレスラリーを、ミキサーbにて更に混合して中間スラリーを調製した。
(3)(2)で得た中間スラリーにバインダを添加し、ミキサーaにて混合して正極用スラリーB又はCを調製した。
The positive electrode slurries B and C using acrylic ester or SBR as a binder were prepared by the following procedure.
(1) A material excluding the binder and water were mixed in a mixer a to prepare a pre-slurry.
(2) The pre-slurry obtained in (1) was further mixed with a mixer b to prepare an intermediate slurry.
(3) A binder was added to the intermediate slurry obtained in (2) and mixed by a mixer a to prepare positive electrode slurry B or C.
 次に、正極用スラリーBをそれぞれ集電箔に塗工し、乾燥させて正極Bを作成した。集電箔は厚み15μmのアルミニウム箔(多孔箔)である。正極用スラリーBの塗布量は、乾燥後の活性炭の質量が3mg/cmとなるように調整した。集電箔への正極用スラリーBの塗工には、ブレードコーターやダイコーターを用いた。同様に、正極用スラリーCを用いて正極Cを作成した。 Next, each positive electrode slurry B was applied to a current collector foil and dried to prepare positive electrode B. The current collector foil is an aluminum foil (porous foil) having a thickness of 15 μm. The coating amount of the positive electrode slurry B was adjusted so that the mass of the activated carbon after drying was 3 mg / cm 2 . A blade coater or a die coater was used for coating the positive electrode slurry B onto the current collector foil. Similarly, a positive electrode C was prepared using the positive electrode slurry C.
[電解液の調製]
 エチレンカーボネート(EC)30vol%、ジメチルカーボネート(DMC)30vol%及びエチルメチルカーボネート(EMC)40vol%の混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)を添加して電解液Pを調製した。エチレンカーボネート(EC)30vol%、エチルメチルカーボネート(EMC)46.7vol%、ジエチルカーボネート(DEC)23.3vol%、プロピレンカーボネート(PC)10vol%の混合溶媒に、リチウムビス(フルオロスルホニルイミド)(LiFSI)を1mol/L添加して電解液I2を調製した。
[Preparation of electrolyte]
An electrolyte solution P was prepared by adding lithium hexafluorophosphate (LiPF6) to a mixed solvent of ethylene carbonate (EC) 30 vol%, dimethyl carbonate (DMC) 30 vol%, and ethyl methyl carbonate (EMC) 40 vol%. In a mixed solvent of ethylene carbonate (EC) 30 vol%, ethyl methyl carbonate (EMC) 46.7 vol%, diethyl carbonate (DEC) 23.3 vol%, propylene carbonate (PC) 10 vol%, lithium bis (fluorosulfonylimide) (LiFSI) ) Was added at 1 mol / L to prepare an electrolytic solution I2.
[リチウムイオンキャパシタの組立]
 リチウムイオンキャパシタを、表2に示す正極及び電解液の組み合わせで作製した。表2には、各組合せにおいて、バインダを構成するポリマーの電解液に対するRED値も示す。なお、試験例3~6のリチウムイオンキャパシタは、消火剤が塗布された包囲体を内包する。
[Assembly of lithium ion capacitor]
Lithium ion capacitors were produced with combinations of positive electrodes and electrolytes shown in Table 2. Table 2 also shows the RED value for the electrolyte solution of the polymer constituting the binder in each combination. Note that the lithium ion capacitors of Test Examples 3 to 6 include an enclosure coated with a fire extinguishing agent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[初期性能の測定]
 試験例1,3~6のリチウムイオンキャパシタのリチウムプレドープ、充放電、エージングを行った。その後、常温(25℃)にて、カットオフ電圧:2.2~3.8V、測定電流10Cで各リチウムイオンキャパシタの内部抵抗及び放電容量を測定し、その結果を初期性能とした。
[Measurement of initial performance]
The lithium ion capacitors of Test Examples 1 and 3 to 6 were subjected to lithium pre-doping, charge / discharge, and aging. Thereafter, the internal resistance and discharge capacity of each lithium ion capacitor were measured at room temperature (25 ° C.) with a cut-off voltage of 2.2 to 3.8 V and a measurement current of 10 C, and the results were used as initial performance.
[耐久試験(85℃フロート試験)]
 試験例1,3~6のリチウムイオンキャパシタを、外部電源を繋いで電圧を3.8Vに保持した状態で85℃の恒温槽内に放置した。その放置時間が、85℃,3.8Vフロート時間に相当する。所定時間経過後、リチウムイオンキャパシタを恒温槽から取り出し、常温に戻した後上記初期性能の測定と同一条件で内部抵抗及び放電容量を測定し、容量維持率(初期の放電容量を100%としたときの放電容量の百分比)と、内部抵抗増加率(初期性能からの内部抵抗の増加率)を算出した。その結果を表3に示す。
[Durability test (85 ° C float test)]
The lithium ion capacitors of Test Examples 1 and 3 to 6 were left in a constant temperature bath at 85 ° C. with an external power supply connected and the voltage maintained at 3.8V. The standing time corresponds to 85 ° C. and 3.8 V float time. After the elapse of a predetermined time, the lithium ion capacitor is taken out of the thermostatic chamber, returned to room temperature, and then measured for internal resistance and discharge capacity under the same conditions as those for the initial performance measurement. The capacity retention rate (initial discharge capacity is 100%) The percentage of discharge capacity at the time) and the internal resistance increase rate (internal resistance increase rate from the initial performance) were calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、85℃の高温環境に放置した場合、電解質としてイミド系リチウム塩ではないフッ化リン酸リチウムを含む電解液を用いた試験例6では短時間で容量維持率が半減したのに対し、電解質としてイミド系リチウム塩を含む電解液を用いた試験例1,3~5では容量維持率が長時間高く保たれた。しかし、電解質としてイミド系リチウム塩を含む電解液を用いた場合でも、正極のバインダの構成により、内部抵抗増加率に差異があることが明らかとなった。そこで、正極のバインダを構成するポリマーの電解液に対するRED値(表2参照)を対比したところ、RED値が1以下であるアクリル酸エステルを用いた試験例4やSBRを用いた試験例5では内部抵抗増加率が高いことが判明した。これに対し、試験例1及び3では、電解質としてイミド系リチウム塩を含む電解液を用いるとともに、正極のバインダを構成するポリマーとして、電解液に対するRED値が1より大きいポリアクリル酸を用いている。この場合、正極のバインダを構成するポリマーが電解液に溶解しにくく、85℃の高温環境に放置しても容量維持率が高く保たれるとともに、内部抵抗増加率を小さく抑えられることが明らかになった。 As shown in Table 3, when left in a high temperature environment of 85 ° C., the capacity retention rate is reduced to half in a short time in Test Example 6 using an electrolytic solution containing lithium fluorophosphate that is not an imide lithium salt as an electrolyte. On the other hand, in Test Examples 1 and 3 to 5 using an electrolytic solution containing an imide lithium salt as the electrolyte, the capacity retention rate was kept high for a long time. However, even when an electrolytic solution containing an imide-based lithium salt is used as the electrolyte, it has become clear that there is a difference in the rate of increase in internal resistance depending on the configuration of the binder of the positive electrode. Therefore, when comparing the RED value (see Table 2) with respect to the electrolyte of the polymer constituting the positive electrode binder, in Test Example 4 using an acrylate ester having a RED value of 1 or less and Test Example 5 using SBR, It was found that the rate of increase in internal resistance was high. In contrast, in Test Examples 1 and 3, an electrolytic solution containing an imide-based lithium salt is used as an electrolyte, and polyacrylic acid having a RED value greater than 1 is used as a polymer constituting the positive electrode binder. . In this case, it is clear that the polymer constituting the positive electrode binder is not easily dissolved in the electrolyte, and the capacity retention rate is kept high even when left in a high temperature environment of 85 ° C., and the internal resistance increase rate can be kept small. became.

Claims (4)

  1.  正極活物質を備える正極と、
     負極活物質を備える負極と、
     前記正極および前記負極に接触するとともにアルカリ金属イオンを含む電解液と、
     内側で前記電解液に接触するとともに前記電解液を密封する密封体と、
    を有し、
     前記正極活物質および前記負極活物質の少なくともいずれか一方が、前記アルカリ金属イオンを吸蔵可能および放出可能な蓄電デバイスであって、
     前記密封体の内部空間に、難燃化機能を発揮する消火剤を備え、
     前記消火剤は、前記電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きい、蓄電デバイス。
    A positive electrode comprising a positive electrode active material;
    A negative electrode comprising a negative electrode active material;
    An electrolyte solution in contact with the positive electrode and the negative electrode and containing alkali metal ions;
    A sealing body that contacts the electrolyte solution inside and seals the electrolyte solution;
    Have
    At least one of the positive electrode active material and the negative electrode active material is an electricity storage device capable of occluding and releasing the alkali metal ions,
    In the internal space of the sealed body, provided with a fire extinguisher that exhibits a flame-retardant function,
    The fire extinguishing agent is an electricity storage device having a RED value greater than 1 based on a Hansen solubility parameter for the electrolyte.
  2.  請求項1に記載の蓄電デバイスであって、
     前記電解液は、有機溶媒およびイミド系リチウム塩を含み、
     前記正極は、集電箔を有し、
     前記正極活物質は、前記電解液に対するハンセン溶解度パラメータに基づくRED値が1より大きいポリマーを含むバインダを介して前記集電箔に保持されている、蓄電デバイス。
    The electricity storage device according to claim 1,
    The electrolytic solution includes an organic solvent and an imide lithium salt,
    The positive electrode has a current collector foil,
    The electricity storage device, wherein the positive electrode active material is held on the current collector foil through a binder including a polymer having a RED value based on a Hansen solubility parameter with respect to the electrolytic solution of greater than 1.
  3.  請求項1または請求項2に記載の蓄電デバイスであって、
     前記密封体の内側に、前記正極および前記負極を囲うように設けられた包囲体が設けられており、
     前記消火剤は、前記包囲体上に設けられている、蓄電デバイス。
    The electricity storage device according to claim 1 or 2,
    An enclosure provided so as to surround the positive electrode and the negative electrode is provided inside the sealing body,
    The fire extinguishing agent is an electricity storage device provided on the enclosure.
  4.  請求項1から請求項3のいずれか1項に記載の蓄電デバイスであって、
     リチウムイオンキャパシタである、蓄電デバイス。
    The power storage device according to any one of claims 1 to 3,
    An electricity storage device that is a lithium ion capacitor.
PCT/JP2019/008091 2018-03-05 2019-03-01 Electricity storage device WO2019172119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020504985A JP7375742B2 (en) 2018-03-05 2019-03-01 Energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-038645 2018-03-05
JP2018038645 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019172119A1 true WO2019172119A1 (en) 2019-09-12

Family

ID=67846047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008091 WO2019172119A1 (en) 2018-03-05 2019-03-01 Electricity storage device

Country Status (2)

Country Link
JP (1) JP7375742B2 (en)
WO (1) WO2019172119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080174A1 (en) * 2020-10-14 2022-04-21 三洋電機株式会社 Sealed battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317481A (en) * 2006-05-25 2007-12-06 Nec Lamilion Energy Ltd Film-armored electric device
JP2014007089A (en) * 2012-06-26 2014-01-16 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2014235863A (en) * 2013-05-31 2014-12-15 三菱自動車工業株式会社 Solid-state secondary battery
JP2015181093A (en) * 2013-09-30 2015-10-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2017017299A (en) * 2015-04-23 2017-01-19 株式会社ジェイテクト Lithium ion capacitor
JP6431147B1 (en) * 2017-08-04 2018-11-28 ヤマトプロテック株式会社 Electrochemical devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412344B1 (en) 2016-02-02 2021-08-25 Yamato Protec Corporation Extinguishant composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317481A (en) * 2006-05-25 2007-12-06 Nec Lamilion Energy Ltd Film-armored electric device
JP2014007089A (en) * 2012-06-26 2014-01-16 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2014235863A (en) * 2013-05-31 2014-12-15 三菱自動車工業株式会社 Solid-state secondary battery
JP2015181093A (en) * 2013-09-30 2015-10-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2017017299A (en) * 2015-04-23 2017-01-19 株式会社ジェイテクト Lithium ion capacitor
JP6431147B1 (en) * 2017-08-04 2018-11-28 ヤマトプロテック株式会社 Electrochemical devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080174A1 (en) * 2020-10-14 2022-04-21 三洋電機株式会社 Sealed battery

Also Published As

Publication number Publication date
JPWO2019172119A1 (en) 2021-03-04
JP7375742B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
JP5150193B2 (en) Battery pack
JP5969159B2 (en) Electrochemical element with improved heat resistance
JP5656521B2 (en) Non-aqueous electrolyte battery
WO2013035720A1 (en) Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
JP2009021223A (en) Battery pack and equipment equipped with battery
KR20120096425A (en) Positive electrode active material, lithium ion storage device making use of the same, and manufacturing method thereof
JP2010199282A (en) Electric storage device and method of manufacturing the same
CN109671950B (en) Positive electrode plate and nonaqueous electrolyte secondary battery
JP2012059404A5 (en)
JP2011029079A (en) Nonaqueous electrolyte secondary battery
JP6431147B1 (en) Electrochemical devices
JP2007080733A (en) Non-aqueous power storage device
JP7400193B2 (en) Energy storage device
JP7375742B2 (en) Energy storage device
JP2011090929A (en) Secondary battery
CN104953125A (en) Lithium ion battery inflaming retarding composite and method
JP2007087801A (en) Lithium ion secondary battery
JP2015053211A (en) Electrolyte for lithium-ion battery and lithium-ion battery using the same
WO2014115403A1 (en) Nonaqueous-electrolyte secondary battery and manufacturing method therefor
JP2005190953A (en) Lithium secondary battery
JP2019212909A (en) Power storage device
JP2013218843A (en) Lithium ion secondary battery, and secondary battery system using the same
KR102603369B1 (en) Non-aqueous electrolyte secondary battery
KR102629047B1 (en) Alkali Metal Ion Capacitor
WO2024004581A1 (en) Secondary battery electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763528

Country of ref document: EP

Kind code of ref document: A1