WO2019171498A1 - Coating control system, coating control method, and coating control program - Google Patents

Coating control system, coating control method, and coating control program Download PDF

Info

Publication number
WO2019171498A1
WO2019171498A1 PCT/JP2018/008786 JP2018008786W WO2019171498A1 WO 2019171498 A1 WO2019171498 A1 WO 2019171498A1 JP 2018008786 W JP2018008786 W JP 2018008786W WO 2019171498 A1 WO2019171498 A1 WO 2019171498A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
lot
control system
application
value
Prior art date
Application number
PCT/JP2018/008786
Other languages
French (fr)
Japanese (ja)
Inventor
真典 岡本
林 新太郎
英和 塙
浩樹 渡邉
憲一 藤垣
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/008786 priority Critical patent/WO2019171498A1/en
Publication of WO2019171498A1 publication Critical patent/WO2019171498A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Definitions

  • One aspect of the present invention relates to a coating control system, a coating control method, and a coating control program.
  • Patent Document 1 describes a method for predicting and applying coating parameters. The method predetermines at least one paint parameter and inputs it to a paint parameter-response model parameter-response algorithm, and determines at least one target paint response based on the parameter-response algorithm and parameter. Process.
  • An application control system includes at least one processor, and at least one processor forms an application layer for one lot in which an application material forms a coating layer on a substrate flowing through a production line of an application apparatus.
  • the control value of the coating device for coating the coating material on the substrate is obtained by acquiring a data set including manufacturing parameters at at least two points from the database and executing machine learning using the data set as input.
  • a machine learning model is generated for estimation.
  • a coating control method is a coating control method executed by a coating control system including at least one processor, and a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus.
  • a coating control method executed by a coating control system including at least one processor, and a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus.
  • a learning step of generating a machine learning model for estimating a control value of the coating apparatus for coating is generated.
  • a coating control program is a data set including manufacturing parameters at at least two points in a coating process for one lot in which a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus.
  • a machine learning model for estimating a control value of a coating apparatus for applying a coating material on a base material by executing an acquisition step of acquiring data from a database and machine learning using a data set as an input.
  • a learning step to be generated is executed by a computer.
  • the application control system 10 is a computer system that controls the application apparatus 1 that manufactures a sheet material by forming a coating layer on a substrate.
  • a sheet material is a member that spreads thinly, and includes both films and sheets. The kind of sheet material is not limited at all.
  • the sheet material may be a photosensitive film.
  • the application control system 10 controls the application apparatus 1 to form an appropriate coating layer on the substrate.
  • the appropriate coating layer refers to, for example, a coating layer whose thickness after drying is adjusted to an appropriate range.
  • FIG. 1 is a diagram schematically showing an example of the configuration of a coating system including a coating control system 10 and a coating apparatus 1.
  • the coating system further includes a database 20 that stores data necessary for controlling the coating apparatus 1.
  • the application control system 10, the application apparatus 1, and the database 20 are connected by a wired or wireless communication line 30 and can transmit / receive data to / from each other.
  • the configuration of the coating apparatus 1 includes a production line 1a through which a substrate 90 to be processed flows.
  • the kind of base material 90 is not limited at all, For example, a web base material may be sufficient.
  • the production line 1a includes a supply roll 2 around which a base material 90 to be processed is wound, and a winding roll 3 that winds up the processed base material 90 (that is, a sheet material).
  • the base material 90 is pulled out from the supply roll 2, and a sheet material is produced by forming a coating layer on the base material 90 while flowing on the production line 1 a, and the sheet material is taken up by the take-up roll 3. It is done.
  • the other component of the coating device 1 is demonstrated as it goes to the downstream from the production line 1a.
  • the base material 90 drawn from the supply roll 2 first reaches the coating unit 4.
  • the coating unit 4 is connected by a supply path 6 and a tank 5 that stores a coating material composed of a solid component (nonvolatile component) and a solvent (volatile component), and the coating material supplied from the tank 5 is placed on the substrate 90.
  • Application refers to a process for forming a coating layer on a substrate.
  • the application method is not limited at all, and may be spray or the like.
  • the raw material of the coating material is not limited.
  • an organic solvent such as acetone, methyl ethyl ketone, toluene, or ethyl lactate may be used as a solvent, and a polymer resin may be used as a solid component.
  • the coating unit 4 includes a lip coater 4a and a back roll 4b that face each other.
  • the back roll 4b can adjust the gap with the lip coater 4a, and this adjustment is performed automatically by the actuator or manually.
  • the coating material is applied onto one main surface of the base material 90.
  • the structure of the application part 4 is not limited to the lip coater 4a, For example, other structures, such as a die coater and a comma coater, may be employ
  • a supply device 6a for controlling the supply amount of the coating material to the coating unit 4 is provided.
  • the supply device 6a is constituted by a gear pump, for example.
  • the base material 90 that has passed through the coating unit 4 then enters the thickness measuring unit 8.
  • the thickness measuring unit 8 is a device that measures the thickness before drying of the coating layer formed of the coating material on the base material 90 in real time as the wet thickness.
  • a spectroscopic thickness meter may be used.
  • the spectroscopic thickness meter includes a spectroscopic unit and a sensor head. The spectroscopic thickness meter irradiates the coated surface of the substrate 90 with infrared light in a wide wavelength band from the spectral unit, and obtains the interference light intensity of reflected light on the coated surface and the reference surface inside the sensor head. Then, the wet thickness is measured.
  • the wet thickness can be measured at an early stage.
  • the base material 90 that has passed through the thickness measuring unit 8 then enters the drying furnace 9.
  • the drying furnace 9 is an apparatus that dries the coating material on the substrate 90.
  • the coating material is lined on the substrate 90 by this drying.
  • the sheet material is completed by drying the coating layer, and this sheet material is wound around the take-up roll 3.
  • the application control system 10 is composed of one or more computers. In the case of using a plurality of computers, these computers are connected via a communication network such as the Internet or an intranet, so that one application control system 10 is logically constructed.
  • FIG. 2 is a diagram illustrating an example of a general hardware configuration of the computer 100 configuring the coating control system 10.
  • the computer 100 includes a processor (e.g., CPU) 101 that executes an operating system, application programs, and the like, a main storage unit 102 that includes a ROM and a RAM, an auxiliary storage unit 103 that includes a hard disk, a flash memory, and the like.
  • a communication control unit 104 configured by a network card or a wireless communication module, an input device 105 such as a keyboard and a mouse, and an output device 106 such as a monitor are provided.
  • Each functional element of the application control system 10 is realized by reading a predetermined program on the processor 101 or the main storage unit 102 and executing the program.
  • the processor 101 operates the communication control unit 104, the input device 105, or the output device 106 in accordance with the program, and reads and writes data in the main storage unit 102 or the auxiliary storage unit 103. Data or a database necessary for processing is stored in the main storage unit 102 or the auxiliary storage unit 103.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the application control system 10.
  • the application control system 10 controls the application apparatus 1 to form an appropriate coating layer on the substrate 90, and includes a learning unit 11, an acquisition unit 12, an estimation unit 13, and an instruction unit 14 for this control. .
  • the learning unit 11 is a functional element that generates a neural network used for estimating the control value of the coating apparatus 1 as a machine learning model (hereinafter also simply referred to as “model”).
  • Machine learning is a technique for autonomously finding a rule or rule by repeatedly learning based on given information.
  • a neural network is an information processing model that mimics the mechanism of the human cranial nervous system.
  • the acquisition unit 12 is a functional element that acquires data to be input to the generated model.
  • the estimation unit 13 is a functional element that estimates the control value of the coating apparatus 1 by inputting the data to the generated model and executing machine learning.
  • the estimated control value is not limited in any way, but in the present embodiment, the estimation unit 13 estimates three types of control values: gap, bend, and coating amount.
  • the gap is an interval between the lip coater 4a and the back roll 4b, and is used, for example, to control an actuator that adjusts the interval.
  • the bend is a value indicating the deflection of the lip coater 4a in the width direction of the base material 90 (the direction perpendicular to the traveling direction of the base material 90 along the production line 1a), and prevents or reduces variation in the coating amount in the width direction. Used for.
  • the coating amount is the amount of coating material supplied toward the substrate 90, and is used to control the supply device 6a (for example, to change the rotation speed of the gear pump).
  • the gap, bend, and coating amount are all values related to the thickness of the coating layer after drying.
  • the instruction unit 14 is a functional element that transmits an instruction signal based on the estimated control value toward the coating apparatus 1.
  • the instruction signal is a data signal for controlling application to the substrate 90 in order to form an appropriate coating layer on the substrate 90.
  • the instruction unit 14 transmits an instruction signal based on the estimated gap and bend to the application unit 4, and transmits an instruction signal based on the estimated application amount to the supply device 6a.
  • the application control system 10 When the application control system 10 is configured by a plurality of computers, it may be arbitrarily determined which processor executes which functional element. In any case, the application control system 10 including at least one processor functions as the learning unit 11, the acquisition unit 12, the estimation unit 13, and the instruction unit 14.
  • the database 20 is a device that stores a training data set for generating a machine learning model.
  • the training data set is a collection of one or more training samples (training data). Each training sample includes actual values of manufacturing parameters at at least two points in the coating process of one lot of sheet material.
  • a “lot” is a unit that indicates a collection of articles that are produced or appear to have been produced under equal conditions.
  • the manufacturing parameter is an arbitrary variable that can change the control value of the coating apparatus 1. Actual values of a plurality of manufacturing parameters are collected at each time point. Each manufacturing parameter may be collected from an arbitrary device (for example, an arbitrary sensor) constituting the coating apparatus 1, or may be collected from an apparatus other than the coating apparatus 1 as a value related to an external factor.
  • an arbitrary device for example, an arbitrary sensor
  • Examples of production parameters include the density, viscosity, and liquid temperature of the coating material before drying, the pressure of the decompression device, and the tension on the production line 1a (supply roll 2, inlet and outlet of the coating unit 4, the drying furnace 9 Tension at the outlet, the take-up roll 3 etc.), the speed of the production line 1a, the actual application amount and application width, the pump rotation speed of the supply device 6a, the internal pressure, the primary filtration pressure, and the secondary filtration pressure, The temperature in the drying furnace 9, the wind speed, the internal pressure, and the gas concentration, the temperature and humidity of the environment, the room pressure, the charge amount, the particles, and the state of the base material 90 are listed.
  • the types of manufacturing parameters are not limited to these examples, and various factors may be set as manufacturing parameters.
  • each training sample also includes actual values of gap, bend, and application amount estimated during operation.
  • FIG. 4 is a diagram schematically illustrating an example of a training data set stored in the database 20.
  • the training data set includes training samples prepared for each of one or more types of application materials used in the application apparatus 1.
  • FIG. 4 explicitly shows a set of training samples for each of the coating materials A and B. Multiple training samples are prepared for one application material, and
  • FIG. 4 explicitly shows three training samples for each of application materials A and B.
  • the coating material A the training sample corresponding to the lot A1 whose manufacturing date is D a1
  • the manufacturing date is D a3 .
  • the coating material B a training sample manufacturing date corresponding to the lot B1 is D b1, a training sample manufacturing date corresponding to the lot B2 is D b2, manufacturing date corresponding to the lot B3 is D b3
  • the training sample of lot A1 will be taken as a representative and its configuration will be described in detail.
  • This training sample includes a set of manufacturing parameters at each of the three time points t 11 , t 12 , t 13 .
  • time t 11 is the time around the beginning of the production lots A1, in other words, is a time corresponding to the initial value of the production parameters.
  • Time t 12 is the time in the vicinity of the middle of the production lots A1, in other words, is a time corresponding to an intermediate value of the production parameters.
  • Time t 13 is the time near the end of the production lots A1, in other words, is a time corresponding to the final value of the production parameters.
  • the “time near the start of lot production” may be the start time of lot production, or any time in a time zone within the threshold Ta from the start time.
  • the “time near the middle of manufacturing the lot” may be an intermediate time of manufacturing the lot (when half of the time required to manufacture the entire lot has elapsed), or in a time zone within the threshold Tb before and after the intermediate time. It may be at any time.
  • the “time near the end of lot production” may be the end time of lot production, or may be any time in a time zone within the threshold Tc from the end time.
  • the thresholds Ta, Tb, and Tc may be set arbitrarily.
  • the timing at which manufacturing parameters are collected is not limited.
  • individual training samples may include manufacturing parameters at other times.
  • the time point near the start of lot production, the time point near the middle of lot production, and the time point near the end of lot production are not essential, and at least one of these three time points may be omitted.
  • the training sample may include a set of production parameters at two time points, a time point near the start of lot production and a time point near the middle of lot production.
  • the training sample may include a set of a plurality of production parameters at two time points, a time point near the start of lot production and a time point near the end of lot production.
  • the training sample may include a set of a plurality of manufacturing parameters at two time points, a time point near the middle of manufacturing the lot and a time point near the end of manufacturing the lot.
  • FIG. 4 shows a plurality of manufacturing parameters collected at each time point as Param_a, Param_b, and the like.
  • Each training sample may also include a label indicating the time point or a label indicating the type of time point as manufacturing parameters.
  • Each training sample also includes gaps, bends, and application amounts used as correct answers in supervised learning.
  • the production parameters Param_a is a a 11 At time t 11, a transition to a 12 At time t 12, indicating that the transition to a 13 at time point t 13.
  • Param_b for also other manufacturing parameters such as Param_c, time t 12 from the time point t 11, the time t 13 value as time passes is to remain. Some of these manufacturing parameters may change in value over time and others may not change. Due to changes in at least some of the manufacturing parameters over time within a lot, at least one of the gap, bend, and application amount can also vary over time.
  • the gap is a G 11 At time t 11, a transition to G 12 at time t 12, indicating that the transition to G 13 at time t 13.
  • the number of types of manufacturing parameters can be so large that it is very difficult for a person to formulate the relationship between the set of manufacturing parameters and control values (eg, gap, bend, and coating amount) or Impossible. Therefore, conventionally, the operator adjusts the control value based on his sense, skill, experience, or intuition.
  • the coating control system 10 autonomously finds a model indicating the relationship between manufacturing parameters and control values in various situations by machine learning, and uses the model according to the environment surrounding the coating apparatus 1. Control values (eg, gap, bend, and coating amount) are estimated.
  • FIG. 5 is a flowchart showing an example of the operation of the application control system 10.
  • FIG. 6 is a diagram illustrating an example of a general neural network.
  • step S11 the learning unit 11 generates a machine learning model.
  • This step is a learning phase in which the best neural network estimated to have the highest prediction accuracy (hereinafter simply referred to as “best neural network”) is generated as a model.
  • the “best neural network” obtained by learning the neural network is not always “best in reality”.
  • the learning unit 11 reads a training data set (one or more training samples) from the database 20 (acquisition step), and executes machine learning while sequentially inputting individual training samples to a neural network for learning (learning step).
  • the learning unit 11 may generate a model by executing deep learning using a multilayer neural network.
  • the type of machine learning is not limited to deep learning, and the learning unit 11 may generate a model using another method.
  • the neural network illustrated in FIG. 6 includes a first layer that is an input layer, second and third layers that are intermediate layers, and a fourth layer that is an output layer.
  • the second layer and the third layer convert the total input into an output by an activation function and pass the output to the next layer.
  • This output vector y indicates an estimated value.
  • the weight w of the activation function is updated so that the output vector y is close to the correct d. . This is information processing called learning.
  • the learning unit 11 gives the manufacturing parameters of the training sample to the neural network as an input vector, and obtains an output vector indicating the gap, the bend, and the coating amount. Then, the learning unit 11 compares the output vector with the correct answer (gap, bend, and application amount indicated by the training sample), and adjusts the weight of the activation function. The learning unit 11 generates a model to be used in the operation phase by repeatedly updating the weights while giving many training samples to the neural network.
  • the learning unit 11 may perform learning using the training sample for the coating material A as follows.
  • the learning unit 11 gives the entire training sample of the lot A1 as an input vector to the neural network (that is, by inputting the training sample of the lot A1 in a lump), and the time points t 11 , t 12 , and t 13 To obtain an output vector indicating the gap, bend, and coating amount in each.
  • the learning unit 11 adjusts the weight of the activation function by comparing the output vector with the correct answer (gap, bend, and application amount at the time points t 11 , t 12 , and t 13 of the training sample of the lot A1). To do.
  • the learning unit 11 processes the training sample of lot A2 in the same manner as the training sample of lot A1. That is, the learning unit 11 obtains an output vector indicating the gap, the bend, and the application amount at each time point by giving the entire training sample of the lot A2 as an input vector to the neural network. Then, the learning unit 11 compares the output vector with the correct answer (gap, bend, and application amount at each time point of the training sample of the lot A2), and adjusts the weight of the activation function. Further, the learning unit 11 processes the training sample of the lot A3 in the same manner as the training samples of the lots A1 and A2. Further, the learning unit 11 processes the other training samples related to the coating material A in the same manner.
  • the learning unit 11 may perform further learning using the training sample for the coating material B as follows.
  • the learning unit 11 gives the entire training sample of the lot B1 to the neural network as an input vector, thereby obtaining an output vector indicating the gap, bend, and application amount at each of the time points t 21 , t 22 , and t 23 .
  • the learning unit 11 adjusts the weight of the activation function by comparing the output vector with a correct answer (gap, bend, and application amount at each of the time points t 21 , t 22 , and t 23 of the training sample of the lot B1). To do.
  • the learning unit 11 processes the training samples of lots B2 and B3 in the same manner as the training sample of lot B1. Furthermore, the learning unit 11 processes the other training samples related to the coating material B in the same manner.
  • the learning unit 11 may process training samples for other coating materials in the same manner as the coating materials A and B.
  • the processing after step S12 is an operation phase in which control values (gap, bend, and coating amount) for applying the coating material to the base material 90 are estimated from the generated model.
  • step S12 the acquisition unit 12 acquires manufacturing parameters.
  • the acquisition unit 12 may collect manufacturing parameters from an arbitrary device (for example, an arbitrary sensor) constituting the coating apparatus 1, or collect manufacturing parameters from apparatuses other than the coating apparatus 1 as values relating to external factors. May be.
  • step S13 the estimation unit 13 inputs manufacturing parameters to the generated model, and uses an output vector obtained from the model as an estimation result of control values (gap, bend, and coating amount).
  • step S14 the instruction unit 14 transmits an instruction signal based on the estimated control value toward the coating apparatus 1 (instruction step).
  • “Sending an instruction signal toward the coating apparatus” means transmitting an instruction signal to the coating apparatus 1 or to another apparatus corresponding to the coating apparatus 1. Transmission is an example of output.
  • the instruction unit 14 transmits an instruction signal based on the estimated gap and bend to the application unit 4, and transmits an instruction signal based on the estimated application amount to the supply device 6a.
  • these instruction signals are signals for forming an appropriate coating layer on the substrate 90.
  • steps S12 to S14 can be executed again before starting to generate another lot of sheet material.
  • Step S11 (that is, the learning phase) may be executed again at an arbitrary timing.
  • the application control system 10 generates a new model by executing machine learning using a new training data set in which the results accumulated in the operation phase are captured, and the new operation data is generated in a later operation phase.
  • the control value may be estimated using a model.
  • the timing at which the operation phase is executed is not limited.
  • the application control system 10 may estimate an initial value in an application process for a new lot to be manufactured.
  • the acquisition unit 12 acquires manufacturing parameters, and the estimation unit 13 inputs the manufacturing parameters into the model to control values (gap, bend, and coating amount). Is estimated.
  • This control value is an initial value in the coating process for the new lot.
  • the instruction unit 14 transmits an instruction signal based on the estimated control value (initial value) toward the coating apparatus 1. After this series of processing, the coating apparatus 1 starts a coating process for a new lot according to the instruction signal.
  • the application control system 10 may estimate a control value in the application process for one lot that has already been started.
  • the acquisition unit 12 acquires manufacturing parameters
  • the estimation unit 13 inputs the manufacturing parameters into the model to estimate control values (gap, bend, and coating amount).
  • This control value can be said to be a value for adjusting the operation of the coating apparatus 1 on the way.
  • the instruction unit 14 transmits an instruction signal based on the estimated control value toward the coating apparatus 1.
  • the coating unit 4 or the supply device 6a is adjusted according to the instruction signal.
  • the application control program for causing the computer system to function as the application control system 10 includes program code for causing the computer system to function as the learning unit 11, the acquisition unit 12, the estimation unit 13, and the instruction unit 14.
  • the application control program may be provided after being fixedly recorded on a tangible recording medium such as a CD-ROM, DVD-ROM, or semiconductor memory. Alternatively, the application control program may be provided via a communication network as a data signal superimposed on a carrier wave.
  • the provided application control program is stored in the auxiliary storage unit 103, for example.
  • the processor 101 reads out the application control program from the auxiliary storage unit 103 and executes the application control program, thereby realizing each functional element described above.
  • the coating control system includes at least one processor, and at least one processor forms a coating layer with a coating material on a base material flowing through a production line of the coating apparatus.
  • a data set including manufacturing parameters at at least two time points in a coating process for one lot is acquired from a database and machine learning is performed using the data set as an input.
  • a machine learning model for estimating a control value of the coating apparatus is generated.
  • a coating control method is a coating control method executed by a coating control system including at least one processor, and a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus.
  • a coating control method executed by a coating control system including at least one processor, and a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus.
  • a learning step of generating a machine learning model for estimating a control value of the coating apparatus for coating is generated.
  • a coating control program is a data set including manufacturing parameters at at least two points in a coating process for one lot in which a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus.
  • a machine learning model for estimating a control value of a coating apparatus for applying a coating material on a base material by executing an acquisition step of acquiring data from a database and machine learning using a data set as an input.
  • a learning step to be generated is executed by a computer.
  • At least two time points are a time point near the start of manufacturing of one lot, a time point near the middle of manufacturing of one lot, and a time point near the end of manufacturing of one lot. May be included.
  • These three time points can be said to be representative timings of time passage in the coating process. Therefore, improvement in the accuracy of the generated model can be expected by considering the manufacturing parameters at at least one of these three time points.
  • control value may be an initial value in a coating process for a new lot.
  • control value may include a value for controlling the supply device that supplies the application material toward the substrate.
  • the supply of the coating material can be controlled without depending on the personal decision.
  • the value for controlling the supply device may include the application amount. In this case, it is possible to control the coating amount that directly affects the formation of the coating layer without depending on the determination of the individual.
  • control value may include a value for controlling a coating apparatus that coats the coating material on the substrate.
  • the application to the substrate can be controlled without depending on the personal decision.
  • the value for controlling the coating device may include at least one of a gap and a bend.
  • gaps or bends that directly affect the formation of the coating layer can be controlled without relying on personal decisions.
  • At least one processor further acquires a new manufacturing parameter related to the coating process for a new lot, and inputs a new manufacturing parameter to the generated model.
  • a control value in the coating process for one lot may be estimated, and an instruction signal based on the estimated control value may be output.
  • the configuration of the coating apparatus is not limited to the above embodiment, and the coating control system can correspond to various coating apparatuses for manufacturing a sheet material.
  • the destination of the instruction signal is not limited to the application unit 4 and the supply device 6a.
  • the indication signal may include any information for communicating the indication to any component that contributes to the formation of the coating layer.
  • Application control system including the learning unit 11 (that is, application control system that executes the learning phase), and application control system that includes the acquisition unit 12, the estimation unit 13, and the instruction unit 14 (that is, the application control system that executes the operation phase) ) May be separated.
  • Each application control system separated in this way is also an application control system according to the present invention.
  • the database 20 is connected to the application control system 10 via the communication line 30, but the database 20 may be constructed in a computer constituting the application control system 10.
  • the application control system 10 is connected to the application apparatus 1 via the communication line 30, but the application control system 10 may be constructed in a device constituting the application apparatus 1.
  • the processing procedure of the application control method executed by at least one processor is not limited to the example in the above embodiment. For example, some of the steps (processes) described above may be omitted, or the steps may be executed in a different order. Further, any two or more of the steps described above may be combined, or a part of the steps may be corrected or deleted. Alternatively, other steps may be executed in addition to the above steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Coating Apparatus (AREA)

Abstract

A coating control system according to one embodiment of the present invention implements machine learning by acquiring from a database a dataset including a manufacturing parameter at at least two time points during a coating step for one lot, in which coating step a coating layer is formed by means of a coating material on a substrate flowing along a manufacturing line of a coating device, and using the dataset as an input, to generate a machine learning model for estimating a control value of the coating device, which is used to coat the coating material onto the substrate.

Description

塗布制御システム、塗布制御方法、および塗布制御プログラムApplication control system, application control method, and application control program
 本発明の一側面は、塗布制御システム、塗布制御方法、および塗布制御プログラムに関する。 One aspect of the present invention relates to a coating control system, a coating control method, and a coating control program.
 従来から、シートの製造を制御するための手法が知られている。例えば特許文献1には、塗装パラメータを予測し適用するための方法が記載されている。この方法は、少なくとも一つの塗装パラメータを予め定めて、塗装パラメータ-応答モデルのパラメータ-応答アルゴリズムに入力する工程と、該パラメータ-応答アルゴリズムとパラメータとに基づいて、少なくとも1つの目標塗装応答を定める工程とを含む。 Conventionally, a method for controlling sheet manufacturing is known. For example, Patent Document 1 describes a method for predicting and applying coating parameters. The method predetermines at least one paint parameter and inputs it to a paint parameter-response model parameter-response algorithm, and determines at least one target paint response based on the parameter-response algorithm and parameter. Process.
特表2007-508937号公報Special table 2007-508937
 基材のコーティングに影響を及ぼし得る要素は様々であり、しかもそのような要素の中には、環境の変動、塗布工程での時間経過等に伴って変化する要素が存在する。そのため、塗布工程の調整には作業者のセンス、スキル、経験、または勘に頼る部分が大きい。そこで、シートの製造において属人的な決定への依存度を下げることが望まれている。 There are various factors that can affect the coating of the base material, and among these factors there are factors that change with changes in the environment and the passage of time in the coating process. For this reason, adjustment of the coating process largely depends on the operator's sense, skill, experience, or intuition. Therefore, it is desired to reduce the dependence on personal decisions in sheet manufacturing.
 本発明の一側面に係る塗布制御システムは、少なくとも一つのプロセッサを備え、少なくとも一つのプロセッサが、塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得し、データセットを入力とする機械学習を実行することで、基材上に塗布材料を塗布するための塗布装置の制御値を推定するための、機械学習のモデルを生成する。 An application control system according to an aspect of the present invention includes at least one processor, and at least one processor forms an application layer for one lot in which an application material forms a coating layer on a substrate flowing through a production line of an application apparatus. The control value of the coating device for coating the coating material on the substrate is obtained by acquiring a data set including manufacturing parameters at at least two points from the database and executing machine learning using the data set as input. A machine learning model is generated for estimation.
 本発明の一側面に係る塗布制御方法は、少なくとも一つのプロセッサを備える塗布制御システムにより実行される塗布制御方法であって、塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得する取得ステップと、データセットを入力とする機械学習を実行することで、基材上に塗布材料を塗布するための塗布装置の制御値を推定するための、機械学習のモデルを生成する学習ステップとを含む。 A coating control method according to one aspect of the present invention is a coating control method executed by a coating control system including at least one processor, and a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus. In the application process for one lot, an acquisition step for acquiring a data set including manufacturing parameters at at least two points in time from the database, and machine learning using the data set as input, a coating material is applied on the substrate. A learning step of generating a machine learning model for estimating a control value of the coating apparatus for coating.
 本発明の一側面に係る塗布制御プログラムは、塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得する取得ステップと、データセットを入力とする機械学習を実行することで、基材上に塗布材料を塗布するための塗布装置の制御値を推定するための、機械学習のモデルを生成する学習ステップとをコンピュータに実行させる。 A coating control program according to an aspect of the present invention is a data set including manufacturing parameters at at least two points in a coating process for one lot in which a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus. A machine learning model for estimating a control value of a coating apparatus for applying a coating material on a base material by executing an acquisition step of acquiring data from a database and machine learning using a data set as an input. A learning step to be generated is executed by a computer.
 このような側面においては、1ロット内の複数の時点における製造パラメータを入力とする機械学習を実行することで、基材のコーティングに影響を及ぼし得る諸要素の塗布工程での変化を考慮して機械学習のモデルが生成される。したがって、このモデルを用いることで、シートの製造において属人的な決定への依存度を下げることが可能になる。 In such an aspect, by executing machine learning using manufacturing parameters at a plurality of time points in one lot as input, considering changes in the application process of various elements that may affect the coating of the substrate. A machine learning model is generated. Therefore, by using this model, it is possible to reduce the dependence on personal decisions in sheet manufacturing.
 本発明の一側面によれば、シートの製造において属人的な決定への依存度を下げることができる。 According to one aspect of the present invention, it is possible to reduce the degree of dependence on personal decisions in sheet manufacturing.
実施形態に係る塗布制御システムを含む塗布システムの全体構成の一例を模式的に示す図である。It is a figure which shows typically an example of the whole structure of the coating system containing the coating control system which concerns on embodiment. 実施形態に係る塗布制御システムで用いられるコンピュータのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the computer used with the application | coating control system which concerns on embodiment. 実施形態に係る塗布制御システムの機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the application | coating control system which concerns on embodiment. 訓練データセットの一例を示す図である。It is a figure which shows an example of a training data set. 実施形態に係る塗布制御システムの動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the application | coating control system which concerns on embodiment. 一般的なニューラルネットワークの一例を示す図である。It is a figure which shows an example of a general neural network.
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一または同等の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
 [塗布システムの構成]
 塗布制御システム10は、基材上にコーティング層を形成することでシート材を製造する塗布装置1を制御するコンピュータシステムである。シート材とは薄く広がる部材であり、フィルムおよびシートの双方を含む。シート材の種類は何ら限定されず、例えばシート材は感光性フィルムであってもよい。塗布制御システム10は塗布装置1を制御することで、適切なコーティング層を基材上に形成する。適切なコーティング層とは、例えば、乾燥後の厚みが適切な範囲に調節されたコーティング層のことをいう。
[Configuration of coating system]
The application control system 10 is a computer system that controls the application apparatus 1 that manufactures a sheet material by forming a coating layer on a substrate. A sheet material is a member that spreads thinly, and includes both films and sheets. The kind of sheet material is not limited at all. For example, the sheet material may be a photosensitive film. The application control system 10 controls the application apparatus 1 to form an appropriate coating layer on the substrate. The appropriate coating layer refers to, for example, a coating layer whose thickness after drying is adjusted to an appropriate range.
 図1は塗布制御システム10および塗布装置1を含む塗布システムの構成の一例を模式的に示す図である。この塗布システムは更に、塗布装置1の制御に必要なデータを記憶するデータベース20を備える。図1に示すように、塗布制御システム10、塗布装置1、およびデータベース20は有線または無線の通信線30で接続され、相互にデータを送受信することができる。 FIG. 1 is a diagram schematically showing an example of the configuration of a coating system including a coating control system 10 and a coating apparatus 1. The coating system further includes a database 20 that stores data necessary for controlling the coating apparatus 1. As shown in FIG. 1, the application control system 10, the application apparatus 1, and the database 20 are connected by a wired or wireless communication line 30 and can transmit / receive data to / from each other.
 [塗布装置の構成]
 図1を参照しながら塗布装置1の構成を説明する。塗布装置1は、処理される基材90が流れる製造ライン1aを備える。なお、基材90の種類は何ら限定されず、例えばウェブ基材であってもよい。製造ライン1aは、これから処理される基材90が巻かれた供給ロール2と、処理された基材90(すなわち、シート材)を巻き取る巻き取りロール3とを備える。基材90は供給ロール2から引き出され、製造ライン1a上を流れる間にその基材90上にコーティング層が形成されることでシート材が製造され、そのシート材が巻き取りロール3に巻き取られる。以下では、製造ライン1aを上流から下流に向かいながら塗布装置1の他の構成要素を説明する。
[Configuration of coating device]
The configuration of the coating apparatus 1 will be described with reference to FIG. The coating apparatus 1 includes a production line 1a through which a substrate 90 to be processed flows. In addition, the kind of base material 90 is not limited at all, For example, a web base material may be sufficient. The production line 1a includes a supply roll 2 around which a base material 90 to be processed is wound, and a winding roll 3 that winds up the processed base material 90 (that is, a sheet material). The base material 90 is pulled out from the supply roll 2, and a sheet material is produced by forming a coating layer on the base material 90 while flowing on the production line 1 a, and the sheet material is taken up by the take-up roll 3. It is done. Below, the other component of the coating device 1 is demonstrated as it goes to the downstream from the production line 1a.
 供給ロール2から引き出された基材90はまず塗布部4に至る。塗布部4は、固形成分(不揮発成分)と溶媒(揮発成分)とで構成される塗布材料を貯留するタンク5と供給路6により接続され、タンク5から供給される塗布材料を基材90上に塗布する。「塗布」とは、基材上にコーティング層を形成するための処理をいう。塗布方法は何ら限定されず、したがってスプレー等でもよい。塗布材料の原材料は限定されず、例えば、溶媒としてアセトン、メチルエチルケトン、トルエン、乳酸エチル等の有機溶剤が用いられてもよいし、固形成分としてポリマー樹脂が用いられてもよい。 The base material 90 drawn from the supply roll 2 first reaches the coating unit 4. The coating unit 4 is connected by a supply path 6 and a tank 5 that stores a coating material composed of a solid component (nonvolatile component) and a solvent (volatile component), and the coating material supplied from the tank 5 is placed on the substrate 90. Apply to. “Application” refers to a process for forming a coating layer on a substrate. The application method is not limited at all, and may be spray or the like. The raw material of the coating material is not limited. For example, an organic solvent such as acetone, methyl ethyl ketone, toluene, or ethyl lactate may be used as a solvent, and a polymer resin may be used as a solid component.
 本実施形態では、塗布部4は、互いに向かい合うリップコータ4aおよびバックロール4bを備える。バックロール4bはリップコータ4aとのギャップを調節することが可能であり、この調節はアクチュエータにより自動的に実行されるか、または手動で行われる。基材90がリップコータ4aの開口部とバックロール4bとの間のギャップを通過する際に、基材90の一方の主面上に塗布材料が塗布される。なお、塗布部4の構成はリップコータ4aに限定されず、例えばダイコータ、コンマコータ等の他の構成が採用されてもよい。 In this embodiment, the coating unit 4 includes a lip coater 4a and a back roll 4b that face each other. The back roll 4b can adjust the gap with the lip coater 4a, and this adjustment is performed automatically by the actuator or manually. When the base material 90 passes through the gap between the opening of the lip coater 4a and the back roll 4b, the coating material is applied onto one main surface of the base material 90. In addition, the structure of the application part 4 is not limited to the lip coater 4a, For example, other structures, such as a die coater and a comma coater, may be employ | adopted.
 供給路6の途中には、塗布部4への塗布材料の供給量を制御する供給装置6aが設けられる。供給装置6aは例えばギアポンプで構成される。 In the middle of the supply path 6, a supply device 6a for controlling the supply amount of the coating material to the coating unit 4 is provided. The supply device 6a is constituted by a gear pump, for example.
 塗布部4を通過した基材90は次いで厚み測定部8に入る。厚み測定部8は、基材90上に塗布材料により形成されたコーティング層の乾燥前の厚みをウェット厚みとしてリアルタイムに測定する装置である。厚み測定部8の構成は限定されないが、例えば分光式厚み計が用いられてもよい。分光式厚み計は、分光ユニットとセンサヘッドとを備える。分光式厚み計は、分光ユニットから広波長帯域の赤外光を基材90の被塗布面に照射し、その被塗布面とセンサヘッド内部の参照面とにおける反射光の干渉光強度を得ることで、ウェット厚みを測定する。厚み測定部8を塗布部4の近傍に設けることで、ウェット厚みを早い段階で測定することができる。 The base material 90 that has passed through the coating unit 4 then enters the thickness measuring unit 8. The thickness measuring unit 8 is a device that measures the thickness before drying of the coating layer formed of the coating material on the base material 90 in real time as the wet thickness. Although the structure of the thickness measurement part 8 is not limited, For example, a spectroscopic thickness meter may be used. The spectroscopic thickness meter includes a spectroscopic unit and a sensor head. The spectroscopic thickness meter irradiates the coated surface of the substrate 90 with infrared light in a wide wavelength band from the spectral unit, and obtains the interference light intensity of reflected light on the coated surface and the reference surface inside the sensor head. Then, the wet thickness is measured. By providing the thickness measuring unit 8 in the vicinity of the coating unit 4, the wet thickness can be measured at an early stage.
 厚み測定部8を通過した基材90は次いで乾燥炉9に入る。乾燥炉9は、基材90上の塗布材料を乾燥させる装置である。塗布材料はこの乾燥により基材90に裏打ちされる。コーティング層が乾燥させられることでシート材が完成し、このシート材が巻き取りロール3に巻かれる。 The base material 90 that has passed through the thickness measuring unit 8 then enters the drying furnace 9. The drying furnace 9 is an apparatus that dries the coating material on the substrate 90. The coating material is lined on the substrate 90 by this drying. The sheet material is completed by drying the coating layer, and this sheet material is wound around the take-up roll 3.
 [塗布制御システムの構成]
 塗布制御システム10は1台以上のコンピュータで構成される。複数台のコンピュータを用いる場合には、これらのコンピュータがインターネット、イントラネット等の通信ネットワークを介して接続されることで、論理的に一つの塗布制御システム10が構築される。
[Configuration of application control system]
The application control system 10 is composed of one or more computers. In the case of using a plurality of computers, these computers are connected via a communication network such as the Internet or an intranet, so that one application control system 10 is logically constructed.
 図2は、塗布制御システム10を構成するコンピュータ100の一般的なハードウェア構成の一例を示す図である。コンピュータ100は、オペレーティングシステム、アプリケーション・プログラム等を実行するプロセッサ(例えばCPU)101と、ROMおよびRAMで構成される主記憶部102と、ハードディスク、フラッシュメモリ等で構成される補助記憶部103と、ネットワークカードまたは無線通信モジュールで構成される通信制御部104と、キーボード、マウス等の入力装置105と、モニタ等の出力装置106とを備える。 FIG. 2 is a diagram illustrating an example of a general hardware configuration of the computer 100 configuring the coating control system 10. The computer 100 includes a processor (e.g., CPU) 101 that executes an operating system, application programs, and the like, a main storage unit 102 that includes a ROM and a RAM, an auxiliary storage unit 103 that includes a hard disk, a flash memory, and the like. A communication control unit 104 configured by a network card or a wireless communication module, an input device 105 such as a keyboard and a mouse, and an output device 106 such as a monitor are provided.
 塗布制御システム10の各機能要素は、プロセッサ101または主記憶部102の上に予め定められたプログラムを読み込ませてそのプログラムを実行させることで実現される。プロセッサ101はそのプログラムに従って、通信制御部104、入力装置105、または出力装置106を動作させ、主記憶部102または補助記憶部103におけるデータの読み出しおよび書き込みを行う。処理に必要なデータまたはデータベースは主記憶部102または補助記憶部103内に格納される。 Each functional element of the application control system 10 is realized by reading a predetermined program on the processor 101 or the main storage unit 102 and executing the program. The processor 101 operates the communication control unit 104, the input device 105, or the output device 106 in accordance with the program, and reads and writes data in the main storage unit 102 or the auxiliary storage unit 103. Data or a database necessary for processing is stored in the main storage unit 102 or the auxiliary storage unit 103.
 図3は塗布制御システム10の機能構成の一例を示す図である。塗布制御システム10は、基材90上に適切なコーティング層を形成するために塗布装置1を制御し、この制御のために学習部11、取得部12、推定部13、および指示部14を備える。 FIG. 3 is a diagram illustrating an example of a functional configuration of the application control system 10. The application control system 10 controls the application apparatus 1 to form an appropriate coating layer on the substrate 90, and includes a learning unit 11, an acquisition unit 12, an estimation unit 13, and an instruction unit 14 for this control. .
 学習部11は、塗布装置1の制御値を推定するために用いるニューラルネットワークを機械学習のモデル(以下では単に「モデル」ともいう)として生成する機能要素である。機械学習とは、与えられた情報に基づいて反復的に学習することで、法則またはルールを自律的に見つけ出す手法である。ニューラルネットワークとは、人間の脳神経系の仕組みを模した情報処理のモデルである。 The learning unit 11 is a functional element that generates a neural network used for estimating the control value of the coating apparatus 1 as a machine learning model (hereinafter also simply referred to as “model”). Machine learning is a technique for autonomously finding a rule or rule by repeatedly learning based on given information. A neural network is an information processing model that mimics the mechanism of the human cranial nervous system.
 取得部12は、生成されたモデルに入力するデータを取得する機能要素である。 The acquisition unit 12 is a functional element that acquires data to be input to the generated model.
 推定部13は、生成されたモデルにそのデータを入力して機械学習を実行することで塗布装置1の制御値を推定する機能要素である。推定される制御値は何ら限定されないが、本実施形態では、推定部13はギャップ、ベンド、および塗布量という3種類の制御値を推定する。ギャップは、リップコータ4aとバックロール4bとの間隔であり、例えば、その間隔を調節するアクチュエータを制御するために用いられる。ベンドは、基材90の幅方向(製造ライン1aに沿った基材90の進行方向と直交する方向)におけるリップコータ4aの撓みを示す値であり、幅方向における塗布量のばらつきを防止または低減するために用いられる。塗布量は、基材90に向けて供給される塗布材料の量であり、供給装置6aを制御するために(例えば、ギアポンプの回転数を変更するために)用いられる。ギャップ、ベンド、および塗布量はいずれも、コーティング層の乾燥後の厚みに関係する値である。 The estimation unit 13 is a functional element that estimates the control value of the coating apparatus 1 by inputting the data to the generated model and executing machine learning. The estimated control value is not limited in any way, but in the present embodiment, the estimation unit 13 estimates three types of control values: gap, bend, and coating amount. The gap is an interval between the lip coater 4a and the back roll 4b, and is used, for example, to control an actuator that adjusts the interval. The bend is a value indicating the deflection of the lip coater 4a in the width direction of the base material 90 (the direction perpendicular to the traveling direction of the base material 90 along the production line 1a), and prevents or reduces variation in the coating amount in the width direction. Used for. The coating amount is the amount of coating material supplied toward the substrate 90, and is used to control the supply device 6a (for example, to change the rotation speed of the gear pump). The gap, bend, and coating amount are all values related to the thickness of the coating layer after drying.
 指示部14は、推定された制御値に基づく指示信号を塗布装置1に向けて送信する機能要素である。指示信号は、適切なコーティング層を基材90上に形成するために該基材90への塗布を制御するためのデータ信号である。本実施形態では、指示部14は、推定されたギャップおよびベンドに基づく指示信号を塗布部4に送信するとともに、推定された塗布量に基づく指示信号を供給装置6aに送信する。 The instruction unit 14 is a functional element that transmits an instruction signal based on the estimated control value toward the coating apparatus 1. The instruction signal is a data signal for controlling application to the substrate 90 in order to form an appropriate coating layer on the substrate 90. In the present embodiment, the instruction unit 14 transmits an instruction signal based on the estimated gap and bend to the application unit 4, and transmits an instruction signal based on the estimated application amount to the supply device 6a.
 塗布制御システム10が複数のコンピュータで構成される場合には、どのプロセッサがどの機能要素を実行するかが任意に決定されてよい。いずれにしても、少なくとも一つのプロセッサを備える塗布制御システム10が学習部11、取得部12、推定部13、および指示部14として機能する。 When the application control system 10 is configured by a plurality of computers, it may be arbitrarily determined which processor executes which functional element. In any case, the application control system 10 including at least one processor functions as the learning unit 11, the acquisition unit 12, the estimation unit 13, and the instruction unit 14.
 [データベース]
 データベース20は、機械学習のモデルを生成するための訓練データセットを記憶する装置である。訓練データセットは、一または複数の訓練サンプル(訓練データ)の集合である。個々の訓練サンプルは、1ロット分のシート材の塗布工程における少なくとも二つの時点における製造パラメータの実績値を含む。「ロット」は、等しい条件下で生産され、または生産されたと思われる物品の集まりを示す単位である。
[Database]
The database 20 is a device that stores a training data set for generating a machine learning model. The training data set is a collection of one or more training samples (training data). Each training sample includes actual values of manufacturing parameters at at least two points in the coating process of one lot of sheet material. A “lot” is a unit that indicates a collection of articles that are produced or appear to have been produced under equal conditions.
 製造パラメータは、塗布装置1の制御値を変動させ得る任意の変数である。各時点において複数の製造パラメータの実績値が収集される。それぞれの製造パラメータは、塗布装置1を構成する任意の機器(例えば、任意のセンサ)から収集されてもよいし、外的要因に関する値として塗布装置1以外の装置から収集されてもよい。製造パラメータの例として、乾燥前の塗布材料の密度、粘度、および液温と、減圧装置の圧力と、製造ライン1a上の張力(供給ロール2、塗布部4の入口および出口、乾燥炉9の出口、巻き取りロール3等での張力)と、製造ライン1aの速度と、実際の塗布量および塗布幅と、供給装置6aのポンプ回転数、内圧、ろ過一次圧、およびろ過二次圧と、乾燥炉9内の温度、風速、内圧、およびガス濃度と、環境の温度および湿度と、室圧と、帯電量と、パーティクルと、基材90の状態とが挙げられる。当然ながら、製造パラメータの種類はこれらの例に限定されず、様々な要因が製造パラメータとして設定されてよい。更に、個々の訓練サンプルは、運用時に推定されるギャップ、ベンド、および塗布量の実績値も含む。 The manufacturing parameter is an arbitrary variable that can change the control value of the coating apparatus 1. Actual values of a plurality of manufacturing parameters are collected at each time point. Each manufacturing parameter may be collected from an arbitrary device (for example, an arbitrary sensor) constituting the coating apparatus 1, or may be collected from an apparatus other than the coating apparatus 1 as a value related to an external factor. Examples of production parameters include the density, viscosity, and liquid temperature of the coating material before drying, the pressure of the decompression device, and the tension on the production line 1a (supply roll 2, inlet and outlet of the coating unit 4, the drying furnace 9 Tension at the outlet, the take-up roll 3 etc.), the speed of the production line 1a, the actual application amount and application width, the pump rotation speed of the supply device 6a, the internal pressure, the primary filtration pressure, and the secondary filtration pressure, The temperature in the drying furnace 9, the wind speed, the internal pressure, and the gas concentration, the temperature and humidity of the environment, the room pressure, the charge amount, the particles, and the state of the base material 90 are listed. Of course, the types of manufacturing parameters are not limited to these examples, and various factors may be set as manufacturing parameters. Furthermore, each training sample also includes actual values of gap, bend, and application amount estimated during operation.
 図4は、データベース20に記憶される訓練データセットの一例を模式的に示す図である。訓練データセットは、塗布装置1で用いられる1種類以上の塗布材料のそれぞれについて準備される訓練サンプルを含む。図4は、塗布材料AおよびBのそれぞれについての訓練サンプルの集合を明示的に示す。一つの塗布材料について複数の訓練サンプルが準備され、図4は、塗布材料AおよびBのそれぞれについて3個の訓練サンプルを明示的に示す。具体的には、塗布材料Aについては、製造日がDa1であるロットA1に対応する訓練サンプルと、製造日がDa2であるロットA2に対応する訓練サンプルと、製造日がDa3であるロットA3に対応する訓練サンプルとが存在する。塗布材料Bについては、製造日がDb1であるロットB1に対応する訓練サンプルと、製造日がDb2であるロットB2に対応する訓練サンプルと、製造日がDb3であるロットB3に対応する訓練サンプルとが存在する。 FIG. 4 is a diagram schematically illustrating an example of a training data set stored in the database 20. The training data set includes training samples prepared for each of one or more types of application materials used in the application apparatus 1. FIG. 4 explicitly shows a set of training samples for each of the coating materials A and B. Multiple training samples are prepared for one application material, and FIG. 4 explicitly shows three training samples for each of application materials A and B. Specifically, for the coating material A, the training sample corresponding to the lot A1 whose manufacturing date is D a1 , the training sample corresponding to the lot A2 whose manufacturing date is D a2 , and the manufacturing date is D a3 . There is a training sample corresponding to lot A3. The coating material B, a training sample manufacturing date corresponding to the lot B1 is D b1, a training sample manufacturing date corresponding to the lot B2 is D b2, manufacturing date corresponding to the lot B3 is D b3 There is a training sample.
 ロットA1の訓練サンプルを代表として取り上げてその構成を詳しく説明する。この訓練サンプルは、三つの時点t11、t12、t13のそれぞれにおける複数の製造パラメータの組を含む。この例では、時点t11は、ロットA1の製造の開始付近の時点であり、言い換えると、製造パラメータの初期値に対応する時点である。時点t12は、ロットA1の製造の中間付近の時点であり、言い換えると、製造パラメータの中間値に対応する時点である。時点t13は、ロットA1の製造の終了付近の時点であり、言い換えると、製造パラメータの最終値に対応する時点である。「ロットの製造の開始付近の時点」は、ロットの製造の開始時点でもよいし、該開始時点から閾値Ta以内の時間帯における任意の時点でもよい。「ロットの製造の中間付近の時点」は、ロットの製造の中間時点(ロット全体を製造する所要時間の半分が経過した時点)でもよいし、該中間時点の前後の閾値Tb以内の時間帯における任意の時点でもよい。「ロットの製造の終了付近の時点」は、ロットの製造の終了時点でもよいし、該終了時点から閾値Tc以内の時間帯における任意の時点でもよい。閾値Ta、Tb、Tcはいずれも任意に設定されてよい。 The training sample of lot A1 will be taken as a representative and its configuration will be described in detail. This training sample includes a set of manufacturing parameters at each of the three time points t 11 , t 12 , t 13 . In this example, time t 11 is the time around the beginning of the production lots A1, in other words, is a time corresponding to the initial value of the production parameters. Time t 12 is the time in the vicinity of the middle of the production lots A1, in other words, is a time corresponding to an intermediate value of the production parameters. Time t 13 is the time near the end of the production lots A1, in other words, is a time corresponding to the final value of the production parameters. The “time near the start of lot production” may be the start time of lot production, or any time in a time zone within the threshold Ta from the start time. The “time near the middle of manufacturing the lot” may be an intermediate time of manufacturing the lot (when half of the time required to manufacture the entire lot has elapsed), or in a time zone within the threshold Tb before and after the intermediate time. It may be at any time. The “time near the end of lot production” may be the end time of lot production, or may be any time in a time zone within the threshold Tc from the end time. The thresholds Ta, Tb, and Tc may be set arbitrarily.
 なお、製造パラメータが収集されるタイミングは何ら限定されない。例えば、個々の訓練サンプルは他の時点における製造パラメータを含んでもよい。ロットの製造の開始付近の時点と、ロットの製造の中間付近の時点と、ロットの製造の終了付近の時点とはいずれも必須ではなく、これら3時点のうちの少なくとも一つが省略されてもよい。したがって、訓練サンプルは、ロットの製造の開始付近の時点と、ロットの製造の中間付近の時点という2時点における複数の製造パラメータの組を含んでもよい。あるいは、訓練サンプルは、ロットの製造の開始付近の時点と、ロットの製造の終了付近の時点という2時点における複数の製造パラメータの組を含んでもよい。あるいは、訓練サンプルは、ロットの製造の中間付近の時点と、ロットの製造の終了付近の時点という2時点における複数の製造パラメータの組を含んでもよい。 Note that the timing at which manufacturing parameters are collected is not limited. For example, individual training samples may include manufacturing parameters at other times. The time point near the start of lot production, the time point near the middle of lot production, and the time point near the end of lot production are not essential, and at least one of these three time points may be omitted. . Thus, the training sample may include a set of production parameters at two time points, a time point near the start of lot production and a time point near the middle of lot production. Alternatively, the training sample may include a set of a plurality of production parameters at two time points, a time point near the start of lot production and a time point near the end of lot production. Alternatively, the training sample may include a set of a plurality of manufacturing parameters at two time points, a time point near the middle of manufacturing the lot and a time point near the end of manufacturing the lot.
 図4では、各時点で収集された複数の製造パラメータをParam_a、Param_b等と表している。個々の訓練サンプルは、時点を示すラベルまたは時点の種類を示すラベルも製造パラメータとして含んでもよい。個々の訓練サンプルは、教師あり学習で正解として用いられるギャップ、ベンド、および塗布量も含む。 FIG. 4 shows a plurality of manufacturing parameters collected at each time point as Param_a, Param_b, and the like. Each training sample may also include a label indicating the time point or a label indicating the type of time point as manufacturing parameters. Each training sample also includes gaps, bends, and application amounts used as correct answers in supervised learning.
 ロットA1の訓練サンプルは、製造パラメータParam_aが、時点t11ではa11であり、時点t12ではa12に推移し、時点t13ではa13に推移したことを示す。Param_b,Param_c等の他の製造パラメータについても、時点t11から時点t12、時点t13と時間が経つにつれて値が推移する。これらの製造パラメータの中には、時間の経過に伴って値が変わるものもあれば変わらないものもあり得る。1ロット内での時間経過に伴う少なくとも一部の製造パラメータの変化に起因して、ギャップ、ベンド、および塗布量のうちの少なくとも一つも、その時間経過に応じて変わり得る。ロットA1の訓練サンプルは、ギャップが、時点t11ではG11であり、時点t12ではG12に推移し、時点t13ではG13に推移したことを示す。同様に、時点t11から時点t12、時点t13と時間が経つにつれてベンドはB11からB12、B13と推移し、塗布量はC11からC12、C13と推移する。 Training samples in the series A1, the production parameters Param_a is a a 11 At time t 11, a transition to a 12 At time t 12, indicating that the transition to a 13 at time point t 13. Param_b, for also other manufacturing parameters such as Param_c, time t 12 from the time point t 11, the time t 13 value as time passes is to remain. Some of these manufacturing parameters may change in value over time and others may not change. Due to changes in at least some of the manufacturing parameters over time within a lot, at least one of the gap, bend, and application amount can also vary over time. Training samples in the series A1, the gap is a G 11 At time t 11, a transition to G 12 at time t 12, indicating that the transition to G 13 at time t 13. Similarly, time t 12 from the time point t 11, the bend as time passes and the time t 13 remained from B 11 and B 12, B 13, the coating amount is to remain as C 12, C 13 from the C 11.
 製造パラメータの種類数は非常に多くなり得るので、人がその製造パラメータの集合と制御値(例えば、ギャップ、ベンド、および塗布量)との関係を定式化することは非常に困難であるかまたは不可能である。そのため、従来は、作業者が自身のセンス、スキル、経験、または勘でその制御値を調節する。本実施形態では、塗布制御システム10は、様々な状況における製造パラメータと制御値との関係を示すモデルを機械学習により自律的に見つけ出し、そのモデルを用いて、塗布装置1を取り巻く環境に応じた制御値(例えば、ギャップ、ベンド、および塗布量)を推定する。 The number of types of manufacturing parameters can be so large that it is very difficult for a person to formulate the relationship between the set of manufacturing parameters and control values (eg, gap, bend, and coating amount) or Impossible. Therefore, conventionally, the operator adjusts the control value based on his sense, skill, experience, or intuition. In the present embodiment, the coating control system 10 autonomously finds a model indicating the relationship between manufacturing parameters and control values in various situations by machine learning, and uses the model according to the environment surrounding the coating apparatus 1. Control values (eg, gap, bend, and coating amount) are estimated.
 [塗布制御システムの動作]
 図5および図6を参照しながら、塗布制御システム10の動作を説明するとともに本実施形態に係る塗布制御方法について説明する。図5は塗布制御システム10の動作の一例を示すフローチャートである。図6は、一般的なニューラルネットワークの一例を示す図である。
[Application control system operation]
The operation of the application control system 10 will be described with reference to FIGS. 5 and 6 and the application control method according to the present embodiment will be described. FIG. 5 is a flowchart showing an example of the operation of the application control system 10. FIG. 6 is a diagram illustrating an example of a general neural network.
 ステップS11では、学習部11が機械学習のモデルを生成する。このステップは、最も予測精度が高いと推定される最良のニューラルネットワーク(以下では、単に「最良のニューラルネットワーク」という)をモデルとして生成する学習フェーズである。なお、ニューラルネットワークの学習により得られた「最良のニューラルネットワーク」が“現実に最良である”とは限らないことに留意されたい。学習部11は、訓練データセット(1以上の訓練サンプル)をデータベース20から読み出し(取得ステップ)、学習をさせるニューラルネットワークに個々の訓練サンプルを逐次入力しながら機械学習を実行する(学習ステップ)。例えば、学習部11は、多層ニューラルネットワークを用いる深層学習を実行することでモデルを生成してもよい。機械学習の種類は深層学習に限定されず、学習部11は他の手法を用いてモデルを生成してもよい。 In step S11, the learning unit 11 generates a machine learning model. This step is a learning phase in which the best neural network estimated to have the highest prediction accuracy (hereinafter simply referred to as “best neural network”) is generated as a model. It should be noted that the “best neural network” obtained by learning the neural network is not always “best in reality”. The learning unit 11 reads a training data set (one or more training samples) from the database 20 (acquisition step), and executes machine learning while sequentially inputting individual training samples to a neural network for learning (learning step). For example, the learning unit 11 may generate a model by executing deep learning using a multilayer neural network. The type of machine learning is not limited to deep learning, and the learning unit 11 may generate a model using another method.
 図6に例示するニューラルネットワークは、入力層である第1層と、中間層である第2層および第3層と、出力層である第4層とで構成される。第1層は、m個のパラメータを成分とする入力ベクトルx=(x,x,x,…x)をそのまま第2層に出力する。第2層および第3層は活性化関数により総入力を出力に変換してその出力を次の層に渡す。第4層も活性化関数により総入力を出力に変換し、この出力は、n個のパラメータを成分とするニューラルネットワークの出力ベクトルy=(y,y,…,y)である。この出力ベクトルyは推定値を示す。一つの入力ベクトルxに対する出力ベクトルの正解をd=(d,d,…,d)とすると、その出力ベクトルyが正解dに近くなるように活性化関数の重みwが更新される。これが学習という情報処理である。 The neural network illustrated in FIG. 6 includes a first layer that is an input layer, second and third layers that are intermediate layers, and a fourth layer that is an output layer. The first layer outputs an input vector x = (x 0 , x 1 , x 2 ,... X m ) having m parameters as components to the second layer as it is. The second layer and the third layer convert the total input into an output by an activation function and pass the output to the next layer. The fourth layer also converts the total input into an output by an activation function, and this output is an output vector y = (y 0 , y 1 ,..., Y n ) of a neural network having n parameters as components. This output vector y indicates an estimated value. If the correct answer of the output vector for one input vector x is d = (d 0 , d 1 ,..., D n ), the weight w of the activation function is updated so that the output vector y is close to the correct d. . This is information processing called learning.
 学習部11は、訓練サンプルの製造パラメータを入力ベクトルとしてニューラルネットワークに与えて、ギャップ、ベンド、および塗布量を示す出力ベクトルを得る。そして、学習部11はその出力ベクトルを正解(その訓練サンプルで示されるギャップ、ベンド、および塗布量)と比較して活性化関数の重みを調整する。学習部11は多くの訓練サンプルをニューラルネットワークに与えながら重みの更新を重ねることで、運用フェーズで用いるモデルを生成する。 The learning unit 11 gives the manufacturing parameters of the training sample to the neural network as an input vector, and obtains an output vector indicating the gap, the bend, and the coating amount. Then, the learning unit 11 compares the output vector with the correct answer (gap, bend, and application amount indicated by the training sample), and adjusts the weight of the activation function. The learning unit 11 generates a model to be used in the operation phase by repeatedly updating the weights while giving many training samples to the neural network.
 データベース20が、図4に示す訓練データセットを記憶しているとの前提で、学習部11による処理の例を説明する。 An example of processing by the learning unit 11 will be described on the assumption that the database 20 stores the training data set shown in FIG.
 学習部11は、塗布材料Aについての訓練サンプルを用いて以下のように学習を実行してもよい。学習部11は、ロットA1の訓練サンプルの全体を入力ベクトルとしてニューラルネットワークに与えることで(すなわち、ロットA1の訓練サンプルを一括して入力することで)、時点t11、t12、およびt13のそれぞれにおけるギャップ、ベンド、および塗布量を示す出力ベクトルを得る。そして、学習部11はその出力ベクトルを正解(ロットA1の訓練サンプルの時点t11、t12、およびt13のそれぞれにおけるギャップ、ベンド、および塗布量)と比較して活性化関数の重みを調整する。 The learning unit 11 may perform learning using the training sample for the coating material A as follows. The learning unit 11 gives the entire training sample of the lot A1 as an input vector to the neural network (that is, by inputting the training sample of the lot A1 in a lump), and the time points t 11 , t 12 , and t 13 To obtain an output vector indicating the gap, bend, and coating amount in each. Then, the learning unit 11 adjusts the weight of the activation function by comparing the output vector with the correct answer (gap, bend, and application amount at the time points t 11 , t 12 , and t 13 of the training sample of the lot A1). To do.
 更に、学習部11は、ロットA2の訓練サンプルについても、ロットA1の訓練サンプルと同様に処理する。すなわち、学習部11は、ロットA2の訓練サンプルの全体を入力ベクトルとしてニューラルネットワークに与えることで、各時点におけるギャップ、ベンド、および塗布量を示す出力ベクトルを得る。そして、学習部11はその出力ベクトルを正解(ロットA2の訓練サンプルの各時点におけるギャップ、ベンド、および塗布量)と比較して活性化関数の重みを調整する。更に、学習部11は、ロットA3の訓練サンプルについても、ロットA1およびA2の訓練サンプルと同様に処理する。更に、学習部11は、塗布材料Aに関する他の訓練サンプルについても同様に処理する。 Further, the learning unit 11 processes the training sample of lot A2 in the same manner as the training sample of lot A1. That is, the learning unit 11 obtains an output vector indicating the gap, the bend, and the application amount at each time point by giving the entire training sample of the lot A2 as an input vector to the neural network. Then, the learning unit 11 compares the output vector with the correct answer (gap, bend, and application amount at each time point of the training sample of the lot A2), and adjusts the weight of the activation function. Further, the learning unit 11 processes the training sample of the lot A3 in the same manner as the training samples of the lots A1 and A2. Further, the learning unit 11 processes the other training samples related to the coating material A in the same manner.
 学習部11は、塗布材料Bについての訓練サンプルを用いて以下のように更なる学習を実行してもよい。学習部11は、ロットB1の訓練サンプルの全体を入力ベクトルとしてニューラルネットワークに与えることで、時点t21、t22、およびt23のそれぞれにおけるギャップ、ベンド、および塗布量を示す出力ベクトルを得る。そして、学習部11はその出力ベクトルを正解(ロットB1の訓練サンプルの時点t21、t22、およびt23のそれぞれにおけるギャップ、ベンド、および塗布量)と比較して活性化関数の重みを調整する。 The learning unit 11 may perform further learning using the training sample for the coating material B as follows. The learning unit 11 gives the entire training sample of the lot B1 to the neural network as an input vector, thereby obtaining an output vector indicating the gap, bend, and application amount at each of the time points t 21 , t 22 , and t 23 . Then, the learning unit 11 adjusts the weight of the activation function by comparing the output vector with a correct answer (gap, bend, and application amount at each of the time points t 21 , t 22 , and t 23 of the training sample of the lot B1). To do.
 更に、学習部11は、ロットB2およびB3の訓練サンプルについても、ロットB1の訓練サンプルと同様に処理する。更に、学習部11は、塗布材料Bに関する他の訓練サンプルについても同様に処理する。 Further, the learning unit 11 processes the training samples of lots B2 and B3 in the same manner as the training sample of lot B1. Furthermore, the learning unit 11 processes the other training samples related to the coating material B in the same manner.
 学習部11は更に、他の塗布材料についての訓練サンプルについても、塗布材料AおよびBと同様に処理してよい。 Further, the learning unit 11 may process training samples for other coating materials in the same manner as the coating materials A and B.
 ステップS12以降の処理は、生成されたモデルを用いて、これから基材90に塗布材料を塗布するための制御値(ギャップ、ベンド、および塗布量)を推定する運用フェーズである。 The processing after step S12 is an operation phase in which control values (gap, bend, and coating amount) for applying the coating material to the base material 90 are estimated from the generated model.
 ステップS12では、取得部12が製造パラメータを取得する。取得部12は、塗布装置1を構成する任意の機器(例えば、任意のセンサ)から製造パラメータを収集してもよいし、外的要因に関する値として塗布装置1以外の装置から製造パラメータを収集してもよい。 In step S12, the acquisition unit 12 acquires manufacturing parameters. The acquisition unit 12 may collect manufacturing parameters from an arbitrary device (for example, an arbitrary sensor) constituting the coating apparatus 1, or collect manufacturing parameters from apparatuses other than the coating apparatus 1 as values relating to external factors. May be.
 ステップS13では、推定部13が、生成されたモデルにその製造パラメータを入力し、このモデルから得られる出力ベクトルを制御値(ギャップ、ベンド、および塗布量)の推定結果とする。 In step S13, the estimation unit 13 inputs manufacturing parameters to the generated model, and uses an output vector obtained from the model as an estimation result of control values (gap, bend, and coating amount).
 ステップS14では、指示部14が、推定された制御値に基づく指示信号を塗布装置1に向けて送信する(指示ステップ)。「塗布装置に向けて指示信号を送信する」とは、塗布装置1に、または該塗布装置1に対応する他の装置に、指示信号を送信することをいう。送信は出力の一例である。本実施形態では、指示部14は、推定されたギャップおよびベンドに基づく指示信号を塗布部4に送信するとともに、推定された塗布量に基づく指示信号を供給装置6aに送信する。この結果、コーティング層の厚みが所望の値になるように、基材90への塗布が調節される。したがって、これらの指示信号は、適切なコーティング層を基材90上に形成するための信号である。 In step S14, the instruction unit 14 transmits an instruction signal based on the estimated control value toward the coating apparatus 1 (instruction step). “Sending an instruction signal toward the coating apparatus” means transmitting an instruction signal to the coating apparatus 1 or to another apparatus corresponding to the coating apparatus 1. Transmission is an example of output. In the present embodiment, the instruction unit 14 transmits an instruction signal based on the estimated gap and bend to the application unit 4, and transmits an instruction signal based on the estimated application amount to the supply device 6a. As a result, the application to the base material 90 is adjusted so that the thickness of the coating layer becomes a desired value. Therefore, these instruction signals are signals for forming an appropriate coating layer on the substrate 90.
 ステップS12~S14の処理(すなわち、運用フェーズ)は、別の1ロット分のシート材を生成し始める前に再び実行され得る。ステップS11(すなわち、学習フェーズ)は、任意のタイミングで再び実行されてもよい。例えば、塗布制御システム10は、運用フェーズで蓄積された結果が取り込まれた新たな訓練データセットを用いて機械学習を実行することで新たなモデルを生成して、後の運用フェーズでその新たなモデルを用いて制御値を推定してもよい。 The processing in steps S12 to S14 (that is, the operation phase) can be executed again before starting to generate another lot of sheet material. Step S11 (that is, the learning phase) may be executed again at an arbitrary timing. For example, the application control system 10 generates a new model by executing machine learning using a new training data set in which the results accumulated in the operation phase are captured, and the new operation data is generated in a later operation phase. The control value may be estimated using a model.
 運用フェーズが実行されるタイミングは限定されない。例えば、塗布制御システム10は、これから製造する新たな1ロット分の塗布工程における初期値を推定してもよい。この場合には、その塗布工程が開始される前に、取得部12が製造パラメータを取得し、推定部13がその製造パラメータをモデルに入力することで制御値(ギャップ、ベンド、および塗布量)を推定する。この制御値は、その新たな1ロット分の塗布工程における初期値である。そして、指示部14が、その推定された制御値(初期値)に基づく指示信号を塗布装置1に向けて送信する。この一連の処理の後に、塗布装置1はその指示信号に従って新たな1ロット分の塗布工程を開始する。 The timing at which the operation phase is executed is not limited. For example, the application control system 10 may estimate an initial value in an application process for a new lot to be manufactured. In this case, before the coating process is started, the acquisition unit 12 acquires manufacturing parameters, and the estimation unit 13 inputs the manufacturing parameters into the model to control values (gap, bend, and coating amount). Is estimated. This control value is an initial value in the coating process for the new lot. Then, the instruction unit 14 transmits an instruction signal based on the estimated control value (initial value) toward the coating apparatus 1. After this series of processing, the coating apparatus 1 starts a coating process for a new lot according to the instruction signal.
 塗布制御システム10は、既に開始した1ロット分の塗布工程における制御値を推定してもよい。この場合には、その塗布工程の途中で、取得部12が製造パラメータを取得し、推定部13がその製造パラメータをモデルに入力することで制御値(ギャップ、ベンド、および塗布量)を推定する。この制御値は塗布装置1の動作を途中で調節するための値であるといえる。そして、指示部14が、その推定された制御値に基づく指示信号を塗布装置1に向けて送信する。塗布装置1では、その指示信号に従って塗布部4または供給装置6aが調節される。 The application control system 10 may estimate a control value in the application process for one lot that has already been started. In this case, in the course of the coating process, the acquisition unit 12 acquires manufacturing parameters, and the estimation unit 13 inputs the manufacturing parameters into the model to estimate control values (gap, bend, and coating amount). . This control value can be said to be a value for adjusting the operation of the coating apparatus 1 on the way. Then, the instruction unit 14 transmits an instruction signal based on the estimated control value toward the coating apparatus 1. In the coating device 1, the coating unit 4 or the supply device 6a is adjusted according to the instruction signal.
 [プログラム]
 コンピュータシステムを塗布制御システム10として機能させるための塗布制御プログラムは、該コンピュータシステムを学習部11、取得部12、推定部13、および指示部14として機能させるためのプログラムコードを含む。この塗布制御プログラムは、CD-ROM、DVD-ROM、半導体メモリ等の有形の記録媒体に固定的に記録された上で提供されてもよい。あるいは、塗布制御プログラムは、搬送波に重畳されたデータ信号として通信ネットワークを介して提供されてもよい。提供された塗布制御プログラムは例えば補助記憶部103に記憶される。プロセッサ101が補助記憶部103からその塗布制御プログラムを読み出して実行することで、上記の各機能要素が実現する。
[program]
The application control program for causing the computer system to function as the application control system 10 includes program code for causing the computer system to function as the learning unit 11, the acquisition unit 12, the estimation unit 13, and the instruction unit 14. The application control program may be provided after being fixedly recorded on a tangible recording medium such as a CD-ROM, DVD-ROM, or semiconductor memory. Alternatively, the application control program may be provided via a communication network as a data signal superimposed on a carrier wave. The provided application control program is stored in the auxiliary storage unit 103, for example. The processor 101 reads out the application control program from the auxiliary storage unit 103 and executes the application control program, thereby realizing each functional element described above.
 [効果]
 以上説明したように、本発明の一側面に係る塗布制御システムは、少なくとも一つのプロセッサを備え、少なくとも一つのプロセッサが、塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得し、データセットを入力とする機械学習を実行することで、基材上に塗布材料を塗布するための塗布装置の制御値を推定するための、機械学習のモデルを生成する。
[effect]
As described above, the coating control system according to one aspect of the present invention includes at least one processor, and at least one processor forms a coating layer with a coating material on a base material flowing through a production line of the coating apparatus. In order to apply a coating material on a substrate, a data set including manufacturing parameters at at least two time points in a coating process for one lot is acquired from a database and machine learning is performed using the data set as an input. A machine learning model for estimating a control value of the coating apparatus is generated.
 本発明の一側面に係る塗布制御方法は、少なくとも一つのプロセッサを備える塗布制御システムにより実行される塗布制御方法であって、塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得する取得ステップと、データセットを入力とする機械学習を実行することで、基材上に塗布材料を塗布するための塗布装置の制御値を推定するための、機械学習のモデルを生成する学習ステップとを含む。 A coating control method according to one aspect of the present invention is a coating control method executed by a coating control system including at least one processor, and a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus. In the application process for one lot, an acquisition step for acquiring a data set including manufacturing parameters at at least two points in time from the database, and machine learning using the data set as input, a coating material is applied on the substrate. A learning step of generating a machine learning model for estimating a control value of the coating apparatus for coating.
 本発明の一側面に係る塗布制御プログラムは、塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得する取得ステップと、データセットを入力とする機械学習を実行することで、基材上に塗布材料を塗布するための塗布装置の制御値を推定するための、機械学習のモデルを生成する学習ステップとをコンピュータに実行させる。 A coating control program according to an aspect of the present invention is a data set including manufacturing parameters at at least two points in a coating process for one lot in which a coating layer is formed from a coating material on a substrate flowing through a manufacturing line of a coating apparatus. A machine learning model for estimating a control value of a coating apparatus for applying a coating material on a base material by executing an acquisition step of acquiring data from a database and machine learning using a data set as an input. A learning step to be generated is executed by a computer.
 このような側面においては、1ロット内の複数の時点における製造パラメータを入力とする機械学習を実行することで、基材のコーティングに影響を及ぼし得る諸要素の塗布工程での変化を考慮して機械学習のモデルが生成される。したがって、このモデルを用いることで、シートの製造において属人的な決定への依存度を下げることが可能になる。したがって、作業者個人の技術または技能のばらつきに関係なくシートを製造することができ、シートの品質を安定させることができる。また、この機械学習により、塗布装置の調整に要する時間を短縮し、調整作業の間の塗布材料の損失を減らし、歩留まりを向上させることが可能になる。 In such an aspect, by executing machine learning using manufacturing parameters at a plurality of time points in one lot as input, considering changes in the application process of various elements that may affect the coating of the substrate. A machine learning model is generated. Therefore, by using this model, it is possible to reduce the dependence on personal decisions in sheet manufacturing. Therefore, a sheet can be manufactured regardless of variations in individual workers' skills or skills, and the quality of the sheet can be stabilized. In addition, this machine learning can shorten the time required for adjusting the coating apparatus, reduce the loss of the coating material during the adjustment work, and improve the yield.
 他の側面に係る塗布制御システムでは、少なくとも二つの時点が、1ロットの製造の開始付近の時点と、1ロットの製造の中間付近の時点と、1ロットの製造の終了付近の時点とのうちの少なくとも一つを含んでもよい。これら3時点はいずれも、塗布工程での時間経過の代表的なタイミングであるといえる。したがって、これら3時点のうちの少なくとも一つにおける製造パラメータを考慮することで、生成されるモデルの精度の向上が期待できる。 In the coating control system according to another aspect, at least two time points are a time point near the start of manufacturing of one lot, a time point near the middle of manufacturing of one lot, and a time point near the end of manufacturing of one lot. May be included. These three time points can be said to be representative timings of time passage in the coating process. Therefore, improvement in the accuracy of the generated model can be expected by considering the manufacturing parameters at at least one of these three time points.
 他の側面に係る塗布制御システムでは、制御値が、新たな1ロット分の塗布工程における初期値であってもよい。1ロット分の製造の開始時点における制御値を推定することで、その製造開始時点からシート材料の品質を安定させることができる。 In the coating control system according to another aspect, the control value may be an initial value in a coating process for a new lot. By estimating the control value at the start of manufacturing for one lot, the quality of the sheet material can be stabilized from the start of manufacturing.
 他の側面に係る塗布制御システムでは、制御値が、基材に向けて塗布材料を供給する供給装置を制御するための値を含んでもよい。この場合には、属人的な決定に依存することなく塗布材料の供給を制御することができる。 In the application control system according to another aspect, the control value may include a value for controlling the supply device that supplies the application material toward the substrate. In this case, the supply of the coating material can be controlled without depending on the personal decision.
 他の側面に係る塗布制御システムでは、供給装置を制御するための値が塗布量を含んでもよい。この場合には、属人的な決定に依存することなく、コーティング層の形成に直接に影響する塗布量を制御することができる。 In the application control system according to another aspect, the value for controlling the supply device may include the application amount. In this case, it is possible to control the coating amount that directly affects the formation of the coating layer without depending on the determination of the individual.
 他の側面に係る塗布制御システムでは、制御値が、基材上に塗布材料を塗布する塗布装置を制御するための値を含んでもよい。この場合には、属人的な決定に依存することなく基材への塗布を制御することができる。 In the coating control system according to another aspect, the control value may include a value for controlling a coating apparatus that coats the coating material on the substrate. In this case, the application to the substrate can be controlled without depending on the personal decision.
 他の側面に係る塗布制御システムでは、塗布装置を制御するための値が、ギャップおよびベンドの少なくとも一方を含んでもよい。この場合には、属人的な決定に依存することなく、コーティング層の形成に直接に影響するギャップまたはベンドを制御することができる。 In the coating control system according to another aspect, the value for controlling the coating device may include at least one of a gap and a bend. In this case, gaps or bends that directly affect the formation of the coating layer can be controlled without relying on personal decisions.
 他の側面に係る塗布制御システムでは、少なくとも一つのプロセッサが更に、新たな1ロット分の塗布工程に関する新たな製造パラメータを取得し、生成されたモデルに新たな製造パラメータを入力することで、新たな1ロット分の塗布工程における制御値を推定し、推定された制御値に基づく指示信号を出力してもよい。塗布工程での諸要素の変化を考慮した機械学習により得られたモデルを用いて塗布工程の制御値を推定することで、属人的な決定に依存することなくシートを製造することができる。 In the coating control system according to another aspect, at least one processor further acquires a new manufacturing parameter related to the coating process for a new lot, and inputs a new manufacturing parameter to the generated model. A control value in the coating process for one lot may be estimated, and an instruction signal based on the estimated control value may be output. By estimating the control value of the coating process using a model obtained by machine learning in consideration of changes in various elements in the coating process, a sheet can be manufactured without depending on a personal decision.
 [変形例]
 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
[Modification]
The present invention has been described in detail based on the embodiments. However, the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.
 塗布装置の構成は上記実施形態に限定されるものではなく、塗布制御システムは、シート材を製造するための様々な塗布装置に対応し得る。これに関連して、指示信号の宛先は塗布部4および供給装置6aに限定されない。指示信号は、コーティング層の形成に寄与する任意の構成要素に指示を伝えるための任意の情報を含んでよい。 The configuration of the coating apparatus is not limited to the above embodiment, and the coating control system can correspond to various coating apparatuses for manufacturing a sheet material. In this regard, the destination of the instruction signal is not limited to the application unit 4 and the supply device 6a. The indication signal may include any information for communicating the indication to any component that contributes to the formation of the coating layer.
 学習部11を備える塗布制御システム(すなわち、学習フェーズを実行する塗布制御システム)と、取得部12、推定部13、および指示部14を備える塗布制御システム(すなわち、運用フェーズを実行する塗布制御システム)とが分離してもよい。このように分離されたそれぞれの塗布制御システムも、本発明に係る塗布制御システムである。 Application control system including the learning unit 11 (that is, application control system that executes the learning phase), and application control system that includes the acquisition unit 12, the estimation unit 13, and the instruction unit 14 (that is, the application control system that executes the operation phase) ) May be separated. Each application control system separated in this way is also an application control system according to the present invention.
 上記実施形態ではデータベース20は塗布制御システム10と通信線30を介して接続されるが、データベース20は、塗布制御システム10を構成するコンピュータ内に構築されてもよい。上記実施形態では塗布制御システム10は塗布装置1と通信線30を介して接続されるが、塗布制御システム10は、塗布装置1を構成する機器内に構築されてもよい。 In the above embodiment, the database 20 is connected to the application control system 10 via the communication line 30, but the database 20 may be constructed in a computer constituting the application control system 10. In the above-described embodiment, the application control system 10 is connected to the application apparatus 1 via the communication line 30, but the application control system 10 may be constructed in a device constituting the application apparatus 1.
 少なくとも一つのプロセッサにより実行される塗布制御方法の処理手順は上記実施形態での例に限定されない。例えば、上述したステップ(処理)の一部が省略されてもよいし、別の順序で各ステップが実行されてもよい。また、上述したステップのうちの任意の2以上のステップが組み合わされてもよいし、ステップの一部が修正または削除されてもよい。あるいは、上記の各ステップに加えて他のステップが実行されてもよい。 The processing procedure of the application control method executed by at least one processor is not limited to the example in the above embodiment. For example, some of the steps (processes) described above may be omitted, or the steps may be executed in a different order. Further, any two or more of the steps described above may be combined, or a part of the steps may be corrected or deleted. Alternatively, other steps may be executed in addition to the above steps.
 塗布制御システム内で二つの数値の大小関係を比較する際には、「以上」および「よりも大きい」という二つの基準のどちらを用いてもよく、「以下」および「未満」の二つの基準のうちのどちらを用いてもよい。このような基準の選択は、二つの数値の大小関係を比較する処理についての技術的意義を変更するものではない。 When comparing the magnitude relationship between two values in the application control system, you can use either of the two criteria “greater than” or “greater than”, and the two criteria “less than” and “less than”. Either of these may be used. The selection of such a standard does not change the technical significance of the process of comparing the magnitude relationship between two numerical values.
 1…塗布装置、1a…製造ライン、2…供給ロール、3…巻き取りロール、4…塗布部、4a…リップコータ、4b…バックロール、5…タンク、6…供給路、6a…供給装置、8…厚み測定部、9…乾燥炉、10…塗布制御システム、11…学習部、12…取得部、13…推定部、14…指示部、20…データベース、30…通信線、90…基材。 DESCRIPTION OF SYMBOLS 1 ... Coating apparatus, 1a ... Production line, 2 ... Supply roll, 3 ... Winding roll, 4 ... Application | coating part, 4a ... Lip coater, 4b ... Back roll, 5 ... Tank, 6 ... Supply path, 6a ... Supply apparatus, 8 DESCRIPTION OF SYMBOLS ... Thickness measurement part, 9 ... Drying furnace, 10 ... Application | coating control system, 11 ... Learning part, 12 ... Acquisition part, 13 ... Estimation part, 14 ... Instruction part, 20 ... Database, 30 ... Communication line, 90 ... Base material.

Claims (10)

  1.  少なくとも一つのプロセッサを備え、
     前記少なくとも一つのプロセッサが、
      塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得し、
      前記データセットを入力とする機械学習を実行することで、前記基材上に前記塗布材料を塗布するための前記塗布装置の制御値を推定するための、前記機械学習のモデルを生成する、
    塗布制御システム。
    At least one processor,
    The at least one processor comprises:
    A data set including manufacturing parameters at at least two points in a coating process for one lot in which a coating layer is formed by a coating material on a substrate flowing through a coating line of a coating apparatus is acquired from a database.
    Generating a machine learning model for estimating a control value of the coating apparatus for applying the coating material on the substrate by performing machine learning with the data set as an input;
    Application control system.
  2.  前記少なくとも二つの時点が、前記1ロットの製造の開始付近の時点と、前記1ロットの製造の中間付近の時点と、前記1ロットの製造の終了付近の時点とのうちの少なくとも一つを含む、
    請求項1に記載の塗布制御システム。
    The at least two time points include at least one of a time point near the start of manufacturing of the one lot, a time point near the middle of manufacturing of the one lot, and a time point near the end of manufacturing of the one lot. ,
    The coating control system according to claim 1.
  3.  前記制御値が、新たな1ロット分の塗布工程における初期値である、
    請求項1または2に記載の塗布制御システム。
    The control value is an initial value in the coating process for a new lot.
    The coating control system according to claim 1 or 2.
  4.  前記制御値が、前記基材に向けて前記塗布材料を供給する供給装置を制御するための値を含む、
    請求項1~3のいずれか一項に記載の塗布制御システム。
    The control value includes a value for controlling a supply device that supplies the coating material toward the substrate.
    The coating control system according to any one of claims 1 to 3.
  5.  前記供給装置を制御するための値が塗布量を含む、
    請求項4に記載の塗布制御システム。
    The value for controlling the supply device includes a coating amount,
    The coating control system according to claim 4.
  6.  前記制御値が、前記基材上に前記塗布材料を塗布する塗布装置を制御するための値を含む、
    請求項1~5のいずれか一項に記載の塗布制御システム。
    The control value includes a value for controlling a coating apparatus that coats the coating material on the substrate.
    The coating control system according to any one of claims 1 to 5.
  7.  前記塗布装置を制御するための値が、ギャップおよびベンドの少なくとも一方を含む、
    請求項6に記載の塗布制御システム。
    The value for controlling the coating device includes at least one of a gap and a bend.
    The coating control system according to claim 6.
  8.  前記少なくとも一つのプロセッサが更に、
      新たな1ロット分の塗布工程に関する新たな製造パラメータを取得し、
      生成された前記モデルに前記新たな製造パラメータを入力することで、前記新たな1ロット分の塗布工程における前記制御値を推定し、
      推定された前記制御値に基づく指示信号を出力する、
    請求項1~7のいずれか一項に記載の塗布制御システム。
    The at least one processor further comprises:
    Obtain new manufacturing parameters for the coating process for a new lot,
    By inputting the new manufacturing parameters to the generated model, the control value in the coating process for the new one lot is estimated,
    Outputting an instruction signal based on the estimated control value;
    The coating control system according to any one of claims 1 to 7.
  9.  少なくとも一つのプロセッサを備える塗布制御システムにより実行される塗布制御方法であって、
     塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得する取得ステップと、
     前記データセットを入力とする機械学習を実行することで、前記基材上に前記塗布材料を塗布するための前記塗布装置の制御値を推定するための、前記機械学習のモデルを生成する学習ステップと
    を含む塗布制御方法。
    An application control method executed by an application control system comprising at least one processor,
    An acquisition step of acquiring from a database a data set including manufacturing parameters at at least two points in an application process for one lot in which a coating layer is formed by a coating material on a substrate flowing through a production line of a coating apparatus;
    A learning step of generating a machine learning model for estimating a control value of the coating apparatus for coating the coating material on the substrate by performing machine learning using the data set as an input An application control method comprising:
  10.  塗布装置の製造ラインを流れる基材上に塗布材料によりコーティング層を形成する1ロット分の塗布工程における、少なくとも二つの時点における製造パラメータを含むデータセットをデータベースから取得する取得ステップと、
     前記データセットを入力とする機械学習を実行することで、前記基材上に前記塗布材料を塗布するための前記塗布装置の制御値を推定するための、前記機械学習のモデルを生成する学習ステップと
    をコンピュータに実行させる塗布制御プログラム。
    An acquisition step of acquiring from a database a data set including manufacturing parameters at at least two points in an application process for one lot in which a coating layer is formed by a coating material on a substrate flowing through a production line of a coating apparatus;
    A learning step of generating a machine learning model for estimating a control value of the coating apparatus for coating the coating material on the substrate by performing machine learning using the data set as an input Application program for causing a computer to execute.
PCT/JP2018/008786 2018-03-07 2018-03-07 Coating control system, coating control method, and coating control program WO2019171498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008786 WO2019171498A1 (en) 2018-03-07 2018-03-07 Coating control system, coating control method, and coating control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008786 WO2019171498A1 (en) 2018-03-07 2018-03-07 Coating control system, coating control method, and coating control program

Publications (1)

Publication Number Publication Date
WO2019171498A1 true WO2019171498A1 (en) 2019-09-12

Family

ID=67845550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008786 WO2019171498A1 (en) 2018-03-07 2018-03-07 Coating control system, coating control method, and coating control program

Country Status (1)

Country Link
WO (1) WO2019171498A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068950A (en) * 2019-12-26 2020-04-28 华南理工大学 Flow velocity control method for spray head of LED coating machine
WO2021140690A1 (en) * 2020-01-10 2021-07-15 株式会社大気社 Quality control system and quality control program
EP3971904A1 (en) * 2020-09-17 2022-03-23 Evonik Operations GmbH Qualitative or quantitative characterization of a coating surface
WO2022270506A1 (en) * 2021-06-21 2022-12-29 日本ペイントホールディングス株式会社 Prediction method and prediction system for amount of change in coating film properties, prediction method and prediction system for amount of change in coated object production conditions, and production method for coated object
CN117198443A (en) * 2023-11-08 2023-12-08 烟台核电智能技术研究院有限公司 Production process of connecting layer reinforced titanium alloy wear-resistant coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142565A (en) * 1992-09-16 1994-05-24 Nissan Motor Co Ltd Apparatus for controlling coating condition of automobile
JPH1145337A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Coating system
JP2000071437A (en) * 1998-09-02 2000-03-07 Ricoh Co Ltd Ink jet recorder, recording medium and control table generating method
JP2001009258A (en) * 1999-07-02 2001-01-16 Pauretsuku:Kk Treatment of particulate substance using fluidized bed
JP2001070846A (en) * 1999-07-31 2001-03-21 Abb Res Ltd Fixing method of spray parameter on material spray unit
JP2009268995A (en) * 2008-05-09 2009-11-19 Hitachi High-Technologies Corp Method for managing ink jet head and ink jet device using the same
JP2011204236A (en) * 2010-03-18 2011-10-13 Joseph Voegele Ag System and method of applying road surface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142565A (en) * 1992-09-16 1994-05-24 Nissan Motor Co Ltd Apparatus for controlling coating condition of automobile
JPH1145337A (en) * 1997-07-28 1999-02-16 Matsushita Electric Works Ltd Coating system
JP2000071437A (en) * 1998-09-02 2000-03-07 Ricoh Co Ltd Ink jet recorder, recording medium and control table generating method
JP2001009258A (en) * 1999-07-02 2001-01-16 Pauretsuku:Kk Treatment of particulate substance using fluidized bed
JP2001070846A (en) * 1999-07-31 2001-03-21 Abb Res Ltd Fixing method of spray parameter on material spray unit
JP2009268995A (en) * 2008-05-09 2009-11-19 Hitachi High-Technologies Corp Method for managing ink jet head and ink jet device using the same
JP2011204236A (en) * 2010-03-18 2011-10-13 Joseph Voegele Ag System and method of applying road surface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068950A (en) * 2019-12-26 2020-04-28 华南理工大学 Flow velocity control method for spray head of LED coating machine
WO2021140690A1 (en) * 2020-01-10 2021-07-15 株式会社大気社 Quality control system and quality control program
JP2021111130A (en) * 2020-01-10 2021-08-02 株式会社大気社 Quality managing system and quality managing program
CN113396431A (en) * 2020-01-10 2021-09-14 株式会社大气社 Quality management system and quality management program
EP3971904A1 (en) * 2020-09-17 2022-03-23 Evonik Operations GmbH Qualitative or quantitative characterization of a coating surface
EP3971556A1 (en) * 2020-09-17 2022-03-23 Evonik Operations GmbH Qualitative or quantitative characterization of a coating surface
WO2022270506A1 (en) * 2021-06-21 2022-12-29 日本ペイントホールディングス株式会社 Prediction method and prediction system for amount of change in coating film properties, prediction method and prediction system for amount of change in coated object production conditions, and production method for coated object
CN117198443A (en) * 2023-11-08 2023-12-08 烟台核电智能技术研究院有限公司 Production process of connecting layer reinforced titanium alloy wear-resistant coating
CN117198443B (en) * 2023-11-08 2024-01-26 烟台核电智能技术研究院有限公司 Production process of connecting layer reinforced titanium alloy wear-resistant coating

Similar Documents

Publication Publication Date Title
WO2019171498A1 (en) Coating control system, coating control method, and coating control program
KR102056974B1 (en) Integrated intelligent painting management technique
CN103842800B (en) Web testing calibration system and correlation technique
JP6313929B2 (en) Method and system for monitoring structures
US20100257866A1 (en) Method for computer-supported control and/or regulation of a technical system
US20200080744A1 (en) Method for creating demand response determination model for hvac system and method for implementing demand response
CN106575105A (en) Method and apparatus for specifying and visualizing robust tuning of model-based controllers
Huang et al. Auto-tune system using single-run relay feedback test and model-based controller design
CN109195769A (en) A kind of method of monitor production process, a kind of method of indirect derivation system relationship, a kind of method adjusting quality, a kind of method starting production process, a kind of method and a kind of equipment for manufacturing extruded product for manufacturing extruded product
JP2019021186A (en) Data processor, control system, data processing method, and program
JP7275023B2 (en) QUALITY CONTROL DEVICE, QUALITY CONTROL METHOD, AND PROGRAM
US9302872B2 (en) Diameter measurement of a roll of material in a winding system
CN102422146A (en) Apparatus and method for measuring properties of unstabilized moving sheets
CN104011525A (en) Material testing apparatus and method
Mesbah et al. Nonlinear model-based control of thin-film drying for continuous pharmaceutical manufacturing
JP2009175917A (en) Controlled parameter adjustment method and controlled parameter adjustment program
CN104635692A (en) Method for coating photoresist film and coating equipment using method
He et al. Robust tuning for machine-directional predictive control of MIMO paper-making processes
JP2017157094A (en) State prediction device for product, state control device for product, state prediction method for product, and program
JP6588682B1 (en) Method and system for real-time adjustment of Yankee dryer coating based on predicted natural coating movement
CN117148809A (en) Process optimization method and system for artificial leather production equipment
US20150330022A1 (en) Controller And Method For Controlling A Property Of An Object
JP2003521773A (en) How to find the optimal set point for machines and processes
CN109696829A (en) For the process of lapping in the method and apparatus of the process in control system, especially grinding device
JPWO2022270506A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP