WO2019169815A1 - 放射性分子探针及其在活体胰岛检测中的应用 - Google Patents

放射性分子探针及其在活体胰岛检测中的应用 Download PDF

Info

Publication number
WO2019169815A1
WO2019169815A1 PCT/CN2018/094812 CN2018094812W WO2019169815A1 WO 2019169815 A1 WO2019169815 A1 WO 2019169815A1 CN 2018094812 W CN2018094812 W CN 2018094812W WO 2019169815 A1 WO2019169815 A1 WO 2019169815A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon group
aliphatic hydrocarbon
molecular probe
radioactive
imaging
Prior art date
Application number
PCT/CN2018/094812
Other languages
English (en)
French (fr)
Inventor
刘志博
韩宇翔
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2019169815A1 publication Critical patent/WO2019169815A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0404Lipids, e.g. triglycerides; Polycationic carriers
    • A61K51/0406Amines, polyamines, e.g. spermine, spermidine, amino acids, (bis)guanidines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds

Definitions

  • the invention relates to the field of molecular probes, in particular to a radioactive molecular probe and its application in the detection of living islets.
  • Diabetes is a disease caused by a variety of causes of islet ⁇ -cell dysfunction or failure, resulting in absolute or relative deficiency of insulin, a disorder of glucose metabolism in the matrix, which in turn causes damage to multiple organs of the body.
  • type I diabetes patients rely on insulin therapy for life, which brings great inconvenience to patients' lives.
  • the survival rate of recipients is more than 90% after transplantation and the graft survival rate is 60-70%. It is a long-term process to evaluate the survival and function of islets.
  • the clinical detection methods for transplanting islets are mainly blood insulin detection and blood glucose detection, both of which are indirect detection methods, which cannot directly reflect the survival number and activity of transplanted islets, so it is impossible to continue treatment for patients. Make a judgment.
  • MRI magnetic resonance imaging
  • islets are in vitro modified to ingest more Fe 3 O. 4 , and then transplanted with modified islets to increase the resolution of transplanted islets in MRI images.
  • Evgenov NV et al. Nature Medicine. 2006. DOI: 10.1038/nm 1316.
  • the effect of exogenous transformation on islet activity after transplantation is difficult to assess.
  • a radioactive molecular probe is provided
  • R 3 is hydrogen, a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group.
  • R 6 is hydrogen and deuterium
  • R 7 is hydrogen and deuterium.
  • the structural formula of the radioactive molecular probe is
  • radiomolecular probe comprising the steps of:
  • a glycine or analog borofluoride precursor is reacted with 19 fluoro-potassium hydrogen fluoride under appropriate conditions to form a 19 fluoro-glycine boron fluoride or the like.
  • the reaction formula is:
  • the use of the radioactive molecular probe for imaging and quantitative assessment of islet in vivo is provided.
  • a method of imaging and quantitatively evaluating living islets which employs the radioactive molecular probe for living islet imaging and quantitative evaluation.
  • the method comprises the following steps:
  • step 2) the total amount of the carboxyl compound and the probe molecule corresponding to the probe is 200 to 250 nmol.
  • step 3 the injection volume of the injection solution is 100-200 ⁇ L; in step 4), the certain time is 0.5-2.5 h.
  • the molecular probe of the present invention is a glycine analog, and its specific enrichment in islets is derived from a neurotransmitter-like function of glycine in islets, and glycine can regulate membrane potential of islet cells through a transporter, a receptor, or the like.
  • Glycine is naturally enriched in islets, and thus the molecular probe of the present invention has the structural features of glycine and its analog, which can mimic the behavior of glycine in the body and thereby specifically enrich in islets.
  • the radioactive probe of the present invention can perform non-invasive PET imaging of islets in vivo and evaluate the amount thereof.
  • the radioactive probe of the present invention can detect islet damage early in islet injury, which is more sensitive than conventional blood glucose testing.
  • the radioactive probe of the present invention is capable of imaging and evaluating islets in vivo without any artificial modification operation on the islets in advance, and can image and evaluate completely natural islets, which has obvious advantages compared with existing MRI methods. .
  • FIG. 1 shows in vivo imaging results of a radioactive molecular probe in a mouse pancreas according to an embodiment of the present invention
  • FIG. 2 shows an evaluation of the number of islet ⁇ cells in mice by the radioactive molecular probe X1 and an evaluation of the number of islet ⁇ cells in the mouse according to the method of blood glucose measurement according to an embodiment of the present invention.
  • the temperature is controlled at 10 ° C, in a 100 mL round bottom flask, 1 g of iodomethylboronic acid pinacol ester is dissolved in 35 mL of THF, stirred for 10 min, after the solution is cooled, 10 times equivalent of the newly prepared methylamine solution is added. The reaction was continued for 30 min, the reaction was completed, and the mixture was spun dry and passed through a silica gel column to obtain a glycine boron trifluoride precursor (white solid) of 300 mg, yield 27.8%.
  • STZ a broad-spectrum anticancer drug
  • mice were selected, weighing 170-220 g, and the age of 4 to 6 weeks. Feed the mice with regular pellets and drink freely. The laboratory was kept at 18-22 ° C for one week and fed normally for one week.
  • the tail vein measures blood sugar, weighing.
  • mice were divided into three groups of ten each, using STZ modeling. Among them, the first group was used as a control group and was normally raised. The second group was treated with STZ solution (STZ dissolved in 0.1 mol/L citrate buffer, prepared immediately before use), and injected continuously for three days at a dose of 40 mg/kg each time. The third group was administered with STZ solution for five consecutive days at a dose of 40 mg/kg each time, once a day.
  • STZ solution STZ dissolved in 0.1 mol/L citrate buffer, prepared immediately before use
  • mice in the second and third groups successfully established the STZ-induced diabetes model. Mice of each of the successfully established STZ-induced diabetes models were subjected to blood glucose measurement on the tenth day after the injection, and data were recorded.
  • Example 4 Method for imaging and quantitative evaluation of mouse islet in vivo
  • a probe injection was prepared by mixing 5 ml of a radioactive molecular probe X1 injection with 200 to 250 nmol of natural glycine.
  • the injection was injected through the tail vein into the first group of mice of Example 2, the second group of mice molded, and the third group of mice formed with a membrane, each of which was injected at a dose of 200 to 500 uCi.
  • the mice were not fasted.
  • the probe was injected into the tail vein of the mice, and the injection volume was 100-200 ⁇ L.
  • the mice were freely active after the injection of the probe.
  • the imaging time was 0.5-2.5 h after the injection, and the imaging time was 5-10 min before the imaging.
  • the mice were anesthetized with halothane and the PET signal acquisition time was 5-30 min.
  • the amount of pancreatic islets in vivo was evaluated in comparison with healthy mice using the uptake SUV data of pancreatic tissue. Since the radioactive signal generated by the F-18 can be collected by a PET (Positron Emission Tomography) device, an image can be output. The results are shown in Fig. 1. Fig.
  • FIG. 1 shows the cumulative dose ratio of boron trifluoride and its analogues in various tissues in mice.
  • glycine boron trifluoride and its analogues are in mice.
  • ID/g refers to the cumulative dose per gram of tissue relative to the total injected dose
  • 18 fluoro-glycine boron trifluoride produces a good rich in the islets of mice. set.
  • the standard uptake dose (SUV value) of probe X1 of the three groups of mice was counted and a graph was created, as shown in Fig. 2.
  • the SUV value of each mouse gradually decreased with the increase of the STZ treatment dose, that is, the standard uptake dose of the probe X1 of each mouse gradually decreased with the decrease of islet ⁇ cells, There is a good correlation between them.
  • the SUV value of the experimental individual can be compared with that of a normal individual, and the difference in the value of the SUV can be used to evaluate the function and number of islets in the living body.
  • the blood glucose content (BS) data of the first group and the second group did not change significantly.
  • low-dose STZ treatment a broad-spectrum anticancer drug
  • the correlation between blood glucose test data and islet ⁇ -cell reduction is not obvious. Therefore, the use of radioactive molecular probes to image islet cells in vivo is more sensitive and accurate than the use of blood glucose testing when assessing the number of islets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种放射性分子探针及其在活体胰岛检测中的应用,其结构为:式 (I),其中,R 1为卤素、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 2为卤素、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 3为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 4为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 5为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 6为氢和氘,R 7为氢和氘,该放射性分子探针可以进行活体胰岛成像和活体胰岛数量评估。

Description

放射性分子探针及其在活体胰岛检测中的应用 技术领域
本发明涉及分子探针领域,特别涉及一种放射性分子探针及其在活体胰岛检测中的应用。
背景技术
糖尿病是由多种原因引起的胰岛β细胞功能减退或者衰竭,导致胰岛素绝对或相对不足,基体出现糖代谢紊乱,进而造成全身多器官损害的一种疾病。其中I型糖尿病患者终生依赖胰岛素治疗,给患者的生活带来极大的不便。
大多数I型糖尿病、无胰岛素抗体和低水平C肽Ⅱ型糖尿病,糖尿病肾病,器官移植后糖尿病,胰腺疾病或胰腺切除导致的糖尿病等4类患者,适合进行成人胰岛细胞移植。
根据国际胰岛移植登记处的统计,移植后3年受体存活率在90%以上,移植物存活率在60~70%,对胰岛的存活情况和功能的检测评估是一个长期的过程。目前,临床上针对移植胰岛的检测手段主要是血液中胰岛素检测和血糖检测,这两者均是间接性的检测手段,不能直接反映移植胰岛的成活数量以及活性,因此无法对病人是否需要继续治疗进行判断。
分子影像学中可以利用磁共振成像(MRI)对软组织成像,但磁共振成像对于移植胰岛的分辨率较差,因此有文献报道,通过体外对胰岛进行改造,使其摄入较多Fe 3O 4,然后再利用改造过的胰岛进行移植,以增加移植胰岛在MRI图像中的分辨率。(Evgenov NV,et al.Nature Medicine.2006.DOI:10.1038/nm1316.)但外源的改造对移植后胰岛活性的影响难以评估。
发明内容
本发明的目的是为解决以上问题的至少一个,本发明提供放射性分子探针及其在活体胰岛检测中的应用。
根据本发明的一个方面,提供一种放射性分子探针,
Figure PCTCN2018094812-appb-000001
其中,R 1为卤素、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,如–CH 3,-CH 2CH 3,-CH=CH 2,-C 6H 5等,R 2为卤素、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,如–CH 3,-CH 2CH 3,-CH=CH 2,-C 6H 5等,R 3为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,如–CH 3,-CH 2CH 3,-CH=CH 2,-C 6H 5等,R 4为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,如–CH 3,-CH 2CH 3,-CH=CH 2,-C 6H 5等,R 5为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,如–CH 3,-CH 2CH 3,-CH=CH 2,-C 6H 5等,R 6为氢和氘,R 7为氢和氘。
其中,在一个优选的实施方案中,该放射性分子探针的结构式为
Figure PCTCN2018094812-appb-000002
根据本发明的另一方面,提供制备该放射性分子探针的方法,包括以下步骤:
1)甘氨酸或类似物硼氟化物前体与19氟-氟化氢钾在适当条件下反应生成19氟-甘氨酸硼氟化物或类似物。反应式为:
Figure PCTCN2018094812-appb-000003
2)19氟-甘氨酸硼氟化物或类似物中,硼结合的19氟与含有18氟的溶液进行氟离子交换,生成放射性分子探针。反应式为:
Figure PCTCN2018094812-appb-000004
根据本发明的第三方面,提供该放射性分子探针的方法,步骤包括以下反应式:
Figure PCTCN2018094812-appb-000005
根据本发明的第四方面,提供该放射性分子探针在活体胰岛成像及数量评估中的应用。
根据本发明的第五方面,提供一种活体胰岛的成像和数量评估方法,该方法采用所述放射性分子探针进行活体胰岛成像和数量评估。
其中,该方法包括以下步骤:
1)制备所述放射性分子探针溶液;
2)将放射性分子探针溶液、探针对应的羧基化合物混合和生理盐水混合,制成放射性分子探针注射液;
3)将注射液静脉注射入活体;
4)一定时间后对活体进行PET/CT成像;
5)通过放射性信号重建获得探针后的体内分布图像,并从图像中获取胰腺部位的标准平均摄取剂量;
6)通过将获得的数据与正常个体的标准平均摄取剂量对比对活体胰岛的数量进行评估。
其中,步骤2)中:探针对应的羧基化合物与探针分子的总用量为200~250nmol。
其中,步骤3)中:注射液的注射体积为100~200μL;步骤4)中,一定时间为0.5~2.5h。
其中,本发明的分子探针为甘氨酸类似物,其在胰岛中的特异性富集源于 甘氨酸在胰岛中的类神经递质功能,甘氨酸可通过转运体、受体等调节胰岛细胞的膜电位,甘氨酸天然在胰岛中有特异性富集,因此本发明的分子探针具有甘氨酸其类似物的结构特征,可以模拟甘氨酸在体内的行为,从而在胰岛中特异性富集。
本发明具有以下有益效果:
1.本发明的放射性探针可以在活体内对胰岛进行非创伤性PET显像,并对其数量进行评估。
2.本发明的放射性探针可以在胰岛损伤早期检测出胰岛的损伤,相比于传统的血糖检测更为灵敏。
3.本发明的放射性探针针对活体内胰岛的成像与评估,不需要提前对胰岛进行任何人工改造操作,可以对完全天然的胰岛进行成像与评估,相比于现有的MRI手段有明显优势。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明实施方式的放射性分子探针在小鼠胰腺中的活体成像结果;
图2示出了根据本发明实施方式的放射性分子探针X1对小鼠的胰岛β细胞数量的评估和血糖测量方法对小鼠的胰岛β细胞数量的评估对比。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1甘氨酸三氟化硼前体的制备
Figure PCTCN2018094812-appb-000006
具体为:温度控制在10℃,于100mL圆底烧瓶中,将1g碘甲基硼酸频哪醇酯溶于35mL THF中,搅拌10min,待溶液冷却后,加入10倍当量新制得的甲胺溶液,继续反应30min,反应完毕,旋干,过硅胶柱,得到甘氨酸三氟化硼前体(白色固体)300mg,产率27.8%。
实施例2放射性分子探针X1的制备
Figure PCTCN2018094812-appb-000007
该方案中,反应体系中游离的氟离子经由中性铝柱除去,洗脱体系为生理盐水。
实施例3 STZ诱导小鼠糖尿病造模
实验原理:STZ(一种广谱抗癌药)曾用来治疗巨胰岛瘤,能破坏胰岛β细胞,小剂量反复注射可致糖尿病。
实验步骤:
1、选用小鼠30只,体重170~220g,月龄4~6周。饲以小鼠常规颗粒饲料,自由饮水。实验室室温保持在18~22℃,正常喂养一周。
2、尾静脉测血糖,称体重。
3、将小鼠分为三组,每组十只,使用STZ造模。其中,第一组作为对照组,正常饲养。第二组使用STZ溶液(STZ溶解于0.1mol/L的柠檬酸缓冲液中,临用前配制),按照每次40mg/kg的剂量连续注射三天,每天注射一次。第三组使用STZ溶液,按照每次40mg/kg的剂量连续注射五天,每天注射一次。
4、注射STZ后,每日给予充足饮水、食物,每日换垫料1~2次,保持干燥。
5、十天后,三组小鼠均无死亡现象,第二组和第三组中的小鼠成功建立STZ诱导糖尿病模型。对每只成功建立STZ诱导糖尿病模型的小鼠在注射后第 十天进行血糖测量,记录数据。
实施例4小鼠活体胰岛的成像和数量评估方法
实验步骤:
1、配制探针母液
取生理盐水10mL。准确量取实施例2制备的18氟-甘氨酸三氟化硼2ml,溶解于生理盐水中,配制成放射性分子探针X1母液。
2、配制探针注射液
取5ml放射性分子探针X1注射液与200~250nmol天然甘氨酸混合,制得探针注射液。
3、注射放射性分子探针X1注射液
通过尾静脉将注射液注射入实施例2的第一组小鼠、成模的第二组小鼠和成膜的第三组小鼠体内,每只小鼠的注射剂量为200~500uCi。
4、活体成像
注射探针前小鼠无需禁食,通过小鼠尾静脉注射探针,注射体积100~200μL,注射探针后小鼠自由活动,成像时间为注射后0.5~2.5h,成像前5~10min异氟烷麻醉小鼠,PET信号采集时间5~30min。采集信号重构图像之后利用胰腺组织的摄取量SUV数据与健康小鼠对比评估体内胰岛数量。由于F-18产生的放射性信号可以被PET(正电子发射断层扫描)设备收集,因此能够输出图像。输出结果如图1所示,图1为小鼠体内各组织的氨酸三氟化硼及其类似物的累积剂量占比,由图1可知,甘氨酸三氟化硼及其类似物在小鼠的胰腺中有1.5%ID/g(ID/g是指每克组织的累计剂量相对于总注射计量的百分比),因此18氟-甘氨酸三氟化硼在小鼠的胰岛中产生了良好的富集。
结果分析
统计三组小鼠的探针X1的标准摄取剂量(SUV值),并建立图表,具体如图2所示。由图2可知,每只小鼠的SUV数值随着STZ处理剂量的增加而逐渐减少,即每只小鼠的探针X1的标准摄取剂量随着胰岛β细胞的减少而逐渐减少,二者之间有很好的相关性。
因此,利用本发明的放射性分子探针对实验个体的胰岛功能进行评估时,可以将实验个体的SUV值与正常个体的进行对比,利用SUV数值的差别来评 估活体内胰岛功能和数量。
另外,通过第一组、第二组和第三组的小鼠的血糖数据整理发现,具体如图2所示,第一组和第二组小鼠的血糖含量(BS)数据并无明显变化。也就是说,在低剂量STZ处理(一种广谱抗癌药)时,即当小鼠的胰岛β细胞的减少量低于20%时,血糖检测数据与胰岛β细胞减少的相关度并不明显。因此,在对胰岛数量进行评估时,使用放射性分子探针对胰岛细胞活体胰岛成像要比使用血糖检测更为灵敏和准确。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 放射性分子探针,其特征在于,
    Figure PCTCN2018094812-appb-100001
    其中,R 1为卤素、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 2为卤素、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 3为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 4为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 5为氢、饱和脂肪烃基、不饱和脂肪烃基及芳香烃基,R 6为氢和氘,R 7为氢和氘。
  2. 如权利要求1所述的放射性分子探针,其特征在于,其结构式如下:
    Figure PCTCN2018094812-appb-100002
  3. 制备权利要求1或2的放射性分子探针的方法,包括以下步骤:
    1)甘氨酸或类似物硼氟化物前体与19氟-氟化氢钾在适当条件下反应生成19氟-甘氨酸硼氟化物或类似物,反应式为:
    Figure PCTCN2018094812-appb-100003
    2)19氟-甘氨酸硼氟化物或类似物中,硼结合的19氟与含有18氟的溶液进行氟离子交换,生成放射性分子探针,反应式为:
    Figure PCTCN2018094812-appb-100004
  4. 制备权利要求2的放射性分子探针的方法,步骤包括以下反应式:
    Figure PCTCN2018094812-appb-100005
  5. 权利要求1或2的放射性分子探针在活体胰岛成像及数量评估中的应用。
  6. 一种活体胰岛的成像和数量评估方法,其特征在于,该方法采用如权利要求1或2所述放射性分子探针进行活体胰岛成像和数量评估。
  7. 如权利要求6所述的活体胰岛的成像和数量评估方法,其特征在于,包括以下步骤:
    1)制备所述放射性分子探针溶液;
    2)将放射性分子探针溶液、探针对应的羧基化合物混合和生理盐水混合,制成放射性分子探针注射液;
    3)将注射液静脉注射入活体;
    4)一定时间后对活体进行PET/CT成像;
    5)通过放射性信号重建获得探针后的体内分布图像,并从图像中获取胰腺部位的标准平均摄取剂量;
    6)通过将获得的数据与正常个体的标准平均摄取剂量对比对活体胰岛的数量进行评估。
  8. 如权利要求7所述的活体胰岛的成像和数量评估方法,其特征在于,步骤2)中:
    探针对应的羧基化合物与放射性分子探针溶液的总用量为200~250nmol。
  9. 如权利要求6所述的活体胰岛的成像和数量评估方法,其特征在于,步骤3)中:
    注射液的注射体积为100~200μL;
    步骤4)中,一定时间为0.5~2.5h。
PCT/CN2018/094812 2018-03-09 2018-07-06 放射性分子探针及其在活体胰岛检测中的应用 WO2019169815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810195724.4 2018-03-09
CN201810195724.4A CN108285464B (zh) 2018-03-09 2018-03-09 放射性分子探针及其在活体胰岛检测中的应用

Publications (1)

Publication Number Publication Date
WO2019169815A1 true WO2019169815A1 (zh) 2019-09-12

Family

ID=62833449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094812 WO2019169815A1 (zh) 2018-03-09 2018-07-06 放射性分子探针及其在活体胰岛检测中的应用

Country Status (2)

Country Link
CN (1) CN108285464B (zh)
WO (1) WO2019169815A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189388A (zh) * 2010-10-08 2013-07-03 国立大学法人京都大学 肽衍生物及其用途
CN105377859A (zh) * 2013-03-08 2016-03-02 英属哥伦比亚大学 作为显像剂的取代的有机氟硼酸盐
WO2016176572A1 (en) * 2015-04-30 2016-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Organotrifluoroborate mimics of amino acids and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017117687A1 (en) * 2016-01-10 2017-07-13 British Columbia Cancer Agency Branch 18/19f-labelled compounds which target the prostate specific membrane antigen
CN106977576B (zh) * 2017-03-03 2020-02-07 江苏省原子医学研究所 一种18f标记的炔雌醇及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189388A (zh) * 2010-10-08 2013-07-03 国立大学法人京都大学 肽衍生物及其用途
CN105377859A (zh) * 2013-03-08 2016-03-02 英属哥伦比亚大学 作为显像剂的取代的有机氟硼酸盐
WO2016176572A1 (en) * 2015-04-30 2016-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Organotrifluoroborate mimics of amino acids and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIBO LIU: "An Organotrifluoroborate for Broadly Applicable One - Step 18F - Labeling", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 53, no. 44, 4 September 2014 (2014-09-04), pages 11876 - 11880, XP055305191 *

Also Published As

Publication number Publication date
CN108285464B (zh) 2020-05-12
CN108285464A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
US4824660A (en) Method of determining the viability of tissue in an organism
Onoe et al. Ketamine increases the striatal N-[11C] methylspiperone binding in vivo: positron emission tomography study using conscious rhesus monkey
Cornblath et al. Studies of carbohydrate metabolism in the newborn infant: VII. Tests of carbohydrate tolerance in premature infants
Small et al. Retinal blood flow in normal and diabetic dogs.
US20090202428A1 (en) Use of Dtbz for Imaging Endocrine Pancreas and Beta Cell Mass In Type 1 Diabetes
Mealey Turn-over of carrier-free zirconium-89 in man
Clavijo Jordan et al. Imaging beta-cell function in the pancreas of non-human primates using a zinc-sensitive MRI contrast agent
US20180271470A1 (en) Methods for quantifying pancreatic beta cell function and mass properties with radiomanganese positron emission tomography
WO2019169815A1 (zh) 放射性分子探针及其在活体胰岛检测中的应用
CN109939247A (zh) 一种放射性核素标记的内皮祖细胞及其制备方法和用途
Cong et al. Targeted pancreatic beta cell imaging for early diagnosis
Lauritzen et al. Imaging regional metabolic changes in the ischemic rat heart in vivo using hyperpolarized [1-13C] pyruvate
Gleason et al. Hepatic oxygen consumption, lactate uptake, and glucose production in neonatal lambs
CN115282295B (zh) 一种多功能集成的磁共振造影剂及其制备方法与应用
Cowett Decreased response to catecholamines in the newborn: effect on glucose kinetics in the lamb
EP3249409A1 (en) Fdg (fluorodeoxyglucose (18f))-labeled red blood cells as diagnostic radiopharmaceuticals
LU500854B1 (en) Application of Targeted Molecular Probe in Vascular Calcification Detection Products
Nazerani-Zemann et al. Association between Striatal/Pancreatic Dopaminergic Ratio and Glycated Hemoglobin
TWI718496B (zh) 含硼胺基酸製劑及其用途
Özçelik et al. The Effect of Diffuse Muscle Uptake on SUVmax Levels in 18F-FDG PET/CT Imaging
Wicklmayr et al. Effect of metaproterenol on ketone body metabolism of the forearm in healthy and diabetic subjects
Takahashi et al. Changes in growth and 18FDG (2-deoxy-2-[18F] fluoro-D-glucose) uptake of rat hepatomas by anticancer drugs
Grant et al. Monitoring metabolic shifts in TRAMP mice resulting from dichloroacetate using hyperpolarized pyruvate
Fiser Jr et al. Effects of fasting and theophylline on alanine-stimulated glucagon secretion in neonatal and infant sheep
Garlick et al. Nutritional regulation of protein metabolism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908361

Country of ref document: EP

Kind code of ref document: A1