WO2019171427A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019171427A1
WO2019171427A1 PCT/JP2018/008315 JP2018008315W WO2019171427A1 WO 2019171427 A1 WO2019171427 A1 WO 2019171427A1 JP 2018008315 W JP2018008315 W JP 2018008315W WO 2019171427 A1 WO2019171427 A1 WO 2019171427A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
oil
thrust
radial
receiving surface
Prior art date
Application number
PCT/JP2018/008315
Other languages
French (fr)
Japanese (ja)
Inventor
哲英 横山
岩崎 俊明
大輔 堀口
伊藤 慎一
政哉 岡本
修平 小山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020504491A priority Critical patent/JPWO2019171427A1/en
Priority to CN201880089937.7A priority patent/CN111788394A/en
Priority to PCT/JP2018/008315 priority patent/WO2019171427A1/en
Publication of WO2019171427A1 publication Critical patent/WO2019171427A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a compressor used as one of components of a refrigeration cycle apparatus.
  • a compression mechanism section One of the components of a refrigeration cycle apparatus such as an air conditioner, a compression mechanism section having an orbiting scroll and a fixed scroll that mesh with each other, an electric motor section that drives the compression mechanism section, and a driving force of the electric motor section is a compression mechanism section
  • a scroll compressor provided with a drive shaft for transmitting to the motor.
  • the drive shaft is rotatably supported by a main bearing and a sub bearing provided above and below the motor unit.
  • a radial gas load acts on the drive shaft, and this gas load is supported by the main bearing and the sub-bearing.
  • the auxiliary bearing supports the rotation of the drive shaft and also supports the weight of the drive shaft in the vertically downward direction.
  • a ball bearing is used as a secondary bearing for the purpose of supporting both a radial load (hereinafter referred to as a radial load) and a thrust load (hereinafter referred to as a thrust load) simultaneously.
  • a radial load hereinafter referred to as a radial load
  • a thrust load hereinafter referred to as a thrust load
  • a secondary bearing which is a slide bearing, is configured by a radial bearing and a thrust bearing that individually support a radial load and a thrust load.
  • the thrust surface provided in the lower end part of the drive shaft is received by the thrust receiving surface provided in the auxiliary bearing, and the radial surface provided in the auxiliary shaft part of the drive shaft is received by the radial receiving surface provided in the auxiliary bearing.
  • the present invention has been made in view of the above points, and provides a compressor capable of ensuring a good sliding state of a thrust receiving surface in a compressor using a slide bearing as a secondary bearing. Objective.
  • a compressor includes a compression mechanism unit disposed in a sealed container, an electric motor unit that drives the compression mechanism unit, a drive shaft that transmits a driving force of the electric motor unit to the compression mechanism unit, and an upper portion of the drive shaft.
  • the main bearing that supports the shaft, the sub bearing that supports the lower part of the drive shaft, the radial bearing surface that is provided on the sub bearing and slidably supports the radial surface of the drive shaft, and the thrust surface of the drive shaft is slidable A thrust receiving surface that is supported by the contact surface, and a contact point between the thrust surface and the thrust receiving surface that is in contact with the curved surface, and continuously from the contact point toward the radially outer side. And an increasing gap.
  • FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • FIG. 1 is a vertical cross-sectional view schematically showing a cross-sectional configuration of a scroll compressor according to Embodiment 1 of the present invention.
  • the thrust load is represented by an arrow a
  • the radial load is represented by an arrow b.
  • FIG. 2 is a diagram showing a main part of the scroll compressor according to Embodiment 1 of the present invention.
  • 2A is a schematic diagram showing an enlarged lower end portion of the drive shaft sub-bearing
  • FIG. 2B is a schematic diagram of the shape of the thrust surface of the drive shaft viewed from directly below.
  • the arrow has shown the flow of lubricating oil.
  • the scroll compressor 100 is mounted as one of refrigeration equipment constituting a refrigeration cycle apparatus such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration apparatus or a water heater.
  • a refrigeration cycle apparatus such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration apparatus or a water heater.
  • the scroll compressor 100 includes a compression mechanism part A accommodated in the hermetic container 13, an electric motor part B, and a drive shaft 6 that transmits the driving force of the electric motor part B to the compression mechanism part A.
  • the compression mechanism part A is disposed on the upper side of the sealed container 13, and the electric motor part B is disposed on the lower side of the sealed container 13.
  • the drive shaft 6 is rotationally driven by the electric motor part B, the volume of the later-described compression chamber 5 formed in the compression mechanism part A is reduced, and the refrigerant in the compression chamber 5 is compressed.
  • a refrigerant suction pipe 15 for sucking the refrigerant and a refrigerant discharge pipe 16 for discharging the refrigerant are connected to the sealed container 13.
  • the hermetic container 13 is a pressure container and forms an outer shell of the scroll compressor 100.
  • the bottom of the hermetic container 13 serves as an oil storage space 14 for storing lubricating oil.
  • the lubricating oil stored in the oil storage space 14 is sucked up by an oil pump 9 provided at the lower end portion of the drive shaft 6 and supplied to the sliding portions of the drive shaft 6 and the compression mechanism portion A. .
  • the oil supply path will be described later.
  • the compression mechanism section A has a function of compressing the refrigerant sucked from the refrigerant suction pipe 15 and discharging the refrigerant to the outside of the hermetic container 13 through the discharge port 4 and the refrigerant discharge pipe 16 described later.
  • the compression mechanism part A is mainly composed of a fixed scroll 1, an orbiting scroll 2, and an Oldham coupling 25.
  • the fixed scroll 1 includes a base plate 1a and a spiral protrusion 1b provided on the lower surface of the base plate 1a.
  • the fixed scroll 1 is fixed to the upper end portion of the main frame 8 a fixed to the inner peripheral surface of the sealed container 13.
  • the fixed scroll 1 is preferably fixed with a fastening member such as a bolt.
  • the orbiting scroll 2 is composed of a base plate 2a and a spiral projection 2b provided on the upper surface of the base plate 2a.
  • An eccentric hole 2c is formed in the vicinity of the center below the bottom surface of the base plate 2a of the rocking scroll 2, and a rocking bearing 17 is press-fitted into the eccentric hole 2c.
  • An eccentric shaft 6 a provided at the upper end of the drive shaft 6 is slidably connected to the rocking bearing 17.
  • the orbiting scroll 2 revolves without revolving with respect to the fixed scroll 1 by the Oldham coupling 25 provided between the orbiting scroll 2 and the main frame 8a.
  • a rocking thrust bearing 18 is provided on the lower surface side of the rocking scroll 2, that is, between the rocking scroll 2 and the main frame 8a.
  • the fixed scroll 1 and the orbiting scroll 2 are provided in the hermetic container 13 so that the spiral protrusions of each other mesh with each other.
  • the compression chamber 5 in which the volume changes relatively is formed by the meshing of the spiral projections of the fixed scroll 1 and the swing scroll 2.
  • a suction port 3 that guides the refrigerant sucked into the sealed container 13 from the refrigerant suction pipe 15 to the compression chamber 5 is formed on the outer periphery of the compression chamber 5, and the refrigerant enters the compression chamber 5 through the suction port 3. Inhaled.
  • the refrigerant is compressed in the compression chamber 5, and the compressed refrigerant is discharged from the discharge port 4 formed in the center portion of the fixed scroll 1.
  • the refrigerant discharged from the discharge port 4 is discharged to the outside of the sealed container 13 through the refrigerant discharge pipe 16.
  • the main frame 8a fixes the fixed scroll 1 at its upper end, and supports the orbiting scroll 2 through the orbiting thrust bearing 18 so as to be slidable from below.
  • the main frame 8 a is attached in the sealed container 13 so that the outer peripheral surface is in contact with the inner peripheral surface of the sealed container 13.
  • a through hole that allows the drive shaft 6 to pass therethrough is formed near the center of the main frame 8a, and a main bearing 19 that rotatably supports a later-described main shaft portion 6b of the drive shaft 6 is formed in the through hole.
  • the main frame 8 a also has a function of rotatably supporting the drive shaft 6 via the main bearing 19.
  • the subframe 8b is fixed to the inner surface of the side wall of the hermetic container 13 below the electric motor part B.
  • the subframe 8b constitutes the housing 8 together with the main frame 8a.
  • the sub frame 8b includes a cylindrical portion 8ba and a flange portion 8bb extending outward from the lower end portion of the cylindrical portion 8ba.
  • auxiliary bearing 11 is a radial bearing that rotatably supports a later-described auxiliary shaft portion 6c of the drive shaft 6 and supports a load in the radial direction.
  • the auxiliary bearing 11 is a plain bearing commonly called “metal”.
  • the subframe 8b receives a thrust load generated by the weight of the drive shaft 6 and the rotor magnetic force in addition to the radial load.
  • This thrust load is received by an upper surface cover 9c, which will be described later, of the oil pump 9 disposed below the subframe 8b.
  • the upper surface of the upper surface cover 9c serves as a thrust receiving surface 12.
  • the scroll compressor 100 of the first embodiment supports the radial load acting on the drive shaft 6 by the auxiliary bearing 11 and receives the thrust load by the thrust receiving surface 12 provided on the upper surface cover 9c of the oil pump 9. It has a configuration.
  • the scroll compressor 100 of this Embodiment 1 is characterized by the structure which hold
  • the electric motor part B has a function of driving the orbiting scroll 2 in order to compress the refrigerant by the compression mechanism part A.
  • the electric motor part B is disposed between the main frame 8a and the subframe 8b.
  • the electric motor part B is mainly composed of an electric motor 10 having a rotor 10a and a stator 10b.
  • the rotor 10a is fixed to the peripheral surface of the drive shaft 6 and is driven to rotate when energization to the stator 10b is started.
  • the stator 10b is fixed to the inner peripheral surface of the sealed container 13 by shrink fitting or the like, surrounds the rotor 10a through a gap, and rotates the rotor 10a.
  • the drive shaft 6 transmits the rotation of the rotor 10a of the electric motor part B to the orbiting scroll 2 of the compression mechanism part A.
  • the drive shaft 6 includes, in order from the top, an eccentric shaft 6a, a main shaft portion 6b fixed to the rotor 10a of the electric motor section B, a sub shaft portion 6c, and a pump insertion shaft 6d having a diameter smaller than that of the sub shaft portion 6c. have.
  • the eccentric shaft 6a is provided eccentrically with respect to the shaft center of the drive shaft 6, and is slidably connected to the rocking bearing 17 as described above.
  • the main shaft portion 6b is provided with a balancer 26a on the upper side of the rotor 10a and a balancer 26b on the lower side of the rotor 10a.
  • the drive shaft 6 includes an oil supply vertical hole 7a extending in the axial direction at the center of the drive shaft 6, an eccentric shaft oil supply horizontal hole 7b, a main shaft oil supply horizontal hole 7c, and a radial oil supply horizontal hole branched from the oil supply vertical hole 7a and extending in the radial direction. 7d and a thrust oil supply lateral hole 7e are formed. More specifically, the eccentric shaft oil supply horizontal hole 7b is formed in the eccentric shaft 6a, the main shaft oil supply horizontal hole 7c is formed in the main shaft portion 6b, the radial oil supply horizontal hole 7d is formed in the auxiliary shaft portion 6c, and the thrust oil supply horizontal hole 7e is a pump. It is formed on the insertion shaft 6d.
  • an axial oil groove 7f extending in the axial direction is formed on the outer peripheral surface of the auxiliary shaft portion 6c of the drive shaft 6, and communicates with the oil supply vertical hole 7a through a radial oil supply lateral hole 7d.
  • the bottom surface of the auxiliary shaft portion 6c has a hollow disk shape, and is a thrust surface 6f formed by an orthogonal surface extending radially outward from the upper end of the pump insertion shaft 6d.
  • the drive shaft 6 rotates while being pressed against the thrust receiving surface 12 due to the weight and magnetic force of the drive shaft 6 acting below the axis of the compressor.
  • a radial oil groove 7g extending in the radial direction from the inner peripheral end to the outer peripheral end is formed on the thrust surface 6f.
  • the outer diameter side corner portion of the lower end of the auxiliary shaft portion 6c, in other words, the radially outer end portion of the thrust surface 6f is a curved surface having a curvature radius Rs1 in order to relax the contact angle with the thrust receiving surface 12 during rotation.
  • the chamfered portion (fillet) 6e is formed.
  • the arc range of the chamfered portion (fillet) 6 is formed in an angle range smaller than 90 degrees.
  • auxiliary bearing 11 of auxiliary shaft portion 6c [Material hardness of auxiliary bearing 11 of auxiliary shaft portion 6c] Generally, the main shaft portion 6b and the sub shaft portion 6c of the drive shaft 6 are hardened and used by quenching a base material carbon steel. A portion indicated by dots in FIG. 2A indicates a quenching portion of the auxiliary shaft portion 6c. On the other hand, since the thrust surface 6f is used without being cured, it is necessary to keep a distance from the quenching portion of the countershaft portion 6c. For the radial receiving surface 11a of the auxiliary bearing 11, a metal metal having excellent lubricity is usually used.
  • the thrust receiving surface 12 has a fine surface roughness and is made of hardened hard steel material, and does not wear even when a load is applied from the rotating thrust surface 6f.
  • the oil pump 9 includes a movable portion 9a having an inner rotor 9aa and an outer rotor 9ab, a main body 9b, and an upper surface cover 9c that covers the movable portion 9a, and is fixed to the subframe 8b with screws 24 at the main body 9b portion. ing.
  • the upper surface of the upper surface cover 9c is the thrust receiving surface 12 as described above, and the oil pump 9 is attached to the subframe 8b so as to maintain the squareness accuracy and sufficient rigidity between the thrust receiving surface 12 and the auxiliary bearing 11. It is fixed and integrated.
  • the top cover 9c is made of an annular member, and a through hole 23 is formed in the center.
  • a pump insertion shaft 6d of the drive shaft 6 is inserted into an upper end opening formed by the through hole 23 and a space following the through hole 23.
  • the periphery of the upper end opening of the through hole 23 is a chamfered portion 12e formed of a curved surface having a curvature radius Rp0 so as not to contact the pump insertion shaft 6d.
  • the upper surface cover 9c is arrange
  • the movable portion 9 a is operated in accordance with the rotation of the drive shaft 6, sucks the lubricating oil stored in the oil storage space 14 from the lower end opening 9 d, and supplies it to various portions of the compression mechanism portion A.
  • the various parts of the compression mechanism part A correspond to various bearings such as the rocking bearing 17, the rocking thrust bearing 18, the main bearing 19, the auxiliary bearing 11 and the thrust receiving surface 12, and the sliding part of the Oldham coupling 25.
  • the lubricating oil sucked up by the oil pump 9 is supplied to the rocking bearing 17 and the main bearing 19 from the oil supply vertical hole 7a through the eccentric shaft oil supply horizontal hole 7b and the main shaft oil supply horizontal hole 7c.
  • a part of the lubricating oil flowing out from the upper outlet of the oil supply vertical hole 7 a or the eccentric shaft oil supply horizontal hole 7 b is supplied to the sliding portion of the oscillating thrust bearing 18 and the Oldham joint 25.
  • the lubricating oil sucked up by the oil pump 9 is supplied from the vertical oil supply hole 7a to the auxiliary bearing 11 through the radial oil supply horizontal hole 7d and from the vertical oil supply hole 7a to the thrust receiving surface 12 through the thrust oil supply horizontal hole 7e. Is done.
  • the oil supply to the thrust receiving surface 12 is a characteristic part of the first embodiment, and will be described below again.
  • the thrust receiving surface 12 of the upper surface cover 9c has a flat surface 12b on the radially inner side and an inclined surface 12d on the radially outer side of the flat surface 12b that is gently inclined downward toward the outside.
  • the flat surface 12b is a surface that is perpendicular to the radial receiving surface 11a that is the inner peripheral surface of the auxiliary bearing 11 and has a uniform height.
  • the flat surface 12b of the thrust receiving surface 12 is connected to be in contact with the chamfered portion 12e having the curvature radius Rp0 at the inner peripheral end, and is connected to be in contact with the inclined surface 12d with the curvature radius Rp1 at the flat surface end point 12c.
  • the drive shaft 6 is inclined about 1/1000 [rad] to 2/1000 [rad] in the compressive load direction under the maximum load condition. If the inclination angle of the inclined surface 12d is designed to be the same level as the inclination of the drive shaft 6 under the maximum load condition, the thrust surface 6f is gently in contact with the thrust receiving surface 12 under the maximum load condition under the severest operating conditions. In this state, the wear state can be alleviated.
  • the position of the contact point 12f that slides with the thrust receiving surface 12 moves in the radial direction from the inner peripheral side to the outer peripheral side as the auxiliary shaft portion 6c of the drive shaft 6 is inclined.
  • the entire flat surface 12b receives the thrust load acting on the drive shaft 6.
  • the thrust load acting on the drive shaft 6 usually corresponds to the respective weights of the drive shaft 6, the rotor 10a, the balancer 26a, and the balancer 26b, and the magnetic force in the thrust downward direction.
  • Hertz stress ⁇ (load) x (Young's modulus) x L x ⁇ 1 / (curvature radius 1) 2 + (curvature radius 2) 2 ⁇ Holds.
  • the curvature radius Rs1 of the chamfered portion 6e is Rp0 ⁇ Rs1 ⁇ Rp1 It is necessary to design Rs1 to be at least larger than Rp0 and to be close to Rp1.
  • the general R chamfer (fillet) is about R0.2 to R2, whereas the radius of curvature Rs1 of the chamfer 6e is large within the design allowable range, and is usually larger than R3.
  • the sliding portion on which the auxiliary shaft portion 6c and the upper surface cover 9c slide is formed by separating the thrust receiving surface 12 from the thrust surface 6f with the radially outer side of the thrust receiving surface 12 as an inclined surface 12d.
  • the flat surface 12b is formed. Therefore, compared with the case where the entire thrust receiving surface 12 is formed as a flat surface 12b without forming the inclined surface 12d, the outer peripheral position of the sliding portion can be moved radially inward. For this reason, the maximum sliding speed can be suppressed.
  • the corner of the flat surface end point 12c which is the boundary between the flat surface 12b and the inclined surface 12d, is taken. For this reason, the contact angle between the thrust surface 6f and the thrust receiving surface 12 at the flat surface end point 12c also becomes gentle, and the contact surface pressure of the sliding portion can be relaxed.
  • An oil return pipe 29 extending in the axial direction of the drive shaft 6 is disposed between the main frame 8a and the stator 10b, and an oil return hole 29a penetrating so as to extend in the axial direction is formed in the stator 10b. .
  • the oil return pipe 29 and the oil return hole 29 a have a function of returning the lubricating oil used in the compression mechanism portion A to the oil storage space 14.
  • FIG. 1 although the case where only the oil return pipe
  • the scroll compressor 100 has the compression mechanism part A disposed in the upper part of the hermetic container 13 and the motor part B disposed in the lower part, and the driving force of the motor part B is supplied via the drive shaft 6 to the compression mechanism part A. Is transmitted to the orbiting scroll 2, and the orbiting scroll 2 is driven to rotate.
  • the kind of lubricating oil is not specifically limited, What is necessary is just to be used as lubricating oil of the compression mechanism part A.
  • PAG polyalkylene glycol
  • POE polyol ester
  • the type of refrigerant is not particularly limited.
  • the refrigerant in the sealed container 13 is discharged to the outside in this way, the inside of the sealed container 13 has a negative pressure. For this reason, the refrigerant from the refrigerant pipe (not shown) outside the machine is sucked into the sealed container 13 through the refrigerant suction pipe 15. The refrigerant sucked into the sealed container 13 is sucked into the compression chamber 5 from the suction port 3 after cooling the electric motor 10.
  • the inner rotor 9aa of the oil pump 9 rotates, and the outer rotor 9ab also rotates accordingly, so that the lubricating oil in the oil storage space 14 is supplied through the oil supply vertical hole by the pump action of the oil pump 9 It is sucked upward through 7a.
  • the sucked lubricating oil is distributed to each of the sub bearing 11, the main bearing 19 and the rocking bearing 17, and lubricates each of these bearings.
  • Lubricating oil passing through the rocking bearing 17 is supplied to the rocking thrust bearing 18 and the Oldham coupling 25 to lubricate these sliding portions. Further, the lubricating oil supplied to the Oldham coupling 25 is returned to the oil storage space 14 through the oil return pipe 29.
  • the auxiliary bearing 11 supports a radial load generated when the scroll compressor 100 is operated.
  • the cylindrical portion 8ba of the sub-frame 8b provided with the auxiliary bearing 11 is thinner in the radial direction than the flange portion 8bb, and is a thin flexible structure portion.
  • the cylindrical part 8ba is elastically deformed following the inclination of the drive shaft 6 and suppresses the single contact of the drive shaft 6 with the radial receiving surface 11a. It is possible.
  • FIG. 2 is a schematic diagram, the cylindrical portion 8ba is illustrated as being thicker than the flange portion 8bb, but in reality, the cylindrical portion 8ba is illustrated as being formed thick. Is formed.
  • auxiliary load and thrust load A radial load acts on the auxiliary bearing 11 as the scroll compressor 100 is operated. That is, a variable load synchronized with the rotation of the drive shaft 6 is applied to the auxiliary bearing 11 in the radial direction.
  • the auxiliary bearing 11 is constituted by a plain bearing.
  • a thrust load acts on the thrust receiving surface 12 of the top cover 9c. That is, the thrust receiving surface 12 is applied with its own weight as a thrust load vertically downward.
  • the thrust receiving surface 12 is applied with its own weight as a thrust load vertically downward.
  • an inclined surface 12d is provided on the outer peripheral side of the thrust receiving surface 12, and a region between the bottom surface of the auxiliary bearing 11 and the inclined surface 12d and radially outside the thrust receiving surface 12 is provided.
  • An oil sump space 22 is formed in a region further outside the thrust receiving surface 12. Since oil flows into the oil sump space 22 from the oil seal portion 11d on the lower end side of the radial receiving surface 11a, the oil head pressure stored up to the upper end 22b causes the oil receiving space 22 to constantly move from the outer peripheral side of the thrust receiving surface 12 to the sliding surface. A stable oil is supplied.
  • the radially outer region of the thrust receiving surface 12 is the inclined surface 12d.
  • the region is not limited to the inclined surface 12d and is higher than the height position of the flat surface 12b. It is good also as a plane formed in the low position.
  • part of the lubricating oil that has been pressurized by the oil pump 9 and has flowed into the oil supply vertical hole 7a is also discharged radially outward by centrifugal force from the thrust oil supply lateral hole 7e formed in the pump insertion shaft 6d, and the thrust receiving surface 12 To reach.
  • the thrust oil supply lateral hole 7e is formed in the pump insertion shaft 6d so as to communicate with the oil supply vertical hole 7a below the thrust surface 6f and to extend in the radial direction of the drive shaft 6 so that the lubricating oil is supplied to the thrust surface. Supply between 6f and the thrust receiving surface 12.
  • the lubricating oil that has reached the thrust receiving surface 12 flows through the radial oil groove 7g formed on the thrust surface 6f from the inner peripheral end to the outer peripheral end, and then flows into the oil sump space 22.
  • the flow passage cross-sectional area obtained by cutting the radial oil groove 7g in the axial direction is larger than the flow passage cross-sectional area obtained by cutting the annular gap between the pump insertion shaft 6d and the upper surface cover 9c in the direction perpendicular to the axial direction. It is formed small.
  • the lubricating oil in the annular gap between the pump insertion shaft 6d and the upper surface cover 9c flows in a concentrated manner in the radial oil groove 7g, and the radial oil groove 7g is filled with the lubricating oil. It has become. Since the radial oil groove 7g makes one round in the circumferential direction as the drive shaft 6 rotates, the lubricating oil spreads over the entire thrust receiving surface 12.
  • the lubricating oil supplied to the radial oil supply horizontal hole 7d from the oil supply vertical hole 7a is supplied to the gap between the outer peripheral surface of the countershaft portion 6c and the radial receiving surface 11a from the axial oil groove 7f. Then, the lubricating oil supplied to the gap between the outer peripheral surface of the auxiliary shaft portion 6 c and the radial receiving surface 11 a spreads over the entire radial receiving surface 11 a of the auxiliary bearing 11 and lubricates the auxiliary bearing 11.
  • the region S1 above the axial oil groove 7f has a longer axial length than the lower region S2.
  • the gap between each of the regions S1 and S2 and the auxiliary bearing 11 serves as an oil seal portion due to the retention of lubricating oil. Since the region S1 is longer in the axial direction than the region S2, the axial length of the upper oil seal portion 11c is longer than the axial length of the lower oil seal portion 11d.
  • the lubricating oil that has passed through the vertical oil supply hole 7a through the thrust oil supply horizontal hole 7e and the lubricating oil that has passed through the vertical oil supply hole 7a and the radial oil supply horizontal hole 7d merge.
  • the lubricating oil merged in the oil sump space 22 passes into the oil storage space 14 through the oil discharge passage 21 formed by grooves and holes formed in the mounting surfaces of the subframe 8b and the oil pump 9 on each other. Returned.
  • the oil discharge passage 21 has an upstream end opened to the lower end 22 a of the oil sump space 22, and a downstream end discharge hole 21 a opened downward to the outer surface of the main body 9 b of the oil pump 9.
  • the discharge hole 21 a is an outlet of the oil discharge channel 21 and is located below the oil sump space 22.
  • the lubricating oil in the oil sump space 22 is discharged to the outside of the subframe 8b through the oil discharge channel 21.
  • symbol 22b of Fig.2 (a) is an upper end of the oil sump space 22, and the upper end 22b is arrange
  • the auxiliary bearing 11 is provided inside the cylindrical portion 8ba of the subframe 8b as shown in FIG. A cylindrical space is formed below. This space becomes a part of the oil sump space 22.
  • a wall surface portion 22d that is recessed outward in the radial direction is formed.
  • the oil reservoir space 22 is further expanded by providing the wall surface portion 22d on the inner peripheral surface 22c of the tubular portion 8ba of the subframe 8b.
  • the wall surface portion 22d by providing the wall surface portion 22d, the lower end portion of the auxiliary shaft portion 6c of the drive shaft 6 that rotates while tilting comes into contact with the thrust receiving surface 12 or the radial receiving surface 11a, so that the auxiliary shaft portion 6c and the thrust receiving surface are received.
  • the possibility that the surface 12 or the radial receiving surface 11a is damaged can be reduced.
  • a throttle channel 21 b that gives an appropriate channel resistance is formed.
  • the lubricating oil is temporarily supplied to the oil sump space 22. It can be stored.
  • wear powder is generated on the radial receiving surface 11 a or the thrust receiving surface 12, it is necessary to discharge the wear powder to the oil storage space 14 without accumulating the wear powder in the oil sump space 22. That is, it is necessary to discharge the wear powder from the oil reservoir space 22 through the oil discharge channel 21.
  • the channel cross section of the throttle channel 21b is a channel cross section in which the depth and width are set to about 0.2 mm to 1 mm, respectively.
  • the radial oil groove 7g is formed on the thrust surface 6f as described above, but in order to maintain the thrust surface 6f and the thrust receiving surface 12 in a good oil lubrication state, the inside of the radial oil groove 7g is lubricated. It needs to be filled with oil. When the upper surface of the lubricating oil accumulated in the oil sump space 22 is positioned below the bottom of the concave groove that constitutes the axial oil groove 7f, the radial oil groove 7g is not filled with the lubricating oil.
  • the upper surface of the oil accumulated in the oil sump space 22 is configured to be positioned above the bottom of the concave groove that constitutes the axial oil groove 7f.
  • the volume of the oil reservoir space 22 and the throttle channel 21b may be designed from the relationship with the amount of oil flowing into the oil reservoir space 22.
  • the radial oil groove 7g is formed at one location on the thrust surface 6f, and the circumferential arrangement position on the thrust surface 6f is set in consideration of the bending direction of the drive shaft 6.
  • the arrangement position in the circumferential direction of the radial oil groove 7g will be described with reference to FIG. 3 and FIG.
  • the load acting on the drive shaft 6 and the acting direction of the load will be described with reference to FIG. 5.
  • FIG. 5 is an explanatory diagram of the load acting on the drive shaft of the scroll compressor according to Embodiment 1 of the present invention and the acting direction of the load.
  • the direction connecting the axis of the drive shaft 6 and the axis of the eccentric shaft 6a (hereinafter referred to as the eccentric direction) is defined as + when the drive shaft 6 is viewed in plan from the axis direction.
  • the Z axis is the axis of the drive shaft 6 and the upward direction is +.
  • the X axis is a coordinate axis orthogonal to the Y axis and the Z axis.
  • the drive shaft 6 rotates counterclockwise in the ⁇ ( ⁇ X) direction as viewed from above, but receives a gas load in the opposite + X direction.
  • Fx works mainly in the + X direction with a gas load necessary to compress the refrigerant gas in the compression chamber 5.
  • F 1x is a load in the X-axis direction that acts on the main bearing 19.
  • F 1y is a load in the Y-axis direction that acts on the main bearing 19.
  • F 2x is a load in the X-axis direction that acts on the auxiliary bearing 11.
  • F 2y is a load in the Y-axis direction that acts on the auxiliary bearing 11.
  • FBW1 is a load due to centrifugal force acting on the drive shaft 6 by the balancer 26a.
  • FBW2 is a load due to centrifugal force acting on the drive shaft 6 by the balancer 26b.
  • FIG. 3 is an explanatory diagram of the bending state of the drive shaft of the scroll compressor according to Embodiment 1 of the present invention in the ZX cross section and the circumferential position of the radial oil groove.
  • 3A shows a case where the gas load acting on the drive shaft 6 is in a low load operation
  • FIG. 3B shows a case where the gas load is in a high load operation.
  • (a) is a diagram showing a bending state of the drive shaft 6 in the ZX section
  • (b) is a plan view of the drive shaft 6 as viewed from above.
  • the centrifugal force Fc acts on the drive shaft 6 in the + Y direction due to the eccentric rotation of the swing scroll 2 or the like.
  • the centrifugal force Fc does not act on the drive shaft 6.
  • the gas load Fx necessary for compressing the refrigerant gas in the compression chamber 5 acts as a main load in the + X direction on the drive shaft 6, and the main shaft portion 6b.
  • the countershaft portion 6c is subjected to a reaction force commensurate with it.
  • the drive shaft 6 bends and deforms more greatly than during low load operation.
  • the thrust surface 6f of the auxiliary shaft portion 6c is inclined with respect to the thrust receiving surface 12 so that the + direction of the X axis is lifted and the-direction of the X axis is pressed.
  • the radial oil groove 7g is pressed against the thrust receiving surface 12, there is a problem that the surface pressure is locally increased near the edge of the radial oil groove 7g and is easily worn. Therefore, it is preferable to arrange the radial oil groove 7g so as to avoid the ⁇ X directions so that the vicinity of the radial oil groove 7g does not come into contact with the thrust receiving surface 12.
  • the auxiliary shaft portion 6c approaches the -X direction and a load is applied, so that the axial oil groove 7f is provided on the + X side (anti-load side).
  • FIG. 4 is an explanatory diagram of the bending state in the YZ section of the drive shaft of the scroll compressor according to Embodiment 1 of the present invention and the circumferential position of the radial oil groove.
  • (A) shows a low speed operation
  • (B) shows a high speed operation.
  • (a) is a diagram showing a bending state of the drive shaft 6 in the YZ section
  • (b) is a plan view of the drive shaft 6 as viewed from above.
  • (c) is explanatory drawing of the position of the circumferential direction of the radial direction oil groove 7g seen from the bottom.
  • the arcuate double line arrow indicates the rotation direction of the drive shaft 6.
  • the radial shaft receiving surface 11a of the auxiliary bearing 11 has the auxiliary shaft portion 6c. Tilt closer to the -Y direction on the lower side.
  • the thrust surface 6f lifts the positive direction of the Y axis against the thrust receiving surface 12 and presses the negative direction of the Y axis. Lean on. Therefore, it is preferable to arrange so as to avoid the ⁇ Y direction so that the vicinity of the radial oil groove 7 g does not come into contact with the thrust receiving surface 12.
  • the driving shaft 6 is subjected to the gas load, which is the main load, and the centrifugal force, and the thrust surface 6f is tilted.
  • the groove 7g is less likely to hit one side in the + direction of the Y axis, that is, the eccentric direction. Therefore, the radial oil groove 7g is preferably arranged in the eccentric direction (+ Y direction).
  • the angle at which 6f hits one side and the direction of the secondary shaft radial load also work slightly deviated.
  • the position of the radial oil groove 7g on the thrust surface 6f is set in the + direction (eccentricity) of the Y axis. Further durability can be obtained when the angle ⁇ is shifted counterclockwise (counter-rotation direction) as viewed from below (direction).
  • the angle ⁇ is an acute angle range of 0 deg to 45 deg.
  • the gap 20 that continuously increases from the contact point 12f toward the radially outer side is provided between the thrust surface 6f and the thrust receiving surface 12.
  • An oil sump space 22 is provided on the outer peripheral side of the thrust surface 6f. Lubricating oil is supplied to the thrust receiving surface 12 through the radial oil groove 7g and the gap 20, and then stored in the oil sump space 22. It has the composition to be. Thus, by providing the oil sump space 22, it is possible to always ensure the flow of the lubricating oil between the thrust surface 6 f and the thrust receiving surface 12.
  • the compressor of the compressor is provided by a relatively simple means that merely provides the gap and the oil sump space 22 that increase radially outward between the thrust surface 6f and the thrust receiving surface 12. It is possible to improve the life and reliability.
  • throttle passage 21b in the middle of the oil discharge passage 21, it is possible to make it easy to once hold the lubricating oil in the oil sump space 22, and good oil lubrication of the thrust receiving surface 12 is achieved. Is effective to get.
  • the thrust receiving surface 12 may be configured such that the radially outer side of the thrust receiving surface 12 is an inclined surface 12 d that is inclined downward as it goes outward. Can be configured.
  • the oil sump space 22 is provided on the radially outer side of the thrust receiving surface 12, the radial position of the sliding portion where the thrust surface 6f and the thrust receiving surface 12 are brought into contact can be moved inward. For this reason, the sliding speed at the flat surface end point 12c, which is the contact point, can be lowered during high load and high speed operation, which is a severe sliding condition in which the inclination angle of the drive shaft 6 becomes large. Or a contact angle can be restrained small.
  • the periphery of the upper surface opening of the through hole 23 of the upper surface cover 9c is a chamfered portion 12e formed with a curved surface, it is possible to avoid contact with the pump insertion shaft 6d when the drive shaft 6 rotates.
  • the contact angle with the thrust receiving surface 12 can be relaxed, and good sliding is achieved. Can keep the state.
  • the compressor is not limited to the structure shown in FIGS. 1 to 5, and various modifications can be implemented as follows, for example, without departing from the gist of the present invention.
  • FIG. 6 is a diagram illustrating a first modification of the scroll compressor according to the first embodiment of the present invention, and is a schematic diagram in which a lower end portion is enlarged from a secondary bearing of the scroll compressor.
  • the modification 1 is different from the basic configuration shown in FIG. 2 in that the thrust oil supply lateral hole 7e of the pump insertion shaft 6d is eliminated.
  • the thrust receiving surface 12 is also hardened and hardened, and the distance between the thrust receiving surface 12 and the quenching portion of the auxiliary shaft portion 6c (radial surface) is closer than the basic configuration shown in FIG.
  • the space of the oil sump space 22 is different from the basic configuration shown in FIG. 2 because the inner wall surface 22ca has no recess as shown in FIG.
  • the thrust surface 6f is greatly inclined and contacts and slides at a chamfered portion (fillet) 6e having a large curvature radius.
  • a chamfered portion (fillet) 6e having a large curvature radius.
  • the lubricating oil leaking from the oil pump 9 is supplied to the chamfered portion 6e from the inner peripheral side of the thrust receiving surface 12 through the radial oil groove 7g from the gap between the pump insertion shaft 6d and the through hole 23.
  • the amount of oil supply due to the latter oil pump leakage decreases as the rotational speed decreases, the head becomes smaller and decreases, so there is a limit to the range where low speed can be achieved.
  • the present modification 1 can achieve the same effect.
  • FIG. 7 is a diagram showing a second modification of the scroll compressor according to the first embodiment of the present invention, and is a schematic diagram in which the lower end portion is enlarged from the auxiliary bearing of the scroll compressor.
  • Modification 2 differs from the basic configuration shown in FIG. 2 in the following two points. That is, one is that there is no inclined surface 12d on the thrust receiving surface 12 side, and the flat surface 12b is extended to the radially outer end. The other is that the oil sump space 22 is formed by making the radius of curvature Rs1 of the chamfered portion 6e at the radially outer end of the thrust surface 6f larger than that in FIG.
  • the thrust receiving surface 12 is also hardened and hardened, the distance between the thrust receiving surface 12 and the quenching portion of the auxiliary shaft portion 6c is close, and the space of the oil sump space 22 is also smaller than that in FIG.
  • the flat surface end point 12c of the thrust receiving surface 12 is a contact point with the thrust surface 6f.
  • the entire thrust receiving surface 12 is a flat surface, so that when the drive shaft 6 is inclined, the point on the thrust receiving surface 12 that contacts the chamfering start position 6ea of the chamfered portion 6e is reduced. It becomes the contact point 12f. Therefore, by increasing the radius Rs of the chamfered portion 6e, the contact point 12f is located on the radially inner side of the thrust receiving surface 12 as compared with the case where the radius Rs is small, so that the sliding speed at the contact point 12f can be reduced. it can. Further, by increasing the radius Rs of the chamfered portion 6e, the contact angle can be relaxed as compared with the case where the radius Rs is small, even if the thrust receiving surface 12 as a whole is the flat surface 12b.
  • a circle whose radius is a line segment perpendicular to the axis of the drive shaft 6 from the contact point 12f (hereinafter referred to as a contact sliding circle) is larger than the movable portion 9a when viewed in the axial direction. It has a configuration. With this configuration, the following effects can be obtained.
  • the upper surface cover 9c has an outer peripheral portion supported by the main body body 9b and an inner peripheral portion side which is not supported and is floated, and has a so-called cantilever shape. For this reason, if the contact sliding circle is inside the movable portion 9a of the oil pump 9, the inner peripheral side of the upper surface cover 9c may be pushed down by the drive shaft 6 and the upper surface cover 9c may be bent. .
  • the configuration in which the contact sliding circle is larger than the movable portion 9a has an effect of preventing the upper surface cover 9c from being bent.
  • FIG. 8 is a diagram showing a third modification of the scroll compressor according to the first embodiment of the present invention.
  • 8A is a schematic diagram in which the lower end portion is enlarged from the auxiliary bearing of the scroll compressor
  • FIG. 8B is a diagram of the annular steel plate that is the thrust receiving surface of the third modification viewed from directly above.
  • the third modification differs from the second modification in the following points.
  • the thrust receiving surface 12 is different in that an annular steel plate 12g having a small thickness and a small surface roughness is used.
  • the annular steel plate 12g is used on the top cover 9c of the oil pump 9.
  • thickness means, for example, that the thickness is 1 mm or less
  • fine surface roughness means that the surface roughness is, for example, z1 or less.
  • a commercially-quenched thin steel plate material such as a PK steel plate having a thickness of 0.5 mm can be used.
  • the annular steel plate 12g corresponds to an example of the annular member of the present invention, and is obtained by polishing the surface of a quenched steel strip.
  • the annular steel plate 12g has an outer protrusion 12ga projecting outwardly at a part of the circular outer periphery, and the outer protrusion 12ga is formed at the notched portion of the main body 9b of the oil pump 9. Inserted and fixed so as not to rotate.
  • FIG. FIG. 9 is a diagram showing a main part of the scroll compressor according to Embodiment 2 of the present invention, and is a schematic diagram showing an enlarged lower end portion from the auxiliary bearing.
  • the formation position of the radial oil groove 7g is changed from the thrust surface 6f side to the thrust receiving surface 12 side, and the number of radial oil grooves 7g The difference is that the number is increased to a plurality, preferably 3 or more.
  • the thrust receiving surface 12 side is formed only by the flat surface 12b orthogonal to the compressor shaft 6g, and there is no inclined surface 12d.
  • the thrust surface 6f side is different in that it is formed by an inclined surface 6fa inclined from a plane orthogonal to the shaft center 6g (compressor shaft center reference).
  • the thrust surface 6f is inclined upward as it goes radially outward from the shaft center 6g.
  • the contact angle between the thrust surface 6f and the thrust receiving surface 12 is designed by designing the inclination angle of the thrust surface 6f to be approximately the same as the inclination angle ⁇ s of the shaft center 6h of the countershaft portion 6c bent under high load and high speed operation. Can be kept small.
  • the “inclination angle of the axis 6g deflected by high load and high speed operation” is about 1/1000 to 2/1000 rad.
  • the rotation of the drive shaft 6 causes the position of the radial oil groove 7g to rotate, thereby generating a centrifugal pump action. 12 had the effect of spreading the lubricant over the entire surface.
  • the position of the radial oil groove 7g does not rotate, so the lubricating oil in the radial oil groove 7g It is difficult to flow and spread to the thrust receiving surface 12. Therefore, in the second embodiment, the flow resistance is reduced by increasing the number of the radial oil grooves 7g to a plurality, and the effect of spreading the lubricating oil over the entire thrust receiving surface 12 can be obtained.
  • the flow passage cross-sectional area of the radial oil groove 7g is made smaller than the flow passage cross-sectional area of the flow passage formed by the annular gap between the pump insertion shaft 6d and the upper surface cover 9c.
  • the lubricating oil flowing through the radial oil groove 7g overflows to the upper surface side of the thrust receiving surface 12, and the thrust surface 6f rotates to spread over the entire surface, so that the lubrication state can be kept good.
  • the contact point 12f is located radially inward as compared to the case where the inclined surface 6fa is not provided and the thrust surface 6f and the thrust receiving surface 12 are both flat surfaces. For this reason, it is possible to reduce the sliding speed at the contact point 12f and reduce the contact angle at the contact point 12f.
  • the lubricating oil can be supplied to the thrust receiving surface 12 more abundantly by centrifugal action.
  • the radial oil groove 7g is formed at the thrust receiving surface 12 as in the second embodiment, if the radial oil groove 7g is appropriately designed, the same effect as in the first embodiment can be obtained.
  • FIG. 9 shows a configuration in which both ends of the radial receiving surface 11a of the auxiliary bearing 11 in the axial direction of the drive shaft 6 are curved.
  • FIG. 10 is a diagram illustrating a main part of the scroll compressor according to the third embodiment of the present invention, and is a schematic diagram illustrating an enlarged lower end portion of the auxiliary bearing.
  • the subframe 8b receives a thrust load generated by the weight of the drive shaft 6 and the rotor magnetic force.
  • this thrust load is received by the upper surface cover 9 c of the oil pump 9 disposed below the subframe 8 b, and the upper surface of the upper surface cover 9 c is the thrust receiving surface 12.
  • the third embodiment is different in that the thrust load is received by the bottom plate 8bc fixed to the bottom of the subframe 8b with the bolt 40, and the upper surface of the bottom plate 8bc is the thrust receiving surface 12.
  • the shape of the thrust receiving surface 12 is substantially the same as in FIG.
  • the shape of the thrust surface 6f is the same as that in FIG.
  • the bottom plate 8bc is an annular circular base plate in which a through hole is formed at the center, and the outer diameter of the bottom plate 8bc is larger than the outer diameter of the cylindrical portion 8ba of the subframe 8b.
  • the bottom plate 8bc has a plurality of bolt holes.
  • the bolt 40 is passed through the bolt holes and screwed into the screw holes provided in the subframe 8b, so that the bottom plate 8bc is fixed to the subframe 8b. .
  • the pump insertion shaft 6d is longer than FIG. 2 by the thickness of the bottom plate 8bc.
  • the bottom plate 8bc corresponds to an example of the annular member of the present invention.
  • the thrust receiving surface 12 is formed by the bottom plate 8bc separate from the top cover 9c of the oil pump 9, the material and thickness of the bottom plate 8bc are not subject to the design restrictions of the oil pump 9. Can be selected. Therefore, it is easy to easily increase the surface hardness and bending strength of the thrust receiving surface 12 without being restricted by the design of the oil pump 9.
  • the characteristic configurations of the first embodiment, the first modification to the third modification, the second embodiment, and the third embodiment may be appropriately combined without departing from the gist of the present invention.
  • the configuration in which a plurality of radial oil grooves 7g are provided on the thrust receiving surface 12, which is a characteristic configuration of the second embodiment is not limited to use in combination with the configuration in which the inclined surface 6fa is provided on the thrust surface 6f. .
  • the configuration in which the radius of curvature Rs1 of the chamfered portion 6e of Modification 2 is increased may be combined with Embodiment 2.
  • the sub-bearing 11 and the sub-frame 8b are separately formed. However, the sub-bearing 11 and the sub-frame 8b are integrally formed. It is good also as a secondary bearing which supports a surface.
  • the member on which the thrust receiving surface is formed is the top cover 9c of the oil pump 9, the annular steel plate 12g, or the bottom plate 8bc fixed to the bottom of the subframe 8b. It was comprised separately from the subbearing 11 in which the receiving surface 11a is formed.
  • the auxiliary bearing 11 is integrated with the subframe 8b, and the member on which the thrust receiving surface is formed is also integrated, and the integrated component is a radial of the auxiliary shaft portion 6c of the drive shaft 6. It is good also as a subbearing which supports a surface and a thrust surface.
  • the compressor is a scroll compressor
  • the present invention is not limited to this, and other types of compressors such as a rotary compressor may be used.

Abstract

This compressor is provided with: a compression mechanism section disposed within a hermetic container; an electric motor section which drives the compression mechanism section; a drive shaft which transmits the drive force of the electric motor section to the compression mechanism section; a primary bearing which supports the upper part of the drive shaft; a secondary bearing which supports the lower part of the drive shaft; a radial receiving surface which is provided on the secondary bearing and which supports the radial surface of the drive shaft in a slidable manner; and a thrust receiving surface which supports the thrust surface of the drive shaft in a slidable manner. The compressor has, between the thrust surface and the thrust receiving surface: a contact point where the thrust surface and the thrust receiving surface are in contact with each other through curved surfaces; and a gap which continuously increases radially outward from the contact point.

Description

圧縮機Compressor
 本発明は、冷凍サイクル装置の構成要素の一つとして使用される圧縮機に関するものである。 The present invention relates to a compressor used as one of components of a refrigeration cycle apparatus.
 空気調和装置等の冷凍サイクル装置の構成要素の1つとし、互いに噛み合う揺動スクロールおよび固定スクロールを有する圧縮機構部と、圧縮機構部を駆動する電動機部と、電動機部の駆動力を圧縮機構部に伝達する駆動軸とを備えたスクロール圧縮機がある。駆動軸は、電動機部の上下に設けられた主軸受と副軸受とによって回転自在に支持されている。駆動軸が電動機部によって回転駆動されると、駆動軸の上端部の偏心軸部に設置された揺動スクロールが公転する。これにより、圧縮機構部内の揺動スクロールと固定スクロールの間に設けられた圧縮室で冷媒が圧縮される。圧縮機構部で冷媒が圧縮されると、駆動軸には半径方向のガス荷重が作用し、このガス荷重は主軸受と副軸受で支持される。また、副軸受は、駆動軸の回転を支持すると共に駆動軸の鉛直下向きの自重を支持する。 One of the components of a refrigeration cycle apparatus such as an air conditioner, a compression mechanism section having an orbiting scroll and a fixed scroll that mesh with each other, an electric motor section that drives the compression mechanism section, and a driving force of the electric motor section is a compression mechanism section There is a scroll compressor provided with a drive shaft for transmitting to the motor. The drive shaft is rotatably supported by a main bearing and a sub bearing provided above and below the motor unit. When the drive shaft is rotationally driven by the electric motor portion, the orbiting scroll installed on the eccentric shaft portion at the upper end portion of the drive shaft revolves. Thereby, the refrigerant is compressed in a compression chamber provided between the swing scroll and the fixed scroll in the compression mechanism section. When the refrigerant is compressed by the compression mechanism portion, a radial gas load acts on the drive shaft, and this gas load is supported by the main bearing and the sub-bearing. The auxiliary bearing supports the rotation of the drive shaft and also supports the weight of the drive shaft in the vertically downward direction.
 このようなスクロール圧縮機においては、ラジアル方向の荷重(以下、ラジアル荷重という)およびスラスト方向の荷重(以下、スラスト荷重)の双方を同時に支持することを目的として、副軸受に玉軸受が採用されることが多い(たとえば特許文献1参照)。 In such a scroll compressor, a ball bearing is used as a secondary bearing for the purpose of supporting both a radial load (hereinafter referred to as a radial load) and a thrust load (hereinafter referred to as a thrust load) simultaneously. (See, for example, Patent Document 1).
 しかしながら、玉軸受はコストが高く、また、内輪と転動球および外輪と転動球がそれぞれ点で接触して荷重を支えるため、長期的な信頼性に劣る等の種々の問題点がある。この対策として、副軸受にすべり軸受の適用したスクロール圧縮機がある(たとえば、特許文献2参照)。 However, ball bearings are expensive and have various problems such as poor long-term reliability because the inner ring and the rolling ball and the outer ring and the rolling ball contact each other at points to support the load. As a countermeasure, there is a scroll compressor in which a slide bearing is applied to the auxiliary bearing (see, for example, Patent Document 2).
 特許文献2に記載のスクロール圧縮機は、すべり軸受である副軸受が、ラジアル荷重とスラスト荷重とを個別に支持するラジアル軸受およびスラスト軸受などから構成されている。そして、駆動軸の下端部に設けたスラスト面を、副軸受に設けたスラスト受面で受け、駆動軸の副軸部に設けたラジアル面を、副軸受に設けたラジアル受面で受けている。 In the scroll compressor described in Patent Document 2, a secondary bearing, which is a slide bearing, is configured by a radial bearing and a thrust bearing that individually support a radial load and a thrust load. And the thrust surface provided in the lower end part of the drive shaft is received by the thrust receiving surface provided in the auxiliary bearing, and the radial surface provided in the auxiliary shaft part of the drive shaft is received by the radial receiving surface provided in the auxiliary bearing. .
特開平04-241786号公報Japanese Patent Laid-Open No. 04-241786 特許第4356375号公報Japanese Patent No. 4356375
 一般的に、スクロール圧縮機の駆動軸には、運転時に圧縮荷重と遠心力とが働き、ラジアル方向に大きな荷重が作用する。このため、駆動軸の軸心は、圧縮機の中心軸に対して傾斜しながら撓む。なお、圧縮機の中心軸は、上下方向に延びる軸を指す。駆動軸の主軸部と副軸部はそれぞれ、主軸受と副軸受に対して傾斜しながら回転する。特許文献1のように、スクロール圧縮機の副軸受に玉軸受を採用すると、転動球および内輪のクリアランスと、転動球および外輪のクリアランスとによって駆動軸の傾斜が吸収されるため、駆動軸と副軸受との間の平行度を確保しやすい。しかし、玉軸受は、上述のようにコスト面および長期的な信頼性の面で劣る。 Generally, a compressive load and a centrifugal force act on the drive shaft of a scroll compressor during operation, and a large load acts in the radial direction. For this reason, the shaft center of the drive shaft bends while being inclined with respect to the central axis of the compressor. The central axis of the compressor refers to an axis extending in the vertical direction. The main shaft portion and the sub shaft portion of the drive shaft rotate while being inclined with respect to the main bearing and the sub bearing, respectively. If a ball bearing is adopted as the secondary bearing of the scroll compressor as in Patent Document 1, the inclination of the drive shaft is absorbed by the clearance of the rolling ball and the inner ring and the clearance of the rolling ball and the outer ring. It is easy to secure parallelism between the secondary bearing and the secondary bearing. However, the ball bearing is inferior in terms of cost and long-term reliability as described above.
 特許文献2のように副軸受にすべり軸受を採用すると、コストおよび長時間寿命で優位性があるものの、傾斜しながら回転する駆動軸がスラスト受面に片当りし、局所的なヘルツ応力が高くなって、スラスト受面での摺動状態が厳しくなる問題があった。しかしながら、特許文献2では、スラスト受面に対する片当りの問題について何ら検討されていない。 If a sliding bearing is adopted as a secondary bearing as in Patent Document 2, the cost and long life are superior, but the drive shaft that rotates while tilting hits the thrust receiving surface, and the local Hertz stress is high. Thus, there is a problem that the sliding state on the thrust receiving surface becomes severe. However, in Patent Document 2, no consideration is given to the problem of piece contact with respect to the thrust receiving surface.
 本発明は、このような点を鑑みなされたもので、副軸受にすべり軸受を用いた圧縮機において、スラスト受面の良好な摺動状態を確保することが可能な圧縮機を提供することを目的とする。 The present invention has been made in view of the above points, and provides a compressor capable of ensuring a good sliding state of a thrust receiving surface in a compressor using a slide bearing as a secondary bearing. Objective.
 本発明に係る圧縮機は、密閉容器内に配置された圧縮機構部と、圧縮機構部を駆動する電動機部と、電動機部の駆動力を圧縮機構部に伝達する駆動軸と、駆動軸の上部を支持する主軸受と、駆動軸の下部を支持する副軸受と、副軸受に設けられ、駆動軸のラジアル面を摺動自在に支持するラジアル受面と、駆動軸のスラスト面を摺動自在に支持するスラスト受面と、を備え、スラスト面とスラスト受面との間には、スラスト面とスラスト受面とが曲面で接する接触点と、接触点から径方向外側に向かって連続的に増加する隙間とを有するものである。 A compressor according to the present invention includes a compression mechanism unit disposed in a sealed container, an electric motor unit that drives the compression mechanism unit, a drive shaft that transmits a driving force of the electric motor unit to the compression mechanism unit, and an upper portion of the drive shaft. The main bearing that supports the shaft, the sub bearing that supports the lower part of the drive shaft, the radial bearing surface that is provided on the sub bearing and slidably supports the radial surface of the drive shaft, and the thrust surface of the drive shaft is slidable A thrust receiving surface that is supported by the contact surface, and a contact point between the thrust surface and the thrust receiving surface that is in contact with the curved surface, and continuously from the contact point toward the radially outer side. And an increasing gap.
 本発明によれば、スラスト受面の良好な摺動状態を確保することができる。 According to the present invention, a good sliding state of the thrust receiving surface can be ensured.
本発明の実施の形態1に係るスクロール圧縮機の断面構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the cross-sectional structure of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機の要部を示す図である。It is a figure which shows the principal part of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機の駆動軸のZ-X断面での撓み状態と、径方向油溝の周方向の配置位置との説明図である。It is explanatory drawing of the bending state in the ZX cross section of the drive shaft of the scroll compressor which concerns on Embodiment 1 of this invention, and the arrangement position of the circumferential direction of a radial direction oil groove. 本発明の実施の形態1に係るスクロール圧縮機の駆動軸のY-Z断面での撓み状態と、径方向油溝の周方向の配置位置との説明図である。It is explanatory drawing of the bending state in the YZ cross section of the drive shaft of the scroll compressor which concerns on Embodiment 1 of this invention, and the arrangement position of the circumferential direction of a radial direction oil groove. 本発明の実施の形態1に係るスクロール圧縮機の駆動軸に作用する荷重および荷重の作用方向の説明図である。It is explanatory drawing of the load which acts on the drive shaft of the scroll compressor which concerns on Embodiment 1 of this invention, and the acting direction of a load. 本発明の実施の形態1に係るスクロール圧縮機の変形例1を示す図である。It is a figure which shows the modification 1 of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機の変形例2を示す図である。It is a figure which shows the modification 2 of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機の変形例3を示す図である。It is a figure which shows the modification 3 of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るスクロール圧縮機の要部を示す図で、副軸受より下端部分を拡大して示す模式図である。It is a figure which shows the principal part of the scroll compressor which concerns on Embodiment 2 of this invention, and is a schematic diagram which expands and shows a lower end part from a subbearing. 本発明の実施の形態3に係るスクロール圧縮機の要部を示す図で、副軸受より下端部分を拡大して示す模式図である。It is a figure which shows the principal part of the scroll compressor which concerns on Embodiment 3 of this invention, and is a schematic diagram which expands and shows a lower end part from a subbearing.
 以下、本発明の実施の形態に係る圧縮機の一例としてスクロール圧縮機について図面を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。 Hereinafter, a scroll compressor as an example of a compressor according to an embodiment of the present invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクロール圧縮機の断面構成を模式的に示す縦断面図である。図1においてスラスト荷重を矢印aで、ラジアル荷重を矢印bで、それぞれ表している。図2は、本発明の実施の形態1に係るスクロール圧縮機の要部を示す図である。図2において(a)は、駆動軸の副軸受より下端部分を拡大して示す模式図、(b)は駆動軸のスラスト面の形状を真下から見た模式図である。また、図2において矢印は潤滑油の流れを示している。
Embodiment 1 FIG.
FIG. 1 is a vertical cross-sectional view schematically showing a cross-sectional configuration of a scroll compressor according to Embodiment 1 of the present invention. In FIG. 1, the thrust load is represented by an arrow a, and the radial load is represented by an arrow b. FIG. 2 is a diagram showing a main part of the scroll compressor according to Embodiment 1 of the present invention. 2A is a schematic diagram showing an enlarged lower end portion of the drive shaft sub-bearing, and FIG. 2B is a schematic diagram of the shape of the thrust surface of the drive shaft viewed from directly below. Moreover, in FIG. 2, the arrow has shown the flow of lubricating oil.
 このスクロール圧縮機100は、たとえば冷蔵庫、冷凍庫、自動販売機、空気調和機、冷凍装置または給湯器等の冷凍サイクル装置を構成する冷凍機器の1つとして搭載されるものである。 The scroll compressor 100 is mounted as one of refrigeration equipment constituting a refrigeration cycle apparatus such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration apparatus or a water heater.
 このスクロール圧縮機100は、密閉容器13内に収容されている圧縮機構部Aと、電動機部Bと、電動機部Bの駆動力を圧縮機構部Aに伝達する駆動軸6とを備えている。図1に示すように、圧縮機構部Aが密閉容器13の上側に配置され、電動機部Bが密閉容器13の下側に配置されている。そして、電動機部Bによって駆動軸6が回転駆動されると、圧縮機構部A内に形成される後述の圧縮室5の容積が縮小され、圧縮室5内の冷媒が圧縮される。 The scroll compressor 100 includes a compression mechanism part A accommodated in the hermetic container 13, an electric motor part B, and a drive shaft 6 that transmits the driving force of the electric motor part B to the compression mechanism part A. As shown in FIG. 1, the compression mechanism part A is disposed on the upper side of the sealed container 13, and the electric motor part B is disposed on the lower side of the sealed container 13. And when the drive shaft 6 is rotationally driven by the electric motor part B, the volume of the later-described compression chamber 5 formed in the compression mechanism part A is reduced, and the refrigerant in the compression chamber 5 is compressed.
 また、密閉容器13には、冷媒を吸入するための冷媒吸入管15と、冷媒を吐出するための冷媒吐出管16とが接続されている。密閉容器13は圧力容器であり、スクロール圧縮機100の外郭をなすものである。この密閉容器13の底部は、潤滑油を貯留する油貯蔵空間14となっている。油貯蔵空間14に貯留された潤滑油は、駆動軸6の下端部に設けた油ポンプ9により吸い上げられ、駆動軸6および圧縮機構部Aの各摺動部に供給されるようになっている。給油経路については後述する。 Further, a refrigerant suction pipe 15 for sucking the refrigerant and a refrigerant discharge pipe 16 for discharging the refrigerant are connected to the sealed container 13. The hermetic container 13 is a pressure container and forms an outer shell of the scroll compressor 100. The bottom of the hermetic container 13 serves as an oil storage space 14 for storing lubricating oil. The lubricating oil stored in the oil storage space 14 is sucked up by an oil pump 9 provided at the lower end portion of the drive shaft 6 and supplied to the sliding portions of the drive shaft 6 and the compression mechanism portion A. . The oil supply path will be described later.
 以下、各構成部について説明する。 Hereinafter, each component will be described.
[圧縮機構部A]
 圧縮機構部Aは、冷媒吸入管15から吸入した冷媒を圧縮して、後述の吐出口4および冷媒吐出管16を介して密閉容器13の外部に冷媒を吐出する機能を有している。圧縮機構部Aは、固定スクロール1と、揺動スクロール2と、オルダム継手25と、で主に構成されている。固定スクロール1は、台板1aと、台板1aの下面に設けられた渦巻突起1bと、で構成されている。固定スクロール1は、密閉容器13の内周面に固定されているメインフレーム8aの上端部に固定されている。なお、固定スクロール1は、ボルト等の締結部材で固定するとよい。
[Compression mechanism part A]
The compression mechanism section A has a function of compressing the refrigerant sucked from the refrigerant suction pipe 15 and discharging the refrigerant to the outside of the hermetic container 13 through the discharge port 4 and the refrigerant discharge pipe 16 described later. The compression mechanism part A is mainly composed of a fixed scroll 1, an orbiting scroll 2, and an Oldham coupling 25. The fixed scroll 1 includes a base plate 1a and a spiral protrusion 1b provided on the lower surface of the base plate 1a. The fixed scroll 1 is fixed to the upper end portion of the main frame 8 a fixed to the inner peripheral surface of the sealed container 13. The fixed scroll 1 is preferably fixed with a fastening member such as a bolt.
 揺動スクロール2も固定スクロール1と同様に、台板2aと、台板2aの上面に設けられた渦巻突起2bと、で構成されている。揺動スクロール2の台板2aの底面下側の中心近傍には偏心穴2cが形成されており、偏心穴2cには揺動軸受17が圧入されている。揺動軸受17には、駆動軸6の上端に設けられている偏心軸6aが摺動自在に連結されている。揺動スクロール2は、揺動スクロール2とメインフレーム8aとの間に設けられているオルダム継手25によって、固定スクロール1に対して自転運動することなく公転運動する。また、揺動スクロール2の下面側、つまり揺動スクロール2とメインフレーム8aとの間には、揺動スラスト軸受18が設けられている。 As with the fixed scroll 1, the orbiting scroll 2 is composed of a base plate 2a and a spiral projection 2b provided on the upper surface of the base plate 2a. An eccentric hole 2c is formed in the vicinity of the center below the bottom surface of the base plate 2a of the rocking scroll 2, and a rocking bearing 17 is press-fitted into the eccentric hole 2c. An eccentric shaft 6 a provided at the upper end of the drive shaft 6 is slidably connected to the rocking bearing 17. The orbiting scroll 2 revolves without revolving with respect to the fixed scroll 1 by the Oldham coupling 25 provided between the orbiting scroll 2 and the main frame 8a. In addition, a rocking thrust bearing 18 is provided on the lower surface side of the rocking scroll 2, that is, between the rocking scroll 2 and the main frame 8a.
 固定スクロール1と揺動スクロール2は、互いの渦巻突起が互いに噛み合わせるようにして密閉容器13内に設けられている。そして、固定スクロール1と揺動スクロール2の互いの渦巻突起の噛み合わせによって、相対的に容積が変化する圧縮室5が形成される。圧縮室5の外周部には、冷媒吸入管15から密閉容器13内に吸入された冷媒を圧縮室5に導く吸入口3が形成されており、吸入口3を介して圧縮室5に冷媒が吸入される。そして、圧縮室5内で冷媒は圧縮され、圧縮された冷媒は、固定スクロール1の中心部に形成された吐出口4から吐出される。吐出口4から吐出された冷媒は、冷媒吐出管16を介して密閉容器13の外部に吐出される。 The fixed scroll 1 and the orbiting scroll 2 are provided in the hermetic container 13 so that the spiral protrusions of each other mesh with each other. And the compression chamber 5 in which the volume changes relatively is formed by the meshing of the spiral projections of the fixed scroll 1 and the swing scroll 2. A suction port 3 that guides the refrigerant sucked into the sealed container 13 from the refrigerant suction pipe 15 to the compression chamber 5 is formed on the outer periphery of the compression chamber 5, and the refrigerant enters the compression chamber 5 through the suction port 3. Inhaled. Then, the refrigerant is compressed in the compression chamber 5, and the compressed refrigerant is discharged from the discharge port 4 formed in the center portion of the fixed scroll 1. The refrigerant discharged from the discharge port 4 is discharged to the outside of the sealed container 13 through the refrigerant discharge pipe 16.
[メインフレーム8a]
 メインフレーム8aは、その上端部で固定スクロール1を固定すると共に、揺動スラスト軸受18を介して揺動スクロール2を下方から摺動自在に支持するものである。メインフレーム8aは、外周面が密閉容器13の内周面に接触するようにして密閉容器13内に取り付けられている。また、メインフレーム8aの中心部近傍には、駆動軸6を貫通させる貫通穴が形成されており、この貫通穴には、駆動軸6の後述の主軸部6bを回転自在に支持する主軸受19が設けられている。すなわち、メインフレーム8aは、主軸受19を介して駆動軸6を回転自在に支持する機能も有しているのである。
[Mainframe 8a]
The main frame 8a fixes the fixed scroll 1 at its upper end, and supports the orbiting scroll 2 through the orbiting thrust bearing 18 so as to be slidable from below. The main frame 8 a is attached in the sealed container 13 so that the outer peripheral surface is in contact with the inner peripheral surface of the sealed container 13. In addition, a through hole that allows the drive shaft 6 to pass therethrough is formed near the center of the main frame 8a, and a main bearing 19 that rotatably supports a later-described main shaft portion 6b of the drive shaft 6 is formed in the through hole. Is provided. That is, the main frame 8 a also has a function of rotatably supporting the drive shaft 6 via the main bearing 19.
[サブフレーム8b]
 サブフレーム8bは、電動機部Bの下方で密閉容器13の側壁内面に固定されている。サブフレーム8bは、メインフレーム8aと共にハウジング8を構成している。サブフレーム8bは、筒状部8baと、筒状部8baの下端部から外方に延びるフランジ部8bbとから構成されている。
[Subframe 8b]
The subframe 8b is fixed to the inner surface of the side wall of the hermetic container 13 below the electric motor part B. The subframe 8b constitutes the housing 8 together with the main frame 8a. The sub frame 8b includes a cylindrical portion 8ba and a flange portion 8bb extending outward from the lower end portion of the cylindrical portion 8ba.
 また、サブフレーム8bの中心部近傍には、駆動軸6を貫通させる貫通穴が形成されており、この貫通穴には、円筒形状の副軸受11が設けられている。副軸受11は、駆動軸6の後述の副軸部6cを回転自在に支持するものであり、ラジアル方向の荷重を支持するラジアル軸受である。また、副軸受11は、俗に「メタル」と呼ばれるすべり軸受で構成されている。 Further, a through hole through which the drive shaft 6 passes is formed in the vicinity of the center of the sub frame 8b, and a cylindrical sub bearing 11 is provided in the through hole. The auxiliary bearing 11 is a radial bearing that rotatably supports a later-described auxiliary shaft portion 6c of the drive shaft 6 and supports a load in the radial direction. The auxiliary bearing 11 is a plain bearing commonly called “metal”.
 サブフレーム8bは、ラジアル荷重に加えて、駆動軸6の自重とロータ磁力とによって発生するスラスト荷重も受ける。このスラスト荷重は、サブフレーム8bの下方に配置された、油ポンプ9の後述の上面カバー9cで受けており、上面カバー9cの上面がスラスト受面12となっている。 The subframe 8b receives a thrust load generated by the weight of the drive shaft 6 and the rotor magnetic force in addition to the radial load. This thrust load is received by an upper surface cover 9c, which will be described later, of the oil pump 9 disposed below the subframe 8b. The upper surface of the upper surface cover 9c serves as a thrust receiving surface 12.
 つまり、本実施の形態1のスクロール圧縮機100は、駆動軸6に作用するラジアル荷重を副軸受11で支持し、スラスト荷重を油ポンプ9の上面カバー9cに設けられたスラスト受面12で受ける構成となっている。そして、本実施の形態1のスクロール圧縮機100は、スラスト受面12の良好な摺動状態を保持する構造を特徴とする。この構造については後述する。 That is, the scroll compressor 100 of the first embodiment supports the radial load acting on the drive shaft 6 by the auxiliary bearing 11 and receives the thrust load by the thrust receiving surface 12 provided on the upper surface cover 9c of the oil pump 9. It has a configuration. And the scroll compressor 100 of this Embodiment 1 is characterized by the structure which hold | maintains the favorable sliding state of the thrust receiving surface 12. FIG. This structure will be described later.
[電動機部B]
 電動機部Bは、圧縮機構部Aで冷媒を圧縮させるために、揺動スクロール2を駆動する機能を有する。電動機部Bは、メインフレーム8aとサブフレーム8bとの間に配置されている。電動機部Bは、ロータ10aとステータ10bとを有する電動機10で主に構成されている。ロータ10aは、駆動軸6の周面に固設されており、ステータ10bへの通電が開始されることにより回転駆動する。ステータ10bは、焼きばめ等によって密閉容器13の内周面に固定され、ギャップを介してロータ10aを囲んでおり、ロータ10aを回転させる。
[Motor part B]
The electric motor part B has a function of driving the orbiting scroll 2 in order to compress the refrigerant by the compression mechanism part A. The electric motor part B is disposed between the main frame 8a and the subframe 8b. The electric motor part B is mainly composed of an electric motor 10 having a rotor 10a and a stator 10b. The rotor 10a is fixed to the peripheral surface of the drive shaft 6 and is driven to rotate when energization to the stator 10b is started. The stator 10b is fixed to the inner peripheral surface of the sealed container 13 by shrink fitting or the like, surrounds the rotor 10a through a gap, and rotates the rotor 10a.
[駆動軸6]
 駆動軸6は、電動機部Bのロータ10aの回転を圧縮機構部Aの揺動スクロール2に伝達するものである。駆動軸6は、上から順に、偏心軸6aと、電動機部Bのロータ10aに固定される主軸部6bと、副軸部6cと、副軸部6cよりも縮径されたポンプ挿入軸6dとを有している。偏心軸6aは、駆動軸6の軸心に対して偏心して設けられており、上述したように揺動軸受17に摺動自在に連結されている。また、主軸部6bには、ロータ10aの上側にバランサ26aが設けられ、ロータ10aの下側にバランサ26bが設けられている。
[Drive shaft 6]
The drive shaft 6 transmits the rotation of the rotor 10a of the electric motor part B to the orbiting scroll 2 of the compression mechanism part A. The drive shaft 6 includes, in order from the top, an eccentric shaft 6a, a main shaft portion 6b fixed to the rotor 10a of the electric motor section B, a sub shaft portion 6c, and a pump insertion shaft 6d having a diameter smaller than that of the sub shaft portion 6c. have. The eccentric shaft 6a is provided eccentrically with respect to the shaft center of the drive shaft 6, and is slidably connected to the rocking bearing 17 as described above. The main shaft portion 6b is provided with a balancer 26a on the upper side of the rotor 10a and a balancer 26b on the lower side of the rotor 10a.
 また、駆動軸6には、駆動軸6の中心部を軸方向に延びる給油縦穴7aと、給油縦穴7aから分岐して径方向に延びる、偏心軸給油横穴7b、主軸給油横穴7c、ラジアル給油横穴7dおよびスラスト給油横穴7eと、が形成されている。さらに具体的には、偏心軸給油横穴7bは偏心軸6aに形成され、主軸給油横穴7cは主軸部6bに形成され、ラジアル給油横穴7dは副軸部6cに形成され、スラスト給油横穴7eはポンプ挿入軸6dに形成されている。 Further, the drive shaft 6 includes an oil supply vertical hole 7a extending in the axial direction at the center of the drive shaft 6, an eccentric shaft oil supply horizontal hole 7b, a main shaft oil supply horizontal hole 7c, and a radial oil supply horizontal hole branched from the oil supply vertical hole 7a and extending in the radial direction. 7d and a thrust oil supply lateral hole 7e are formed. More specifically, the eccentric shaft oil supply horizontal hole 7b is formed in the eccentric shaft 6a, the main shaft oil supply horizontal hole 7c is formed in the main shaft portion 6b, the radial oil supply horizontal hole 7d is formed in the auxiliary shaft portion 6c, and the thrust oil supply horizontal hole 7e is a pump. It is formed on the insertion shaft 6d.
 また、駆動軸6の副軸部6cの外周面には、軸方向に延びる軸方向油溝7fが形成され、ラジアル給油横穴7dで給油縦穴7aに連通している。 Further, an axial oil groove 7f extending in the axial direction is formed on the outer peripheral surface of the auxiliary shaft portion 6c of the drive shaft 6, and communicates with the oil supply vertical hole 7a through a radial oil supply lateral hole 7d.
 副軸部6cの底面は中空の円板形状をしており、ポンプ挿入軸6dの上端から径方向外側に広がる直交面で形成されたスラスト面6fとなっている。駆動軸6の自重と磁力が圧縮機の軸心の下方向に働いて、駆動軸6はスラスト受面12に押し付けられながら回転する。 The bottom surface of the auxiliary shaft portion 6c has a hollow disk shape, and is a thrust surface 6f formed by an orthogonal surface extending radially outward from the upper end of the pump insertion shaft 6d. The drive shaft 6 rotates while being pressed against the thrust receiving surface 12 due to the weight and magnetic force of the drive shaft 6 acting below the axis of the compressor.
 スラスト面6fには、内周端から外周端まで径方向に延びる径方向油溝7gが形成されている。また、副軸部6cの下端の外径側角部、言い換えればスラスト面6fの径方向外側端部は、回転時のスラスト受面12との接触角度を緩和するため、曲率半径Rs1の曲面で形成された面取り部(フィレット)6eとなっている。面取り部(フィレット)6の円弧範囲は、90度より小さな角度範囲で形成されている。 A radial oil groove 7g extending in the radial direction from the inner peripheral end to the outer peripheral end is formed on the thrust surface 6f. Further, the outer diameter side corner portion of the lower end of the auxiliary shaft portion 6c, in other words, the radially outer end portion of the thrust surface 6f is a curved surface having a curvature radius Rs1 in order to relax the contact angle with the thrust receiving surface 12 during rotation. The chamfered portion (fillet) 6e is formed. The arc range of the chamfered portion (fillet) 6 is formed in an angle range smaller than 90 degrees.
[副軸部6cの副軸受11の材料硬度]
 一般的に駆動軸6の主軸部6bと副軸部6cとは、母材の炭素鋼を焼入れすることで硬化して用いる。図2(a)においてドットで示した部分が副軸部6cの焼入れ箇所を示している。一方、スラスト面6fは硬化しないで用いるため、副軸部6cの焼入れ箇所から距離をとることが必要である。副軸受11のラジアル受面11aには、通常、潤滑性に優れた金属メタルが用いられる。ラジアル面と摺動するラジアル受面11aの内周表面にはアルミ系合金または銅系合金が用いられ、硬い副軸部6cを受ける。一方、スラスト受面12は表面粗度が細かく、焼入れした硬い鋼材が用いられ、回転するスラスト面6fから荷重を受けても摩耗しない。
[Material hardness of auxiliary bearing 11 of auxiliary shaft portion 6c]
Generally, the main shaft portion 6b and the sub shaft portion 6c of the drive shaft 6 are hardened and used by quenching a base material carbon steel. A portion indicated by dots in FIG. 2A indicates a quenching portion of the auxiliary shaft portion 6c. On the other hand, since the thrust surface 6f is used without being cured, it is necessary to keep a distance from the quenching portion of the countershaft portion 6c. For the radial receiving surface 11a of the auxiliary bearing 11, a metal metal having excellent lubricity is usually used. An aluminum alloy or a copper alloy is used on the inner peripheral surface of the radial receiving surface 11a that slides on the radial surface, and receives the hard countershaft portion 6c. On the other hand, the thrust receiving surface 12 has a fine surface roughness and is made of hardened hard steel material, and does not wear even when a load is applied from the rotating thrust surface 6f.
[油ポンプ9]
 油ポンプ9は、内側ロータ9aaおよび外側ロータ9abを有する可動部9aと、本体ボディ9bと、可動部9aを覆う上面カバー9cとを備え、本体ボディ9b部分でサブフレーム8bにネジ24で固定されている。上面カバー9cの上面は上述したようにスラスト受面12となっており、スラスト受面12と副軸受11との直角度精度と十分な剛性とを保つように、油ポンプ9がサブフレーム8bに固定されて一体となっている。
[Oil pump 9]
The oil pump 9 includes a movable portion 9a having an inner rotor 9aa and an outer rotor 9ab, a main body 9b, and an upper surface cover 9c that covers the movable portion 9a, and is fixed to the subframe 8b with screws 24 at the main body 9b portion. ing. The upper surface of the upper surface cover 9c is the thrust receiving surface 12 as described above, and the oil pump 9 is attached to the subframe 8b so as to maintain the squareness accuracy and sufficient rigidity between the thrust receiving surface 12 and the auxiliary bearing 11. It is fixed and integrated.
 上面カバー9cは環状部材で構成され、中央部に貫通穴23が形成されている。この貫通穴23とその下方に続く空間とで形成された上端開口には、駆動軸6のポンプ挿入軸6dが挿入されている。そして、貫通穴23の上端開口の周囲は、ポンプ挿入軸6dと接触しないように曲率半径Rp0の曲面で形成された面取り部12eとなっている。上面カバー9cは、副軸部6cの下方に配置されており、本発明の外郭部材に相当する。また、油ポンプ9の下端開口9dは、油貯蔵空間14の潤滑油中に浸漬している。 The top cover 9c is made of an annular member, and a through hole 23 is formed in the center. A pump insertion shaft 6d of the drive shaft 6 is inserted into an upper end opening formed by the through hole 23 and a space following the through hole 23. The periphery of the upper end opening of the through hole 23 is a chamfered portion 12e formed of a curved surface having a curvature radius Rp0 so as not to contact the pump insertion shaft 6d. The upper surface cover 9c is arrange | positioned under the subshaft part 6c, and is equivalent to the outline member of this invention. Further, the lower end opening 9 d of the oil pump 9 is immersed in the lubricating oil in the oil storage space 14.
 油ポンプ9は、駆動軸6の回転に伴い可動部9aが稼働し、油貯蔵空間14に貯留してある潤滑油を下端開口9dから吸い上げて、圧縮機構部Aの各所に供給する。圧縮機構部Aの各所とは、揺動軸受17、揺動スラスト軸受18、主軸受19、副軸受11およびスラスト受面12などの各種軸受、およびオルダム継手25の摺動部などが該当する。油ポンプ9で吸い上げられた潤滑油は、給油縦穴7aから偏心軸給油横穴7bおよび主軸給油横穴7cを介して揺動軸受17および主軸受19に給油される。また、給油縦穴7aの上側出口あるいは偏心軸給油横穴7bから流出した潤滑油の一部が、揺動スラスト軸受18とオルダム継手25の摺動部などに供給される。また、油ポンプ9で吸い上げられた潤滑油は、給油縦穴7aからラジアル給油横穴7dを介して副軸受11に給油されると共に、給油縦穴7aからスラスト給油横穴7eを介してスラスト受面12に給油される。スラスト受面12への給油は、本実施の形態1の特徴部分であり、以下に改めて説明する。 In the oil pump 9, the movable portion 9 a is operated in accordance with the rotation of the drive shaft 6, sucks the lubricating oil stored in the oil storage space 14 from the lower end opening 9 d, and supplies it to various portions of the compression mechanism portion A. The various parts of the compression mechanism part A correspond to various bearings such as the rocking bearing 17, the rocking thrust bearing 18, the main bearing 19, the auxiliary bearing 11 and the thrust receiving surface 12, and the sliding part of the Oldham coupling 25. The lubricating oil sucked up by the oil pump 9 is supplied to the rocking bearing 17 and the main bearing 19 from the oil supply vertical hole 7a through the eccentric shaft oil supply horizontal hole 7b and the main shaft oil supply horizontal hole 7c. A part of the lubricating oil flowing out from the upper outlet of the oil supply vertical hole 7 a or the eccentric shaft oil supply horizontal hole 7 b is supplied to the sliding portion of the oscillating thrust bearing 18 and the Oldham joint 25. The lubricating oil sucked up by the oil pump 9 is supplied from the vertical oil supply hole 7a to the auxiliary bearing 11 through the radial oil supply horizontal hole 7d and from the vertical oil supply hole 7a to the thrust receiving surface 12 through the thrust oil supply horizontal hole 7e. Is done. The oil supply to the thrust receiving surface 12 is a characteristic part of the first embodiment, and will be described below again.
[スラスト面6f、スラスト受面12]
 上面カバー9cのスラスト受面12は、径方向内側が平坦面12b、平坦面12bよりも径方向外側が、外方に向かって緩やかに下方に傾斜する傾斜面12dとなっている。平坦面12bは、副軸受11の内周面であるラジアル受面11aと直角で高さが一様な面である。スラスト受面12の平坦面12bは内周端で曲率半径Rp0の面取り部12eと接するようにつながり、平坦面終点12cで曲率半径Rp1となり傾斜面12dに接するようにつながる。かかる構成により、スラスト面6fとスラスト受面12との間には、スラスト面6fとスラスト受面12とが曲面で接触する接触点12fと、接触点12fから径方向外側に向かって連続的に増加する隙間20とが形成されている。
[Thrust surface 6f, thrust receiving surface 12]
The thrust receiving surface 12 of the upper surface cover 9c has a flat surface 12b on the radially inner side and an inclined surface 12d on the radially outer side of the flat surface 12b that is gently inclined downward toward the outside. The flat surface 12b is a surface that is perpendicular to the radial receiving surface 11a that is the inner peripheral surface of the auxiliary bearing 11 and has a uniform height. The flat surface 12b of the thrust receiving surface 12 is connected to be in contact with the chamfered portion 12e having the curvature radius Rp0 at the inner peripheral end, and is connected to be in contact with the inclined surface 12d with the curvature radius Rp1 at the flat surface end point 12c. With this configuration, between the thrust surface 6f and the thrust receiving surface 12, a contact point 12f where the thrust surface 6f and the thrust receiving surface 12 are in contact with each other in a curved surface, and continuously from the contact point 12f toward the radially outer side. An increasing gap 20 is formed.
 最大負荷条件で駆動軸6は圧縮荷重方向に1/1000[rad]から2/1000[rad]程度傾斜する。傾斜面12dの傾斜角度を、最大負荷条件での駆動軸6の傾斜と同レベルに設計すれば、運転条件が最も厳しい最大負荷条件で、スラスト面6fはスラスト受面12とは緩やかに接するような状態で回転することになり、摩耗状態を緩和することができる。 The drive shaft 6 is inclined about 1/1000 [rad] to 2/1000 [rad] in the compressive load direction under the maximum load condition. If the inclination angle of the inclined surface 12d is designed to be the same level as the inclination of the drive shaft 6 under the maximum load condition, the thrust surface 6f is gently in contact with the thrust receiving surface 12 under the maximum load condition under the severest operating conditions. In this state, the wear state can be alleviated.
 駆動軸6の副軸部6cが傾斜するほど、スラスト受面12と摺動する接触点12fの位置は内周側から外周側に径方向に移動する。 The position of the contact point 12f that slides with the thrust receiving surface 12 moves in the radial direction from the inner peripheral side to the outer peripheral side as the auxiliary shaft portion 6c of the drive shaft 6 is inclined.
 ここで、運転時の駆動軸6の傾斜について説明する。
 1)まず、駆動軸6に働くラジアル荷重が微小で、スラスト面6fとスラスト受面12の平坦面12bとがほぼ平行な状態では、平坦面12b全体で駆動軸6に働くスラスト荷重を受ける。駆動軸6に働くスラスト荷重とは、通常は駆動軸6、ロータ10a、バランサ26aおよびバランサ26bのそれぞれの自重と、スラスト下方向の磁力とが該当する。
Here, the inclination of the drive shaft 6 during operation will be described.
1) First, when the radial load acting on the drive shaft 6 is minute and the thrust surface 6f and the flat surface 12b of the thrust receiving surface 12 are substantially parallel, the entire flat surface 12b receives the thrust load acting on the drive shaft 6. The thrust load acting on the drive shaft 6 usually corresponds to the respective weights of the drive shaft 6, the rotor 10a, the balancer 26a, and the balancer 26b, and the magnetic force in the thrust downward direction.
 2)次に、圧縮運転が始まるとラジアル荷重が働いて、駆動軸6が撓み変形し、スラスト面6fが傾いて、スラスト受面12の平坦面終点12cの外側近傍の曲面(曲率半径Rp1)で接触しながら駆動軸6が回転する。 2) Next, when the compression operation is started, a radial load is applied, the drive shaft 6 is bent and deformed, the thrust surface 6f is tilted, and a curved surface (curvature radius Rp1) near the outside of the flat surface end point 12c of the thrust receiving surface 12 The drive shaft 6 rotates while contacting.
 3)さらに負荷が大きくなり、圧縮荷重と遠心力が増えると、駆動軸6が撓み変形し、スラスト面6fがさらに傾いて、スラスト面6fはスラスト受面12とは緩やかに接するような状態で回転する。 3) When the load is further increased and the compressive load and the centrifugal force are increased, the drive shaft 6 is bent and deformed, the thrust surface 6f is further inclined, and the thrust surface 6f is in gentle contact with the thrust receiving surface 12. Rotate.
 4)最後に、最大負荷条件では、駆動軸6が大きく撓み変形し、スラスト面6fが、スラスト受面12の平坦面12bより傾くと、スラスト面6fの外周部の面取り部6eの曲面(曲率半径Rs1)が、スラスト受面12の傾斜面12dに片当たり接触しながら回転する。この場合は、面取り部6eの曲率半径Rs1を大きくとることで、面取り部12eがスラスト受面12に片当りして局所的なヘルツ応力が大きくなることを抑制する。 4) Finally, under the maximum load condition, when the drive shaft 6 is greatly bent and deformed and the thrust surface 6f is inclined with respect to the flat surface 12b of the thrust receiving surface 12, the curved surface (curvature) of the chamfered portion 6e on the outer peripheral portion of the thrust surface 6f. The radius Rs1) rotates while being in contact with the inclined surface 12d of the thrust receiving surface 12. In this case, by increasing the radius of curvature Rs1 of the chamfered portion 6e, the chamfered portion 12e is prevented from hitting the thrust receiving surface 12 to increase local Hertz stress.
 例えば、曲率半径1の円筒と曲率半径2の円筒とが長さLで接触するときのヘルツ応力の式から
 ヘルツ応力∝(荷重)×(ヤング率)×L×{1/(曲率半径1)+(曲率半径2)
が成り立つ。
For example, from a formula of Hertz stress when a cylinder with a curvature radius of 1 and a cylinder with a curvature radius of 2 are in contact with each other with a length L, Hertz stress ∝ (load) x (Young's modulus) x L x {1 / (curvature radius 1) 2 + (curvature radius 2) 2 }
Holds.
 面取り部6eの曲率半径Rs1は、
 Rp0<Rs1<Rp1
の大小関係であって、Rs1は少なくともRp0より大きくし、Rp1に近づけるように設計することが必要である。
 一般的なR面取り(フィレット)は、R0.2~R2程度であるのに対して、面取り部6eの曲率半径Rs1は設計許容範囲で大きくとっており、通常R3以上の大きさである。
The curvature radius Rs1 of the chamfered portion 6e is
Rp0 <Rs1 <Rp1
It is necessary to design Rs1 to be at least larger than Rp0 and to be close to Rp1.
The general R chamfer (fillet) is about R0.2 to R2, whereas the radius of curvature Rs1 of the chamfer 6e is large within the design allowable range, and is usually larger than R3.
 また、本実施の形態1では、スラスト受面12の径方向外側を傾斜面12dとしてスラスト面6fから離間させたことで、副軸部6cと上面カバー9cとが摺動する摺動部が、スラスト受面12全体ではなく平坦面12bとなる。よって、傾斜面12dを形成せずにスラスト受面12全体を平坦面12bとした場合に比べて、摺動部の外周位置を径方向内側に寄せることができる。このため、最大摺動速度を抑えることができる。 In the first embodiment, the sliding portion on which the auxiliary shaft portion 6c and the upper surface cover 9c slide is formed by separating the thrust receiving surface 12 from the thrust surface 6f with the radially outer side of the thrust receiving surface 12 as an inclined surface 12d. Instead of the entire thrust receiving surface 12, the flat surface 12b is formed. Therefore, compared with the case where the entire thrust receiving surface 12 is formed as a flat surface 12b without forming the inclined surface 12d, the outer peripheral position of the sliding portion can be moved radially inward. For this reason, the maximum sliding speed can be suppressed.
 また、慣らし運転後には、平坦面12bと傾斜面12dとの境界である平坦面終点12cの角がとれていく。このため、平坦面終点12cでのスラスト面6fとスラスト受面12との接触角度も緩やかとなり、摺動部の接触面圧を緩和できる。 Further, after the break-in operation, the corner of the flat surface end point 12c, which is the boundary between the flat surface 12b and the inclined surface 12d, is taken. For this reason, the contact angle between the thrust surface 6f and the thrust receiving surface 12 at the flat surface end point 12c also becomes gentle, and the contact surface pressure of the sliding portion can be relaxed.
[その他の構成]
 メインフレーム8aおよびステータ10bとの間には、駆動軸6の軸方向に延びる返油管29が配置され、また、ステータ10bには軸方向に延びるように貫通する返油穴29aが形成されている。この返油管29および返油穴29aは、圧縮機構部Aで使用された潤滑油を油貯蔵空間14に戻す機能を有している。なお、図1では、返油管29および返油穴29aを1つだけ設けた場合を例に示しているが、これに限定するものではない。たとえば、返油管29および返油穴29aを2つ以上設けてもよい。
[Other configurations]
An oil return pipe 29 extending in the axial direction of the drive shaft 6 is disposed between the main frame 8a and the stator 10b, and an oil return hole 29a penetrating so as to extend in the axial direction is formed in the stator 10b. . The oil return pipe 29 and the oil return hole 29 a have a function of returning the lubricating oil used in the compression mechanism portion A to the oil storage space 14. In addition, in FIG. 1, although the case where only the oil return pipe | tube 29 and the oil return hole 29a were provided is shown as an example, it is not limited to this. For example, two or more oil return pipes 29 and oil return holes 29a may be provided.
 以上のように、スクロール圧縮機100は、密閉容器13内の上部に圧縮機構部Aを、下部に電動機部Bを配置し、電動機部Bの駆動力は駆動軸6を介して圧縮機構部Aの揺動スクロール2に伝達され、揺動スクロール2を回転駆動する。なお、潤滑油の種類は特に限定するものではなく、圧縮機構部Aの潤滑油として使用できるものであればよい。たとえば、PAG(ポリアルキレングレコール)またはPOE(ポリオールエステル)等を潤滑油として使用するとよい。また、冷媒の種類も特に限定するものではない。 As described above, the scroll compressor 100 has the compression mechanism part A disposed in the upper part of the hermetic container 13 and the motor part B disposed in the lower part, and the driving force of the motor part B is supplied via the drive shaft 6 to the compression mechanism part A. Is transmitted to the orbiting scroll 2, and the orbiting scroll 2 is driven to rotate. In addition, the kind of lubricating oil is not specifically limited, What is necessary is just to be used as lubricating oil of the compression mechanism part A. For example, PAG (polyalkylene glycol) or POE (polyol ester) may be used as the lubricating oil. Also, the type of refrigerant is not particularly limited.
[動作説明]
 以下、スクロール圧縮機100の動作について説明する。
 電動機10を構成するステータ10bに通電が開始されると、ロータ10aと共に駆動軸6が回転を開始する。駆動軸6が回転を開始すると、偏心軸6aに連結されている揺動スクロール2がオルダム継手25により自転を阻止されながら公転運動を行なう。これにより、圧縮室5が次第に容積を減じながら中心側に移動する。その結果、吸入口3から圧縮室5に吸入された冷媒の圧力は次第に高められる。そして、圧力が上昇した冷媒は、吐出口4および冷媒吐出管16を通じて機外に吐出され、冷媒吐出管16に接続されている冷媒配管(図示せず)へ圧送される。
[Description of operation]
Hereinafter, the operation of the scroll compressor 100 will be described.
When energization is started to the stator 10b constituting the electric motor 10, the drive shaft 6 starts to rotate together with the rotor 10a. When the drive shaft 6 starts to rotate, the orbiting scroll 2 connected to the eccentric shaft 6 a performs a revolving motion while being prevented from rotating by the Oldham joint 25. Thereby, the compression chamber 5 moves to the center side while gradually reducing the volume. As a result, the pressure of the refrigerant sucked into the compression chamber 5 from the suction port 3 is gradually increased. Then, the refrigerant whose pressure has increased is discharged out of the apparatus through the discharge port 4 and the refrigerant discharge pipe 16, and is pumped to a refrigerant pipe (not shown) connected to the refrigerant discharge pipe 16.
 このようにして密閉容器13内の冷媒が外部へ吐出されるので、密閉容器13内は負圧となる。このため、機外の冷媒配管(図示せず)からの冷媒は、冷媒吸入管15を通じて密閉容器13内に吸入される。そして、密閉容器13内に吸入された冷媒は、電動機10を冷却した後、吸入口3から圧縮室5に吸入される。 Since the refrigerant in the sealed container 13 is discharged to the outside in this way, the inside of the sealed container 13 has a negative pressure. For this reason, the refrigerant from the refrigerant pipe (not shown) outside the machine is sucked into the sealed container 13 through the refrigerant suction pipe 15. The refrigerant sucked into the sealed container 13 is sucked into the compression chamber 5 from the suction port 3 after cooling the electric motor 10.
 また、駆動軸6の回転に伴い、油ポンプ9の内側ロータ9aaが回転し、外側ロータ9abもそれに連れて回転することで、油ポンプ9のポンプ作用により油貯蔵空間14の潤滑油が給油縦穴7aを通じて上方へ吸い上げられる。吸い上げられた潤滑油は、副軸受11、主軸受19および揺動軸受17のそれぞれに分配されて、これら各軸受を潤滑する。揺動軸受17を経由した潤滑油は、揺動スラスト軸受18およびオルダム継手25に供給されて、これら摺動部を潤滑する。また、オルダム継手25に供給された潤滑油は、返油管29を経て油貯蔵空間14に戻される。 Further, as the drive shaft 6 rotates, the inner rotor 9aa of the oil pump 9 rotates, and the outer rotor 9ab also rotates accordingly, so that the lubricating oil in the oil storage space 14 is supplied through the oil supply vertical hole by the pump action of the oil pump 9 It is sucked upward through 7a. The sucked lubricating oil is distributed to each of the sub bearing 11, the main bearing 19 and the rocking bearing 17, and lubricates each of these bearings. Lubricating oil passing through the rocking bearing 17 is supplied to the rocking thrust bearing 18 and the Oldham coupling 25 to lubricate these sliding portions. Further, the lubricating oil supplied to the Oldham coupling 25 is returned to the oil storage space 14 through the oil return pipe 29.
[サブフレーム8bの筒状部8baの変形]
 副軸受11は、スクロール圧縮機100が稼働されることで発生するラジアル荷重を支持する。副軸受11が設けられたサブフレーム8bの筒状部8baは、フランジ部8bbに比べて径方向の厚さが薄く、薄肉柔構造部となっている。このように筒状部8baを薄肉柔構造部とすることにより、筒状部8baは駆動軸6の傾斜に追従して弾性変形し、駆動軸6のラジアル受面11aへの片当りを抑制することが可能である。なお、図2は模式図であるため、筒状部8baが、フランジ部8bbよりは薄肉であるものの、厚肉に形成されているように図示されているが、実際には弾性変形可能な薄肉に形成されている。
[Deformation of the cylindrical portion 8ba of the subframe 8b]
The auxiliary bearing 11 supports a radial load generated when the scroll compressor 100 is operated. The cylindrical portion 8ba of the sub-frame 8b provided with the auxiliary bearing 11 is thinner in the radial direction than the flange portion 8bb, and is a thin flexible structure portion. Thus, by making the cylindrical part 8ba into a thin flexible structure part, the cylindrical part 8ba is elastically deformed following the inclination of the drive shaft 6 and suppresses the single contact of the drive shaft 6 with the radial receiving surface 11a. It is possible. Since FIG. 2 is a schematic diagram, the cylindrical portion 8ba is illustrated as being thicker than the flange portion 8bb, but in reality, the cylindrical portion 8ba is illustrated as being formed thick. Is formed.
[ラジアル荷重およびスラスト荷重]
 副軸受11には、スクロール圧縮機100の稼働に伴ってラジアル荷重が作用する。すなわち、副軸受11には、駆動軸6の回転と同期した変動荷重がラジアル方向に付加される。副軸受11は、上述したようにすべり軸受で構成されている。このように副軸受11に玉軸受等を採用していない分、長期的な信頼性を確保して駆動軸6の焼付きを防止すると共に、摩耗および摩擦損失の増大を抑制でき、安定した起動性を得ることができる。
[Radial load and thrust load]
A radial load acts on the auxiliary bearing 11 as the scroll compressor 100 is operated. That is, a variable load synchronized with the rotation of the drive shaft 6 is applied to the auxiliary bearing 11 in the radial direction. As described above, the auxiliary bearing 11 is constituted by a plain bearing. As a result of not using a ball bearing or the like for the auxiliary bearing 11 as described above, long-term reliability can be ensured and seizure of the drive shaft 6 can be prevented, and an increase in wear and friction loss can be suppressed and stable start-up can be achieved. Sex can be obtained.
 また、スクロール圧縮機100の稼働に伴って、上面カバー9cのスラスト受面12にはスラスト荷重が作用する。すなわち、スラスト受面12には、鉛直下向きに駆動軸6の自重がスラスト荷重として付加される。駆動軸6の副軸部6cのスラスト面6fと上面カバー9cのスラスト受面12とを、良好な摺動状態に保持するには、スラスト受面12に常時安定した油面を確保することが必要である。 Further, along with the operation of the scroll compressor 100, a thrust load acts on the thrust receiving surface 12 of the top cover 9c. That is, the thrust receiving surface 12 is applied with its own weight as a thrust load vertically downward. In order to keep the thrust surface 6f of the auxiliary shaft portion 6c of the drive shaft 6 and the thrust receiving surface 12 of the upper surface cover 9c in a good sliding state, it is necessary to always ensure a stable oil surface on the thrust receiving surface 12. is necessary.
 そこで、本実施の形態1では、スラスト受面12の外周側に傾斜面12dを設け、副軸受11の底面と傾斜面12dとの間であって、スラスト受面12の径方向外側の領域とスラスト受面12よりもさらに外側の領域に油溜め空間22を形成する。油溜め空間22にはラジアル受面11aの下端側の油シール部11dから油が流入するため、上端22bまで貯蔵される油のヘッド圧により、スラスト受面12の外周側から摺動面に常時安定した油が供給される。一方で、スラスト受面12の内周側から摺動面には、ポンプ挿入軸6dのスラスト給油横穴7eから径方向油溝7gを通って、常時安定した油が供給される。以下、スラスト受面12に常時安定した油面を確保するための給油経路について詳細説明する。なお、ここでは油溜め空間22となる空間を形成するためにスラスト受面12の径方向外側の領域を傾斜面12dとしたが、傾斜面12dに限られず、平坦面12bの高さ位置よりも低い位置に形成された平面としてもよい。 Therefore, in the first embodiment, an inclined surface 12d is provided on the outer peripheral side of the thrust receiving surface 12, and a region between the bottom surface of the auxiliary bearing 11 and the inclined surface 12d and radially outside the thrust receiving surface 12 is provided. An oil sump space 22 is formed in a region further outside the thrust receiving surface 12. Since oil flows into the oil sump space 22 from the oil seal portion 11d on the lower end side of the radial receiving surface 11a, the oil head pressure stored up to the upper end 22b causes the oil receiving space 22 to constantly move from the outer peripheral side of the thrust receiving surface 12 to the sliding surface. A stable oil is supplied. On the other hand, a stable oil is always supplied from the inner peripheral side of the thrust receiving surface 12 to the sliding surface through the thrust oil supply lateral hole 7e of the pump insertion shaft 6d through the radial oil groove 7g. Hereinafter, an oil supply path for ensuring a stable oil level on the thrust receiving surface 12 will be described in detail. Here, in order to form a space to be the oil sump space 22, the radially outer region of the thrust receiving surface 12 is the inclined surface 12d. However, the region is not limited to the inclined surface 12d and is higher than the height position of the flat surface 12b. It is good also as a plane formed in the low position.
[スラスト受面12への給油経路について]
 油ポンプ9によって吸い上げられた潤滑油の一部は、ポンプ挿入軸6dの外周側に流入し、遠心力で駆動軸6の径方向外側に吐出される。すなわち、ポンプ挿入軸6dの外周側に流入した潤滑油は、ポンプ挿入軸6dと油ポンプ9の可動部9aとの隙間を上昇し、さらに、ポンプ挿入軸6dと上面カバー9cとの隙間を上昇する。そして、ポンプ挿入軸6dと上面カバー9cとの隙間を上昇した潤滑油は、スラスト受面12に達する。また、油ポンプ9で昇圧されて給油縦穴7aに流入した潤滑油の一部も、ポンプ挿入軸6dに形成されたスラスト給油横穴7eから、遠心力で径方向外側に吐出されてスラスト受面12に達する。スラスト給油横穴7eは、具体的には、ポンプ挿入軸6dにおいて、スラスト面6fよりも下部で給油縦穴7aに連通し、駆動軸6の径方向に延びて形成されており、潤滑油をスラスト面6fとスラスト受面12との間に供給する。
[Oil supply path to thrust receiving surface 12]
Part of the lubricating oil sucked up by the oil pump 9 flows into the outer peripheral side of the pump insertion shaft 6d and is discharged to the outside in the radial direction of the drive shaft 6 by centrifugal force. That is, the lubricating oil that has flowed into the outer peripheral side of the pump insertion shaft 6d raises the gap between the pump insertion shaft 6d and the movable portion 9a of the oil pump 9, and further raises the gap between the pump insertion shaft 6d and the top cover 9c. To do. Then, the lubricating oil that has risen through the gap between the pump insertion shaft 6 d and the upper surface cover 9 c reaches the thrust receiving surface 12. Further, part of the lubricating oil that has been pressurized by the oil pump 9 and has flowed into the oil supply vertical hole 7a is also discharged radially outward by centrifugal force from the thrust oil supply lateral hole 7e formed in the pump insertion shaft 6d, and the thrust receiving surface 12 To reach. Specifically, the thrust oil supply lateral hole 7e is formed in the pump insertion shaft 6d so as to communicate with the oil supply vertical hole 7a below the thrust surface 6f and to extend in the radial direction of the drive shaft 6 so that the lubricating oil is supplied to the thrust surface. Supply between 6f and the thrust receiving surface 12.
 そして、スラスト受面12に達した潤滑油は、スラスト面6fに形成された径方向油溝7gを内周端から外周端まで流れ、油溜め空間22に流れる。なお、径方向油溝7gを軸方向に切断した流路断面積は、ポンプ挿入軸6dと上面カバー9cとの間の環状の隙間を軸方向と直交する方向で切断した流路断面積よりも小さく形成されている。このため、ポンプ挿入軸6dと上面カバー9cとの間の環状の隙間内の潤滑油が、径方向油溝7gに集中して流れ込み、径方向油溝7g内は潤滑油で満たされた状態となっている。そして、径方向油溝7gは、駆動軸6が回転することで周方向に一周するため、スラスト受面12の全域に潤滑油が広がる。 Then, the lubricating oil that has reached the thrust receiving surface 12 flows through the radial oil groove 7g formed on the thrust surface 6f from the inner peripheral end to the outer peripheral end, and then flows into the oil sump space 22. The flow passage cross-sectional area obtained by cutting the radial oil groove 7g in the axial direction is larger than the flow passage cross-sectional area obtained by cutting the annular gap between the pump insertion shaft 6d and the upper surface cover 9c in the direction perpendicular to the axial direction. It is formed small. Therefore, the lubricating oil in the annular gap between the pump insertion shaft 6d and the upper surface cover 9c flows in a concentrated manner in the radial oil groove 7g, and the radial oil groove 7g is filled with the lubricating oil. It has become. Since the radial oil groove 7g makes one round in the circumferential direction as the drive shaft 6 rotates, the lubricating oil spreads over the entire thrust receiving surface 12.
 また、給油縦穴7aからラジアル給油横穴7dに供給された潤滑油は、軸方向油溝7fから、副軸部6cの外周面とラジアル受面11aとの隙間に供給される。そして、副軸部6cの外周面とラジアル受面11aとの隙間に供給された潤滑油は、副軸受11のラジアル受面11aの全域に広がり、副軸受11を潤滑する。 Also, the lubricating oil supplied to the radial oil supply horizontal hole 7d from the oil supply vertical hole 7a is supplied to the gap between the outer peripheral surface of the countershaft portion 6c and the radial receiving surface 11a from the axial oil groove 7f. Then, the lubricating oil supplied to the gap between the outer peripheral surface of the auxiliary shaft portion 6 c and the radial receiving surface 11 a spreads over the entire radial receiving surface 11 a of the auxiliary bearing 11 and lubricates the auxiliary bearing 11.
 ここで、副軸部6cの外周面において副軸受11と対向する領域のうち、軸方向油溝7fよりも上方の領域S1は、下方の領域S2よりも軸方向の長さが長くなっている。領域S1および領域S2のそれぞれと副軸受11との隙間は、潤滑油が滞留することで油シール部となっている。領域S1が領域S2よりも軸方向の長さが長いことで、上側の油シール部11cの軸方向の長さが、下側の油シール部11dの軸方向の長さより長くなっている。このため、ラジアル給油横穴7dから軸方向油溝7fに供給された潤滑油が、副軸受11の上端側から流出して密閉容器13内に漏れる量を減らし、油溜め空間22に潤滑油が溜まるようにしている。このように、油溜め空間22内に潤滑油が潤沢にある状態にして、スラスト面6fとスラスト受面12とを良好な摺動状態に保持できるようにしている。 Here, in the region facing the auxiliary bearing 11 on the outer peripheral surface of the auxiliary shaft portion 6c, the region S1 above the axial oil groove 7f has a longer axial length than the lower region S2. . The gap between each of the regions S1 and S2 and the auxiliary bearing 11 serves as an oil seal portion due to the retention of lubricating oil. Since the region S1 is longer in the axial direction than the region S2, the axial length of the upper oil seal portion 11c is longer than the axial length of the lower oil seal portion 11d. For this reason, the amount of the lubricating oil supplied from the radial oil supply lateral hole 7d to the axial oil groove 7f flows out from the upper end side of the auxiliary bearing 11 and leaks into the sealed container 13 is reduced, and the lubricating oil is accumulated in the oil sump space 22. I am doing so. In this way, the lubricating oil is abundant in the oil sump space 22 so that the thrust surface 6f and the thrust receiving surface 12 can be held in a good sliding state.
 以上のように、油溜め空間22には給油縦穴7aからスラスト給油横穴7eを経由した潤滑油と、給油縦穴7aからラジアル給油横穴7dを経由した潤滑油とが合流する。そして、油溜め空間22で合流した潤滑油は、サブフレーム8bの油ポンプ9との互いの取付け面に形成された溝および穴で構成された油排出流路21を通って油貯蔵空間14に戻される。油排出流路21は、上流端が油溜め空間22の下端22aに開口し、下流端の排出穴21aは油ポンプ9の本体ボディ9bの外面に下向きに開口している。排出穴21aは油排出流路21の出口であって、油溜め空間22より下側に位置している。そして、油溜め空間22内の潤滑油が、油排出流路21を通ってサブフレーム8bの外部に排出されるようになっている。なお、図2(a)の符号22bは、油溜め空間22の上端であり、上端22bは径方向油溝7gより上側に配置されている。 As described above, in the oil sump space 22, the lubricating oil that has passed through the vertical oil supply hole 7a through the thrust oil supply horizontal hole 7e and the lubricating oil that has passed through the vertical oil supply hole 7a and the radial oil supply horizontal hole 7d merge. The lubricating oil merged in the oil sump space 22 passes into the oil storage space 14 through the oil discharge passage 21 formed by grooves and holes formed in the mounting surfaces of the subframe 8b and the oil pump 9 on each other. Returned. The oil discharge passage 21 has an upstream end opened to the lower end 22 a of the oil sump space 22, and a downstream end discharge hole 21 a opened downward to the outer surface of the main body 9 b of the oil pump 9. The discharge hole 21 a is an outlet of the oil discharge channel 21 and is located below the oil sump space 22. The lubricating oil in the oil sump space 22 is discharged to the outside of the subframe 8b through the oil discharge channel 21. In addition, the code | symbol 22b of Fig.2 (a) is an upper end of the oil sump space 22, and the upper end 22b is arrange | positioned above the radial direction oil groove 7g.
 ここで、改めて油溜め空間22について定義すると、図2に示すように副軸受11がサブフレーム8bの筒状部8baの内側に設けられることによって、少なくとも副軸受11の厚み分、副軸受11の下方に円筒状の空間が形成される。この空間が油溜め空間22の一部となる。 Here, when the oil sump space 22 is defined again, the auxiliary bearing 11 is provided inside the cylindrical portion 8ba of the subframe 8b as shown in FIG. A cylindrical space is formed below. This space becomes a part of the oil sump space 22.
 また、図2では、サブフレーム8bの筒状部8baの内周面22cのうち、駆動軸6の副軸部6cと対向する領域であって、副軸受11の下方に位置する領域部分に、径方向の外側に窪んだ壁面部22dが形成されている。このように、サブフレーム8bの筒状部8baの内周面22cにさらに壁面部22dを設けたことで、油溜め空間22がさらに広がる。また、壁面部22dを設けたことで、傾斜しながら回転する駆動軸6の副軸部6cの下端部とスラスト受面12またはラジアル受面11aとが接触して、副軸部6c、スラスト受面12またはラジアル受面11aが損傷するおそれを低減することができる。 Further, in FIG. 2, a region of the inner peripheral surface 22 c of the cylindrical portion 8 ba of the sub frame 8 b that is opposed to the sub shaft portion 6 c of the drive shaft 6 and is located below the sub bearing 11. A wall surface portion 22d that is recessed outward in the radial direction is formed. Thus, the oil reservoir space 22 is further expanded by providing the wall surface portion 22d on the inner peripheral surface 22c of the tubular portion 8ba of the subframe 8b. Further, by providing the wall surface portion 22d, the lower end portion of the auxiliary shaft portion 6c of the drive shaft 6 that rotates while tilting comes into contact with the thrust receiving surface 12 or the radial receiving surface 11a, so that the auxiliary shaft portion 6c and the thrust receiving surface are received. The possibility that the surface 12 or the radial receiving surface 11a is damaged can be reduced.
 なお、油排出流路21の途中には、適切な流路抵抗を与える絞り流路21bが形成されており、絞り流路21bが形成されていることで、油溜め空間22に潤滑油を一旦貯留させることが可能となっている。また、ラジアル受面11aまたはスラスト受面12に摩耗粉が発生した場合は、摩耗粉を油溜め空間22に溜めることなく油貯蔵空間14に排出する必要がある。つまり摩耗粉を油溜め空間22から油排出流路21を介して排出する必要がある。このため、絞り流路21bの流路断面を、深さと幅とがそれぞれ0.2mm~1mm程度に設定された流路断面とすることが好ましい。 In the middle of the oil discharge channel 21, a throttle channel 21 b that gives an appropriate channel resistance is formed. By forming the throttle channel 21 b, the lubricating oil is temporarily supplied to the oil sump space 22. It can be stored. When wear powder is generated on the radial receiving surface 11 a or the thrust receiving surface 12, it is necessary to discharge the wear powder to the oil storage space 14 without accumulating the wear powder in the oil sump space 22. That is, it is necessary to discharge the wear powder from the oil reservoir space 22 through the oil discharge channel 21. For this reason, it is preferable that the channel cross section of the throttle channel 21b is a channel cross section in which the depth and width are set to about 0.2 mm to 1 mm, respectively.
[径方向油溝7gと油溜め空間22との軸方向の位置関係]
 径方向油溝7gは、上述したようにスラスト面6fに形成されているが、スラスト面6fとスラスト受面12とを良好な油潤滑状態に保持するには、径方向油溝7g内が潤滑油で満たされた状態とする必要がある。油溜め空間22に溜まった潤滑油の上面が、軸方向油溝7fを構成する凹溝の底部よりも下方に位置していると、径方向油溝7g内が潤滑油で満たされなくなる。よって、油溜め空間22に溜まった油の上面が、軸方向油溝7fを構成する凹溝の底部よりも上方に位置するように構成する。具体的には、油溜め空間22に流入する油量との関係から、油溜め空間22の体積および絞り流路21bを設計すればよい。
[Axial positional relationship between the radial oil groove 7g and the oil sump space 22]
The radial oil groove 7g is formed on the thrust surface 6f as described above, but in order to maintain the thrust surface 6f and the thrust receiving surface 12 in a good oil lubrication state, the inside of the radial oil groove 7g is lubricated. It needs to be filled with oil. When the upper surface of the lubricating oil accumulated in the oil sump space 22 is positioned below the bottom of the concave groove that constitutes the axial oil groove 7f, the radial oil groove 7g is not filled with the lubricating oil. Therefore, the upper surface of the oil accumulated in the oil sump space 22 is configured to be positioned above the bottom of the concave groove that constitutes the axial oil groove 7f. Specifically, the volume of the oil reservoir space 22 and the throttle channel 21b may be designed from the relationship with the amount of oil flowing into the oil reservoir space 22.
[径方向油溝7gの周方向の配置位置]
 径方向油溝7gはスラスト面6fに一箇所、形成されており、駆動軸6の撓み方向を考慮してスラスト面6fにおける周方向の配置位置が設定されている。以下、径方向油溝7gの周方向の配置位置について、図3および図4を参照して説明する。また、図3および図4の説明に先立って、まず、駆動軸6に作用する荷重および荷重の作用方向について図5を用いて説明する。
[Disposed position in the circumferential direction of the radial oil groove 7g]
The radial oil groove 7g is formed at one location on the thrust surface 6f, and the circumferential arrangement position on the thrust surface 6f is set in consideration of the bending direction of the drive shaft 6. Hereinafter, the arrangement position in the circumferential direction of the radial oil groove 7g will be described with reference to FIG. 3 and FIG. Prior to the description of FIG. 3 and FIG. 4, first, the load acting on the drive shaft 6 and the acting direction of the load will be described with reference to FIG. 5.
 図5は、本発明の実施の形態1に係るスクロール圧縮機の駆動軸に作用する荷重および荷重の作用方向の説明図である。
 Y軸は、駆動軸6を軸心方向から平面的に見て、駆動軸6の軸心から偏心軸6aの軸心を結ぶ方向(以下、偏心方向という)を+とする。Z軸は、駆動軸6の軸心で上方向を+とする。X軸は、Y軸およびZ軸に直交する座標軸である。駆動軸6は、上から見て反時計まわりにθ(-X)方向に回転するが、反対側の+X方向にガス荷重を受ける。図5においてFxは、圧縮室5で冷媒ガスを圧縮するために必要なガス荷重で主に+X方向に働く。また、F1xは主軸受19に作用するX軸方向の荷重である。F1yは主軸受19に作用するY軸方向の荷重である。F2xは副軸受11に作用するX軸方向の荷重である。F2yは副軸受11に作用するY軸方向の荷重である。
FIG. 5 is an explanatory diagram of the load acting on the drive shaft of the scroll compressor according to Embodiment 1 of the present invention and the acting direction of the load.
With respect to the Y axis, the direction connecting the axis of the drive shaft 6 and the axis of the eccentric shaft 6a (hereinafter referred to as the eccentric direction) is defined as + when the drive shaft 6 is viewed in plan from the axis direction. The Z axis is the axis of the drive shaft 6 and the upward direction is +. The X axis is a coordinate axis orthogonal to the Y axis and the Z axis. The drive shaft 6 rotates counterclockwise in the θ (−X) direction as viewed from above, but receives a gas load in the opposite + X direction. In FIG. 5, Fx works mainly in the + X direction with a gas load necessary to compress the refrigerant gas in the compression chamber 5. F 1x is a load in the X-axis direction that acts on the main bearing 19. F 1y is a load in the Y-axis direction that acts on the main bearing 19. F 2x is a load in the X-axis direction that acts on the auxiliary bearing 11. F 2y is a load in the Y-axis direction that acts on the auxiliary bearing 11.
 また、駆動軸6には、偏心(+Y)方向に遠心力によって駆動軸6全体を傾けようとするモーメントが働くので、これを打ち消すようにロータ10aの上下にバランサ26aおよびバランサ26bが取り付けられている。FBW1は、バランサ26aによって駆動軸6に作用する遠心力による荷重である。FBW2はバランサ26bによって駆動軸6に作用する遠心力による荷重である。 Further, since a moment is exerted on the drive shaft 6 to incline the entire drive shaft 6 by centrifugal force in the eccentric (+ Y) direction, the balancer 26a and the balancer 26b are attached to the top and bottom of the rotor 10a so as to cancel this moment. Yes. FBW1 is a load due to centrifugal force acting on the drive shaft 6 by the balancer 26a. FBW2 is a load due to centrifugal force acting on the drive shaft 6 by the balancer 26b.
 図3は、本発明の実施の形態1に係るスクロール圧縮機の駆動軸のZ-X断面での撓み状態と、径方向油溝の周方向の配置位置との説明図である。図3において(A)は駆動軸6に作用するガス荷重が低負荷運転時の場合、(B)はガス荷重が高負荷運転時の場合を示している。また、(A)および(B)のそれぞれにおいて、(a)は駆動軸6のZ-X断面での撓み状態を示す図、(b)は上から見た駆動軸6の平面図で、駆動軸6に作用する荷重を示した図、(c)は下から見た径方向油溝7gの周方向の位置の説明図である。また、図3において円弧状の二重線矢印は、駆動軸6の回転方向を示している。 FIG. 3 is an explanatory diagram of the bending state of the drive shaft of the scroll compressor according to Embodiment 1 of the present invention in the ZX cross section and the circumferential position of the radial oil groove. 3A shows a case where the gas load acting on the drive shaft 6 is in a low load operation, and FIG. 3B shows a case where the gas load is in a high load operation. Further, in each of (A) and (B), (a) is a diagram showing a bending state of the drive shaft 6 in the ZX section, and (b) is a plan view of the drive shaft 6 as viewed from above. The figure which showed the load which acts on the axis | shaft 6, (c) is explanatory drawing of the position of the circumferential direction of the radial direction oil groove 7g seen from the bottom. In FIG. 3, the arcuate double line arrow indicates the rotation direction of the drive shaft 6.
 駆動軸6には、揺動スクロール2等の偏心回転により+Y方向に遠心力Fcが作用する。しかし、遠心力Fcを固定スクロール1の渦巻突起(歯先ラップ)1bで受ける構造を採用する場合には、遠心力Fcは駆動軸6に働かない。ここでは、まず、遠心力を無視できるZ-X断面において、駆動軸6には圧縮室5で冷媒ガスを圧縮するために必要なガス荷重Fxが+X方向に主荷重として作用し、主軸部6bと副軸部6cとにはこれに釣り合う反力が作用する。主軸受19と主軸部6bとの間、副軸受11と副軸部6cとの間には、それぞれ流体潤滑を可能とするための直径隙間(通常、軸径の1/1000程度)がある。このため、駆動軸6は撓んで変形すると共に、主軸受19では主軸部6bが+X方向に接近し、副軸受11では副軸部6cが-X方向に接近するように軸全体が傾斜し、副軸部6cの軸心6hも圧縮機の軸心(Z軸)6gに対して傾く。その結果、図3(A)の低負荷運転時には、スラスト面6fはスラスト受面12に対して、X軸の-方向が浮き上がり、X軸の+方向を押し付けるように傾く。 The centrifugal force Fc acts on the drive shaft 6 in the + Y direction due to the eccentric rotation of the swing scroll 2 or the like. However, when adopting a structure in which the centrifugal force Fc is received by the spiral projection (tooth tip wrap) 1 b of the fixed scroll 1, the centrifugal force Fc does not act on the drive shaft 6. Here, first, in the ZX cross section in which the centrifugal force can be ignored, the gas load Fx necessary for compressing the refrigerant gas in the compression chamber 5 acts as a main load in the + X direction on the drive shaft 6, and the main shaft portion 6b. The countershaft portion 6c is subjected to a reaction force commensurate with it. There are diameter gaps (usually about 1/1000 of the shaft diameter) between the main bearing 19 and the main shaft portion 6b and between the sub bearing 11 and the sub shaft portion 6c for enabling fluid lubrication. For this reason, the drive shaft 6 bends and deforms, and the main shaft 19 in the main bearing 19 is inclined in the + X direction, and the auxiliary shaft 11 in the auxiliary bearing 11 is inclined so that the auxiliary shaft portion 6c approaches in the −X direction. The axis 6h of the auxiliary shaft 6c is also inclined with respect to the axis (Z axis) 6g of the compressor. As a result, during the low load operation of FIG. 3A, the thrust surface 6f is inclined with respect to the thrust receiving surface 12 so that the -axis direction of the X axis is lifted and the + direction of the X axis is pressed.
 さらに、高負荷運転時には、図3(B)に示すように低負荷運転時より駆動軸6が大きく撓んで変形する。このため、副軸部6cのスラスト面6fはスラスト受面12に対して、X軸の+方向が浮き上がり、X軸の-方向を押し付けるように傾く。径方向油溝7gをスラスト受面12に押し付けると、径方向油溝7gのエッジ付近で局所的に面圧が高くなり摩耗しやすくなることが問題である。よって、径方向油溝7g付近がスラスト受面12に片当たりしないように、径方向油溝7gを±X方向を避けるように配置するのがよい。一方で、副軸受11のラジアル受面11aでは、副軸部6cが-X方向に接近し荷重が働くので、軸方向油溝7fは+X側(反荷重側)に設けられる。 Furthermore, as shown in FIG. 3 (B), during high load operation, the drive shaft 6 bends and deforms more greatly than during low load operation. For this reason, the thrust surface 6f of the auxiliary shaft portion 6c is inclined with respect to the thrust receiving surface 12 so that the + direction of the X axis is lifted and the-direction of the X axis is pressed. When the radial oil groove 7g is pressed against the thrust receiving surface 12, there is a problem that the surface pressure is locally increased near the edge of the radial oil groove 7g and is easily worn. Therefore, it is preferable to arrange the radial oil groove 7g so as to avoid the ± X directions so that the vicinity of the radial oil groove 7g does not come into contact with the thrust receiving surface 12. On the other hand, on the radial receiving surface 11a of the auxiliary bearing 11, the auxiliary shaft portion 6c approaches the -X direction and a load is applied, so that the axial oil groove 7f is provided on the + X side (anti-load side).
 次に、図4は、本発明の実施の形態1に係るスクロール圧縮機の駆動軸のY-Z断面での撓み状態と、径方向油溝の周方向の配置位置との説明図である。図4において(A)は低速運転時、(B)は高速運転時を示している。また、(A)および(B)のそれぞれにおいて、(a)は駆動軸6のY-Z断面での撓み状態を示す図、(b)は上から見た駆動軸6の平面図で、駆動軸6に作用する荷重を示した図、(c)は下から見た径方向油溝7gの周方向の位置の説明図である。また、図4において円弧状の二重線矢印は、駆動軸6の回転方向を示している。 Next, FIG. 4 is an explanatory diagram of the bending state in the YZ section of the drive shaft of the scroll compressor according to Embodiment 1 of the present invention and the circumferential position of the radial oil groove. In FIG. 4, (A) shows a low speed operation, and (B) shows a high speed operation. Further, in each of (A) and (B), (a) is a diagram showing a bending state of the drive shaft 6 in the YZ section, and (b) is a plan view of the drive shaft 6 as viewed from above. The figure which showed the load which acts on the axis | shaft 6, (c) is explanatory drawing of the position of the circumferential direction of the radial direction oil groove 7g seen from the bottom. In FIG. 4, the arcuate double line arrow indicates the rotation direction of the drive shaft 6.
 駆動軸6には、揺動スクロール2等の偏心回転により遠心力Fcが作用すると、固定スクロール1の渦巻突起(歯先ラップ)1b等に局部的に大きな荷重が作用したり、駆動軸が傾いてロータが振れ回ったりするなどの問題がある。このため、遠心力Fcによる荷重を緩和する機構として、ロータ10aの上下にバランサ26aおよびバランサ26bが取り付けられ、駆動軸6のY-Z断面に働く力とモーメントを釣り合わせる。このとき、撓んで変形しながら傾く駆動軸6は、遠心力Fcの有無により傾斜角は変化するが、副軸部6cはほぼ同じ傾向で傾く。 When centrifugal force Fc acts on the drive shaft 6 due to eccentric rotation of the orbiting scroll 2 or the like, a large load acts locally on the spiral protrusion (tooth tip wrap) 1b of the fixed scroll 1 or the drive shaft tilts. There is a problem that the rotor swings around. For this reason, as a mechanism for relieving the load caused by the centrifugal force Fc, the balancer 26a and the balancer 26b are attached to the top and bottom of the rotor 10a to balance the force and moment acting on the YZ section of the drive shaft 6. At this time, the inclination angle of the drive shaft 6 that is bent while being bent and deformed changes depending on the presence or absence of the centrifugal force Fc, but the auxiliary shaft portion 6c is inclined with substantially the same tendency.
 ロータ10aの上側のバランサ26aの遠心力FBW1は-Y方向に、下側のバランサ26bの遠心力FBW2は-Y方向に働くので、副軸受11のラジアル受面11aでは、副軸部6cの下側で-Y方向に、より接近するように傾く。その結果、図4(A)の低速運転時および(B)の高速運転時共に、スラスト面6fはスラスト受面12に対して、Y軸の+方向が浮き上がり、Y軸の-方向を押し付けるように傾く。よって、径方向油溝7g付近がスラスト受面12に片当たりしないように、-Y方向を避けるように配置するのがよい。 Since the centrifugal force F BW1 of the upper balancer 26a of the rotor 10a works in the -Y direction and the centrifugal force F BW2 of the lower balancer 26b works in the -Y direction, the radial shaft receiving surface 11a of the auxiliary bearing 11 has the auxiliary shaft portion 6c. Tilt closer to the -Y direction on the lower side. As a result, in both the low speed operation shown in FIG. 4A and the high speed operation shown in FIG. 4B, the thrust surface 6f lifts the positive direction of the Y axis against the thrust receiving surface 12 and presses the negative direction of the Y axis. Lean on. Therefore, it is preferable to arrange so as to avoid the −Y direction so that the vicinity of the radial oil groove 7 g does not come into contact with the thrust receiving surface 12.
 以上、図3および図4で説明したように、駆動軸6には、主な荷重であるガス荷重と、遠心力とが作用し、スラスト面6fが傾くが、全ての運転条件で径方向油溝7gが片当たりしにくいのは、Y軸の+方向つまり偏心方向である。よって、径方向油溝7gを偏心方向(+Y方向)に配置するのがよい。 As described above with reference to FIGS. 3 and 4, the driving shaft 6 is subjected to the gas load, which is the main load, and the centrifugal force, and the thrust surface 6f is tilted. The groove 7g is less likely to hit one side in the + direction of the Y axis, that is, the eccentric direction. Therefore, the radial oil groove 7g is preferably arranged in the eccentric direction (+ Y direction).
 さらに、最も厳しい高速高負荷の運転条件では、図3(B)と図4(B)に示すように、主な荷重であるガス荷重Fxに加えて、常に、ロータ上側のバランサ26aの遠心力FBW1が-Y方向に、常にロータ下側のバランサの26bの遠心力FBW2が+Y方向に働く。ガス荷重Fxと遠心力FBW1との合力Frは、+X軸から上から見て時計回り(反回転方向)に少しずれた角度方向に働いて、駆動軸6が撓んで変形するので、スラスト面6fが片当りする角度と、副軸ラジアル荷重の方向も少しずれて働く。これを考慮すると、図3(B)の(c)と図4(B)の(c)に記載するように、スラスト面6fの径方向油溝7gの位置は、Y軸の+方向(偏心方向)から下から見て反時計回り(反回転方向)に角度αずらして配置した方が、さらによい耐久性が得られる。角度αは、0deg以上45deg以下の鋭角範囲である。 Furthermore, under the most severe high-speed and high-load operating conditions, as shown in FIGS. 3B and 4B, in addition to the main load gas load Fx, the centrifugal force of the balancer 26a on the upper side of the rotor is always maintained. F BW1 works in the −Y direction, and the centrifugal force F BW2 of the balancer 26b on the lower side of the rotor always works in the + Y direction. The resultant force Fr of the gas load Fx and the centrifugal force F BW1 works in an angular direction slightly shifted clockwise (counter-rotation direction) from the + X axis, and the drive shaft 6 is bent and deformed. The angle at which 6f hits one side and the direction of the secondary shaft radial load also work slightly deviated. Considering this, as described in (c) of FIG. 3 (B) and (c) of FIG. 4 (B), the position of the radial oil groove 7g on the thrust surface 6f is set in the + direction (eccentricity) of the Y axis. Further durability can be obtained when the angle α is shifted counterclockwise (counter-rotation direction) as viewed from below (direction). The angle α is an acute angle range of 0 deg to 45 deg.
(発明の効果)
 上記の実施の形態1によれば、スラスト面6fとスラスト受面12との間に、接触点12fから径方向外側に向かって連続的に増加する隙間20を有する。また、スラスト面6fの外周側には油溜め空間22を有し、潤滑油が、径方向油溝7gと隙間20とを通ってスラスト受面12に供給された後、油溜め空間22に貯油される構成を有する。このように、油溜め空間22を設けることで、スラスト面6fとスラスト受面12との間に潤滑油の流れを常時確保することができる。その結果、スラスト受面12において良好な油潤滑状態と摺動状態とを確保することができ、駆動軸6の異常摩耗および駆動軸6の焼き付きなどを抑制することができる。このように、実施の形態1では、スラスト面6fとスラスト受面12との間に径方向外側に向かって大きくなる隙間と油溜め空間22を設けるだけの比較的簡便な手段により、圧縮機の寿命と信頼性とを向上することが可能である。
(Effect of the invention)
According to the first embodiment, the gap 20 that continuously increases from the contact point 12f toward the radially outer side is provided between the thrust surface 6f and the thrust receiving surface 12. An oil sump space 22 is provided on the outer peripheral side of the thrust surface 6f. Lubricating oil is supplied to the thrust receiving surface 12 through the radial oil groove 7g and the gap 20, and then stored in the oil sump space 22. It has the composition to be. Thus, by providing the oil sump space 22, it is possible to always ensure the flow of the lubricating oil between the thrust surface 6 f and the thrust receiving surface 12. As a result, a good oil lubrication state and a sliding state can be secured on the thrust receiving surface 12, and abnormal wear of the drive shaft 6 and seizure of the drive shaft 6 can be suppressed. As described above, in the first embodiment, the compressor of the compressor is provided by a relatively simple means that merely provides the gap and the oil sump space 22 that increase radially outward between the thrust surface 6f and the thrust receiving surface 12. It is possible to improve the life and reliability.
 また、油排出流路21の途中に絞り流路21bを設けたことで、油溜め空間22内に潤滑油を一旦保持しやすい構成とすることができ、スラスト受面12の良好な油潤滑を得るために効果的である。 Further, by providing the throttle passage 21b in the middle of the oil discharge passage 21, it is possible to make it easy to once hold the lubricating oil in the oil sump space 22, and good oil lubrication of the thrust receiving surface 12 is achieved. Is effective to get.
 また、油溜め空間22の具体的な構成としては、スラスト受面12において径方向の内側よりも径方向外側を、外方に向かうにしたがって下方に傾斜する傾斜面12dとすればよく、簡単に構成できる。 Further, as a specific configuration of the oil sump space 22, the thrust receiving surface 12 may be configured such that the radially outer side of the thrust receiving surface 12 is an inclined surface 12 d that is inclined downward as it goes outward. Can be configured.
 また、スラスト受面12の径方向外側に油溜め空間22があることで、スラスト面6fとスラスト受面12とが接触する摺動部の径方向位置を内側に寄せることができる。このため、駆動軸6の傾斜角が大きくなる厳しい摺動条件である高負荷且つ高速運転時に、接触点である平坦面終点12cでの摺動速度を下げることができる。あるいは、接触角度を小さく抑えることができる。 Further, since the oil sump space 22 is provided on the radially outer side of the thrust receiving surface 12, the radial position of the sliding portion where the thrust surface 6f and the thrust receiving surface 12 are brought into contact can be moved inward. For this reason, the sliding speed at the flat surface end point 12c, which is the contact point, can be lowered during high load and high speed operation, which is a severe sliding condition in which the inclination angle of the drive shaft 6 becomes large. Or a contact angle can be restrained small.
 また、上面カバー9cの貫通穴23の上面開口の周囲が、曲面で形成された面取り部12eとなっているので、駆動軸6の回転時にポンプ挿入軸6dと接触するのを避けることができる。 Further, since the periphery of the upper surface opening of the through hole 23 of the upper surface cover 9c is a chamfered portion 12e formed with a curved surface, it is possible to avoid contact with the pump insertion shaft 6d when the drive shaft 6 rotates.
 また、駆動軸6のスラスト面6fの径方向外側端部が、曲面で形成された面取り部6eとなっているので、スラスト受面12との接触角度を緩和することができ、良好な摺動状態を保つことができる。 Further, since the radially outer end of the thrust surface 6f of the drive shaft 6 is a chamfered portion 6e formed of a curved surface, the contact angle with the thrust receiving surface 12 can be relaxed, and good sliding is achieved. Can keep the state.
 なお、圧縮機は、図1~図5に示した構造に限定されるものではなく、本発明の要旨を逸脱しない範囲でたとえば以下のように種々の変形例の実施が可能である。 It should be noted that the compressor is not limited to the structure shown in FIGS. 1 to 5, and various modifications can be implemented as follows, for example, without departing from the gist of the present invention.
<実施の形態1の変形例1>
 図6は、本発明の実施の形態1に係るスクロール圧縮機の変形例1を示す図で、スクロール圧縮機の副軸受より下端部分を拡大した模式図である。
 変形例1は、図2に示した基本構成と比較して、ポンプ挿入軸6dのスラスト給油横穴7eを無くした点が異なる。また、スラスト受面12も焼入れ硬化した状態であり、スラスト受面12と副軸部6c(ラジアル面)の焼入れ箇所との距離が、図2に示した基本構成よりも接近している。また、油溜め空間22の空間も図2のように内壁面22caに凹みがないため、容積が小さくなっている点が図2に示した基本構成と異なる。
<Modification 1 of Embodiment 1>
FIG. 6 is a diagram illustrating a first modification of the scroll compressor according to the first embodiment of the present invention, and is a schematic diagram in which a lower end portion is enlarged from a secondary bearing of the scroll compressor.
The modification 1 is different from the basic configuration shown in FIG. 2 in that the thrust oil supply lateral hole 7e of the pump insertion shaft 6d is eliminated. The thrust receiving surface 12 is also hardened and hardened, and the distance between the thrust receiving surface 12 and the quenching portion of the auxiliary shaft portion 6c (radial surface) is closer than the basic configuration shown in FIG. Also, the space of the oil sump space 22 is different from the basic configuration shown in FIG. 2 because the inner wall surface 22ca has no recess as shown in FIG.
 高速高負荷の運転条件では、スラスト面6fは大きく傾いて曲率半径の大きな面取り部(フィレット)6eで接触し摺動する。このようにポンプ挿入軸6dからスラスト給油横穴7eを無くした場合でも、油溜め空間22にはラジアル受面11aの下端側の油シール部11dから油が流入する。このため、上端22bまで貯蔵される油のヘッド圧により、スラスト受面12の外側に常時安定した油を潤沢に供給することが可能である。一方で、スラスト受面12の内周側から面取り部6eには、油ポンプ9から漏れる潤滑油を、ポンプ挿入軸6dと貫通穴23との間の隙間から径方向油溝7gを通って供給することが可能である。しかしながら、後者の油ポンプ漏れによる給油量は回転数が低いほどヘッドが小さくなり減少するので、低速可能範囲に限界がある。 Under high-speed and high-load operation conditions, the thrust surface 6f is greatly inclined and contacts and slides at a chamfered portion (fillet) 6e having a large curvature radius. Thus, even when the thrust oil supply lateral hole 7e is eliminated from the pump insertion shaft 6d, the oil flows into the oil sump space 22 from the oil seal portion 11d on the lower end side of the radial receiving surface 11a. For this reason, it is possible to supply a stable amount of oil to the outside of the thrust receiving surface 12 abundantly by the head pressure of the oil stored up to the upper end 22b. On the other hand, the lubricating oil leaking from the oil pump 9 is supplied to the chamfered portion 6e from the inner peripheral side of the thrust receiving surface 12 through the radial oil groove 7g from the gap between the pump insertion shaft 6d and the through hole 23. Is possible. However, since the amount of oil supply due to the latter oil pump leakage decreases as the rotational speed decreases, the head becomes smaller and decreases, so there is a limit to the range where low speed can be achieved.
 図2で上述したようにポンプ挿入軸6dにスラスト給油横穴7eを設けた方が、遠心ポンプ作用でスラスト面6fの径方向油溝7gを介してスラスト受面12に潤滑油を潤沢にかつ常時安定して供給するには有効な構成である。しかし、低速運転時の課題を除いて、本変形例1でもそれに準ずる効果が得られる。 As described above with reference to FIG. 2, when the thrust oil supply lateral hole 7e is provided on the pump insertion shaft 6d, the lubricating oil is supplied to the thrust receiving surface 12 more and more constantly through the radial oil groove 7g of the thrust surface 6f by the centrifugal pump action. This is an effective configuration for stable supply. However, except for the problem at the time of low-speed operation, the present modification 1 can achieve the same effect.
<実施の形態1の変形例2>
 図7は、本発明の実施の形態1に係るスクロール圧縮機の変形例2を示す図で、スクロール圧縮機の副軸受より下端部分を拡大した模式図である。
 変形例2は、図2に示した基本構成と比較して以下の2点が異なる。すなわち、1つは、スラスト受面12側には傾斜面12dがなく、平坦面12bを径方向外側の終端まで延長させた点である。もう1つは、スラスト面6fの径方向外側端部の面取り部6eの曲率半径Rs1を、図2よりも大きくして油溜め空間22を形成した点である。なお、スラスト受面12も焼入れ硬化した状態であり、スラスト受面12と副軸部6cの焼入れ箇所との距離は接近しており、油溜め空間22の空間も図2に比べて小さい。
<Modification 2 of Embodiment 1>
FIG. 7 is a diagram showing a second modification of the scroll compressor according to the first embodiment of the present invention, and is a schematic diagram in which the lower end portion is enlarged from the auxiliary bearing of the scroll compressor.
Modification 2 differs from the basic configuration shown in FIG. 2 in the following two points. That is, one is that there is no inclined surface 12d on the thrust receiving surface 12 side, and the flat surface 12b is extended to the radially outer end. The other is that the oil sump space 22 is formed by making the radius of curvature Rs1 of the chamfered portion 6e at the radially outer end of the thrust surface 6f larger than that in FIG. The thrust receiving surface 12 is also hardened and hardened, the distance between the thrust receiving surface 12 and the quenching portion of the auxiliary shaft portion 6c is close, and the space of the oil sump space 22 is also smaller than that in FIG.
 図2では、スラスト受面12の平坦面終点12cが、スラスト面6fとの接触点であった。これに対し、変形例2では、スラスト受面12の全体を平坦面としたことで、駆動軸6が傾斜すると、面取り部6eの面取り開始位置6eaと接触する、スラスト受面12上の点が接触点12fとなる。そこで、面取り部6eの半径Rsを大きくとることで、半径Rsが小さい場合よりも接触点12fがスラスト受面12の径方向内側に位置するため、接触点12fでの摺動速度を下げることができる。また、面取り部6eの半径Rsを大きくとることで、スラスト受面12全体を平坦面12bとしても、半径Rsが小さい場合よりも接触角度を緩和することができる。 In FIG. 2, the flat surface end point 12c of the thrust receiving surface 12 is a contact point with the thrust surface 6f. On the other hand, in Modification 2, the entire thrust receiving surface 12 is a flat surface, so that when the drive shaft 6 is inclined, the point on the thrust receiving surface 12 that contacts the chamfering start position 6ea of the chamfered portion 6e is reduced. It becomes the contact point 12f. Therefore, by increasing the radius Rs of the chamfered portion 6e, the contact point 12f is located on the radially inner side of the thrust receiving surface 12 as compared with the case where the radius Rs is small, so that the sliding speed at the contact point 12f can be reduced. it can. Further, by increasing the radius Rs of the chamfered portion 6e, the contact angle can be relaxed as compared with the case where the radius Rs is small, even if the thrust receiving surface 12 as a whole is the flat surface 12b.
 また、変形例2では、接触点12fから駆動軸6の軸心に垂直に下ろした線分を半径とした円(以下、接触摺動円)が、軸方向に見て可動部9aよりも大きい構成となっている。この構成とすることで、以下の効果が得られる。すなわち、上面カバー9cは、外周部が本体ボディ9bによって支持され、内周部側は支持されずに浮いた状態となっており、いわゆる片持ち梁状となっている。このため、接触摺動円が、仮に油ポンプ9の可動部9aよりも内側であると、駆動軸6によって上面カバー9cの内周部側が押し下げられ、上面カバー9cが撓んでしまう可能性がある。しかし、接触摺動円が可動部9aよりも大きい構成とすることで、上面カバー9cの撓みを防止できる効果がある。 In the second modification, a circle whose radius is a line segment perpendicular to the axis of the drive shaft 6 from the contact point 12f (hereinafter referred to as a contact sliding circle) is larger than the movable portion 9a when viewed in the axial direction. It has a configuration. With this configuration, the following effects can be obtained. In other words, the upper surface cover 9c has an outer peripheral portion supported by the main body body 9b and an inner peripheral portion side which is not supported and is floated, and has a so-called cantilever shape. For this reason, if the contact sliding circle is inside the movable portion 9a of the oil pump 9, the inner peripheral side of the upper surface cover 9c may be pushed down by the drive shaft 6 and the upper surface cover 9c may be bent. . However, the configuration in which the contact sliding circle is larger than the movable portion 9a has an effect of preventing the upper surface cover 9c from being bent.
<実施の形態1の変形例3>
 図8は、本発明の実施の形態1に係るスクロール圧縮機の変形例3を示す図である。図8において(a)は、スクロール圧縮機の副軸受より下端部分を拡大した模式図、(b)は、本変形例3のスラスト受面である環状鋼板を真上から見た図である。
 変形例3は、変形例2と比較して以下の点が異なる。スラスト受面12として、厚みが薄くて表面粗度が細かい環状鋼板12gを用いた点が異なる。環状鋼板12gは、油ポンプ9の上面カバー9cの上に載せて用いられる。なお、「厚みが薄い」とは、例えば厚みが1mm以下であり、また、「表面粗度が細かい」とは、例えば表面粗度がz1以下であることを指す。環状鋼板12gには、例えば厚み0.5mmのPK鋼板など、市販の焼き入れ薄板鋼材を用いることができる。環状鋼板12gは、本発明の環状部材の一例に相当し、焼入れ鋼帯の表面を磨いて仕上げたものである。
<Modification 3 of Embodiment 1>
FIG. 8 is a diagram showing a third modification of the scroll compressor according to the first embodiment of the present invention. 8A is a schematic diagram in which the lower end portion is enlarged from the auxiliary bearing of the scroll compressor, and FIG. 8B is a diagram of the annular steel plate that is the thrust receiving surface of the third modification viewed from directly above.
The third modification differs from the second modification in the following points. The thrust receiving surface 12 is different in that an annular steel plate 12g having a small thickness and a small surface roughness is used. The annular steel plate 12g is used on the top cover 9c of the oil pump 9. In addition, “thickness” means, for example, that the thickness is 1 mm or less, and “fine surface roughness” means that the surface roughness is, for example, z1 or less. For the annular steel plate 12g, for example, a commercially-quenched thin steel plate material such as a PK steel plate having a thickness of 0.5 mm can be used. The annular steel plate 12g corresponds to an example of the annular member of the present invention, and is obtained by polishing the surface of a quenched steel strip.
 環状鋼板12gは、円形外周の一部に、外方に突出した耳状の突起箇所12gaを有しており、油ポンプ9の本体ボディ9bの切り欠いた箇所に、耳状の突起箇所12gaが挿入されて回転しないように固定してある。 The annular steel plate 12g has an outer protrusion 12ga projecting outwardly at a part of the circular outer periphery, and the outer protrusion 12ga is formed at the notched portion of the main body 9b of the oil pump 9. Inserted and fixed so as not to rotate.
 本変形例3においては、環状鋼板12gを用いることで、環状鋼板12gがスラスト面6fの挙動に追従するため、摺動性が向上する。また、環状鋼板12gとして市販の焼き入れ薄板鋼材を用いることで、加工が簡便で済むメリットがある。 In Modification 3, by using the annular steel plate 12g, the annular steel plate 12g follows the behavior of the thrust surface 6f, so that the slidability is improved. Moreover, there is an advantage that processing is simple by using a commercially available quenched steel sheet as the annular steel plate 12g.
実施の形態2.
 図9は、本発明の実施の形態2に係るスクロール圧縮機の要部を示す図で、副軸受より下端部分を拡大して示す模式図である。
 本実施の形態2は、図2に示した基本構成と比較して、径方向油溝7gの形成位置を、スラスト面6f側からスラスト受面12側に替えると共に、径方向油溝7gの本数を複数本、好ましくは3本以上に増やした点が異なる。また、スラスト受面12側は、圧縮機の軸心6gに直交する平坦面12bのみで形成され、傾斜面12dはない。代わって、スラスト面6f側は軸心6g(圧縮機の軸心基準)との直交面より傾斜した傾斜面6faで形成される点が異なる。スラスト面6fは軸心6gから径方向外側に向かうにしたがって上方に傾斜する。スラスト面6fの傾斜角度を、高負荷且つ高速運転で撓んだ副軸部6cの軸心6hの傾斜角度θsと同程度に設計することによって、スラスト面6fとスラスト受面12との接触角度を小さく保つことができる。なお、「高負荷且つ高速運転で撓んだ軸心6gの傾斜角度」は、1/1000~2/1000rad程度である。
Embodiment 2. FIG.
FIG. 9 is a diagram showing a main part of the scroll compressor according to Embodiment 2 of the present invention, and is a schematic diagram showing an enlarged lower end portion from the auxiliary bearing.
In the second embodiment, compared with the basic configuration shown in FIG. 2, the formation position of the radial oil groove 7g is changed from the thrust surface 6f side to the thrust receiving surface 12 side, and the number of radial oil grooves 7g The difference is that the number is increased to a plurality, preferably 3 or more. Further, the thrust receiving surface 12 side is formed only by the flat surface 12b orthogonal to the compressor shaft 6g, and there is no inclined surface 12d. Instead, the thrust surface 6f side is different in that it is formed by an inclined surface 6fa inclined from a plane orthogonal to the shaft center 6g (compressor shaft center reference). The thrust surface 6f is inclined upward as it goes radially outward from the shaft center 6g. The contact angle between the thrust surface 6f and the thrust receiving surface 12 is designed by designing the inclination angle of the thrust surface 6f to be approximately the same as the inclination angle θs of the shaft center 6h of the countershaft portion 6c bent under high load and high speed operation. Can be kept small. The “inclination angle of the axis 6g deflected by high load and high speed operation” is about 1/1000 to 2/1000 rad.
 図2のように、径方向油溝7gをスラスト面6fに形成した構成では、駆動軸6が回転することにより径方向油溝7gの位置が回転して遠心ポンプ作用が発生し、スラスト受面12の全面に潤滑油を広げる効果があった。これに対し、本実施の形態2のように径方向油溝7gをスラスト受面12に形成した構成では、径方向油溝7gの位置は回転しないため、径方向油溝7g内の潤滑油は流れにくく、スラスト受面12に広がりにくい。そこで、本実施の形態2では、径方向油溝7gの本数を複数本に増やすことで流路抵抗を小さくし、潤滑油をスラスト受面12の全面に広げる効果を得られるようにした。 As shown in FIG. 2, in the configuration in which the radial oil groove 7g is formed on the thrust surface 6f, the rotation of the drive shaft 6 causes the position of the radial oil groove 7g to rotate, thereby generating a centrifugal pump action. 12 had the effect of spreading the lubricant over the entire surface. On the other hand, in the configuration in which the radial oil groove 7g is formed on the thrust receiving surface 12 as in the second embodiment, the position of the radial oil groove 7g does not rotate, so the lubricating oil in the radial oil groove 7g It is difficult to flow and spread to the thrust receiving surface 12. Therefore, in the second embodiment, the flow resistance is reduced by increasing the number of the radial oil grooves 7g to a plurality, and the effect of spreading the lubricating oil over the entire thrust receiving surface 12 can be obtained.
 但し、径方向油溝7gの流路断面積は、ポンプ挿入軸6dと上面カバー9cとの間の環状の隙間で構成された流路の流路断面積より小さくする。これにより、径方向油溝7gを流れる潤滑油がスラスト受面12の上面側に溢れでて、スラスト面6fが回転することで全体に広がって、潤滑状態を良好に保つことができる。 However, the flow passage cross-sectional area of the radial oil groove 7g is made smaller than the flow passage cross-sectional area of the flow passage formed by the annular gap between the pump insertion shaft 6d and the upper surface cover 9c. As a result, the lubricating oil flowing through the radial oil groove 7g overflows to the upper surface side of the thrust receiving surface 12, and the thrust surface 6f rotates to spread over the entire surface, so that the lubrication state can be kept good.
 また、傾斜面6faを設けることで、傾斜面6faを設けずスラスト面6fとスラスト受面12とを共に平坦面とする場合に比べて接触点12fが径方向内側に位置する。このため、接触点12fにおける摺動速度の低減と、接触点12fにおける接触角度の緩和とを図ることができる。 Further, by providing the inclined surface 6fa, the contact point 12f is located radially inward as compared to the case where the inclined surface 6fa is not provided and the thrust surface 6f and the thrust receiving surface 12 are both flat surfaces. For this reason, it is possible to reduce the sliding speed at the contact point 12f and reduce the contact angle at the contact point 12f.
 径方向油溝7gの形成位置は、図2で上述したようにスラスト面6fとした方が、遠心作用でスラスト受面12に潤滑油を潤沢に供給できる。しかし、本実施の形態2のように、径方向油溝7gの形成位置をスラスト受面12としても、径方向油溝7gを適切に設計すれば、実施の形態1に準ずる効果が得られる。 When the radial oil groove 7g is formed at the thrust surface 6f as described above with reference to FIG. 2, the lubricating oil can be supplied to the thrust receiving surface 12 more abundantly by centrifugal action. However, even when the radial oil groove 7g is formed at the thrust receiving surface 12 as in the second embodiment, if the radial oil groove 7g is appropriately designed, the same effect as in the first embodiment can be obtained.
 また、副軸受11のラジアル受面11aの駆動軸6の軸方向の両端部のうち、少なくとも一方の端部が曲面で形成されている。これにより、曲面で形成された端部と駆動軸6との接触による損傷を抑制することができる。なお、図9には、副軸受11のラジアル受面11aの駆動軸6の軸方向の両端部が曲面で形成された構成を示している。 Further, at least one end of the radial receiving surface 11a of the auxiliary bearing 11 in the axial direction of the drive shaft 6 is formed as a curved surface. Thereby, the damage by the contact of the end part formed with the curved surface and the drive shaft 6 can be suppressed. FIG. 9 shows a configuration in which both ends of the radial receiving surface 11a of the auxiliary bearing 11 in the axial direction of the drive shaft 6 are curved.
実施の形態3.
 図10は、本発明の実施の形態3に係るスクロール圧縮機の要部を示す図で、副軸受より下端部分を拡大して示す模式図である。
 サブフレーム8bは、ラジアル荷重に加えて、駆動軸6の自重とロータ磁力とによって発生するスラスト荷重も受ける。図2では、このスラスト荷重をサブフレーム8bの下方に配置された油ポンプ9の上面カバー9cで受けており、上面カバー9cの上面がスラスト受面12となっている。本実施の形態3では、スラスト荷重をサブフレーム8bの底にボルト40で固定された底板8bcで受けており、底板8bcの上側表面がスラスト受面12となっている点が異なる。スラスト受面12の形状は図2とほぼ同様である。スラスト面6fの形状も図2と同様である。
Embodiment 3 FIG.
FIG. 10 is a diagram illustrating a main part of the scroll compressor according to the third embodiment of the present invention, and is a schematic diagram illustrating an enlarged lower end portion of the auxiliary bearing.
In addition to the radial load, the subframe 8b receives a thrust load generated by the weight of the drive shaft 6 and the rotor magnetic force. In FIG. 2, this thrust load is received by the upper surface cover 9 c of the oil pump 9 disposed below the subframe 8 b, and the upper surface of the upper surface cover 9 c is the thrust receiving surface 12. The third embodiment is different in that the thrust load is received by the bottom plate 8bc fixed to the bottom of the subframe 8b with the bolt 40, and the upper surface of the bottom plate 8bc is the thrust receiving surface 12. The shape of the thrust receiving surface 12 is substantially the same as in FIG. The shape of the thrust surface 6f is the same as that in FIG.
 底板8bcは、中心部に貫通孔が形成された環状の円形台板であって、底板8bcの外径は、サブフレーム8bの筒状部8baの外径より大きい。底板8bcにはボルト穴が複数本あけられており、ボルト穴にボルト40が通されてサブフレーム8bに設けたネジ穴に螺合されることで、底板8bcがサブフレーム8bに固定されている。また、ポンプ挿入軸6dは底板8bcの厚み分だけ、図2より長くなっている。底板8bcは、本発明の環状部材の一例に相当する。 The bottom plate 8bc is an annular circular base plate in which a through hole is formed at the center, and the outer diameter of the bottom plate 8bc is larger than the outer diameter of the cylindrical portion 8ba of the subframe 8b. The bottom plate 8bc has a plurality of bolt holes. The bolt 40 is passed through the bolt holes and screwed into the screw holes provided in the subframe 8b, so that the bottom plate 8bc is fixed to the subframe 8b. . Moreover, the pump insertion shaft 6d is longer than FIG. 2 by the thickness of the bottom plate 8bc. The bottom plate 8bc corresponds to an example of the annular member of the present invention.
 本実施の形態3によれば、スラスト受面12を、油ポンプ9の上面カバー9cとは別体の底板8bcで形成するため、油ポンプ9の設計制約を受けないで底板8bcの材料および厚みを選定できる。よって、スラスト受面12の表面硬度および曲げ強度を、油ポンプ9の設計制約を受けることなく、容易に強くすることが容易である。 According to the third embodiment, since the thrust receiving surface 12 is formed by the bottom plate 8bc separate from the top cover 9c of the oil pump 9, the material and thickness of the bottom plate 8bc are not subject to the design restrictions of the oil pump 9. Can be selected. Therefore, it is easy to easily increase the surface hardness and bending strength of the thrust receiving surface 12 without being restricted by the design of the oil pump 9.
 また、上記実施の形態1、変形例1~変形例3、実施の形態2および実施の形態3のそれぞれの特徴的な構成について、本発明の要旨を逸脱しない範囲で適宜組み合わせてもよい。たとえば、実施の形態2の特徴的な構成である、スラスト受面12に径方向油溝7gを複数本設ける構成は、傾斜面6faをスラスト面6fに設ける構成と組み合わせて用いることに限られない。例えば、図2に示した傾斜面12dをスラスト受面12に設ける構成と組み合わせてもよい。また、変形例2の面取り部6eの曲率半径Rs1を大きくする構成を実施の形態2と組み合わせてもよい。また、変形例3の環状鋼板12gを、実施の形態2および実施の形態3に組み合わせてもよい。 Further, the characteristic configurations of the first embodiment, the first modification to the third modification, the second embodiment, and the third embodiment may be appropriately combined without departing from the gist of the present invention. For example, the configuration in which a plurality of radial oil grooves 7g are provided on the thrust receiving surface 12, which is a characteristic configuration of the second embodiment, is not limited to use in combination with the configuration in which the inclined surface 6fa is provided on the thrust surface 6f. . For example, you may combine with the structure which provides 12 d of inclined surfaces shown in FIG. In addition, the configuration in which the radius of curvature Rs1 of the chamfered portion 6e of Modification 2 is increased may be combined with Embodiment 2. Moreover, you may combine the cyclic | annular steel plate 12g of the modification 3 with Embodiment 2 and Embodiment 3. FIG.
 また、上記実施の形態1~3では、副軸受11とサブフレーム8bとが別体で構成されていたが一体で構成し、一体化した構成部材を、駆動軸6の副軸部6cのラジアル面を支持する副軸受としてもよい。 In the first to third embodiments, the sub-bearing 11 and the sub-frame 8b are separately formed. However, the sub-bearing 11 and the sub-frame 8b are integrally formed. It is good also as a secondary bearing which supports a surface.
 また、上記実施の形態1~3では、スラスト受面が形成される部材が、油ポンプ9の上面カバー9c、環状鋼板12g、または、サブフレーム8bの底に固定された底板8bcであり、ラジアル受面11aが形成される副軸受11とは別体で構成されていた。しかし、上述したように副軸受11をサブフレーム8bと一体とした上でさらに、スラスト受面が形成される部材も一体とし、一体化した構成部材を、駆動軸6の副軸部6cのラジアル面とスラスト面とを支持する副軸受としてもよい。 In the first to third embodiments, the member on which the thrust receiving surface is formed is the top cover 9c of the oil pump 9, the annular steel plate 12g, or the bottom plate 8bc fixed to the bottom of the subframe 8b. It was comprised separately from the subbearing 11 in which the receiving surface 11a is formed. However, as described above, the auxiliary bearing 11 is integrated with the subframe 8b, and the member on which the thrust receiving surface is formed is also integrated, and the integrated component is a radial of the auxiliary shaft portion 6c of the drive shaft 6. It is good also as a subbearing which supports a surface and a thrust surface.
 また、上記説明では、圧縮機がスクロール圧縮機である構成を説明したが、これに限らず、ロータリー圧縮機等、他の形式の圧縮機としてもよい。 In the above description, the configuration in which the compressor is a scroll compressor has been described. However, the present invention is not limited to this, and other types of compressors such as a rotary compressor may be used.
 1 固定スクロール、1a 台板、1b 渦巻突起、2 揺動スクロール、2a 台板、2b 渦巻突起(歯先ラップ)、2c 偏心穴、3 吸入口、4 吐出口、5 圧縮室、6 駆動軸、6a 偏心軸、6b 主軸部、6c 副軸部、6d ポンプ挿入軸、6e 面取り部、6ea 面取り開始位置、6f スラスト面、6fa 傾斜面、6g 圧縮機の軸心、6h 副軸部の軸心、7a 給油縦穴、7b 給油横穴、7c 給油横穴、7d 給油横穴、7e 給油横穴、7f 軸方向油溝、7g 径方向油溝、8 ハウジング、8a メインフレーム、8b サブフレーム、8ba 筒状部(副軸受メタル)、8bb フランジ部、8bc 底板、9 油ポンプ、9a 可動部、9aa 内側ロータ、9ab 外側ロータ、9b 本体ボディ、9c 上面カバー、9d 下端開口、10 電動機、10a ロータ、10b ステータ、11 副軸受、11a ラジアル受面、11c 油シール部、11d 油シール部、12 スラスト受面、12b 平坦面、12c 平坦面終点、12d 傾斜面、12e 面取り部、12f 接触点、12g 環状鋼板、12ga 突起箇所、13 密閉容器、14 油貯蔵空間、15 冷媒吸入管、16 冷媒吐出管、17 揺動軸受、18 揺動スラスト軸受、19 主軸受、21 油排出流路、21a 排出穴、21b 絞り流路、22 油溜め空間、22a 下端、22b 上端、22c 内周面、22ca 壁面部、23 貫通穴、24 ネジ、25 オルダム継手、26a バランサ、26b バランサ、29 返油管、29a 返油穴、40 ボルト、100 スクロール圧縮機、A 圧縮機構部、B 電動機部。 1 fixed scroll, 1a base plate, 1b spiral projection, 2 swing scroll, 2a base plate, 2b spiral projection (tooth tip wrap), 2c eccentric hole, 3 suction port, 4 discharge port, 5 compression chamber, 6 drive shaft, 6a Eccentric shaft, 6b Main shaft portion, 6c Sub shaft portion, 6d Pump insertion shaft, 6e Chamfered portion, 6ea Chamfer start position, 6f Thrust surface, 6fa inclined surface, 6g Compressor shaft center, 6h Sub shaft portion shaft center, 7a oil supply vertical hole, 7b oil supply horizontal hole, 7c oil supply horizontal hole, 7d oil supply horizontal hole, 7e oil supply horizontal hole, 7f axial oil groove, 7g radial oil groove, 8 housing, 8a main frame, 8b subframe, 8ba cylindrical part (sub bearing) Metal), 8bb flange, 8bc bottom plate, 9 oil pump, 9a movable part, 9aa inner rotor, 9ab outer rotor, 9b Body, 9c Top cover, 9d Bottom opening, 10 Motor, 10a Rotor, 10b Stator, 11 Sub bearing, 11a Radial receiving surface, 11c Oil seal part, 11d Oil seal part, 12 Thrust receiving surface, 12b Flat surface, 12c Flat surface End point, 12d inclined surface, 12e chamfered part, 12f contact point, 12g annular steel plate, 12ga protruding portion, 13 sealed container, 14 oil storage space, 15 refrigerant suction pipe, 16 refrigerant discharge pipe, 17 rocking bearing, 18 rocking thrust Bearing, 19 main bearing, 21 oil discharge flow path, 21a discharge hole, 21b throttle flow path, 22 oil sump space, 22a lower end, 22b upper end, 22c inner peripheral surface, 22ca wall surface, 23 through hole, 24 screw, 25 Oldham Joint, 26a balancer, 26b balancer, 29 oil return pipe, 2 a Kaeaburaana, 40 volts, 100 scroll compressor, A compression mechanism unit, B motor unit.

Claims (20)

  1.  密閉容器内に配置された圧縮機構部と、
     前記圧縮機構部を駆動する電動機部と、
     前記電動機部の駆動力を前記圧縮機構部に伝達する駆動軸と、
     前記駆動軸の上部を支持する主軸受と、
     前記駆動軸の下部を支持する副軸受と、
     前記副軸受に設けられ、前記駆動軸のラジアル面を摺動自在に支持するラジアル受面と、
     前記駆動軸のスラスト面を摺動自在に支持するスラスト受面と、を備え、
     前記スラスト面と前記スラスト受面との間には、前記スラスト面と前記スラスト受面とが曲面で接する接触点と、前記接触点から径方向外側に向かって連続的に増加する隙間とを有する圧縮機。
    A compression mechanism disposed in a sealed container;
    An electric motor that drives the compression mechanism;
    A drive shaft that transmits the driving force of the electric motor unit to the compression mechanism unit;
    A main bearing that supports an upper portion of the drive shaft;
    A sub-bearing supporting the lower portion of the drive shaft;
    A radial receiving surface provided on the auxiliary bearing and slidably supporting a radial surface of the drive shaft;
    A thrust receiving surface that slidably supports the thrust surface of the drive shaft,
    Between the thrust surface and the thrust receiving surface, there is a contact point where the thrust surface and the thrust receiving surface are in contact with each other on a curved surface, and a gap continuously increasing from the contact point toward the radially outer side. Compressor.
  2.  前記スラスト受面の径方向外側に潤滑油を貯油する油溜め空間が形成された請求項1記載の圧縮機。 The compressor according to claim 1, wherein an oil sump space for storing lubricating oil is formed on a radially outer side of the thrust receiving surface.
  3.  前記密閉容器は内部に油貯蔵空間を有し、
     前記副軸受の下部で前記駆動軸に形成されたポンプ挿入軸に連結され、前記駆動軸の回転によって前記油貯蔵空間の潤滑油を吸い上げる油ポンプを備え、
     前記スラスト面と前記スラスト受面との間に、前記駆動軸の径方向に延びる径方向油溝を有し、
     前記油ポンプで吸い上げられて前記径方向油溝を通った潤滑油が前記油溜め空間に貯油される請求項2記載の圧縮機。
    The sealed container has an oil storage space inside,
    An oil pump connected to a pump insertion shaft formed on the drive shaft at a lower portion of the sub-bearing, and sucking up lubricating oil in the oil storage space by rotation of the drive shaft;
    A radial oil groove extending in a radial direction of the drive shaft between the thrust surface and the thrust receiving surface;
    The compressor according to claim 2, wherein the lubricating oil sucked up by the oil pump and passed through the radial oil groove is stored in the oil sump space.
  4.  前記密閉容器内に配置され、前記副軸受が設けられたサブフレームを備え、
     前記油ポンプは、前記サブフレームに取り付けられており、前記サブフレームと前記油ポンプとの互いの取付け面の一方または両方に形成された溝および穴によって、前記油溜め空間の潤滑油を前記油貯蔵空間に出口から排出する油排出流路が形成されており、前記油排出流路の途中に、流路抵抗となる絞り流路が形成されている請求項3記載の圧縮機。
    A sub-frame disposed in the sealed container and provided with the sub-bearing;
    The oil pump is attached to the subframe, and the oil in the oil sump space is supplied to the oil by a groove and a hole formed in one or both of the attachment surfaces of the subframe and the oil pump. The compressor according to claim 3, wherein an oil discharge passage for discharging from an outlet is formed in the storage space, and a throttle passage serving as a passage resistance is formed in the middle of the oil discharge passage.
  5.  前記油排出流路の出口は前記油溜め空間より下側に、前記油溜め空間の上端は前記径方向油溝より上側に配置された請求項4記載の圧縮機。 The compressor according to claim 4, wherein an outlet of the oil discharge passage is disposed below the oil sump space, and an upper end of the oil sump space is disposed above the radial oil groove.
  6.  前記駆動軸は、上端に前記駆動軸の軸心から偏心した偏心軸を備えており、
     前記径方向油溝は、前記駆動軸の軸心から前記偏心軸の軸心を結ぶ方向である偏心方向に延びるように形成されている請求項3~請求項5のいずれか一項に記載の圧縮機。
    The drive shaft includes an eccentric shaft that is eccentric from an axis of the drive shaft at an upper end,
    The radial oil groove is formed so as to extend in an eccentric direction that is a direction connecting the axis of the eccentric shaft from the axis of the drive shaft. Compressor.
  7.  前記径方向油溝は、前記偏心方向から前記駆動軸の回転方向に、0deg以上45deg以下の範囲で前記駆動軸の前記スラスト面に配置されている請求項6記載の圧縮機。 The compressor according to claim 6, wherein the radial oil groove is disposed on the thrust surface of the drive shaft in a range from 0 deg to 45 deg from the eccentric direction to the rotation direction of the drive shaft.
  8.  前記スラスト面の下方には、前記ポンプ挿入軸が挿入される貫通穴を中心部に有する環状部材が配置されており、前記環状部材の上面側に前記スラスト受面が形成されている請求項3~請求項7のいずれか一項に記載の圧縮機。 The annular member which has the through-hole in which the said pump insertion shaft is inserted in the center part is arrange | positioned under the said thrust surface, The said thrust receiving surface is formed in the upper surface side of the said annular member. The compressor according to any one of claims 7 to 9.
  9.  前記環状部材は、前記油ポンプの外郭部材である請求項8記載の圧縮機。 The compressor according to claim 8, wherein the annular member is an outer member of the oil pump.
  10.  前記環状部材は、前記副軸受が設けられたサブフレームの下側に固定された底板である請求項8記載の圧縮機。 The compressor according to claim 8, wherein the annular member is a bottom plate fixed to a lower side of the sub frame provided with the sub bearing.
  11.  前記環状部材の前記スラスト受面の径方向外側が、外方に向かうにしたがって下方に傾斜する傾斜面で形成されて前記油溜め空間が形成されている請求項8~請求項10のいずれか一項に記載の圧縮機。 11. The oil sump space is formed by forming a radially outer side of the thrust receiving surface of the annular member as an inclined surface that is inclined downward as it goes outward. The compressor according to item.
  12.  前記環状部材の上面側に前記貫通穴で形成されたスラスト受面の内周部が、曲率半径Rp0の面取り部となっている請求項8~請求項11のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 8 to 11, wherein an inner peripheral portion of a thrust receiving surface formed by the through hole on the upper surface side of the annular member is a chamfered portion having a curvature radius Rp0. .
  13.  前記環状部材は、焼入れ鋼帯の表面を磨いて仕上げたものである請求項8記載の圧縮機。 The compressor according to claim 8, wherein the annular member is obtained by polishing a surface of a hardened steel strip.
  14.  前記径方向油溝が、前記スラスト受面に複数、形成されている請求項3~請求項13のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 3 to 13, wherein a plurality of the radial oil grooves are formed on the thrust receiving surface.
  15.  前記駆動軸の前記スラスト面の径方向外側が、外方に向かうにしたがって上方に傾斜する傾斜面で形成されて前記油溜め空間が形成されている請求項2~請求項6のいずれか一項に記載の圧縮機。 The oil sump space is formed by forming a radially outer side of the thrust surface of the drive shaft as an inclined surface that is inclined upward as it goes outward. The compressor described in 1.
  16.  前記駆動軸の前記スラスト面の径方向外周部には、前記スラスト受面と前記接触点で接する面取り部が形成されており、前記面取り部の曲率半径Rs1が、90度より小さな円弧角度範囲で形成された請求項1~請求項15のいずれか一項に記載の圧縮機。 A chamfered portion that is in contact with the thrust receiving surface at the contact point is formed on a radially outer peripheral portion of the thrust surface of the drive shaft, and a radius of curvature Rs1 of the chamfered portion is within an arc angle range smaller than 90 degrees. The compressor according to any one of claims 1 to 15, wherein the compressor is formed.
  17.  前記スラスト面の径方向外周部の前記面取り部の曲率半径Rs1は、
     前記スラスト受面の内周側の曲率半径Rp0より大きい、すなわち、Rs1>Rp0の関係を有する請求項16記載の圧縮機。
    The radius of curvature Rs1 of the chamfered portion in the radially outer peripheral portion of the thrust surface is:
    The compressor according to claim 16, wherein the compressor has a relationship that is larger than a radius of curvature Rp0 on the inner peripheral side of the thrust receiving surface, that is, a relationship of Rs1> Rp0.
  18.  前記駆動軸には、
     前記駆動軸の軸方向に延びており、潤滑油が流れる給油縦穴と、
     前記スラスト面よりも下部で前記給油縦穴に連通し前記駆動軸の径方向に延びており、前記潤滑油を前記スラスト面と前記スラスト受面との間に供給するスラスト給油横穴と、が形成された請求項1~請求項17のいずれか一項に記載の圧縮機。
    The drive shaft includes
    An oil supply vertical hole extending in the axial direction of the drive shaft and through which lubricating oil flows;
    A thrust oil lateral hole that extends in the radial direction of the drive shaft and communicates with the oil supply vertical hole below the thrust surface and supplies the lubricating oil between the thrust surface and the thrust receiving surface is formed. The compressor according to any one of claims 1 to 17.
  19.  前記駆動軸には、
     前記スラスト面よりも上部で前記給油縦穴に連通し前記駆動軸の径方向に延びており、前記潤滑油を前記ラジアル面と前記ラジアル受面との間に供給するラジアル給油横穴と、
     前記ラジアル給油横穴に連通して前記駆動軸の外周面に形成され、前記駆動軸の軸方向に延びる軸方向油溝と、が形成されており、
     前記軸方向油溝は、前記ラジアル受面と対向しており、前記駆動軸の外周面において前記ラジアル受面と対向する領域のうち、前記軸方向油溝よりも上方の領域は、下方の領域よりも前記駆動軸の軸方向の長さが長く形成されている請求項18記載の圧縮機。
    The drive shaft includes
    A radial oil supply lateral hole that communicates with the oil supply vertical hole above the thrust surface and extends in the radial direction of the drive shaft, and supplies the lubricating oil between the radial surface and the radial receiving surface;
    An axial oil groove formed in the outer peripheral surface of the drive shaft in communication with the radial oil supply lateral hole and extending in the axial direction of the drive shaft;
    The axial oil groove is opposed to the radial receiving surface, and a region above the axial oil groove is a lower region in a region facing the radial receiving surface on an outer peripheral surface of the drive shaft. The compressor according to claim 18, wherein the length of the drive shaft in the axial direction is longer than that of the compressor.
  20.  密閉容器内に配置された圧縮機構部と、
     前記圧縮機構部を駆動する電動機部と、
     前記電動機部の駆動力を前記圧縮機構部に伝達する駆動軸と、
     前記駆動軸の上部を支持する主軸受と、
     前記駆動軸の下部を支持する副軸受と、
     前記駆動軸のスラスト面を摺動自在に支持するスラスト受面と、
     前記駆動軸のラジアル面を摺動自在に支持するラジアル受面とを備え、
     前記駆動軸には、
     前記駆動軸の軸方向に延びており、前記潤滑油が流れる給油縦穴と、
     前記スラスト面よりも下部で前記給油縦穴に連通し、前記駆動軸の径方向に延びており、前記潤滑油を前記スラスト面と前記スラスト受面との間に供給するスラスト給油横穴と、が形成された圧縮機。
    A compression mechanism disposed in a sealed container;
    An electric motor that drives the compression mechanism;
    A drive shaft that transmits the driving force of the electric motor unit to the compression mechanism unit;
    A main bearing that supports an upper portion of the drive shaft;
    A sub-bearing supporting the lower portion of the drive shaft;
    A thrust receiving surface that slidably supports the thrust surface of the drive shaft;
    A radial receiving surface that slidably supports the radial surface of the drive shaft,
    The drive shaft includes
    An oil supply vertical hole that extends in the axial direction of the drive shaft and through which the lubricating oil flows,
    A thrust oil supply lateral hole that communicates with the oil supply vertical hole below the thrust surface, extends in the radial direction of the drive shaft, and supplies the lubricating oil between the thrust surface and the thrust receiving surface is formed. Compressor.
PCT/JP2018/008315 2018-03-05 2018-03-05 Compressor WO2019171427A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020504491A JPWO2019171427A1 (en) 2018-03-05 2018-03-05 Compressor
CN201880089937.7A CN111788394A (en) 2018-03-05 2018-03-05 Compressor with a compressor housing having a plurality of compressor blades
PCT/JP2018/008315 WO2019171427A1 (en) 2018-03-05 2018-03-05 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008315 WO2019171427A1 (en) 2018-03-05 2018-03-05 Compressor

Publications (1)

Publication Number Publication Date
WO2019171427A1 true WO2019171427A1 (en) 2019-09-12

Family

ID=67846531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008315 WO2019171427A1 (en) 2018-03-05 2018-03-05 Compressor

Country Status (3)

Country Link
JP (1) JPWO2019171427A1 (en)
CN (1) CN111788394A (en)
WO (1) WO2019171427A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045968A1 (en) * 2021-09-23 2023-03-30 艾默生环境优化技术(苏州)有限公司 Thrust structure of compressor, and compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240018995A1 (en) * 2022-07-18 2024-01-18 Copeland Climate Technologies (Suzhou) Co., Ltd. Rotary Shaft Support Assembly And Compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173954A (en) * 1992-12-07 1994-06-21 Hitachi Ltd Bearing lubricating device for scroll compressor
JPH07279967A (en) * 1994-04-05 1995-10-27 Toyota Motor Corp Device for machining sliding bearing
JP2004011530A (en) * 2002-06-06 2004-01-15 Mitsubishi Heavy Ind Ltd Piston type fluid machine
JP2004124780A (en) * 2002-10-01 2004-04-22 Mitsubishi Electric Corp Scroll compressor
US20150275898A1 (en) * 2013-03-13 2015-10-01 Emerson Climate Technologies, Inc. Lower bearing assembly for scroll compressor
WO2016075768A1 (en) * 2014-11-12 2016-05-19 三菱電機株式会社 Scroll compressor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241786A (en) * 1991-01-09 1992-08-28 Toshiba Corp Closed compressor
JP4051121B2 (en) * 1998-03-04 2008-02-20 日立アプライアンス株式会社 Hermetic compressor
JP4356375B2 (en) * 2003-06-30 2009-11-04 パナソニック株式会社 Compressor
JP2008180094A (en) * 2007-01-23 2008-08-07 Sanden Corp Scroll-type fluid machine
JP5353414B2 (en) * 2009-04-27 2013-11-27 パナソニック株式会社 Hermetic compressor and refrigeration system
KR101386485B1 (en) * 2012-09-24 2014-04-18 엘지전자 주식회사 Scroll compressor with a bearing
WO2016189738A1 (en) * 2015-05-28 2016-12-01 三菱電機株式会社 Scroll compressor
CN107013462B (en) * 2016-01-27 2020-01-31 上海海立新能源技术有限公司 horizontal scroll compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173954A (en) * 1992-12-07 1994-06-21 Hitachi Ltd Bearing lubricating device for scroll compressor
JPH07279967A (en) * 1994-04-05 1995-10-27 Toyota Motor Corp Device for machining sliding bearing
JP2004011530A (en) * 2002-06-06 2004-01-15 Mitsubishi Heavy Ind Ltd Piston type fluid machine
JP2004124780A (en) * 2002-10-01 2004-04-22 Mitsubishi Electric Corp Scroll compressor
US20150275898A1 (en) * 2013-03-13 2015-10-01 Emerson Climate Technologies, Inc. Lower bearing assembly for scroll compressor
WO2016075768A1 (en) * 2014-11-12 2016-05-19 三菱電機株式会社 Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045968A1 (en) * 2021-09-23 2023-03-30 艾默生环境优化技术(苏州)有限公司 Thrust structure of compressor, and compressor

Also Published As

Publication number Publication date
JPWO2019171427A1 (en) 2020-12-03
CN111788394A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
EP3138994B1 (en) Scroll compressor
US10859083B2 (en) Scroll compressor
JPH01159480A (en) Scroll type machine
KR101947305B1 (en) Scroll compressor
JPH04121478A (en) Scroll type compressor
JP6400237B2 (en) Scroll compressor
JP6554926B2 (en) Scroll compressor
WO2019171427A1 (en) Compressor
JPH0372840B2 (en)
EP3594502A1 (en) Scroll compressor
JP2009162078A (en) Scroll type compressor
JP4629567B2 (en) Scroll compressor
JP6057535B2 (en) Refrigerant compressor
JP6184648B1 (en) Bearing unit and compressor
JP4749136B2 (en) Scroll compressor
JP6104396B2 (en) Scroll compressor
JP6351749B2 (en) Scroll compressor
JPH07217574A (en) Compressor
KR102186245B1 (en) A compressor
JP6611648B2 (en) Scroll compressor
JP6541708B2 (en) Rolling cylinder positive displacement compressor
JP5063638B2 (en) Scroll compressor
JP4013992B2 (en) Scroll type fluid machinery
JPH10196566A (en) Fluid compressor
WO2017149820A1 (en) Bearing unit and compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908980

Country of ref document: EP

Kind code of ref document: A1