WO2019171553A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019171553A1
WO2019171553A1 PCT/JP2018/009070 JP2018009070W WO2019171553A1 WO 2019171553 A1 WO2019171553 A1 WO 2019171553A1 JP 2018009070 W JP2018009070 W JP 2018009070W WO 2019171553 A1 WO2019171553 A1 WO 2019171553A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
pneumatic tire
central
width
Prior art date
Application number
PCT/JP2018/009070
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 芝井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2019536320A priority Critical patent/JP6729808B2/en
Priority to PCT/JP2018/009070 priority patent/WO2019171553A1/en
Publication of WO2019171553A1 publication Critical patent/WO2019171553A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can suppress the center uneven wear of the tread portion and improve the linearity of steering stability.
  • a pneumatic tire is generally disposed in a tire tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and on the inner side in the tire radial direction of the sidewall portions.
  • An object of the present invention is to provide a pneumatic tire capable of suppressing the center uneven wear of the tread portion and improving the linearity of steering stability.
  • a pneumatic tire according to the present invention includes a tread portion that extends in the tire circumferential direction to form an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and the sidewall portions.
  • a pneumatic tire provided with a pair of bead portions arranged on the inner side in the tire radial direction of Loads corresponding to 40%, 75%, and 100% of the maximum load capacity defined in the standard are W40, W75, and W100 (kN), respectively, and the pneumatic tire is filled with an air pressure of 230 kPa, and the load W40,
  • the cornering powers measured under the conditions of loading W75 and W100 are CP40, CP75 and CP100 (kN / °), respectively, the flatness ratio of the pneumatic tire is R, and the outer diameter is D (mm).
  • the loads W40, W75, W100 and the cornering power CP40, CP75, CP100 are 0.05 ⁇ (R ⁇ D / 2A) 2 ⁇ [(CP100 ⁇ CP75) / (W100 ⁇ W75)] / [(CP75 ⁇ CP40) / (W75 ⁇ W40)] ⁇ 0.50 is satisfied,
  • the pneumatic tire is filled with air pressure of 230 kPa, and the maximum contact width in the tire width direction when grounded under the condition of applying the load W75 is WB1, and the tread portion is the maximum contact width WB1 centering on the tire equator.
  • the groove area Sc of the central area and the grooves of the outer area satisfies the relationship of 0.80 ⁇ Sc / Ss ⁇ 0.98.
  • the groove area Sc of the central region and the groove area Ss of the outer region satisfy the relationship of 0.80 ⁇ Sc / Ss ⁇ 0.98, and the groove area Sc in the central region is reduced, thereby reducing the tread. It is possible to secure the rigidity in the central region of the portion and suppress the center uneven wear. Further, by reducing the groove area Sc in the central region and increasing the rigidity in the central region of the tread portion, it is possible to ensure high cornering power from the low load region.
  • the loads W40, W75, W100 and the cornering powers CP40, CP75, CP100 are 0.05 ⁇ (R ⁇ D / 2A) 2 ⁇ [(CP100 ⁇ CP75) / (W100 ⁇ W75)] / [(CP75 ⁇ CP40) /(W75 ⁇ W40)] ⁇ 0.50 is satisfied, it is possible to suppress an excessive increase in cornering power in the high load region. As a result, the tire moves without delay from the initial steering of the steering wheel, and an appropriate cornering power is exhibited as the load increases, so that the linearity of steering stability can be improved.
  • a central main groove extending in the tire circumferential direction, an outer main groove extending in the tire circumferential direction at a position outside the central main groove in the tire width direction, and a tire width direction from the outer main groove A tread pattern in which a plurality of central lateral grooves extending in the tire width direction at the inner position is formed can be employed.
  • the following structure in order to secure rigidity in the center region of the tread portion, to suppress uneven wear in the center of the tread portion, and to secure high cornering power from a low load region, the following structure may be employed. That is, it is preferable that the inclination angle ⁇ cl formed by the side wall of the central lateral groove with respect to the normal line of the tread surface satisfies the relationship of 0 ° ⁇ ⁇ cl ⁇ 10 °.
  • the groove depth Dcl of the central lateral groove preferably satisfies the relationship of 0.20 ⁇ Dcl / GDc ⁇ 0.90 with respect to the groove depth GDc of the central main groove.
  • the central lateral groove has a bottom raised portion in a part of the longitudinal direction, and the groove depth Da at the bottom raised portion has a relationship of 0.20 ⁇ Da / Dcl ⁇ 0.90 with respect to the groove depth Dcl of the central lateral groove. It is preferable to satisfy. It is preferable that the groove depth GDc of the central main groove satisfies the relationship 0.85 ⁇ GDc / GDs ⁇ 1.00 with respect to the groove depth GDs of the outer main groove.
  • the groove depth Dcl of the central lateral groove is equal to the groove depth Dsl of the outer lateral groove. It is preferable that the relationship of 0.50 ⁇ Dcl / Dsl ⁇ 1.00 is satisfied. Furthermore, it is preferable that all of the central lateral grooves formed on the inner side in the tire width direction than the outer main groove have a groove width of 1.0 mm or less. Alternatively, it is preferable that all the grooves except the central main groove and the outer main groove formed in the tread portion have a groove width of 1.0 mm or less.
  • a pneumatic tire is filled with an air pressure of 230 kPa, and the tires in the circumferential direction when grounded under the conditions of loading 40%, 75%, and 100% of the maximum load capacity defined by the standard, respectively.
  • the maximum contact lengths are LA1, LB1, and LC1, respectively
  • the maximum contact widths in the tire width direction are WA1, WB1, and WC1, respectively
  • the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ⁇ (LB2 / LB1) / (LA2 / LA1) ⁇ 1.25, 1.00 ⁇ (LC2 / LC1) / (LB2 / LB1) ⁇ 1.20, 0.75 ⁇ LB2 / It is preferable to satisfy the relation B1 ⁇ 1.00.
  • the tread portion when the tread portion includes a plurality of belt cords that are inclined with respect to the tire circumferential direction, and a plurality of belt layers in which the belt cords intersect with each other are embedded, It is preferable that the inclination angle ⁇ with respect to the tire circumferential direction satisfies the relationship of 21 ° ⁇ ⁇ ⁇ 30 °.
  • the load dependency of the cornering power is controlled by suppressing the increase in the rigidity of the belt layer, and the linearity of steering stability is further improved. Can do.
  • the inclination angle ⁇ of the belt cord with respect to the tire circumferential direction at the tire center position and the inclination angle ⁇ of the belt cord with respect to the tire circumferential direction at the belt end position satisfy the relationship of 18 ° ⁇ ⁇ ⁇ 30 °. Is preferred.
  • the inclination angle ⁇ at the belt end position of the belt cord to a small value, shoulder uneven wear can be suppressed, and the increase in rigidity of the belt layer in the central region of the tread is suppressed, and the cornering power depends on the load.
  • the controllability can be controlled and the linearity of steering stability can be further improved.
  • the pneumatic tire of the present invention is preferably a passenger car tire having an aspect ratio of 0.65 or less.
  • ADVANTAGE OF THE INVENTION According to this invention, in the tire for passenger cars in which the linearity of steering stability is requested
  • the cornering power is set such that the camber angle is set to 0 °, the speed is set to 10 km / h under the condition that a predetermined load is applied in a state where a tire is assembled on a regular rim and a predetermined air pressure is filled.
  • the cornering force is measured while changing the angle, and is calculated based on the cornering force in the range where the slip angle is 0 ° to 1 °.
  • the ground contact shape of the tread portion is measured under a condition in which a tire is assembled on a regular rim and filled with a predetermined air pressure, placed vertically on a plane and loaded with a predetermined load.
  • the outer diameter of the pneumatic tire is measured at the tire center position in a state where the tire is assembled on a regular rim and filled with a predetermined air pressure.
  • the “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set.
  • the air pressure is 230 kPa.
  • the predetermined load is a load of 40%, 75% or 100% of the maximum load capacity defined by each standard for each tire in a standard system including the standard on which the tire is based.
  • FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a development view showing a tread pattern of the pneumatic tire of FIG.
  • FIG. 3 is a plan view showing a ground contact shape (40% load) of the pneumatic tire of FIG.
  • FIG. 4 is a plan view showing a ground contact shape (75% load) of the pneumatic tire of FIG.
  • FIG. 5 is a plan view showing a ground contact shape (100% load) of the pneumatic tire of FIG. 6 is a cross-sectional view showing a central main groove, an outer main groove, and an outer lateral groove (lug groove) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 7 is a cross-sectional view showing a central lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 8 is a cross-sectional view showing an outer lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG.
  • FIG. 9 is a development view showing a tread pattern of a pneumatic tire according to another embodiment of the present invention.
  • FIG. 10 is a development view showing a tread pattern of a pneumatic tire according to still another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a central lateral groove (sipe) formed in the tread portion of the pneumatic tire of FIGS. 9 and 10.
  • FIG. 12 is a cross-sectional view showing a modification of the central lateral groove (sipe).
  • FIG. 13 is a development view showing a belt layer constituting the pneumatic tire of the present invention.
  • FIG. 1 and 2 show a pneumatic tire according to an embodiment of the present invention.
  • CL is a tire center position
  • Tc is a tire circumferential direction
  • Tw is a tire width direction.
  • the pneumatic tire of the present embodiment includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions 2, 2 disposed on both sides of the tread portion 1. And a pair of bead portions 3 and 3 disposed inside the sidewall portion 2 in the tire radial direction.
  • the carcass layer 4 is mounted between the pair of bead portions 3 and 3.
  • the carcass layer 4 includes a plurality of carcass cords extending in the tire radial direction, and is folded back from the inside of the tire to the outside around the bead core 5 disposed in each bead portion 3.
  • a bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.
  • a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • These belt layers 7 include a plurality of belt cords inclined with respect to the tire circumferential direction, and are arranged so that the belt cords cross each other between the layers.
  • a steel cord is preferably used as the belt cord constituting the belt layer 7.
  • an organic fiber cord such as nylon or aramid is preferably used as the band cord constituting the belt reinforcing layer 8.
  • the tread portion 1 includes a pair of central main grooves 11, 11 extending in the tire circumferential direction at positions on both sides of the tire center position CL, and the tire main body 11, 11 outside the central main grooves 11, 11.
  • a pair of outer main grooves 12 and 12 extending in the tire circumferential direction at the position are formed.
  • the central main groove 11 and the outer main groove 12 may have a straight shape or may have a zigzag shape.
  • a center land portion 20 is defined between the central main grooves 11 and 11, and a middle land portion 30 is defined between the central main groove 11 and the outer main groove 12.
  • a shoulder land portion 40 is defined in the area.
  • a plurality of central lateral grooves 31 extending in the tire width direction are formed in each of the middle land portions 30.
  • the central lateral groove 31 includes a central lug groove 31A having a groove width on the tread surface in the range of 1.1 mm to 9.0 mm and a central sipe 31B having a groove width on the tread surface of 1.0 mm or less. .
  • the central lug grooves 31A and the central sipes 31B are alternately arranged along the tire circumferential direction.
  • a circumferential narrow groove 32 extending in the tire circumferential direction and having a zigzag shape is formed on one side of the middle land portion 30.
  • Each of the shoulder land portions 40 is formed with a plurality of outer lateral grooves 41 extending in the tire width direction.
  • the outer lateral groove 41 includes at least one of an outer lug groove 41A having a groove width of 1.1 mm to 9.5 mm on the tread surface and an outer sipe 41B having a groove width of 1.0 mm or less on the tread surface. Yes.
  • the outer lug grooves 41A and the outer sipes 41B are alternately arranged along the tire circumferential direction.
  • the loads corresponding to 40%, 75% and 100% of the maximum load capacity defined by the standards are W40, W75 and W100 (kN), respectively, and the pneumatic tire is filled with an air pressure of 230 kPa.
  • the cornering powers measured under the conditions of loads W40, W75, and W100 are CP40, CP75, and CP100 (kN / °), respectively, the flatness ratio of the pneumatic tire is R, and the outer diameter is D (mm). And the nominal cross-sectional width is A (mm).
  • the loads W40, W75, W100 and the cornering powers CP40, CP75, CP100 are 0.05 ⁇ (R ⁇ D / 2A) 2 ⁇ [(CP100 ⁇ CP75) / (W100 ⁇ W75)] / [(CP75 ⁇ CP40) / (W75 ⁇ W40)] ⁇ 0.50 is satisfied.
  • FIGS. 3 to 5 show the ground contact shapes (40% load, 75% load, 100% load) of the pneumatic tire of FIG. 1, respectively.
  • the maximum contact length in the circumferential direction is LA1, LB1, LC1 (mm)
  • the maximum contact width in the tire width direction is WA1, WB1, WC1 (mm)
  • External contact lengths in the tire circumferential direction at positions 40% of the widths WA1, WB1, and WC1 are LA2, LB2, and LC2 (mm), respectively.
  • the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and contacted with a load of 40% of the maximum load capacity defined in the standard is applied.
  • the contact length is LA1
  • the maximum contact width in the tire width direction is WA1
  • the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WA1 from the tire center position CL toward the outer side in the tire width direction is LA2.
  • the external ground contact length LA2 is an average value of measured values on both sides of the tire center position CL.
  • the contact length is LB1
  • the maximum contact width in the tire width direction is WB1
  • the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WB1 from the tire center position CL toward the outer side in the tire width direction is LB2.
  • the external contact length LB2 is an average value of measured values on both sides of the tire center position CL.
  • the contact length is LC1
  • the maximum contact width in the tire width direction is WC1
  • the external contact length in the tire circumferential direction at the position of 40% of the maximum contact width WC1 from the tire center position CL toward the outer side in the tire width direction is LC2.
  • the external contact length LC2 is an average value of measured values on both sides of the tire center position CL.
  • the tread portion 1 includes a tire having a width corresponding to 53% of the maximum ground contact width WB1 around the tire equator (that is, the tire center position CL) and the tire within the maximum ground contact width WB1 than the center region Xc.
  • the groove area Sc (mm 2 ) of the central region Xc and the groove area Ss (mm 2 ) of the outer region Xs satisfy the following relationship. 0.80 ⁇ Sc / Ss ⁇ 0.98
  • the groove area Sc of the central region Xc means the total area of the groove components formed in the central region Xc on the tire circumference
  • the groove area Ss of the outer region Xs is the groove component formed in the outer region Xs on the tire circumference. It means the total area.
  • the groove component has a chamfered portion
  • the area of the chamfered portion is also included in the total area of the groove component.
  • the groove area Sc of the central region Xc and the groove area Ss of the outer region Xs satisfy the relationship of 0.80 ⁇ Sc / Ss ⁇ 0.98, and the groove area Sc in the central region Xc is By reducing it, the rigidity in the center area
  • the loads W40, W75, W100 and the cornering powers CP40, CP75, CP100 are 0.05 ⁇ (R ⁇ D / 2A) 2 ⁇ [(CP100 ⁇ CP75) / (W100 ⁇ W75)] / [(CP75 ⁇ CP40) /(W75 ⁇ W40)] ⁇ 0.50 is satisfied, it is possible to suppress an excessive increase in cornering power in the high load region.
  • the tire moves without delay from the initial steering of the steering wheel, and an appropriate cornering power is exhibited as the load increases, so that the linearity of steering stability can be improved. That is, it is possible to provide a tire in which yaw does not suddenly rise after a few seconds after inputting a constant turning steering.
  • the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 may satisfy the following relationship. 1.02 ⁇ (LB2 / LB1) / (LA2 / LA1) ⁇ 1.25 1.00 ⁇ (LC2 / LC1) / (LB2 / LB1) ⁇ 1.20 0.75 ⁇ LB2 / LB1 ⁇ 1.00
  • LA2 / LA1 means the rectangular ratio at 40% load
  • LB2 / LB1 means the rectangular ratio at 75% load
  • LC2 / LC1 means the rectangular ratio at 100% load.
  • the value of (LB2 / LB1) / (LA2 / LA1) is specified as an index for controlling the ground contact shape in the low load area
  • (LC2 / LC1) / By defining the value of (LB2 / LB1), the linearity of steering stability can be improved more precisely.
  • LB2 / LB1 in order to extend the wear life, it is desirable to set LB2 / LB1 within the above range under a load condition of 75% that is regarded as a general service load.
  • LB2 / LB1 When LB2 / LB1 is smaller than 0.75, the wear life is shortened. Conversely, when LB2 / LB1 is larger than 1.00, it is difficult to tune the linearity of steering stability. In particular, it is desirable to satisfy the relationship of 0.80 ⁇ LB2 / LB1 ⁇ 0.95.
  • the central main groove 11 extending in the tire circumferential direction
  • the outer main groove 12 extending in the tire circumferential direction at a position outside the central main groove 11 in the tire width direction, and the outer main groove 12.
  • the rigidity in the central region Xc of the tread portion 1 is secured.
  • the structure shown in FIGS. 6 to 8 can be employed in order to suppress the center uneven wear of 1 and to ensure high cornering power from a low load range.
  • the inclination angle ⁇ cl formed by the side wall of the central lateral groove 31 (particularly, the central lug groove 31A) with respect to the normal line of the tread surface should satisfy the relationship of 0 ° ⁇ ⁇ cl ⁇ 10 °.
  • the rigidity in the central region Xc of the tread portion 1 can be ensured.
  • ⁇ cl is smaller than 0 ° and the side wall has an overhang shape, the rigidity in the central region Xc is lowered.
  • it is larger than 10 ° the drainage is adversely affected.
  • the groove depth Dcl of the central transverse groove 31 should satisfy the relationship of 0.20 ⁇ Dcl / GDc ⁇ 0.90 with respect to the groove depth GDc of the central main groove 11.
  • region Xc of the tread part 1 is securable.
  • Dcl / GDc is smaller than 0.20, the drainage performance is adversely affected.
  • Dcl / GDc is larger than 0.90, the rigidity in the central region Xc is lowered.
  • the central lateral groove 31 (particularly, the central lug groove 31A) has a bottom raised portion 33 in a part of its longitudinal direction, and the groove depth Da at the bottom raised portion 33 is 0. 0 relative to the groove depth Dcl of the central lateral groove 31. It is preferable that the relationship of 20 ⁇ Da / Dcl ⁇ 0.90 is satisfied.
  • the bottom raised portion 33 is disposed at a position opening adjacent to the outer main groove 12. By providing such a raised portion 33, the rigidity in the central region Xc of the tread portion 1 can be ensured.
  • Da / Dcl is greater than 0.90, the effect on rigidity is reduced, and conversely if it is less than 0.20, drainage is adversely affected.
  • the groove depth GDc of the central main groove 11 should satisfy the relationship of 0.80 ⁇ GDc / GDs ⁇ 1.00 with respect to the groove depth GDs of the outer main groove 12. Thereby, the rigidity in the center area
  • GDc / GDs is smaller than 0.80, the drainage is adversely affected.
  • GDc / GDs is larger than 1.00, it is difficult to ensure rigidity in the central region Xc of the tread portion 1. .
  • the groove depth Dcl of the central lateral groove 31 is the groove depth of the outer lateral grooves 41. It is preferable to satisfy a relationship of 0.50 ⁇ Dcl / Dsl ⁇ 1.00 with respect to Dsl (see FIGS. 7 and 8). Thereby, the rigidity in the center area
  • Dcl / Dsl is smaller than 0.50, the drainage is adversely affected.
  • Dcl / Dsl is larger than 1.00, it is difficult to ensure rigidity in the central region Xc of the tread portion 1. .
  • FIG. 9 and 10 each show a tread pattern of a pneumatic tire according to another embodiment of the present invention.
  • 9 and 10 the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • all of the central lateral grooves 31 formed on the inner side in the tire width direction from the outer main groove 12 are constituted by a central sipe 31B having a groove width of 1.0 mm or less.
  • the rigidity in the central region Xc of the tread portion 1 is ensured, the center uneven wear is suppressed, and from the low load region. High cornering power can be secured.
  • the circumferential narrow groove 32 formed on the inner side in the tire width direction from the outer main groove 12 is also configured to have a groove width of 1.0 mm or less.
  • all the grooves excluding the central main groove 11 and the outer main groove 12 formed in the tread portion 1 have a groove width of 1.0 mm or less. In this case, rigidity can be ensured over the entire area of the tread portion 1.
  • the central sipe 31B may have a constant groove width from the tread surface to the groove bottom as shown in FIG. 11, or, as shown in FIG. 12, the chamfered portion 34 is formed at the opening to the tread surface. You may have.
  • a similar structure can be adopted for the outer sipe 41B.
  • the tread portion 1 when the tread portion 1 includes a plurality of belt cords C that are inclined with respect to the tire circumferential direction, and a plurality of belt layers 7 in which the belt cords C cross each other are embedded, As shown in FIG. 13, the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the tire center position CL preferably satisfies the relationship of 21 ° ⁇ ⁇ ⁇ 30 °.
  • the inclination angle ⁇ of the belt cord C at the tire center position CL By not reducing the inclination angle ⁇ of the belt cord C at the tire center position CL extremely, the increase in rigidity of the tread portion 1 caused by the belt layer 7 is suppressed, and the load dependency of the cornering power is controlled and controlled. The stability linearity can be further improved.
  • the inclination angle ⁇ is smaller than 21 °, it becomes difficult to control the linearity of the steering stability due to the increase in rigidity of the belt layer 7, and conversely if it is larger than 30 °, the cornering characteristics and the like are deteriorated. Not right.
  • the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the tire center position CL and the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the belt end position BE have a relationship of 18 ° ⁇ ⁇ ⁇ 30 °. It is good to be satisfied.
  • shoulder uneven wear can be suppressed, and the inclination angle ⁇ of the belt cord C at the tire center position CL can be extremely reduced.
  • the difference between the inclination angle ⁇ and the inclination angle ⁇ is preferably 3 ° or more.
  • a structure in which the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the belt end position BE is smaller than the inclination angle ⁇ of the belt cord C with respect to the tire circumferential direction at the tire center position CL is preferable.
  • the belt cord C may be inclined at a constant angle with respect to the tire circumferential direction over the entire width, and the inclination angles ⁇ and ⁇ may be set to the same value, or ⁇ ⁇ .
  • the belt layer 7 has a high angle region Ac on the center side in which the inclination angle of the belt cord C is in the range of ⁇ ⁇ 1 ° and a shoulder in which the inclination angle of the belt cord C is in the range of ⁇ ⁇ 1 °.
  • the low-angle region As on the side, the width Lc of the high-angle region Ac is 1 ⁇ 2 or more of the total width L of the belt layer 7, and the width Ls of each low-angle region As is 1 of the total width L of the belt layer 7. It is good that it is / 8 or more.
  • the rigidity distribution of the tread portion 1 can be optimized.
  • the width Lc of the high angle region Ac is smaller than 1 ⁇ 2 of the entire width L of the belt layer 7, the function as the belt layer 7 is deteriorated, and the width Ls of the low angle region As is the entire width of the belt layer 7. If it is smaller than 1/8 of L, the rigidity in the tire circumferential direction in the outer region Xs of the tread portion 1 cannot be sufficiently increased.
  • the width Lc of the high angle area Ac and the width Ls of the low angle area As are set based on the total width L of each belt layer 7.
  • the pneumatic tire described above is suitable as a tire for passenger cars having a flatness ratio of 0.65 or less.
  • a tire for a passenger car in which linearity of steering stability is strictly required it is possible to achieve both uneven wear resistance and steering stability.
  • a tread pattern including four main grooves in the tread portion has been described.
  • the present invention includes a tread pattern including three main grooves in the tread portion, and a V-shaped main groove in the tread portion. It is applicable also to the tread pattern which contains.
  • a carcass layer is mounted between a pair of bead portions, two belt layers are embedded outside the carcass layer in the tire radial direction of the tread portion, and the tread portion extends in the tire circumferential direction.
  • the tire circumference at the tire cord center position of the belt cord The inclination angle ⁇ with respect to the direction, the inclination angle ⁇ with respect to the tire circumferential direction at the belt end position of the belt cord, the groove depth GDs of the outer main groove, the groove depth Dsl of the outer lateral groove, and the ratio GDc / G s, inclination angle ⁇ cl of the side wall of the central lateral groove, groove depth GDc of the central main groove, groove depth Dcl of the central lateral groove, ratio Dcl / GDc, groove depth Da at the raised portion of the central lateral groove, ratio Da / Dcl, Ratio Dcl / Dsl, groove width of the central lateral groove, groove width of the outer lateral groove, ratio Sc / Ss of the groove
  • Uneven wear resistance shoulder region, center region: Each test tire is mounted on a wheel with a rim size of 16 ⁇ 6.5J and mounted on a friction energy measurement tester. Under the conditions of air pressure of 230 kPa and load load of 4.5 kN, average friction in the shoulder region and center region of the tread portion Energy was measured. The measured values are obtained by measuring the frictional energy at a total of four points of 2 locations in the tire width direction ⁇ 2 locations in the tire circumferential direction, which are 10 mm intervals in each region, and averaging them.
  • the evaluation result uses the reciprocal of the measured value, and the uneven wear resistance in the shoulder region is indicated by an index with Comparative Example 1 as 100, and the uneven wear resistance in the center region is an index with Comparative Example 2 as 100. Showed. The larger the index value, the better the uneven wear resistance.
  • Steering stability linearity Each test tire is mounted on a wheel with a rim size of 16 x 6.5 J and mounted on a front-wheel drive vehicle with a displacement of 2 liters. The vehicle is filled with the specified air pressure, and a running test is conducted by a paneler on a test course consisting of a paved road. Then, sensory evaluation was performed on the linearity of steering stability. The evaluation results are shown as an index with Comparative Example 1 as 100. The larger the index value, the better the linearity of steering stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a pneumatic tire that can suppress uneven center wear in a tread and improve the linearity of steering stability. Cornering powers CP40, CP75, and CP100 (kN/°), which are respectively obtained by measurements under the condition that loads W40, W75, W100 (kN) respectively corresponding to 40%, 75%, and 100% of a stipulated standard maximum load carrying capacity are applied to a pneumatic tire filled with 230 kPa of air, an aspect ratio R, an outside diameter D (mm), and a nominal section width A (mm) satisfy the following relationship: 0.05 ≤ (R × D/2A)2× [(CP100 - CP75)/(W100 - W75)]/[(CP75 - CP40)/(W75 - W40)] ≤ 0.50. When a tread (1) is divided into a central region having a width corresponding to 53% of the maximum ground contact width WB1 with the load W75 applied and outside regions that are outside the central region, the groove area Sc of the central region and the groove areas Ss of the outside regions satisfy the following relationship: 0.80 ≤ Sc/Ss ≤ 0.98.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関し、更に詳しくは、トレッド部のセンター偏摩耗を抑制すると共に、操縦安定性のリニアリティを改善することを可能にした空気入りタイヤに関する。 The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can suppress the center uneven wear of the tread portion and improve the linearity of steering stability.
 空気入りタイヤは、一般に、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えると共に、一対のビード部間に装架されたカーカス層と、トレッド部におけるカーカス層のタイヤ径方向外側に配置された複数層のベルト層とを備えた構造を有している。 A pneumatic tire is generally disposed in a tire tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and on the inner side in the tire radial direction of the sidewall portions. A pair of bead portions, a carcass layer mounted between the pair of bead portions, and a structure including a plurality of belt layers disposed on the outer side in the tire radial direction of the carcass layer in the tread portion. doing.
 このような空気入りタイヤにおいては、特に新車向け乗用車用タイヤの場合、恒久的な課題として、操縦安定性のリニアリティを改善することが求められている(例えば、特許文献1参照)。例えば、ハンドル操舵初期に車両の動き(舵の効き)に遅れが生じる一方で、操舵中盤から後半にかけてコーナリングパワーが増大して車両の動きが過敏になるような走行状態は、操縦安定性のリニアリティ(線形感)が良好ではない。そのため、操縦安定性のリニアリティが良好になるようなチューニングが求められている。 In such a pneumatic tire, particularly in the case of a passenger car tire for a new car, it is required to improve the linearity of steering stability as a permanent problem (for example, see Patent Document 1). For example, in a driving state in which the vehicle movement (the effectiveness of the rudder) is delayed in the initial stage of steering, while the cornering power increases from the middle of the steering to the second half and the vehicle moves more sensitively, the driving stability becomes linear. (Linear feeling) is not good. Therefore, there is a need for tuning that improves the linearity of steering stability.
 これに対して、低荷重域のコーナリングパワーを高めることで操縦安定性を改善することが提案されている(例えば、特許文献2,3参照)。しかしながら、低荷重域のコーナリングパワーを高めるだけでは、操縦安定性のリニアリティの改善要求に対して十分に応えることができないのが現状である。 On the other hand, it has been proposed to improve the steering stability by increasing the cornering power in the low load range (see, for example, Patent Documents 2 and 3). However, the present condition is that it cannot fully respond to the request | requirement of the linearity of steering stability only by raising the cornering power of a low load area.
日本国特開2016-141268号公報Japanese Unexamined Patent Publication No. 2016-141268 日本国特開2011-230737号公報Japanese Unexamined Patent Publication No. 2011-230737 日本国特開2012-17001号公報Japanese Unexamined Patent Publication No. 2012-17001
 本発明の目的は、トレッド部のセンター偏摩耗を抑制すると共に、操縦安定性のリニアリティを改善することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire capable of suppressing the center uneven wear of the tread portion and improving the linearity of steering stability.
 上記目的を達成するための本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えた空気入りタイヤにおいて、
 規格にて定められた最大負荷能力の40%,75%,100%に対応する荷重をそれぞれW40,W75,W100(kN)とし、前記空気入りタイヤに230kPaの空気圧を充填し、前記荷重W40,W75,W100を負荷した条件にて測定されるコーナリングパワーをそれぞれCP40,CP75,CP100(kN/°)とし、前記空気入りタイヤの偏平比をRとし、その外径をD(mm)とし、その断面幅の呼びをA(mm)としたとき、前記荷重W40,W75,W100及び前記コーナリングパワーCP40,CP75,CP100が0.05≦(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]≦0.50の関係を満足し、
 前記空気入りタイヤに230kPaの空気圧を充填し、前記荷重W75を負荷した条件にて接地した際のタイヤ幅方向の最大接地幅をWB1とし、前記トレッド部を、タイヤ赤道を中心として最大接地幅WB1の53%に相当する幅を持つ中央領域と最大接地幅WB1内で前記中央領域よりもタイヤ幅方向外側となる外側領域とに区分したとき、前記中央領域の溝面積Scと前記外側領域の溝面積Ssが0.80≦Sc/Ss≦0.98の関係を満足することを特徴とするものである。
In order to achieve the above object, a pneumatic tire according to the present invention includes a tread portion that extends in the tire circumferential direction to form an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and the sidewall portions. In a pneumatic tire provided with a pair of bead portions arranged on the inner side in the tire radial direction of
Loads corresponding to 40%, 75%, and 100% of the maximum load capacity defined in the standard are W40, W75, and W100 (kN), respectively, and the pneumatic tire is filled with an air pressure of 230 kPa, and the load W40, The cornering powers measured under the conditions of loading W75 and W100 are CP40, CP75 and CP100 (kN / °), respectively, the flatness ratio of the pneumatic tire is R, and the outer diameter is D (mm). When the nominal sectional width is A (mm), the loads W40, W75, W100 and the cornering power CP40, CP75, CP100 are 0.05 ≦ (R × D / 2A) 2 × [(CP100−CP75) / (W100−W75)] / [(CP75−CP40) / (W75−W40)] ≦ 0.50 is satisfied,
The pneumatic tire is filled with air pressure of 230 kPa, and the maximum contact width in the tire width direction when grounded under the condition of applying the load W75 is WB1, and the tread portion is the maximum contact width WB1 centering on the tire equator. When the area is divided into a central area having a width corresponding to 53% of the above and an outer area outside the central area within the maximum ground contact width WB1, the groove area Sc of the central area and the grooves of the outer area The area Ss satisfies the relationship of 0.80 ≦ Sc / Ss ≦ 0.98.
 本発明では、中央領域の溝面積Scと外側領域の溝面積Ssとが0.80≦Sc/Ss≦0.98の関係を満足し、中央領域での溝面積Scを少なくすることにより、トレッド部の中央領域での剛性を確保してセンター偏摩耗を抑制することができる。また、中央領域での溝面積Scを少なくしてトレッド部の中央領域での剛性を増大させることで、低荷重域から高いコーナリングパワーを確保することができる。しかも、荷重W40,W75,W100及びコーナリングパワーCP40,CP75,CP100が0.05≦(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]≦0.50の関係を満足することにより、高荷重域のコーナリングパワーの過度の増大を抑制することができる。これにより、ハンドル操舵初期から遅延なくタイヤが動き、荷重の増大に伴って適度なコーナリングパワーが発揮されるので、操縦安定性のリニアリティを改善することができる。特に、タイヤサイズによりコーナリングパワーの出易さが異なるため、上記関係式は(R×D/2A)2の値により補正されている。つまり、偏平比が低く、外径が小さいタイヤほど高荷重側のコーナリングパワーの寄与を低下させるのである。 In the present invention, the groove area Sc of the central region and the groove area Ss of the outer region satisfy the relationship of 0.80 ≦ Sc / Ss ≦ 0.98, and the groove area Sc in the central region is reduced, thereby reducing the tread. It is possible to secure the rigidity in the central region of the portion and suppress the center uneven wear. Further, by reducing the groove area Sc in the central region and increasing the rigidity in the central region of the tread portion, it is possible to ensure high cornering power from the low load region. Moreover, the loads W40, W75, W100 and the cornering powers CP40, CP75, CP100 are 0.05 ≦ (R × D / 2A) 2 × [(CP100−CP75) / (W100−W75)] / [(CP75−CP40) /(W75−W40)]≦0.50 is satisfied, it is possible to suppress an excessive increase in cornering power in the high load region. As a result, the tire moves without delay from the initial steering of the steering wheel, and an appropriate cornering power is exhibited as the load increases, so that the linearity of steering stability can be improved. In particular, since the cornering power easily varies depending on the tire size, the above relational expression is corrected by the value of (R × D / 2A) 2 . In other words, the tire with a lower aspect ratio and a smaller outer diameter reduces the contribution of cornering power on the high load side.
 本発明において、トレッド部に、タイヤ周方向に延びる中央主溝と、該中央主溝よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる外側主溝と、該外側主溝よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝とが形成されたトレッドパターンを採用することができる。 In the present invention, in the tread portion, a central main groove extending in the tire circumferential direction, an outer main groove extending in the tire circumferential direction at a position outside the central main groove in the tire width direction, and a tire width direction from the outer main groove A tread pattern in which a plurality of central lateral grooves extending in the tire width direction at the inner position is formed can be employed.
 この場合、トレッド部の中央領域での剛性を確保し、トレッド部のセンター偏摩耗を抑制すると共に、低荷重域から高いコーナリングパワーを確保するために、以下のような構造を採用すると良い。即ち、中央横溝の側壁がトレッド面の法線に対してなす傾斜角度θclは0°≦θcl≦10°の関係を満足することが好ましい。中央横溝の溝深さDclは中央主溝の溝深さGDcに対して0.20≦Dcl/GDc≦0.90の関係を満足することが好ましい。中央横溝はその長手方向の一部に底上げ部を有し、該底上げ部での溝深さDaが中央横溝の溝深さDclに対して0.20≦Da/Dcl≦0.90の関係を満足することが好ましい。中央主溝の溝深さGDcは外側主溝の溝深さGDsに対して0.85≦GDc/GDs≦1.00の関係を満足することが好ましい。また、トレッド部に外側主溝よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝が形成される場合、中央横溝の溝深さDclは外側横溝の溝深さDslに対して0.50≦Dcl/Dsl≦1.00の関係を満足することが好ましい。更に、外側主溝よりもタイヤ幅方向内側に形成された中央横溝の全てが1.0mm以下の溝幅を有することが好ましい。或いは、トレッド部に形成された中央主溝及び外側主溝を除く全ての溝が1.0mm以下の溝幅を有することが好ましい。 In this case, in order to secure rigidity in the center region of the tread portion, to suppress uneven wear in the center of the tread portion, and to secure high cornering power from a low load region, the following structure may be employed. That is, it is preferable that the inclination angle θcl formed by the side wall of the central lateral groove with respect to the normal line of the tread surface satisfies the relationship of 0 ° ≦ θcl ≦ 10 °. The groove depth Dcl of the central lateral groove preferably satisfies the relationship of 0.20 ≦ Dcl / GDc ≦ 0.90 with respect to the groove depth GDc of the central main groove. The central lateral groove has a bottom raised portion in a part of the longitudinal direction, and the groove depth Da at the bottom raised portion has a relationship of 0.20 ≦ Da / Dcl ≦ 0.90 with respect to the groove depth Dcl of the central lateral groove. It is preferable to satisfy. It is preferable that the groove depth GDc of the central main groove satisfies the relationship 0.85 ≦ GDc / GDs ≦ 1.00 with respect to the groove depth GDs of the outer main groove. Further, when a plurality of outer lateral grooves extending in the tire width direction are formed in the tread portion at positions outside the outer main groove in the tire width direction, the groove depth Dcl of the central lateral groove is equal to the groove depth Dsl of the outer lateral groove. It is preferable that the relationship of 0.50 ≦ Dcl / Dsl ≦ 1.00 is satisfied. Furthermore, it is preferable that all of the central lateral grooves formed on the inner side in the tire width direction than the outer main groove have a groove width of 1.0 mm or less. Alternatively, it is preferable that all the grooves except the central main groove and the outer main groove formed in the tread portion have a groove width of 1.0 mm or less.
 本発明において、空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力のそれぞれ40%,75%,100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をそれぞれLA1,LB1,LC1とし、タイヤ幅方向の最大接地幅をそれぞれWA1,WB1,WC1とし、タイヤ中心位置からタイヤ幅方向外側に向かって最大接地幅WA1,WB1,WC1の40%の位置におけるタイヤ周方向の外部接地長をそれぞれLA2,LB2,LC2としたとき、最大接地長LA1,LB1,LC1及び前記外部接地長LA2,LB2,LC2が1.02≦(LB2/LB1)/(LA2/LA1)≦1.25、1.00≦(LC2/LC1)/(LB2/LB1)≦1.20、0.75≦LB2/LB1≦1.00の関係を満足することが好ましい。このように接地形状の荷重依存性をコントロールすることにより、操縦安定性のリニアリティを更に改善することができる。 In the present invention, a pneumatic tire is filled with an air pressure of 230 kPa, and the tires in the circumferential direction when grounded under the conditions of loading 40%, 75%, and 100% of the maximum load capacity defined by the standard, respectively. The maximum contact lengths are LA1, LB1, and LC1, respectively, the maximum contact widths in the tire width direction are WA1, WB1, and WC1, respectively, and 40% of the maximum contact widths WA1, WB1, and WC1 from the tire center position toward the outside in the tire width direction. When the external contact lengths in the tire circumferential direction at the position of LA are LB2, LB2, and LC2, respectively, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.25, 1.00 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20, 0.75 ≦ LB2 / It is preferable to satisfy the relation B1 ≦ 1.00. By controlling the load dependence of the ground contact shape in this way, the linearity of steering stability can be further improved.
 本発明において、トレッド部に、タイヤ周方向に対して傾斜する複数本のベルトコードを含み、層間でベルトコードが互いに交差する複数層のベルト層が埋設される場合、ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αが21°≦α≦30°の関係を満足することが好ましい。ベルトコードのタイヤ中心位置での傾斜角度αを極度に低角度化しないことにより、ベルト層の剛性の増大を抑えてコーナリングパワーの荷重依存性をコントロールし、操縦安定性のリニアリティを更に改善することができる。 In the present invention, when the tread portion includes a plurality of belt cords that are inclined with respect to the tire circumferential direction, and a plurality of belt layers in which the belt cords intersect with each other are embedded, It is preferable that the inclination angle α with respect to the tire circumferential direction satisfies the relationship of 21 ° ≦ α ≦ 30 °. By not reducing the inclination angle α of the belt cord at the center of the tire to an extremely low angle, the load dependency of the cornering power is controlled by suppressing the increase in the rigidity of the belt layer, and the linearity of steering stability is further improved. Can do.
 また、ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αとベルトコードのベルト端末位置でのタイヤ周方向に対する傾斜角度βとは18°≦β<α≦30°の関係を満足することが好ましい。ベルトコードのベルト端末位置での傾斜角度βを小さく設定することにより、ショルダー偏摩耗を抑制することができ、しかも、トレッド部の中央領域におけるベルト層の剛性の増大を抑えてコーナリングパワーの荷重依存性をコントロールし、操縦安定性のリニアリティを更に改善することができる。 The inclination angle α of the belt cord with respect to the tire circumferential direction at the tire center position and the inclination angle β of the belt cord with respect to the tire circumferential direction at the belt end position satisfy the relationship of 18 ° ≦ β <α ≦ 30 °. Is preferred. By setting the inclination angle β at the belt end position of the belt cord to a small value, shoulder uneven wear can be suppressed, and the increase in rigidity of the belt layer in the central region of the tread is suppressed, and the cornering power depends on the load. The controllability can be controlled and the linearity of steering stability can be further improved.
 本発明の空気入りタイヤは偏平比0.65以下の乗用車用タイヤであることが好ましい。本発明によれば、操縦安定性のリニアリティが厳しく要求される乗用車用タイヤにおいて、耐偏摩耗性と操縦安定性とを両立することが可能になる。 The pneumatic tire of the present invention is preferably a passenger car tire having an aspect ratio of 0.65 or less. ADVANTAGE OF THE INVENTION According to this invention, in the tire for passenger cars in which the linearity of steering stability is requested | required strictly, it becomes possible to make compatible both partial wear resistance and steering stability.
  本発明において、コーナリングパワーは、タイヤを正規リムにリム組みして所定の空気圧を充填した状態で所定の荷重を負荷した条件にて、キャンバー角度を0°とし、速度を10km/hとし、スリップ角度を変化させながらコーナリングフォースを測定し、スリップ角度が0°~1°となる範囲におけるコーナリングフォースに基づいて算出される。トレッド部の接地形状は、タイヤを正規リムにリム組みして所定の空気圧を充填した状態で平面上に垂直に置いて所定の荷重を負荷した条件にて測定される。空気入りタイヤの外径は、タイヤを正規リムにリム組みして所定の空気圧を充填した状態でタイヤ中心位置において測定される。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。空気圧は230kPaとする。また、所定の荷重は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている最大負荷能力の40%,75%又は100%の荷重とする。 In the present invention, the cornering power is set such that the camber angle is set to 0 °, the speed is set to 10 km / h under the condition that a predetermined load is applied in a state where a tire is assembled on a regular rim and a predetermined air pressure is filled. The cornering force is measured while changing the angle, and is calculated based on the cornering force in the range where the slip angle is 0 ° to 1 °. The ground contact shape of the tread portion is measured under a condition in which a tire is assembled on a regular rim and filled with a predetermined air pressure, placed vertically on a plane and loaded with a predetermined load. The outer diameter of the pneumatic tire is measured at the tire center position in a state where the tire is assembled on a regular rim and filled with a predetermined air pressure. The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set. The air pressure is 230 kPa. Further, the predetermined load is a load of 40%, 75% or 100% of the maximum load capacity defined by each standard for each tire in a standard system including the standard on which the tire is based.
図1は本発明の実施形態からなる空気入りタイヤを示す子午線断面図である。FIG. 1 is a meridian cross-sectional view showing a pneumatic tire according to an embodiment of the present invention. 図2は図1の空気入りタイヤのトレッドパターンを示す展開図である。FIG. 2 is a development view showing a tread pattern of the pneumatic tire of FIG. 図3は図1の空気入りタイヤの接地形状(40%荷重)を示す平面図である。FIG. 3 is a plan view showing a ground contact shape (40% load) of the pneumatic tire of FIG. 図4は図1の空気入りタイヤの接地形状(75%荷重)を示す平面図である。FIG. 4 is a plan view showing a ground contact shape (75% load) of the pneumatic tire of FIG. 図5は図1の空気入りタイヤの接地形状(100%荷重)を示す平面図である。FIG. 5 is a plan view showing a ground contact shape (100% load) of the pneumatic tire of FIG. 図6は図1の空気入りタイヤのトレッド部に形成された中央主溝、外側主溝及び外側横溝(ラグ溝)を示す断面図である。6 is a cross-sectional view showing a central main groove, an outer main groove, and an outer lateral groove (lug groove) formed in the tread portion of the pneumatic tire of FIG. 図7は図1の空気入りタイヤのトレッド部に形成された中央横溝(ラグ溝)を示す断面図である。FIG. 7 is a cross-sectional view showing a central lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG. 図8は図1の空気入りタイヤのトレッド部に形成された外側横溝(ラグ溝)を示す断面図である。FIG. 8 is a cross-sectional view showing an outer lateral groove (lag groove) formed in the tread portion of the pneumatic tire of FIG. 図9は本発明の他の実施形態からなる空気入りタイヤのトレッドパターンを示す展開図である。FIG. 9 is a development view showing a tread pattern of a pneumatic tire according to another embodiment of the present invention. 図10は本発明の更に他の実施形態からなる空気入りタイヤのトレッドパターンを示す展開図である。FIG. 10 is a development view showing a tread pattern of a pneumatic tire according to still another embodiment of the present invention. 図11は図9及び図10の空気入りタイヤのトレッド部に形成された中央横溝(サイプ)を示す断面図である。FIG. 11 is a cross-sectional view showing a central lateral groove (sipe) formed in the tread portion of the pneumatic tire of FIGS. 9 and 10. 図12は中央横溝(サイプ)の変形例を示す断面図である。FIG. 12 is a cross-sectional view showing a modification of the central lateral groove (sipe). 図13は本発明の空気入りタイヤを構成するベルト層を示す展開図である。FIG. 13 is a development view showing a belt layer constituting the pneumatic tire of the present invention.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1及び図2は本発明の実施形態からなる空気入りタイヤを示すものである。図2において、CLはタイヤ中心位置であり、Tcはタイヤ周方向であり、Twはタイヤ幅方向である。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show a pneumatic tire according to an embodiment of the present invention. In FIG. 2, CL is a tire center position, Tc is a tire circumferential direction, and Tw is a tire width direction.
 図1に示すように、本実施形態の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。 As shown in FIG. 1, the pneumatic tire of the present embodiment includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions 2, 2 disposed on both sides of the tread portion 1. And a pair of bead portions 3 and 3 disposed inside the sidewall portion 2 in the tire radial direction.
 一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本のカーカスコードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。 The carcass layer 4 is mounted between the pair of bead portions 3 and 3. The carcass layer 4 includes a plurality of carcass cords extending in the tire radial direction, and is folded back from the inside of the tire to the outside around the bead core 5 disposed in each bead portion 3. A bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.
 一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本のベルトコードを含み、かつ層間でベルトコードが互いに交差するように配置されている。ベルト層7を構成するベルトコードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、タイヤ周方向に配向する複数本のバンドコードを含む少なくとも1層のベルト補強層8が配置されている。ベルト補強層8は少なくとも1本のバンドコードを引き揃えてゴム被覆してなるストリップ材をタイヤ周方向に連続的に巻回したジョイントレス構造とすることが望ましい。ベルト補強層8を構成するバンドコードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。 On the other hand, a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. These belt layers 7 include a plurality of belt cords inclined with respect to the tire circumferential direction, and are arranged so that the belt cords cross each other between the layers. A steel cord is preferably used as the belt cord constituting the belt layer 7. On the outer peripheral side of the belt layer 7, at least one belt reinforcing layer 8 including a plurality of band cords oriented in the tire circumferential direction is disposed. It is desirable that the belt reinforcing layer 8 has a jointless structure in which at least one band cord is aligned and rubber-coated strip material is continuously wound in the tire circumferential direction. As the band cord constituting the belt reinforcing layer 8, an organic fiber cord such as nylon or aramid is preferably used.
  図2に示すように、トレッド部1には、タイヤ中心位置CLの両側の位置でタイヤ周方向に延びる一対の中央主溝11,11と、該中央主溝11,11よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる一対の外側主溝12,12とが形成されている。中央主溝11及び外側主溝12は、ストレート形状を有していても良く、或いは、ジグザグ形状を有していても良い。これにより、中央主溝11,11の相互間にはセンター陸部20が区画され、中央主溝11と外側主溝12との間にはミドル陸部30が区画され、外側主溝12の外側にはショルダー陸部40が区画されている。 As shown in FIG. 2, the tread portion 1 includes a pair of central main grooves 11, 11 extending in the tire circumferential direction at positions on both sides of the tire center position CL, and the tire main body 11, 11 outside the central main grooves 11, 11. A pair of outer main grooves 12 and 12 extending in the tire circumferential direction at the position are formed. The central main groove 11 and the outer main groove 12 may have a straight shape or may have a zigzag shape. As a result, a center land portion 20 is defined between the central main grooves 11 and 11, and a middle land portion 30 is defined between the central main groove 11 and the outer main groove 12. A shoulder land portion 40 is defined in the area.
 ミドル陸部30の各々には、タイヤ幅方向に延びる複数本の中央横溝31が形成されている。中央横溝31は、トレッド面での溝幅が1.1mm~9.0mmの範囲にある中央ラグ溝31Aと、トレッド面での溝幅が1.0mm以下である中央サイプ31Bとを含んでいる。これら中央ラグ溝31A及び中央サイプ31Bはタイヤ周方向に沿って交互に配置されている。また、ミドル陸部30の一方には、タイヤ周方向に沿って延びていてジグザグ形状を有する周方向細溝32が形成されている。 A plurality of central lateral grooves 31 extending in the tire width direction are formed in each of the middle land portions 30. The central lateral groove 31 includes a central lug groove 31A having a groove width on the tread surface in the range of 1.1 mm to 9.0 mm and a central sipe 31B having a groove width on the tread surface of 1.0 mm or less. . The central lug grooves 31A and the central sipes 31B are alternately arranged along the tire circumferential direction. Further, a circumferential narrow groove 32 extending in the tire circumferential direction and having a zigzag shape is formed on one side of the middle land portion 30.
 ショルダー陸部40の各々には、タイヤ幅方向に延びる複数本の外側横溝41が形成されている。外側横溝41は、トレッド面での溝幅が1.1mm~9.5mmの範囲にある外側ラグ溝41A及びトレッド面での溝幅が1.0mm以下である外側サイプ41Bの少なくとも一方を含んでいる。両者が混在する形態においては、外側ラグ溝41A及び外側サイプ41Bがタイヤ周方向に沿って交互に配置されている。 Each of the shoulder land portions 40 is formed with a plurality of outer lateral grooves 41 extending in the tire width direction. The outer lateral groove 41 includes at least one of an outer lug groove 41A having a groove width of 1.1 mm to 9.5 mm on the tread surface and an outer sipe 41B having a groove width of 1.0 mm or less on the tread surface. Yes. In the form in which both are present, the outer lug grooves 41A and the outer sipes 41B are alternately arranged along the tire circumferential direction.
 上記空気入りタイヤにおいて、規格にて定められた最大負荷能力の40%,75%,100%に対応する荷重をそれぞれW40,W75,W100(kN)とし、空気入りタイヤに230kPaの空気圧を充填し、荷重W40,W75,W100を負荷した条件にて測定されるコーナリングパワーをそれぞれCP40,CP75,CP100(kN/°)とし、空気入りタイヤの偏平比をRとし、その外径をD(mm)とし、その断面幅の呼びをA(mm)とする。 In the above pneumatic tire, the loads corresponding to 40%, 75% and 100% of the maximum load capacity defined by the standards are W40, W75 and W100 (kN), respectively, and the pneumatic tire is filled with an air pressure of 230 kPa. The cornering powers measured under the conditions of loads W40, W75, and W100 are CP40, CP75, and CP100 (kN / °), respectively, the flatness ratio of the pneumatic tire is R, and the outer diameter is D (mm). And the nominal cross-sectional width is A (mm).
 ここで、荷重W40,W75,W100及びコーナリングパワーCP40,CP75,CP100は、0.05≦(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]≦0.50の関係を満足する。 Here, the loads W40, W75, W100 and the cornering powers CP40, CP75, CP100 are 0.05 ≦ (R × D / 2A) 2 × [(CP100−CP75) / (W100−W75)] / [(CP75− CP40) / (W75−W40)] ≦ 0.50 is satisfied.
 図3~図5はそれぞれ図1の空気入りタイヤの接地形状(40%荷重、75%荷重、100%荷重)を示すものである。上記空気入りタイヤにおいて、該空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力のそれぞれ40%,75%,100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をそれぞれLA1,LB1,LC1(mm)とし、タイヤ幅方向の最大接地幅をそれぞれWA1,WB1,WC1(mm)とし、タイヤ中心位置からタイヤ幅方向外側に向かって最大接地幅WA1,WB1,WC1の40%の位置におけるタイヤ周方向の外部接地長をそれぞれLA2,LB2,LC2(mm)とする。 FIGS. 3 to 5 show the ground contact shapes (40% load, 75% load, 100% load) of the pneumatic tire of FIG. 1, respectively. In the pneumatic tire described above, a tire when the pneumatic tire is filled with 230 kPa of air pressure and is grounded under a condition in which a load of 40%, 75%, and 100% of the maximum load capacity specified by the standard is applied, respectively. The maximum contact length in the circumferential direction is LA1, LB1, LC1 (mm), and the maximum contact width in the tire width direction is WA1, WB1, WC1 (mm), respectively. External contact lengths in the tire circumferential direction at positions 40% of the widths WA1, WB1, and WC1 are LA2, LB2, and LC2 (mm), respectively.
 つまり、図3に示すように、上記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力の40%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をLA1とし、タイヤ幅方向の最大接地幅をWA1とし、タイヤ中心位置CLからタイヤ幅方向外側に向かって最大接地幅WA1の40%の位置におけるタイヤ周方向の外部接地長をLA2とする。外部接地長LA2はタイヤ中心位置CLの両側における測定値の平均値である。 That is, as shown in FIG. 3, the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and contacted with a load of 40% of the maximum load capacity defined in the standard is applied. The contact length is LA1, the maximum contact width in the tire width direction is WA1, and the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WA1 from the tire center position CL toward the outer side in the tire width direction is LA2. . The external ground contact length LA2 is an average value of measured values on both sides of the tire center position CL.
 また、図4に示すように、上記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力の75%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をLB1とし、タイヤ幅方向の最大接地幅をWB1とし、タイヤ中心位置CLからタイヤ幅方向外側に向かって最大接地幅WB1の40%の位置におけるタイヤ周方向の外部接地長をLB2とする。外部接地長LB2はタイヤ中心位置CLの両側における測定値の平均値である。 Moreover, as shown in FIG. 4, the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and grounded under a condition where a load of 75% of the maximum load capacity defined by the standard is applied. The contact length is LB1, the maximum contact width in the tire width direction is WB1, and the external contact length in the tire circumferential direction at a position 40% of the maximum contact width WB1 from the tire center position CL toward the outer side in the tire width direction is LB2. . The external contact length LB2 is an average value of measured values on both sides of the tire center position CL.
 更に、図5に示すように、上記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力の100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をLC1とし、タイヤ幅方向の最大接地幅をWC1とし、タイヤ中心位置CLからタイヤ幅方向外側に向かって最大接地幅WC1の40%の位置におけるタイヤ周方向の外部接地長をLC2とする。外部接地長LC2はタイヤ中心位置CLの両側における測定値の平均値である。 Further, as shown in FIG. 5, the maximum in the tire circumferential direction when the pneumatic tire is filled with 230 kPa of air pressure and grounded under the condition of applying a load of 100% of the maximum load capacity defined by the standard. The contact length is LC1, the maximum contact width in the tire width direction is WC1, and the external contact length in the tire circumferential direction at the position of 40% of the maximum contact width WC1 from the tire center position CL toward the outer side in the tire width direction is LC2. . The external contact length LC2 is an average value of measured values on both sides of the tire center position CL.
 ここで、トレッド部1を、タイヤ赤道(即ち、タイヤ中心位置CL)を中心として最大接地幅WB1の53%に相当する幅を持つ中央領域Xcと最大接地幅WB1内で中央領域Xcよりもタイヤ幅方向外側となる外側領域Xsとに区分したとき、中央領域Xcの溝面積Sc(mm2)と外側領域Xsの溝面積Ss(mm2)は以下の関係を満足する。
0.80≦Sc/Ss≦0.98
Here, the tread portion 1 includes a tire having a width corresponding to 53% of the maximum ground contact width WB1 around the tire equator (that is, the tire center position CL) and the tire within the maximum ground contact width WB1 than the center region Xc. When divided into the outer region Xs which is the outer side in the width direction, the groove area Sc (mm 2 ) of the central region Xc and the groove area Ss (mm 2 ) of the outer region Xs satisfy the following relationship.
0.80 ≦ Sc / Ss ≦ 0.98
 中央領域Xcの溝面積Scはタイヤ周上で中央領域Xcに形成された溝成分の総面積を意味し、外側領域Xsの溝面積Ssはタイヤ周上で外側領域Xsに形成された溝成分の総面積を意味する。なお、溝成分が面取り部を有する場合、その面取り部の面積も溝成分の総面積に含まれるものとする。 The groove area Sc of the central region Xc means the total area of the groove components formed in the central region Xc on the tire circumference, and the groove area Ss of the outer region Xs is the groove component formed in the outer region Xs on the tire circumference. It means the total area. When the groove component has a chamfered portion, the area of the chamfered portion is also included in the total area of the groove component.
 上述した空気入りタイヤでは、中央領域Xcの溝面積Scと外側領域Xsの溝面積Ssとが0.80≦Sc/Ss≦0.98の関係を満足し、中央領域Xcでの溝面積Scを少なくすることにより、トレッド部1の中央領域Xcでの剛性を確保してセンター偏摩耗を抑制することができる。また、中央領域Xcでの溝面積Scを少なくしてトレッド部1の中央領域Xcでの剛性を増大させることで、低荷重域から高いコーナリングパワーを確保することができる。 In the pneumatic tire described above, the groove area Sc of the central region Xc and the groove area Ss of the outer region Xs satisfy the relationship of 0.80 ≦ Sc / Ss ≦ 0.98, and the groove area Sc in the central region Xc is By reducing it, the rigidity in the center area | region Xc of the tread part 1 can be ensured, and center uneven wear can be suppressed. Further, by increasing the rigidity in the central region Xc of the tread portion 1 by reducing the groove area Sc in the central region Xc, high cornering power can be ensured from the low load region.
 ここで、Sc/Ssが0.80よりも小さいと中央領域Xcでの溝面積Scが不足するためウエット性能が低下し、逆にSc/Ssが0.98よりも大きいとセンター偏摩耗を生じ易くなると共に操縦安定性のリニアリティの改善効果が不十分になる。特に、0.85≦Sc/Ss≦0.96の関係を満足することが望ましい。 Here, if Sc / Ss is smaller than 0.80, the groove area Sc in the central region Xc is insufficient, so that the wet performance is deteriorated. Conversely, if Sc / Ss is larger than 0.98, center uneven wear occurs. It becomes easy and the improvement effect of the linearity of steering stability becomes insufficient. In particular, it is desirable to satisfy the relationship 0.85 ≦ Sc / Ss ≦ 0.96.
 しかも、荷重W40,W75,W100及びコーナリングパワーCP40,CP75,CP100が0.05≦(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]≦0.50の関係を満足することにより、高荷重域のコーナリングパワーの過度の増大を抑制することができる。これにより、ハンドル操舵初期から遅延なくタイヤが動き、荷重の増大に伴って適度なコーナリングパワーが発揮されるので、操縦安定性のリニアリティを改善することができる。即ち、一定の旋回操舵を入力した後、数秒後に遅れて急激にヨーが立ち上がることがないタイヤを提供することができる。特に、上記関係式は(R×D/2A)2の値により補正されているので、偏平比が低く、断面幅の呼びに対する外径の比が小さいタイヤほど高荷重側のコーナリングパワーの寄与を低下させる。そのため、タイヤサイズに応じて適度なコーナリングパワーを発揮することができる。 Moreover, the loads W40, W75, W100 and the cornering powers CP40, CP75, CP100 are 0.05 ≦ (R × D / 2A) 2 × [(CP100−CP75) / (W100−W75)] / [(CP75−CP40) /(W75−W40)]≦0.50 is satisfied, it is possible to suppress an excessive increase in cornering power in the high load region. As a result, the tire moves without delay from the initial steering of the steering wheel, and an appropriate cornering power is exhibited as the load increases, so that the linearity of steering stability can be improved. That is, it is possible to provide a tire in which yaw does not suddenly rise after a few seconds after inputting a constant turning steering. In particular, since the above relational expression is corrected by the value of (R × D / 2A) 2 , the tire with a lower flatness ratio and a smaller ratio of the outer diameter to the nominal section width contributes to the cornering power on the higher load side. Reduce. Therefore, an appropriate cornering power can be exhibited according to the tire size.
 ここで、(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]が0.05よりも小さいと低荷重域でのコーナリングパワーが過剰となり、逆に0.50よりも大きいと高荷重域でのコーナリングパワーが過剰となり、いずれの場合も、操縦安定性のリニアリティが損なわれることになる。特に、0.10≦(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]≦0.40の関係を満足することが望ましい。 Here, when (R × D / 2A) 2 × [(CP100-CP75) / (W100-W75)] / [(CP75-CP40) / (W75-W40)] is smaller than 0.05, the low load range In contrast, if the cornering power is excessively larger than 0.50, the cornering power in the high load region becomes excessive, and in any case, the linearity of steering stability is impaired. In particular, the relationship of 0.10 ≦ (R × D / 2A) 2 × [(CP100−CP75) / (W100−W75)] / [(CP75−CP40) / (W75−W40)] ≦ 0.40 is satisfied. It is desirable to do.
 上記空気入りタイヤにおいて、最大接地長LA1,LB1,LC1及び外部接地長LA2,LB2,LC2は以下の関係を満足すると良い。
 1.02≦(LB2/LB1)/(LA2/LA1)≦1.25
 1.00≦(LC2/LC1)/(LB2/LB1)≦1.20
 0.75≦LB2/LB1≦1.00
In the pneumatic tire, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 may satisfy the following relationship.
1.02 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.25
1.00 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20
0.75 ≦ LB2 / LB1 ≦ 1.00
 このように接地形状の荷重依存性をコントロールすることにより、操縦安定性のリニアリティを更に改善することができる。つまり、LA2/LA1は40%荷重時の矩形率を意味し、LB2/LB1は75%荷重時の矩形率を意味し、LC2/LC1は100%荷重時の矩形率を意味するものであるが、低荷重域の接地形状をコントロールするための指標として(LB2/LB1)/(LA2/LA1)の値を規定し、高荷重域の接地形状をコントロールするための指標として(LC2/LC1)/(LB2/LB1)の値を規定することにより、操縦安定性のリニアリティをより緻密に改善することができる。 ∙ By controlling the load dependency of the ground contact shape in this way, the linearity of steering stability can be further improved. That is, LA2 / LA1 means the rectangular ratio at 40% load, LB2 / LB1 means the rectangular ratio at 75% load, and LC2 / LC1 means the rectangular ratio at 100% load. The value of (LB2 / LB1) / (LA2 / LA1) is specified as an index for controlling the ground contact shape in the low load area, and (LC2 / LC1) / By defining the value of (LB2 / LB1), the linearity of steering stability can be improved more precisely.
 ここで、(LB2/LB1)/(LA2/LA1)又は(LC2/LC1)/(LB2/LB1)が上記範囲から外れると操縦安定性のリニアリティの改善効果が低下する。特に、1.03≦(LB2/LB1)/(LA2/LA1)≦1.15、1.02≦(LC2/LC1)/(LB2/LB1)≦1.10の関係を満足することが望ましい。 Here, if (LB2 / LB1) / (LA2 / LA1) or (LC2 / LC1) / (LB2 / LB1) is out of the above range, the improvement effect of the linearity of steering stability is lowered. In particular, it is desirable to satisfy the relationship of 1.03 ≦ (LB2 / LB1) / (LA2 / LA1) ≦ 1.15, 1.02 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.10.
 また、摩耗寿命を延長するために、一般常用荷重とみなされる75%の荷重条件において、LB2/LB1を上記範囲に設定することが望ましい。LB2/LB1が0.75よりも小さいと摩耗寿命が短くなり、逆に1.00よりも大きいと操縦安定性のリニアリティのチューニングが難しくなる。特に、0.80≦LB2/LB1≦0.95の関係を満足することが望ましい。 Also, in order to extend the wear life, it is desirable to set LB2 / LB1 within the above range under a load condition of 75% that is regarded as a general service load. When LB2 / LB1 is smaller than 0.75, the wear life is shortened. Conversely, when LB2 / LB1 is larger than 1.00, it is difficult to tune the linearity of steering stability. In particular, it is desirable to satisfy the relationship of 0.80 ≦ LB2 / LB1 ≦ 0.95.
 上述のようにトレッド部1に、タイヤ周方向に延びる中央主溝11と、該中央主溝11よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる外側主溝12と、該外側主溝12よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝31とが形成されたトレッドパターンを有する空気入りタイヤでは、トレッド部1の中央領域Xcでの剛性を確保し、トレッド部1のセンター偏摩耗を抑制すると共に、低荷重域から高いコーナリングパワーを確保するために、図6~図8のような構造を採用することができる。 As described above, in the tread portion 1, the central main groove 11 extending in the tire circumferential direction, the outer main groove 12 extending in the tire circumferential direction at a position outside the central main groove 11 in the tire width direction, and the outer main groove 12. In a pneumatic tire having a tread pattern in which a plurality of central lateral grooves 31 extending in the tire width direction are formed at positions on the inner side in the tire width direction than the tread portion, the rigidity in the central region Xc of the tread portion 1 is secured. The structure shown in FIGS. 6 to 8 can be employed in order to suppress the center uneven wear of 1 and to ensure high cornering power from a low load range.
 即ち、図7に示すように、中央横溝31(特に、中央ラグ溝31A)の側壁がトレッド面の法線に対してなす傾斜角度θclは0°≦θcl≦10°の関係を満足すると良い。中央横溝31の傾斜角度θclを上記範囲に設定することにより、トレッド部1の中央領域Xcでの剛性を確保することができる。ここで、θclが0°よりも小さく側壁がオーバーハング形状を有していると中央領域Xcでの剛性が低下し、逆に10°よりも大きいと排水性に悪影響を与えることになる。特に、1°≦θcl≦8°の関係を満足することが望ましい。 That is, as shown in FIG. 7, the inclination angle θcl formed by the side wall of the central lateral groove 31 (particularly, the central lug groove 31A) with respect to the normal line of the tread surface should satisfy the relationship of 0 ° ≦ θcl ≦ 10 °. By setting the inclination angle θcl of the central lateral groove 31 in the above range, the rigidity in the central region Xc of the tread portion 1 can be ensured. Here, if θcl is smaller than 0 ° and the side wall has an overhang shape, the rigidity in the central region Xc is lowered. Conversely, if it is larger than 10 °, the drainage is adversely affected. In particular, it is desirable to satisfy the relationship of 1 ° ≦ θcl ≦ 8 °.
 図6に示すように、中央横溝31の溝深さDclは中央主溝11の溝深さGDcに対して0.20≦Dcl/GDc≦0.90の関係を満足すると良い。これにより、トレッド部1の中央領域Xcでの剛性を確保することができる。ここで、Dcl/GDcが0.20よりも小さいと排水性に悪影響を与えることになり、逆に0.90よりも大きいと中央領域Xcでの剛性が低下する。 As shown in FIG. 6, the groove depth Dcl of the central transverse groove 31 should satisfy the relationship of 0.20 ≦ Dcl / GDc ≦ 0.90 with respect to the groove depth GDc of the central main groove 11. Thereby, the rigidity in the center area | region Xc of the tread part 1 is securable. Here, when Dcl / GDc is smaller than 0.20, the drainage performance is adversely affected. Conversely, when Dcl / GDc is larger than 0.90, the rigidity in the central region Xc is lowered.
 中央横溝31(特に、中央ラグ溝31A)はその長手方向の一部に底上げ部33を有し、該底上げ部33での溝深さDaが中央横溝31の溝深さDclに対して0.20≦Da/Dcl≦0.90の関係を満足すると良い。ここでは、底上げ部33は外側主溝12と隣接するに開口する位置に配置されている。このような底上げ部33を設けることにより、トレッド部1の中央領域Xcでの剛性を確保することができる。ここで、Da/Dclが0.90よりも大きいと剛性に与える影響が小さくなり、逆に0.20よりも小さいと排水性に悪影響を与えることになる。 The central lateral groove 31 (particularly, the central lug groove 31A) has a bottom raised portion 33 in a part of its longitudinal direction, and the groove depth Da at the bottom raised portion 33 is 0. 0 relative to the groove depth Dcl of the central lateral groove 31. It is preferable that the relationship of 20 ≦ Da / Dcl ≦ 0.90 is satisfied. Here, the bottom raised portion 33 is disposed at a position opening adjacent to the outer main groove 12. By providing such a raised portion 33, the rigidity in the central region Xc of the tread portion 1 can be ensured. Here, if Da / Dcl is greater than 0.90, the effect on rigidity is reduced, and conversely if it is less than 0.20, drainage is adversely affected.
 中央主溝11の溝深さGDcは外側主溝12の溝深さGDsに対して0.80≦GDc/GDs≦1.00の関係を満足すると良い。これにより、トレッド部1の中央領域Xcでの剛性を確保することができる。ここで、GDc/GDsが0.80よりも小さいと排水性に悪影響を与えることになり、逆に1.00よりも大きいとトレッド部1の中央領域Xcでの剛性を確保することが難しくなる。 The groove depth GDc of the central main groove 11 should satisfy the relationship of 0.80 ≦ GDc / GDs ≦ 1.00 with respect to the groove depth GDs of the outer main groove 12. Thereby, the rigidity in the center area | region Xc of the tread part 1 is securable. Here, when GDc / GDs is smaller than 0.80, the drainage is adversely affected. Conversely, when GDc / GDs is larger than 1.00, it is difficult to ensure rigidity in the central region Xc of the tread portion 1. .
 トレッド部1に外側主溝12よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝41が形成される場合、中央横溝31の溝深さDclは外側横溝41の溝深さDslに対して0.50≦Dcl/Dsl≦1.00の関係を満足すると良い(図7及び図8参照)。これにより、トレッド部1の中央領域Xcでの剛性を確保することができる。ここで、Dcl/Dslが0.50よりも小さいと排水性に悪影響を与えることになり、逆に1.00よりも大きいとトレッド部1の中央領域Xcでの剛性を確保することが難しくなる。 When a plurality of outer lateral grooves 41 extending in the tire width direction are formed in the tread portion 1 at positions outside the outer main grooves 12 in the tire width direction, the groove depth Dcl of the central lateral groove 31 is the groove depth of the outer lateral grooves 41. It is preferable to satisfy a relationship of 0.50 ≦ Dcl / Dsl ≦ 1.00 with respect to Dsl (see FIGS. 7 and 8). Thereby, the rigidity in the center area | region Xc of the tread part 1 is securable. Here, if Dcl / Dsl is smaller than 0.50, the drainage is adversely affected. Conversely, if Dcl / Dsl is larger than 1.00, it is difficult to ensure rigidity in the central region Xc of the tread portion 1. .
 図9及び図10はそれぞれ本発明の他の実施形態からなる空気入りタイヤのトレッドパターンを示すものである。図9及び図10において図2と同一物には同一符号を付してその部分の詳細な説明は省略する。図9において、外側主溝12よりもタイヤ幅方向内側に形成された中央横溝31の全てが1.0mm以下の溝幅を有する中央サイプ31Bから構成されている。このように中央横溝31の全てを溝幅1.0mm以下の中央サイプ31Bとすることにより、トレッド部1の中央領域Xcでの剛性を確保し、センター偏摩耗を抑制すると共に、低荷重域から高いコーナリングパワーを確保することができる。図9では、外側主溝12よりもタイヤ幅方向内側に形成された周方向細溝32も溝幅が1.0mm以下となるように構成されている。 9 and 10 each show a tread pattern of a pneumatic tire according to another embodiment of the present invention. 9 and 10, the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 9, all of the central lateral grooves 31 formed on the inner side in the tire width direction from the outer main groove 12 are constituted by a central sipe 31B having a groove width of 1.0 mm or less. Thus, by making all the central lateral grooves 31 into the central sipe 31B having a groove width of 1.0 mm or less, the rigidity in the central region Xc of the tread portion 1 is ensured, the center uneven wear is suppressed, and from the low load region. High cornering power can be secured. In FIG. 9, the circumferential narrow groove 32 formed on the inner side in the tire width direction from the outer main groove 12 is also configured to have a groove width of 1.0 mm or less.
 図10においては、トレッド部1に形成された中央主溝11及び外側主溝12を除く全ての溝が1.0mm以下の溝幅を有する構成されている。この場合、トレッド部1の全域にわたって剛性を確保することができる。 In FIG. 10, all the grooves excluding the central main groove 11 and the outer main groove 12 formed in the tread portion 1 have a groove width of 1.0 mm or less. In this case, rigidity can be ensured over the entire area of the tread portion 1.
 中央サイプ31Bは、図11に示すように、トレッド面から溝底まで一定の溝幅を有するものであっても良く、或いは、図12に示すように、トレッド面への開口部分に面取り部34を有していても良い。なお、外側サイプ41Bにも同様の構造を採用することができる。 The central sipe 31B may have a constant groove width from the tread surface to the groove bottom as shown in FIG. 11, or, as shown in FIG. 12, the chamfered portion 34 is formed at the opening to the tread surface. You may have. A similar structure can be adopted for the outer sipe 41B.
 上述した空気入りタイヤにおいて、トレッド部1に、タイヤ周方向に対して傾斜する複数本のベルトコードCを含み、層間でベルトコードCが互いに交差する複数層のベルト層7が埋設される場合、図13に示すように、ベルトコードCのタイヤ中心位置CLでのタイヤ周方向に対する傾斜角度αは21°≦α≦30°の関係を満足すると良い。ベルトコードCのタイヤ中心位置CLでの傾斜角度αを極度に低角度化しないことにより、ベルト層7に起因するトレッド部1の剛性の増大を抑えてコーナリングパワーの荷重依存性をコントロールし、操縦安定性のリニアリティを更に改善することができる。ここで、傾斜角度αが21°よりも小さいとベルト層7の剛性の増大により操縦安定性のリニアリティをコントロールすることが難しくなり、逆に30°よりも大きいとコーナリング特性等が低下するため実用的ではない。 In the pneumatic tire described above, when the tread portion 1 includes a plurality of belt cords C that are inclined with respect to the tire circumferential direction, and a plurality of belt layers 7 in which the belt cords C cross each other are embedded, As shown in FIG. 13, the inclination angle α of the belt cord C with respect to the tire circumferential direction at the tire center position CL preferably satisfies the relationship of 21 ° ≦ α ≦ 30 °. By not reducing the inclination angle α of the belt cord C at the tire center position CL extremely, the increase in rigidity of the tread portion 1 caused by the belt layer 7 is suppressed, and the load dependency of the cornering power is controlled and controlled. The stability linearity can be further improved. Here, if the inclination angle α is smaller than 21 °, it becomes difficult to control the linearity of the steering stability due to the increase in rigidity of the belt layer 7, and conversely if it is larger than 30 °, the cornering characteristics and the like are deteriorated. Not right.
 また、ベルトコードCのタイヤ中心位置CLでのタイヤ周方向に対する傾斜角度αとベルトコードCのベルト端末位置BEでのタイヤ周方向に対する傾斜角度βとは18°≦β<α≦30°の関係を満足すると良い。ベルトコードCのベルト端末位置BEでの傾斜角度βを低角度化することにより、ショルダー偏摩耗を抑制することができ、しかも、ベルトコードCのタイヤ中心位置CLでの傾斜角度αを極度に低角度化しないことにより、トレッド部1の中央領域Xcにおけるベルト層7の剛性の増大を抑えてコーナリングパワーの荷重依存性をコントロールし、操縦安定性のリニアリティを更に改善することができる。特に、傾斜角度αと傾斜角度βとの差は3°以上であると良い。なお、ベルトコードCのベルト端末位置BEでのタイヤ周方向に対する傾斜角度βをベルトコードCのタイヤ中心位置CLでのタイヤ周方向に対する傾斜角度αよりも小さくした構造が好ましいが、ベルト層7の全幅にわたってベルトコードCをタイヤ周方向に対して一定の角度で傾斜させ、傾斜角度α,βを同一値に設定しても良く、或いは、α<βとしても良い。 The inclination angle α of the belt cord C with respect to the tire circumferential direction at the tire center position CL and the inclination angle β of the belt cord C with respect to the tire circumferential direction at the belt end position BE have a relationship of 18 ° ≦ β <α ≦ 30 °. It is good to be satisfied. By reducing the inclination angle β of the belt cord C at the belt end position BE, shoulder uneven wear can be suppressed, and the inclination angle α of the belt cord C at the tire center position CL can be extremely reduced. By not making the angle, the increase in rigidity of the belt layer 7 in the central region Xc of the tread portion 1 can be suppressed to control the load dependency of the cornering power, and the linearity of the steering stability can be further improved. In particular, the difference between the inclination angle α and the inclination angle β is preferably 3 ° or more. A structure in which the inclination angle β of the belt cord C with respect to the tire circumferential direction at the belt end position BE is smaller than the inclination angle α of the belt cord C with respect to the tire circumferential direction at the tire center position CL is preferable. The belt cord C may be inclined at a constant angle with respect to the tire circumferential direction over the entire width, and the inclination angles α and β may be set to the same value, or α <β.
 図13に示すように、ベルト層7はベルトコードCの傾斜角度がα±1°の範囲となるセンター側の高角度領域AcとベルトコードCの傾斜角度がβ±1°の範囲となるショルダー側の低角度領域Asとを有し、高角度領域Acの幅Lcがベルト層7の全幅Lの1/2以上であり、各低角度領域Asの幅Lsがベルト層7の全幅Lの1/8以上であると良い。このようにベルト層7のセンター側の高角度領域Acとショルダー側の低角度領域Asとを上記の如く設定することにより、トレッド部1の剛性配分を適正化することができる。ここで、高角度領域Acの幅Lcがベルト層7の全幅Lの1/2よりも小さいとベルト層7としての機能が低下し、また、低角度領域Asの幅Lsがベルト層7の全幅Lの1/8よりも小さいとトレッド部1の外側領域Xsでのタイヤ周方向の剛性を十分に高めることができなくなる。なお、高角度領域Acの幅Lc及び低角度領域Asの幅Lsは各ベルト層7の全幅Lに基づいて設定されるものである。 As shown in FIG. 13, the belt layer 7 has a high angle region Ac on the center side in which the inclination angle of the belt cord C is in the range of α ± 1 ° and a shoulder in which the inclination angle of the belt cord C is in the range of β ± 1 °. The low-angle region As on the side, the width Lc of the high-angle region Ac is ½ or more of the total width L of the belt layer 7, and the width Ls of each low-angle region As is 1 of the total width L of the belt layer 7. It is good that it is / 8 or more. Thus, by setting the high-angle area Ac on the center side and the low-angle area As on the shoulder side of the belt layer 7 as described above, the rigidity distribution of the tread portion 1 can be optimized. Here, when the width Lc of the high angle region Ac is smaller than ½ of the entire width L of the belt layer 7, the function as the belt layer 7 is deteriorated, and the width Ls of the low angle region As is the entire width of the belt layer 7. If it is smaller than 1/8 of L, the rigidity in the tire circumferential direction in the outer region Xs of the tread portion 1 cannot be sufficiently increased. The width Lc of the high angle area Ac and the width Ls of the low angle area As are set based on the total width L of each belt layer 7.
 上述した空気入りタイヤは偏平比0.65以下の乗用車用タイヤとして好適である。操縦安定性のリニアリティが厳しく要求される乗用車用タイヤにおいて、耐偏摩耗性と操縦安定性とを両立することが可能になる。 The pneumatic tire described above is suitable as a tire for passenger cars having a flatness ratio of 0.65 or less. In a tire for a passenger car in which linearity of steering stability is strictly required, it is possible to achieve both uneven wear resistance and steering stability.
 上述した実施形態では、トレッド部に4本の主溝を含むトレッドパターンについて説明したが、本発明はトレッド部に3本の主溝を含むトレッドパターンや、トレッド部にV字状の主溝を含むトレッドパターンにも適用可能である。 In the embodiment described above, a tread pattern including four main grooves in the tread portion has been described. However, the present invention includes a tread pattern including three main grooves in the tread portion, and a V-shaped main groove in the tread portion. It is applicable also to the tread pattern which contains.
 タイヤサイズ205/55R16 91Vで、一対のビード部間にカーカス層が装架され、トレッド部におけるカーカス層のタイヤ径方向外側に2層のベルト層が埋設され、トレッド部に、タイヤ周方向に延びる一対の中央主溝と、該中央主溝よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる一対の外側主溝と、該外側主溝よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝と、該外側主溝よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝とが形成された空気入りタイヤにおいて、ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度α、ベルトコードのベルト端末位置でのタイヤ周方向に対する傾斜角度β、外側主溝の溝深さGDs、外側横溝の溝深さDsl、比GDc/GDs、中央横溝の側壁の傾斜角度θcl、中央主溝の溝深さGDc、中央横溝の溝深さDcl、比Dcl/GDc、中央横溝の底上げ部での溝深さDa、比Da/Dcl、比Dcl/Dsl、中央横溝の溝幅、外側横溝の溝幅、中央領域の溝面積Scと外側領域の溝面積Ssの比Sc/Ss、低荷重域CP変動係数X=[(CP75-CP40)/(W75-W40)]、高荷重域CP変動係数Y=[(CP100-CP75)/(W100-W75)]、(R×D/2A)2×(Y/X)、(LB2/LB1)/(LA2/LA1)、(LC2/LC1)/(LB2/LB1)、LB2/LB1(矩形比)を表1のように設定した比較例1~3及び実施例1~10のタイヤを製作した。 With a tire size of 205 / 55R16 91V, a carcass layer is mounted between a pair of bead portions, two belt layers are embedded outside the carcass layer in the tire radial direction of the tread portion, and the tread portion extends in the tire circumferential direction. A pair of central main grooves, a pair of outer main grooves extending in the tire circumferential direction at a position on the outer side in the tire width direction from the central main grooves, and extending in the tire width direction at a position on the inner side in the tire width direction from the outer main grooves. In a pneumatic tire in which a plurality of central lateral grooves and a plurality of outer lateral grooves extending in the tire width direction at positions outside the outer main grooves in the tire width direction are formed, the tire circumference at the tire cord center position of the belt cord The inclination angle α with respect to the direction, the inclination angle β with respect to the tire circumferential direction at the belt end position of the belt cord, the groove depth GDs of the outer main groove, the groove depth Dsl of the outer lateral groove, and the ratio GDc / G s, inclination angle θcl of the side wall of the central lateral groove, groove depth GDc of the central main groove, groove depth Dcl of the central lateral groove, ratio Dcl / GDc, groove depth Da at the raised portion of the central lateral groove, ratio Da / Dcl, Ratio Dcl / Dsl, groove width of the central lateral groove, groove width of the outer lateral groove, ratio Sc / Ss of the groove area Sc of the central region and the groove region Ss of the outer region, CP variation coefficient X = [(CP75−CP40) / (W75-W40)], high load range CP variation coefficient Y = [(CP100-CP75) / (W100-W75)], (R × D / 2A) 2 × (Y / X), (LB2 / LB1) Tires of Comparative Examples 1 to 3 and Examples 1 to 10 in which / (LA2 / LA1), (LC2 / LC1) / (LB2 / LB1), and LB2 / LB1 (rectangular ratio) were set as shown in Table 1 were manufactured. .
  これら試験タイヤについて、下記試験方法により、耐偏摩耗性(ショルダー領域、センター領域)、操縦安定性のリニアリティ、ウエット性能を評価し、その結果を表1に併せて示した。 偏 These test tires were evaluated for uneven wear resistance (shoulder region, center region), steering stability linearity, and wet performance by the following test methods, and the results are also shown in Table 1.
 耐偏摩耗性(ショルダー領域、センター領域):
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて摩擦エネルギー測定試験機に装着し、空気圧230kPa、負荷荷重4.5kNの条件下にて、トレッド部のショルダー領域及びセンター領域での平均摩擦エネルギーを測定した。測定値は、各領域で10mm間隔となるタイヤ幅方向2箇所×タイヤ周方向2箇所の計4点における摩擦エネルギーを測定し、これらを平均したものである。評価結果は、測定値の逆数を用い、ショルダー領域での耐偏摩耗性は比較例1を100とする指数にて示し、センター領域での耐偏摩耗性は比較例2を100とする指数にて示した。指数値が大きいほど耐偏摩耗性が優れていることを意味する。
Uneven wear resistance (shoulder region, center region):
Each test tire is mounted on a wheel with a rim size of 16 × 6.5J and mounted on a friction energy measurement tester. Under the conditions of air pressure of 230 kPa and load load of 4.5 kN, average friction in the shoulder region and center region of the tread portion Energy was measured. The measured values are obtained by measuring the frictional energy at a total of four points of 2 locations in the tire width direction × 2 locations in the tire circumferential direction, which are 10 mm intervals in each region, and averaging them. The evaluation result uses the reciprocal of the measured value, and the uneven wear resistance in the shoulder region is indicated by an index with Comparative Example 1 as 100, and the uneven wear resistance in the center region is an index with Comparative Example 2 as 100. Showed. The larger the index value, the better the uneven wear resistance.
 操縦安定性のリニアリティ:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量2リットルの前輪駆動車に装着し、当該車両の指定空気圧を充填し、舗装路からなるテストコースにてパネラーによる走行試験を実施し、操縦安定性のリニアリティについて官能評価を行った。評価結果は、比較例1を100とする指数にて示した。指数値が大きいほど操縦安定性のリニアリティが良好であることを意味する。
Steering stability linearity:
Each test tire is mounted on a wheel with a rim size of 16 x 6.5 J and mounted on a front-wheel drive vehicle with a displacement of 2 liters. The vehicle is filled with the specified air pressure, and a running test is conducted by a paneler on a test course consisting of a paved road. Then, sensory evaluation was performed on the linearity of steering stability. The evaluation results are shown as an index with Comparative Example 1 as 100. The larger the index value, the better the linearity of steering stability.
 ウエット性能:
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて排気量2リットルの前輪駆動車に装着し、当該車両の指定空気圧を充填し、散水されたテストコースにてパネラーによる走行試験を実施し、ウエット路面での操縦安定性に関する官能評価を行った。評価結果は、比較例1を100とする指数にて示した。指数値が大きいほどウエット性能が優れていることを意味する。
Wet performance:
Each test tire is mounted on a wheel with a rim size of 16 x 6.5J and mounted on a front-wheel drive vehicle with a displacement of 2 liters. The specified air pressure of the vehicle is filled, and a running test is conducted by a panel on a watered test course. The sensory evaluation on the handling stability on the wet road surface was conducted. The evaluation results are shown as an index with Comparative Example 1 as 100. A larger index value means better wet performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から判るように、実施例1~10のタイヤは、比較例1との対比において、耐偏摩耗性、操縦安定性のリニアリティ、ウエット性能が共に優れていた。一方、比較例2,3のタイヤは、これら性能の改善効果が必ずしも十分ではなかった。 As can be seen from Table 1, the tires of Examples 1 to 10 were excellent in uneven wear resistance, linearity of steering stability, and wet performance in comparison with Comparative Example 1. On the other hand, the tires of Comparative Examples 2 and 3 were not always sufficient in improving these performances.
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 ベルト補強層
 11 中央主溝
 12 外側主溝
 31 中央横溝
 31A 中央ラグ溝
 31B 中央サイプ
 41 外側横溝
 41A 外側ラグ溝
 41B 外側サイプ
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 5 Bead core 6 Bead filler 7 Belt layer 8 Belt reinforcement layer 11 Central main groove 12 Outer main groove 31 Central lateral groove 31A Central lug groove 31B Central sipe 41 Outer lateral groove 41A Outer lug groove 41B outer sipe

Claims (13)

  1.  タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備えた空気入りタイヤにおいて、
     規格にて定められた最大負荷能力の40%,75%,100%に対応する荷重をそれぞれW40,W75,W100(kN)とし、前記空気入りタイヤに230kPaの空気圧を充填し、前記荷重W40,W75,W100を負荷した条件にて測定されるコーナリングパワーをそれぞれCP40,CP75,CP100(kN/°)とし、前記空気入りタイヤの偏平比をRとし、その外径をD(mm)とし、その断面幅の呼びをA(mm)としたとき、前記荷重W40,W75,W100及び前記コーナリングパワーCP40,CP75,CP100が0.05≦(R×D/2A)2×[(CP100-CP75)/(W100-W75)]/[(CP75-CP40)/(W75-W40)]≦0.50の関係を満足し、
     前記空気入りタイヤに230kPaの空気圧を充填し、前記荷重W75を負荷した条件にて接地した際のタイヤ幅方向の最大接地幅をWB1とし、前記トレッド部を、タイヤ赤道を中心として最大接地幅WB1の53%に相当する幅を持つ中央領域と最大接地幅WB1内で前記中央領域よりもタイヤ幅方向外側となる外側領域とに区分したとき、前記中央領域の溝面積Scと前記外側領域の溝面積Ssが0.80≦Sc/Ss≦0.98の関係を満足することを特徴とする空気入りタイヤ。
    An annular tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and a pair of bead portions disposed on the inner side in the tire radial direction of the sidewall portions. In the provided pneumatic tire,
    Loads corresponding to 40%, 75%, and 100% of the maximum load capacity defined in the standard are W40, W75, and W100 (kN), respectively, and the pneumatic tire is filled with an air pressure of 230 kPa, and the load W40, The cornering powers measured under the conditions of loading W75 and W100 are CP40, CP75 and CP100 (kN / °), respectively, the flatness ratio of the pneumatic tire is R, and the outer diameter is D (mm). When the nominal sectional width is A (mm), the loads W40, W75, W100 and the cornering power CP40, CP75, CP100 are 0.05 ≦ (R × D / 2A) 2 × [(CP100−CP75) / (W100−W75)] / [(CP75−CP40) / (W75−W40)] ≦ 0.50 is satisfied,
    The pneumatic tire is filled with air pressure of 230 kPa, and the maximum contact width in the tire width direction when grounded under the condition of applying the load W75 is WB1, and the tread portion is the maximum contact width WB1 centering on the tire equator. When the area is divided into a central area having a width corresponding to 53% of the above and an outer area outside the central area within the maximum ground contact width WB1, the groove area Sc of the central area and the grooves of the outer area A pneumatic tire characterized in that the area Ss satisfies a relationship of 0.80 ≦ Sc / Ss ≦ 0.98.
  2.  前記トレッド部に、タイヤ周方向に延びる中央主溝と、該中央主溝よりもタイヤ幅方向外側の位置でタイヤ周方向に延びる外側主溝と、該外側主溝よりもタイヤ幅方向内側の位置でタイヤ幅方向に延びる複数本の中央横溝とが形成されていることを特徴とする請求項1に記載の空気入りタイヤ。 A central main groove extending in the tire circumferential direction in the tread portion, an outer main groove extending in the tire circumferential direction at a position on the outer side in the tire width direction from the central main groove, and a position on the inner side in the tire width direction from the outer main groove The pneumatic tire according to claim 1, wherein a plurality of central lateral grooves extending in the tire width direction are formed.
  3.  前記中央横溝の側壁がトレッド面の法線に対してなす傾斜角度θclが0°≦θcl≦10°の関係を満足することを特徴とする請求項2に記載の空気入りタイヤ。 3. The pneumatic tire according to claim 2, wherein an inclination angle θcl formed by a side wall of the central lateral groove with respect to a normal line of the tread surface satisfies a relationship of 0 ° ≦ θcl ≦ 10 °.
  4.  前記中央横溝の溝深さDclが前記中央主溝の溝深さGDcに対して0.20≦Dcl/GDc≦0.90の関係を満足することを特徴とする請求項2又は3に記載の空気入りタイヤ。 The groove depth Dcl of the central transverse groove satisfies a relationship of 0.20 ≦ Dcl / GDc ≦ 0.90 with respect to the groove depth GDc of the central main groove. Pneumatic tire.
  5.  前記中央横溝がその長手方向の一部に底上げ部を有し、該底上げ部での溝深さDaが前記中央横溝の溝深さDclに対して0.20≦Da/Dcl≦0.90の関係を満足することを特徴とする請求項2~4のいずれかに記載の空気入りタイヤ。 The central transverse groove has a bottom raised portion in a part of its longitudinal direction, and the groove depth Da at the bottom raised portion is 0.20 ≦ Da / Dcl ≦ 0.90 with respect to the groove depth Dcl of the central transverse groove. The pneumatic tire according to any one of claims 2 to 4, wherein the relationship is satisfied.
  6.  前記中央主溝の溝深さGDcが前記外側主溝の溝深さGDsに対して0.85≦GDc/GDs≦1.00の関係を満足することを特徴とする請求項2~5のいずれかに記載の空気入りタイヤ。 The groove depth GDc of the central main groove satisfies a relationship of 0.85 ≦ GDc / GDs ≦ 1.00 with respect to the groove depth GDs of the outer main groove. The pneumatic tire according to Crab.
  7.  前記トレッド部に、前記外側主溝よりもタイヤ幅方向外側の位置でタイヤ幅方向に延びる複数本の外側横溝が形成され、前記中央横溝の溝深さDclが前記外側横溝の溝深さDslに対して0.50≦Dcl/Dsl≦1.00の関係を満足することを特徴とする請求項2~6のいずれかに記載の空気入りタイヤ。 A plurality of outer lateral grooves extending in the tire width direction are formed in the tread portion at positions outside the outer main groove in the tire width direction, and the groove depth Dcl of the central lateral groove is set to the groove depth Dsl of the outer lateral groove. 7. The pneumatic tire according to claim 2, wherein a relationship of 0.50 ≦ Dcl / Dsl ≦ 1.00 is satisfied.
  8.  前記外側主溝よりもタイヤ幅方向内側に形成された中央横溝の全てが1.0mm以下の溝幅を有することを特徴とする請求項2~7のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 2 to 7, wherein all of the central lateral grooves formed on the inner side in the tire width direction from the outer main groove have a groove width of 1.0 mm or less.
  9.  前記トレッド部に形成された中央主溝及び外側主溝を除く全ての溝が1.0mm以下の溝幅を有することを特徴とする請求項2~7のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 2 to 7, wherein all grooves except the central main groove and the outer main groove formed in the tread portion have a groove width of 1.0 mm or less.
  10.  前記空気入りタイヤに230kPaの空気圧を充填し、規格にて定められた最大負荷能力のそれぞれ40%,75%,100%の荷重を負荷した条件にて接地した際のタイヤ周方向の最大接地長をそれぞれLA1,LB1,LC1とし、タイヤ幅方向の最大接地幅をそれぞれWA1,WB1,WC1とし、タイヤ中心位置からタイヤ幅方向外側に向かって最大接地幅WA1,WB1,WC1の40%の位置におけるタイヤ周方向の外部接地長をそれぞれLA2,LB2,LC2としたとき、前記最大接地長LA1,LB1,LC1及び前記外部接地長LA2,LB2,LC2が1.02≦(LB2/LB1)/(LA2/LA1)≦1.25、1.00≦(LC2/LC1)/(LB2/LB1)≦1.20、0.75≦LB2/LB1≦1.00の関係を満足することを特徴とする請求項1~9のいずれかに記載の空気入りタイヤ。 Maximum contact length in the tire circumferential direction when the pneumatic tire is filled with air pressure of 230 kPa and contacted with a load of 40%, 75%, and 100% of the maximum load capacity determined by the standard, respectively. Are LA1, LB1, and LC1, respectively, and the maximum ground contact widths in the tire width direction are WA1, WB1, and WC1, respectively, at positions 40% of the maximum ground contact widths WA1, WB1, and WC1 from the tire center position toward the outside in the tire width direction. When the external contact lengths in the tire circumferential direction are LA2, LB2, and LC2, respectively, the maximum contact lengths LA1, LB1, and LC1 and the external contact lengths LA2, LB2, and LC2 are 1.02 ≦ (LB2 / LB1) / (LA2 /LA1)≦1.25, 1.00 ≦ (LC2 / LC1) / (LB2 / LB1) ≦ 1.20, 0.75 ≦ LB2 / LB1 ≦ The pneumatic tire according to any one of claims 1 to 9, characterized by satisfying the .00 relationship.
  11.  前記トレッド部に、タイヤ周方向に対して傾斜する複数本のベルトコードを含み、層間でベルトコードが互いに交差する複数層のベルト層が埋設され、前記ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αが21°≦α≦30°の関係を満足することを特徴とする請求項1~10のいずれかに記載の空気入りタイヤ。 The tread portion includes a plurality of belt cords that are inclined with respect to the tire circumferential direction, and a plurality of belt layers in which the belt cords intersect with each other are embedded, and the tire circumferential direction at the tire center position of the belt cord The pneumatic tire according to any one of claims 1 to 10, wherein an inclination angle α with respect to the angle satisfies a relationship of 21 ° ≦ α ≦ 30 °.
  12.  前記ベルトコードのタイヤ中心位置でのタイヤ周方向に対する傾斜角度αと前記ベルトコードのベルト端末位置でのタイヤ周方向に対する傾斜角度βとが18°≦β<α≦30°の関係を満足することを特徴とする請求項11に記載の空気入りタイヤ。 The inclination angle α of the belt cord with respect to the tire circumferential direction at the tire center position and the inclination angle β of the belt cord with respect to the tire circumferential direction at the belt end position satisfy a relationship of 18 ° ≦ β <α ≦ 30 °. The pneumatic tire according to claim 11.
  13.  前記空気入りタイヤが偏平比0.65以下の乗用車用タイヤであることを特徴とする請求項1~12のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, wherein the pneumatic tire is a passenger tire having a flatness ratio of 0.65 or less.
PCT/JP2018/009070 2018-03-08 2018-03-08 Pneumatic tire WO2019171553A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019536320A JP6729808B2 (en) 2018-03-08 2018-03-08 Pneumatic tire
PCT/JP2018/009070 WO2019171553A1 (en) 2018-03-08 2018-03-08 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009070 WO2019171553A1 (en) 2018-03-08 2018-03-08 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019171553A1 true WO2019171553A1 (en) 2019-09-12

Family

ID=67846650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009070 WO2019171553A1 (en) 2018-03-08 2018-03-08 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP6729808B2 (en)
WO (1) WO2019171553A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162912A (en) * 2018-03-19 2019-09-26 横浜ゴム株式会社 Pneumatic tire
JP2020032888A (en) * 2018-08-30 2020-03-05 横浜ゴム株式会社 Pneumatic tire
USD913204S1 (en) 2020-03-25 2021-03-16 Omni United (S) Pte Ltd. Tire tread
WO2023042473A1 (en) * 2021-09-17 2023-03-23 横浜ゴム株式会社 Tire
WO2023042474A1 (en) * 2021-09-17 2023-03-23 横浜ゴム株式会社 Tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049880A (en) * 2006-08-25 2008-03-06 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2011230737A (en) * 2010-04-30 2011-11-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012017001A (en) * 2010-07-07 2012-01-26 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2013035364A (en) * 2011-08-05 2013-02-21 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2013116707A (en) * 2011-12-05 2013-06-13 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2014184808A (en) * 2013-03-22 2014-10-02 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2016041524A (en) * 2014-08-15 2016-03-31 株式会社ブリヂストン Pneumatic tire
JP2016088120A (en) * 2014-10-29 2016-05-23 株式会社ブリヂストン Pneumatic tire for passenger car

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049880A (en) * 2006-08-25 2008-03-06 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2011230737A (en) * 2010-04-30 2011-11-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012017001A (en) * 2010-07-07 2012-01-26 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2013035364A (en) * 2011-08-05 2013-02-21 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2013116707A (en) * 2011-12-05 2013-06-13 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2014184808A (en) * 2013-03-22 2014-10-02 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2016041524A (en) * 2014-08-15 2016-03-31 株式会社ブリヂストン Pneumatic tire
JP2016088120A (en) * 2014-10-29 2016-05-23 株式会社ブリヂストン Pneumatic tire for passenger car

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162912A (en) * 2018-03-19 2019-09-26 横浜ゴム株式会社 Pneumatic tire
JP7031401B2 (en) 2018-03-19 2022-03-08 横浜ゴム株式会社 Pneumatic tires
JP2020032888A (en) * 2018-08-30 2020-03-05 横浜ゴム株式会社 Pneumatic tire
JP7107104B2 (en) 2018-08-30 2022-07-27 横浜ゴム株式会社 pneumatic tire
USD913204S1 (en) 2020-03-25 2021-03-16 Omni United (S) Pte Ltd. Tire tread
WO2023042473A1 (en) * 2021-09-17 2023-03-23 横浜ゴム株式会社 Tire
WO2023042474A1 (en) * 2021-09-17 2023-03-23 横浜ゴム株式会社 Tire

Also Published As

Publication number Publication date
JP6729808B2 (en) 2020-07-22
JPWO2019171553A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US10252579B2 (en) Heavy duty tire
US7918256B2 (en) Heavy duty tire having ground contacting face at 70% and 100% maximum tire load
JP6729808B2 (en) Pneumatic tire
US8813799B2 (en) Heavy duty radial tire
US10654320B2 (en) Tire
JP6729809B2 (en) Pneumatic tire
US7093630B2 (en) Heavy duty radial tire
US11235623B2 (en) Pneumatic tire
US20180056728A1 (en) Pneumatic Tire
JP6790841B2 (en) Pneumatic tires
JP2007076594A (en) Pneumatic tire
US20210016605A1 (en) Pneumatic Tire
JP7287178B2 (en) pneumatic tire
JP7234756B2 (en) pneumatic tire
JP7187852B2 (en) pneumatic tire
US11724549B2 (en) Pneumatic tire
US12049110B2 (en) Pneumatic tire
JP7031402B2 (en) Pneumatic tires
JP7255327B2 (en) pneumatic tire
JP7360020B2 (en) pneumatic tires
US12090792B2 (en) Tire and tire-vehicle combination
JP7031401B2 (en) Pneumatic tires
JP7107104B2 (en) pneumatic tire
WO2023105833A1 (en) Pneumatic radial tire for passenger vehicle
WO2023105828A1 (en) Pneumatic radial tire for passenger vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536320

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908337

Country of ref document: EP

Kind code of ref document: A1