WO2019171601A1 - 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム - Google Patents

鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム Download PDF

Info

Publication number
WO2019171601A1
WO2019171601A1 PCT/JP2018/009343 JP2018009343W WO2019171601A1 WO 2019171601 A1 WO2019171601 A1 WO 2019171601A1 JP 2018009343 W JP2018009343 W JP 2018009343W WO 2019171601 A1 WO2019171601 A1 WO 2019171601A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
template dna
relationship
base sequence
bases
Prior art date
Application number
PCT/JP2018/009343
Other languages
English (en)
French (fr)
Inventor
遠藤 大二
Original Assignee
学校法人酪農学園
株式会社Lagrange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人酪農学園, 株式会社Lagrange filed Critical 学校法人酪農学園
Priority to JP2020504642A priority Critical patent/JP7030312B2/ja
Priority to PCT/JP2018/009343 priority patent/WO2019171601A1/ja
Publication of WO2019171601A1 publication Critical patent/WO2019171601A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present invention relates to a technique for analyzing the possibility of amplification of primers for template DNA.
  • PCR PolymeraseDNAChain Reaction
  • FIG. 11 is an explanatory diagram showing the procedure of PCR.
  • FIG. 11A shows a stage of setting a region (priming region) to be amplified in the double-stranded template DNA to be amplified. Then, when the double-stranded template DNA is changed into two single-stranded template DNAs, the primer (this is the forward primer) to be bound to the end point of one single-stranded template DNA at the end point of the set priming region. (Referred to as “f primer”) and two primers (referred to as “reverse primer (r primer)”) that are desired to bind to the end point of the other single-stranded template DNA.
  • f primer forward primer
  • r primer reverse primer
  • FIG. 11 (b) shows the actual PCR procedure.
  • FIG. 11 (c) shows that when the temperature is lowered after obtaining two single-stranded template DNAs, the f primer and the r primer contained in the reaction solution each bind to the single-stranded template DNA. Since the f primer and r primer have fewer bases and more than the single-stranded template DNA, they bind to the single-stranded template DNA faster than the single-stranded template DNA returns to the double-stranded template DNA again. Will do. When the temperature is raised to a temperature zone where the activity of the DNA polymerase is optimal with the f-primer or r-primer bound to the single-stranded template DNA, the f-primer or r-primer is bound by the synthesis reaction by the DNA polymerase.
  • DNA complementary to the single-stranded DNA portion is synthesized starting from the portion.
  • the DNA is extended by binding a phosphate group of nucleotide to the hydroxyl group at the 3 'position of deoxyribose. That is, since deoxyribose has a property of extending in the direction from the 5 ′ position to the 3 ′ position of deoxyribose, the direction from the 5 ′ position to the 3 ′ position from the position where the f primer or r primer is bound.
  • the complementary strands are sequentially formed.
  • FIG. 11 (d) shows a state obtained by amplifying the priming region portion 8 times 2 3 times of the original double-stranded template DNA by repeating the process three times.
  • Patent Document 1 is an example of what is described about PCR.
  • a primer set used for amplifying a base sequence of DNA by a PCR method is used, and at least one base sequence of a forward primer and a reverse primer for amplifying a region to be amplified in DNA of an organism to be amplified is included.
  • a method for producing a primer is disclosed, wherein the primer is produced so that it does not overlap with the base sequence of the DNA of the non-amplification target organism for 12 bases or more.
  • the present invention has been made in view of the above problems, and a template DNA-primer relationship analysis apparatus, a template DNA-primer relationship analysis method, a template DNA for analyzing or evaluating the possibility of primer amplification with respect to a template DNA
  • An object is to provide a primer relationship analysis program, a template DNA-primer relationship evaluation apparatus, a template DNA-primer relationship evaluation method, and a template DNA-primer relationship evaluation program.
  • a template DNA-primer relationship analysis apparatus is obtained from a template DNA base sequence acquisition unit for acquiring template DNA base sequence information, a primer base sequence acquisition unit for acquiring primer base sequence information, and a template DNA.
  • a predetermined number of bases that are extracted by dividing the primer into predetermined bases are extracted in the binding target direction of the verification target.
  • a connectable position encoding processing unit that generates a character string (hereinafter referred to as a word) expressed in a predetermined code
  • the connectable position encoding processing unit For all the words that have been generated using the topic models; and a word classification processing unit that performs processing of classifying into a plurality of topics.
  • the template DNA-primer relationship analyzer according to the present invention is characterized in that the predetermined number of bases in the verification unit is 3 to 8 bases.
  • the predetermined code includes a priming region of the template DNA, a template DNA region other than the priming region, and binding between the primer itself or the primers. A different code is used for each region.
  • the template DNA-primer relationship analysis method comprises a template DNA base sequence acquisition procedure for acquiring template DNA base sequence information, a primer base sequence acquisition procedure for acquiring primer base sequence information, and a template DNA.
  • a predetermined number of bases that are extracted by dividing the primer into predetermined bases are extracted in the binding target direction of the verification target.
  • the relationship between the predetermined number of bases at the matching position can be combined as a character string (hereinafter referred to as a word) expressed in a predetermined code, and the connectable position encoding processing procedure.
  • Characterized in that it comprises a word classification procedure for classifying process using the topic models for all words that have been generated in.
  • the template DNA-primer relationship analysis program is a template DNA-primer relationship analysis program for causing a computer to perform a process of analyzing the relationship between a template DNA and a primer.
  • a matching unit that is extracted by dividing the primer into a predetermined number of bases for each target, and a predetermined number of bases are sequentially shifted from the first base in the binding target direction of the matching target by one base each time.
  • a word classification processing function for performing classification processing using a topic model.
  • the template DNA-primer relationship evaluation apparatus includes a template DNA base sequence acquisition unit that acquires base sequence information of a template DNA to be evaluated, and a primer base sequence acquisition unit that acquires base sequence information of a primer to be evaluated And, with respect to two single-stranded template DNAs obtained from the template DNA and two primers (hereinafter referred to as verification targets), a predetermined number of bases that are extracted by dividing the primer into a predetermined number of bases, Collation processing is performed each time at positions shifted one base at a time from the first base in the connectable direction of the collation target.
  • a connectable position encoding processing unit that generates a character string (hereinafter referred to as a word) expressing a relationship between a predetermined number of bases by a predetermined code, and the connectable Using the topic model for the word group generated in the position coding processing unit, obtain the probability that the word group is likely to belong to a topic among a plurality of topics, and determine the possibility of belonging for each topic
  • a word classification processing unit that performs processing to output as a probability to represent, and amplification success rate information of each primer obtained by at least one or more PCR experiments performed in advance between the template DNA to be evaluated and a known primer , Amplification of each topic by reflecting on the result of classification into a plurality of topics obtained by performing the binding position encoding process and the word classification process for the template DNA and primer used in the PCR experiment
  • Amplification success rate-reflected classification data representing the success rate is created and stored in a storage means in advance, and the template DNA to be evaluated and the evaluation By comparing the probability representing the affiliation possibility for each topic output
  • the template DNA-primer relationship evaluation method includes a template DNA base sequence acquisition procedure for acquiring base sequence information of a template DNA to be evaluated, and a primer base sequence acquisition procedure for acquiring base sequence information of a primer to be evaluated And, with respect to two single-stranded template DNAs obtained from the template DNA and two primers (hereinafter referred to as verification targets), a predetermined number of bases that are extracted by dividing the primer into a predetermined number of bases, Collation processing is performed each time at positions shifted one base at a time from the first base in the connectable direction of the collation target.
  • Amplification success rate-reflected classification data representing the amplification success rate is created and stored in advance in the storage means, and the evaluation target template DN And comparing the probability representing the affiliation possibility for each topic output in the word classification processing procedure with respect to the primer to be evaluated with the amplification success rate reflected classification data on the template DNA stored in the storage means, A primer evaluation processing procedure for predicting and evaluating an amplification success rate for the template DNA for the primer to be evaluated.
  • the template DNA-primer relationship evaluation program is a template DNA-primer relationship analysis program for causing a computer to implement a process for evaluating the relationship between a template DNA and a primer.
  • a template DNA base sequence obtaining function for obtaining the base sequence information of the template DNA a primer base sequence obtaining function for obtaining the base sequence information of the primer to be evaluated, two single-stranded template DNAs obtained from the template DNA, and
  • verification targets two primers (hereinafter referred to as verification targets)
  • a predetermined number of bases extracted by dividing the primer into predetermined numbers of bases are sequentially shifted one base at a time from the first base in the binding target direction of the verification target.
  • a matching process is established at more than a majority of the predetermined number by performing verification processing at each position.
  • a linkable position coding processing function for generating a character string (hereinafter referred to as a word) expressing a relationship between a predetermined number of bases at a collation position as a predetermined code, and the linkable position coding
  • a word a character string
  • the topic model for the word group generated in the processing function find the probability that the word group is likely to belong to which topic among a plurality of topics, and as the probability that represents the possibility of belonging for each topic
  • a word classification processing function for performing output processing and amplification success rate information of each primer obtained by at least one or more PCR experiments performed in advance between the template DNA to be evaluated and a known primer.
  • the amplification success rate reflected classification data representing the amplification success rate of each topic is created and stored in the storage means in advance, and the evaluation target template DNA and the evaluation target By comparing the probability representing the affiliation possibility for each topic output in the word classification processing function with respect to the primer with the amplification success rate reflected classification data on the template DNA stored in the storage means, the primer to be evaluated And a primer evaluation processing function for predicting and evaluating the amplification success rate for the template DNA.
  • the base sequence information of the template DNA is acquired, the base sequence information of the primer is acquired, and the primer is set to a predetermined number of two single-stranded template DNAs and two primers obtained from the template DNA.
  • the matching unit is extracted by dividing each base, and a matching process is performed each time at a position where a predetermined number of bases are sequentially shifted from the first base in the connectable direction of the matching target by one base.
  • a connection relationship is established, a word composed of a character string expressing the relationship between a predetermined number of opposite bases at a matching position in a predetermined code is generated, and a topic model is used for all the generated words.
  • the topic generated from the word classification result regarding the primer to be evaluated can be used to preliminarily select the PCR primer when there is no classification data reflecting the amplification success rate. . That is, for a large number of primer sets whose amplification potential is unknown for the template DNA, a word group is generated from each primer set and the template DNA by the template DNA-primer relationship analyzer according to the present invention, and a topic model is created. Are used to classify these word groups into a plurality of topics, and to determine the topic most likely to belong to the word groups generated from the primer set. When these operations are executed, a group of words generated from each primer set is classified into a plurality of topics, and a topic most likely to belong to each primer set is determined.
  • an actual PCR experiment is performed in preference to a primer set belonging to a topic likely to be amplified.
  • it is possible to reduce the time and cost until discovery of a primer set that is successfully amplified.
  • This makes it possible to know the possibility of amplification before performing an actual PCR experiment for an unimplemented primer, so even if there is no classification data that reflects the success rate of amplification, the primer is effective at the stage where the PCR experiment is not performed. Can be narrowed down.
  • a topic model is used for the word group related to the primer to be evaluated, and a probability representing which topic is likely to belong to which topic among the plurality of topics is obtained.
  • FIG. 1 is a block diagram showing the configuration of a template DNA-primer relationship analyzer 10 according to the present invention.
  • 2 is a block diagram showing a hardware configuration required to realize the template DNA-primer relationship analysis apparatus 10.
  • FIG. FIG. 6 is an explanatory diagram for explaining the concept of a binding position encoding process in the template DNA-primer relationship analysis apparatus 10. It is the table
  • FIG. 5 is a flowchart showing the flow of a binding possible position encoding process in the template DNA-primer relationship analyzer 10.
  • FIG. 2 is a block diagram showing the configuration of a template DNA-primer relationship evaluation apparatus 20 according to the present invention.
  • FIG. 10 is a flowchart showing the relationship evaluation process flow in the template DNA-primer relationship evaluation apparatus 20. It is explanatory drawing which showed the procedure of OE-PCR. It is explanatory drawing which showed the procedure of PCR.
  • FIG. 1 is a block diagram showing the configuration of a template DNA-primer relationship analyzer 10 according to the present invention.
  • the template DNA-primer relationship analysis apparatus 10 may be an apparatus designed as a dedicated machine, but is assumed to be realizable by a general computer.
  • FIG. 2 is a block diagram showing a hardware configuration necessary for realizing the template DNA-primer relationship analysis apparatus 10.
  • the template DNA-primer relationship analysis apparatus 10 includes a CPU (Central Processing Unit) 51 and a GPU (Graphics Processing Unit) that a general computer would normally have.
  • SSD solid state drive
  • the template DNA-primer relationship analysis apparatus 10 realizes processing in the configuration of each part of the template DNA-primer relationship analysis apparatus 10 with the same configuration as various hardware including the CPU shown in FIG. To do.
  • the template DNA-primer relationship analyzer 10 uses the configuration provided in the server device while performing communication so that the server device connectable via the communication network is provided with a part of the configuration. May be.
  • the template DNA-primer relationship analysis apparatus 10 includes a template DNA base sequence acquisition unit 11, a primer base sequence acquisition unit 12, a binding position encoding processing unit 13, and a word classification processing unit 14. And at least a storage unit 15.
  • the template DNA base sequence acquisition unit 11 has a function of acquiring base sequence information of a template DNA including a region (priming region) to be amplified by PCR.
  • the template DNA base sequence acquisition unit 11 acquires not only the base sequence information of the entire template DNA, but also information specifying from what base to what base the region to be amplified is acquired.
  • the primer base sequence acquisition unit 12 has a function of acquiring base sequence information of a primer used when performing PCR.
  • the base sequence information of the primer obtained here includes the f primer to be bonded to one single-stranded template DNA when the template DNA is heat-treated into two single-stranded template DNAs, and the other single-stranded template DNA. Base sequence information for both the r primer to be bound is included.
  • the binding position encoding processing unit 13 divides and extracts a primer for each predetermined number of bases with respect to two single-stranded template DNAs obtained from the template DNA and two primers (hereinafter referred to as collation targets).
  • collation targets two primers obtained from the template DNA and two primers.
  • a position where two primers used for the purpose of amplification in the priming region may be combined is searched by collation, and the relationship at the position that can be combined is determined. Is a process of converting the code into a predetermined code.
  • FIG. 3 is an explanatory diagram for explaining the concept of the binding position encoding process in the template DNA-primer relationship analyzer 10.
  • FIG. 3A is an explanatory diagram showing an example of an ideal binding position between a template DNA and a primer.
  • a template DNA having a double helix structure formed by hydrogen bonding between the two strands is, for example, 2 in the process of PCR heat treatment, as shown as (1) and (2) in FIG. Separated into one single-stranded template DNA.
  • the number of bases of the two single-stranded template DNAs is 60, this is for the sake of simplicity and is not limited to this.
  • a priming region is set in the template DNA, the f primer which is a primer set to bind to the end of the priming region in one single-stranded template DNA, and the priming region in the other single-stranded template DNA R primer, which is a primer set so as to bind to the end of the first, is selected.
  • the number of bases of the f primer and the r primer is 10, it is for the sake of simplicity and is not limited to this.
  • the 10 bases of the f primer and the 10 bases of the r primer have a relationship in which all 10 bases bind to each other at an ideal binding position with the opposing single-stranded template DNA.
  • the relationship of binding is that bases A and T, and G and C out of four bases constituting DNA, adenine (A), guanine (G), thymine (T), and cytosine (C), are included. Each of them is in a relationship of complementary bonding through hydrogen bonding.
  • FIG. 3 (b) is an explanatory diagram illustrating a case where a predetermined number of bases of the verification unit are extracted from the primer and 5 bases of the verification unit are extracted.
  • the target primer is “gcaacttctc” of the f primer
  • 5 bases are extracted from the first base
  • [1] gcaac is extracted as a verification unit of 5 bases.
  • 5 base units are extracted while sequentially shifting one base at a time.
  • 5 base units of 6 patterns are extracted from the f primer consisting of 10 bases.
  • the example of FIG. 3 (b) is an example for a 10-base primer.
  • 5 bases of verification units are extracted from a 20-base primer, 5 bases of 16 patterns of verification units are extracted, and the number of bases of the primer is calculated. Will change accordingly.
  • FIG. 3 (c) is an explanatory view showing an example of collation of a collation unit of 5 bases with the template DNA.
  • [1] gcaac having a base of 5 bases is compared with a single-stranded template DNA.
  • collation is performed in a positional relationship in which the first base on the 5 'side of [1] gcaac is opposed to the first base on the 3' side of the single-stranded template DNA.
  • the first to fifth bases on the 3 'side of the single-stranded template DNA are regions that are out of the priming region, but verification processing is also performed on portions other than the priming region.
  • the connectable position coding processing unit 13 converts the code into a predetermined code when the connection relationship is established at a majority of the predetermined number of positions, that is, the code when the connection relationship is established at 3 or more bases out of 5 bases. Therefore, no code is generated for the first base.
  • 1 is sequentially added to the 5 ′ side of the single-stranded template DNA.
  • the matching process is performed up to the last base of the single-stranded template DNA (up to the positional relationship where the 5 ′ end of the single-stranded template DNA and the 3 ′ end of [1] gcaac are matched).
  • the code is generated at the connectable position where the code can be generated.
  • the combinable position coding process is executed in the same manner for the other 5 base units of [2] to [6].
  • FIG. 3 shows the case where one base template DNA is matched with 5 bases of 6 patterns of verification units extracted from the f primer, but the other single strand template DNA is also subjected to the verification process.
  • the matching process is similarly performed for the two f primers and the r primer. Then, the matching unit 5 bases are extracted from the other r primer, and the same binding possible position coding process is executed.
  • FIG. 4 is a table showing an example of the conversion code applied to the position where the connection relationship is established in the connectable position encoding process.
  • the conversion code distinguishes the code to be applied by the region where the collation unit 5 bases are opposite.
  • the template DNA is divided into a priming region, a template DNA region other than the priming region, and a region in the case of binding between the primers themselves or the primers.
  • uppercase alphabets are used as codes
  • binding relationships in template DNA regions other than the priming region lowercase alphabets are used as codes.
  • numbers and the above-mentioned unused lower case alphabets are used as codes.
  • the same code is used for the relation of binding between A and T, regardless of which side of A or T is present on the side of the base to be collated and the 5 bases of the collation unit.
  • the same code is used regardless of which side of the base to be collated and the base of the collation unit, 5 G or C, is present.
  • the original code is used.
  • the code “BBAAB” is generated in the example collated with the sixth base in FIG. 3C.
  • the codes generated in the priming area are generated by a predetermined number, for example, three times as many codes. This is a contrivance for making the evaluation of the bonding relationship in the priming region higher than the bonding relationship in other regions.
  • the code for the binding between the primers themselves or between the primers is also a predetermined number of times, for example, 3 times so that it can be easily discovered. Generate as many codes as possible.
  • the multiples listed here are merely examples, and other magnifications may be used.
  • a character string representing a connection relationship represented by the same number of codes as the number of bases of a predetermined number of verification units is hereinafter expressed as a word.
  • the character string “BBAAB” represented by the five codes generated in FIG. 3C is a word.
  • a word such as “babba” may be generated for the binding relationship in the template DNA region other than the priming region.
  • “12142” May be generated.
  • the word classification processing unit 14 has a function of performing a process of classifying all the words generated in the connectable position coding processing unit 13 into a plurality of topics using a topic model.
  • the topic model is a kind of probabilistic model, and is a model used to analyze what kind of topic the sentence includes by classifying words in the sentence into a plurality of topics.
  • the processing for classifying all the words (character strings represented by codes) generated in the connectable position coding processing unit 13 into a plurality of topics is executed using a topic model.
  • LDA LocalLDDirichlet Allocation
  • various existing software such as gensim can be used as a program for implementation.
  • the number of topics for classification may be configured so that the user can specify an arbitrary number of topics.
  • the optimum number of topics may be determined by evaluating using an index such as perplexity or coverage.
  • the word classification processing unit 14 all the words generated in the connectable position coding processing unit 13 are probabilistically classified into any topic.
  • the topic model has a function of outputting which topic is most likely to correspond to a word group to be classified. With respect to the possibility of the topic to which the word group belongs, it is possible to output the corresponding probability ratio (%) for each topic.
  • the storage unit 15 has a function of storing various data necessary for processing of each unit and data obtained as a result of processing in each unit.
  • the base sequence information of the template DNA acquired by the template DNA base sequence acquisition unit 11, the base sequence information of the primer acquired by the primer base sequence acquisition unit 12, and the like are stored in the storage unit 16, and the binding possible position You may make it memorize
  • FIG. 5 is a flowchart showing the flow of the binding possible position encoding process in the template DNA-primer relationship analysis apparatus 10.
  • the template DNA-primer relationship analyzer 10 acquires the base sequence information of the template DNA (S101). Further, the template DNA-primer relationship analyzer 10 also acquires the base sequence information of the primer (S102). Here, two primers, the f primer and the r primer, acquire base sequence information.
  • the template DNA-primer relationship analysis apparatus 10 divides one of the primers from which the base sequence information has been acquired into a verification unit of 5 bases and selects the first verification unit of 5 bases (S103). An unselected one of two single-stranded DNAs and two primers obtained from the template DNA is selected as a verification target for verifying the selected verification unit 5 bases (S104).
  • the template DNA-primer relationship analysis apparatus 10 collates 5 base units while sequentially shifting one base at a time from the first base to be collated, and a binding relationship is established at 3 or more bases out of 5 at the collation position. If so, the relationship between the five bases at the collation position is converted into a predetermined code (S105).
  • the template DNA-primer relationship analyzer 10 determines whether or not collation with the current collation unit of 5 bases has been completed up to the end of the collation target being selected (S106). If the collation is not completed to the end of the collation target (S106-N), the steps of S105 and S106 are repeated. When collation is completed up to the end of the collation target (S106-Y), the process proceeds to step S107.
  • step S107 it is determined whether or not collation is completed for the last collation unit of 5 bases (S107).
  • the collation unit of 5 bases is switched to the next option (S108), and then the processes of steps S105 and S106 are repeated. Then, Steps S105 to S108 are repeated, and when collation for the last collation unit 5 bases is completed (S107-Y), the process proceeds to the next Step S109.
  • step S109 it is determined whether or not collation has been completed for all collation targets (S109). If collation has not been completed for all collation targets (S109-N), the process returns to step S103, the process target is changed in step S104, and the processes in steps S105 to S108 are repeated. When steps S105 to S108 are repeated and collation is completed for all collation targets (S109-Y), it is determined whether or not collation processing for all primers divided into 5 collation units is completed. Determine (S110). If the collation process for all the primers divided into the collation units of 5 bases has not been completed (S110-N), unprocessed primers are selected (S111), and the process returns to step S103.
  • steps S103 to S109 When the processing of steps S103 to S109 is repeated to complete the verification processing by dividing the unprocessed primer into the verification unit of 5 bases (S110-Y), all the words generated by the encoding are stored in the storage unit. (S112), and the process ends.
  • the base sequence information of the template DNA is acquired, the base sequence information of the primer is acquired, and two pieces of DNA obtained from the template DNA are obtained.
  • a predetermined number of base units extracted by dividing the primer into a predetermined number of bases are shifted one base at a time from the first base in the binding possible direction of the target of verification.
  • the template DNA-primer relationship analyzer 10 generates word groups from each primer set and template DNA, classifies these word groups into a plurality of topics using a topic model, and Work to determine the topic most likely to belong to the word group generated from the primer set. When these operations are executed, the word groups generated from the 100 types of primer sets are classified into a plurality of topics, and the topic most likely to belong to each of the 100 types of primer sets is determined.
  • FIG. 6 is a block diagram showing the configuration of the template DNA-primer relationship evaluation apparatus 20 according to the present invention.
  • the template DNA-primer relationship evaluation apparatus 20 may be an apparatus designed as a dedicated machine, but is assumed to be realizable by a general computer. In that case, the template DNA-primer relationship evaluation apparatus 20 is the same as in the first embodiment. Similarly, it is realizable based on the structure equivalent to the hardware structure shown in FIG.
  • the template DNA-primer relationship evaluation apparatus 20 includes a template DNA base sequence acquisition unit 11, a primer base sequence acquisition unit 12, a binding position encoding processing unit 13, and a word classification processing unit 14. And at least a primer evaluation processing unit 21 and a storage unit 22.
  • a template DNA base sequence acquisition unit 11 a primer base sequence acquisition unit 12
  • a binding position encoding processing unit 13 a binding position encoding processing unit 13
  • a primer evaluation processing unit 21 and a storage unit 22 is abbreviate
  • a process of classifying all the words generated in the connectable position coding processing unit 13 into a plurality of topics using a topic model is performed.
  • the topic model for the function and the word group to be classified the probability that the word group is likely to belong to which topic among a plurality of topics is obtained, and the probability that the word belongs to each topic
  • the latter function is used, and the possibility of a topic to which a word group belongs can be assigned for each topic.
  • the function to output the sex ratio (%) shall be used.
  • the primer evaluation processing unit 21 succeeds in amplifying the template DNA stored in the storage means with the probability representing the affiliation possibility for each topic output in the word classification processing unit 14 with respect to the template DNA to be evaluated and the primer to be evaluated. It has a function of predicting and evaluating the amplification success rate for the template DNA of the primer to be evaluated by collating with the rate reflected classification data.
  • amplification success rate-reflected classification data refers to amplification success rate information of each primer obtained by at least one or more PCR experiments performed in advance between a template DNA to be evaluated and a known primer. Data reflecting the amplification success rate of each topic by reflecting it on any one of a plurality of topics when classified by the model.
  • This amplification success rate-reflected classification data can be recorded as the same amplification success rate-reflected classification data, as well as the classification result by a plurality of primer sets for the same template DNA and the amplification success rate information in the PCR experiment.
  • the classification result by a plurality of primer sets for DNA and the amplification success rate information in the PCR experiment can also be recorded as the same amplification success rate-reflected classification data.
  • the amplification success rate information for a plurality of primer sets is reflected in the classification result, so that the amplification success rate can be predicted with high accuracy.
  • the amplification success rate reflected classification data is stored in the storage unit 22 in advance.
  • the storage unit 22 has a function of storing the amplification success rate reflected classification data in addition to the function of storing the same target as the storage unit 16 in the first embodiment.
  • the amplification success rate-reflected classification data is created and stored in advance for each of the plurality of template DNAs, and the amplification success rate corresponding to the template DNA to be evaluated is specified in the matching process in the primer evaluation processing unit 21. Read reflected classification data and use it for collation.
  • the amplification success rate reflected classification data is not limited to the case of holding each template DNA, and evaluation information on the relationship between various template DNAs and various primer sets is converted into one amplification success rate reflected classification data. You may make it memorize what was reflected.
  • FIG. 7 is an explanatory diagram showing an example of a result of a PCR experiment of a plurality of words generated from the same template DNA and various primer sets, and each combination of the template DNA and the primer set.
  • FIG. 7 shows a process for generating a word in the position encoding processing unit 13 that can be combined with each of a plurality of primer sets (each set of f primer and r primer) for one template DNA. And the amplification success rate in a PCR experiment in which the primer set was applied to the template DNA.
  • FIG. 7 it is assumed that a plurality of words are generated for each combination of 15 types of primer sets (1) to (15) and one template DNA.
  • the amplification success rate indicates whether or not the priming region of the template DNA was successfully amplified in an actual PCR experiment.
  • the amplification success rate may be expressed as a binary value, such as x when failure occurs, or any value in the range of 0 to 1 is given when amplification fails, and amplification fails Gives any value in the range of 1 to 3, and may be expressed by a parameter indicating that the amplification success rate is higher as the value of 0 to 3 is larger, or the amplification success rate is expressed by percentage display. You may make it represent.
  • FIG. 8 is an explanatory diagram showing an example of the classification data reflecting the amplification success rate.
  • FIG. 8 shows the amplification success determined by determining the topic having the highest probability to which the word group generated from each of the primer sets (1) to (15) shown in FIG. Based on the rate reflected classification data, the amplification success rate of each topic is calculated based on the assigned amplification success / failure information.
  • the process of reflecting the amplification success rate information on each topic is, for example, the possibility that the group of words generated from the primer set of (1) is classified into any topic using the topic model for the primer set of (1) Is determined to be the highest, and information indicating whether amplification has succeeded or not is assigned to the determined topic. As shown in FIG.
  • the primer set (1) is an example of successful amplification, so “(1) ( ⁇ )” is assigned to topic 1.
  • a plurality of information on whether or not amplification is successful can be assigned to each topic.
  • the amplification success rate for each topic is calculated based on the information on whether amplification is successful.
  • the present invention is not limited to this. It may be a parameter indicating that the amplification success rate is higher as is larger, or the amplification success rate expressed in percentage may be assigned as it is.
  • Topic number 1 has an amplification success rate of 100%
  • topic number 2 has an amplification success rate of 50%
  • topic numbers 3 and 4 both have an amplification success rate of 0%.
  • the amplification success rate-reflected classification data shown in FIG. 8 is collated with the probability representing the affiliation possibility for each topic of the word group generated from the template DNA and the primer set to be evaluated.
  • the probability that the word group generated by the connectable position coding processing unit 13 from the combination of the primer set to be evaluated and the template DNA is represented by the topic model used in the word classification processing unit 14 is obtained.
  • This is displayed by, for example, a plurality of combinations of topic number and affiliation possibility (%).
  • a topic model is applied to a word group generated based on the combination of the primer set (1) and the template DNA to obtain a ratio indicating which topic is likely to belong to.
  • the topic model determines that the probability of belonging to topic 1 is 90% and the probability of belonging to topic 3 is 10%
  • the amplification possibility of the primer set to be evaluated can be evaluated as 90%.
  • the amplification probability of the most likely topic may be set.
  • the probability of belonging to Topic 1 is 90% and the probability of belonging to Topic 3 is 10%
  • the amplification possibility of the combination of the primer set (1) to be evaluated and the template DNA is the amplification possibility of Topic 1. It can also be estimated to be 100%.
  • the possibility of amplification can be evaluated by collating the amplification success rate reflected classification data with the primer set to be evaluated.
  • FIG. 9 is a flowchart showing the relationship evaluation process in the template DNA-primer relationship evaluation apparatus 20.
  • the template DNA-primer relationship evaluation apparatus 20 executes a plurality of steps generated in steps S101 to S112 shown in FIG. A word is acquired (S201).
  • the template DNA-primer relationship evaluation apparatus 20 outputs a probability representing the affiliation possibility for each topic using the topic model for the word group (S202). The probability here is output by a plurality of combinations of the topic number and the affiliation possibility (%) regarding the possibility that the word group belongs.
  • the template DNA-primer relationship evaluation device 20 reads the amplification success rate-reflected classification data stored in advance for the same template DNA (S203). Then, the template DNA-primer relationship evaluation device 20 executes a process of collating the probability representing the affiliation possibility for each topic related to the evaluation target primer with the amplification success rate reflected classification data (S204). Finally, the template DNA-primer relationship evaluation apparatus 20 outputs an evaluation on the amplification possibility for the evaluation target primer obtained by the collation (S205), and ends the process.
  • the base sequence information of the template DNA to be evaluated is acquired, the base sequence information of the primer to be evaluated is acquired, and the template DNA is obtained from the template DNA.
  • a predetermined number of bases that are extracted by dividing the primer into a predetermined number of bases.
  • a topic model for a group obtain a probability that indicates whether the word group is likely to belong to which topic among a plurality of topics, execute a process of outputting as a probability that represents the possibility of belonging for each topic, Information on the success rate of amplification of each primer obtained by at least one PCR experiment performed in advance between the template DNA to be evaluated and a known primer is bound to the template DNA and primer used in the PCR experiment.
  • amplification success rate reflected classification data representing the amplification success rate of each topic It is stored in the storage means in advance, and indicates the affiliation possibility for each topic regarding the word group related to the template DNA to be evaluated and the primer to be evaluated.
  • the evaluation By collating the word classification result related to the target primer with the classification data reflecting the amplification success rate, it is possible to output an evaluation regarding the amplification possibility of the target primer. As a result, it is possible to know the possibility of amplification before performing an actual PCR experiment for unimplemented primers, and therefore it is possible to narrow down effective primers in the stage where the PCR experiment is not performed.
  • the description was made using the relationship between one template DNA and a plurality of primer sets, but this is a simplified description.
  • the present invention is not limited to this.
  • the generation of classification data reflecting amplification success rate and the classification process by topic model may be handled together.
  • FIG. 10 is an explanatory diagram showing the OE-PCR procedure.
  • FIG. 10 (a) for a plurality of oligomers each consisting of about 60 bases (four oligomers in the example of FIG. 10 (a)), adjacent oligomers overlap each other at their ends.
  • FIG. 10 (b) when a synthesis reaction by DNA polymerase is caused to promote complementary DNA synthesis, the synthetic strand becomes a double strand as shown in FIG. 10 (c). To the end of the chain and finally a complete duplex is formed.
  • DNA of 100 to several thousand bases can be synthesized without preparing a template.
  • the base sequence information of the DNA to be synthesized is obtained instead of the target template DNA, and the base of the region to be overlapped for the oligomer used in the OE-PCR processing is obtained.
  • the sequence location is set as the priming region, and the relationship between all of the DNA to be synthesized and all the oligomers is generated by the connectable position encoding processing unit 13 based on a predetermined code.
  • Classification processing using a topic model is executed in the word classification processing unit 14 for words.
  • the techniques described in the first and second embodiments make it possible to develop PCR for rapid diagnosis of gene mutations related to diseases such as determination of malignancy of tumors.
  • using the property of improving the classification according to the present invention based on the trial results by repeating the trial efficiently, PCR does not occur in normal genes, but specific in mutant genes. It becomes possible to design primers that cause PCR.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

鋳型DNAに対するプライマーの増幅可能性を解析するために、鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得部と、プライマーの塩基配列情報を取得するプライマー塩基配列取得部と、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理部と、前記結合可能位置コード化処理部において生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行う単語分類処理部とを備えるようにした。

Description

鋳型DNA-プライマー関係性解析装置、鋳型DNA-プライマー関係性解析方法、鋳型DNA-プライマー関係性解析プログラム、鋳型DNA-プライマー関係性評価装置、鋳型DNA-プライマー関係性評価方法及び鋳型DNA-プライマー関係性評価プログラム
 本発明は、鋳型DNAに対するプライマーの増幅可能性を解析する技術に関する。
 従来、DNAを増幅するための原理として、PCR(Polymerase Chain Reaction:ポリメラーゼ連鎖反応)が存在する。PCRは少量のDNAであっても適切なプライマーが用いられていれば大量に増幅することができる増幅方法である。
 図11は、PCRの手順を示した説明図である。図11(a)は、増幅を行いたい二本鎖鋳型DNAのうち増幅を行いたい領域(プライミング領域)を設定する段階を表している。そして、二本鎖鋳型DNAを2本の一本鎖鋳型DNAへと変化させた場合に、設定したプライミング領域の端点において一方の一本鎖鋳型DNAの端点に結合させたいプライマー(これをフォワードプライマー(fプライマー)という)と、他方の一本鎖鋳型DNAの端点に結合させたいプライマー(これをリバースプライマー(rプライマー)という)の2つのプライマーを用意する。
 図11(b)は、実際のPCRの手順を表しており、二本鎖鋳型DNAに熱を加えて熱変性させることで、二重らせん構造の塩基間の水素結合が切断されて2本の一本鎖鋳型DNAを得るプロセスを表している。
 図11(c)は、2本の一本鎖鋳型DNAを得た後、温度を下げていくと、反応液に含まれるfプライマーとrプライマーがそれぞれ一本鎖鋳型DNAに結合する。fプライマー及びrプライマーは、一本鎖鋳型DNAよりも塩基数が少なく数も多いことから、一本鎖鋳型DNAが再び二本鎖鋳型DNAに戻るよりも早く一本鎖鋳型DNAに対して結合することになる。一本鎖鋳型DNAにfプライマー又はrプライマーが結合した状態で、温度をDNAポリメラーゼの活性が至適となる温度帯まで上昇させると、DNAポリメラーゼによる合成反応によって、fプライマー又はrプライマーが結合した部分を起点として一本鎖DNA部分と相補的なDNAが合成される。DNAがDNAポリメラーゼにより複製される際、デオキシリボースの3’位の水酸基にヌクレオチドのリン酸基を結合させることでDNAを伸長させていく。すなわち、デオキシリボースの5’位から3’位の方向に方向性を持って伸長していく性質を持っているため、fプライマー又はrプライマーが結合した位置から5’位から3’位の方向に順次相補鎖が形成されていくことになる。
 図11(b)のステップ及び図11(c)のステップを終えると、元の二本鎖鋳型DNAのうちプライミング領域部分が2倍となって2つの二本鎖鋳型DNAとなり、増殖が成功する。この処理をn回繰り返すと、プライミング領域部分を2倍に増幅することができる。図11(d)は、処理を3回繰り返すことで元の二本鎖鋳型DNAのうちプライミング領域部分を2倍の8倍に増幅した状態を表している。
 PCRについて記載されたものとしては、例えば、特許文献1が存在する。この特許文献1には、PCR法によってDNAの塩基配列を増幅させるために用いるプライマーセットを、増幅対象生物のDNAにおける増幅対象領域を増幅させるためのフォワードプライマー及びリバースプライマーの少なくとも一方の塩基配列が、非増幅対象生物のDNAの塩基配列と、12塩基以上連続で重ならないように作製することを特徴とするプライマーの作製方法が開示されている。
特開2013-017416号公報
 PCRを行う場合、増幅を行いたい領域のみを増幅させ、他の領域に結合する可能性のないfプライマー及びrプライマーを選定することが最も望まれる状態であるが、現実には、プライミング領域以外の箇所で鋳型DNAとプライマーが結合してしまったり、プライマー自身又はプライマー間で結合が生じてしまったり、DNA断片であるマイクロRNAなどと結合してしまったりなど、意図しない結合が生じて、プライミング領域の増幅が上手くいかない状況が発生することがある。複数種類のDNAが存在する状況においては一層意図しない結合の可能性は高まる。前記特許文献1は、非増幅対象生物のDNAの塩基配列と12塩基以上連続で重ならないことを条件として挙げているが、非増幅対象生物のDNAの塩基配列の全ての箇所に対してこの条件を満たすことは容易ではない。
 本発明は、上記問題点に鑑みなされたものであり、鋳型DNAに対するプライマーの増幅可能性を解析又は評価するための鋳型DNA-プライマー関係性解析装置、鋳型DNA-プライマー関係性解析方法、鋳型DNA-プライマー関係性解析プログラム、鋳型DNA-プライマー関係性評価装置、鋳型DNA-プライマー関係性評価方法及び鋳型DNA-プライマー関係性評価プログラムを提供することを課題とする。
 本発明に係る鋳型DNA-プライマー関係性解析装置は、鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得部と、プライマーの塩基配列情報を取得するプライマー塩基配列取得部と、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理部と、前記結合可能位置コード化処理部において生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行う単語分類処理部とを備えることを特徴とする。
 また、本発明に係る鋳型DNA-プライマー関係性解析装置は、前記照合単位所定数塩基は、3個~8個の塩基としたことを特徴とする。
 また、本発明に係る鋳型DNA-プライマー関係性解析装置は、前記所定のコードは、鋳型DNAのプライミング領域と、プライミング領域以外の鋳型DNAの領域と、プライマー自身又はプライマー間での結合の場合の領域とで、異なるコードを用いるようにしたことを特徴とする。
 本発明に係る鋳型DNA-プライマー関係性解析方法は、鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得手順と、プライマーの塩基配列情報を取得するプライマー塩基配列取得手順と、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理手順と、前記結合可能位置コード化処理手順において生成された全ての単語に対してトピックモデルを用いた分類処理を行う単語分類処理手順とを含むことを特徴とする。
 本発明に係る鋳型DNA-プライマー関係性解析プログラムは、鋳型DNAとプライマーの関係性を解析する処理をコンピュータに実現させるための鋳型DNA-プライマー関係性解析プログラムであって、前記コンピュータに、鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得機能と、プライマーの塩基配列情報を取得するプライマー塩基配列取得機能と、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理機能と、前記結合可能位置コード化処理機能において生成された全ての単語に対してトピックモデルを用いた分類処理を行う単語分類処理機能とを実現させることを特徴とする。
 本発明に係る鋳型DNA-プライマー関係性評価装置は、評価対象の鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得部と、評価対象のプライマーの塩基配列情報を取得するプライマー塩基配列取得部と、前記鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理部と、前記結合可能位置コード化処理部において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を行う単語分類処理部と、前記評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた前記鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、前記評価対象の鋳型DNAと前記評価対象のプライマーに関して前記単語分類処理部において出力されたトピック毎の所属可能性を表す確率を前記記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するプライマー評価処理部とを備えることを特徴とする。
 本発明に係る鋳型DNA-プライマー関係性評価方法は、評価対象の鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得手順と、評価対象のプライマーの塩基配列情報を取得するプライマー塩基配列取得手順と、前記鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理手順と、前記結合可能位置コード化処理手順において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を行う単語分類処理手順と、前記評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた前記鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、前記評価対象の鋳型DNAと前記評価対象のプライマーに関して前記単語分類処理手順において出力されたトピック毎の所属可能性を表す確率を前記記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するプライマー評価処理手順とを含むことを特徴とする。
 本発明に係る鋳型DNA-プライマー関係性評価プログラムは、鋳型DNAとプライマーの関係性を評価する処理をコンピュータに実現させるための鋳型DNA-プライマー関係性解析プログラムであって、前記コンピュータに、評価対象の鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得機能と、評価対象のプライマーの塩基配列情報を取得するプライマー塩基配列取得機能と、前記鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理機能と、前記結合可能位置コード化処理機能において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を行う単語分類処理機能と、前記評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた前記鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、前記評価対象の鋳型DNAと前記評価対象のプライマーに関して前記単語分類処理機能において出力されたトピック毎の所属可能性を表す確率を前記記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するプライマー評価処理機能とを実現させることを特徴とする。
 本発明によれば、鋳型DNAの塩基配列情報を取得し、プライマーの塩基配列情報を取得し、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマーに対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列からなる単語を生成し、生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行うようにしたので、単語の内容と単語の分類結果に基づいて、鋳型DNAのプライミング領域に対するプライマーの結合可能性の解析の他、プライミング領域以外の領域において意図しない結合が生じる可能性についても解析することができ、実際のPCRの実験を行う前に、鋳型DNAに対するプライマーの適合性を検証するための材料を得ることが可能となる。
 また、本発明によれば、評価対象のプライマーに関する単語分類結果から生成したトピックは、増幅成功率反映済分類データが存在しない場合においては、予備的にPCRプライマーを選定するために使用可能である。すなわち、鋳型DNAに対して増幅可能性が未知である多数のプライマーセットについて、本発明に係る鋳型DNA-プライマー関係性解析装置によって、各プライマーセットと鋳型DNAから単語群を生成して、トピックモデルを用いてそれらの単語群を複数のトピックに分類するとともに、当該プライマーセットから生成した単語群が所属する可能性が最も高いトピックを決定する作業を行うようにする。これらの作業を実行すると、各プライマーセットからそれぞれ生成された単語群が複数トピックに分類され、かつ、各プライマーセットのそれぞれが所属する可能性の最も高いトピックが決定される。このように、多数のプライマーセットを分類してから、増幅可能性の高そうなトピックに所属するプライマーセットから優先して実際のPCR実験を行うようにする。このような手順を踏むことで、増幅に成功するプライマーセットを発見するまでの時間及び費用を削減することが可能となる。これにより、未実施のプライマーについて実際のPCR実験を行う前に増幅可能性を知ることができるため、増幅成功率反映済分類データが存在しない場合においても、PCR実験を行わない段階において有効なプライマーを絞り込むことが可能となる。
 また、本発明によれば、評価対象のプライマーに関する単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率を増幅成功率反映済分類データと照合することで、鋳型DNAに対する評価対象のプライマーの増幅可能性に関する評価を出力することが可能となる。これにより、未実施のプライマーについて実際のPCR実験を行う前に増幅可能性を知ることができるため、PCR実験を行わない段階において有効なプライマーを絞り込むことが可能となる。
本発明に係る鋳型DNA-プライマー関係性解析装置10の構成を表したブロック図である。 鋳型DNA-プライマー関係性解析装置10を実現するために必要とされるハードウェア構成を表したブロック図である。 鋳型DNA-プライマー関係性解析装置10における結合可能位置コード化処理の概念を説明するための説明図である。 結合可能位置コード化処理において、結合関係が成立する位置に対して適用する変換コードの一例を表した表である。 鋳型DNA-プライマー関係性解析装置10における結合可能位置コード化処理の流れを表したフローチャート図である。 本発明に係る鋳型DNA-プライマー関係性評価装置20の構成を表したブロック図である。 同一の鋳型DNAと様々なプライマーセットとから生成された複数の単語と、鋳型DNAとプライマーセットの各組合せのPCR実験の結果を示した一例としての説明図である。 増幅成功率反映済分類データの一例を表した説明図である。 鋳型DNA-プライマー関係性評価装置20における関係性評価処理の流れを表したフローチャート図である。 OE-PCRの手順を示した説明図である。 PCRの手順を示した説明図である。
[第1の実施の形態]
 以下、図面を参照しながら、第1の実施の形態に係る鋳型DNA-プライマー関係性解析装置の例について説明する。図1は、本発明に係る鋳型DNA-プライマー関係性解析装置10の構成を表したブロック図である。
 なお、鋳型DNA-プライマー関係性解析装置10は、専用マシンとして設計した装置であってもよいが、一般的なコンピュータによって実現可能なものであるものとする。図2は、鋳型DNA-プライマー関係性解析装置10を実現するために必要とされるハードウェア構成を表したブロック図である。この図2に示すように、鋳型DNA-プライマー関係性解析装置10は、一般的なコンピュータが通常備えているであろうCPU(Central Processing Unit:中央演算処理装置)51と、GPU(Graphics Processing Unit:画像処理装置)52と、メモリ53と、ハードディスクドライブ、SSD(solid state drive)等のストレージ54とを備えており、また、マウス、キーボード等の入力装置55と、ディスプレイ、プリンタ等の出力装置56と、通信ネットワークと接続するための通信装置57とを備えており、これらがバス58を介して接続されているものとする。本発明に係る鋳型DNA-プライマー関係性解析装置10は、図2に示すCPUを含む各種ハードウェアと同等の構成によって鋳型DNA-プライマー関係性解析装置10の各部の構成における処理を実現するものとする。
 また、以下に説明する鋳型DNA-プライマー関係性解析装置10の構成要素を全て鋳型DNA-プライマー関係性解析装置10自身が備えている必要はなく、一部構成を他の装置に備えさせる、例えば、通信ネットワークを介して接続可能なサーバ装置に一部の構成を備えさせるようにして、鋳型DNA-プライマー関係性解析装置10が通信を行いながらサーバ装置に備えられた構成を利用するものであってもよい。
 図1に示すように、鋳型DNA-プライマー関係性解析装置10は、鋳型DNA塩基配列取得部11と、プライマー塩基配列取得部12と、結合可能位置コード化処理部13と、単語分類処理部14と、記憶部15とを少なくとも備えている。
 鋳型DNA塩基配列取得部11は、PCRによって増幅を行いたい領域(プライミング領域)を含む鋳型DNAの塩基配列情報を取得する機能を有する。この鋳型DNA塩基配列取得部11では、鋳型DNAの全体の塩基配列情報を取得するとともに、増幅を行いたい領域が何塩基目から何塩基目までであるのかを指定する情報も併せて取得する。
 プライマー塩基配列取得部12は、PCRを行う際に用いるプライマーの塩基配列情報を取得する機能を有する。ここで取得するプライマーの塩基配列情報は、鋳型DNAを熱処理して2つの一本鎖鋳型DNAとした場合の一方の一本鎖鋳型DNAに結合させるfプライマーと、他方の一本鎖鋳型DNAに結合させるrプライマーとの両方についての塩基配列情報が含まれる。
 結合可能位置コード化処理部13は、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語ともいう)として生成する機能を有する。この結合可能位置コード化処理部13においては、プライミング領域での増幅を狙って使用される2つのプライマーが結合する可能性のある位置を照合によって探索して、結合可能性のある位置における関係性を所定のコードに変換する処理である。
 図3は、鋳型DNA-プライマー関係性解析装置10における結合可能位置コード化処理の概念を説明するための説明図である。図3(a)は、鋳型DNAとプライマーの理想的結合位置の例を表した説明図である。二本鎖の間が水素結合して二重らせん構造をとっている鋳型DNAは、例えば、図3(a)において(1)及び(2)として示したように、PCRの熱処理の過程で2つの一本鎖鋳型DNAに分離される。なお、2つの一本鎖鋳型DNAの塩基数を60としているが、簡易的に説明するためであり、これに限定されるものではない。鋳型DNAにはプライミング領域が設定してあり、一方の一本鎖鋳型DNAにおけるプライミング領域の端部に結合するように設定されるプライマーであるfプライマーと、他方の一本鎖鋳型DNAにおけるプライミング領域の端部に結合するように設定されるプライマーであるrプライマーとが選択される。fプライマーとrプライマーの塩基数を10としているが、簡易的に説明するためであり、これに限定されるものではない。図3(a)の例では、fプライマーの10塩基とrプライマーの10塩基は、それぞれが相対する一本鎖鋳型DNAとの理想的結合位置において全10塩基が結合する関係性にある。ここで、結合する関係性とは、DNAを構成する塩基であるアデニン(A)、グアニン(G)、チミン(T)、シトシン(C)の4つのうち、塩基AとT、GとCがそれぞれ水素結合によって相補的結合をする関係にあることをいう。
 図3(b)は、プライマーから照合単位所定数塩基を抽出例として、照合単位5塩基を抽出する場合を例に挙げた説明図である。対象のプライマーをfプライマーの「gcaacttctc」とすると、最初に先頭の塩基から5塩基を抽出して、照合単位5塩基として[1]gcaacを抽出する。その後、順次1塩基ずつずらしながら照合単位5塩基を抽出する。すると、図3(b)に示すように、10塩基からなるfプライマーからは6パターンの照合単位5塩基が抽出されることが分かる。図3(b)の例は10塩基のプライマーについての例であるが、20塩基のプライマーから照合単位5塩基を抽出する場合には16パターンの照合単位5塩基が抽出され、プライマーの塩基数に応じて変化する。
 図3(c)は、鋳型DNAに対する照合単位5塩基の照合の例を表した説明図である。一例として、(1)の一本鎖鋳型DNAに対して照合単位5塩基の[1]gcaacを照合する例を挙げている。先ず、一本鎖鋳型DNAの3’側の1塩基目に[1]gcaacの5’側の1塩基目が相対する位置関係において照合を行う。一本鎖鋳型DNAの3’側の1塩基目から5塩基目まではプライミング領域から外れた領域であるが、プライミング領域以外の箇所に対しても照合処理を行う。すると、1塩基目はgとcであるため結合する関係性となっているが、残りの4塩基については結合する関係性となっていない。結合可能位置コード化処理部13では、所定数のうち過半数以上の位置で結合関係が成立する場合に所定のコードに変換する、すなわち、5塩基中3塩基以上において結合関係が成立する場合にコード化するので、この1塩基目についてはコードを生成しないことになる。次に、一本鎖鋳型DNAの3’側の2塩基目に[1]gcaacの1塩基目が相対する位置関係において照合を行うというように、一本鎖鋳型DNAの5’側に順次1塩基ずつずらしながら照合を行っていき、5塩基中3塩基以上において結合関係が成立する場合にコードを生成する。図3(c)の例では、一本鎖鋳型DNAの3’側の6塩基目に[1]gcaacの5’側の1塩基目が相対する位置関係において、プライミング領域での照合処理となり、5塩基全てで結合関係が成立するため、予め定められた所定のコード変換規則に基づいて、この相対する5塩基の関係性についてコードを生成する。このようにして、一本鎖鋳型DNAの最後の塩基まで(一本鎖鋳型DNAの5’側端部と[1]gcaacの3’側端部が照合される位置関係まで)照合処理を行って、コード生成可能な結合可能位置においてコードを生成する。他の[2]~[6]の照合単位5塩基についても同様に結合可能位置コード化処理を実行する。
 図3は、一方の一本鎖鋳型DNAに対してfプライマーから抽出された6パターンの照合単位5塩基を照合する場合をしめしたが、他方の一本鎖鋳型DNAに対しても照合処理を行い、また、2つのfプライマーとrプライマーに対しても同様に照合処理を行う。そして、もう一方のrプライマーからも照合単位5塩基を抽出して、同様の結合可能位置コード化処理を実行する。
 図4は、結合可能位置コード化処理において、結合関係が成立する位置に対して適用する変換コードの一例を表した表である。先ず、変換コードは、照合単位5塩基が相対する領域によって適用するコードを区別している。具体的には、鋳型DNAのプライミング領域と、プライミング領域以外の鋳型DNAの領域と、プライマー自身又はプライマー間での結合の場合の領域とに分けている。鋳型DNAのプライミング領域における結合関係に対しては大文字のアルファベットをコードとして使用し、プライミング領域以外の鋳型DNAの領域における結合関係に対しては小文字のアルファベットをコードとして使用し、プライマー自身又はプライマー間での結合の場合の領域における結合関係に対しては数字及び上記で未使用の小文字のアルファベットをコードとして使用している。全ての領域において、AとTの結合する関係性に対しては、照合対象と照合単位5塩基の何れの側にAとTのどちらの塩基が存在するかに関わらず同じコードを使用し、GとCの結合する関係性に対しては、照合対象と照合単位5塩基の何れの側にGとCのどちらの塩基が存在するかに関わらず同じコードを使用している。他の関係性については、それぞれオリジナルのコードを使用している。
 図4の変換コードを用いると、図3(c)の6塩基目に照合した例では、「BBAAB」というコードが生成される。このとき、プライミング領域において生成されたコードについては所定倍の数だけ、例えば3倍の数だけコードを生成するようにする。これは、プライミング領域での結合関係を他の領域の結合関係よりも評価を高くするための工夫である。また、プライマー自身又はプライマー間での結合は即座に避けたい結合関係であるため、これを発見し易いように、プライマー自身又はプライマー間での結合に対するコードについても所定倍の数だけ、例えば3倍の数だけコードを生成するようにする。ここで挙げた倍数はあくまで例示であり、他の倍率であってもよい。なお、照合単位所定数塩基の塩基数と同数のコードで表現された結合関係を表す文字列を、以下、単語と表現するものとする。図3(c)で生成された5つのコードで表された文字列「BBAAB」は単語である。この他にも、例えば、プライミング領域以外の鋳型DNAの領域における結合関係については、「babba」といった単語が生成される可能性があり、プライマー自身又はプライマー間での結合関係については、「12142」といった単語が生成される可能性がある。
 単語分類処理部14は、結合可能位置コード化処理部13において生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行う機能を有する。トピックモデルは、確率モデルの一種であり、文章中の単語を複数トピックに分類することで当該文章がどのような内容のトピックを含むかを分析することに用いられるモデルである。本例では、結合可能位置コード化処理部13において生成された全ての単語(コードで表された文字列)を複数のトピックに分類する処理についてトピックモデルを用いて実行する。トピックモデルは、例えば、LDA(Latent Dirichlet Allocation)を用いることができ、実装するためのプログラムとしては、例えば、gensimなどの様々な既存のソフトウェアを利用することができる。分類の際のトピック数については、使用者が任意のトピック数を指定できる構成としてもよい。また、最適なトピック数についてパープレキシティ(perplexity)やカバレージ(coverage)などの指標を用いて評価を行って決定するようにしてもよい。この単語分類処理部14によって分類することにより、結合可能位置コード化処理部13において生成された全ての単語は、確率的に何れかのトピックに分類されることになる。また、トピックモデルは、単語の分類機能に加えて、分類対象の単語群が何れのトピックに該当する可能性が最も高いかを出力する機能を備える。単語群が所属するトピックの可能性について、トピック毎の該当可能性の割合(%)を出力することができる。
 記憶部15は、各部の処理に必要な各種データや、各部における処理の結果として得られたデータを記憶させる機能を有する。例えば、鋳型DNA塩基配列取得部11で取得した鋳型DNAの塩基配列情報、プライマー塩基配列取得部12で取得したプライマーの塩基配列情報などをこの記憶部16に記憶させるようにし、また、結合可能位置コード化処理部13において生成したコードで表現された文字列である単語や、単語分類処理部14における分類結果などについて記憶部16に記憶させるようにしてもよい。
 次に、鋳型DNA-プライマー関係性解析装置10における結合可能位置コード化処理の流れについて説明を行う。図5は、鋳型DNA-プライマー関係性解析装置10における結合可能位置コード化処理の流れを表したフローチャート図である。この図5において、先ず、鋳型DNA-プライマー関係性解析装置10は、鋳型DNAの塩基配列情報の取得を行う(S101)。また、鋳型DNA-プライマー関係性解析装置10は、プライマーの塩基配列情報の取得についても行う(S102)。ここで塩基配列情報を取得するプライマーは、fプライマーとrプライマーの2つである。
 次に、鋳型DNA-プライマー関係性解析装置10は、塩基配列情報を取得したプライマーの1つについて照合単位5塩基に分割して最初の照合単位5塩基を選択する(S103)。選択された照合単位5塩基を照合する照合対象として、鋳型DNAから得られる2つの一本鎖DNA及び2つのプライマーのうち未選択の1つを選択する(S104)。鋳型DNA-プライマー関係性解析装置10は、選択された照合対象の先頭の塩基から順次1塩基ずつずらしながら照合単位5塩基を照合し、照合位置にて5塩基中3塩基以上で結合関係が成立する場合には、当該照合位置での相対する5塩基の関係性を所定のコードに変換する(S105)。そして、鋳型DNA-プライマー関係性解析装置10は、選択中の照合対象の最後まで現在の照合単位5塩基との照合が完了したかを判定する(S106)。照合対象の最後まで照合が完了していない場合(S106-N)には、S105及びS106のステップを繰り返す。照合対象の最後まで照合が完了した場合(S106-Y)には、S107のステップに移行する。
 S107のステップでは、最後の照合単位5塩基について照合完了したか否かを判定する(S107)。最後の照合単位5塩基について照合完了していない場合(S107-N)には、照合単位5塩基を次の選択肢に切り替えてから(S108)、ステップS105、S106の処理を繰り返す。そして、ステップS105~S108を繰り返して、最後の照合単位5塩基についての照合が完了した場合(S107-Y)には、次のS109のステップに移行する。
 S109のステップでは、全ての照合対象について照合が完了したかを判定する(S109)。全ての照合対象について照合が完了していない場合(S109-N)には、ステップS103に戻り、ステップS104において処理対象を変更してから、ステップS105~S108の処理を繰り返す。そして、ステップS105~S108を繰り返して、全ての照合対象について照合が完了した場合(S109-Y)には、全てのプライマーについて照合単位5塩基に分割しての照合処理を完了したか否かを判定する(S110)。全てのプライマーについて照合単位5塩基に分割しての照合処理を完了していない場合(S110-N)には、未処理のプライマーを選択(S111)した上で、ステップS103に戻る。ステップS103~S109の処理を繰り返して、未処理のプライマーについて照合単位5塩基に分割しての照合処理を完了した場合(S110-Y)には、コード化で生成された全ての単語を記憶部に記憶させて(S112)、処理を終了する。
 以上のように、本発明に係る鋳型DNA-プライマー関係性解析装置10によれば、鋳型DNAの塩基配列情報を取得し、プライマーの塩基配列情報を取得し、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマーに対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列からなる単語を生成し、生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行うようにしたので、単語の内容と単語の分類結果に基づいて、鋳型DNAのプライミング領域に対するプライマーの結合可能性の解析の他、プライミング領域以外の領域において意図しない結合が生じる可能性についても解析することができ、実際のPCRの実験を行う前に、鋳型DNAに対するプライマーの適合性を検証するための材料を得ることが可能となる。
 また、鋳型DNAに対して増幅可能性が未知である多数のプライマーセット、例えば、100種類のプライマーセットから最適な候補を選択したいような場合に、100種類全てについてPCR実験を行うことは大変な労力である。そこで、本発明に係る鋳型DNA-プライマー関係性解析装置10によって、各プライマーセットと鋳型DNAから単語群を生成して、トピックモデルを用いてそれらの単語群を複数のトピックに分類するとともに、当該プライマーセットから生成した単語群が所属する可能性が最も高いトピックを決定する作業を行うようにする。これらの作業を実行すると、100種類のプライマーセットからそれぞれ生成された単語群が複数トピックに分類され、かつ、100種類のプライマーセットのそれぞれが所属する可能性の最も高いトピックが決定される。このように100種類のプライマーセットを分類してから、増幅可能性の高そうなトピックに所属するプライマーセットから優先して実際のPCR実験を行うようにする。このような手順を踏むことで、増幅に成功するプライマーセットを発見するまでの時間及び費用を削減することが可能となる。
[第2の実施の形態]
 以下、図面を参照しながら、第2の実施の形態に係る鋳型DNA-プライマー関係性評価装置の例について説明する。図6は、本発明に係る鋳型DNA-プライマー関係性評価装置20の構成を表したブロック図である。なお、鋳型DNA-プライマー関係性評価装置20は、専用マシンとして設計した装置であってもよいが、一般的なコンピュータによって実現可能なものであるものとし、その場合、第1の実施の形態と同様、図2に示すハードウェア構成と同等の構成に基づいて実現することができる。
 図6に示すように、鋳型DNA-プライマー関係性評価装置20は、鋳型DNA塩基配列取得部11と、プライマー塩基配列取得部12と、結合可能位置コード化処理部13と、単語分類処理部14と、プライマー評価処理部21と、記憶部22とを少なくとも備えている。なお、第1の実施の形態と同一符号を付した構成については、第1の実施の形態と同様の機能を持った構成であるので、説明を省略する。
 なお、第1の実施の形態においては、単語分類処理部14の機能として、結合可能位置コード化処理部13において生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行う機能と、分類対象の単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、各トピック毎の所属可能性を表す確率として出力する機能との2つの機能を備えることを説明したが、この第2の実施の形態においては、後者の機能を用いるものとし、単語群が所属するトピックの可能性についてトピック毎の所属可能性の割合(%)を出力する機能を用いるものとする。
 プライマー評価処理部21は、評価対象の鋳型DNAと評価対象のプライマーに関して単語分類処理部14において出力されたトピック毎の所属可能性を表す確率を、記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価する機能を有する。ここで、増幅成功率反映済分類データとは、評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、トピックモデルによって分類する際の複数トピックのうちの何れかのトピックに対して反映させることで、各トピックの増幅成功率を表したデータのことをいう。この増幅成功率反映済分類データは、同じ鋳型DNAに対する複数のプライマーセットによる分類結果及びPCR実験での増幅成功率情報を同じ増幅成功率反映済分類データとして記録することもできるし、複数の鋳型DNAに対する複数のプライマーセットによる分類結果及びPCR実験での増幅成功率情報を同じ増幅成功率反映済分類データとして記録することもできる。複数のプライマーセットについての増幅成功率情報が分類結果に反映されることで、精度の高い増幅成功率の予測が可能となる。この増幅成功率反映済分類データは、予め記憶部22に記憶させておく。
 記憶部22は、第1の実施の形態における記憶部16と同様の対象を記憶する機能を有することに加えて、増幅成功率反映済分類データを記憶させておく機能を有する。増幅成功率反映済分類データは、複数の鋳型DNAそれぞれについて予め作成して記憶させておき、プライマー評価処理部21における照合処理において、評価対象の鋳型DNAが指定された段階で対応する増幅成功率反映済分類データを読み出して照合に利用する。また、増幅成功率反映済分類データは、鋳型DNAごとに保持する場合に限らず、様々な鋳型DNAと様々なプライマーセットとの関係性についての評価情報を1つの増幅成功率反映済分類データに反映させたものを記憶させておくようにしてもよい。
 図7は、同一の鋳型DNAと様々なプライマーセットとから生成された複数の単語と、鋳型DNAとプライマーセットの各組合せのPCR実験の結果を示した一例としての説明図である。この図7は、一つの鋳型DNAに対して複数のプライマーセット(それぞれがfプライマーとrプライマーとからなるセット)それぞれとの間で結合可能位置コード化処理部13における単語を生成する処理を実行して得られた単語を表すとともに、そのプライマーセットを当該鋳型DNAに適用したPCR実験での増幅成功率を表している。図7に示すように、15種類のプライマーセット(1)~(15)と一つの鋳型DNAとのそれぞれの組み合わせごとに、複数の単語がそれぞれ生成されたものとする。また、増幅成功率は、実際のPCR実験において鋳型DNAのプライミング領域の増幅に成功したか否かを表すものであり、図7に示すように、増幅に成功した場合を〇と表し、増幅に失敗した場合を×と表すといったように、2値で増幅成功率を表すようにしてもよいし、増幅に失敗した場合は0~1の範囲の何れかの値を与え、増幅に失敗した場合は1~3の範囲の何れかの値を与えて、0~3のうち値が大きいほど増幅成功率が高いことを表すパラメータで表現するようにしてもよいし、パーセント表示によって増幅成功率を表すようにしてもよい。
 図8は、増幅成功率反映済分類データの一例を表した説明図である。この図8は、図7に示す(1)~(15)の各プライマーセットから生成された単語群が所属する確率の最も高いトピックを決定し、増幅成功可否の情報を与えて割り振った増幅成功率反映済分類データであり、割り振られた増幅成功可否の情報に基づいて、各トピックの増幅成功率を算出している。増幅成功率情報を各トピックに反映させる処理は、例えば、(1)のプライマーセットについて、トピックモデルを用いて(1)のプライマーセットから生成された単語群が何れのトピックに分類される可能性が最も高いかを決定するようにし、決定されたトピックに対して増幅成功可否の情報を付した上で割り振る。図8に示すように、(1)のプライマーセットは増幅が成功する例であるので、トピック1に対して「(1)(〇)」を割り振っている。これらの処理を、(1)~(15)の各プライマーセットと鋳型DNAとの組み合わせについて実行することにより、各トピックに対して増幅成功可否の情報である〇と×が複数割り振られるので、割り振られた増幅成功可否の情報に基づいてトピック毎の増幅成功率を算出する。なお、この図7及び図8の例では〇か×の2値で表したために、単語に割り振る値も2値の何れかを割り振るようにしているが、これに限定されるものではなく、値が大きいほど増幅成功率が高いことを表すパラメータであってもよいし、パーセント表示で表された増幅成功率をそのまま割り振ってもよい。
 図8に示す増幅成功率反映済分類データの例では、(1)~(15)のプライマーセットと鋳型DNAとの組み合わせについてのPCR実験の増幅成功可否の情報を割り振った結果として、4つのトピックそれぞれの増幅成功率が算出されている。トピック番号1は増幅成功率100%であり、トピック番号2は増幅成功率50%であり、トピック番号3及び4はともに増幅成功率0%である。
 この図8に示す増幅成功率反映済分類データと、鋳型DNA及び評価対象のプライマーセットから生成された単語群のトピック毎の所属可能性を表す確率とを照合する場合を考える。例えば、評価対象のプライマーセットと鋳型DNAの組み合わせから結合可能位置コード化処理部13よって生成された単語群を、単語分類処理部14において用いるトピックモデルによって所属可能性を表す確率を求める。これは、例えば、トピック番号と所属可能性(%)の複数の組み合わせで表示される。例えば、プライマーセット(1)と鋳型DNAの組み合わせに基づいて生成された単語群についてトピックモデルを適用することで、何れのトピックに所属する可能性が高いかを表す割合を得る。例えば、トピック1に所属する確率が90%、トピック3に所属する確率が10%とトピックモデルによって判定された場合、評価対象のプライマーセットの増幅可能性は90%と評価できる。その増幅可能性については、最も可能性が高いトピックの増幅確率を設定しても良い。トピック1に所属する確率が90%、トピック3に所属する確率が10%である場合、評価対象のプライマーセット(1)と鋳型DNAとの組み合わせの増幅可能性は、トピック1の増幅可能性を採用して100%と予測することもできる。このように、増幅成功率反映済分類データと評価対象のプライマーセットとを照合することで、増幅の可能性を評価することができる。
 次に、鋳型DNA-プライマー関係性評価装置20における関係性評価処理の流れについて説明を行う。図9は、鋳型DNA-プライマー関係性評価装置20における関係性評価処理の流れを表したフローチャート図である。この図9において、先ず、鋳型DNA-プライマー関係性評価装置20は、図5に示すステップS101~S112の処理を実行することによって、評価対象のプライマーと鋳型DNAとの間で生成された複数の単語の取得を行う(S201)。次に、鋳型DNA-プライマー関係性評価装置20は、単語群についてトピックモデルを用いてトピック毎の所属可能性を表す確率を出力する(S202)。ここでの確率は、単語群の所属する可能性について、トピック番号と所属可能性(%)の複数の組み合わせで出力される。
 また、鋳型DNA-プライマー関係性評価装置20は、同一鋳型DNAについて予め記憶された増幅成功率反映済分類データを読み出す(S203)。そして、鋳型DNA-プライマー関係性評価装置20は、評価対象のプライマーに関するトピック毎の所属可能性を表す確率を増幅成功率反映済分類データと照合する処理を実行する(S204)。最後に、鋳型DNA-プライマー関係性評価装置20は、照合で得られた評価対象プライマーについての増幅可能性に関する評価を出力して(S205)、処理を終了する。
 以上のように、本発明に係る鋳型DNA-プライマー関係性評価装置20によれば、評価対象の鋳型DNAの塩基配列情報を取得し、評価対象のプライマーの塩基配列情報を取得し、鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理を実行し、結合可能位置コード化処理において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を実行し、評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、評価対象の鋳型DNAと評価対象のプライマーに関する単語群についてのトピック毎の所属可能性を表す確率を記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するようにしたので、評価対象のプライマーに関する単語分類結果を増幅成功率反映済分類データと照合することで、評価対象のプライマーの増幅可能性に関する評価を出力することが可能となる。これにより、未実施のプライマーについて実際のPCR実験を行う前に増幅可能性を知ることができるため、PCR実験を行わない段階において有効なプライマーを絞り込むことが可能となる。
 なお、第2の実施の形態について説明する際に、図7及び図8の例では、一つの鋳型DNAと複数のプライマーセットとの関係性を用いて説明を行ったが、これは説明を簡略化するために行ったものであり、これに限定されるものではない。複数の鋳型DNAと複数のプライマーセットとの関係性について、増幅成功率反映済分類データの生成やトピックモデルによる分類処理を一緒に扱って処理するようにしてもよい。
[第3の実施の形態]
 前記第1及び第2の実施の形態においては、PCR実験によって鋳型DNAを増殖する場合の最適プライマーの選定に用いる技術として説明を行ったが、OE-PCR(Overlap extension Polymerase Chain Reaction:オーバーラップエクステンションポリメラーゼ連鎖反応)に対しても本発明を適用することができる。
 図10は、OE-PCRの手順を示した説明図である。図10(a)に示すように、それぞれが60塩基程度からなる複数のオリゴマー(図10(a)の例では4つのオリゴマー)について、隣り合うオリゴマー同士がそれぞれの端部についてオーバーラップした箇所で結合した状態において、図10(b)に示すように、DNAポリメラーゼによる合成反応を起こさせて相補的なDNA合成を促進させると、図10(c)に示すように、合成鎖は二重鎖の末端まで到達し、最終的には完全な二重鎖が形成される。この技術を用いることにより、100~数千塩基のDNAを鋳型を準備せずに合成することが可能となる。
 OE-PCRについて、本発明を適用する場合には、対象としての鋳型DNAの代わりに、合成したいDNAの塩基配列情報を取得し、OE-PCRの処理に用いるオリゴマーについてオーバーラップさせたい領域の塩基配列箇所をプライミング領域に設定して、合成したいDNA及び全てのオリゴマーの全ての間の関係性について、結合可能位置コード化処理部13において所定のコードに基づいて単語を生成するようにし、生成した単語について単語分類処理部14においてトピックモデルを用いた分類処理を実行する。
 このようにして、合成したいDNA及び全てのオリゴマーの全ての間の関係性について解析することで、本発明に係る鋳型DNA-プライマー関係性解析装置10、鋳型DNA-プライマー関係性評価装置20と同様に、OE-PCRにおけるオリゴマーの選定について、実際のOE-PCR実験を行う前に有効なオリゴマーを絞り込むことが可能となる。
 前記第1及び第2の実施の形態において説明した技術は、腫瘍の悪性度の判断など、疾病に関係する遺伝子変異の迅速診断用PCRの開発を可能にする。この用途に本発明を利用する場合には、本発明での分類を試行結果で向上させる性質を用い、試行を効率的に繰り返すことにより、正常遺伝子ではPCRが起きず、変異遺伝子で特異的にPCRを起こすプライマーを設計することが可能になる。
  10 鋳型DNA-プライマー関係性解析装置
  11 鋳型DNA塩基配列取得部
  12 プライマー塩基配列取得部
  13 結合可能位置コード化処理部
  14 単語分類処理部
  15 記憶部
  20 鋳型DNA-プライマー関係性評価装置
  21 プライマー評価処理部
  22 記憶部

Claims (10)

  1.  鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得部と、
     プライマーの塩基配列情報を取得するプライマー塩基配列取得部と、
     鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理部と、
     前記結合可能位置コード化処理部において生成された全ての単語についてトピックモデルを用いて複数のトピックに分類する処理を行う単語分類処理部と
     を備える鋳型DNA-プライマー関係性解析装置。
  2.  前記照合単位所定数塩基は、3個~8個の塩基とした
     請求項1記載の鋳型DNA-プライマー関係性解析装置。
  3.  前記所定のコードは、鋳型DNAのプライミング領域と、プライミング領域以外の鋳型DNAの領域と、プライマー自身又はプライマー間での結合の場合の領域とで、異なるコードを用いるようにした
     請求項1又は請求項2に記載の鋳型DNA-プライマー関係性解析装置。
  4.  鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得手順と、
     プライマーの塩基配列情報を取得するプライマー塩基配列取得手順と、
     鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理手順と、
     前記結合可能位置コード化処理手順において生成された全ての単語に対してトピックモデルを用いた分類処理を行う単語分類処理手順と
     を含む鋳型DNA-プライマー関係性解析方法。
  5.  鋳型DNAとプライマーの関係性を解析する処理をコンピュータに実現させるための鋳型DNA-プライマー関係性解析プログラムであって、
     前記コンピュータに、
     鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得機能と、
     プライマーの塩基配列情報を取得するプライマー塩基配列取得機能と、
     鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理機能と、
     前記結合可能位置コード化処理機能において生成された全ての単語に対してトピックモデルを用いた分類処理を行う単語分類処理機能と
     を実現させる鋳型DNA-プライマー関係性解析プログラム。
  6.  評価対象の鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得部と、
     評価対象のプライマーの塩基配列情報を取得するプライマー塩基配列取得部と、
     前記鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理部と、
     前記結合可能位置コード化処理部において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を行う単語分類処理部と、
     前記評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた前記鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、前記評価対象の鋳型DNAと前記評価対象のプライマーに関して前記単語分類処理部において出力されたトピック毎の所属可能性を表す確率を前記記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するプライマー評価処理部と
     を備える鋳型DNA-プライマー関係性評価装置。
  7.  前記照合単位所定数塩基は、3個~8個の塩基とした
     請求項6記載の鋳型DNA-プライマー関係性評価装置。
  8.  前記所定のコードは、鋳型DNAのプライミング領域と、プライミング領域以外の鋳型DNAの領域と、プライマー自身又はプライマー間での結合の場合の領域とで、異なるコードを用いるようにした
     請求項6又は請求項7に記載の鋳型DNA-プライマー関係性評価装置。
  9.  評価対象の鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得手順と、
     評価対象のプライマーの塩基配列情報を取得するプライマー塩基配列取得手順と、
     前記鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理手順と、
     前記結合可能位置コード化処理手順において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を行う単語分類処理手順と、
     前記評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた前記鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、前記評価対象の鋳型DNAと前記評価対象のプライマーに関して前記単語分類処理手順において出力されたトピック毎の所属可能性を表す確率を前記記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するプライマー評価処理手順と
     を含む鋳型DNA-プライマー関係性評価方法。
  10.  鋳型DNAとプライマーの関係性を評価する処理をコンピュータに実現させるための鋳型DNA-プライマー関係性解析プログラムであって、
     前記コンピュータに、
     評価対象の鋳型DNAの塩基配列情報を取得する鋳型DNA塩基配列取得機能と、
     評価対象のプライマーの塩基配列情報を取得するプライマー塩基配列取得機能と、
     前記鋳型DNAから得られる2つの一本鎖鋳型DNA及び2つのプライマー(以下、照合対象という)に対して、プライマーを所定数の塩基毎に分割して抽出した照合単位所定数塩基を、照合対象の結合可能方向の先頭の塩基から順次1塩基ずつずらした位置においてその都度照合処理を行って、所定数のうち過半数以上の位置で結合関係が成立する場合に、照合位置での相対する所定数の塩基の関係性を所定のコードで表現した文字列(以下、単語という)として生成する結合可能位置コード化処理機能と、
     前記結合可能位置コード化処理機能において生成された単語群についてトピックモデルを用いて当該単語群が複数のトピックのうち何れのトピックに所属する可能性が高いかを表す確率を求め、トピック毎の所属可能性を表す確率として出力する処理を行う単語分類処理機能と、
     前記評価対象の鋳型DNAと既知のプライマーとの間で予め行われた少なくとも1以上のPCR実験によって得られた各プライマーの増幅成功率情報を、当該PCR実験に用いた前記鋳型DNAとプライマーに対して結合可能位置コード化処理及び単語分類処理を行うことで得られた複数トピックへの分類結果に対して反映させることで、各トピックの増幅成功率を表した増幅成功率反映済分類データを作成して予め記憶手段に記憶させておき、前記評価対象の鋳型DNAと前記評価対象のプライマーに関して前記単語分類処理機能において出力されたトピック毎の所属可能性を表す確率を前記記憶手段に記憶された当該鋳型DNAに関する増幅成功率反映済分類データと照合することで、当該評価対象のプライマーについて当該鋳型DNAに対する増幅成功率を予測して評価するプライマー評価処理機能と
     を実現させる鋳型DNA-プライマー関係性評価プログラム。
PCT/JP2018/009343 2018-03-09 2018-03-09 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム WO2019171601A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020504642A JP7030312B2 (ja) 2018-03-09 2018-03-09 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム
PCT/JP2018/009343 WO2019171601A1 (ja) 2018-03-09 2018-03-09 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009343 WO2019171601A1 (ja) 2018-03-09 2018-03-09 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム

Publications (1)

Publication Number Publication Date
WO2019171601A1 true WO2019171601A1 (ja) 2019-09-12

Family

ID=67845691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009343 WO2019171601A1 (ja) 2018-03-09 2018-03-09 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム

Country Status (2)

Country Link
JP (1) JP7030312B2 (ja)
WO (1) WO2019171601A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183173A1 (en) * 2014-05-28 2015-12-03 Grafström Roland In vitro toxicogenomics for toxicity prediction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183173A1 (en) * 2014-05-28 2015-12-03 Grafström Roland In vitro toxicogenomics for toxicity prediction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IWAYAMA, KOJI ET AL: "Topic model for analysis of gene expression data", IEICE TECHINICAL REPORT, vol. 116, no. 500, 27 February 2017 (2017-02-27), pages 77 - 82 *

Also Published As

Publication number Publication date
JP7030312B2 (ja) 2022-03-07
JPWO2019171601A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
US11817180B2 (en) Systems and methods for analyzing nucleic acid sequences
Edgar UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing
Griffin et al. Prediction of RNA secondary structure by energy minimization
US20230402128A1 (en) Methods and systems for designing gene panels
Smith et al. Demographic model selection using random forests and the site frequency spectrum
Kucherov et al. Multiseed lossless filtration
US11062790B2 (en) Method for thoroughly designing valid and ranked primers for genome-scale DNA sequence database
CN110692101A (zh) 用于比对靶向的核酸测序数据的方法
Andreson et al. GENOMEMASKER package for designing unique genomic PCR primers
Shiga et al. A variational bayesian framework for clustering with multiple graphs
EP2518656B1 (en) Taxonomic classification system
WO2019171601A1 (ja) 鋳型dna-プライマー関係性解析装置、鋳型dna-プライマー関係性解析方法、鋳型dna-プライマー関係性解析プログラム、鋳型dna-プライマー関係性評価装置、鋳型dna-プライマー関係性評価方法及び鋳型dna-プライマー関係性評価プログラム
WO2005096208A1 (ja) 塩基配列検索装置及び塩基配列検索方法
CN102841988A (zh) 一种对核酸序列信息进行匹配的系统和方法
Li et al. Characteristics and prediction of RNA structure
US20050112577A1 (en) Rna sequence analyzer, and rna sequence analysis method, program and recording medium
Rivals et al. A first step toward chromosome analysis by compression algorithms
JPWO2004068398A1 (ja) Dnaコンピュータ及びそれを用いた計算方法
Xu et al. Learn from the information contained in the false splice sites as well as in the true splice sites using SVM
Giannoukakos et al. Assessing the complementary information from an increased number of biologically relevant features in liquid biopsy-derived RNA-Seq data
US20220284986A1 (en) Systems and methods for identifying exon junctions from single reads
Shelenkov et al. Search of regular sequences in promoters from eukaryotic genomes
Naghibzadeh et al. A Novel Multi-head Algorithm to Discover all Tandem Repeats in One Scan of DNA Sequences
KR102110017B1 (ko) 분산 처리에 기반한 miRNA 분석 시스템
US20240112756A1 (en) Method for analyzing genetic elements and surroundings

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908342

Country of ref document: EP

Kind code of ref document: A1