WO2019171811A1 - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
WO2019171811A1
WO2019171811A1 PCT/JP2019/002578 JP2019002578W WO2019171811A1 WO 2019171811 A1 WO2019171811 A1 WO 2019171811A1 JP 2019002578 W JP2019002578 W JP 2019002578W WO 2019171811 A1 WO2019171811 A1 WO 2019171811A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque sensor
stopper
torque
region portion
region
Prior art date
Application number
PCT/JP2019/002578
Other languages
French (fr)
Japanese (ja)
Inventor
池田 隆男
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2019171811A1 publication Critical patent/WO2019171811A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque sensor that detects torque.
  • Patent Document 1 a sensor that detects torque by elastic deformation of a member is known.
  • An object of an embodiment of the present invention is to provide a torque sensor that increases the sensitivity of the sensor and improves the rigidity against an excessive load.
  • a torque sensor includes a first region portion formed in an annular shape, and a second region formed in an annular shape that is positioned concentrically with the first region portion inside the first region portion.
  • a plurality of beam portions connecting the inside of the first region portion and the outside of the second region portion, and the first region portion and the second region portion
  • a rigidity improving means for improving the rigidity of the beam portion when the torque in the measuring direction exceeds a reference value.
  • FIG. 1 is a configuration diagram showing the configuration of the torque sensor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the torque sensor shown in FIG. 1 cut along an ⁇ - ⁇ line using an adhesive.
  • FIG. 3 is a cross-sectional view of the torque sensor shown in FIG. 1 cut along an ⁇ - ⁇ line using a fixing member.
  • FIG. 4 is a top view showing an upper surface of a stopper according to a modification of the first embodiment.
  • FIG. 5 is a simplified diagram showing the top surface of the stopper when torque is applied to the torque sensor according to the first embodiment.
  • FIG. 6 is a graph illustrating the load torque of the torque sensor according to the first embodiment and the amount of displacement of the gap.
  • FIG. 7 is a graph showing the load torque of the torque sensor according to the first embodiment and the amount of strain of the strain generating body.
  • FIG. 8 is a configuration diagram showing the configuration of the torque sensor according to the second embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing the configuration of the torque sensor 10 according to the first embodiment of the present invention.
  • the torque sensor 10 is a sensor for detecting the torque of the Z-axis moment Mz with the Z-axis (perpendicular to the drawing) as the rotation axis.
  • the torque sensor 10 is mounted on a robot or the like.
  • the torque sensor 10 includes a first region portion 1, a second region portion 2, a plurality of beam portions 3, a plurality of strain generating bodies 4, and a plurality of stoppers 5.
  • the first region portion 1, the second region portion 2, and the plurality of beam portions 3 are integrally formed of a material such as metal.
  • the first region portion 1 is formed in an annular shape.
  • the second region portion 2 is formed in an annular shape having a smaller diameter than the first region portion 1.
  • the second region portion 2 is positioned on a concentric circle on the annular inner side (center side) of the first region portion 1.
  • the plurality of beam portions 3 extend radially from the second region portion 2 and are provided so as to connect the inside of the first region portion 1 and the outside of the second region portion 2. Any number of the beam portions 3 may be provided.
  • region part 1 is a part attached to the load which receives a torque.
  • the first region portion 1 is attached to a movable portion such as a robot hand or arm.
  • the second region portion 2 is a portion that is attached to a power source that generates torque.
  • the 2nd field part 2 is attached to a motor or a reduction gear.
  • the strain body 4 is provided between the first region portion 1 and the second region portion 2 so that a force due to relative displacement between the first region portion 1 and the second region portion 2 is applied.
  • the strain body 4 includes the first protrusion T1 extending in the direction from the first region 1 to the second region 2 and the first from the second region 2 between the two adjacent beam portions 3. It is provided so as to connect the second protrusion T2 extending in the direction of the region 1. Any number of strain generating bodies 4 may be provided. Further, the strain body 4 may be provided anywhere as long as it receives a force due to relative displacement between the first region portion 1 and the second region portion 2. For example, the strain body 4 may be provided on the beam portion 3.
  • the strain body 4 includes a strain gauge that serves as a sensor for detecting strain.
  • the strain gauge is configured to generate an electrical displacement when deformed. Any strain gauge may be used as long as an electrically detectable displacement occurs. For example, the strain gauge may change its electric resistance or generate a voltage according to the amount of deformation.
  • the torque sensor 10 measures torque by detecting these electrical displacements from the strain body 4 (strain gauge).
  • the strain body 4 is used as follows.
  • a pair of strain generating bodies 4 are provided at positions where symmetrical stresses are applied (positions that are left-right symmetric or vertically symmetric).
  • the force in the direction not to be measured is not detected by canceling the output of each strain gauge of the pair of strain generating bodies 4.
  • the torque sensor 10 detects only the torque in the measuring direction (Z-axis moment Mz).
  • the stopper 5 has a rectangular parallelepiped shape whose top and bottom are rectangular or trapezoidal.
  • the stopper 5 is provided between the first region portion 1 and the second region portion 2 so as to be limited when a force due to relative displacement between the first region portion 1 and the second region portion 2 is applied for a predetermined amount or more.
  • the stopper 5 is provided so as to fit in a space surrounded by the first region portion 1, the second region portion 2, and the two adjacent beam portions 3.
  • the stopper 5 is a member for improving the rigidity of the beam portion 3.
  • the material of the stopper 5 is metal, for example.
  • the stopper 5 is attached in a state where a gap SP of a predetermined interval is maintained between each of the two beam portions 3.
  • the width of the gap SP is determined based on the rated torque of the torque sensor 10 or the like. For example, the width of the gap SP is 15 to 30 ⁇ m.
  • the stopper 5 may be provided with a gap SP between the first region portion 1 and the second region portion 2.
  • the stopper 5 may be attached in any way as long as the stopper 5 is maintained in a state where the gap SP is maintained.
  • FIG. 2 is a cross-sectional view of the torque sensor 10 shown in FIG. 1 cut along an ⁇ - ⁇ line using an adhesive AD. With reference to FIG. 2, the method of attaching the stopper 5 with the adhesive agent AD is demonstrated.
  • the top and bottom surfaces of the stopper 5 are chamfered.
  • the first region portion 1, the second region portion 2, or the beam portion 3 may be chamfered.
  • the adhesive AD is an adhesive made of resin such as silicon.
  • the adhesive AD needs to have a cured hardness that is at least lower than the rigidity of the stopper 5. This hardness is so good that it is not resistant to the torque applied to the torque sensor 10. That is, the adhesive AD is better as the cured state is softer as long as the stopper 5 cannot be removed.
  • the adhesive AD is applied around the top and bottom surfaces of the stopper 5 once. By being chamfered, the adhesive AD can easily become familiar around the stopper 5. At this time, the adhesive AD need only be applied to the chamfered portions of the top surface and the bottom surface, and the adhesive AD need not be applied to the side surface of the stopper 5. Further, it is not necessary to apply the adhesive AD once on the top and bottom surfaces, for example, only the four corners of each surface. That is, as long as the strength as the torque sensor 10 is maintained, the number of places where the adhesive AD is applied is the minimum necessary.
  • FIG. 3 is a cross-sectional view of the torque sensor 10 shown in FIG. 1 cut along an ⁇ - ⁇ line using the fixing member H1. With reference to FIG. 3, the method of attaching the stopper 5 with the fixing member H1 is demonstrated.
  • the fixing member H ⁇ b> 1 is fixedly provided on both the left and right sides (the beam portion 3 side) of the upper surface and the bottom surface of the stopper 5. Is not fixed. At this time, a part of the fixing member H1 provided on the upper surface and the bottom surface covers the upper surface and the bottom surface of the beam portion 3. Thereby, the movement of the stopper 5 in the vertical direction is fixed. On the other hand, the movement of the stopper 5 in the horizontal direction has a degree of freedom corresponding to the gap SP.
  • the stopper 5 is attached with four fixing members H1, but any number of fixing members H1 may be provided.
  • the fixing member H ⁇ b> 1 may be fixed to the beam portion 3 without being fixed to the stopper 5.
  • the fixing member H1 may have any shape such as a plate shape or a block shape.
  • FIG. 4 is a top view showing the top surface of a stopper 5a according to a modification of the present embodiment.
  • the upper surface (bottom surface) of the stopper 5a is shaped like an X shape in which elongated plates are overlapped along two diagonals with respect to the rectangular shape of the upper surface of the space where the stopper 5a is mounted.
  • the stopper 5a is attached in a state where gaps SP of a predetermined interval are maintained at the four corners when viewed from above.
  • the method of attaching the stopper 5a is the same as that of the stopper 5 described above, and the adhesive AD may be applied to the gap SP, or the fixing member H1 may be used.
  • FIG. 5 is a simplified diagram showing the upper surface of the stopper 5 when torque is applied to the torque sensor 10 according to the present embodiment.
  • Torque is generated by rotation applied by a power source attached to the torque sensor 10.
  • a Z-axis moment Mz is generated in the torque sensor 10.
  • the first region portion 1 outside the stopper 5 and the second region portion 2 inside the stopper 5 move in directions opposite to each other. Thereby, the beam part 3 located in the both ends of the stopper 5 is elastically deformed so that it may become diagonal.
  • the stopper 5 and the beam portion 3 do not come into contact with each other due to the gap SP between the stopper 5 and the beam portion 3.
  • the Z-axis moment Mz exceeds a predetermined reference value, the beam portion 3 is deformed, so that there is no gap SP in a part, and as shown in FIG.
  • the two regions 2 come in contact with the beam 3 at opposite corners on the side of the region 2.
  • the beam portion 3 is further prevented from being further deformed by the rigidity of the material of the stopper 5.
  • the reference value is, for example, the maximum load assumed under the condition where the torque sensor 10 is normally used.
  • the reference value may be determined based on the rated load, such as a value obtained by multiplying or adding a coefficient to the rated load, or may be determined in any manner.
  • the rated load is, for example, a load that is assumed to be applied most frequently in the torque sensor 10.
  • FIG. 6 is a graph showing the load torque of the torque sensor 10 according to this embodiment and the displacement amount of the gap SP.
  • the rated load is 800 Nm
  • the initial state of the gap SP is 20 ⁇ m
  • the reference value of the overload is 1000 Nm.
  • the width of the gap SP is determined based on the reference value. Specifically, when the reference value torque is applied, the width of the gap SP is determined so that the beam portion 3 is deformed and the gap SP is eliminated.
  • the gap of 20 ⁇ m disappears and the stopper 5 starts to contact the beam portion 3.
  • the deformation amount of the beam portion 3 is determined by the relative displacement amount between the first region portion 1 and the second region portion 2, it is substantially proportional to the deformation amount of the strain body 4. The greater the deformation of the strain body 4 with a small torque, the better the sensitivity (or measurement accuracy) for measuring the torque as the torque sensor 10.
  • the displacement at 1000 Nm is 20 ⁇ m. If there is no stopper 5 and the load is increased to 2000 Nm, which is the maximum load, the displacement amount by simple calculation is doubled to 40 ⁇ m. However, since the elastic deformation rate with respect to the load decreases after the stopper 5 comes into contact with the beam portion 3, the amount of deformation at the actual maximum load can be suppressed to about 26 ⁇ m.
  • FIG. 7 is a graph showing the load torque of the torque sensor 10 and the strain amount of the strain generating body 4 according to the present embodiment.
  • the torque sensor 10 is the same as in FIG.
  • the strain generating body 4 is easily deformed and the sensitivity of the torque sensor 10 as a sensor is increased.
  • the rigidity of the beam portion 3 can be improved, and plastic deformation or destruction of the beam portion 3 due to an excessive load can be prevented.
  • the rigidity of the beam portion 3 can be improved by the stopper 5.
  • the rigidity of the stopper 5 is always increased regardless of the strength of the force.
  • the structure which provides the stopper 5 was demonstrated in this embodiment, it is not restricted to this.
  • the beam portion 3 is configured so that the beam portion 3 is less likely to be deformed when the torque exceeds the reference value than when the torque is below the reference value, the stopper 5 may not be provided. .
  • FIG. 8 is a configuration diagram showing a configuration of a torque sensor 10A according to the second embodiment of the present invention.
  • the torque sensor 10A is provided with a beam portion 3A instead of the first protrusion T1 and the second protrusion T2 in order to install the strain generating body 4. It is a thing. Other points are the same as in the first embodiment.
  • the same number of the plurality of beam portions 3A as the strain body 4 is provided.
  • the beam portion 3 ⁇ / b> A is obtained by changing the shape of some of the beam portions 3 among the plurality of beam portions 3.
  • the beam portion 3A has a shape that is more easily deformed than the other beam portions 3 due to the torque of the Z-axis moment Mz. Specifically, the portion connected to the beam portion 3A of the first region portion 1 is widened outward (to the first region portion 1 side) so that the length of the beam portion 3A is longer than the other beam portions 3. It is deformed as follows. Further, the outer portion of the beam portion 3A is made thinner than the other beam portions 3, thereby making the deformation easier.
  • the beam portion 3 is configured to be prevented from being plastically deformed or broken, so that the sensitivity of torque detection is increased. Therefore, there is no problem in the durability of the torque sensor 10A even if the beam portion 3A provided with the strain generating body 4 is formed into a shape that can be easily deformed. Therefore, by providing the strain body 4 in the beam portion 3 ⁇ / b> A that is easily deformed, the sensitivity of torque detection can be increased as compared with the case where the strain body 4 is provided in the normal beam portion 3.
  • the present invention is not limited to the above-described embodiment, and constituent elements may be deleted, added or changed. Moreover, it is good also as a new embodiment by combining or exchanging a component about several embodiment. Even if such an embodiment is directly different from the above-described embodiment, those having the same gist as the present invention are described as the embodiment of the present invention, and the description thereof is omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Power Steering Mechanism (AREA)
  • Manipulator (AREA)

Abstract

A torque sensor (10) is provided with: a first area (1) formed in an annular shape; a second area (2) formed in an annular shape and positioned concentrically with the first area (1) on the inner side of said first area (1); a plurality of beam sections (3) connecting the inner side of the first area (1) with the outer side of the second area (2); strain-generating bodies (4) for detecting displacement of the first area (1) and the second area (2) relative to each other; and stoppers (5) for enhancing the rigidity of the beam sections (3) when the torque in a direction of measurement exceeds a reference value.

Description

トルクセンサTorque sensor
 本発明は、トルクを検出するトルクセンサに関する。 The present invention relates to a torque sensor that detects torque.
 一般に、部材の弾性変形によりトルクを検出するセンサが知られている。(特許文献1参照)。 Generally, a sensor that detects torque by elastic deformation of a member is known. (See Patent Document 1).
 しかしながら、部材の弾性変形によりトルクを検出するセンサの場合、センサの感度を高くするには、弾性変形する部材を変形し易くする必要があるが、部材を変形し易くすると、過大な負荷が掛けられた場合、センサの耐久性が低くなり易い。 However, in the case of a sensor that detects torque by elastic deformation of a member, in order to increase the sensitivity of the sensor, it is necessary to easily deform the elastically deformable member. However, if the member is easily deformed, an excessive load is applied. The durability of the sensor tends to be low.
特開2007-40774号公報JP 2007-40774 A
 本発明の実施形態の目的は、センサの感度を高め、過大な負荷に対する剛性を向上させたトルクセンサを提供することにある。 An object of an embodiment of the present invention is to provide a torque sensor that increases the sensitivity of the sensor and improves the rigidity against an excessive load.
 本発明の観点に従ったトルクセンサは、環状に形成された第1領域部と、前記第1領域部の内側で、前記第1領域部と同心円上に位置し、環状に形成された第2領域部と、前記第1領域部の内側と前記第2領域部の外側とを接続する複数の梁部と、前記第1領域部と前記第2領域部との相対的な変位を検出するための起歪体と、測定する方向のトルクが基準値を超えた場合、前記梁部の剛性を向上させるための剛性向上手段とを備える。 A torque sensor according to an aspect of the present invention includes a first region portion formed in an annular shape, and a second region formed in an annular shape that is positioned concentrically with the first region portion inside the first region portion. In order to detect relative displacement between a region portion, a plurality of beam portions connecting the inside of the first region portion and the outside of the second region portion, and the first region portion and the second region portion And a rigidity improving means for improving the rigidity of the beam portion when the torque in the measuring direction exceeds a reference value.
図1は、本発明の第1の実施形態に係るトルクセンサの構成を示す構成図である。FIG. 1 is a configuration diagram showing the configuration of the torque sensor according to the first embodiment of the present invention. 図2は、接着剤を用い、図1に示すトルクセンサをα-α線で切断した断面図である。FIG. 2 is a cross-sectional view of the torque sensor shown in FIG. 1 cut along an α-α line using an adhesive. 図3は、固定部材を用い、図1に示すトルクセンサをα-α線で切断した断面図である。FIG. 3 is a cross-sectional view of the torque sensor shown in FIG. 1 cut along an α-α line using a fixing member. 図4は、第1の実施形態の変形例に係るストッパの上面を示す上面図である。FIG. 4 is a top view showing an upper surface of a stopper according to a modification of the first embodiment. 図5は、第1の実施形態に係るトルクセンサにトルクが印加された時のストッパの上面を示す簡易図である。FIG. 5 is a simplified diagram showing the top surface of the stopper when torque is applied to the torque sensor according to the first embodiment. 図6は、第1の実施形態に係るトルクセンサの負荷トルクと隙間の変位量を示すグラフ図である。FIG. 6 is a graph illustrating the load torque of the torque sensor according to the first embodiment and the amount of displacement of the gap. 図7は、第1の実施形態に係るトルクセンサの負荷トルクと起歪体の歪量を示すグラフ図である。FIG. 7 is a graph showing the load torque of the torque sensor according to the first embodiment and the amount of strain of the strain generating body. 図8は、本発明の第2の実施形態に係るトルクセンサの構成を示す構成図である。FIG. 8 is a configuration diagram showing the configuration of the torque sensor according to the second embodiment of the present invention.
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るトルクセンサ10の構成を示す構成図である。
(First embodiment)
FIG. 1 is a configuration diagram showing the configuration of the torque sensor 10 according to the first embodiment of the present invention.
 トルクセンサ10は、Z軸(図面に対して垂直方向)を回転軸としたZ軸モーメントMzのトルクを検出するためのセンサである。例えば、トルクセンサ10は、ロボットなどに実装される。 The torque sensor 10 is a sensor for detecting the torque of the Z-axis moment Mz with the Z-axis (perpendicular to the drawing) as the rotation axis. For example, the torque sensor 10 is mounted on a robot or the like.
 トルクセンサ10は、第1領域部1、第2領域部2、複数の梁部3、複数の起歪体4、及び、複数のストッパ5を備える。 The torque sensor 10 includes a first region portion 1, a second region portion 2, a plurality of beam portions 3, a plurality of strain generating bodies 4, and a plurality of stoppers 5.
 第1領域部1、第2領域部2、及び、複数の梁部3は、金属などの材質により一体に形成される。第1領域部1は、環状に形成される。第2領域部2は、第1領域部1よりも径の小さい環状に形成される。第2領域部2は、第1領域部1の環状の内側(中心側)で、同心円上に位置する。複数の梁部3は、第2領域部2から放射状に延び、第1領域部1の内側と第2領域部2の外側を接続するように設けられる。梁部3は、いくつ設けられてもよい。 The first region portion 1, the second region portion 2, and the plurality of beam portions 3 are integrally formed of a material such as metal. The first region portion 1 is formed in an annular shape. The second region portion 2 is formed in an annular shape having a smaller diameter than the first region portion 1. The second region portion 2 is positioned on a concentric circle on the annular inner side (center side) of the first region portion 1. The plurality of beam portions 3 extend radially from the second region portion 2 and are provided so as to connect the inside of the first region portion 1 and the outside of the second region portion 2. Any number of the beam portions 3 may be provided.
 第1領域部1は、トルクを受ける負荷に取り付けられる部分である。例えば、第1領域部1は、ロボットの手又は腕などの可動部に取り付けられる。第2領域部2は、トルクを発生する動力源に取り付けられる部分である。例えば、第2領域部2は、モータ又は減速機などに取り付けられる。 1st area | region part 1 is a part attached to the load which receives a torque. For example, the first region portion 1 is attached to a movable portion such as a robot hand or arm. The second region portion 2 is a portion that is attached to a power source that generates torque. For example, the 2nd field part 2 is attached to a motor or a reduction gear.
 起歪体4は、第1領域部1と第2領域部2との相対的な変位による力が加わるように、第1領域部1と第2領域部2との間に設けられる。例えば、起歪体4は、隣接する2つの梁部3の間で、第1領域部1から第2領域部2の方向に延びた第1突起部T1と、第2領域部2から第1領域部1の方向に延びた第2突起部T2との間を接続するように設けられる。なお、起歪体4は、いくつ設けられてもよい。また、起歪体4は、第1領域部1と第2領域部2との相対的な変位による力を受けるのであれば、何処に設けられてもよい。例えば、起歪体4は、梁部3に設けられてもよい。 The strain body 4 is provided between the first region portion 1 and the second region portion 2 so that a force due to relative displacement between the first region portion 1 and the second region portion 2 is applied. For example, the strain body 4 includes the first protrusion T1 extending in the direction from the first region 1 to the second region 2 and the first from the second region 2 between the two adjacent beam portions 3. It is provided so as to connect the second protrusion T2 extending in the direction of the region 1. Any number of strain generating bodies 4 may be provided. Further, the strain body 4 may be provided anywhere as long as it receives a force due to relative displacement between the first region portion 1 and the second region portion 2. For example, the strain body 4 may be provided on the beam portion 3.
 起歪体4は、歪を検出するセンサの役割を果たす歪ゲージを備える。歪ゲージは、変形すると電気的変位が生じるように構成される。なお、歪ゲージは、電気的に検出可能な変位が生じるものであれば、どのようなものでもよい。例えば、歪ゲージは、変形量に応じて、電気抵抗が変化してもよいし、電圧を発生させてもよい。トルクセンサ10は、これらの電気的変位を起歪体4(歪ゲージ)から検出することにより、トルクを測定する。 The strain body 4 includes a strain gauge that serves as a sensor for detecting strain. The strain gauge is configured to generate an electrical displacement when deformed. Any strain gauge may be used as long as an electrically detectable displacement occurs. For example, the strain gauge may change its electric resistance or generate a voltage according to the amount of deformation. The torque sensor 10 measures torque by detecting these electrical displacements from the strain body 4 (strain gauge).
 例えば、起歪体4は、次のように用いる。トルクセンサ10にトルクが加わると、互いに対称となる応力が加わる位置(左右対称又は上下対称などになる位置)に、一対の起歪体4を設ける。測定しない方向の力については、一対の起歪体4のそれぞれの歪ゲージの出力を相殺することで、検出しないようにする。これにより、トルクセンサ10は、測定する方向(Z軸モーメントMz)のトルクのみを検出するようにする。 For example, the strain body 4 is used as follows. When torque is applied to the torque sensor 10, a pair of strain generating bodies 4 are provided at positions where symmetrical stresses are applied (positions that are left-right symmetric or vertically symmetric). The force in the direction not to be measured is not detected by canceling the output of each strain gauge of the pair of strain generating bodies 4. Thereby, the torque sensor 10 detects only the torque in the measuring direction (Z-axis moment Mz).
 ストッパ5は、上面及び底面が長方形又は台形の直方体形状である。ストッパ5は、第1領域部1と第2領域部2との相対的な変位による力が所定以上加わると制限するように、第1領域部1と第2領域部2との間に設けられる。例えば、ストッパ5は、第1領域部1、第2領域部2、及び、隣接する2つの梁部3で囲まれる空間に嵌るように設けられる。ストッパ5は、梁部3の剛性を向上させるための部材である。ストッパ5の材質は、例えば金属である。 The stopper 5 has a rectangular parallelepiped shape whose top and bottom are rectangular or trapezoidal. The stopper 5 is provided between the first region portion 1 and the second region portion 2 so as to be limited when a force due to relative displacement between the first region portion 1 and the second region portion 2 is applied for a predetermined amount or more. . For example, the stopper 5 is provided so as to fit in a space surrounded by the first region portion 1, the second region portion 2, and the two adjacent beam portions 3. The stopper 5 is a member for improving the rigidity of the beam portion 3. The material of the stopper 5 is metal, for example.
 ストッパ5は、2つの梁部3とのそれぞれの間に所定の間隔の隙間SPが保たれた状態で取り付けられる。隙間SPの幅は、トルクセンサ10の定格トルク等に基づいて決定される。例えば、隙間SPの幅は、15~30μmである。ストッパ5は、第1領域部1及び第2領域部2とのそれぞれの間にも隙間SPが設けられてもよい。また、ストッパ5は、隙間SPの間隔が保たれた状態で維持されるのであれば、どのように取り付けられてもよい。 The stopper 5 is attached in a state where a gap SP of a predetermined interval is maintained between each of the two beam portions 3. The width of the gap SP is determined based on the rated torque of the torque sensor 10 or the like. For example, the width of the gap SP is 15 to 30 μm. The stopper 5 may be provided with a gap SP between the first region portion 1 and the second region portion 2. The stopper 5 may be attached in any way as long as the stopper 5 is maintained in a state where the gap SP is maintained.
 図2は、接着剤ADを用い、図1に示すトルクセンサ10をα-α線で切断した断面図である。図2を参照して、接着剤ADでストッパ5を取り付ける方法について説明する。 FIG. 2 is a cross-sectional view of the torque sensor 10 shown in FIG. 1 cut along an α-α line using an adhesive AD. With reference to FIG. 2, the method of attaching the stopper 5 with the adhesive agent AD is demonstrated.
 ストッパ5の上面及び底面は、面取り(チャンファ)されている。ここでは、ストッパ5を面取りした場合を示しているが、第1領域部1、第2領域部2、又は、梁部3を面取りしてもよい。 The top and bottom surfaces of the stopper 5 are chamfered. Here, although the case where the stopper 5 is chamfered is shown, the first region portion 1, the second region portion 2, or the beam portion 3 may be chamfered.
 接着剤ADは、例えばシリコン等の樹脂製の接着剤である。接着剤ADは、硬化した硬さが、少なくともストッパ5の剛性よりも低い必要がある。この硬さは、トルクセンサ10に印加されるトルクに対して抵抗にならないほどよい。即ち、接着剤ADは、ストッパ5が外れないのであれば、硬化した状態が柔らかいほどよい。 The adhesive AD is an adhesive made of resin such as silicon. The adhesive AD needs to have a cured hardness that is at least lower than the rigidity of the stopper 5. This hardness is so good that it is not resistant to the torque applied to the torque sensor 10. That is, the adhesive AD is better as the cured state is softer as long as the stopper 5 cannot be removed.
 ストッパ5の上面及び底面のそれぞれの周りに沿って、接着剤ADを一周塗布する。面取りされていることにより、接着剤ADがストッパ5の周りに馴染み易くなる。このとき、接着剤ADは、上面及び底面の面取りされた部分のみに塗布されればよく、ストッパ5の側面まで接着剤ADが塗布される必要はない。また、上面及び底面においても、接着剤ADを一周塗布しなくてもよく、例えばそれぞれの面の四隅だけでもよい。即ち、トルクセンサ10としての強度が保たれるのであれば、接着剤ADを塗布する箇所は必要最低限でよい。 The adhesive AD is applied around the top and bottom surfaces of the stopper 5 once. By being chamfered, the adhesive AD can easily become familiar around the stopper 5. At this time, the adhesive AD need only be applied to the chamfered portions of the top surface and the bottom surface, and the adhesive AD need not be applied to the side surface of the stopper 5. Further, it is not necessary to apply the adhesive AD once on the top and bottom surfaces, for example, only the four corners of each surface. That is, as long as the strength as the torque sensor 10 is maintained, the number of places where the adhesive AD is applied is the minimum necessary.
 図3は、固定部材H1を用い、図1に示すトルクセンサ10をα-α線で切断した断面図である。図3を参照して、固定部材H1でストッパ5を取り付ける方法について説明する。 FIG. 3 is a cross-sectional view of the torque sensor 10 shown in FIG. 1 cut along an α-α line using the fixing member H1. With reference to FIG. 3, the method of attaching the stopper 5 with the fixing member H1 is demonstrated.
 ストッパ5がトルクセンサ10の所定の位置に組み込まれた状態で、固定部材H1は、ストッパ5の上面及び底面のそれぞれの左右両側(梁部3側)に固定して設けられ、梁部3とは固定されない。このとき、上面及び底面に設けられた固定部材H1の一部は、梁部3の上面及び底面に被さる状態になる。これにより、ストッパ5の垂直方向への動きが固定される。一方、ストッパ5の水平方向への動きは、隙間SPの分だけ自由度がある。 In a state where the stopper 5 is assembled at a predetermined position of the torque sensor 10, the fixing member H <b> 1 is fixedly provided on both the left and right sides (the beam portion 3 side) of the upper surface and the bottom surface of the stopper 5. Is not fixed. At this time, a part of the fixing member H1 provided on the upper surface and the bottom surface covers the upper surface and the bottom surface of the beam portion 3. Thereby, the movement of the stopper 5 in the vertical direction is fixed. On the other hand, the movement of the stopper 5 in the horizontal direction has a degree of freedom corresponding to the gap SP.
 なお、ここでは、4つの固定部材H1で、ストッパ5を取り付けたが、いくつの固定部材H1を設けてもよい。また、固定部材H1は、ストッパ5に固定せずに、梁部3に固定してもよい。さらに、固定部材H1は、板状又はブロック状など、どのような形状でもよい。 Note that, here, the stopper 5 is attached with four fixing members H1, but any number of fixing members H1 may be provided. Further, the fixing member H <b> 1 may be fixed to the beam portion 3 without being fixed to the stopper 5. Furthermore, the fixing member H1 may have any shape such as a plate shape or a block shape.
 図4は、本実施形態の変形例に係るストッパ5aの上面を示す上面図である。 FIG. 4 is a top view showing the top surface of a stopper 5a according to a modification of the present embodiment.
 ストッパ5aの上面(底面)は、ストッパ5aが実装される空間の上面の四角形状に対して、2つの対角線に沿って細長い板を重なり合わせたX字状のような形状をしている。ストッパ5aは、上面から見て四隅に所定の間隔の隙間SPが保たれた状態で取り付けられる。ストッパ5aの取り付け方法は、上述したストッパ5と同様であり、隙間SPに接着剤ADを塗布してもよいし、固定部材H1を用いてもよい。ストッパ5aをこのような形状にすることで、ストッパ5aを作るための材料の分量を少なく抑えられる。 The upper surface (bottom surface) of the stopper 5a is shaped like an X shape in which elongated plates are overlapped along two diagonals with respect to the rectangular shape of the upper surface of the space where the stopper 5a is mounted. The stopper 5a is attached in a state where gaps SP of a predetermined interval are maintained at the four corners when viewed from above. The method of attaching the stopper 5a is the same as that of the stopper 5 described above, and the adhesive AD may be applied to the gap SP, or the fixing member H1 may be used. By making the stopper 5a into such a shape, the amount of material for making the stopper 5a can be reduced.
 図5は、本実施形態に係るトルクセンサ10にトルクが印加された時のストッパ5の上面を示す簡易図である。 FIG. 5 is a simplified diagram showing the upper surface of the stopper 5 when torque is applied to the torque sensor 10 according to the present embodiment.
 トルクは、トルクセンサ10に取り付けられた動力源により加わる回転により発生する。トルクが印加されると、トルクセンサ10には、Z軸モーメントMzが生じる。Z軸モーメントMzが生じると、ストッパ5の外側にある第1領域部1とストッパ5の内側にある第2領域部2が互いに反対になる向きに動く。これにより、ストッパ5の両端に位置する梁部3が斜めになるように弾性変形する。 Torque is generated by rotation applied by a power source attached to the torque sensor 10. When torque is applied, a Z-axis moment Mz is generated in the torque sensor 10. When the Z-axis moment Mz occurs, the first region portion 1 outside the stopper 5 and the second region portion 2 inside the stopper 5 move in directions opposite to each other. Thereby, the beam part 3 located in the both ends of the stopper 5 is elastically deformed so that it may become diagonal.
 Z軸モーメントMzが予め決められた基準値以内であれば、梁部3が弾性変形しても、ストッパ5と梁部3との間の隙間SPにより、ストッパ5と梁部3は接触しない。Z軸モーメントMzが予め決められた基準値を超えると、梁部3が変形することで、一部に隙間SPが無くなり、図5に示すように、ストッパ5の第1領域部1側と第2領域部2側の互いに反対側の隅で梁部3と接触する。梁部3がストッパ5と接触することで、ストッパ5の材質の剛性により、梁部3がさらに変形するのを制限する。 If the Z-axis moment Mz is within a predetermined reference value, even if the beam portion 3 is elastically deformed, the stopper 5 and the beam portion 3 do not come into contact with each other due to the gap SP between the stopper 5 and the beam portion 3. When the Z-axis moment Mz exceeds a predetermined reference value, the beam portion 3 is deformed, so that there is no gap SP in a part, and as shown in FIG. The two regions 2 come in contact with the beam 3 at opposite corners on the side of the region 2. When the beam portion 3 comes into contact with the stopper 5, the beam portion 3 is further prevented from being further deformed by the rigidity of the material of the stopper 5.
 基準値は、例えば、トルクセンサ10が通常使用される条件において想定される最大負荷である。基準値は、定格負荷に係数を掛けたり加えたりした値のように、定格負荷に基づいて決定してもよいし、どのように決定してもよい。定格負荷は、例えば、トルクセンサ10において最も多く印加されることが想定される負荷である。 The reference value is, for example, the maximum load assumed under the condition where the torque sensor 10 is normally used. The reference value may be determined based on the rated load, such as a value obtained by multiplying or adding a coefficient to the rated load, or may be determined in any manner. The rated load is, for example, a load that is assumed to be applied most frequently in the torque sensor 10.
 図6は、本実施形態に係るトルクセンサ10の負荷トルクと隙間SPの変位量を示すグラフ図である。ここでは、定格負荷を800Nmとし、隙間SPの初期状態を20μmとし、過大負荷の基準値を1000Nmとする。 FIG. 6 is a graph showing the load torque of the torque sensor 10 according to this embodiment and the displacement amount of the gap SP. Here, the rated load is 800 Nm, the initial state of the gap SP is 20 μm, and the reference value of the overload is 1000 Nm.
 隙間SPの幅は、基準値に基づいて決定される。具体的には、基準値のトルクが印加された場合に、梁部3が変形して、丁度隙間SPが無くなるように、隙間SPの幅が決定される。ここでは、1000Nmのトルクが印加されると、図5に示すように、20μmの隙間が一部で無くなり、ストッパ5が梁部3に接触し始めるものとする。 The width of the gap SP is determined based on the reference value. Specifically, when the reference value torque is applied, the width of the gap SP is determined so that the beam portion 3 is deformed and the gap SP is eliminated. Here, when a torque of 1000 Nm is applied, as shown in FIG. 5, the gap of 20 μm disappears and the stopper 5 starts to contact the beam portion 3.
 梁部3の変形量は、第1領域部1と第2領域部2との相対的な変位量により決定されるため、起歪体4の変形量とほぼ比例する。起歪体4が小さいトルクで大きく変形するほど、トルクセンサ10としてのトルクを測定する感度(又は、測定精度)は良くなる。 Since the deformation amount of the beam portion 3 is determined by the relative displacement amount between the first region portion 1 and the second region portion 2, it is substantially proportional to the deformation amount of the strain body 4. The greater the deformation of the strain body 4 with a small torque, the better the sensitivity (or measurement accuracy) for measuring the torque as the torque sensor 10.
 図6において、負荷トルクが0~1000Nmの間は、ストッパ5の周りに隙間SPがあるため、ストッパ5の影響を受けずに梁部3は変形する。したがって、この間は、起歪体4も変形し易く、センサとしての感度は良い。一方、負荷トルクが1000Nmを超えると、隙間SPが潰れてストッパ5が梁部3に接触し始める。このため、ストッパ5の剛性を受けて、梁部3が変形し難くなる。これにより、センサとしての感度は悪くなるが、過大負荷で、梁部3が塑性変形したり、破壊したりするのを防止する。 In FIG. 6, when the load torque is between 0 and 1000 Nm, there is a gap SP around the stopper 5, so that the beam portion 3 is deformed without being affected by the stopper 5. Therefore, during this time, the strain body 4 is also easily deformed, and the sensitivity as a sensor is good. On the other hand, when the load torque exceeds 1000 Nm, the gap SP is crushed and the stopper 5 starts to contact the beam portion 3. For this reason, the beam part 3 becomes difficult to be deformed due to the rigidity of the stopper 5. As a result, the sensitivity as a sensor is deteriorated, but the beam portion 3 is prevented from being plastically deformed or broken due to an excessive load.
 図6では、1000Nmでの変位量は20μmとなっている。仮にストッパ5が無く、最大負荷となる2000Nmまで負荷を増やすと、単純計算での変位量は2倍である40μmとなる。しかし、ストッパ5が梁部3と接触してからは、負荷に対しての弾性変形率が下がるため、実際の最大負荷時の変形量は約26μmに抑えられる。 In FIG. 6, the displacement at 1000 Nm is 20 μm. If there is no stopper 5 and the load is increased to 2000 Nm, which is the maximum load, the displacement amount by simple calculation is doubled to 40 μm. However, since the elastic deformation rate with respect to the load decreases after the stopper 5 comes into contact with the beam portion 3, the amount of deformation at the actual maximum load can be suppressed to about 26 μm.
 図7は、本実施形態に係るトルクセンサ10の負荷トルクと起歪体4の歪量を示すグラフ図である。トルクセンサ10は、図6と同じである。 FIG. 7 is a graph showing the load torque of the torque sensor 10 and the strain amount of the strain generating body 4 according to the present embodiment. The torque sensor 10 is the same as in FIG.
 図7でも、図6と同様に、1000Nmでの歪量は10μmであるから、ストッパ5が無い場合、最大負荷となる2000Nmまで負荷を増やすと、単純計算での歪量は20μSTとなる。しかし、ストッパ5を設けることにより、実際の最大負荷時の歪量は13μSTに抑えられる。 Also in FIG. 7, since the strain amount at 1000 Nm is 10 μm as in FIG. 6, if the load is increased to 2000 Nm which is the maximum load without the stopper 5, the strain amount by simple calculation becomes 20 μST. However, by providing the stopper 5, the amount of distortion at the actual maximum load can be suppressed to 13 μST.
 本実施形態によれば、ストッパ5を設けることで、Z軸モーメントMzのトルクが基準値以下であれば、起歪体4を変形し易くして、トルクセンサ10のセンサとしての感度を高め、トルクが基準値を超えた場合は、梁部3の剛性を向上させて、過大負荷による梁部3の塑性変形又は破壊を防止することができる。 According to the present embodiment, by providing the stopper 5, if the torque of the Z-axis moment Mz is equal to or less than the reference value, the strain generating body 4 is easily deformed and the sensitivity of the torque sensor 10 as a sensor is increased. When the torque exceeds the reference value, the rigidity of the beam portion 3 can be improved, and plastic deformation or destruction of the beam portion 3 due to an excessive load can be prevented.
 また、トルクによるZ軸モーメントMz以外の力がトルクセンサ10に加わった場合についても、ストッパ5により梁部3の剛性を向上させることができる。例えば、隙間SPを設けていない方向に梁部3を変形させるような力に対しては、この力の強さに関係なく、ストッパ5の剛性が常に梁部3の剛性を高くしている。 In addition, even when a force other than the Z-axis moment Mz due to torque is applied to the torque sensor 10, the rigidity of the beam portion 3 can be improved by the stopper 5. For example, for a force that deforms the beam portion 3 in the direction in which the gap SP is not provided, the rigidity of the stopper 5 is always increased regardless of the strength of the force.
 なお、本実施形態では、ストッパ5を設ける構成について説明したが、これに限らない。例えば、トルクが基準値以下のときよりも基準値を超えたときの方が、梁部3の変形がし難くなるように、梁部3などを構成すれば、ストッパ5を設けなくてもよい。 In addition, although the structure which provides the stopper 5 was demonstrated in this embodiment, it is not restricted to this. For example, if the beam portion 3 is configured so that the beam portion 3 is less likely to be deformed when the torque exceeds the reference value than when the torque is below the reference value, the stopper 5 may not be provided. .
(第2の実施形態)
 図8は、本発明の第2の実施形態に係るトルクセンサ10Aの構成を示す構成図である。
(Second Embodiment)
FIG. 8 is a configuration diagram showing a configuration of a torque sensor 10A according to the second embodiment of the present invention.
 トルクセンサ10Aは、図1に示す第1の実施形態に係るトルクセンサ10において、起歪体4を設置するために、第1突起部T1及び第2突起部T2の代わりに梁部3Aを設けたものである。その他の点は、第1の実施形態と同様である。 In the torque sensor 10A according to the first embodiment shown in FIG. 1, the torque sensor 10A is provided with a beam portion 3A instead of the first protrusion T1 and the second protrusion T2 in order to install the strain generating body 4. It is a thing. Other points are the same as in the first embodiment.
 複数の梁部3Aは、起歪体4と同数設けられる。梁部3Aは、複数の梁部3のうち一部の梁部3の形状を変えたものである。 The same number of the plurality of beam portions 3A as the strain body 4 is provided. The beam portion 3 </ b> A is obtained by changing the shape of some of the beam portions 3 among the plurality of beam portions 3.
 梁部3Aは、Z軸モーメントMzのトルクにより、他の梁部3よりも変形し易い形状にしたものである。具体的には、梁部3Aの長さが他の梁部3よりも長くなるように、第1領域部1の梁部3Aと接続される部分を外側(第1領域部1側)に広げるように変形している。また、梁部3Aの外側部分を他の梁部3よりも細くすることで、さらに変形し易くしている。 The beam portion 3A has a shape that is more easily deformed than the other beam portions 3 due to the torque of the Z-axis moment Mz. Specifically, the portion connected to the beam portion 3A of the first region portion 1 is widened outward (to the first region portion 1 side) so that the length of the beam portion 3A is longer than the other beam portions 3. It is deformed as follows. Further, the outer portion of the beam portion 3A is made thinner than the other beam portions 3, thereby making the deformation easier.
 本実施形態によれば、第1の実施形態による作用効果に加え、以下の作用効果を得ることができる。 According to the present embodiment, in addition to the functions and effects of the first embodiment, the following functions and effects can be obtained.
 ストッパ5を設けたりすることで、過大なトルクが印加された場合は、梁部3が塑性変形したり、破壊されたりするのを防止するように構成されているため、トルク検出の感度を高めるために起歪体4が設けられる梁部3Aを変形し易い形状にしても、トルクセンサ10Aの耐久性に問題はない。したがって、変形し易い形状にした梁部3Aに起歪体4を設けることで、起歪体4を通常の梁部3に設けるよりもトルク検出の感度を高めることができる。 By providing the stopper 5, when the excessive torque is applied, the beam portion 3 is configured to be prevented from being plastically deformed or broken, so that the sensitivity of torque detection is increased. Therefore, there is no problem in the durability of the torque sensor 10A even if the beam portion 3A provided with the strain generating body 4 is formed into a shape that can be easily deformed. Therefore, by providing the strain body 4 in the beam portion 3 </ b> A that is easily deformed, the sensitivity of torque detection can be increased as compared with the case where the strain body 4 is provided in the normal beam portion 3.
 なお、本発明は上述した実施形態に限定されず、構成要素を削除、付加又は変更等をしてもよい。また、複数の実施形態について構成要素を組合せ又は交換等をすることで、新たな実施形態としてもよい。このような実施形態が上述した実施形態と直接的に異なるものであっても、本発明と同様の趣旨のものは、本発明の実施形態として説明したものとして、その説明を省略している。 It should be noted that the present invention is not limited to the above-described embodiment, and constituent elements may be deleted, added or changed. Moreover, it is good also as a new embodiment by combining or exchanging a component about several embodiment. Even if such an embodiment is directly different from the above-described embodiment, those having the same gist as the present invention are described as the embodiment of the present invention, and the description thereof is omitted.

Claims (7)

  1.  環状に形成された第1領域部と、
     前記第1領域部の内側で、前記第1領域部と同心円上に位置し、環状に形成された第2領域部と、
     前記第1領域部の内側と前記第2領域部の外側とを接続する複数の梁部と、
     前記第1領域部と前記第2領域部との相対的な変位を検出するための起歪体と、
     測定する方向のトルクが基準値を超えた場合、前記梁部の剛性を向上させるための剛性向上手段と
    を備えたことを特徴とするトルクセンサ。
    A first region formed in an annular shape;
    A second region portion that is concentric with the first region portion and formed in an annular shape inside the first region portion;
    A plurality of beam portions connecting the inside of the first region portion and the outside of the second region portion;
    A strain generating body for detecting a relative displacement between the first region portion and the second region portion;
    A torque sensor comprising: a rigidity improving means for improving the rigidity of the beam portion when the torque in the measuring direction exceeds a reference value.
  2.  前記剛性向上手段は、前記複数の梁部のうち隣接する2つの梁部の間に、前記梁部の剛性を向上させる剛性向上部材を設けること
    を特徴とする請求項1に記載のトルクセンサ。
    2. The torque sensor according to claim 1, wherein the rigidity improving unit is provided with a rigidity improving member for improving the rigidity of the beam portion between two adjacent beam portions of the plurality of beam portions.
  3.  前記剛性向上部材は、前記隣接する2つの梁部とのそれぞれの隙間を、前記基準値に基づいて決定された間隔を保つ状態で設けられたこと
    を特徴とする請求項2に記載のトルクセンサ。
    The torque sensor according to claim 2, wherein the rigidity improving member is provided in a state in which a gap between each of the two adjacent beam portions is maintained at a distance determined based on the reference value. .
  4.  前記剛性向上部材は、接着剤で前記隙間を保つ状態が維持されたこと
    を特徴とする請求項3に記載のトルクセンサ。
    The torque sensor according to claim 3, wherein the rigidity improving member maintains a state in which the gap is maintained with an adhesive.
  5.  前記隙間を保つ状態に前記剛性向上部材を維持するための固定部材
    を備えたことを特徴とする請求項3に記載のトルクセンサ。
    The torque sensor according to claim 3, further comprising a fixing member for maintaining the rigidity improving member in a state in which the gap is maintained.
  6.  前記起歪体は、前記第1領域部と前記第2領域部との間で、前記複数の梁部以外の箇所に設けられたこと
    を特徴とする請求項1に記載のトルクセンサ。
    The torque sensor according to claim 1, wherein the strain body is provided at a location other than the plurality of beam portions between the first region portion and the second region portion.
  7.  前記起歪体は、前記複数の梁部のうち、他の梁部よりも変形し易い形状の梁部に設けられたこと
    を特徴とする請求項1に記載のトルクセンサ。
    The torque sensor according to claim 1, wherein the strain body is provided in a beam portion having a shape that is more easily deformed than the other beam portions among the plurality of beam portions.
PCT/JP2019/002578 2018-03-08 2019-01-25 Torque sensor WO2019171811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042317A JP6980568B2 (en) 2018-03-08 2018-03-08 Torque sensor
JP2018-042317 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171811A1 true WO2019171811A1 (en) 2019-09-12

Family

ID=67847063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002578 WO2019171811A1 (en) 2018-03-08 2019-01-25 Torque sensor

Country Status (3)

Country Link
JP (1) JP6980568B2 (en)
TW (1) TWI796429B (en)
WO (1) WO2019171811A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665765A (en) * 2020-12-01 2021-04-16 哈尔滨工业大学 Robot high-rigidity joint torque sensor based on parallel load sharing principle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063207A (en) * 1992-05-25 1994-01-11 Hottinger Baldwin Messtech Gmbh Angular moment sensor
JP2004077172A (en) * 2002-08-12 2004-03-11 Kyowa Electron Instr Co Ltd Torque measuring device
US20110314935A1 (en) * 2009-02-06 2011-12-29 Abb Ag Set of multiaxial force and torque sensor and assembling method
JP2017172983A (en) * 2016-03-18 2017-09-28 株式会社安川電機 Robot and torque sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468656B (en) * 2013-05-07 2015-01-11 Magnetic Rotary Torque Detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063207A (en) * 1992-05-25 1994-01-11 Hottinger Baldwin Messtech Gmbh Angular moment sensor
JP2004077172A (en) * 2002-08-12 2004-03-11 Kyowa Electron Instr Co Ltd Torque measuring device
US20110314935A1 (en) * 2009-02-06 2011-12-29 Abb Ag Set of multiaxial force and torque sensor and assembling method
JP2017172983A (en) * 2016-03-18 2017-09-28 株式会社安川電機 Robot and torque sensor

Also Published As

Publication number Publication date
JP2019158420A (en) 2019-09-19
TW201939006A (en) 2019-10-01
TWI796429B (en) 2023-03-21
JP6980568B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
US11085836B2 (en) Force sensor that detects at least one of a force in each axial direction and a moment around each axis in an XYZ three-dimensional coordinate system
CN108139288B (en) Force sensor
US11085839B2 (en) Torque sensor capable of independently setting the sensitivity and allowance torque of a strain sensor
US8161828B1 (en) Load cell for monitoring torsion and having over load protection
JP2012145497A (en) Capacitance force sensor
JP6815903B2 (en) Force sensor
US11105693B2 (en) Torque sensor
US8186220B2 (en) Accelerometer with over-travel stop structure
JP2019023639A (en) Force sensor
TW201942549A (en) Torque sensor
WO2019171811A1 (en) Torque sensor
WO2019171810A1 (en) Torque sensor
US11624669B2 (en) Pressure sensor for high pressures
JP6789853B2 (en) Force sensor
JP6746517B2 (en) Force sensor
CN216012549U (en) Force sensor
JP7038320B2 (en) Pressure sensor
WO2011155506A1 (en) Acceleration sensor
TWI804581B (en) torque sensor
JP7091545B2 (en) Torque sensor
JP6306218B2 (en) Torque detection device
JP2006300908A (en) Force transducer
EP4239298A1 (en) Transducer plate for a multi-leaf spring assembly
KR102326603B1 (en) Torque measuring device
JP2018205217A (en) Load sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764961

Country of ref document: EP

Kind code of ref document: A1