WO2019172091A1 - Hub unit with steering function, and steering system - Google Patents

Hub unit with steering function, and steering system Download PDF

Info

Publication number
WO2019172091A1
WO2019172091A1 PCT/JP2019/007940 JP2019007940W WO2019172091A1 WO 2019172091 A1 WO2019172091 A1 WO 2019172091A1 JP 2019007940 W JP2019007940 W JP 2019007940W WO 2019172091 A1 WO2019172091 A1 WO 2019172091A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
steering
turning
unit
hub unit
Prior art date
Application number
PCT/JP2019/007940
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 大畑
大場 浩量
聡 宇都宮
教雄 石原
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019172091A1 publication Critical patent/WO2019172091A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle
    • B62D7/09Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle characterised by means varying the ratio between the steering angles of the steered wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/18Steering knuckles; King pins

Definitions

  • the present invention relates to a hub unit with a steering function, a steering system, and a hub unit with a steering function, which have a function of performing auxiliary steering such as steering added to steering by a steering device or rear wheel steering.
  • the present invention relates to a technique for improving fuel consumption, stabilizing vehicle running performance and improving reliability.
  • the vehicle geometry includes (1) “Parallel geometry” where the left and right wheels have the same turning angle, and (2) The turning inner wheel angle is turned larger than the turning outer wheel angle in order to make the turning center one place. Ackermann geometry is known.
  • Patent Documents 1 and 2 have been proposed regarding a mechanism in which the steering geometry is variable in accordance with the traveling state.
  • the steering geometry is changed by relatively changing the knuckle arm and the joint position.
  • Patent Document 2 two motors are used, and both the toe angle and the camber angle can be tilted to an arbitrary angle.
  • Patent Document 3 proposes a four-wheel independent steering mechanism.
  • Ackermann geometry is a difference in rudder angle between the left and right wheels so that each wheel turns around a common point in order to smoothly turn the wheels when turning at low speeds where the centrifugal force acting on the vehicle can be ignored. Is set. However, in high-speed turning where the centrifugal force cannot be ignored, it is desirable that the wheels generate a cornering force in a direction that balances with the centrifugal force. Therefore, the parallel geometry is preferable to the Ackermann geometry.
  • Patent Document 1 the steering geometry is changed by relatively changing the knuckle arm and the joint position.
  • a motor actuator that obtains a large force enough to change the vehicle geometry in such a portion. It is very difficult to prepare due to space constraints. Further, the change in the wheel angle due to the change at this position is small, and in order to obtain a large effect, it is necessary to change it greatly, that is, to move it greatly.
  • Patent Document 2 since two motors are used, the cost increases due to the increase in the number of motors and the control becomes complicated.
  • Patent Document 3 can be applied only to vehicles with four-wheel independent steering, and because the hub bearing is cantilevered with respect to the steering shaft, the rigidity is lowered, and the steering geometry is caused by the occurrence of excessive traveling G. It may change.
  • a reduction gear is provided on the steered shaft, a large amount of power is required. For this reason, although a motor is enlarged, when a motor is enlarged, it will become difficult to arrange
  • the conventional mechanism having an auxiliary turning function has a complicated structure because it aims to arbitrarily change the toe angle or the camber angle of the wheel in the vehicle.
  • it is difficult to ensure rigidity, and it is necessary to increase the size in order to ensure rigidity, resulting in an increase in weight.
  • An object of the present invention is to provide a hub unit with a steering function, a steering system, and a vehicle equipped with a hub unit with a steering function that can improve the steering and stability of the vehicle.
  • a hub unit with a steering function is provided in a hub unit main body having a hub bearing for supporting a wheel and a suspension frame part of a suspension device, and the hub unit main body extends around a turning axis extending in the vertical direction.
  • a unit support member rotatably supported; and a rolling actuator that rotates the hub unit body about the turning axis, and detects a rotation angle of the hub unit around the turning axis.
  • a turning angle detection means is provided.
  • the hub unit body including the hub bearing that supports the wheel can be freely rotated around the turning shaft center by driving the turning actuator. For this reason, steering can be performed independently for each wheel, and the toe angle of the wheel can be arbitrarily changed according to the traveling state of the vehicle. Therefore, it may be used for any of the steered wheels such as front wheels and the non-steered wheels such as rear wheels.
  • it When used for steered wheels, it is installed on a member whose direction can be changed by the steering device, so that it can be added to the steer by the steering operation of the driver, and the left and right wheels can be individually or linked to the left and right wheels. It is a mechanism that makes a change in the turning angle.
  • the rudder angle difference between the left and right wheels can be changed according to the running speed.
  • the steering geometry can be changed during traveling, such as parallel geometry for turning in a high speed range and Ackermann geometry for turning in a low speed range.
  • the turning angle of the wheel can be arbitrarily changed during traveling, it is possible to improve the motion performance of the vehicle and travel with high stability and reliability.
  • the turning angle of the left and right steered wheels the turning radius of the vehicle in turning traveling can be reduced, and the turning performance can be improved.
  • even during straight running it is possible to make adjustments such as ensuring running stability without reducing fuel consumption by adjusting the amount of toe angle in accordance with each scene.
  • the turning angle detecting means for detecting the rotation angle of the hub unit body around the turning axis is provided, for example, a sensor for detecting the turning angle provided in the turning actuator. Even when an abnormality occurs, the wheel angle can be accurately controlled to a desired angle using the turning angle detection means. Even if there is an individual difference due to the rigidity of the steering actuator, for example, by setting the relationship of the output signals of the plurality of steering angle detection means in advance by a test or the like, the range of the minute steering angle It is possible to take an accurate steering angle. Therefore, the handling and stability of the vehicle can be improved.
  • the turning angle detection means is an angle sensor that directly detects the turning angle, and this angle sensor may be provided on the turning shaft.
  • this angle sensor may be provided on the turning shaft.
  • a steering system is a steering system including the hub unit with a steering function according to any one of the configurations of the present invention, and a control device that controls the rolling actuator of the hub unit with the steering function.
  • the control device outputs a current command signal corresponding to a given turning angle command signal, and outputs a current corresponding to the current command signal input from the control unit to output the current command signal.
  • An actuator drive control unit for driving and controlling the actuator.
  • the control unit outputs a current command signal corresponding to the given turning angle command signal.
  • the actuator drive control unit outputs a current corresponding to the current command signal input from the control unit, and drives and controls the rolling actuator. Therefore, the turning angle of the wheel can be arbitrarily changed by adding to the turning by the driver's steering wheel operation.
  • the steering actuator includes a motor and a linear motion mechanism that converts a rotational output of the motor into a reciprocating linear motion
  • the steering angle detection means includes an angle sensor that directly detects a steering angle, and the motor.
  • a rotation sensor that indirectly detects the turning angle according to a condition determined from the rotation angle of the motor, and a position sensor that indirectly detects the steering angle according to a condition determined from the position of the linear motion output unit in the linear motion mechanism
  • the control unit compares the output signals of at least any two of the angle sensor, the rotation sensor, and the position sensor with each other, and determines whether the turning angle detection unit is abnormal in accordance with a determined criterion. May be determined.
  • Each of the determined conditions and the determined determination criteria are conditions and determination criteria arbitrarily determined by design, etc., for example, appropriate conditions and determination criteria are determined by one or both of testing and simulation, etc. Determined by seeking.
  • the control unit converts the output signals of the plurality of sensors into the turning angles of the wheels, and when all match, the turning angle detection means determines that the turning angle detection means is in a normal state and maintains control. Can do.
  • the control unit may determine that one of the turning angle detection means is in an abnormal state when the turning angles of the wheels do not match.
  • the front wheels and the rear wheels are supported using the hub unit with a steering function having any one of the above-described configurations of the present invention. Therefore, each effect mentioned above about the hub unit with a steering function of this invention is acquired.
  • the front wheel is generally a steered wheel, but when the hub unit with a steered function of the present invention is applied to the steered wheel, it is effective for adjusting the toe angle during traveling.
  • the rear wheels are generally non-steered wheels, but when applied to non-steered wheels, the minimum turning radius during low-speed traveling can be reduced by slightly turning the non-steered wheels.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 4. It is a horizontal sectional view of the linear motion mechanism of the hub unit with the same steering function. It is a block diagram of the control apparatus which controls the actuator for steering of the hub unit with the same steering function. It is a schematic plan view of an example of a vehicle to which the hub unit with a steering function of the embodiment is applied.
  • the hub unit 1 with a steering function includes a hub unit main body 2, a unit support member 3, a rotation allowable support component 4, a steering actuator 5, and a plurality of steering angles described later. And detecting means S (FIGS. 5A and 5B).
  • the unit support member 3 is provided integrally with a knuckle 6 that is a suspension frame part.
  • An actuator main body 7 of the steering actuator 5 is provided on the inboard side of the unit support member 3, and a hub unit main body 2 is provided on the outboard side of the unit support member 3.
  • the hub unit main body 2 and the actuator main body 7 are connected by a joint portion 8.
  • the joint portion 8 is provided with a boot (not shown) for waterproofing and dustproofing.
  • the hub unit main body 2 is supported by the unit support member 3 via the rotation allowable support parts 4 and 4 at two upper and lower positions so as to be rotatable around the turning axis A extending in the vertical direction.
  • the turning axis A is an axis different from the rotation axis O of the wheel 9 and is different from a kingpin axis that performs main turning.
  • the kingpin angle is set to 10 to 20 degrees for the purpose of improving the straight running stability of the vehicle traveling.
  • the hub unit 1 with a steering function of this embodiment is different from the kingpin angle. It has a turning shaft with an angle (axis).
  • the wheel 9 includes a wheel 9a and a tire 9b.
  • This steering function with the hub unit 1 is steered wheels in this embodiment. Specifically, as shown in FIG. 9, the right and left wheels individually small in addition to turning by front wheels 9 F of the steering device 11 of the vehicle 10 As a mechanism for turning a small angle (about ⁇ 5 deg), the mechanism is provided integrally with the knuckle 6 which is a suspension frame part of the suspension device 12.
  • the steering device 11 is a device that steers the wheel 9 in response to an operation of a handle (not shown).
  • FIG. 2 is a horizontal sectional view of the undercarriage as seen from above.
  • An ordinary vehicle steering device 11 is connected to a steering coupling portion 6d (described later) of the steering function hub unit 1 via a tie rod 14, and the wheel 9 is steered by a driver's handle operation. Making it possible.
  • the hub unit 1 with a turning function may be used as a mechanism for turning the rear wheel 9 R (FIG. 9) as an auxiliary to the front wheel turning.
  • the suspension device 12 (FIG. 9), any of a strut suspension mechanism, a multi-link suspension mechanism, and other suspension mechanisms is applied.
  • the hub unit body 2 includes a hub bearing 15 for supporting the wheels 9, an outer ring 16, and an auxiliary turning force receiving portion 17 (FIG. 3) described later.
  • the hub bearing 15 includes an inner ring 18, an outer ring 19, and rolling elements 20 such as balls interposed between the inner and outer rings 18, 19. 1).
  • the hub bearing 15 is an angular ball bearing in which the outer ring 19 is a fixed ring, the inner ring 18 is a rotating ring, and the rolling elements 20 are in a double row.
  • the inner ring 18 includes a hub ring portion 18a having a hub flange 18aa and constituting a race surface on the outboard side, and an inner ring portion 18b constituting a race surface on the inboard side.
  • the wheel 9a of the wheel 9 is bolted to the hub flange 18aa so as to overlap the brake rotor 21a.
  • the inner ring 18 rotates around the rotation axis O.
  • the outer ring 16 includes an annular portion 16 a fitted to the outer peripheral surface of the outer ring 19, and a trunnion shaft-like mounting shaft portion provided so as to protrude vertically from the outer periphery of the annular portion 16 a. 16b, 16b.
  • Each attachment shaft portion 16 b is provided coaxially with the turning shaft center A.
  • the brake 21 has a brake rotor 21a and a brake caliper 21b.
  • the brake caliper 21b is mounted on two upper and lower brake caliper mounting portions 22 (FIG. 4) formed integrally with the outer ring 19 so as to project into an arm shape.
  • each rotation-allowing support component 4 includes a rolling bearing.
  • a tapered roller bearing is applied as the rolling bearing.
  • the rolling bearing includes an inner ring 4a fitted to the outer periphery of the mounting shaft portion 16b, an outer ring 4b fitted to the unit support member 3 as described later, and a plurality of rolling elements 4c interposed between the inner and outer rings 4a and 4b. And have.
  • the unit support member 3 includes a unit support member main body 3A and a unit support member combined body 3B.
  • a substantially ring-shaped unit support member assembly 3B is detachably fixed to the end of the unit support member main body 3A on the outboard side.
  • Partial concave spherical fitting hole forming portions 3a are respectively formed on the upper and lower portions of the side surface of the inboard side of the unit support member assembly 3B.
  • partial concave spherical fitting hole forming portions 3Aa are respectively formed on the upper and lower portions of the outboard side end of the unit support member main body 3A.
  • the unit support member assembly 3B is fixed to the end of the unit support member main body 3A on the outboard side, and the fitting hole forming portions 3a and 3Aa (FIG. 5A) are combined with each other for each upper and lower part.
  • a fitting hole is formed continuously around the entire circumference.
  • the unit support member 3 is indicated by a one-dot chain line.
  • the outer ring 4b is fitted in the fitting hole.
  • Each mounting shaft portion 16b is formed with a female screw portion extending in the radial direction, and is provided with a bolt 23 that is screwed into the female screw portion.
  • a disc-like pressing member 24 is interposed on the end surface of the inner ring 4a, and a preload is applied to each rotation-allowing support component 4 by applying a pressing force to the end surface of the inner ring 4a by a bolt 23 that is screwed into the female screw portion. Giving. Thereby, the rigidity of each rotation permission support component 4 can be improved.
  • the rolling bearing of the rotation-allowing support component 4 may be an angular ball bearing or a four-point contact ball bearing instead of the tapered roller bearing. In such a case as well, a preload can be applied in the same manner as described above.
  • the auxiliary turning force receiving portion 17 is a portion that serves as an action point for applying the auxiliary turning force to the outer ring 19 of the hub bearing 15, and is an arm that projects integrally with a part of the outer periphery of the outer ring 19. It is provided as a part.
  • the auxiliary turning force receiving portion 17 is rotatably connected to the linear motion output portion 25 a of the turning actuator 5 via the joint portion 8. As a result, when the linear motion output portion 25a of the steering actuator 5 advances and retreats, the hub unit main body 2 rotates around the turning axis A (FIG. 1), that is, is auxiliary-steered.
  • the steering actuator 5 includes an actuator body 7 that drives the hub unit body 2 to rotate about the turning axis A (FIG. 1). As shown in FIG. 2, the actuator body 7 converts a motor 26, a speed reducer 27 that decelerates the rotation of the motor 26, and a forward / reverse rotation output of the speed reducer 27 into a reciprocating linear motion of the linear motion output unit 25a. And a linear motion mechanism 25.
  • the motor 26 is, for example, a permanent magnet type synchronous motor, but may be a DC motor or an induction motor.
  • the reduction gear 27 can use a wrapping transmission mechanism such as a belt transmission mechanism or a gear train, and a belt transmission mechanism is used in the example of FIG.
  • the reducer 27 includes a drive pulley 27a, a driven pulley 27b, and a belt 27c.
  • a drive pulley 27 a is coupled to the motor shaft of the motor 26, and a driven pulley 27 b is provided in the linear motion mechanism 25.
  • the driven pulley 27b is disposed in parallel to the motor shaft.
  • the driving force of the motor 26 is transmitted from the drive pulley 27a to the driven pulley 27b via the belt 27c.
  • the drive pulley 27a, the driven pulley 27b, and the belt 27c constitute a winding-type speed reducer 27.
  • a feed screw mechanism such as a slide screw or a ball screw, a rack and pinion mechanism, or the like can be used.
  • a feed screw mechanism using a trapezoidal screw slide screw is used. Since the linear motion mechanism 25 includes a feed screw mechanism that uses a sliding screw of the trapezoidal screw, the effect of preventing reverse input from the tire 9b can be enhanced.
  • the actuator body 7 including the motor 26, the speed reducer 27, and the linear motion mechanism 25 is assembled as a semi-assembly and is detachably attached to the case 6b with bolts or the like. A mechanism that directly transmits the driving force of the motor 26 to the linear motion mechanism 25 without using a reduction gear is also possible.
  • the case 6b is integrally formed with the unit support member main body 3A as a part of the unit support member 3.
  • the case 6 b is formed in a bottomed cylindrical shape, and is provided with a motor housing portion that supports the motor 26 and a linear motion mechanism housing portion that supports the linear motion mechanism 25.
  • a fitting hole for supporting the motor 26 at a predetermined position in the case is formed in the motor housing portion.
  • the linear motion mechanism accommodating portion is formed with a fitting hole for supporting the linear motion mechanism 25 at a predetermined position in the case, a through hole for allowing the linear motion output portion 25a to advance and retreat.
  • the unit support member main body 3A includes the case 6b, a shock absorber mounting portion 6c serving as a shock absorber mounting portion, and a steering device coupling portion 6d serving as a coupling portion of the steering device 11 (FIG. 2).
  • the shock absorber mounting portion 6c and the steering device coupling portion 6d are also integrally formed with the unit support member main body 3A.
  • a shock absorber mounting portion 6c is formed on the upper portion of the outer surface portion of the unit support member main body 3A so as to protrude.
  • a steering device coupling portion 6d is formed on the side surface portion of the outer surface portion of the unit support member main body 3A so as to protrude.
  • a plurality (three in this example) of turning angle detection means S detect the rotation angle of the hub unit body 2 around the turning axis A.
  • one of the plurality of turning angle detection means S is an angle sensor Sa that directly detects the turning angle, and is provided on the turning shaft.
  • the angle sensor Sa includes an encoder Saa provided on the upper surface of the rotation-side pressing member 24 and a magnetic sensor unit Sab provided on the fixed-side unit support member 3 and facing the encoder Saa with a gap.
  • the encoder Saa in this example is a magnetic encoder having a magnetic track in which N poles and S poles are alternately magnetized along the circumferential direction.
  • the encoder Saa may be formed on the pressing member 24 itself.
  • the encoder Saa may be a pulsar ring made of a magnetic metal material having a gear shape in which concave portions and convex portions are alternately arranged in the circumferential direction.
  • the output signal of the magnetic sensor unit Sab is given to a target left and right wheel tire angle calculation unit 159 (FIG. 8) to be described later. In the target left and right wheel tire angle calculation unit 159 (FIG. 8), for example, the output signal is pulsed and the turning angle is calculated based on the number of pulses.
  • the plurality of turning angle detection means S includes a rotation sensor Sb and a position sensor Sc that indirectly detect the turning angle.
  • the rotation sensor Sb detects and outputs a signal representing a relative rotation angle between the stator and the rotor of the motor 26.
  • the rotation sensor Sb is disposed in close proximity to the detected portion Sba provided on the outer peripheral surface of the rotation output shaft 26a of the rotor and the detected portion Sba provided in the motor housing portion in the case 6b, for example, facing the detected portion Sba.
  • Detection unit Sbb The output signal of the rotation sensor Sb is given to the target left and right wheel tire angle calculation unit 159 (FIG. 8). For example, a resolver or the like is applied as such a rotation sensor Sb.
  • the rotation sensor Sb is used for detecting the turning angle and controlling the rotation of the motor 26.
  • the position sensor Sc indirectly detects the turning angle according to a condition determined from the position of the linear motion output unit 25 a in the linear motion mechanism 25.
  • a magnetic sensor is applied to the position sensor Sc.
  • the position sensor Sc has a magnetic target and a magnetic sensor unit Sca.
  • the magnetic target is composed of a permanent magnet provided in a linear motion output unit 25a that moves linearly.
  • the magnetic sensor unit Sca is provided in the linear motion mechanism housing unit in the case 6b.
  • the magnetic sensor unit Sca is disposed so as to face the magnetic target at a predetermined position in the radial direction.
  • a Hall IC or the like is applied as the magnetic sensor unit Sca.
  • the magnetic sensor unit Sca reads the magnetic force of the magnetic target and detects the axial position of the linear motion output unit 25a.
  • the output signal of the magnetic sensor unit Sca is given to the target left and right wheel tire angle calculation unit 159 (FIG. 8).
  • the steering system includes the hub unit 1 with a steering function and a control device 29 that controls the steering actuator 5 of the hub unit 1 with the steering function.
  • the control device 29 includes a control unit 30 and an actuator drive control unit 31.
  • the control unit 30 outputs at least one of the angle sensor Sa, the rotation sensor Sb (FIG. 8), and the position sensor Sc (FIG. 8), and the auxiliary turning angle command signal (the rotation control signal) given from the host control unit 32.
  • a current command signal corresponding to the steering angle command signal e is output.
  • the upper control unit 32 is an upper control means of the control unit 30, and an electric control unit (Vehicle Control Unit, abbreviated as VCU) for controlling the entire vehicle is applied as the upper control unit 32, for example.
  • VCU Electric Control Unit
  • the actuator drive control unit 31 drives and controls the steering actuator 5 by outputting a current corresponding to the current command signal input from the control unit 30.
  • the actuator drive control unit 31 configures, for example, a half bridge circuit using a switching element (not shown), and performs PWM control for determining a motor applied voltage based on the ON-OFF duty ratio of the switching element.
  • the control unit 30 includes a reference lateral acceleration calculation unit 152, a right wheel tire angle calculation unit 153, a left wheel tire angle calculation unit 154, a right wheel road surface friction coefficient calculation unit 155, a target yaw rate calculation unit 156, a left wheel.
  • a road surface friction coefficient calculation unit 157, a target yaw rate correction unit 158, a target left and right wheel tire angle calculation unit 159, a right wheel command value calculation unit 160, and a left wheel command value calculation unit 161 are provided.
  • the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154 acquire steering angle information and vehicle height information from the host control unit 32 at a predetermined cycle.
  • the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154 calculate the current angle of the tire (wheel) to which the steering system turns based on the acquired steering angle information and vehicle height information.
  • the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154 output the calculated tire angle information to the reference lateral acceleration calculation unit 152.
  • the standard lateral acceleration calculation unit 152 calculates the standard lateral acceleration based on the vehicle speed information acquired from the host control unit 32 and the tire angle information. That is, the reference lateral acceleration calculation unit 152 calculates the reference lateral acceleration based on the tire angle represented by the tire angle information and the vehicle speed represented by the vehicle speed information from the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154. Perform the calculation. The reference lateral acceleration calculation unit 152 outputs the calculated reference lateral acceleration as reference lateral acceleration information to the right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157.
  • the right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157 are based on the actual lateral acceleration information acquired from the host control unit 32 and the reference lateral acceleration information input from the reference lateral acceleration calculation unit 152. Calculate the coefficient. Specifically, the right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157 receive the reference lateral acceleration information from the reference lateral acceleration calculation unit 152, the right wheel tire angle calculation unit 153, and the left wheel tire angle calculation unit 154. Tire angle information is obtained from the vehicle, and a road surface friction coefficient is calculated from the actual lateral acceleration / reference lateral acceleration and the tire angle based on a predetermined map. In the map, the relationship between the actual lateral acceleration / reference lateral acceleration, the tire angle, and the friction coefficient is defined. This map is determined by testing or simulation, for example.
  • the right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157 target the right wheel road surface friction coefficient information that is the calculated road surface friction coefficient of the right wheel and the left wheel road surface friction coefficient information that is the road surface friction coefficient of the left wheel.
  • the data is output to the yaw rate correction unit 158.
  • the target yaw rate calculation unit 156 calculates a target yaw rate based on the vehicle speed information and the steering angle information acquired from the host control unit 32, and outputs the calculated target yaw rate to the target yaw rate correction unit 158 as target yaw rate information.
  • the target yaw rate correction unit 158 acquires the right wheel road surface friction coefficient information, the left wheel road surface friction coefficient information, and the target yaw rate information, and is represented by the right wheel road surface friction coefficient information and the left wheel road surface friction coefficient information.
  • the target yaw rate is corrected according to the friction coefficient.
  • the target yaw rate correction unit 158 outputs the corrected target yaw rate to the target left and right wheel tire angle calculation unit 159 as corrected yaw rate information.
  • Target right wheel tire angle calculation unit 159 and the corrected yaw rate information actual yaw rate information from the host control unit 32 [theta] y, and the accelerator command value X A and braking command value X B, right from the right wheel road surface friction coefficient calculator 155
  • the left wheel road surface friction coefficient information is obtained from the wheel road surface friction coefficient information and the left wheel road surface friction coefficient calculation unit 157, and the target left and right wheel tire angles that are target values of the tire angles of the left and right wheels are calculated.
  • the target left and right wheel tire angle calculation unit 159 outputs the calculated target tire angles of the left and right wheels to the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 as target tire angle information.
  • the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 receive the target tire angle information from the target left and right wheel tire angle calculation unit 159 and the current tire from the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154, respectively. Tire angle information representing an angle is acquired. After the acquisition, the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 compare the target tire angle represented by the target tire angle information with the current tire angle, and change the right wheel according to the deviation amount. The right wheel turning amount information and the left wheel turning amount information representing the amount of turning of each of the hub unit with rudder function 1 and the hub unit with left wheel turning function 1 are generated.
  • the right wheel command value calculation unit 160 outputs the generated right wheel steering amount information (current command signal) to the right wheel actuator drive control unit 31.
  • the left wheel command value calculation unit 161 outputs the generated left wheel turning amount information (current command signal) to the left wheel actuator drive control unit 31.
  • Each actuator drive control unit 31 drives and controls the steering actuator 5 (FIG. 3) by outputting a current corresponding to the current command signal input from the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161. .
  • the right and left wheel actuator drive control units 31 and 31 receive the right wheel turning amount information and the left wheel turning amount information from the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 in principle.
  • an output signal of the rotation sensor Sb which is position information of each motor 26 (FIG. 3) indicating the current turning angle of the left and right wheels, is acquired.
  • Each actuator drive control unit 31 determines a target position of each motor 26 (FIG. 3) based on the right wheel turning amount information and the left wheel turning amount information, and supplies a current to be supplied to each motor 26 (FIG. 3).
  • the steering angle information of the angle sensor Sa, the position sensor Sc and the rotation sensor Sb of the left and right wheels is output. That is, the output signals of the rotation sensor Sb, the position sensor Sc, and the angle sensor Sa provided in the left and right hub units 1 and 1 with a turning function are returned to the target left and right wheel tire angle calculation unit 159, and the turning angles of the left and right wheels are returned. Is converted to The output signal of the rotation sensor Sb is converted into a turning angle in consideration of the reduction ratio of the reduction gear 27 and the like.
  • the target left and right wheel tire angle calculation unit 159 compares the three converted steering angles with each other, and when all of them match, the rotation sensor Sb, the position sensor Sc, and the angle sensor Sa are all in a normal state. Determination is made and the drive control of each steering actuator 5 (FIG. 3) is maintained. When there is a discrepancy in any of the turning angles, the target left and right wheel tire angle calculation unit 159 determines that any of the sensors is in an abnormal state, and sends the abnormality occurrence information to the host control unit 32 and each actuator drive control unit 31. Output.
  • each actuator drive control unit 31 stops the drive control of each steering actuator 5 (FIG. 3). If only the turning angle converted from one of the sensors is inconsistent with the turning angle converted from the other two sensors, the use of the mismatched sensor is stopped and the other sensor It is also possible to maintain the drive control of each steering actuator 5 (FIG. 3) using.
  • the hub unit body 2 including the hub bearing 15 that supports the wheel 9 is freely rotated around the turning axis A by driving the turning actuator 5. Can be made. For this reason, steering can be performed independently for each wheel 9, and the toe angle of the wheel 9 can be arbitrarily changed according to the traveling state of the vehicle. Therefore, it may be used for any of the steered wheels such as front wheels and the non-steered wheels such as rear wheels.
  • it is installed on a member whose direction can be changed by the steering device, so that it can be added to the steer by the steering operation of the driver, and the left and right wheels can be individually or linked to the left and right wheels. It is a mechanism that makes a change in the turning angle.
  • the rudder angle difference between the left and right wheels can be changed according to the running speed.
  • the steering geometry can be changed during traveling, such as parallel geometry for turning in a high speed range and Ackermann geometry for turning in a low speed range.
  • the turning angle of the wheel can be arbitrarily changed during traveling, it is possible to improve the motion performance of the vehicle and travel with high stability and reliability.
  • the turning angle of the left and right steered wheels the turning radius of the vehicle in turning traveling can be reduced, and the turning performance can be improved.
  • even during straight running it is possible to make adjustments such as ensuring running stability without reducing fuel consumption by adjusting the amount of toe angle in accordance with each scene.
  • any one of the plurality of turning angle detection means S is provided. Even when an abnormality occurs in one, the angle of the wheel 9 can be accurately controlled to a desired angle by using another turning angle detection means.
  • the relationship between the output signals of the plurality of steering angle detection means S is set in advance by a test or the like, so that a small range of the steering angle can be obtained. It is possible to take an accurate steering angle. Therefore, the handling and stability of the vehicle can be improved.
  • the angle sensor Sa is provided on the turning shaft, a minute angle change of the hub bearing 15 can be accurately output. As a result, the angle of the wheel 9 can be accurately controlled by a desired angle.
  • the present invention is not limited to this example.
  • a so-called external structure in which the motor 26 of the actuator body 7 is exposed from the case 6b and attached to the outer surface of the case 6b may be employed.
  • an off-the-shelf motor can be used, and maintenance can be improved, for example, the motor can be easily replaced.
  • the unit support member 3 may be configured separately from the underbody frame part, and the unit support member 3 may be detachably provided on the underbody frame part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

Provided are a hub unit with a steering function, a steering system, and a vehicle provided with the hub unit with a steering function, with which it is possible to enhance the maneuverability and stability of a vehicle. The hub unit (1) with a steering function is provided with a hub unit main body (2) including a hub bearing supporting a wheel, a unit support member (3) which is provided on an undercarriage frame member of a suspension device, and which supports the hub unit main body (2) with freedom to rotate about a steering axis extending in the vertical direction, and a rolling actuator (5) which rotationally drives the hub unit main body (2) about the steering axis. The hub unit is provided with a steering angle detecting means for detecting the angle of rotation of the hub unit main body (2) about the steering axis. The steering angle detecting means is provided with an angle sensor (Sa) which directly detects the steering angle, a rotation sensor (Sb) which indirectly detects the steering angle from the angle of rotation of a motor (26), and a position sensor (Sc) which indirectly detects the steering angle from the position of a linear motion output unit of a linear motion mechanism.

Description

転舵機能付きハブユニットおよび転舵システムHub unit with steering function and steering system 関連出願Related applications
 この出願は、2018年3月5日出願の特願2018-038208の優先権を主張するものであり、その全体を参照によりこの出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2018-038208 filed on Mar. 5, 2018, which is incorporated herein by reference in its entirety as a part of this application.
 この発明は、ステアリング装置による転舵に付加する転舵、または後輪転舵等の補助的な転舵を行う機能を備えた転舵機能付きハブユニット、転舵システム、および転舵機能付きハブユニットを備えた車両に関し、燃費の改善、車両の走行性の安定と信頼性の向上の技術に関する。 The present invention relates to a hub unit with a steering function, a steering system, and a hub unit with a steering function, which have a function of performing auxiliary steering such as steering added to steering by a steering device or rear wheel steering. The present invention relates to a technique for improving fuel consumption, stabilizing vehicle running performance and improving reliability.
 一般的な自動車等の車両は、ハンドルとステアリング装置が機械的に接続され、また、ステアリング装置の両端はタイロッドによってそれぞれの左右輪につながっている。そのため、ハンドルの動きによる左右輪の切れ角度は初期の設定によって決まる。車両のジオメトリには、(1) 左右輪の切れ角度が同じである「パラレルジオメトリ」、(2) 旋回中心を1か所にするために旋回内輪車輪角度を旋回外輪車輪角度よりも大きく切る「アッカーマンジオメトリ」が知られている。 In general vehicles such as automobiles, the steering wheel and the steering device are mechanically connected, and both ends of the steering device are connected to the left and right wheels by tie rods. Therefore, the turning angle of the left and right wheels due to the movement of the handle is determined by the initial setting. The vehicle geometry includes (1) “Parallel geometry” where the left and right wheels have the same turning angle, and (2) The turning inner wheel angle is turned larger than the turning outer wheel angle in order to make the turning center one place. Ackermann geometry is known.
 車両のジオメトリは、走行性の安定性と信頼性に影響する。走行状況に応じてステアリングジオメトリを可変とした機構に関しては、例えば特許文献1,2が提案されている。特許文献1では、ナックルアームとジョイント位置を相対的に変化させて、ステアリングジオメトリを変化させる。特許文献2では、モータ2個を使い、トー角とキャンバー角の両方を任意の角度に傾けることを可能にしている。また、4輪独立転舵の機構につき、特許文献3で提案されている。 The vehicle geometry affects the stability and reliability of running. For example, Patent Documents 1 and 2 have been proposed regarding a mechanism in which the steering geometry is variable in accordance with the traveling state. In Patent Literature 1, the steering geometry is changed by relatively changing the knuckle arm and the joint position. In Patent Document 2, two motors are used, and both the toe angle and the camber angle can be tilted to an arbitrary angle. Patent Document 3 proposes a four-wheel independent steering mechanism.
特開2009-226972号公報JP 2009-226972 A 独国特許出願公開第102012206337号明細書German Patent Application Publication No. 10201206337 特開2014-061744号公報JP 2014-061744 A
 アッカーマンジオメトリは、車両に作用する遠心力を無視できるような低速域での旋回において、車輪をスムースに旋回させるために、各輪が共通の一点を中心として旋回するように左右輪の舵角差を設定している。しかし、遠心力を無視できない高速域の旋回においては、車輪は遠心力とつり合う方向にコーナリングフォースを発生させることが望ましいため、アッカーマンジオメトリよりもパラレルジオメトリとすることが好ましい。 Ackermann geometry is a difference in rudder angle between the left and right wheels so that each wheel turns around a common point in order to smoothly turn the wheels when turning at low speeds where the centrifugal force acting on the vehicle can be ignored. Is set. However, in high-speed turning where the centrifugal force cannot be ignored, it is desirable that the wheels generate a cornering force in a direction that balances with the centrifugal force. Therefore, the parallel geometry is preferable to the Ackermann geometry.
 前述したように一般的な車両の操舵装置は機械的に車輪と接続されているため、一般的には固定された単一のステアリングジオメトリしか取ることができず、アッカーマンジオメトリとパラレルジオメトリとの中間的なジオメトリに設定されることが多い。しかし、この場合、低速域では左右輪の舵角差が不足して外輪の舵角が過大となり、高速域では内輪の舵角が過大となる。このように内外輪の車輪横力配分に不要な偏りがあると、走行抵抗の悪化による燃費悪化及び車輪の早期摩耗の原因となり、また内外輪を効率的に利用できないことによって、コーナリングのスムースさが損なわれるといった課題がある。 As described above, since a general vehicle steering device is mechanically connected to a wheel, generally only a single fixed steering geometry can be taken, and an intermediate between the Ackermann geometry and the parallel geometry. Often set to static geometry. However, in this case, the difference in steering angle between the left and right wheels is insufficient in the low speed range, the steering angle of the outer wheel is excessive, and the steering angle of the inner wheel is excessive in the high speed range. Thus, if there is an unnecessary bias in the wheel lateral force distribution of the inner and outer wheels, it will cause deterioration of fuel consumption due to worsening of running resistance and early wear of the wheels, and the smoothness of cornering due to the ineffective use of the inner and outer wheels. There is a problem that is damaged.
 特許文献1,2の提案によると、ステアリングジオメトリを変更させることができるが次の課題がある。特許文献1では、前述のようにナックルアームとジョイント位置を相対的に変化させてステアリングジオメトリを変化させているが、このような部分で車両のジオメトリを変化させるほどの大きな力を得るモータアクチュエータを備えることは、空間の制約上、非常に困難である。また、この位置での変化による車輪角の変化が小さく、大きな効果を得るためには、大きく変化させる、つまり大きく動かす必要がある。 According to the proposals in Patent Documents 1 and 2, the steering geometry can be changed, but there are the following problems. In Patent Document 1, as described above, the steering geometry is changed by relatively changing the knuckle arm and the joint position. However, a motor actuator that obtains a large force enough to change the vehicle geometry in such a portion. It is very difficult to prepare due to space constraints. Further, the change in the wheel angle due to the change at this position is small, and in order to obtain a large effect, it is necessary to change it greatly, that is, to move it greatly.
 特許文献2では、モータを2個使っているため、モータ個数の増大によるコスト増が生じるうえ、制御が複雑になる。特許文献3は、4輪独立転舵の車両にしか適用出来ず、また転舵軸に対しハブベアリングを片持ち支持しているため、剛性が低下し、過大な走行Gの発生によってステアリングジオメトリが変化してしまう可能性がある。また、転舵軸上に減速機を設けた場合、大きな動力が必要となる。このため、モータを大きくするが、モータを大きくすると車輪の内周部に全体を配置することが困難となる。また、減速比の大きい減速機を設けた場合、応答性が悪化する。 In Patent Document 2, since two motors are used, the cost increases due to the increase in the number of motors and the control becomes complicated. Patent Document 3 can be applied only to vehicles with four-wheel independent steering, and because the hub bearing is cantilevered with respect to the steering shaft, the rigidity is lowered, and the steering geometry is caused by the occurrence of excessive traveling G. It may change. Moreover, when a reduction gear is provided on the steered shaft, a large amount of power is required. For this reason, although a motor is enlarged, when a motor is enlarged, it will become difficult to arrange | position the whole to the inner peripheral part of a wheel. Moreover, when a reduction gear with a large reduction ratio is provided, the responsiveness deteriorates.
 上記のように従来の補助的な転舵機能を備えた機構は、車両において車輪のトー角度またはキャンバー角度を任意に変更することを目的としているため、複雑な構成となっている。また、剛性を確保することが困難となり、剛性を確保するためには大型化する必要があり重量増となる。 As described above, the conventional mechanism having an auxiliary turning function has a complicated structure because it aims to arbitrarily change the toe angle or the camber angle of the wheel in the vehicle. In addition, it is difficult to ensure rigidity, and it is necessary to increase the size in order to ensure rigidity, resulting in an increase in weight.
 車両において、車輪のトー角度またはキャンバー角度を任意に変更するためには、複雑な構成が必要であり、構成部品が多くなる。車両の操縦・安定性を向上させるためには、左右の車輪の転舵角度を正確に転舵させる必要がある。転舵用のアクチュエータ内にセンサを設けても、アクチュエータの剛性を含むため個体差があり、微小な角度(約±5deg)の範囲内で正確な転舵角度を採ることが難しい。前記剛性としては、例えば、歯車等のバックラッシ、直動機構のバックラッシ、アクチュエータのケース剛性等が挙げられる。また、1つのセンサのみで転舵角度を制御している場合、そのセンサが異常となった場合に、車両の走行性等に支障をきたすおそれがある。 In a vehicle, in order to arbitrarily change the toe angle or camber angle of a wheel, a complicated configuration is required and the number of components increases. In order to improve vehicle handling and stability, it is necessary to accurately steer the steering angles of the left and right wheels. Even if a sensor is provided in the steering actuator, there is an individual difference because the rigidity of the actuator is included, and it is difficult to take an accurate steering angle within a minute angle range (about ± 5 deg). Examples of the rigidity include a backlash of a gear, a backlash of a linear motion mechanism, a case rigidity of an actuator, and the like. Further, when the turning angle is controlled by only one sensor, there is a possibility that the running performance of the vehicle may be hindered when the sensor becomes abnormal.
 この発明の目的は、車両の操縦・安定性を向上させることができる転舵機能付きハブユニット、転舵システム、および転舵機能付きハブユニットを備えた車両を提供することである。 An object of the present invention is to provide a hub unit with a steering function, a steering system, and a vehicle equipped with a hub unit with a steering function that can improve the steering and stability of the vehicle.
 この発明の転舵機能付きハブユニットは、車輪を支持するハブベアリングを有するハブユニット本体と、懸架装置の足回りフレーム部品に設けられ、前記ハブユニット本体を上下方向に延びる転舵軸心回りに回転自在に支持するユニット支持部材と、前記ハブユニット本体を前記転舵軸心回りに回転駆動させる転動用アクチュエータと、を備え、前記ハブユニット本体の前記転舵軸心回りの回転角度を検出する転舵角度検出手段を備えている。 A hub unit with a steering function according to the present invention is provided in a hub unit main body having a hub bearing for supporting a wheel and a suspension frame part of a suspension device, and the hub unit main body extends around a turning axis extending in the vertical direction. A unit support member rotatably supported; and a rolling actuator that rotates the hub unit body about the turning axis, and detects a rotation angle of the hub unit around the turning axis. A turning angle detection means is provided.
 この構成によると、車輪を支持するハブベアリングを含むハブユニット本体を、転舵用アクチュエータの駆動により、前記転舵軸心回りに自由に回転させることができる。このため、車輪毎に独立して転舵が行え、また車両の走行状況に応じて、車輪のトー角を任意に変更することができる。そのため、前輪等の転舵輪および後輪等の非転舵輪のいずれに用いてもよい。転舵輪に用いる場合は、ステアリング装置により方向が変化させられる部材に設置されることにより、運転者のハンドル操作による転舵に付加して、左右の車輪個別の、または左右輪連動した車輪の微小な転舵角度変化を行わせる機構となる。 According to this configuration, the hub unit body including the hub bearing that supports the wheel can be freely rotated around the turning shaft center by driving the turning actuator. For this reason, steering can be performed independently for each wheel, and the toe angle of the wheel can be arbitrarily changed according to the traveling state of the vehicle. Therefore, it may be used for any of the steered wheels such as front wheels and the non-steered wheels such as rear wheels. When used for steered wheels, it is installed on a member whose direction can be changed by the steering device, so that it can be added to the steer by the steering operation of the driver, and the left and right wheels can be individually or linked to the left and right wheels. It is a mechanism that makes a change in the turning angle.
 また、旋回走行時に、走行速度に応じて左右輪の舵角差を変えることができる。例えば高速域の旋回走行においてはパラレルジオメトリとし、低速域の旋回走行においてはアッカーマンジオメトリとするなど、走行中にステアリングジオメトリを変化させることができる。このように走行中に車輪の転舵角度を任意に変更することができるため、車両の運動性能を向上させ、高い安定性と信頼性で走行することが可能となる。さらに、左右の操舵輪の転舵角度を適切に変えることで、旋回走行における車両の旋回半径を小さくし、小回り性能を向上させることもできる。さらに直線走行時にも、それぞれの場面に合わせてトー角度の量を調整することで、燃費を低下させることなく、走行安定性を確保するなど調整が可能である。 Also, when turning, the rudder angle difference between the left and right wheels can be changed according to the running speed. For example, the steering geometry can be changed during traveling, such as parallel geometry for turning in a high speed range and Ackermann geometry for turning in a low speed range. Thus, since the turning angle of the wheel can be arbitrarily changed during traveling, it is possible to improve the motion performance of the vehicle and travel with high stability and reliability. Furthermore, by appropriately changing the turning angle of the left and right steered wheels, the turning radius of the vehicle in turning traveling can be reduced, and the turning performance can be improved. Furthermore, even during straight running, it is possible to make adjustments such as ensuring running stability without reducing fuel consumption by adjusting the amount of toe angle in accordance with each scene.
 このように車輪の転舵角度を変化させることで、車両の挙動を制御するためには、正確に車輪の転舵角度を制御する必要がある。この構成によると、特に、ハブユニット本体の前記転舵軸心回りの回転角度を検出する転舵角度検出手段を備えたため、例えば、転舵用アクチュエータ内に設けた転舵角度を検出するセンサに異常が発生した場合でも、前記転舵角度検出手段を用いて車輪の角度を所望の角度に正確に制御することが可能となる。また転舵用アクチュエータの剛性に起因する個体差があっても、例えば、複数の転舵角度検出手段の出力信号の関係を予め試験等により設定しておくことで、微小な転舵角度の範囲内で正確な転舵角度を採ることが可能となる。したがって、車両の操縦・安定性を向上させることができる。 In order to control the behavior of the vehicle by changing the wheel turning angle in this way, it is necessary to accurately control the wheel turning angle. According to this configuration, in particular, since the turning angle detecting means for detecting the rotation angle of the hub unit body around the turning axis is provided, for example, a sensor for detecting the turning angle provided in the turning actuator. Even when an abnormality occurs, the wheel angle can be accurately controlled to a desired angle using the turning angle detection means. Even if there is an individual difference due to the rigidity of the steering actuator, for example, by setting the relationship of the output signals of the plurality of steering angle detection means in advance by a test or the like, the range of the minute steering angle It is possible to take an accurate steering angle. Therefore, the handling and stability of the vehicle can be improved.
 前記転舵角度検出手段は、転舵角度を直接検出する角度センサであり、この角度センサが転舵軸上に設けられていてもよい。このように角度センサが転舵軸上に設けられている場合、ハブベアリングの微小な角度変化を正確に出力することができる。これにより車輪の角度を所望の角度により正確に制御することが可能となる。 The turning angle detection means is an angle sensor that directly detects the turning angle, and this angle sensor may be provided on the turning shaft. Thus, when the angle sensor is provided on the steered shaft, a minute angle change of the hub bearing can be accurately output. This makes it possible to accurately control the wheel angle by a desired angle.
 この発明の転舵システムは、この発明の上記いずれかの構成の転舵機能付きハブユニットと、この転舵機能付きハブユニットの前記転動用アクチュエータを制御する制御装置とを備えた転舵システムであって、前記制御装置は、与えられた転舵角指令信号に応じた電流指令信号を出力する制御部と、この制御部から入力された電流指令信号に応じた電流を出力して前記転動用アクチュエータを駆動制御するアクチュエータ駆動制御部とを有する。 A steering system according to the present invention is a steering system including the hub unit with a steering function according to any one of the configurations of the present invention, and a control device that controls the rolling actuator of the hub unit with the steering function. The control device outputs a current command signal corresponding to a given turning angle command signal, and outputs a current corresponding to the current command signal input from the control unit to output the current command signal. An actuator drive control unit for driving and controlling the actuator.
 この構成によると、制御部は、与えられた転舵角指令信号に応じた電流指令信号を出力する。アクチュエータ駆動制御部は、制御部から入力された電流指令信号に応じた電流を出力して転動用アクチュエータを駆動制御する。したがって、運転者のハンドル操作による転舵に付加して車輪の転舵角度を任意に変更することができる。 According to this configuration, the control unit outputs a current command signal corresponding to the given turning angle command signal. The actuator drive control unit outputs a current corresponding to the current command signal input from the control unit, and drives and controls the rolling actuator. Therefore, the turning angle of the wheel can be arbitrarily changed by adding to the turning by the driver's steering wheel operation.
 前記転舵用アクチュエータは、モータと、このモータの回転出力を往復直線動作に変換する直動機構とを備え、前記転舵角度検出手段は、転舵角度を直接検出する角度センサと、前記モータの回転角度から定められた条件に従って転舵角度を間接的に検出する回転センサと、前記直動機構における直動出力部の位置から定められた条件に従って転舵角度を間接的に検出する位置センサと、を備え、前記制御部は、前記角度センサ、前記回転センサおよび前記位置センサのうち少なくともいずれか二つのセンサの出力信号を互いに比較し定められた判定基準に従って前記転舵角度検出手段の異常を判定してもよい。前記各定められた条件、前記定められた判定基準は、それぞれ設計等によって任意に定める条件、判定基準であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な条件、判定基準を求めて定められる。 The steering actuator includes a motor and a linear motion mechanism that converts a rotational output of the motor into a reciprocating linear motion, and the steering angle detection means includes an angle sensor that directly detects a steering angle, and the motor. A rotation sensor that indirectly detects the turning angle according to a condition determined from the rotation angle of the motor, and a position sensor that indirectly detects the steering angle according to a condition determined from the position of the linear motion output unit in the linear motion mechanism And the control unit compares the output signals of at least any two of the angle sensor, the rotation sensor, and the position sensor with each other, and determines whether the turning angle detection unit is abnormal in accordance with a determined criterion. May be determined. Each of the determined conditions and the determined determination criteria are conditions and determination criteria arbitrarily determined by design, etc., for example, appropriate conditions and determination criteria are determined by one or both of testing and simulation, etc. Determined by seeking.
 この構成によると、制御部は、複数のセンサの出力信号を車輪の転舵角度に変換して、全て一致している場合、前記転舵角度検出手段が正常状態と判定し制御を維持することができる。制御部は、前記車輪の転舵角度が不一致の場合、いずれかの転舵角度検出手段が異常状態と判定し得る。 According to this configuration, the control unit converts the output signals of the plurality of sensors into the turning angles of the wheels, and when all match, the turning angle detection means determines that the turning angle detection means is in a normal state and maintains control. Can do. The control unit may determine that one of the turning angle detection means is in an abnormal state when the turning angles of the wheels do not match.
 この発明の車両は、この発明の上記いずれかの構成の転舵機能付きハブユニットを用いて前輪および後輪のいずれか一方または両方が支持される。そのため、この発明の転舵機能付ハブユニットにつき前述した各効果が得られる。前輪は一般的に転舵輪とされるが、転舵輪にこの発明の転舵機能付ハブユニットを適用した場合は、走行中におけるトー角調整に効果的である。また、後輪は一般的に非転舵輪とされるが、非転舵輪に適用した場合は、非転舵輪の若干の転舵によって低速走行時における最小回転半径の低減を図ることができる。 In the vehicle of the present invention, either or both of the front wheels and the rear wheels are supported using the hub unit with a steering function having any one of the above-described configurations of the present invention. Therefore, each effect mentioned above about the hub unit with a steering function of this invention is acquired. The front wheel is generally a steered wheel, but when the hub unit with a steered function of the present invention is applied to the steered wheel, it is effective for adjusting the toe angle during traveling. The rear wheels are generally non-steered wheels, but when applied to non-steered wheels, the minimum turning radius during low-speed traveling can be reduced by slightly turning the non-steered wheels.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組み合わせも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組み合わせも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明確に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る転舵機能付ハブユニットおよびその周辺の構成を示す縦断面図である。 同転舵機能付ハブユニットおよびその周辺の構成を示す水平断面図である。 同転舵機能付ハブユニットの外観を示す斜視図である。 同転舵機能付ハブユニットの側面図である。 同転舵機能付ハブユニットの平面図である。 図5Aの一部の部分拡大図である。 図4のVI - VI線断面図である。 同転舵機能付ハブユニットの直動機構の水平断面図である。 同転舵機能付ハブユニットの転舵用アクチュエータを制御する制御装置のブロック図である。 実施形態の転舵機能付ハブユニットが適用される車両の一例の模式平面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is a longitudinal cross-sectional view which shows the structure of the hub unit with a steering function which concerns on 1st Embodiment of this invention, and its periphery. It is a horizontal sectional view showing the hub unit with the same turning function and the surrounding configuration. It is a perspective view which shows the external appearance of the hub unit with the same steering function. It is a side view of the hub unit with the same steering function. It is a top view of the hub unit with the same steering function. It is a partial enlarged view of a part of FIG. 5A. FIG. 6 is a sectional view taken along line VI-VI in FIG. 4. It is a horizontal sectional view of the linear motion mechanism of the hub unit with the same steering function. It is a block diagram of the control apparatus which controls the actuator for steering of the hub unit with the same steering function. It is a schematic plan view of an example of a vehicle to which the hub unit with a steering function of the embodiment is applied.
 <第1実施形態>
 この発明の第1実施形態に係る転舵機能付ハブユニットを図1ないし図8と共に説明する。
 <転舵機能付ハブユニット1の概略構造>
 図1に示すように、この転舵機能付ハブユニット1は、ハブユニット本体2と、ユニット支持部材3と、回転許容支持部品4と、転舵用アクチュエータ5と、後述する複数の転舵角度検出手段S(図5A,5B)とを備える。足回りフレーム部品であるナックル6に一体にユニット支持部材3が設けられている。このユニット支持部材3のインボード側に、転舵用アクチュエータ5のアクチュエータ本体7が設けられ、ユニット支持部材3のアウトボード側に、ハブユニット本体2が設けられる。転舵機能付ハブユニット1を車両に搭載した状態で、車両の車幅方向外側をアウトボード側といい、車両の車幅方向中央側をインボード側という。
<First Embodiment>
A hub unit with a turning function according to a first embodiment of the present invention will be described with reference to FIGS.
<Schematic structure of the hub unit 1 with a steering function>
As shown in FIG. 1, the hub unit 1 with a steering function includes a hub unit main body 2, a unit support member 3, a rotation allowable support component 4, a steering actuator 5, and a plurality of steering angles described later. And detecting means S (FIGS. 5A and 5B). The unit support member 3 is provided integrally with a knuckle 6 that is a suspension frame part. An actuator main body 7 of the steering actuator 5 is provided on the inboard side of the unit support member 3, and a hub unit main body 2 is provided on the outboard side of the unit support member 3. With the hub unit 1 with a steering function mounted on the vehicle, the vehicle width direction outer side of the vehicle is referred to as an outboard side, and the vehicle width direction center side of the vehicle is referred to as an inboard side.
 図2および図3に示すように、ハブユニット本体2とアクチュエータ本体7とはジョイント部8により連結されている。通常、このジョイント部8は、防水、防塵のために図示外のブーツが取り付けられている。 2 and 3, the hub unit main body 2 and the actuator main body 7 are connected by a joint portion 8. Usually, the joint portion 8 is provided with a boot (not shown) for waterproofing and dustproofing.
 図1に示すように、ハブユニット本体2は、上下方向に延びる転舵軸心A回りに回転自在なように、上下二箇所で回転許容支持部品4,4を介してユニット支持部材3に支持されている。転舵軸心Aは、車輪9の回転軸心Oとは異なる軸心であり、主な転舵を行うキングピン軸とも異なっている。通常の車両は、車両走行の直進安定性の向上を目的としてキングピン角度が10~20度で設定されているが、この実施形態の転舵機能付ハブユニット1は、前記キングピン角度とは別の角度(軸)の転舵軸を有する。車輪9は、ホイール9aとタイヤ9bとを備える。 As shown in FIG. 1, the hub unit main body 2 is supported by the unit support member 3 via the rotation allowable support parts 4 and 4 at two upper and lower positions so as to be rotatable around the turning axis A extending in the vertical direction. Has been. The turning axis A is an axis different from the rotation axis O of the wheel 9 and is different from a kingpin axis that performs main turning. In a normal vehicle, the kingpin angle is set to 10 to 20 degrees for the purpose of improving the straight running stability of the vehicle traveling. The hub unit 1 with a steering function of this embodiment is different from the kingpin angle. It has a turning shaft with an angle (axis). The wheel 9 includes a wheel 9a and a tire 9b.
 <転舵機能付ハブユニット1の設置箇所>
 この転舵機能付ハブユニット1は、この実施形態では転舵輪、具体的には図9に示すように、車両10の前輪9のステアリング装置11による転舵に付加して左右輪個別に微小な角度(約±5deg)を転舵させる機構として、懸架装置12の足回りフレーム部品であるナックル6に一体に設けられる。
<Installation location of hub unit 1 with steering function>
This steering function with the hub unit 1 is steered wheels in this embodiment. Specifically, as shown in FIG. 9, the right and left wheels individually small in addition to turning by front wheels 9 F of the steering device 11 of the vehicle 10 As a mechanism for turning a small angle (about ± 5 deg), the mechanism is provided integrally with the knuckle 6 which is a suspension frame part of the suspension device 12.
 図2に示すように、ステアリング装置11は、ハンドル(図示せず)の操作に応じて車輪9を転舵させる装置である。同図2は、足回りの様子を上方から見た水平断面図である。この転舵機能付ハブユニット1のステアリング結合部6d(後述する)には、通常の車両用のステアリング装置11がタイロッド14を介して連結されており、運転者のハンドル操作によって車輪9を操舵することを可能としている。この転舵機能付ハブユニット1は、この他に、前輪転舵に対する補助として後輪9(図9)の転舵を行う機構として用いてもよい。懸架装置12(図9)としては、ストラット式サスペンション機構、マルチリンク式サスペンション機構、その他のサスペンション機構のいずれかが適用される。 As shown in FIG. 2, the steering device 11 is a device that steers the wheel 9 in response to an operation of a handle (not shown). FIG. 2 is a horizontal sectional view of the undercarriage as seen from above. An ordinary vehicle steering device 11 is connected to a steering coupling portion 6d (described later) of the steering function hub unit 1 via a tie rod 14, and the wheel 9 is steered by a driver's handle operation. Making it possible. In addition to this, the hub unit 1 with a turning function may be used as a mechanism for turning the rear wheel 9 R (FIG. 9) as an auxiliary to the front wheel turning. As the suspension device 12 (FIG. 9), any of a strut suspension mechanism, a multi-link suspension mechanism, and other suspension mechanisms is applied.
 <ハブユニット本体2について>
 図1に示すように、ハブユニット本体2は、車輪9の支持用のハブベアリング15と、アウターリング16と、後述の補助転舵力受け部17(図3)とを備える。図6に示すように、ハブベアリング15は、内輪18と、外輪19と、これら内外輪18,19間に介在したボール等の転動体20とを有し、車体側の部材と車輪9(図1)とを繋ぐ役目をしている。
<About hub unit body 2>
As shown in FIG. 1, the hub unit body 2 includes a hub bearing 15 for supporting the wheels 9, an outer ring 16, and an auxiliary turning force receiving portion 17 (FIG. 3) described later. As shown in FIG. 6, the hub bearing 15 includes an inner ring 18, an outer ring 19, and rolling elements 20 such as balls interposed between the inner and outer rings 18, 19. 1).
 このハブベアリング15は、図示の例では、外輪19が固定輪、内輪18が回転輪となり、転動体20が複列とされたアンギュラ玉軸受とされている。内輪18は、ハブフランジ18aaを有しアウトボード側の軌道面を構成するハブ輪部18aと、インボード側の軌道面を構成する内輪部18bとを有する。図1に示すように、ハブフランジ18aaに、車輪9のホイール9aがブレーキロータ21aと重なり状態でボルト固定されている。内輪18は、回転軸心O回りに回転する。 In the illustrated example, the hub bearing 15 is an angular ball bearing in which the outer ring 19 is a fixed ring, the inner ring 18 is a rotating ring, and the rolling elements 20 are in a double row. The inner ring 18 includes a hub ring portion 18a having a hub flange 18aa and constituting a race surface on the outboard side, and an inner ring portion 18b constituting a race surface on the inboard side. As shown in FIG. 1, the wheel 9a of the wheel 9 is bolted to the hub flange 18aa so as to overlap the brake rotor 21a. The inner ring 18 rotates around the rotation axis O.
 図6に示すように、アウターリング16は、外輪19の外周面に嵌合された円環部16aと、この円環部16aの外周から上下に突出して設けられたトラニオン軸状の取付軸部16b,16bとを有する。各取付軸部16bは、転舵軸心Aに同軸に設けられる。図2に示すように、ブレーキ21は、ブレーキロータ21aと、ブレーキキャリパ21bとを有する。ブレーキキャリパ21bは、外輪19に一体にアーム状に突出して形成された上下二箇所のブレーキキャリパ取付部22(図4)に取付けられる。 As shown in FIG. 6, the outer ring 16 includes an annular portion 16 a fitted to the outer peripheral surface of the outer ring 19, and a trunnion shaft-like mounting shaft portion provided so as to protrude vertically from the outer periphery of the annular portion 16 a. 16b, 16b. Each attachment shaft portion 16 b is provided coaxially with the turning shaft center A. As shown in FIG. 2, the brake 21 has a brake rotor 21a and a brake caliper 21b. The brake caliper 21b is mounted on two upper and lower brake caliper mounting portions 22 (FIG. 4) formed integrally with the outer ring 19 so as to project into an arm shape.
 <回転許容支持部品4およびユニット支持部材3について>
 図6に示すように、各回転許容支持部品4は転がり軸受から成る。この例では、転がり軸受として、テーパころ軸受が適用されている。転がり軸受は、取付軸部16bの外周に嵌合された内輪4aと、ユニット支持部材3に後述するように嵌合された外輪4bと、内外輪4a,4b間に介在する複数の転動体4cとを有する。
<About the rotation-supporting support component 4 and the unit support member 3>
As shown in FIG. 6, each rotation-allowing support component 4 includes a rolling bearing. In this example, a tapered roller bearing is applied as the rolling bearing. The rolling bearing includes an inner ring 4a fitted to the outer periphery of the mounting shaft portion 16b, an outer ring 4b fitted to the unit support member 3 as described later, and a plurality of rolling elements 4c interposed between the inner and outer rings 4a and 4b. And have.
 ユニット支持部材3は、ユニット支持部材本体3Aと、ユニット支持部材結合体3Bとを有する。ユニット支持部材本体3Aのアウトボード側端に、略リング形状のユニット支持部材結合体3Bが着脱自在に固定されている。ユニット支持部材結合体3Bのインボード側側面のうち上下の部分には、部分的な凹球面状の嵌合孔形成部3aがそれぞれ形成されている。 The unit support member 3 includes a unit support member main body 3A and a unit support member combined body 3B. A substantially ring-shaped unit support member assembly 3B is detachably fixed to the end of the unit support member main body 3A on the outboard side. Partial concave spherical fitting hole forming portions 3a are respectively formed on the upper and lower portions of the side surface of the inboard side of the unit support member assembly 3B.
 図5Aおよび図6に示すように、ユニット支持部材本体3Aのアウトボード側端のうち上下の部分には、部分的な凹球面状の嵌合孔形成部3Aaがそれぞれ形成されている。図3に示すように、ユニット支持部材本体3Aのアウトボード側端にユニット支持部材結合体3Bが固定され、各上下の部分につき、嵌合孔形成部3a,3Aa(図5A)が互いに組み合わされることにより、全周に連なる嵌合孔が形成される。なお図3において、ユニット支持部材3を一点鎖線で表す。図6に示すように、この嵌合孔に外輪4bが嵌合されている。 As shown in FIGS. 5A and 6, partial concave spherical fitting hole forming portions 3Aa are respectively formed on the upper and lower portions of the outboard side end of the unit support member main body 3A. As shown in FIG. 3, the unit support member assembly 3B is fixed to the end of the unit support member main body 3A on the outboard side, and the fitting hole forming portions 3a and 3Aa (FIG. 5A) are combined with each other for each upper and lower part. As a result, a fitting hole is formed continuously around the entire circumference. In FIG. 3, the unit support member 3 is indicated by a one-dot chain line. As shown in FIG. 6, the outer ring 4b is fitted in the fitting hole.
 各取付軸部16bには、雌ねじ部が径方向に延びるように形成され、この雌ねじ部に螺合するボルト23が設けられている。内輪4aの端面に円板状の押圧部材24を介在させ、前記雌ねじ部に螺合するボルト23により、内輪4aの端面に押圧力を付与することで、各回転許容支持部品4にそれぞれ予圧を与えている。これにより各回転許容支持部品4の剛性を高め得る。なお、回転許容支持部品4の転がり軸受は、テーパころ軸受に代えてアンギュラ玉軸受または四点接触玉軸受を用いてもよい。その場合も、上記と同様に予圧を与えることができる。 Each mounting shaft portion 16b is formed with a female screw portion extending in the radial direction, and is provided with a bolt 23 that is screwed into the female screw portion. A disc-like pressing member 24 is interposed on the end surface of the inner ring 4a, and a preload is applied to each rotation-allowing support component 4 by applying a pressing force to the end surface of the inner ring 4a by a bolt 23 that is screwed into the female screw portion. Giving. Thereby, the rigidity of each rotation permission support component 4 can be improved. The rolling bearing of the rotation-allowing support component 4 may be an angular ball bearing or a four-point contact ball bearing instead of the tapered roller bearing. In such a case as well, a preload can be applied in the same manner as described above.
 図2に示すように、補助転舵力受け部17は、ハブベアリング15の外輪19に補助転舵力を与える作用点となる部位であり、外輪19の外周の一部に一体に突出したアーム部として設けられている。この補助転舵力受け部17は、ジョイント部8を介して、転舵用アクチュエータ5の直動出力部25aに回転自在に連結されている。これにより、転舵用アクチュエータ5の直動出力部25aが進退することで、ハブユニット本体2が転舵軸心A(図1)回りに回転、つまり補助転舵させられる。 As shown in FIG. 2, the auxiliary turning force receiving portion 17 is a portion that serves as an action point for applying the auxiliary turning force to the outer ring 19 of the hub bearing 15, and is an arm that projects integrally with a part of the outer periphery of the outer ring 19. It is provided as a part. The auxiliary turning force receiving portion 17 is rotatably connected to the linear motion output portion 25 a of the turning actuator 5 via the joint portion 8. As a result, when the linear motion output portion 25a of the steering actuator 5 advances and retreats, the hub unit main body 2 rotates around the turning axis A (FIG. 1), that is, is auxiliary-steered.
 <転舵用アクチュエータ5>
 図3に示すように、転舵用アクチュエータ5は、ハブユニット本体2を転舵軸心A(図1)回りに回転駆動させるアクチュエータ本体7を有する。図2に示すように、アクチュエータ本体7は、モータ26と、モータ26の回転を減速する減速機27と、この減速機27の正逆の回転出力を直動出力部25aの往復直線動作に変換する直動機構25とを備える。モータ26は、例えば永久磁石型同期モータとされるが、直流モータであっても、誘導モータであってもよい。
<Steering actuator 5>
As shown in FIG. 3, the steering actuator 5 includes an actuator body 7 that drives the hub unit body 2 to rotate about the turning axis A (FIG. 1). As shown in FIG. 2, the actuator body 7 converts a motor 26, a speed reducer 27 that decelerates the rotation of the motor 26, and a forward / reverse rotation output of the speed reducer 27 into a reciprocating linear motion of the linear motion output unit 25a. And a linear motion mechanism 25. The motor 26 is, for example, a permanent magnet type synchronous motor, but may be a DC motor or an induction motor.
 減速機27は、ベルト伝達機構等の巻き掛け式伝達機構またはギヤ列等を用いることができ、図2の例ではベルト伝達機構が用いられている。減速機27は、ドライブプーリ27aと、ドリブンプーリ27bと、ベルト27cとを有する。モータ26のモータ軸にドライブプーリ27aが結合され、直動機構25にドリブンプーリ27bが設けられている。このドリブンプーリ27bは、前記モータ軸に平行に配置されている。モータ26の駆動力は、ドライブプーリ27aからベルト27cを介してドリブンプーリ27bに伝達される。前記ドライブプーリ27aとドリブンプーリ27bとベルト27cとで、巻き掛け式の減速機27が構成される。 The reduction gear 27 can use a wrapping transmission mechanism such as a belt transmission mechanism or a gear train, and a belt transmission mechanism is used in the example of FIG. The reducer 27 includes a drive pulley 27a, a driven pulley 27b, and a belt 27c. A drive pulley 27 a is coupled to the motor shaft of the motor 26, and a driven pulley 27 b is provided in the linear motion mechanism 25. The driven pulley 27b is disposed in parallel to the motor shaft. The driving force of the motor 26 is transmitted from the drive pulley 27a to the driven pulley 27b via the belt 27c. The drive pulley 27a, the driven pulley 27b, and the belt 27c constitute a winding-type speed reducer 27.
 直動機構25は、滑りねじまたはボールねじ等の送りねじ機構、またはラック・ピニオン機構等を用いることができ、この例では台形ねじの滑りねじを用いた送りねじ機構が用いられている。直動機構25は、前記台形ねじの滑りねじを用いた送りねじ機構を備えるため、タイヤ9bからの逆入力の防止効果を高め得る。モータ26、減速機27および直動機構25を備えたアクチュエータ本体7は、準組立品として組み立てられてケース6bにボルト等により着脱自在に取り付けられる。なお、モータ26の駆動力を、減速機を介さず直接直動機構25へ伝達する機構も可能である。 As the linear motion mechanism 25, a feed screw mechanism such as a slide screw or a ball screw, a rack and pinion mechanism, or the like can be used. In this example, a feed screw mechanism using a trapezoidal screw slide screw is used. Since the linear motion mechanism 25 includes a feed screw mechanism that uses a sliding screw of the trapezoidal screw, the effect of preventing reverse input from the tire 9b can be enhanced. The actuator body 7 including the motor 26, the speed reducer 27, and the linear motion mechanism 25 is assembled as a semi-assembly and is detachably attached to the case 6b with bolts or the like. A mechanism that directly transmits the driving force of the motor 26 to the linear motion mechanism 25 without using a reduction gear is also possible.
 ケース6bは、ユニット支持部材3の一部として、ユニット支持部材本体3Aに一体に形成されている。ケース6bは、有底筒状に形成され、モータ26を支持するモータ収容部と、直動機構25を支持する直動機構収容部が設けられている。前記モータ収容部には、モータ26をケース内所定位置に支持する嵌合孔が形成されている。前記直動機構収容部には、直動機構25をケース内所定位置に支持する嵌合孔、および、直動出力部25aの進退を許す貫通孔等が形成されている。 The case 6b is integrally formed with the unit support member main body 3A as a part of the unit support member 3. The case 6 b is formed in a bottomed cylindrical shape, and is provided with a motor housing portion that supports the motor 26 and a linear motion mechanism housing portion that supports the linear motion mechanism 25. A fitting hole for supporting the motor 26 at a predetermined position in the case is formed in the motor housing portion. The linear motion mechanism accommodating portion is formed with a fitting hole for supporting the linear motion mechanism 25 at a predetermined position in the case, a through hole for allowing the linear motion output portion 25a to advance and retreat.
 図3に示すように、ユニット支持部材本体3Aは、前記ケース6b、ショックアブソーバの取り付け部となるショックアブソーバ取り付け部6c、およびステアリング装置11(図2)の結合部となるステアリング装置結合部6dを有する。これらショックアブソーバ取り付け部6cおよびステアリング装置結合部6dも、ユニット支持部材本体3Aに一体に形成されている。ユニット支持部材本体3Aの外表面部における上部に、ショックアブソーバ取り付け部6cが突出するように形成されている。ユニット支持部材本体3Aの外表面部における側面部には、ステアリング装置結合部6dが突出するように形成されている。 As shown in FIG. 3, the unit support member main body 3A includes the case 6b, a shock absorber mounting portion 6c serving as a shock absorber mounting portion, and a steering device coupling portion 6d serving as a coupling portion of the steering device 11 (FIG. 2). Have. The shock absorber mounting portion 6c and the steering device coupling portion 6d are also integrally formed with the unit support member main body 3A. A shock absorber mounting portion 6c is formed on the upper portion of the outer surface portion of the unit support member main body 3A so as to protrude. A steering device coupling portion 6d is formed on the side surface portion of the outer surface portion of the unit support member main body 3A so as to protrude.
 <転舵角度検出手段Sについて>
 図5A,5B~図7に示すように、複数(この例では3つ)の転舵角度検出手段Sは、ハブユニット本体2の転舵軸心A回りの回転角度を検出する。図5A,5Bに示すように、複数の転舵角度検出手段Sにおける一つは、転舵角度を直接検出する角度センサSaであり、転舵軸上に設けられている。この角度センサSaは、回転側の押圧部材24の上面に設けられたエンコーダSaaと、固定側のユニット支持部材3に設けられエンコーダSaaに対し隙間を空けて対峙する磁気センサ部Sabとを有する。
<About the turning angle detection means S>
As shown in FIGS. 5A and 5B to FIG. 7, a plurality (three in this example) of turning angle detection means S detect the rotation angle of the hub unit body 2 around the turning axis A. As shown in FIGS. 5A and 5B, one of the plurality of turning angle detection means S is an angle sensor Sa that directly detects the turning angle, and is provided on the turning shaft. The angle sensor Sa includes an encoder Saa provided on the upper surface of the rotation-side pressing member 24 and a magnetic sensor unit Sab provided on the fixed-side unit support member 3 and facing the encoder Saa with a gap.
 図5Bに示すように、この例のエンコーダSaaは、円周方向に沿ってN極とS極が交互に着磁された磁気トラックを有する磁気エンコーダである。なお押圧部材24自体にエンコーダSaaを形成してもよい。その他エンコーダSaaは、図示しないが円周方向に凹部と凸部が交互に並ぶ歯車形状とされた磁性体の金属材料から成るパルサーリングであってもよい。磁気センサ部Sabの出力信号は、後述する目標左右輪タイヤ角度計算部159(図8)に与えられる。目標左右輪タイヤ角度計算部159(図8)では、例えば、前記出力信号をパルス化しこのパルス数に基づいて転舵角度を演算する。 As shown in FIG. 5B, the encoder Saa in this example is a magnetic encoder having a magnetic track in which N poles and S poles are alternately magnetized along the circumferential direction. The encoder Saa may be formed on the pressing member 24 itself. In addition, although not shown, the encoder Saa may be a pulsar ring made of a magnetic metal material having a gear shape in which concave portions and convex portions are alternately arranged in the circumferential direction. The output signal of the magnetic sensor unit Sab is given to a target left and right wheel tire angle calculation unit 159 (FIG. 8) to be described later. In the target left and right wheel tire angle calculation unit 159 (FIG. 8), for example, the output signal is pulsed and the turning angle is calculated based on the number of pulses.
 図6および図7に示すように、複数の転舵角度検出手段Sは、転舵角度を間接的に検出する回転センサSbおよび位置センサScを有する。図6に示すように、回転センサSbは、モータ26のステータ,ロータ間の相対的な回転角度を表す信号を検出して出力する。この回転センサSbは、ロータの回転出力軸26aの外周面に設けられる被検出部Sbaと、ケース6b内のモータ収容部に設けられ被検出部Sbaに対し例えば径方向に対向して近接配置される検出部Sbbとを有する。回転センサSbの出力信号は、目標左右輪タイヤ角度計算部159(図8)に与えられる。このような回転センサSbとして例えばレゾルバ等が適用される。なお回転センサSbは、転舵角度を検出すると共にモータ26の回転制御に用いられる。 6 and 7, the plurality of turning angle detection means S includes a rotation sensor Sb and a position sensor Sc that indirectly detect the turning angle. As shown in FIG. 6, the rotation sensor Sb detects and outputs a signal representing a relative rotation angle between the stator and the rotor of the motor 26. The rotation sensor Sb is disposed in close proximity to the detected portion Sba provided on the outer peripheral surface of the rotation output shaft 26a of the rotor and the detected portion Sba provided in the motor housing portion in the case 6b, for example, facing the detected portion Sba. Detection unit Sbb. The output signal of the rotation sensor Sb is given to the target left and right wheel tire angle calculation unit 159 (FIG. 8). For example, a resolver or the like is applied as such a rotation sensor Sb. The rotation sensor Sb is used for detecting the turning angle and controlling the rotation of the motor 26.
 図7に示すように、位置センサScは、直動機構25における直動出力部25aの位置から定められた条件に従って転舵角度を間接的に検出する。この位置センサScは、例えば、磁気式のセンサが適用される。位置センサScは、磁気ターゲットと、磁気センサ部Scaとを有する。前記磁気ターゲットは、直動する直動出力部25aに設けられた永久磁石からなる。ケース6b内の前記直動機構収容部に前記磁気センサ部Scaが設けられる。この磁気センサ部Scaは、所定位置の前記磁気ターゲットに対し半径方向に対向するように配置される。前記磁気センサ部Scaとして、例えば、ホールIC等が適用される。磁気センサ部Scaは、前記磁気ターゲットの磁力を読み取り、直動出力部25aの軸方向位置を検出する。この磁気センサ部Scaの出力信号は、目標左右輪タイヤ角度計算部159(図8)に与えられる。 As shown in FIG. 7, the position sensor Sc indirectly detects the turning angle according to a condition determined from the position of the linear motion output unit 25 a in the linear motion mechanism 25. For example, a magnetic sensor is applied to the position sensor Sc. The position sensor Sc has a magnetic target and a magnetic sensor unit Sca. The magnetic target is composed of a permanent magnet provided in a linear motion output unit 25a that moves linearly. The magnetic sensor unit Sca is provided in the linear motion mechanism housing unit in the case 6b. The magnetic sensor unit Sca is disposed so as to face the magnetic target at a predetermined position in the radial direction. For example, a Hall IC or the like is applied as the magnetic sensor unit Sca. The magnetic sensor unit Sca reads the magnetic force of the magnetic target and detects the axial position of the linear motion output unit 25a. The output signal of the magnetic sensor unit Sca is given to the target left and right wheel tire angle calculation unit 159 (FIG. 8).
 <転舵システムについて>
 図3に示すように、この転舵システムは、この転舵機能付ハブユニット1と、この転舵機能付ハブユニット1の転舵用アクチュエータ5を制御する制御装置29とを備える。制御装置29は、制御部30と、アクチュエータ駆動制御部31とを有する。制御部30は、角度センサSa、回転センサSb(図8)および位置センサSc(図8)のうち少なくともいずれか一つの出力、および上位制御部32から与えられた補助転舵角指令信号(転舵角指令信号)eに応じた電流指令信号を出力する。
<About the steering system>
As shown in FIG. 3, the steering system includes the hub unit 1 with a steering function and a control device 29 that controls the steering actuator 5 of the hub unit 1 with the steering function. The control device 29 includes a control unit 30 and an actuator drive control unit 31. The control unit 30 outputs at least one of the angle sensor Sa, the rotation sensor Sb (FIG. 8), and the position sensor Sc (FIG. 8), and the auxiliary turning angle command signal (the rotation control signal) given from the host control unit 32. A current command signal corresponding to the steering angle command signal e is output.
 前記上位制御部32は制御部30の上位の制御手段であり、この上位制御部32として、例えば、車両全般を制御する電気制御ユニット(Vehicle Control Unit,略称VCU)が適用される。アクチュエータ駆動制御部31は、制御部30から入力された電流指令信号に応じた電流を出力して転舵用アクチュエータ5を駆動制御する。アクチュエータ駆動制御部31は、例えば、図示しないスイッチング素子を用いたハーフブリッジ回路を構成し、前記スイッチング素子のON-OFFデューティ比によりモータ印加電圧を決定するPWM制御を行う。これにより、運転者のハンドル操作による転舵に付加して、車輪を微小に角度変化することができる。直線走行時にも、それぞれの場面に合わせてトー角度の量を調整し得る。 The upper control unit 32 is an upper control means of the control unit 30, and an electric control unit (Vehicle Control Unit, abbreviated as VCU) for controlling the entire vehicle is applied as the upper control unit 32, for example. The actuator drive control unit 31 drives and controls the steering actuator 5 by outputting a current corresponding to the current command signal input from the control unit 30. The actuator drive control unit 31 configures, for example, a half bridge circuit using a switching element (not shown), and performs PWM control for determining a motor applied voltage based on the ON-OFF duty ratio of the switching element. Thereby, in addition to the steering by a driver | operator's steering wheel operation, a wheel can change a small angle. Even when running straight, the amount of toe angle can be adjusted to suit each scene.
 <制御部30の詳細構成について>
 図8に示すように、制御部30は、規範横加速度計算部152、右輪タイヤ角度計算部153、左輪タイヤ角度計算部154、右輪路面摩擦係数計算部155、目標ヨーレート計算部156、左輪路面摩擦係数計算部157、目標ヨーレート補正部158、目標左右輪タイヤ角度計算部159、右輪指令値計算部160、および左輪指令値計算部161を備える。
<Detailed Configuration of Control Unit 30>
As shown in FIG. 8, the control unit 30 includes a reference lateral acceleration calculation unit 152, a right wheel tire angle calculation unit 153, a left wheel tire angle calculation unit 154, a right wheel road surface friction coefficient calculation unit 155, a target yaw rate calculation unit 156, a left wheel. A road surface friction coefficient calculation unit 157, a target yaw rate correction unit 158, a target left and right wheel tire angle calculation unit 159, a right wheel command value calculation unit 160, and a left wheel command value calculation unit 161 are provided.
 右輪タイヤ角度計算部153および左輪タイヤ角度計算部154は、所定の周期で、上位制御部32から操舵角情報および車高情報を取得する。右輪タイヤ角度計算部153および左輪タイヤ角度計算部154は、取得した操舵角情報および車高情報に基づいて、この転舵システムが転舵を行うタイヤ(車輪)の現在の角度を算出する。右輪タイヤ角度計算部153および左輪タイヤ角度計算部154は、算出したタイヤ角度情報を規範横加速計算部152に出力する。 The right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154 acquire steering angle information and vehicle height information from the host control unit 32 at a predetermined cycle. The right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154 calculate the current angle of the tire (wheel) to which the steering system turns based on the acquired steering angle information and vehicle height information. The right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154 output the calculated tire angle information to the reference lateral acceleration calculation unit 152.
 規範横加速度計算部152は、上位制御部32から取得した車速情報、ならびに前記タイヤ角度情報に基づいて、規範横加速度の計算を行う。すなわち、規範横加速度計算部152は、右輪タイヤ角度計算部153および左輪タイヤ角度計算部154からタイヤ角度情報で表されるタイヤ角度、車速情報で表される車速に基づいて、規範横加速度の計算を行う。規範横加速度計算部152は、算出した規範横加速度を規範横加速度情報として右輪路面摩擦係数算出部155および左輪路面摩擦係数計算部157に出力する。 The standard lateral acceleration calculation unit 152 calculates the standard lateral acceleration based on the vehicle speed information acquired from the host control unit 32 and the tire angle information. That is, the reference lateral acceleration calculation unit 152 calculates the reference lateral acceleration based on the tire angle represented by the tire angle information and the vehicle speed represented by the vehicle speed information from the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154. Perform the calculation. The reference lateral acceleration calculation unit 152 outputs the calculated reference lateral acceleration as reference lateral acceleration information to the right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157.
 右輪路面摩擦係数計算部155および左輪路面摩擦係数計算部157は、上位制御部32から取得する実横加速度情報および規範横加速度計算部152から入力される規範横加速度情報に基づいて、路面摩擦係数の計算を行う。具体的には、右輪路面摩擦係数計算部155および左輪路面摩擦係数計算部157は、規範横加速度計算部152から規範横加速度情報と、右輪タイヤ角度計算部153および左輪タイヤ角度計算部154からタイヤ角度情報を取得し、予め定められたマップに基づいて、実横加速度/規範横加速度とタイヤ角度とから、路面摩擦係数を算出する。前記マップには、実横加速度/規範横加速度と、タイヤ角度と、摩擦係数との関係が定められている。このマップは例えば試験またはシミュレーション等により定められる。 The right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157 are based on the actual lateral acceleration information acquired from the host control unit 32 and the reference lateral acceleration information input from the reference lateral acceleration calculation unit 152. Calculate the coefficient. Specifically, the right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157 receive the reference lateral acceleration information from the reference lateral acceleration calculation unit 152, the right wheel tire angle calculation unit 153, and the left wheel tire angle calculation unit 154. Tire angle information is obtained from the vehicle, and a road surface friction coefficient is calculated from the actual lateral acceleration / reference lateral acceleration and the tire angle based on a predetermined map. In the map, the relationship between the actual lateral acceleration / reference lateral acceleration, the tire angle, and the friction coefficient is defined. This map is determined by testing or simulation, for example.
 右輪路面摩擦係数計算部155および左輪路面摩擦係数計算部157は、算出した右輪の路面摩擦係数である右輪路面摩擦係数情報と、左輪の路面摩擦係数である左輪路面摩擦係数情報を目標ヨーレート補正部158に出力する。目標ヨーレート計算部156は、上位制御部32から取得する車速情報および操舵角情報に基づいて、目標ヨーレートを計算し、この算出した目標ヨーレートを目標ヨーレート情報として目標ヨーレート補正部158に出力する。 The right wheel road surface friction coefficient calculation unit 155 and the left wheel road surface friction coefficient calculation unit 157 target the right wheel road surface friction coefficient information that is the calculated road surface friction coefficient of the right wheel and the left wheel road surface friction coefficient information that is the road surface friction coefficient of the left wheel. The data is output to the yaw rate correction unit 158. The target yaw rate calculation unit 156 calculates a target yaw rate based on the vehicle speed information and the steering angle information acquired from the host control unit 32, and outputs the calculated target yaw rate to the target yaw rate correction unit 158 as target yaw rate information.
 目標ヨーレート補正部158は、前記右輪路面摩擦係数情報および前記左輪路面摩擦係数情報と、前記目標ヨーレート情報を取得し、前記右輪路面摩擦係数情報および前記左輪路面摩擦係数情報で表される路面摩擦係数に応じて目標ヨーレートの補正を行う。目標ヨーレート補正部158は、この補正後の目標ヨーレートを補正後ヨーレート情報として目標左右輪タイヤ角度計算部159へ出力する。 The target yaw rate correction unit 158 acquires the right wheel road surface friction coefficient information, the left wheel road surface friction coefficient information, and the target yaw rate information, and is represented by the right wheel road surface friction coefficient information and the left wheel road surface friction coefficient information. The target yaw rate is corrected according to the friction coefficient. The target yaw rate correction unit 158 outputs the corrected target yaw rate to the target left and right wheel tire angle calculation unit 159 as corrected yaw rate information.
 目標左右輪タイヤ角度計算部159は、前記補正後ヨーレート情報と、上位制御部32から実ヨーレート情報θy、アクセル指令値Xおよびブレーキ指令値Xと、右輪路面摩擦係数計算部155から右輪路面摩擦係数情報、左輪路面摩擦係数計算部157から左輪路面摩擦係数情報を取得し、左右輪のタイヤ角度の目標値である目標左右輪タイヤ角度を計算する。目標左右輪タイヤ角度計算部159は、計算した左右輪それぞれの目標タイヤ角度を目標タイヤ角度情報として、右輪指令値計算部160および左輪指令値計算部161へ出力する。 Target right wheel tire angle calculation unit 159, and the corrected yaw rate information actual yaw rate information from the host control unit 32 [theta] y, and the accelerator command value X A and braking command value X B, right from the right wheel road surface friction coefficient calculator 155 The left wheel road surface friction coefficient information is obtained from the wheel road surface friction coefficient information and the left wheel road surface friction coefficient calculation unit 157, and the target left and right wheel tire angles that are target values of the tire angles of the left and right wheels are calculated. The target left and right wheel tire angle calculation unit 159 outputs the calculated target tire angles of the left and right wheels to the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 as target tire angle information.
 右輪指令値計算部160および左輪指令値計算部161は、目標左右輪タイヤ角度計算部159から目標タイヤ角度情報を、右輪タイヤ角度計算部153および左輪タイヤ角度計算部154から、現在のタイヤ角度を表すタイヤ角度情報を取得する。取得後、右輪指令値計算部160および左輪指令値計算部161は、目標タイヤ角度情報で表される目標タイヤ角度と、現在のタイヤ角度とを比較し、偏差量に応じて右輪の転舵機能付ハブユニット1および左輪の転舵機能付ハブユニット1のそれぞれを転舵させる量を表す右輪転舵量情報および左輪転舵量情報を生成する。右輪指令値計算部160は、生成した右輪転舵量情報(電流指令信号)を右輪用のアクチュエータ駆動制御部31へ出力する。左輪指令値計算部161は、生成した左輪転舵量情報(電流指令信号)を左輪用のアクチュエータ駆動制御部31へ出力する。 The right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 receive the target tire angle information from the target left and right wheel tire angle calculation unit 159 and the current tire from the right wheel tire angle calculation unit 153 and the left wheel tire angle calculation unit 154, respectively. Tire angle information representing an angle is acquired. After the acquisition, the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 compare the target tire angle represented by the target tire angle information with the current tire angle, and change the right wheel according to the deviation amount. The right wheel turning amount information and the left wheel turning amount information representing the amount of turning of each of the hub unit with rudder function 1 and the hub unit with left wheel turning function 1 are generated. The right wheel command value calculation unit 160 outputs the generated right wheel steering amount information (current command signal) to the right wheel actuator drive control unit 31. The left wheel command value calculation unit 161 outputs the generated left wheel turning amount information (current command signal) to the left wheel actuator drive control unit 31.
 各アクチュエータ駆動制御部31は、右輪指令値計算部160および左輪指令値計算部161から入力された電流指令信号に応じた電流を出力して転舵用アクチュエータ5(図3)を駆動制御する。具体的には、左右輪のアクチュエータ駆動制御部31,31は、右輪指令値計算部160および左輪指令値計算部161から右輪転舵量情報および左輪転舵量情報が入力されると、原則として(正常時には)、現在の左右輪の転舵角を表す各モータ26(図3)の位置情報である回転センサSbの出力信号を取得する。 Each actuator drive control unit 31 drives and controls the steering actuator 5 (FIG. 3) by outputting a current corresponding to the current command signal input from the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161. . Specifically, the right and left wheel actuator drive control units 31 and 31 receive the right wheel turning amount information and the left wheel turning amount information from the right wheel command value calculation unit 160 and the left wheel command value calculation unit 161 in principle. (When normal), an output signal of the rotation sensor Sb, which is position information of each motor 26 (FIG. 3) indicating the current turning angle of the left and right wheels, is acquired.
 各アクチュエータ駆動制御部31は、前記右輪転舵量情報および前記左輪転舵量情報に基づいて、各モータ26(図3)の目標位置を決定し、各モータ26(図3)へ流す電流を出力し、左右輪の角度センサSa、位置センサScおよび回転センサSbの舵角情報を出力する。すなわち左右の転舵機能付きハブユニット1,1にそれぞれ設けられた回転センサSb、位置センサScおよび角度センサSaの出力信号は、目標左右輪タイヤ角度計算部159に返され左右輪の転舵角度に変換される。なお、回転センサSbの出力信号は、減速機27の減速比等を考慮して転舵角度に変換される。 Each actuator drive control unit 31 determines a target position of each motor 26 (FIG. 3) based on the right wheel turning amount information and the left wheel turning amount information, and supplies a current to be supplied to each motor 26 (FIG. 3). The steering angle information of the angle sensor Sa, the position sensor Sc and the rotation sensor Sb of the left and right wheels is output. That is, the output signals of the rotation sensor Sb, the position sensor Sc, and the angle sensor Sa provided in the left and right hub units 1 and 1 with a turning function are returned to the target left and right wheel tire angle calculation unit 159, and the turning angles of the left and right wheels are returned. Is converted to The output signal of the rotation sensor Sb is converted into a turning angle in consideration of the reduction ratio of the reduction gear 27 and the like.
 目標左右輪タイヤ角度計算部159は、各輪において、変換された三つの転舵角度を互いに比較し全てが一致している場合、回転センサSb、位置センサScおよび角度センサSaが全て正常状態と判定し各転舵用アクチュエータ5(図3)の駆動制御を維持する。いずれかの転舵角度に不一致がある場合、目標左右輪タイヤ角度計算部159は、いずれかのセンサが異常状態と判断して、上位制御部32および各アクチュエータ駆動制御部31に異常発生情報を出力する。 The target left and right wheel tire angle calculation unit 159 compares the three converted steering angles with each other, and when all of them match, the rotation sensor Sb, the position sensor Sc, and the angle sensor Sa are all in a normal state. Determination is made and the drive control of each steering actuator 5 (FIG. 3) is maintained. When there is a discrepancy in any of the turning angles, the target left and right wheel tire angle calculation unit 159 determines that any of the sensors is in an abnormal state, and sends the abnormality occurrence information to the host control unit 32 and each actuator drive control unit 31. Output.
 これにより上位制御部32は、例えば、警告灯、警告音等により運転者に異常状態を報知する制御を行う。これと共に各アクチュエータ駆動制御部31は、各転舵用アクチュエータ5(図3)の駆動制御を停止する。またいずれか一つのセンサから変換された転舵角度のみが、他の二つのセンサから変換された転舵角度に対し不一致となっている場合、不一致となったセンサの使用を中止し他のセンサを用いて各転舵用アクチュエータ5(図3)の駆動制御を維持することも可能である。 Thereby, the upper control unit 32 performs control for notifying the driver of the abnormal state by using, for example, a warning light or a warning sound. At the same time, each actuator drive control unit 31 stops the drive control of each steering actuator 5 (FIG. 3). If only the turning angle converted from one of the sensors is inconsistent with the turning angle converted from the other two sensors, the use of the mismatched sensor is stopped and the other sensor It is also possible to maintain the drive control of each steering actuator 5 (FIG. 3) using.
 <作用効果>
 以上説明した転舵機能付きハブユニット1によれば、車輪9を支持するハブベアリング15を含むハブユニット本体2を、転舵用アクチュエータ5の駆動により、前記転舵軸心A回りに自由に回転させることができる。このため、車輪9毎に独立して転舵が行え、また車両の走行状況に応じて、車輪9のトー角を任意に変更することができる。そのため、前輪等の転舵輪および後輪等の非転舵輪のいずれに用いてもよい。転舵輪に用いる場合は、ステアリング装置により方向が変化させられる部材に設置されることにより、運転者のハンドル操作による転舵に付加して、左右の車輪個別の、または左右輪連動した車輪の微小な転舵角度変化を行わせる機構となる。
<Effect>
According to the hub unit 1 with a turning function described above, the hub unit body 2 including the hub bearing 15 that supports the wheel 9 is freely rotated around the turning axis A by driving the turning actuator 5. Can be made. For this reason, steering can be performed independently for each wheel 9, and the toe angle of the wheel 9 can be arbitrarily changed according to the traveling state of the vehicle. Therefore, it may be used for any of the steered wheels such as front wheels and the non-steered wheels such as rear wheels. When used for steered wheels, it is installed on a member whose direction can be changed by the steering device, so that it can be added to the steer by the steering operation of the driver, and the left and right wheels can be individually or linked to the left and right wheels. It is a mechanism that makes a change in the turning angle.
 また、旋回走行時に、走行速度に応じて左右輪の舵角差を変えることができる。例えば高速域の旋回走行においてはパラレルジオメトリとし、低速域の旋回走行においてはアッカーマンジオメトリとするなど、走行中にステアリングジオメトリを変化させることができる。このように走行中に車輪の転舵角度を任意に変更することができるため、車両の運動性能を向上させ、高い安定性と信頼性で走行することが可能となる。さらに、左右の操舵輪の転舵角度を適切に変えることで、旋回走行における車両の旋回半径を小さくし、小回り性能を向上させることもできる。さらに直線走行時にも、それぞれの場面に合わせてトー角度の量を調整することで、燃費を低下させることなく、走行安定性を確保するなど調整が可能である。 Also, when turning, the rudder angle difference between the left and right wheels can be changed according to the running speed. For example, the steering geometry can be changed during traveling, such as parallel geometry for turning in a high speed range and Ackermann geometry for turning in a low speed range. Thus, since the turning angle of the wheel can be arbitrarily changed during traveling, it is possible to improve the motion performance of the vehicle and travel with high stability and reliability. Furthermore, by appropriately changing the turning angle of the left and right steered wheels, the turning radius of the vehicle in turning traveling can be reduced, and the turning performance can be improved. Furthermore, even during straight running, it is possible to make adjustments such as ensuring running stability without reducing fuel consumption by adjusting the amount of toe angle in accordance with each scene.
 このように車輪9の転舵角度を変化させることで、車両の挙動を制御するためには、正確に車輪の転舵角度を制御する必要がある。この構成によると、特に、ハブユニット本体2の前記転舵軸心A回りの回転角度を検出する複数の転舵角度検出手段Sを備えたため、複数の転舵角度検出手段Sのうちのいずれか1つに異常が発生した場合でも、他の転舵角度検出手段を用いて車輪9の角度を所望の角度に正確に制御することが可能となる。 In order to control the behavior of the vehicle by changing the turning angle of the wheel 9 in this way, it is necessary to accurately control the turning angle of the wheel. According to this configuration, in particular, since the plurality of turning angle detection means S for detecting the rotation angle of the hub unit body 2 around the turning axis A is provided, any one of the plurality of turning angle detection means S is provided. Even when an abnormality occurs in one, the angle of the wheel 9 can be accurately controlled to a desired angle by using another turning angle detection means.
 また転舵用アクチュエータ5の剛性に起因する個体差があっても、複数の転舵角度検出手段Sの出力信号の関係を予め試験等により設定しておくことで、微小な転舵角度の範囲内で正確な転舵角度を採ることが可能となる。したがって、車両の操縦・安定性を向上させることができる。複数の転舵角度検出手段Sの一つとして、角度センサSaが転舵軸上に設けられているため、ハブベアリング15の微小な角度変化を正確に出力することができる。これにより車輪9の角度を所望の角度により正確に制御することが可能となる。 Even if there is an individual difference due to the rigidity of the steering actuator 5, the relationship between the output signals of the plurality of steering angle detection means S is set in advance by a test or the like, so that a small range of the steering angle can be obtained. It is possible to take an accurate steering angle. Therefore, the handling and stability of the vehicle can be improved. As one of the plurality of turning angle detection means S, since the angle sensor Sa is provided on the turning shaft, a minute angle change of the hub bearing 15 can be accurately output. As a result, the angle of the wheel 9 can be accurately controlled by a desired angle.
 <他の実施形態について>
 第1実施形態では、図2に示すように、アクチュエータ本体7の略全体がケース6bに覆われているが、この例に限定されるものではない。他の実施形態として、例えば、アクチュエータ本体7のうちモータ26が、ケース6bから露出して同ケース6bの外表面に取り付けられる所謂外付け構造であってもよい。この場合、既製品のモータを用いることができるうえ、モータを容易に交換することができる等、メンテナンス性を高めることが可能となる。その他の実施形態として、ユニット支持部材3を、足回りフレーム部品に別体に構成し、この足回りフレーム部品にユニット支持部材3を着脱自在に設けてもよい。
<About other embodiments>
In the first embodiment, as shown in FIG. 2, substantially the entire actuator body 7 is covered with the case 6b, but the present invention is not limited to this example. As another embodiment, for example, a so-called external structure in which the motor 26 of the actuator body 7 is exposed from the case 6b and attached to the outer surface of the case 6b may be employed. In this case, an off-the-shelf motor can be used, and maintenance can be improved, for example, the motor can be easily replaced. As another embodiment, the unit support member 3 may be configured separately from the underbody frame part, and the unit support member 3 may be detachably provided on the underbody frame part.
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily understand various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1…転舵機能付きハブユニット
2…ハブユニット本体
3…ユニット支持部材
5…転舵用アクチュエータ
6…ナックル(足回りフレーム部品)
9…車輪
12…懸架装置
15…ハブベアリング
25…直動機構
26…モータ
29…制御装置
30…制御部
31…アクチュエータ駆動制御部
S…転舵角度検出手段
Sa…角度センサ
Sb…回転センサ
Sc…位置センサ
DESCRIPTION OF SYMBOLS 1 ... Hub unit with a steering function 2 ... Hub unit main body 3 ... Unit support member 5 ... Actuator for steering 6 ... Knuckle (suspension frame parts)
DESCRIPTION OF SYMBOLS 9 ... Wheel 12 ... Suspension apparatus 15 ... Hub bearing 25 ... Linear motion mechanism 26 ... Motor 29 ... Control apparatus 30 ... Control part 31 ... Actuator drive control part S ... Steering angle detection means Sa ... Angle sensor Sb ... Rotation sensor Sc ... Position sensor

Claims (5)

  1.  車輪を支持するハブベアリングを有するハブユニット本体と、懸架装置の足回りフレーム部品に設けられ、前記ハブユニット本体を上下方向に延びる転舵軸心回りに回転自在に支持するユニット支持部材と、前記ハブユニット本体を前記転舵軸心回りに回転駆動させる転動用アクチュエータと、を備え、
     前記ハブユニット本体の前記転舵軸心回りの回転角度を検出する転舵角度検出手段を備えた転舵機能付きハブユニット。
    A hub unit main body having a hub bearing for supporting a wheel, a unit support member provided on a suspension frame part of a suspension device, and rotatably supporting the hub unit main body around a turning axis extending in the vertical direction; A rolling actuator that rotates the hub unit body about the turning axis, and
    A hub unit with a turning function, comprising a turning angle detection means for detecting a rotation angle of the hub unit body around the turning axis.
  2.  請求項1に記載の転舵機能付きハブユニットにおいて、前記転舵角度検出手段は、転舵角度を直接検出する角度センサであり、この角度センサが転舵軸上に設けられている転舵機能付きハブユニット。 The hub unit with a turning function according to claim 1, wherein the turning angle detection means is an angle sensor that directly detects a turning angle, and the turning function in which the angle sensor is provided on the turning shaft. With hub unit.
  3.  請求項1または請求項2に記載の転舵機能付きハブユニットと、この転舵機能付きハブユニットの前記転動用アクチュエータを制御する制御装置とを備えた転舵システムであって、前記制御装置は、与えられた転舵角指令信号に応じた電流指令信号を出力する制御部と、この制御部から入力された電流指令信号に応じた電流を出力して前記転動用アクチュエータを駆動制御するアクチュエータ駆動制御部とを有する転舵システム。 A steering system comprising: the hub unit with a steering function according to claim 1 or 2; and a control device that controls the rolling actuator of the hub unit with the steering function. A control unit that outputs a current command signal according to a given turning angle command signal, and an actuator drive that drives and controls the rolling actuator by outputting a current according to the current command signal input from the control unit A steering system having a control unit.
  4.  請求項3に記載の転舵システムにおいて、前記転舵用アクチュエータは、モータと、このモータの回転出力を往復直線動作に変換する直動機構とを備え、前記転舵角度検出手段は、転舵角度を直接検出する角度センサと、前記モータの回転角度から定められた条件に従って転舵角度を間接的に検出する回転センサと、前記直動機構における直動出力部の位置から定められた条件に従って転舵角度を間接的に検出する位置センサと、を備え、
     前記制御部は、前記角度センサ、前記回転センサおよび前記位置センサのうち少なくともいずれか二つのセンサの出力信号を互いに比較し定められた判定基準に従って前記転舵角度検出手段の異常を判定する転舵システム。
    4. The steering system according to claim 3, wherein the steering actuator includes a motor and a linear motion mechanism that converts a rotational output of the motor into a reciprocating linear motion, and the steering angle detection means includes An angle sensor that directly detects the angle, a rotation sensor that indirectly detects the steering angle according to a condition determined from the rotation angle of the motor, and a condition determined from the position of the linear motion output unit in the linear motion mechanism A position sensor for indirectly detecting the turning angle,
    The control unit compares the output signals of at least two of the angle sensor, the rotation sensor, and the position sensor with each other, and determines whether the steering angle detection unit is abnormal according to a predetermined criterion. system.
  5.  請求項1または請求項2に記載の転舵機能付きハブユニットを用いて前輪および後輪のいずれか一方または両方が支持された車両。 A vehicle in which one or both of the front wheels and the rear wheels are supported by using the hub unit with a steering function according to claim 1 or 2.
PCT/JP2019/007940 2018-03-05 2019-02-28 Hub unit with steering function, and steering system WO2019172091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-038208 2018-03-05
JP2018038208A JP7049864B2 (en) 2018-03-05 2018-03-05 Vehicles with a steering hub unit, steering system, and steering hub unit

Publications (1)

Publication Number Publication Date
WO2019172091A1 true WO2019172091A1 (en) 2019-09-12

Family

ID=67847129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007940 WO2019172091A1 (en) 2018-03-05 2019-02-28 Hub unit with steering function, and steering system

Country Status (2)

Country Link
JP (1) JP7049864B2 (en)
WO (1) WO2019172091A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022114555A (en) * 2021-01-27 2022-08-08 Ntn株式会社 Steering system and vehicle with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311738A (en) * 1997-05-13 1998-11-24 Toyota Autom Loom Works Ltd Mounting structure of rotational amount detector
WO2013129090A1 (en) * 2012-02-29 2013-09-06 日立建機株式会社 Steering device for vehicle
JP2017001423A (en) * 2015-06-05 2017-01-05 Ntn株式会社 Rear wheel steering control device
US20170217491A1 (en) * 2014-07-26 2017-08-03 Audi Ag Wheel carrier for a two-track motor vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759681B2 (en) 1998-12-25 2006-03-29 日野自動車株式会社 Rear wheel steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311738A (en) * 1997-05-13 1998-11-24 Toyota Autom Loom Works Ltd Mounting structure of rotational amount detector
WO2013129090A1 (en) * 2012-02-29 2013-09-06 日立建機株式会社 Steering device for vehicle
US20170217491A1 (en) * 2014-07-26 2017-08-03 Audi Ag Wheel carrier for a two-track motor vehicle
JP2017001423A (en) * 2015-06-05 2017-01-05 Ntn株式会社 Rear wheel steering control device

Also Published As

Publication number Publication date
JP7049864B2 (en) 2022-04-07
JP2019151230A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
CN111867921B (en) Steering system and vehicle with same
US11731693B2 (en) Hub unit with steering function, steering system, and vehicle
JP6567633B2 (en) Hub unit with steering function and vehicle equipped with the same
US20210009193A1 (en) Steering system and vehicle equipped with same
JP7116566B2 (en) Steering system and vehicle equipped with same
WO2022163567A1 (en) Steering system and vehicle provided with same
JP7068882B2 (en) Steering system and vehicles equipped with it
JP2019171905A (en) Steering system and vehicle comprising the same
WO2019065781A1 (en) Hub unit equipped with steering function, and vehicle provided with same
WO2019172091A1 (en) Hub unit with steering function, and steering system
JP7177681B2 (en) HUB UNIT WITH STEERING FUNCTION AND VEHICLE INCLUDING THE SAME
WO2019189102A1 (en) Hub unit having steering function and vehicle equipped with same
WO2019181663A1 (en) Steering system and vehicle equipped with same
JP7060984B2 (en) Hub unit with steering function and vehicles equipped with it
JP7245077B2 (en) HUB UNIT WITH STEERING FUNCTION AND VEHICLE INCLUDING THE SAME
JP6720393B2 (en) Hub bearing with steering shaft and hub unit with steering function
JP7229751B2 (en) Hub unit with steering function, steering system, and vehicle equipped with the same
JP2023047456A (en) Hub unit with steering function, steering system, and vehicle
JP2024017372A (en) Steering system and vehicle
JP2020097256A (en) Hub unit with steering function and steering system and vehicle including steering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764657

Country of ref document: EP

Kind code of ref document: A1