WO2019168127A1 - Wood and method for producing wood - Google Patents

Wood and method for producing wood Download PDF

Info

Publication number
WO2019168127A1
WO2019168127A1 PCT/JP2019/007944 JP2019007944W WO2019168127A1 WO 2019168127 A1 WO2019168127 A1 WO 2019168127A1 JP 2019007944 W JP2019007944 W JP 2019007944W WO 2019168127 A1 WO2019168127 A1 WO 2019168127A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
raw material
solution
weight
solution containing
Prior art date
Application number
PCT/JP2019/007944
Other languages
French (fr)
Japanese (ja)
Inventor
祥生 堀川
梨乃 津島
達己 暮井
Original Assignee
国立大学法人東京農工大学
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学, 株式会社日本触媒 filed Critical 国立大学法人東京農工大学
Priority to JP2020503632A priority Critical patent/JP6941328B2/en
Publication of WO2019168127A1 publication Critical patent/WO2019168127A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/02Staining or dyeing wood; Bleaching wood

Definitions

  • the present invention relates to wood containing lignin and cellulose, wood obtained by treating a wood raw material, and a method for producing the same.
  • Wood is widely used as a raw material for building materials, furniture, acoustic materials and paper.
  • Woody biomass is also used from the viewpoint of biorefinery such as bioethanol production.
  • lignin which is a constituent component of wood, is removed, and cellulose and hemicellulose are taken out.
  • the treatment for removing lignin is called pretreatment.
  • pretreatment techniques that destroy cells and wall layers have been reported so far.
  • pretreatment methods for removing lignin include physicochemical methods such as steam explosion treatment, acid treatment and alkali treatment, and biological methods utilizing lignin degrading enzymes or lignin degrading microorganisms.
  • physicochemical methods such as steam explosion treatment, acid treatment and alkali treatment
  • biological methods utilizing lignin degrading enzymes or lignin degrading microorganisms.
  • a pretreatment method for example, physical pulverization, steaming, ozone oxidation, ⁇ -ray irradiation, and the like have been studied.
  • JP-A-2015-080759 discloses a method of separating lignocellulosic nomi-iomas into a liquid component containing lignin and a solid component containing cellulose by treating heat extraction and solid-liquid separation with an ethylene glycol solution in a single stage. Has been.
  • JP 2012-1111849 discloses that wood powder obtained by pulverizing wood chips is degreased, delignified, demicellulose treated and bleached, then treated with cellulase enzymes, and then refined.
  • a method for producing fine fibrous cellulose by performing is disclosed.
  • a delignification treatment a Wise method using sodium chlorite and acetic acid is disclosed as an example.
  • the Journal of the Wood Society of Japan vol. 50, no. 3, pl32-138 (2010) also discloses that delignification treatment is performed using a sodium chlorite solution adjusted to pH 3.8-4.0 by adding acetic acid.
  • JP 2006-001270 A discloses a lignin removal method that maintains the honeycomb structure of wood chips, it is not a treatment that can maintain the shape of the wood chips themselves.
  • the present invention provides a method for removing lignin while maintaining a structure composed of wood, cellulose and hemicellulose with reduced lignin while maintaining the structure as wood, and the method. It aims at providing the manufacturing method of the timber which the lignin reduced by applying, and the said timber.
  • the present invention includes the following. (1) Wood having a lignin content of less than 3% by weight and a cellulose content of 75% by weight or more. (2) The wood according to (1), wherein the cellulose has a viscosity average degree of polymerization DPv of 300 or more. (3) Wood as described in (1) or (2) whose hemicellulose content is 0.01 weight% or more and 15 weight% or less. (4) A first step of immersing a wood raw material in a solution containing an acid and an alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower, and then the wooden raw material is treated with chlorite ions or hypochlorite ions.
  • the wood produced through the second step of immersing in the solution containing the lignin component is reduced.
  • the solution containing the acid and the alcohol is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol, according to (8) or (9) Wood manufacturing method.
  • the solution containing an acid and an alcohol has an alcohol concentration of 90 to 99.5% by weight and an acid concentration of 0.05 to 10% by weight.
  • the solution containing the chlorite ion or hypochlorite ion is a sodium chlorite solution or a sodium hypochlorite solution, according to any one of (8) to (12), Wood manufacturing method.
  • the solution containing chlorite ion or hypochlorite ion is a solution having a chlorite ion or hypochlorite ion concentration of 0.01 to 10% by weight (8 ) To (13).
  • FIG. It is an X-ray image which shows the result of having image-analyzed by X-ray CT about the untreated wood raw material used in Example 1, and white wood. It is an image which shows the X-ray fiber figure obtained by X-ray diffraction about the untreated wood raw material used in Example 1, and white wood.
  • FIG. It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 5, the wood raw material after a 1st process, and the white wood obtained after the process. It is the photograph which imaged the white wood obtained after the process used in Example 6.
  • FIG. It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 6, the wood raw material after alkali treatment, the wood raw material after the first step, and the white wood obtained after the treatment. is there.
  • the first embodiment of the present invention is wood having a lignin content of less than 3% by weight and a cellulose content of 75% by weight or more. According to this embodiment, it becomes the wood which has cellulose as a main component and the lignin component is sufficiently reduced.
  • Cellulose is a main component constituting the cell wall and plays an important role in ensuring the strength of the wood.
  • lignin has been considered to play an important role in maintaining the structure of wood by playing a role of bonding between cells or between microfibrils in the cell wall. For this reason, it was very difficult to maintain the structure as wood while reducing lignin.
  • the three-dimensional structure as a wood is maintained despite the lignin component being sufficiently reduced.
  • the amount of lignin is reduced in this way, the detailed mechanism by which the three-dimensional structure is maintained is unknown, but for example, lignin is removed by manufacturing wood by the manufacturing method described later. It is considered that the shape as a three-dimensional structure is maintained by replacing water in the part and maintaining the cellulose structure (cellulose microfibrils, etc.) of the original wood without being destroyed. It is done.
  • the said consideration does not restrict
  • the wood of the present embodiment is white wood when viewed from the outside because the lignin component is sufficiently reduced. Therefore, it can be widely used as a new material.
  • wood refers to a structure (tissue) in which cells are regularly arranged. Wood is clearly distinguished from pulp. It can be observed using an X-ray CT image or the like that the cells are regularly arranged and the tissue is formed as described in Examples below (for example, FIG. 3). As shown in FIG. 3, in wood, adjacent cells are arranged in order without dissociating from each other.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”.
  • measurement of operation and physical properties is performed under conditions of room temperature (20 ° C. to 25 ° C.) / Relative humidity 45% RH to 55% RH.
  • the lignin content in the wood is, in order of preference, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight.
  • the lower limit is 0% by weight.
  • 0% by weight indicates that the content of each of the following components is below the detection limit when measured by HPLC.
  • the content of cellulose in the wood is 75% by weight or more, and in a preferable order, it is 80% by weight, 85% by weight, 90% by weight, or 95% by weight or more.
  • the cellulose content is 75% by weight or more, the strength in the cellulose fiber direction in the wood structure is improved, and the whiteness is improved.
  • the upper limit of the cellulose content is usually 99.9% by weight or less, preferably 99.5% or less in consideration of the production limit from the viewpoint of maintaining the wood structure.
  • the viscosity average polymerization degree DPv of cellulose contained in the wood is preferably 300 or more. It is preferable that the viscosity average degree of polymerization DPv of cellulose is 300 or more, since it becomes close to the cellulose fiber state of the original tree and the strength of the wood is improved. Usually, when some chemical treatment is performed, the viscosity average degree of polymerization of cellulose is remarkably reduced. For example, according to the production method described later, a significant decrease in the viscosity average degree of polymerization of cellulose is suppressed.
  • the viscosity average polymerization degree DPv of cellulose is more preferably 500 or more, further preferably 800 or more, and particularly preferably 1,000 or more.
  • the upper limit of the viscosity average degree of polymerization DPv of cellulose is preferably closer to the cellulose originally present in the tree, and from this viewpoint, it is usually 10,000 or less, preferably 5,000 or less, More preferably, it is 3,000 or less.
  • the viscosity average degree of polymerization of cellulose can be measured by the following measuring method.
  • ⁇ Measurement method of viscosity average degree of polymerization The Wise method using sodium chlorite and acetic acid is repeated on wood, followed by boiling with 5% aqueous sodium hydroxide to extract cellulose. After dissolving cellulose in copper ethylenediamine, the degree of polymerization is measured from the dropping speed with a Canon-Fenske viscometer. Specifically, it is measured as follows.
  • a 0.5 M copper ethylenediamine solution is prepared, and the viscosity ⁇ 0 is measured using a Canon-Fenske viscometer.
  • a solution in which cellulose is dissolved in a 0.5 M copper ethylenediamine solution (the cellulose concentration is c (g / dL)) is prepared, and the viscosity ⁇ is measured using a Canon-Fenske viscometer.
  • the intrinsic viscosity (sometimes referred to as “ultimate viscosity”) [ ⁇ ] of the cellulose solution is determined by the following formula 1.
  • Intrinsic viscosity [ ⁇ ] ( ⁇ 0 / ⁇ ) / ⁇ c (1 + A ⁇ ⁇ / ⁇ 0 ) ⁇ Equation 1
  • A indicates a unique value depending on the type of solution. In the case of a 0.5 M copper ethylenediamine solution, “A” is 0.28.
  • the viscosity average polymerization degree DPv is obtained by the following formula 2 (Mark-Houwink-Sakurada formula).
  • Intrinsic viscosity [ ⁇ ] K ⁇ DPv ⁇ a Equation 2
  • K and a represent specific values depending on the type of polymer. In the case of cellulose, “K” is 0.57 ⁇ 10 ⁇ 3 and “a” is 1.
  • the content of hemicellulose in the wood is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, further preferably 0.5% by weight or more, and 1% by weight. More preferably, it is more preferably 2% by weight or more.
  • the content of hemicellulose is equal to or more than the above lower limit, the amount becomes sufficient to bind cellulose, and the three-dimensional structure is easily maintained.
  • the upper limit of hemicellulose is not particularly limited, and since the cellulose content is 75% by weight or more, the wood raw material after the first step is 25% by weight or less, and 20% by weight or less. Is preferably 15% by weight or less, more preferably less than 10% by weight, and particularly preferably less than 5% by weight.
  • the hemicellulose content is 0.01 wt% or more and 15 wt% or less.
  • the value measured according to the following measurement conditions is used for the content of each component.
  • the maximum load of the wood is preferably 0.1N or more, more preferably 1N or more, and further preferably 5N or more from the viewpoint of maintaining the crystal structure and ensuring the mechanical strength. Preferably, it is 10N or more and even more preferable.
  • the upper limit of the maximum load of the wood is not particularly limited, but is preferably 1,000 N or less, and more preferably 500 N or less. When the maximum load of the wood is not more than the above upper limit, the wood can easily take a porous structure.
  • the wood of this embodiment has a reduced lignin amount, the appearance is white wood. By making the appearance white, it is possible to obtain a transparent molded product by impregnating the transparent resin, and coloring such as dyeing is also possible.
  • the L * of the wood is preferably 88 or more, more preferably 90 or more, still more preferably 92 or more, and most preferably 93 or more.
  • the a * of the wood is preferably 5 or less, more preferably 3 or less, most preferably 1 or less, further preferably ⁇ 5 or more, more preferably ⁇ 3 or more. And most preferably ⁇ 1 or more.
  • the b * of the wood is preferably 5 or less, more preferably 3 or less, and most preferably 2 or less.
  • whiteness an average value obtained by measuring five points on the wood surface using a color difference meter (SE-6000 manufactured by Nippon Denshoku Industries Co., Ltd.) is adopted.
  • the presence of cellulose and hemicellulose can be qualitatively confirmed by staining cellulose and hemicellulose by PAS staining (polysaccharide staining method).
  • the amount of cellulose and hemicellulose can be quantified based on the dyeing area ratio or the like.
  • the measurement conditions are as follows.
  • Such wood is obtained, for example, by the manufacturing method of the following third embodiment.
  • the manufacturing conditions may be appropriately set depending on the size of the wood, the wood type, and the like, but can be controlled by the immersion time and number of times in the first step, the immersion time and number of times in the second step, and the like. In particular, by increasing the immersion time in the second step and increasing the number of times, it becomes easy to obtain wood with a reduced amount of lignin as described above.
  • a plurality of diffraction spots exist in concentric diffraction images in an X-ray fiber diagram obtained by X-ray diffraction.
  • a diffraction spot can be visually recognized as a black point in the X-ray fiber diagram.
  • the presence of a plurality of diffraction spots indicates that there is no disturbance in the orientation of cellulose microfibrils in the cell wall. Therefore, wood maintains the structure of cellulose microfibrils in the cell wall and is therefore excellent in strength.
  • the plural may be two or more.
  • the number of X-ray diffraction spots is preferably the same as the number of spots observed on the same kind of raw material wood.
  • X-ray fiber diagram is measured as follows. First, a radiation slice is prepared, and a sample wound in a cylindrical shape with the L direction as an axis is set and measured. The measurement conditions are as follows.
  • the full width at half maximum (FWHM) of X-ray diffraction (200 planes) is a viewpoint that the amount of lignin is reduced, the orientation of cellulose is improved, and the strength in the fiber direction is excellent. It is preferably 3 or less, more preferably 2.8 or less, and even more preferably 2.6 or less. Moreover, it is preferable that it is 1 or more from a viewpoint that a transparent molding can be obtained by impregnating a transparent resin, and coloring, such as dyeing
  • FWHM full width at half maximum
  • the crystal structure of cellulose is measured as follows.
  • X-ray apparatus fully automatic horizontal multi-purpose X-ray diffraction apparatus (manufactured by Rigaku Corporation, SmartLab)
  • X-ray source Cu target
  • the raw material (origin) of wood is not particularly limited, it is preferably wood, and a suitable form is selected from the group consisting of conifers, hardwoods and bamboo.
  • the definition of wood in the present specification is “it refers to a structure (tissue) in which cells are regularly arranged”, and therefore bamboo is also included in this specification as a raw material for wood. For this reason, in this specification, bamboo is included in wood.
  • the raw material for wood is preferably cedar, larch, or cypress.
  • the raw material for wood is preferably beech, balsa or elm, and is preferably either beech or elm.
  • bamboo examples include mushrooms, mosouchiku (Moso bamboo), and bees.
  • the raw material is cedar, larch, cypress, beech, elm, balsa or bamboo, and more preferably cedar, larch, cypress, beech, elm or bamboo.
  • This wood is produced through the second step of immersing in a solution containing hypochlorite ions and has a reduced lignin component.
  • the wood according to the second embodiment includes a first step of immersing a wooden raw material in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower, and then converting the wooden raw material into chlorite ions or It is produced through a second step of immersing in a solution containing hypochlorite ions. That is, the present invention includes a first step of immersing a wooden raw material in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower, and then converting the wooden raw material into chlorite ions or hypochlorite.
  • a form of a method for producing wood having a reduced lignin component comprising a second step of immersing in a solution containing acid ions.
  • the lignin component contained in the wood raw material can be reduced while maintaining the structure composed of cellulose and hemicellulose. Therefore, the wood produced by the method has the characteristics that the structure made of the cellulose and the hemicellulose inherent in the wood raw material is maintained and the lignin component is reduced.
  • the reduced lignin component means that the lignin component in the wood is preferably less than 3% by weight, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight. .
  • the wood raw material is a material having a predetermined shape using wood as a raw material.
  • the tree used as a raw material is not particularly limited, it is preferably wood, and a suitable form is selected from the group consisting of softwood, hardwood and bamboo. In particular, conifers are preferred.
  • bamboo examples include mushrooms, mosouchiku (Moso bamboo), and bees.
  • the wood raw material is cedar, larch, cypress, beech, elm, balsa or bamboo, and more preferably cedar, larch, cypress, beech, elm or bamboo.
  • the woody raw material may be produced by performing a predetermined process on the raw material wood. Although it does not specifically limit as a process with respect to wood, Cutting process, grinding process, grinding
  • the wood raw material may be composed of a single member or a plurality of members.
  • a wood raw material composed of a plurality of members can be produced by joining a plurality of members by a general method.
  • Examples of a method for joining a plurality of members include a method using an adhesive, a method using a nail or a screw, a method using a metal fitting, and a method using a joint such as a mortise.
  • the shape of the wood raw material is not particularly limited, and examples thereof include a plate shape, a rod shape, a chip shape, a box shape, and a spherical shape.
  • the shape of the wood raw material it is preferable that the shape of the wood raw material sufficiently penetrates into the solution when immersed in the solution for a predetermined time in the first step and the second step described above. In other words, it is only necessary to adjust the dipping time of the wood raw material in the solution, and it can be understood that the wood raw material may have any shape.
  • the size of the wood raw material is not particularly limited, but it can be a size that allows the solution to sufficiently penetrate into the solution when immersed in the solution in the first step and the second step described above. From this point of view, it can be seen that the preferred range of the size of the wood raw material varies depending on the immersion time in the solution and the type of wood used as the raw material, particularly the density of the wood. For example, when using cedar and the immersion time in the first step and the second step is 1 hour, the distance from the surface may be 10 cm or less at the position where the distance from the surface is the shortest in the wood raw material. Preferably, it is 5 cm or less, more preferably 3 cm or less, and most preferably 1 cm or less and 0.5 cm or less.
  • the same dimension when the immersion time in the first step and the second step is 1 hour is 5 cm or less. Preferably, it is 2.5 cm or less, more preferably 1.5 cm or less, and most preferably 0.5 cm or less.
  • bamboo is used instead of cedar (coniferous tree)
  • the same dimension when the immersion time in the first step and the second step is 1 hour is preferably 10 cm or less, and 5 cm or less. Is more preferably 3 cm or less, and most preferably 1 cm or less.
  • the wood raw material when it is difficult for the wood raw material to be whitened only by the above process, particularly when the wood raw material is bamboo, it is preferable to perform an alkali treatment before the first step described below. Such pretreatment is preferable because the lignin component can be efficiently removed.
  • the alkali used for preparing the alkaline solution is not particularly limited, and is sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, sodium bicarbonate, potassium bicarbonate, hydroxide.
  • Examples include lithium and ammonia.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide are preferable, sodium hydroxide, sodium carbonate, and calcium hydroxide are more preferable, and sodium hydroxide is particularly preferable.
  • the said alkali may be used individually by 1 type, and may be used together 2 or more types.
  • the solvent for dissolving the alkali is not particularly limited, but is preferably water. That is, the alkaline solution is preferably an aqueous sodium hydroxide solution.
  • the alkali treatment is performed by immersing the wood raw material in the alkali solution.
  • the immersion time can be appropriately set according to the shape and size of the wood raw material, the moisture content of the wood raw material, etc., and is, for example, 10 minutes to 5 hours, and 30 minutes to 2 hours.
  • the immersion temperature is not particularly limited, but is preferably 135 ° C. or lower, and more preferably 115 ° C. or lower.
  • the immersion temperature is preferably 55 ° C. or higher, and more preferably 75 ° C. or higher. If the temperature condition is too high, the wood will peel, and if it is too low, delignification in the subsequent process becomes difficult.
  • the above-described wood raw material is immersed in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower (first step).
  • the wood raw material may be dried.
  • a drying step may be unnecessary.
  • the wood raw material is immersed in a solution containing acid and alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower.
  • the condition of 140 ° C. or more and 170 ° C. or less means that the atmospheric temperature in the immersion environment is 140 ° C. or more and 170 ° C. or less.
  • the temperature condition is preferably 140 ° C. or higher, more preferably 145 ° C. or higher, from the viewpoint of efficiently promoting delignification. From the viewpoint of suppressing a decrease in the molecular weight of cellulose, it is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and even more preferably 160 ° C. or lower.
  • the solution used in the first step is a solution containing an acid and an alcohol.
  • Acids such as a sulfuric acid, hydrochloric acid, nitric acid, and an acetic acid, can be mentioned.
  • sulfuric acid is preferably used because of its low volatility as an acid.
  • the alcohol is not particularly limited, but it is preferable to use, for example, a high-boiling point alcohol because the solvent is likely to remain even when heated.
  • High boiling alcohol means, for example, an alcohol having a boiling point of 150 ° C. or higher, preferably 160 ° C.
  • Examples of the alcohol that can be used in the first step include 1,2-ethanediol (ethylene glycol, boiling point: 197.2 ° C.), diethylene glycol (boiling point: 244.3 ° C.), and triethylene glycol (boiling point: 287.4).
  • Propylene glycol is a material that can be used as a food additive, a material that can be used for food packaging materials, and the like, which is preferable in terms of safety. It is a preferable example that the material remaining for obtaining this wood is a food additive, and it is the most preferable example that all the materials used in the reaction are food additives.
  • the solution containing an acid and an alcohol is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol.
  • the suitable form of this invention is a solution in which the solution containing an acid and alcohol contains a sulfuric acid and ethylene glycol.
  • the acid concentration is 0.05% by weight or more, 0.1% by weight or more, and 0.3% by weight in order of preference.
  • the acid concentration is preferably 10% by weight or less and 5% by weight in order of preference. Hereinafter, it is 3 weight% or less.
  • the solution containing an acid and an alcohol has an acid concentration of 0.05 to 10% by weight.
  • the alcohol concentration can be 90 to 99.5% by weight, preferably 95 to 99.5% by weight, and preferably 97 to 99% by weight. More preferred is 98 to 99% by weight.
  • concentration of the alcohol in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced.
  • the concentration of alcohol in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced, and a structure composed of cellulose and hemicellulose can be easily maintained.
  • the solution used in the first step is preferably an aqueous solution.
  • aqueous solution means that 100% by weight of the solvent is not limited to water, and a water-soluble organic solvent (eg, alcohol) is used in an amount of 0 to 30% by weight, preferably 0 to 5% by weight. In the present invention, these are treated as aqueous solutions. In the most preferred form, 100% by weight of the solvent is water.
  • the wood raw material is immersed in the above solution and heated under a temperature condition of 140 ° C. or higher and 170 ° C. or lower.
  • the temperature condition is not particularly limited as long as it is within the above range, but it is preferably a temperature lower than the boiling point of the alcohol to be used, more preferably 10 ° C. lower than the boiling point of the alcohol to be used.
  • the temperature is 20 ° C. or more lower than the boiling point of the alcohol used.
  • the immersion time in the first step is not particularly limited, but it is preferable that the solution is sufficiently penetrated into the wood raw material.
  • the immersion time in a 1st process can be suitably set according to the shape and dimension of a wooden raw material, the kind of wood used as the raw material of a wooden raw material, the moisture content of a wooden raw material, etc.
  • the reaction is preferably performed under pressure from the viewpoint of reducing the solvent volatilization amount, and the use of a pressure resistant vessel is also a preferred example.
  • the first step it is preferable to carry out a process of replacing air or water contained in the wood raw material with the solution in a state where the wood raw material is immersed in the solution.
  • the solution easily penetrates into the wood raw material.
  • the said wooden raw material is sealed in the state immersed in the said solution, and the process which deaerates the inside of sealed space is mentioned.
  • air and water contained in the wood raw material can be replaced with the above solution by a process such as microwave irradiation (heating with a microwave oven) or ultrasonic irradiation.
  • the immersion time in the first step can be shortened compared to the case where the treatment is not performed.
  • the wood raw material of 1 cm square made of cedar water content: about 15%
  • the immersion time in the first step can be 30 minutes or more, 45 minutes It is preferable to set it as above, and it is more preferable to set it as 1 hour or more.
  • the immersion time can be appropriately set according to the shape and size of the wood raw material, the type of wood used as the raw material of the wood raw material, and the moisture content of the wood raw material.
  • the first step since the temperature condition is set to 140 to 170 ° C. using a solution containing an acid and an alcohol, the structure composed of cellulose and hemicellulose is destroyed while removing the lignin component contained in the wood raw material. It can be maintained without any problems. Note that the first step may be performed once or a plurality of times.
  • the obtained wood raw material may be washed.
  • water, alcohol, etc. are mentioned as a liquid used for washing
  • a mixture of water and alcohol may be used.
  • the alcohol include methanol and ethanol which are easy to handle in the subsequent steps.
  • the washing may be performed a plurality of times, and the liquid type used in each time may be different.
  • the second step of immersing the wood raw material after the first step in a solution containing chlorite ions or hypochlorite ions is performed.
  • an amount of solution sufficient to immerse the entire wood raw material is prepared according to the shape and dimensions of the wood raw material.
  • the solution used in the second step is a solution containing at least chlorite ions or hypochlorite ions.
  • a solution containing chlorite ions is preferred.
  • the solution containing chlorite ions or hypochlorite ions can be referred to as a chlorite or hypochlorite solution (preferably an aqueous solution).
  • the solution used in the second step contains a weak acid such as acetic acid so that delignification is promoted by generating chlorine dioxide having strong oxidizing power in addition to chlorite ion or hypochlorite ion. It is preferable to do.
  • the weak acid component that can be used in the second step include acetic acid, carbonic acid, and boric acid, and it is most preferable to use acetic acid.
  • the pH of the solution used in the second step is preferably less than 11, more preferably 9 or less, and even more preferably 8 or less.
  • the pH of the solution used in the second step is preferably 1 or more, more preferably 3 or more, and most preferably 4 or more.
  • the concentration of chlorite ions or hypochlorite ions is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight. 1 to 5% by weight is more preferred, 0.5 to 5% by weight is even more preferred, and 0.5 to 2% by weight is particularly preferred.
  • the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced. If the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced, and a structure composed of cellulose and hemicellulose can be easily maintained.
  • concentration of the said chlorite ion or a hypochlorite ion is the said range at the time of the first addition. Moreover, since the reactivity of a chlorite ion or a hypochlorite ion is high and unstable, the said density
  • the concentration of the weak acid can be 0.005 to 2.0% by weight, 0.01 to 1.0% by weight, 0.05% Is preferably 0.8 to 0.8% by weight, more preferably 0.1 to 0.6% by weight, and still more preferably 0.5% by weight.
  • concentration of the weak acid in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced. If the concentration of the weak acid in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced, and a structure composed of cellulose and hemicellulose can be easily maintained.
  • the solution used in the second step is preferably an aqueous solution.
  • aqueous solution means that 100% by weight of the solvent is not limited to water, and a water-soluble organic solvent (eg, alcohol) is used in an amount of 0 to 30% by weight, preferably 0 to 5% by weight. In the present invention, these are treated as aqueous solutions. In the most preferred form, 100% by weight of the solvent is water.
  • the wooden raw material after the first step is immersed in the above solution.
  • the acid component and the lignin component used in the first step can be removed.
  • the immersion time in the second step is not particularly limited, but it is preferable that the solution sufficiently penetrates into the wood raw material and removes the remaining lignin component as in the first step. For this reason, the immersion time in the second step is set as appropriate according to the shape and size of the wood raw material, the type of wood used as the raw material of the wood raw material, the moisture content of the wood raw material, and the like, as in the first step. be able to.
  • the second step since the reactivity of chlorite ions or hypochlorite ions in the solution is high and unstable, the concentration of chlorite ions or hypochlorite ions described above can be maintained.
  • chlorite or hypochlorite it is preferable to add chlorite or hypochlorite to the solution when a predetermined time has passed.
  • a solution containing chlorite ions or hypochlorite ions sufficiently permeates into the wood raw material, and the remaining lignin component can be removed.
  • “multiple times” refers to 2 times or more, preferably 4 times or more, more preferably 6 times or more, and particularly preferably 8 times or more.
  • the lignin component remaining in the wood raw material can be removed by performing the second step a plurality of times.
  • the upper limit of the number of repetitions of the second step is not particularly limited, but considering productivity, it is preferably 20 times or less, more preferably 15 times or less, and 10 times or less. It is particularly preferred. In addition, as multiple times, it is also a preferable example including continuous dripping and dropping while controlling the pH in the solution.
  • the immersion time in the second step can be made 5 hours or more by adding hypochlorite every hour, and it is 6 hours or more. Preferably, it is more preferably 7 hours or longer.
  • the upper limit of the immersion time is not particularly limited, but it is preferably 10 hours or less in view of the saturation of the effect and the productivity.
  • the immersion time in the second step is set as appropriate according to the shape and dimensions of the wood raw material, the type of wood used as the raw material for the wood raw material, and the moisture content of the wooden raw material, as in the first step. be able to.
  • the temperature condition in the second step is not particularly limited, but can be, for example, 50 to 90 ° C., preferably 60 to 80 ° C., and more preferably 65 to 75 ° C. By setting the temperature condition of the second step within this range, the lignin component remaining after the first step can be sufficiently removed.
  • the wood remaining in the first step is used. While reliably removing the lignin component contained in the raw material, the structure composed of cellulose and hemicellulose can be maintained without destruction. That is, in the method for producing wood according to the present invention, the lignin component originally contained in the wood raw material can be greatly reduced by passing through the second step.
  • washing may be a mixture of water and alcohol.
  • the alcohol include methanol and ethanol which are easy to handle in the subsequent steps.
  • the wood according to the present invention is 80% by weight or more of the lignin component originally contained in the wood raw material, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight or more. It can be said that the wood is preferably reduced by 99% by weight or more.
  • the first step and the second step according to the shape and size of the wood raw material, the type of wood used as the raw material of the wood raw material, the moisture content of the wood raw material, and the like.
  • the removal of almost all lignin components contained in the wood raw material means that when the lignin component contained in the wood raw material is measured by a method for quantitatively measuring lignin in the wood, it is below the detection limit. means.
  • the lignin component contained in the wood raw material can be reduced within the above-mentioned range, so that the wood raw material before treatment is whitened.
  • the whitening of the wood raw material means that it approaches white according to the degree of reduction of the lignin component, and means that the higher the reduction ratio of the lignin component, the closer the color to white.
  • the wood manufacturing method of the present invention “white wood” can be manufactured.
  • the lignin component contained in the wood raw material can be reduced as described above, and a structure composed of cellulose and hemicellulose can be maintained.
  • maintaining the structure composed of cellulose and hemicellulose means that the cell wall structure inherent to the wood used as the raw material for the wood raw material is maintained, and as a result, the outer shape of the wood raw material before processing. It means that the shape and dimensions are maintained.
  • Maintaining the external shape and dimensions of the wood raw material before the treatment means that when the dimensions of the wood raw material before and after the treatment are measured, the amount of change is 5% or less, preferably 3% or less, more preferably 2% or less, Preferably it means 1% or less.
  • the lignin component contained in the wood raw material before treatment can be significantly reduced, and the wood shape and dimensions of the wood raw material before treatment can be maintained. Can be manufactured.
  • the wood according to the first embodiment or the wood according to the second embodiment (hereinafter “white wood”) is not particularly limited as a new material that has not been conventionally used, and can be applied to various fields.
  • the preferred form of the present invention is wood that maintains the shape of the wood raw material.
  • white wood can be used as the basis for material development using the optimal frame structure created by the tree. .
  • the survival of a huge body of more than 100 meters is guaranteed for more than 1000 years.
  • This is a hierarchical structure made of woody macromolecules whose trees are precisely controlled.
  • microfibrils are extracted after being processed into a pulp-like structure, so that only microfibrils having no orientation can be obtained regardless of the hierarchical structure that trees have. Absent.
  • a technique for uniaxially orienting microfibrils having no orientation has not been established.
  • white wood maintains this hierarchical structure, microfibrils can be utilized while maintaining the orientation in white wood.
  • cellulose microfibrils derived from white wood are used for car bodies, tires, window glass, displays, battery materials, beakers, diapers, thickeners, food packaging materials, artificial blood vessels, artificial cartilage, food additives, etc. Can be used.
  • white wood can be used as a light and strong structural material.
  • white wood can be used as a building material in place of the conventionally used wood.
  • matrix components such as resin, can also be absorbed with respect to white wood. That is, white wood can be used as a new three-dimensional composite resin material according to the required strength.
  • White wood can be used as a porous material in which micropores are formed.
  • a material in which nano-order micropores are formed is called a mesoporous material (a porous material having a pore diameter of several nanometers to several tens of nanometers), but white wood can be used as a mesoporous material.
  • Examples of the use as a mesoporous material include a gas adsorbent, a heat insulating material, a gas separator, and a microorganism culture medium.
  • the color characteristics of white wood is a characteristic that the refractive index of cellulose and hemicellulose components is different from the refractive index of air contained therein. Therefore, by impregnating, for example, an acrylic resin into white wood, the refractive index of cellulose and the hemicellulose component can be brought close to the internal refractive index, and the material becomes colorless and transparent.
  • a colorless and transparent material in which an acrylic resin is impregnated in white wood can be applied to, for example, a display or a solar cell substrate.
  • white wood swells when immersed in, for example, an aqueous sodium hydroxide solution to become a wood gel material.
  • an aqueous sodium hydroxide solution sodium ions enter the inside of the cellulose crystals, spreading the molecules, partially dissolving in the aqueous sodium hydroxide solution, and washing with water forms a cross-linked structure between the celluloses.
  • Specific treatment conditions include a condition of immersing in an aqueous solution of 8 to 20% sodium hydroxide at room temperature, treating for 12 hours, and then washing with water.
  • the wood gel material using white wood becomes, for example, a functional material having elasticity by gelation, and thus can be applied to a medical gel material such as a wound film material and a food gel.
  • white wood is a low environmental load material that was a biodegradable material. That is, as described above, specific applications in a wide range of fields can be understood by paying attention to various features of white wood, but everything using white wood can be completely decomposed by cellulase. For example, when the mesoporous structure of white wood is used as an adsorbent, it is possible to concentrate the adsorbed substance from the environment, for example, by biodegrading the adsorbent. Further, white wood can be used as, for example, a biodegradable heat insulating material instead of conventional foamed polystyrene.
  • Example 1 a wood raw material (woody raw material) of a rectangular parallelepiped (each side 1 cm) made of cedar (coniferous tree) was prepared.
  • a solution in which ethylene glycol and 50% by weight sulfuric acid were mixed at a ratio of 99: 1 (acid concentration in the solution: 0.5% by weight) was prepared.
  • the wood raw material was immersed in the solution and pumped to replace the air in the wood raw material with the solvent.
  • the wood raw material was transferred to the pressure tube together with the solution and treated at 150 ° C. (atmospheric temperature) for 1 hour (first step).
  • the wood raw material was taken out and washed repeatedly with ethanol. Moreover, the solution which consists of 0.08 ml of acetic acid, 0.4 g of sodium chlorite, and 60 ml of water was prepared. And the wood raw material after ethanol washing was immersed in the said solution.
  • the temperature condition was 70 ° C., and the immersion time was 1 hour (second step).
  • the second step was performed 7 times, that is, after 1 hour of immersion, the step of adding 0.08 ml of acetic acid and 0.4 g of sodium chlorite and further treating for 1 hour was performed 7 times. (Immersion time, 8 hours total).
  • FIG. 1 shows untreated wood raw material in (A), wood raw material after the first step treatment in (B), and white wood obtained in (C).
  • the dimensions of these untreated wood raw materials (A) and white wood (C) were measured as follows (Table 1). From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
  • the viscosity average polymerization degree of the cellulose of the white wood of Example 1 is 1115
  • the full width at half maximum (FWHM) of 200 planes by X-ray diffraction is 2.50 (untreated 3.18)
  • the maximum load is 27N. Met.
  • the whiteness of white wood that was subjected to the same operation as Example 1 was L *: 94.0, a *: ⁇ 0.26, b *: 1.02 (untreated: L *: 80.11, a *: 3.39, b *: 17.7).
  • FIG. 3 shows the result of image analysis of untreated wood raw material and white wood by X-ray CT (microfocus X-ray CT system, inspexIOSMX-100CT, manufactured by Shimadzu Corporation). As shown in FIG. 3, it was found that the white wood produced in this example maintained the tissue and cell structure like the untreated wood raw material.
  • FIG. 4 is an image showing an X-ray fiber diagram obtained by X-ray diffraction of the untreated wood raw material used in Example 1 and white wood.
  • X-ray fiber diagram of FIG. 4 a plurality of diffraction spots are observed on a concentric image. Therefore, it was found that the white wood produced in this example maintained the orientation of the microfibrils in the cell wall, as with the untreated wood raw material.
  • Example 2 white wood was produced in the same manner as in Example 1 except that zelkova (hardwood) was used as a raw material and the conditions of the first step were treated at 150 ° C. for 6 hours.
  • zelkova hardwood
  • Fig. 5 shows the wood raw material before treatment and the obtained white wood. Moreover, it was as follows when the dimension of the untreated wood raw material and white wood of a present Example was measured. From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
  • FIG. 7 shows the result of image analysis of untreated wood raw materials and white wood by X-ray CT. As shown in FIG. 7, it was found that the white wood produced in this example maintained the tissue and cell structure like the untreated wood raw material.
  • Example 3 white wood was produced in the same manner as in Example 1 except that propylene glycol was used instead of ethylene glycol in the first step.
  • Fig. 8 shows the wood raw material before treatment and the obtained white wood.
  • (A) shows an untreated wood raw material
  • (B) shows white wood obtained.
  • the dimensions of these untreated wood raw materials (A) and white wood (B) were measured as follows (Table 4). From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
  • the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
  • Example 4 white wood was produced in the same manner as in Example 1 except that Harunire (hardwood) was used as a raw material.
  • FIG. 10 shows the wood raw material before treatment and the obtained white wood.
  • FIG. 10 shows an untreated wood raw material in (A), a wood raw material after the first step treatment in (B), and white wood obtained in (C).
  • the dimensions of these untreated wood raw materials (A) and white wood (C) were measured as follows (Table 5). From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
  • the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
  • Example 5 white wood was produced in the same manner as in Example 1 except that beech (hardwood) was used as a raw material.
  • FIG. 12 shows the wood raw material before treatment and the obtained white wood.
  • FIG. 12 shows untreated wood raw material in (A), wood raw material after the first step treatment in (B), and white wood obtained in (C).
  • the dimensions of these untreated wood raw materials (A) and white wood (C) were measured as follows (Table 6). Moreover, it was as follows when the dimension of the untreated wood raw material and white wood of a present Example was measured. From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
  • the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
  • Example 6 In this example, it was carried out except that the alkali treatment was performed before the first step under the following conditions, that Moso bamboo was used as a raw material, and the first step was performed at 150 ° C. for 4 hours.
  • White wood was produced as in Example 1.
  • the alkali treatment was performed by immersing the wood raw material in a 1% aqueous sodium hydroxide solution and performing heat treatment at 95 ° C. for 1 hour.
  • the obtained white wood is shown in FIG. Moreover, when the dimension of the untreated wood raw material and white wood of a present Example was measured, the white wood maintained the external shape and dimension of the untreated wood raw material.
  • FIG. 15 the result of having analyzed the component by the infrared absorption spectrum about the raw material of wood before a process and the obtained white wood was shown in FIG. As shown in FIG. 15, no band (1510 cm ⁇ 1 ) attributed to lignin was observed in white wood.
  • S1 to S4 are divided into four sections from the inner side to the epidermis (inner side S1 ⁇ skin side S4).
  • the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
  • the viscosity average polymerization degree of the cellulose of the wood of Example 6 was 1473.
  • Example 7 white wood was produced in the same manner as in Example 1 except that balsa (hardwood) was used as a raw material.
  • White wood whiteness (dimensions 5 cm ⁇ 5 cm ⁇ 0.5 cm) is L *: 93.1, a *: ⁇ 0.28, b *: 1.36 (untreated: L *: 85.56, a * : 2.25, b *: 10.64).
  • the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
  • the lignin content was less than 3% by weight
  • the cellulose content was 75% by weight or more
  • the hemicellulose content was 0.01% by weight or more and 15% by weight or less.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

The present invention removes lignin while maintaining the structure constituted of cellulose and hemicellulose. A raw wood material is immersed in a solution comprising an acid and an alcohol under the conditions of a temperature of 140-170°C and then immersed in a solution containing chlorous acid ions or hypochlorous acid ions.

Description

木材及び木材の製造方法WOOD AND WOOD MANUFACTURING METHOD
 本発明は、リグニン及びセルロースを含む木材、木質原材料を処理して得られる木材、及びその製造方法に関する。 The present invention relates to wood containing lignin and cellulose, wood obtained by treating a wood raw material, and a method for producing the same.
 木材は建築材料、家具、音響材料及び紙類の原材料として広く利用されている。また、バイオエタノール生産といったバイオリファイナリーの観点からも木質バイオマスは利用されている。なかでも、バイオリファイナリーの観点で木材が利用される場合、木材の構成成分であるリグニンを除去して、セルロース及びへミセルロースを取り出す。一般にリグニン除去のための処理は前処理と呼称される。いままで細胞や壁層を破壊する様々な前処理技術が報告されてきた。 Timber is widely used as a raw material for building materials, furniture, acoustic materials and paper. Woody biomass is also used from the viewpoint of biorefinery such as bioethanol production. In particular, when wood is used from the viewpoint of biorefinery, lignin, which is a constituent component of wood, is removed, and cellulose and hemicellulose are taken out. In general, the treatment for removing lignin is called pretreatment. Various pretreatment techniques that destroy cells and wall layers have been reported so far.
 リグニン除去のための前処理法としては、水蒸気爆砕処理、酸処理及びアルカリ処理等に代表される物理化学的手法、リグニン分解酵素或いはリグニン分解微生物を利用する生物学的手法が挙げられる。また、これら以外にも現在まで、前処理方法として、例えば、物理的な粉砕、蒸煮、オゾン酸化、γ線照射等が検討されてきた。 Examples of pretreatment methods for removing lignin include physicochemical methods such as steam explosion treatment, acid treatment and alkali treatment, and biological methods utilizing lignin degrading enzymes or lignin degrading microorganisms. In addition to these, as a pretreatment method, for example, physical pulverization, steaming, ozone oxidation, γ-ray irradiation, and the like have been studied.
 また、酢酸、エタノール、高沸点アルコール、フェノールなどの有機溶媒を用いた高温加熱処理はソルボリシスと呼ばれ、リグニンを除去する有効な前処理法として知られている。Hallac et al. Ind Eng Chem Res,49(4),1467-1472,2010aには、ウツギの一種の木材を粉砕し、エタノールと硫酸の混合溶媒で195℃、1時間処理することにより、リグニンの重量パーセントが1桁になる条件を見出している。さらに、Hallac et al. Biotechnol Bioeng,107,795-801,2010bでは、前処理後の試料の組織観察をしたところ、細胞間層(細胞と細胞の間にある層)のリグニンが優先的に除去されていることを明らかにした。以上の結果から、Hallac et al.Ind Eng Chem Res,49(4),1467-1472,2010a及びHallac et al.Biotechnol Bioeng,107,795-801,2010bに記載された前処理法は、リグニンを除去すると同時に細胞間の単離を促進させるパルプ化の効果も高いと結論付けられている。 Also, high-temperature heat treatment using an organic solvent such as acetic acid, ethanol, high boiling alcohol, and phenol is called solvolysis and is known as an effective pretreatment method for removing lignin. Hallac et al. Ind Eng Chem Res, 49 (4), 1467-1472, 2010a has a weight percent of lignin of 1 by pulverizing a kind of cedar wood and treating it with a mixed solvent of ethanol and sulfuric acid at 195 ° C. for 1 hour. Find the condition to be a digit. Furthermore, Hallac et al. In Biotechnol Bioeng, 107, 795-801, 2010b, tissue observation of the sample after pretreatment revealed that lignin in the intercellular layer (layer between cells) was preferentially removed. I made it. From the above results, Hallac et al. Ind Eng Chem Res, 49 (4), 1467-1472, 2010a and Hallac et al. It has been concluded that the pretreatment method described in Biotechnol Bioeng, 107, 795-801, 2010b has a high pulping effect that removes lignin and at the same time promotes isolation between cells.
 一方、特開2006-001270号公報には、スギ材チップをセッケン-ソーダ灰混合水に浸漬し、過酸化水素水で処理することでリグニン除去木材チップを製造することが開示されている。特開2015-080759号公報には、リグノセルロース系ノミイオマスを、エチレングリコール溶液で加熱抽出と固液分離を一段で処理し、リグニンを含む液体成分とセルロースを含む固体成分とに分離する方法が開示されている。特開2012-111849号公報には、木材チップを粉砕した木粉を脱脂処理、脱リグニン処理、脱へミセルロース処理、漂白処理した後、セルラーゼ系酵素による処理を行ない、その後、微細化処理を行うことで微細繊維状セルロースを製造する方法が開示されている。特に、脱リグニン処理としては一例として亜塩素酸ナトリウムと酢酸を用いるWise法が開示されている。なお、木材学会誌vol.50,No.3,pl32-138(2010)にも、酢酸を加えてpHを3.8-4.0とした亜塩素酸ナトリウム溶液を用いて脱リグニン処理することが開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 2006-001270 discloses that a lignin-removed wood chip is produced by immersing a cedar chip in a soap-soda ash mixed water and treating with a hydrogen peroxide solution. JP-A-2015-080759 discloses a method of separating lignocellulosic nomi-iomas into a liquid component containing lignin and a solid component containing cellulose by treating heat extraction and solid-liquid separation with an ethylene glycol solution in a single stage. Has been. JP 2012-1111849 discloses that wood powder obtained by pulverizing wood chips is degreased, delignified, demicellulose treated and bleached, then treated with cellulase enzymes, and then refined. A method for producing fine fibrous cellulose by performing is disclosed. In particular, as a delignification treatment, a Wise method using sodium chlorite and acetic acid is disclosed as an example. The Journal of the Wood Society of Japan vol. 50, no. 3, pl32-138 (2010) also discloses that delignification treatment is performed using a sodium chlorite solution adjusted to pH 3.8-4.0 by adding acetic acid.
 上述のように、木材等のリグノセルロース材料に対して種々の方法で脱リグニン処理する方法は知られていた。しかしながら、上述した従来の方法は、リグニンを、セルロース及びへミセルロースから分離するための手法であり、木材の組織や細胞を破壊することとなり、処理前の形状を維持することはできなかった。なお、特開2006-001270号公報には木材チップのハニカム構造を維持するリグニン除去方法が開示されるものの、木材チップ自体の形状を維持できる処理ではない。 As described above, there have been known methods for delignifying a lignocellulosic material such as wood by various methods. However, the above-described conventional method is a method for separating lignin from cellulose and hemicellulose, which destroys wood tissue and cells, and cannot maintain the shape before treatment. Although JP 2006-001270 A discloses a lignin removal method that maintains the honeycomb structure of wood chips, it is not a treatment that can maintain the shape of the wood chips themselves.
 以上のように、これまでリグニンを確実に除去しながら、セルロース及びへミセルロースから構成される構造を維持する技術は知られていなかった。そこで、本発明は、上述した実情に鑑み、木材としての構造を維持しながらリグニンが低減された木材、セルロース及びへミセルロースから構成される構造を維持しながらリグニンを除去する方法、当該方法を適用することでリグニンが低減した木材及び当該木材の製造方法を提供することを目的とする。 As described above, there has been no known technique for maintaining a structure composed of cellulose and hemicellulose while reliably removing lignin. Therefore, in view of the above-described circumstances, the present invention provides a method for removing lignin while maintaining a structure composed of wood, cellulose and hemicellulose with reduced lignin while maintaining the structure as wood, and the method. It aims at providing the manufacturing method of the timber which the lignin reduced by applying, and the said timber.
 上述した目的を達成するため、本発明は以下を包含する。
(1)リグニン含有量が3重量%未満であり、セルロース含有量が75重量%以上である、木材。
(2)前記セルロースの粘度平均重合度DPvが、300以上である、(1)に記載の木材。
(3)ヘミセルロース含有量が0.01重量%以上15重量%以下である、(1)または(2)に記載の木材。
(4)木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを経て作製され、リグニン成分が低減された木材。
(5)上記木質原材料の形状を維持したことを特徴とする(4)記載の木材。
(6)リグニン成分が検出限界以下に低減されたことを特徴とする(4)または(5)記載の木材。
(7)白色であることを特徴とする(4)~(6)のいずれかに記載の木材。
(8)木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを含む、リグニン成分が低減された木材の製造方法。
(9)上記アルコールは、150℃以上の沸点を有するアルコールであることを特徴とする(8)に記載の木材の製造方法。
(10)上記酸とアルコールとを含有する溶液は、硫酸とエチレングリコールとを含有する溶液または硫酸とプロピレングリコールとを含有する溶液であることを特徴とする(8)または(9)に記載の木材の製造方法。
(11)上記酸とアルコールとを含有する溶液は、アルコール濃度を90~99.5重量%とし、酸濃度を0.05~10重量%とすることを特徴とする(8)~(10)のいずれかに記載の木材の製造方法。
(12)上記第1の工程では、上記木質原材料を上記溶液に浸漬させた状態で密閉し、密閉空間内を脱気することを特徴とする(8)~(11)のいずれかに記載の木材の製造方法。
(13)上記亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液は、亜塩素酸ナトリウム溶液または次亜塩素酸ナトリウム溶液であることを特徴とする(8)~(12)のいずれかに記載の木材の製造方法。
(14)上記亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液は、亜塩素酸イオンまたは次亜塩素酸イオン濃度を0.01~10重量%とする溶液であることを特徴とする(8)~(13)のいずれかに記載の木材の製造方法。
(15)上記第2の工程を複数回繰り返すことを特徴とする(8)~(14)のいずれかに記載の木材の製造方法。
To achieve the above-described object, the present invention includes the following.
(1) Wood having a lignin content of less than 3% by weight and a cellulose content of 75% by weight or more.
(2) The wood according to (1), wherein the cellulose has a viscosity average degree of polymerization DPv of 300 or more.
(3) Wood as described in (1) or (2) whose hemicellulose content is 0.01 weight% or more and 15 weight% or less.
(4) A first step of immersing a wood raw material in a solution containing an acid and an alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower, and then the wooden raw material is treated with chlorite ions or hypochlorite ions. The wood produced through the second step of immersing in the solution containing the lignin component is reduced.
(5) The wood according to (4), wherein the shape of the wood raw material is maintained.
(6) The wood according to (4) or (5), wherein the lignin component is reduced below the detection limit.
(7) The wood according to any one of (4) to (6), which is white.
(8) A first step of immersing the wood raw material in a solution containing an acid and an alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower; The manufacturing method of the timber with which the lignin component was reduced including the 2nd process immersed in the solution to contain.
(9) The method for producing wood according to (8), wherein the alcohol is an alcohol having a boiling point of 150 ° C. or higher.
(10) The solution containing the acid and the alcohol is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol, according to (8) or (9) Wood manufacturing method.
(11) The solution containing an acid and an alcohol has an alcohol concentration of 90 to 99.5% by weight and an acid concentration of 0.05 to 10% by weight. (8) to (10) The method for producing wood according to any one of the above.
(12) The method according to any one of (8) to (11), wherein in the first step, the wood raw material is sealed in a state immersed in the solution, and the sealed space is deaerated. Wood manufacturing method.
(13) The solution containing the chlorite ion or hypochlorite ion is a sodium chlorite solution or a sodium hypochlorite solution, according to any one of (8) to (12), Wood manufacturing method.
(14) The solution containing chlorite ion or hypochlorite ion is a solution having a chlorite ion or hypochlorite ion concentration of 0.01 to 10% by weight (8 ) To (13).
(15) The method for producing wood according to any one of (8) to (14), wherein the second step is repeated a plurality of times.
実施例1で使用した未処理の木質原材料(A)、第1の工程後の木質原材料(B)及び処理後に得られた白い木材(C)を撮像した写真である。It is the photograph which imaged the untreated wood raw material (A) used in Example 1, the wood raw material (B) after a 1st process, and the white wood (C) obtained after the process. 実施例1で使用した未処理の木質原材料(A)、第1の工程後の木質原材料(B)及び処理後に得られた白い木材(C)について赤外線吸収スペクトルで成分を分析した結果を示す特性図である。The characteristic which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material (A) used in Example 1, the wood raw material (B) after a 1st process, and the white wood (C) obtained after a process. FIG. 実施例1で使用した未処理の木質原材料と、白い木材とについてX線CTにより画像解析した結果を示すX線画像である。It is an X-ray image which shows the result of having image-analyzed by X-ray CT about the untreated wood raw material used in Example 1, and white wood. 実施例1で使用した未処理の木質原材料と、白い木材とについてX線回折により得られたX線繊維図を示す画像である。It is an image which shows the X-ray fiber figure obtained by X-ray diffraction about the untreated wood raw material used in Example 1, and white wood. 実施例2で使用した未処理の木質原材料及び処理後に得られた白い木材を撮像した写真である。It is the photograph which imaged the untreated wood raw material used in Example 2, and the white wood obtained after the process. 実施例2で使用した未処理の木質原材料及び処理後に得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を示す特性図である。It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 2, and the white wood obtained after the process. 実施例2で使用した未処理の木質原材料と、白い木材とについてX線CTにより画像解析した結果を示すX線画像である。It is an X-ray image which shows the result of having image-analyzed by X-ray CT about the untreated wood raw material used in Example 2, and white wood. 実施例3で使用した未処理の木質原材料及び処理後に得られた白い木材を撮像した写真である。It is the photograph which imaged the untreated wood raw material used in Example 3, and the white wood obtained after the process. 実施例3で使用した未処理の木質原材料及び処理後に得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を示す特性図である。It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 3, and the white wood obtained after the process. 実施例4で使用した未処理の木質原材料(A)、第1の工程後の木質原材料(B)及び処理後に得られた白い木材(C)を撮像した写真である。It is the photograph which imaged the untreated wood raw material (A) used in Example 4, the wood raw material (B) after a 1st process, and the white wood (C) obtained after the process. 実施例4で使用した未処理の木質原材料及び処理後に得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を示す特性図である。It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 4, and the white wood obtained after the process. 実施例5で使用した未処理の木質原材料(A)、第1の工程後の木質原材料(B)及び処理後に得られた白い木材(C)を撮像した写真である。It is the photograph which imaged the untreated wood raw material (A) used in Example 5, the wood raw material (B) after a 1st process, and the white wood (C) obtained after the process. 実施例5で使用した未処理の木質原材料、第1の工程後の木質原材料及び処理後に得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を示す特性図である。It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 5, the wood raw material after a 1st process, and the white wood obtained after the process. 実施例6で使用した処理後に得られた白い木材を撮像した写真である。It is the photograph which imaged the white wood obtained after the process used in Example 6. FIG. 実施例6で使用した未処理の木質原材料、アルカリ処理後の木質原材料、第1の工程後の木質原材料及び処理後に得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を示す特性図である。It is a characteristic view which shows the result of having analyzed the component by the infrared absorption spectrum about the untreated wood raw material used in Example 6, the wood raw material after alkali treatment, the wood raw material after the first step, and the white wood obtained after the treatment. is there.
 本発明の第一実施形態は、リグニン含有量が3重量%未満であり、セルロース含有量が75重量%以上である、木材である。かかる実施形態によれば、セルロースを主成分とし、リグニン成分が十分に低減されている木材となる。セルロースは細胞壁を構成する主要成分であり、木材の強度を担保する重要な役割を果たす。一方、リグニンは、細胞間または細胞壁内のミクロフィブリル間を接着する役割を果たし、木材の構造維持に重要な役割を果たしていると考えられてきた。このため、リグニンを低減しつつ、木材としての構造を維持することは非常に困難であった。しかしながら、本実施形態の木材によれば、リグニン成分が十分に低減されているにも関わらず、木材としての三次元構造が維持されている。このようにリグニン量が低減されているにもかかわらず、三次元構造が維持されている詳細なメカニズムは不明であるが、例えば、後述の製造方法により木材を製造することで、リグニンが除去された部分に水が置換すること、また、本来の木材が有するセルロース構造(セルロースミクロフィブリルなど)が破壊されずに維持されることで、三次元構造体としての形状が維持されているものと考えられる。なお、上記考察は本発明の技術的範囲を何ら制限するものではない。 The first embodiment of the present invention is wood having a lignin content of less than 3% by weight and a cellulose content of 75% by weight or more. According to this embodiment, it becomes the wood which has cellulose as a main component and the lignin component is sufficiently reduced. Cellulose is a main component constituting the cell wall and plays an important role in ensuring the strength of the wood. On the other hand, lignin has been considered to play an important role in maintaining the structure of wood by playing a role of bonding between cells or between microfibrils in the cell wall. For this reason, it was very difficult to maintain the structure as wood while reducing lignin. However, according to the wood of this embodiment, the three-dimensional structure as a wood is maintained despite the lignin component being sufficiently reduced. Although the amount of lignin is reduced in this way, the detailed mechanism by which the three-dimensional structure is maintained is unknown, but for example, lignin is removed by manufacturing wood by the manufacturing method described later. It is considered that the shape as a three-dimensional structure is maintained by replacing water in the part and maintaining the cellulose structure (cellulose microfibrils, etc.) of the original wood without being destroyed. It is done. In addition, the said consideration does not restrict | limit the technical scope of this invention at all.
 本実施形態の木材は、リグニン成分が十分に低減されているために、外部から視認すると白色の木材となる。ゆえに、新しい素材として広く利用することができる。 The wood of the present embodiment is white wood when viewed from the outside because the lignin component is sufficiently reduced. Therefore, it can be widely used as a new material.
 ここで、本明細書における木材とは、細胞が規則正しく並んでいる構造(組織)が形成されているものを指す。木材は、パルプとは明確に区別される。細胞が規則正しく並んで組織が形成されていることは、後述の実施例に記載のとおり、X線CT画像などを用いて観察することができる(例えば、図3)。図3で示されるように、木材においては、隣接した細胞が互いに解離することなく順序よく配列している。 Here, the term “wood” as used herein refers to a structure (tissue) in which cells are regularly arranged. Wood is clearly distinguished from pulp. It can be observed using an X-ray CT image or the like that the cells are regularly arranged and the tissue is formed as described in Examples below (for example, FIG. 3). As shown in FIG. 3, in wood, adjacent cells are arranged in order without dissociating from each other.
 本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下)/相対湿度45%RH以上55%RH以下の条件で行う。 In this specification, “X to Y” indicating a range includes X and Y, and means “X or more and Y or less”. In this specification, unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 ° C. to 25 ° C.) / Relative humidity 45% RH to 55% RH.
 以下、第一実施形態について詳細に説明する。 Hereinafter, the first embodiment will be described in detail.
 木材中のリグニン含有量は、好ましい順に、2重量%未満、1重量%未満、0.5重量%未満、0.1重量%未満である。リグニン含有量がこのような範囲にあることで、白色度が向上する。リグニン含有量は少なければ少ないほど好ましく、下限は0重量%である。ここで、0重量%は、下記各成分の含有量をHPLCにより測定した際に検出限界以下であることを指す。 The lignin content in the wood is, in order of preference, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight. When the lignin content is in such a range, the whiteness is improved. The lower the lignin content, the better. The lower limit is 0% by weight. Here, 0% by weight indicates that the content of each of the following components is below the detection limit when measured by HPLC.
 木材中のセルロースの含有量は、75重量%以上であり、好ましい順に、80重量%以上、85重量%以上、90重量%以上、95重量%以上である。セルロースの含有量が75重量%以上であることで、木材構造中のセルロース繊維方向の強度が向上し、白色度が向上する。なお、セルロースの含有量の上限は、木材構造を維持するという観点で、製造限界を考慮すると、通常99.9重量%以下であり、好ましくは99.5%以下である。 The content of cellulose in the wood is 75% by weight or more, and in a preferable order, it is 80% by weight, 85% by weight, 90% by weight, or 95% by weight or more. When the cellulose content is 75% by weight or more, the strength in the cellulose fiber direction in the wood structure is improved, and the whiteness is improved. In addition, the upper limit of the cellulose content is usually 99.9% by weight or less, preferably 99.5% or less in consideration of the production limit from the viewpoint of maintaining the wood structure.
 木材中に含まれるセルロースの粘度平均重合度DPvは、300以上であることが好ましい。セルロースの粘度平均重合度DPvが、300以上であることで、本来の樹木が有しているセルロースの繊維状態に近しいものとなり、木材の強度が向上するので好ましい。通常、何かしらの化学的処理を行った場合、セルロースの粘度平均重合度は著しく低下するが、例えば、後述の製造方法によれば、セルロースの粘度平均重合度の著しい低下が抑制される。セルロースの粘度平均重合度DPvは、500以上であることがより好ましく、800以上であることがさらに好ましく、1,000以上であることが特に好ましい。また、セルロースの粘度平均重合度DPvの上限は、本来樹木に存在するセルロースに近いほうが好ましく、このような観点から、通常は、10,000以下であり、5,000以下であることが好ましく、3,000以下であることがより好ましい。 The viscosity average polymerization degree DPv of cellulose contained in the wood is preferably 300 or more. It is preferable that the viscosity average degree of polymerization DPv of cellulose is 300 or more, since it becomes close to the cellulose fiber state of the original tree and the strength of the wood is improved. Usually, when some chemical treatment is performed, the viscosity average degree of polymerization of cellulose is remarkably reduced. For example, according to the production method described later, a significant decrease in the viscosity average degree of polymerization of cellulose is suppressed. The viscosity average polymerization degree DPv of cellulose is more preferably 500 or more, further preferably 800 or more, and particularly preferably 1,000 or more. In addition, the upper limit of the viscosity average degree of polymerization DPv of cellulose is preferably closer to the cellulose originally present in the tree, and from this viewpoint, it is usually 10,000 or less, preferably 5,000 or less, More preferably, it is 3,000 or less.
 セルロースの粘度平均重合度は、以下の測定方法により測定することができる。 The viscosity average degree of polymerization of cellulose can be measured by the following measuring method.
 <粘度平均重合度の測定方法>
 木材に対して亜塩素酸ナトリウムおよび酢酸を用いるWise法を繰り返し、その後5%水酸化ナトリウム水溶液で煮沸処理することによってセルロースを抽出する。セルロースを銅エチレンジアミンに溶解後、キャノン-フェンスケ粘度計により、その落下速度から重合度を測定する。具体的には以下のように測定される。
<Measurement method of viscosity average degree of polymerization>
The Wise method using sodium chlorite and acetic acid is repeated on wood, followed by boiling with 5% aqueous sodium hydroxide to extract cellulose. After dissolving cellulose in copper ethylenediamine, the degree of polymerization is measured from the dropping speed with a Canon-Fenske viscometer. Specifically, it is measured as follows.
 0.5Mの銅エチレンジアミン溶液を調製し、キャノン-フェンスケ粘度計を用いて粘度ηを測定する。また、セルロースを0.5Mの銅エチレンジアミン溶液に溶解した溶解液(セルロース濃度をc(g/dL)とする)を調製し、キャノン-フェンスケ粘度計を用いて粘度ηを測定する。以下の式1によりセルロースの溶解液の固有粘度(「極限粘度」と称することもある)[η]を求める。 A 0.5 M copper ethylenediamine solution is prepared, and the viscosity η 0 is measured using a Canon-Fenske viscometer. In addition, a solution in which cellulose is dissolved in a 0.5 M copper ethylenediamine solution (the cellulose concentration is c (g / dL)) is prepared, and the viscosity η is measured using a Canon-Fenske viscometer. The intrinsic viscosity (sometimes referred to as “ultimate viscosity”) [η] of the cellulose solution is determined by the following formula 1.
 固有粘度[η]=(η/η)/{c(1+A×η/η)} 式1
 式1において、「A」は、溶液の種類による固有の値を示す。0.5Mの銅エチレンジアミン溶液の場合、「A」は0.28である。
Intrinsic viscosity [η] = (η 0 / η) / {c (1 + A × η / η 0 )} Equation 1
In Equation 1, “A” indicates a unique value depending on the type of solution. In the case of a 0.5 M copper ethylenediamine solution, “A” is 0.28.
 次に、以下の式2(Mark-Houwink-Sakurada式)により、粘度平均重合度DPvを求める。 Next, the viscosity average polymerization degree DPv is obtained by the following formula 2 (Mark-Houwink-Sakurada formula).
 固有粘度[η]=K×DPv×a  式2
 式2において、「K」及び「a」は、高分子の種類による固有の値を示す。セルロースの場合、「K」は0.57×10-3、「a」は1である。
Intrinsic viscosity [η] = K × DPv × a Equation 2
In Equation 2, “K” and “a” represent specific values depending on the type of polymer. In the case of cellulose, “K” is 0.57 × 10 −3 and “a” is 1.
 木材中のヘミセルロースの含有量は、0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.5重量%以上であることがさらに好ましく、1重量%以上であることがさらにより好ましく、2重量%以上であることが特に好ましい。ヘミセルロースの含有量が上記下限以上であることで、セルロース同士を結着させるのに十分な量となり、三次元構造体が維持されやすくなる。また、ヘミセルロースの上限は特に限定されるものではなく、セルロースの含有量が75重量%以上であることから、第1の工程後の木質原材料25重量%以下であり、20重量%以下であることが好ましく、15重量%以下であることがより好ましく、10重量%未満であることがさらに好ましく、5重量%未満であることが特に好ましい。好適な実施形態は、ヘミセルロースの含有量が0.01重量%以上15重量%以下である。 The content of hemicellulose in the wood is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, further preferably 0.5% by weight or more, and 1% by weight. More preferably, it is more preferably 2% by weight or more. When the content of hemicellulose is equal to or more than the above lower limit, the amount becomes sufficient to bind cellulose, and the three-dimensional structure is easily maintained. Further, the upper limit of hemicellulose is not particularly limited, and since the cellulose content is 75% by weight or more, the wood raw material after the first step is 25% by weight or less, and 20% by weight or less. Is preferably 15% by weight or less, more preferably less than 10% by weight, and particularly preferably less than 5% by weight. In a preferred embodiment, the hemicellulose content is 0.01 wt% or more and 15 wt% or less.
 各成分の含有量は、下記測定条件に沿って測定した値を採用する。 The value measured according to the following measurement conditions is used for the content of each component.
 <測定条件>
 試料を72%硫酸で室温1時間処理する。その後、約3%程度に硫酸を水で希釈する。希釈硫酸を121℃、1時間オートクレーブで処理する。得られた試料をガラスフィルターで固体と液体画分に分離する。固体は重量測定によりリグニン量とする。液体画分については中和した後、HPLCによって糖分析を行う。HPLC条件は下記の通りである。
<Measurement conditions>
Samples are treated with 72% sulfuric acid for 1 hour at room temperature. Thereafter, the sulfuric acid is diluted with water to about 3%. The diluted sulfuric acid is treated at 121 ° C. for 1 hour in an autoclave. The obtained sample is separated into solid and liquid fractions with a glass filter. For solids, the amount of lignin is determined by weight measurement. The liquid fraction is neutralized and then subjected to sugar analysis by HPLC. The HPLC conditions are as follows.
 装置:Prominence UFLC(島津製作所社製)
 カラム:Asahipak NH2P-50 4E(4mm×250mm,Lot:080806,Shodex(登録商標)、昭和電工社製)
 プレカラム:Asahipak NH2P-50G 4A/Opti-guardDVB(昭和電工社製)
 溶媒:
  移動相A:0.3%りん酸水溶液
  移動相B:0.3%りん酸アセトニトリル
 反応液:ほう酸-Lアルギニン-水酸化カリウム水溶液
 反応器温度:150℃
 カラム温度:45℃
 検出条件:RF-AXL検出器
 上記HPLCにより測定されたグルコース量(重量%)に0.9をかけた値をセルロース量とする。また、ヘミセルロース量は、以下の式から算出される;
Equipment: Prominence UFLC (manufactured by Shimadzu Corporation)
Column: Asahipak NH2P-50 4E (4 mm × 250 mm, Lot: 080806, Shodex (registered trademark), manufactured by Showa Denko KK)
Precolumn: Asahipak NH2P-50G 4A / Opti-guard DVB (manufactured by Showa Denko)
solvent:
Mobile phase A: 0.3% phosphoric acid aqueous solution Mobile phase B: 0.3% phosphoric acid acetonitrile Reaction liquid: Boric acid-L arginine-potassium hydroxide aqueous solution Reactor temperature: 150 ° C.
Column temperature: 45 ° C
Detection condition: RF-AXL detector A value obtained by multiplying the glucose amount (% by weight) measured by the HPLC by 0.9 is defined as the cellulose amount. The amount of hemicellulose is calculated from the following formula;
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 木材の最大荷重は、結晶構造を維持し、機械的強度が担保されているという観点から、0.1N以上であることが好ましく、1N以上であることがより好ましく、5N以上であることがさらに好ましく、10N以上であることがさらにより好ましい。また、木材の最大荷重の上限は、特に制限されるものではないが、1,000N以下であることが好ましく、500N以下であることがより好ましい。木材の最大荷重が上記上限以下であることで、木材が多孔質構造を採りやすい。 The maximum load of the wood is preferably 0.1N or more, more preferably 1N or more, and further preferably 5N or more from the viewpoint of maintaining the crystal structure and ensuring the mechanical strength. Preferably, it is 10N or more and even more preferable. Moreover, the upper limit of the maximum load of the wood is not particularly limited, but is preferably 1,000 N or less, and more preferably 500 N or less. When the maximum load of the wood is not more than the above upper limit, the wood can easily take a porous structure.
 最大荷重は以下の測定条件で測定した値を採用する。 The value measured under the following measurement conditions is used for the maximum load.
 装置:AandD社製フォーテスターMCT-2150
 試料サイズ:1cmブロック
 方向:繊維方向(木口面を圧縮)
 本実施形態の木材は、リグニン量が低減されているため、外観は白色木材となる。外観が白色となることで、透明樹脂を含浸させることにより透明成型物を得る事が可能であり、また、染色等の着色も可能となる。木材のL*は、88以上であることが好ましく、より好ましくは90以上、更に好ましくは92以上、最も好ましくは93以上である。また、木材のa*は、5以下であることが好ましく、より好ましくは3以下であり、最も好ましくは1以下であり、更に-5以上であることが好ましく、より好ましくは-3以上であり、最も好ましくは-1以上である。木材のb*は、5以下が好ましく、より好ましくは3以下であり、最も好ましくは2以下である。白色度は、色差計(日本電色工業社製SE-6000)を用いて木材表面を5点測定した値の平均値を採用する。
Apparatus: AandD Fortester MCT-2150
Sample size: 1 cm 3 blocks Direction: Fiber direction (compressing the mouth end)
Since the wood of this embodiment has a reduced lignin amount, the appearance is white wood. By making the appearance white, it is possible to obtain a transparent molded product by impregnating the transparent resin, and coloring such as dyeing is also possible. The L * of the wood is preferably 88 or more, more preferably 90 or more, still more preferably 92 or more, and most preferably 93 or more. The a * of the wood is preferably 5 or less, more preferably 3 or less, most preferably 1 or less, further preferably −5 or more, more preferably −3 or more. And most preferably −1 or more. The b * of the wood is preferably 5 or less, more preferably 3 or less, and most preferably 2 or less. For the whiteness, an average value obtained by measuring five points on the wood surface using a color difference meter (SE-6000 manufactured by Nippon Denshoku Industries Co., Ltd.) is adopted.
 また、PAS染色(多糖類染色法)によってセルロースおよびヘミセルロースを染色してセルロースおよびヘミセルロースの存在を定性的に確認することができる。また、染色面積比などによりセルロースおよびヘミセルロース量を定量することもできる。
測定条件は下記のとおりである。
In addition, the presence of cellulose and hemicellulose can be qualitatively confirmed by staining cellulose and hemicellulose by PAS staining (polysaccharide staining method). In addition, the amount of cellulose and hemicellulose can be quantified based on the dyeing area ratio or the like.
The measurement conditions are as follows.
 <測定条件>
 切片を過よう素酸水溶液で酸化後、シッフ試薬で反応させる。亜硫酸水で洗浄後、さらに蒸留水で洗浄する。プレパラートを作成し、観察し、色差計によって評価する。
<Measurement conditions>
The section is oxidized with an aqueous periodate solution and then reacted with a Schiff reagent. Wash with sulfite and then with distilled water. Prepare preparations, observe, and evaluate by colorimeter.
 このような木材は、例えば、下記の第三実施形態の製造方法によって得られる。製造条件は、木材の大きさ、木材種などによって適宜設定すればよいが、第1の工程の浸漬時間、回数、第2の工程の浸漬時間、回数などによって制御することができる。特に第2の工程の浸漬時間を長くする、回数を増やすことによって、上記のようにリグニン量が低減された木材が得られやすくなる。 Such wood is obtained, for example, by the manufacturing method of the following third embodiment. The manufacturing conditions may be appropriately set depending on the size of the wood, the wood type, and the like, but can be controlled by the immersion time and number of times in the first step, the immersion time and number of times in the second step, and the like. In particular, by increasing the immersion time in the second step and increasing the number of times, it becomes easy to obtain wood with a reduced amount of lignin as described above.
 第一実施形態の木材においては、X線回折によって得られるX線繊維図において、同心円状の回折像中に複数の回折スポットが存在することが好ましい。このような回折スポットは、X線繊維図において黒色点として視認できる。複数の回折スポットが存在するということは、細胞壁内のセルロースミクロフィブリルの配向に乱れがないことを示す。ゆえに、木材は、細胞壁内のセルロースミクロフィブリルの構造も維持し、ゆえに強度に優れる。ここで、複数とは2以上であればよい。X線回折スポットの数は同じ種類の原料木材で観測されるスポットと同数であることが好ましい。 In the wood of the first embodiment, it is preferable that a plurality of diffraction spots exist in concentric diffraction images in an X-ray fiber diagram obtained by X-ray diffraction. Such a diffraction spot can be visually recognized as a black point in the X-ray fiber diagram. The presence of a plurality of diffraction spots indicates that there is no disturbance in the orientation of cellulose microfibrils in the cell wall. Therefore, wood maintains the structure of cellulose microfibrils in the cell wall and is therefore excellent in strength. Here, the plural may be two or more. The number of X-ray diffraction spots is preferably the same as the number of spots observed on the same kind of raw material wood.
 X線繊維図は以下のようにして測定される。まず、放射切片を作製し、L方向を軸にして筒状に巻いた試料をセットして測定する。測定条件は以下の通りである。 X-ray fiber diagram is measured as follows. First, a radiation slice is prepared, and a sample wound in a cylindrical shape with the L direction as an axis is set and measured. The measurement conditions are as follows.
 イメージングプレート単結晶構造解析装置:(株)リガク製 R-AXIS RAPID
 X線源:Cu ターゲット
 また、セルロースの結晶構造において、X線回折(200面)の半値全幅(FWHM)は、リグニン量が低減されセルロースの配向性が向上し、繊維方向の強度に優れという観点で、3以下であることが好ましく、2.8以下であることがより好ましく、2.6以下である事がさらに好ましい。また、透明樹脂を含浸させることにより透明成型物を得る事が可能であり、また、染色等の着色も可能になるという観点で、1以上である事が好ましく、1.6以上であることが好ましく、2以上であることが最も好ましい。セルロースのX線回折(200面)の半値全幅(FWHM)がかような範囲にあることで、天然セルロースの結晶構造が維持されていると言える。ゆえに、木材は強度に優れる。
Imaging plate single crystal structure analyzer: Rigaku Corporation R-AXIS RAPID
X-ray source: Cu target Further, in the crystal structure of cellulose, the full width at half maximum (FWHM) of X-ray diffraction (200 planes) is a viewpoint that the amount of lignin is reduced, the orientation of cellulose is improved, and the strength in the fiber direction is excellent. It is preferably 3 or less, more preferably 2.8 or less, and even more preferably 2.6 or less. Moreover, it is preferable that it is 1 or more from a viewpoint that a transparent molding can be obtained by impregnating a transparent resin, and coloring, such as dyeing | staining, also becomes possible, and it is 1.6 or more. It is preferably 2 or more and most preferably. It can be said that the crystal structure of natural cellulose is maintained when the full width at half maximum (FWHM) of X-ray diffraction (200 planes) of cellulose is in such a range. Therefore, wood is excellent in strength.
 セルロースの結晶構造は以下のように測定する。 The crystal structure of cellulose is measured as follows.
 X線装置:全自動水平型多目的X線回折装置(リガク社製、SmartLab)
 X線源:Cu ターゲット
 木材の原料(由来)は、特に限定されないが、木本であることが好ましく、好適な形態は、木材の原料が針葉樹、広葉樹および竹からなる群から選択される。本明細書における木材の定義は上記にあるとおり、「細胞が規則正しく並んでいる構造(組織)が形成されているものを指す」ため、本明細書においては木材の原料として竹も含まれる。このため、本明細書においては、木材に竹材を含む。
X-ray apparatus: fully automatic horizontal multi-purpose X-ray diffraction apparatus (manufactured by Rigaku Corporation, SmartLab)
X-ray source: Cu target Although the raw material (origin) of wood is not particularly limited, it is preferably wood, and a suitable form is selected from the group consisting of conifers, hardwoods and bamboo. As described above, the definition of wood in the present specification is “it refers to a structure (tissue) in which cells are regularly arranged”, and therefore bamboo is also included in this specification as a raw material for wood. For this reason, in this specification, bamboo is included in wood.
 針葉樹としては、特に限定されないが、スギ、エゾマツ、カラマツ、クロマツ、トドマツ、ヒメコマツ、イチイ、イチョウ、ネズコ、カヤ、ハリモミ、イラモミ、イヌマキ、モミ、サワラ、トガサワラ、アスナロ、ヒバ、ツガ、コメツガ、コウヤマキ、ヒノキ、サワラ、イチイ、イヌガヤ、トウヒ、イエローシーダー(ベイヒバ)、ロウソンヒノキ(ベイヒ)、ダグラスファー(ベイマツ)、シトカスプルース(ベイトウヒ)、ラジアータマツ、イースタンスプルース、イースタンホワイトパイン、ウェスタンラーチ、ウェスタンファー、ウェスタンへムロック及びタマラック等を挙げることができる。中でも、木材の原料としては、スギ、カラマツ、およびヒノキのいずれかであることが好ましい。 Although it is not particularly limited as a conifer, Sugi, Scots pine, Larch, Black pine, Todomatsu, Himekomatsu, Yew, Ginkgo, Nezuko, Kaya, Harimomi, Iramimi, Inakiki, Fir, Sawara, Togasawara, Asunaro, Hiba, Tsuga, Komatsuki , Cypress, Sawara, Yew, Inugaya, Spruce, Yellow Cedar (Beihiba), Lawson Cypress (Beihi), Douglas Fir (Baymatsu), Sitka Spruce (Beisuhi), Radiata Pine, Eastern Spruce, Eastern White Pine, Western Larch, Western Fur , Western hemlock, tamarack and the like. Among these, the raw material for wood is preferably cedar, larch, or cypress.
 広葉樹としては、特に限定されないが、ブナ、シナ、シラカバ、クルミ、ポプラ、ユーカリ、アカシア、アサダ、ナラ、イタヤカエデ、カツラ、センノキ、クリ、ニレ、キリ、ホオノキ、ヤナギ、セン、ウバメガシ、コナラ、クヌギ、トチノキ、ケヤキ、ツゲ、ミズメ、ミズナラ、ミズキ、アカガシ、アオダモ、バルサ及びアオハダ等を挙げることができる。中でも、木材の原料としては、ブナ、バルサおよびニレのいずれかであることが好ましく、ブナ、およびニレのいずれかであることが好ましい。 Although it is not particularly limited as a broad-leaved tree, beech, china, birch, walnut, poplar, eucalyptus, acacia, asada, oak, itaya maple, wig, senoki, chestnut, elm, giraffe, honoki, willow, sen, ubatashi, konara, kunugi , Tochinoki, zelkova, boxwood, mizume, mizunara, dogwood, red oak, aodamo, balsa and aohada. Among them, the raw material for wood is preferably beech, balsa or elm, and is preferably either beech or elm.
 竹としては、マダケ、モウソウチク(孟宗竹)及びハチク等を挙げることができる。 Examples of bamboo include mushrooms, mosouchiku (Moso bamboo), and bees.
 よって、本発明の好適な形態は、原料(由来)がスギ、カラマツ、ヒノキ、ブナ、ニレ、バルサまたは竹であり、より好適にはスギ、カラマツ、ヒノキ、ブナ、ニレまたは竹である。 Therefore, in a preferred form of the present invention, the raw material (origin) is cedar, larch, cypress, beech, elm, balsa or bamboo, and more preferably cedar, larch, cypress, beech, elm or bamboo.
 本発明の第二実施形態は、木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを経て作製され、リグニン成分が低減された木材である。 In the second embodiment of the present invention, a first step of immersing a wood raw material in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower; This wood is produced through the second step of immersing in a solution containing hypochlorite ions and has a reduced lignin component.
 第二実施形態に係る木材は、木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを経て作製される。すなわち、本発明は、木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを含む、リグニン成分が低減された木材の製造方法の形態も提供する。このような方法によれば木質原材料に含まれているリグニン成分を、セルロースとへミセルロースからなる構造を維持しながら低減することができる。したがって、当該方法によって作製された木材は、木質原材料が本来有しているセルロースとへミセルロースからなる構造を維持し、且つ、リグニン成分が低減されているといった特徴を有する。 The wood according to the second embodiment includes a first step of immersing a wooden raw material in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower, and then converting the wooden raw material into chlorite ions or It is produced through a second step of immersing in a solution containing hypochlorite ions. That is, the present invention includes a first step of immersing a wooden raw material in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower, and then converting the wooden raw material into chlorite ions or hypochlorite. There is also provided a form of a method for producing wood having a reduced lignin component, comprising a second step of immersing in a solution containing acid ions. According to such a method, the lignin component contained in the wood raw material can be reduced while maintaining the structure composed of cellulose and hemicellulose. Therefore, the wood produced by the method has the characteristics that the structure made of the cellulose and the hemicellulose inherent in the wood raw material is maintained and the lignin component is reduced.
 リグニン成分が低減されたとは、木材中のリグニン成分が、好ましい順に3重量%未満、2重量%未満、1重量%未満、0.5重量%未満、0.1重量%未満となることが好ましい。 The reduced lignin component means that the lignin component in the wood is preferably less than 3% by weight, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, and less than 0.1% by weight. .
 ここで、木質原材料とは、木を原料として所定の形状を有する材料である。原料として使用される木は、特に限定されないが、木本であることが好ましく、好適な形態は、木材の原料が針葉樹、広葉樹および竹からなる群から選択される。特に針葉樹が好ましい。 Here, the wood raw material is a material having a predetermined shape using wood as a raw material. Although the tree used as a raw material is not particularly limited, it is preferably wood, and a suitable form is selected from the group consisting of softwood, hardwood and bamboo. In particular, conifers are preferred.
 針葉樹としては、特に限定されないが、スギ、エゾマツ、カラマツ、クロマツ、トドマツ、ヒメコマツ、イチイ、イチョウ、ネズコ、カヤ、ハリモミ、イラモミ、イヌマキ、モミ、サワラ、トガサワラ、アスナロ、ヒバ、ツガ、コメツガ、コウヤマキ、ヒノキ、サワラ、イチイ、イヌガヤ、トウヒ、イエローシーダー(ベイヒバ)、ロウソンヒノキ(ベイヒ)、ダグラスファー(ベイマツ)、シトカスプルース(ベイトウヒ)、ラジアータマツ、イースタンスプルース、イースタンホワイトパイン、ウェスタンラーチ、ウェスタンファー、ウェスタンへムロック及びタマラック等を挙げることができる。 Although it is not particularly limited as a conifer, Sugi, Scots pine, Larch, Black pine, Todomatsu, Himekomatsu, Yew, Ginkgo, Nezuko, Kaya, Harimomi, Iramimi, Inakiki, Fir, Sawara, Togasawara, Asunaro, Hiba, Tsuga, Komatsuki , Cypress, Sawara, Yew, Inugaya, Spruce, Yellow Cedar (Beihiba), Lawson Cypress (Beihi), Douglas Fir (Baymatsu), Sitka Spruce (Beisuhi), Radiata Pine, Eastern Spruce, Eastern White Pine, Western Larch, Western Fur , Western hemlock, tamarack and the like.
 広葉樹としては、特に限定されないが、ブナ、シナ、シラカバ、クルミ、ポプラ、ユーカリ、アカシア、アサダ、ナラ、イタヤカエデ、カツラ、センノキ、クリ、ニレ、キリ、ホオノキ、ヤナギ、セン、ウバメガシ、コナラ、クヌギ、トチノキ、ケヤキ、ツゲ、ミズメ、ミズナラ、ミズキ、アカガシ、アオダモ、バルサ及びアオハダ等を挙げることができる。 Although it is not particularly limited as a broad-leaved tree, beech, china, birch, walnut, poplar, eucalyptus, acacia, asada, oak, itaya maple, wig, senoki, chestnut, elm, giraffe, honoki, willow, sen, ubatashi, konara, kunugi , Tochinoki, zelkova, boxwood, mizume, mizunara, dogwood, red oak, aodamo, balsa and aohada.
 竹としては、マダケ、モウソウチク(孟宗竹)及びハチク等を挙げることができる。 Examples of bamboo include mushrooms, mosouchiku (Moso bamboo), and bees.
 よって、本発明の好適な形態は、木質原材料がスギ、カラマツ、ヒノキ、ブナ、ニレ、バルサまたは竹であり、より好適にはスギ、カラマツ、ヒノキ、ブナ、ニレまたは竹である。 Therefore, in a preferred form of the present invention, the wood raw material is cedar, larch, cypress, beech, elm, balsa or bamboo, and more preferably cedar, larch, cypress, beech, elm or bamboo.
 木質原材料は、原料の木に対して所定の加工を施して作製されたものであっても良い。木に対する加工としては、特に限定されないが、切削加工、研削加工、研磨加工、鉋加工及び曲げ加工等を挙げることができる。これら加工によれば原料となる木を所望の形状に加工して、当該形状を有する木質原材料を得ることができる。 The woody raw material may be produced by performing a predetermined process on the raw material wood. Although it does not specifically limit as a process with respect to wood, Cutting process, grinding process, grinding | polishing process, a wrinkle process, a bending process etc. can be mentioned. According to these processes, the raw material wood can be processed into a desired shape, and a wood raw material having the shape can be obtained.
 また、木質原材料は、単一の部材から構成されていても良いし、複数の部材から構成されていても良い。例えば、複数の部材を一般的な方法によって接合することで、複数の部材で構成された木質原材料を作製することができる。複数の部材を接合する方法としては、例えば、接着剤を使用する方法、釘やビスを使用する方法、金具を使用する方法、ほぞ組み等の組み手を使用する方法を挙げることができる。 Further, the wood raw material may be composed of a single member or a plurality of members. For example, a wood raw material composed of a plurality of members can be produced by joining a plurality of members by a general method. Examples of a method for joining a plurality of members include a method using an adhesive, a method using a nail or a screw, a method using a metal fitting, and a method using a joint such as a mortise.
 木質原材料の形状は、特に限定されず、板状、棒状、チップ状、箱状及び球状等を挙げることができる。木質原材料の形状については、上述した第1の工程及び第2の工程において溶液に所定時間浸漬したときに当該溶液が内部に十分浸透するような形状とすることが好ましい。言い換えると、木質原材料の溶液に対する浸漬時間を調整すればよく、木質原材料は如何なる形状でも良いことが理解できる。 The shape of the wood raw material is not particularly limited, and examples thereof include a plate shape, a rod shape, a chip shape, a box shape, and a spherical shape. Regarding the shape of the wood raw material, it is preferable that the shape of the wood raw material sufficiently penetrates into the solution when immersed in the solution for a predetermined time in the first step and the second step described above. In other words, it is only necessary to adjust the dipping time of the wood raw material in the solution, and it can be understood that the wood raw material may have any shape.
 また、木質原材料の寸法は、特に限定されないが、上述した第1の工程及び第2の工程において溶液に浸漬したときに溶液が内部に十分浸透する寸法とすることができる。この観点から木質原材料の寸法は、溶液に対する浸漬時間及び原料として使用した木の種類、特に木の密度に応じて好ましい範囲が異なることがわかる。例えばスギを用い、第1の工程及び第2の工程における浸漬時間を1時間とした場合、木質原材料の内部において表面からの距離が最も短い位置について、表面からの距離が10cm以下であることが好ましく、5cm以下であることがより好ましく、3cm以下であることが更に好ましく、1cm以下、0.5cm以下であることが最も好ましい。生産における取り扱いやすさの観点では、0.05cm以上であることが好ましく、0.1cm以上であることがより好ましい。また、スギ(針葉樹)に代えてケヤキ、ニレ、ブナ、ナラ(広葉樹)を用いた場合、第1の工程及び第2の工程における浸漬時間を1時間とした場合における同寸法は、5cm以下とすることが好ましく、2.5cm以下であることがより好ましく、1.5cm以下であることが更に好ましく、0.5cm以下であることが最も好ましい。また、スギ(針葉樹)に代えて竹を用いた場合、第1の工程及び第2の工程における浸漬時間を1時間とした場合における同寸法は、10cm以下であることが好ましく、5cm以下であることがより好ましく、3cm以下であることが更に好ましく、1cm以下であることが最も好ましい。 Further, the size of the wood raw material is not particularly limited, but it can be a size that allows the solution to sufficiently penetrate into the solution when immersed in the solution in the first step and the second step described above. From this point of view, it can be seen that the preferred range of the size of the wood raw material varies depending on the immersion time in the solution and the type of wood used as the raw material, particularly the density of the wood. For example, when using cedar and the immersion time in the first step and the second step is 1 hour, the distance from the surface may be 10 cm or less at the position where the distance from the surface is the shortest in the wood raw material. Preferably, it is 5 cm or less, more preferably 3 cm or less, and most preferably 1 cm or less and 0.5 cm or less. From the viewpoint of ease of handling in production, it is preferably 0.05 cm or more, and more preferably 0.1 cm or more. Moreover, when using zelkova, elm, beech, oak (hardwood) instead of cedar (conifer), the same dimension when the immersion time in the first step and the second step is 1 hour is 5 cm or less. Preferably, it is 2.5 cm or less, more preferably 1.5 cm or less, and most preferably 0.5 cm or less. In addition, when bamboo is used instead of cedar (coniferous tree), the same dimension when the immersion time in the first step and the second step is 1 hour is preferably 10 cm or less, and 5 cm or less. Is more preferably 3 cm or less, and most preferably 1 cm or less.
 本実施形態においては、木質原材料が前記工程だけでは白色化が難しい場合、特に木質原材料が竹である場合、下記第1の工程の前にアルカリ処理を行うことが好ましい。このような前処理を行うことで、リグニン成分の除去が効率的に行われるため好ましい。 In this embodiment, when it is difficult for the wood raw material to be whitened only by the above process, particularly when the wood raw material is bamboo, it is preferable to perform an alkali treatment before the first step described below. Such pretreatment is preferable because the lignin component can be efficiently removed.
 アルカリ処理において、アルカリ溶液を調製するために使用されるアルカリは、特に制限されず、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化リチウム、アンモニア等が挙げられる。これらのうち、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウムが好ましく、水酸化ナトリウム、炭酸ナトリウム、水酸化カルシウムがより好ましく、水酸化ナトリウムが特に好ましい。なお、上記アルカリは、1種単独で用いてもよいし、2種以上併用してもよい。 In the alkali treatment, the alkali used for preparing the alkaline solution is not particularly limited, and is sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, sodium bicarbonate, potassium bicarbonate, hydroxide. Examples include lithium and ammonia. Of these, sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide are preferable, sodium hydroxide, sodium carbonate, and calcium hydroxide are more preferable, and sodium hydroxide is particularly preferable. In addition, the said alkali may be used individually by 1 type, and may be used together 2 or more types.
 また、上記アルカリを溶解するための溶媒は、特に制限されないが、水であることが好ましい。すなわち、アルカリ溶液は、水酸化ナトリウム水溶液であることが好ましい。 The solvent for dissolving the alkali is not particularly limited, but is preferably water. That is, the alkaline solution is preferably an aqueous sodium hydroxide solution.
 アルカリ処理は、上記アルカリ溶液に木質原材料を浸漬することで行われる。この際、浸漬時間としては、木質原材料の形状及び寸法、木質原材料の含水率等に応じて適宜設定することができるが、例えば、10分~5時間であり、30分~2時間である。また、浸漬温度は特に限定されるものはないが、135℃以下が好ましく、115℃以下がより好ましい。また、浸漬温度は55℃以上が好ましく、75℃以上がより好ましい。温度条件が高すぎると木材がピーリングしてしまい、低すぎると後の工程での脱リグニンが困難となる。 The alkali treatment is performed by immersing the wood raw material in the alkali solution. In this case, the immersion time can be appropriately set according to the shape and size of the wood raw material, the moisture content of the wood raw material, etc., and is, for example, 10 minutes to 5 hours, and 30 minutes to 2 hours. The immersion temperature is not particularly limited, but is preferably 135 ° C. or lower, and more preferably 115 ° C. or lower. The immersion temperature is preferably 55 ° C. or higher, and more preferably 75 ° C. or higher. If the temperature condition is too high, the wood will peel, and if it is too low, delignification in the subsequent process becomes difficult.
 本実施形態に係る木材の製造方法では、先ず、上述した木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する(第1の工程)。なお、本工程に先立って、木質原材料を乾燥させても良い。例えば含水率が20%以下程度の乾燥材を用いて木質原材料を作製した場合、特に乾燥する工程は不要としても良いが、含水率が20%を超える材料で木質原材料を作製した場合、含水率が20%以下となるように乾燥することが好ましい。 In the wood manufacturing method according to the present embodiment, first, the above-described wood raw material is immersed in a solution containing an acid and an alcohol under a condition of 140 ° C. or higher and 170 ° C. or lower (first step). Prior to this step, the wood raw material may be dried. For example, when a wood raw material is produced using a desiccant having a moisture content of about 20% or less, a drying step may be unnecessary. However, when a wood raw material is produced with a material having a moisture content exceeding 20%, Is preferably dried so as to be 20% or less.
 木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する。ここで、140℃以上170℃以下の条件下とは、浸漬する環境下における雰囲気温度が140℃以上170℃以下であるとの意である。温度条件は、脱リグニンを効率よく進めるという観点で140℃以上が好ましく、145℃以上がより好ましい。セルロースの分子量低下を抑制するという観点では、170℃以下であることが好ましく、165℃以下であることがより好ましく、160℃以下であることがさらにより好ましい。 The wood raw material is immersed in a solution containing acid and alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower. Here, the condition of 140 ° C. or more and 170 ° C. or less means that the atmospheric temperature in the immersion environment is 140 ° C. or more and 170 ° C. or less. The temperature condition is preferably 140 ° C. or higher, more preferably 145 ° C. or higher, from the viewpoint of efficiently promoting delignification. From the viewpoint of suppressing a decrease in the molecular weight of cellulose, it is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and even more preferably 160 ° C. or lower.
 第1の工程では、木質原材料の形状や寸法に応じて、木質原材料の全体を浸漬するに足る溶液量を準備する。第1の工程で使用する溶液は、酸とアルコールを含有する溶液である。ここで、酸としては、特に限定されないが、硫酸、塩酸、硝酸及び酢酸等の酸を挙げることができる。なかでも、酸としては低揮発性であることから、硫酸を使用することが好ましい。また、アルコールとしては、特に限定されないが、溶媒が加熱によっても残留しやすいことから、例えば高沸点のアルコールを使用することが好ましい。高沸点アルコールとは、例えば150℃以上の沸点、好ましくは160℃以上の沸点、より好ましくは170℃以上の沸点、更に好ましくは180℃以上の沸点を有するアルコールを意味する。第1の工程で使用できるアルコールとしては、例えば、1,2-エタンジオール(エチレングリコール、沸点:197.2℃)、ジエチレングリコール(沸点:244.3℃)、トリエチレングリコール(沸点:287.4℃)、プロピレングリコール(沸点:187.4℃)、1,3-ブタンジオール(沸点:207.5℃)、1,4-ブタンジオール(沸点:228℃)、2-エチル-1-ヘキサノール(沸点:184.7℃)、ベンジルアルコール(沸点:205.45℃)等を使用することができる。中でもアルコールとしては、エチレングリコールまたはプロピレングリコールを用いることが好ましく、エチレングルコールを用いることがより好ましい。プロピレングリコールは食品添加物として使用できる材料であり、食品包装材等に使用できる材料であり安全性の面で好ましい。本木材を得る為に残留する材料を食品添加物とすることは好ましい例であり、反応に使用する材料全てを食品添加物とすることは最も好ましい例である。 In the first step, an amount of solution sufficient to immerse the entire wood raw material is prepared according to the shape and dimensions of the wood raw material. The solution used in the first step is a solution containing an acid and an alcohol. Here, although it does not specifically limit as an acid, Acids, such as a sulfuric acid, hydrochloric acid, nitric acid, and an acetic acid, can be mentioned. Of these, sulfuric acid is preferably used because of its low volatility as an acid. The alcohol is not particularly limited, but it is preferable to use, for example, a high-boiling point alcohol because the solvent is likely to remain even when heated. High boiling alcohol means, for example, an alcohol having a boiling point of 150 ° C. or higher, preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and still more preferably 180 ° C. or higher. Examples of the alcohol that can be used in the first step include 1,2-ethanediol (ethylene glycol, boiling point: 197.2 ° C.), diethylene glycol (boiling point: 244.3 ° C.), and triethylene glycol (boiling point: 287.4). ° C), propylene glycol (boiling point: 187.4 ° C), 1,3-butanediol (boiling point: 207.5 ° C), 1,4-butanediol (boiling point: 228 ° C), 2-ethyl-1-hexanol ( Boiling point: 184.7 ° C.), benzyl alcohol (boiling point: 205.45 ° C.) and the like can be used. Among these, as the alcohol, it is preferable to use ethylene glycol or propylene glycol, and it is more preferable to use ethylene glycol. Propylene glycol is a material that can be used as a food additive, a material that can be used for food packaging materials, and the like, which is preferable in terms of safety. It is a preferable example that the material remaining for obtaining this wood is a food additive, and it is the most preferable example that all the materials used in the reaction are food additives.
 本発明の好適な形態は、酸とアルコールとを含有する溶液が、硫酸とエチレングリコールとを含有する溶液または硫酸とプロピレングリコールとを含有する溶液である。本発明の好適な形態は、酸とアルコールとを含有する溶液が、硫酸とエチレングリコールとを含有する溶液である。 In a preferred embodiment of the present invention, the solution containing an acid and an alcohol is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol. The suitable form of this invention is a solution in which the solution containing an acid and alcohol contains a sulfuric acid and ethylene glycol.
 第1の工程に使用する溶液において、木質原材料のリグニン成分を十分に低減できるという観点で、酸の濃度が、好ましい順に0.05重量%以上、0.1重量%以上、0.3%重量以上、0.5重量%以上であり、セルロースとへミセルロースからなる構造を維持しやすい、セルロースの分子量を維持しやすいという観点で、酸の濃度が、好ましい順に10重量%以下、5重量%以下、3重量%以下である。好適な形態は、酸とアルコールとを含有する溶液は、酸濃度を0.05~10重量%とする。 From the viewpoint that the lignin component of the wood raw material can be sufficiently reduced in the solution used in the first step, the acid concentration is 0.05% by weight or more, 0.1% by weight or more, and 0.3% by weight in order of preference. From the viewpoint of easily maintaining the structure consisting of cellulose and hemicellulose and maintaining the molecular weight of cellulose, the acid concentration is preferably 10% by weight or less and 5% by weight in order of preference. Hereinafter, it is 3 weight% or less. In a preferred form, the solution containing an acid and an alcohol has an acid concentration of 0.05 to 10% by weight.
 また、第1の工程に使用する溶液において、アルコールの濃度は、90~99.5重量%とすることができ、95~99.5重量%とすることが好ましく、97~99重量%とすることがより好ましく、98~99重量%とすることが更に好ましい。溶液におけるアルコールの濃度がこの範囲であることで、木質原材料のリグニン成分を十分に低減しやすい。また溶液におけるアルコールの濃度がこの範囲であることで、木質原材料のリグニン成分を十分に低減でき、かつ、セルロースとへミセルロースからなる構造を維持しやすい。 In the solution used in the first step, the alcohol concentration can be 90 to 99.5% by weight, preferably 95 to 99.5% by weight, and preferably 97 to 99% by weight. More preferred is 98 to 99% by weight. When the concentration of the alcohol in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced. Moreover, when the concentration of alcohol in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced, and a structure composed of cellulose and hemicellulose can be easily maintained.
 第1の工程に使用する溶液は、水溶液であることが好ましい。水溶液であることで、溶媒中の水が構造体に入り込み、木材の三次元構造体を維持しやすくなる。なお、ここでいう「水溶液」とは、溶媒の100重量%が水に限定されず、水溶性有機溶剤(例えば、アルコール等)を0~30重量%、好ましくは0~5重量%を併用してもよく、本発明ではこれらを水溶液として扱う。最も好ましい形態は、溶媒の100重量%が水である。 The solution used in the first step is preferably an aqueous solution. By being an aqueous solution, water in the solvent enters the structure, and it becomes easy to maintain the three-dimensional structure of wood. As used herein, “aqueous solution” means that 100% by weight of the solvent is not limited to water, and a water-soluble organic solvent (eg, alcohol) is used in an amount of 0 to 30% by weight, preferably 0 to 5% by weight. In the present invention, these are treated as aqueous solutions. In the most preferred form, 100% by weight of the solvent is water.
 第1の工程では、上記の溶液に木質原材料を浸漬し、140℃以上170℃以下の温度条件で加熱する。このような温度範囲で加熱することで、溶液が木質原材料内部にまで浸透しやすい。このとき、温度条件としては、上記範囲内であれば特に限定されないが、使用するアルコールの沸点より低い温度とすることが好ましく、使用するアルコールの沸点よりも10℃以上低い温度とすることがより好ましく、使用するアルコールの沸点よりも20℃以上低い温度とすることがさらに好ましい。また、第1の工程における浸漬時間は、特に限定されないが、溶液が木質原材料の内部に十分浸透する程度とすることが好ましい。このため、第1の工程における浸漬時間は、木質原材料の形状及び寸法、木質原材料の原料とした木の種類、木質原材料の含水率等に応じて適宜設定することができる。加熱温度条件以下の沸点の溶媒を使用する場合には、溶媒揮発量を低減するという観点で加圧下で反応することが好ましく、耐圧容器を使用することも好ましい例である。 In the first step, the wood raw material is immersed in the above solution and heated under a temperature condition of 140 ° C. or higher and 170 ° C. or lower. By heating in such a temperature range, the solution easily penetrates into the wood raw material. At this time, the temperature condition is not particularly limited as long as it is within the above range, but it is preferably a temperature lower than the boiling point of the alcohol to be used, more preferably 10 ° C. lower than the boiling point of the alcohol to be used. Preferably, the temperature is 20 ° C. or more lower than the boiling point of the alcohol used. In addition, the immersion time in the first step is not particularly limited, but it is preferable that the solution is sufficiently penetrated into the wood raw material. For this reason, the immersion time in a 1st process can be suitably set according to the shape and dimension of a wooden raw material, the kind of wood used as the raw material of a wooden raw material, the moisture content of a wooden raw material, etc. When using a solvent having a boiling point below the heating temperature condition, the reaction is preferably performed under pressure from the viewpoint of reducing the solvent volatilization amount, and the use of a pressure resistant vessel is also a preferred example.
 また、第1の工程では、木質原材料を溶液に浸漬した状態で木質原材料に含まれる空気や水を当該溶液に置換する処理を実施することが好ましい。このような処理を行うことで、木質原材料内部にまで溶液が浸透しやすい。当該処理としては、上記木質原材料を上記溶液に浸漬させた状態で密閉し、密閉空間内を脱気する処理が挙げられる。例えば、木質原材料を容器内の溶液に浸漬した状態で、容器ごと真空チャンバ内に格納し、真空チャンバ内を減圧する処理が挙げられる。その他にも、マイクロ波照射(電子レンジで熱をかけたり)、超音波照射を行うといった処理によっても木質原材料に含まれる空気、水を上記溶液に置換することができる。 Also, in the first step, it is preferable to carry out a process of replacing air or water contained in the wood raw material with the solution in a state where the wood raw material is immersed in the solution. By performing such treatment, the solution easily penetrates into the wood raw material. As the said process, the said wooden raw material is sealed in the state immersed in the said solution, and the process which deaerates the inside of sealed space is mentioned. For example, a process in which a wooden raw material is immersed in a solution in a container, the container is stored in a vacuum chamber, and the vacuum chamber is depressurized. In addition, air and water contained in the wood raw material can be replaced with the above solution by a process such as microwave irradiation (heating with a microwave oven) or ultrasonic irradiation.
 木質原材料に含まれる空気を当該溶液に置換する処理を実施した場合には、当該処理を実施しない場合と比較して第1の工程における浸漬時間を短時間とすることができる。例えば、スギからなる1cm角の直方体の木質原材料(含水率:約15%)であれば、当該処理を実施した場合、第1の工程における浸漬時間を30分以上とすることができ、45分以上とすることが好ましく、1時間以上とすることがより好ましい。この例に従えば、木質原材料の形状及び寸法、木質原材料の原料とした木の種類、木質原材料の含水率に応じて浸漬時間を適宜設定することができる。 When the treatment for replacing the air contained in the woody raw material with the solution is performed, the immersion time in the first step can be shortened compared to the case where the treatment is not performed. For example, if the wood raw material of 1 cm square made of cedar (water content: about 15%), when the treatment is performed, the immersion time in the first step can be 30 minutes or more, 45 minutes It is preferable to set it as above, and it is more preferable to set it as 1 hour or more. According to this example, the immersion time can be appropriately set according to the shape and size of the wood raw material, the type of wood used as the raw material of the wood raw material, and the moisture content of the wood raw material.
 第1の工程においては、酸とアルコールを含む溶液を用いて温度条件を140~170℃としているため木質原材料に含まれるリグニン成分を除去しながらも、セルロースとへミセルロースからなる構造を破壊すること無く維持できる。なお、第1の工程は、1回でも複数回行っても良い。 In the first step, since the temperature condition is set to 140 to 170 ° C. using a solution containing an acid and an alcohol, the structure composed of cellulose and hemicellulose is destroyed while removing the lignin component contained in the wood raw material. It can be maintained without any problems. Note that the first step may be performed once or a plurality of times.
 第1の工程の後、得られた木質原材料に対して洗浄処理を行ってもよい。ここで、洗浄に用いられる液としては、水、アルコールなどが挙げられる。水とアルコールの混合物を用いてもよい。アルコールとしては、その後の工程で取り扱いやすい、メタノール、エタノールなどが挙げられる。洗浄は複数回行ってもよく、各回において用いられる液種が異なっていてもよい。 After the first step, the obtained wood raw material may be washed. Here, water, alcohol, etc. are mentioned as a liquid used for washing | cleaning. A mixture of water and alcohol may be used. Examples of the alcohol include methanol and ethanol which are easy to handle in the subsequent steps. The washing may be performed a plurality of times, and the liquid type used in each time may be different.
 次に、第三実施形態に係る木材の製造方法では、第1の工程後の木質原材料を、亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程を実施する。第2の工程では、第1の工程と同様に、木質原材料の形状や寸法に応じて、木質原材料の全体を浸漬するに足る溶液量を準備する。第2の工程で使用する溶液は、少なくとも亜塩素酸イオンまたは次亜塩素酸イオンを含有する溶液である。好ましくは亜塩素酸イオンを含有する溶液である。亜塩素酸イオンまたは次亜塩素酸イオンを含有する溶液とは、亜塩素酸塩または次亜塩素酸塩の溶液(好ましくは水溶液)ということができる。亜塩素酸塩としては、特に限定されないが、亜塩素酸ナトリウム、亜塩素酸カルシウム等を挙げることができる。なかでも、リグニンの除去がより効果的に行われることから、亜塩素酸イオンを含有する溶液としては、亜塩素酸ナトリウム溶液とすることが好ましい。次亜塩素酸塩としては、特に限定されないが、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等を挙げることができる。なかでも、次亜塩素酸イオンを含有する溶液としては、リグニンの除去がより効果的に行われることから、次亜塩素酸ナトリウム溶液とすることが好ましい。 Next, in the wood manufacturing method according to the third embodiment, the second step of immersing the wood raw material after the first step in a solution containing chlorite ions or hypochlorite ions is performed. In the second step, as in the first step, an amount of solution sufficient to immerse the entire wood raw material is prepared according to the shape and dimensions of the wood raw material. The solution used in the second step is a solution containing at least chlorite ions or hypochlorite ions. A solution containing chlorite ions is preferred. The solution containing chlorite ions or hypochlorite ions can be referred to as a chlorite or hypochlorite solution (preferably an aqueous solution). Although it does not specifically limit as a chlorite, Sodium chlorite, calcium chlorite, etc. can be mentioned. Especially, since removal of lignin is performed more effectively, it is preferable to use a sodium chlorite solution as the solution containing chlorite ions. Although it does not specifically limit as a hypochlorite, Sodium hypochlorite, a calcium hypochlorite, etc. can be mentioned. Especially, as a solution containing hypochlorite ion, since removal of lignin is performed more effectively, it is preferable to use a sodium hypochlorite solution.
 また、第2の工程で使用する溶液は、亜塩素酸イオンまたは次亜塩素酸イオンの他に、強い酸化力を有する二酸化塩素を発生させて脱リグニンを進めるように、酢酸等の弱酸を含有することが好ましい。第2の工程で使用できる弱酸成分としては、酢酸、炭酸及びホウ酸等を挙げることができるが、酢酸を使用することが最も好ましい。第2の工程で使用する溶液のpHは11未満が好ましく、pH9以下がより好ましく、pH8以下がさらに好ましい。一方、木材構造の維持、およびセルロースの分子量の維持の観点から、第2の工程で使用する溶液のpHは1以上が好ましく、pH3以上がより好ましく、pH4以上が最も好ましい。 Moreover, the solution used in the second step contains a weak acid such as acetic acid so that delignification is promoted by generating chlorine dioxide having strong oxidizing power in addition to chlorite ion or hypochlorite ion. It is preferable to do. Examples of the weak acid component that can be used in the second step include acetic acid, carbonic acid, and boric acid, and it is most preferable to use acetic acid. The pH of the solution used in the second step is preferably less than 11, more preferably 9 or less, and even more preferably 8 or less. On the other hand, from the viewpoint of maintaining the wood structure and maintaining the molecular weight of cellulose, the pH of the solution used in the second step is preferably 1 or more, more preferably 3 or more, and most preferably 4 or more.
 第2の工程に使用する溶液において、亜塩素酸イオンまたは次亜塩素酸イオンの濃度は、0.01~10重量%とすることが好ましく、0.05~5重量%がより好ましく、0.1~5重量%がさらに好ましく、0.5~5重量%がさらにより好ましく、0.5~2重量%が特に好ましい。溶液における亜塩素酸イオンまたは次亜塩素酸イオンの濃度がこの範囲内であると、木質原材料のリグニン成分を十分に低減できる。また溶液における亜塩素酸イオンまたは次亜塩素酸イオンの濃度がこの範囲内であると、木質原材料のリグニン成分を十分に低減でき、セルロースとへミセルロースからなる構造を維持しやすい。なお、上記亜塩素酸イオンまたは次亜塩素酸イオンの濃度は、少なくとも初回の添加時に当該範囲であることが好ましい。また、亜塩素酸イオンまたは次亜塩素酸イオンの反応性が高く且つ不安定であるため、反応中には上記濃度は必ずしも維持されない。 In the solution used in the second step, the concentration of chlorite ions or hypochlorite ions is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight. 1 to 5% by weight is more preferred, 0.5 to 5% by weight is even more preferred, and 0.5 to 2% by weight is particularly preferred. When the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced. If the concentration of chlorite ion or hypochlorite ion in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced, and a structure composed of cellulose and hemicellulose can be easily maintained. In addition, it is preferable that the density | concentration of the said chlorite ion or a hypochlorite ion is the said range at the time of the first addition. Moreover, since the reactivity of a chlorite ion or a hypochlorite ion is high and unstable, the said density | concentration is not necessarily maintained during reaction.
 また、第2の工程に使用する溶液において、弱酸の濃度は、0.005~2.0重量%とすることができ、0.01~1.0重量%とすることができ、0.05~0.8重量%とすることが好ましく、0.1~0.6重量%とすることがより好ましく、0.5重量%とすることが更に好ましい。溶液における弱酸の濃度がこの範囲であると、木質原材料のリグニン成分を十分に低減できる。また溶液における弱酸の濃度がこの範囲であると、木質原材料のリグニン成分を十分に低減でき、セルロースとへミセルロースからなる構造を維持しやすい。 In the solution used in the second step, the concentration of the weak acid can be 0.005 to 2.0% by weight, 0.01 to 1.0% by weight, 0.05% Is preferably 0.8 to 0.8% by weight, more preferably 0.1 to 0.6% by weight, and still more preferably 0.5% by weight. When the concentration of the weak acid in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced. If the concentration of the weak acid in the solution is within this range, the lignin component of the wood raw material can be sufficiently reduced, and a structure composed of cellulose and hemicellulose can be easily maintained.
 第2の工程に使用する溶液は、水溶液であることが好ましい。水溶液であることで、溶媒中の水が構造体に入り込み、三次元構造体を維持しやすくなる。なお、ここでいう「水溶液」とは、溶媒の100重量%が水に限定されず、水溶性有機溶剤(例えば、アルコール等)を0~30重量%、好ましくは0~5重量%を併用してもよく、本発明ではこれらを水溶液として扱う。最も好ましい形態は、溶媒の100重量%が水である。 The solution used in the second step is preferably an aqueous solution. By being an aqueous solution, water in the solvent enters the structure, and it becomes easy to maintain the three-dimensional structure. As used herein, “aqueous solution” means that 100% by weight of the solvent is not limited to water, and a water-soluble organic solvent (eg, alcohol) is used in an amount of 0 to 30% by weight, preferably 0 to 5% by weight. In the present invention, these are treated as aqueous solutions. In the most preferred form, 100% by weight of the solvent is water.
 第2の工程では、上記の溶液に第1の工程後の木質原材料を浸漬する。このとき、第1の工程後の木質原材料をエタノールや水で洗浄することが好ましい。特に、第1の工程後の木質原材料をエタノールで洗浄した場合には、第1の工程に使用した酸成分とリグニン成分とを除去することができる。 In the second step, the wooden raw material after the first step is immersed in the above solution. At this time, it is preferable to wash the wood raw material after the first step with ethanol or water. In particular, when the wood raw material after the first step is washed with ethanol, the acid component and the lignin component used in the first step can be removed.
 また、第2の工程における浸漬時間は、特に限定されないが、第1の工程と同様に溶液が木質原材料の内部に十分浸透し、残存するリグニン成分を除去できる程度とすることが好ましい。このため、第2の工程における浸漬時聞は、第1の工程と同様に、木質原材料の形状及び寸法、木質原材料の原料とした木の種類、木質原材料の含水率等に応じて適宜設定することができる。但し、第2の工程では、溶液中の亜塩素酸イオンまたは次亜塩素酸イオンの反応性が高く且つ不安定であるため、上述した亜塩素酸イオンまたは次亜塩素酸イオンの濃度が維持できるよう、所定時聞が経過した段階で亜塩素酸塩または次亜塩素酸塩を溶液に添加することが好ましい。或いは、第2の工程は、複数回繰り返して行うことが好ましい。第2の工程を繰り返し複数回行うことで、木質原材料の内部に亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液が十分浸透し、残存するリグニン成分を除去することができる。ここで、複数回とは、2回以上を指すが、好ましくは4回以上であり、より好ましくは6回以上であり、特に好ましくは8回以上である。このように第2の工程を複数回行うことで、木質原材料の内部にまで残存するリグニン成分を除去することができる。また、第2の工程の繰り返し回数の上限は特に限定されるものではないが、生産性を考慮すると、20回以下であることが好ましく、15回以下であることがより好ましく、10回以下であることが特に好ましい。なお、複数回としては、連続滴下を含み、溶液内のpHを制御しながら滴下することも、好ましい例である。 Further, the immersion time in the second step is not particularly limited, but it is preferable that the solution sufficiently penetrates into the wood raw material and removes the remaining lignin component as in the first step. For this reason, the immersion time in the second step is set as appropriate according to the shape and size of the wood raw material, the type of wood used as the raw material of the wood raw material, the moisture content of the wood raw material, and the like, as in the first step. be able to. However, in the second step, since the reactivity of chlorite ions or hypochlorite ions in the solution is high and unstable, the concentration of chlorite ions or hypochlorite ions described above can be maintained. Thus, it is preferable to add chlorite or hypochlorite to the solution when a predetermined time has passed. Alternatively, it is preferable to repeat the second step a plurality of times. By repeating the second step a plurality of times, a solution containing chlorite ions or hypochlorite ions sufficiently permeates into the wood raw material, and the remaining lignin component can be removed. Here, “multiple times” refers to 2 times or more, preferably 4 times or more, more preferably 6 times or more, and particularly preferably 8 times or more. Thus, the lignin component remaining in the wood raw material can be removed by performing the second step a plurality of times. In addition, the upper limit of the number of repetitions of the second step is not particularly limited, but considering productivity, it is preferably 20 times or less, more preferably 15 times or less, and 10 times or less. It is particularly preferred. In addition, as multiple times, it is also a preferable example including continuous dripping and dropping while controlling the pH in the solution.
 例えば、スギからなる1cm角の直方体の木質原材料であれば、第2の工程における浸漬時間は、1時間毎に次亜塩素酸塩を添加して5時間以上とすることができ、6時間以上とすることが好ましく、7時間以上とすることがより好ましい。浸漬時間の上限は特に限定されないが、効果の飽和性と生産性とを鑑みて、10時間以下とすることが好ましい。ただし、第2の工程における浸漬時間は、第1の工程と同様に、木質原材料の形状及び寸法、木質原材料の原料とした木の種類、木質原材料の含水率に応じて浸漬時間を適宜設定することができる。 For example, if it is a 1 cm square rectangular raw material made of cedar, the immersion time in the second step can be made 5 hours or more by adding hypochlorite every hour, and it is 6 hours or more. Preferably, it is more preferably 7 hours or longer. The upper limit of the immersion time is not particularly limited, but it is preferably 10 hours or less in view of the saturation of the effect and the productivity. However, the immersion time in the second step is set as appropriate according to the shape and dimensions of the wood raw material, the type of wood used as the raw material for the wood raw material, and the moisture content of the wooden raw material, as in the first step. be able to.
 なお、第2の工程において温度条件としては、特に限定されないが、例えば50~90℃とすることができ、60~80℃とすることが好ましく、65~75℃とすることがより好ましい。第2の工程の温度条件をこの範囲とすることで、第1の工程を経ても残存したリグニン成分を十分に除去することができる。 The temperature condition in the second step is not particularly limited, but can be, for example, 50 to 90 ° C., preferably 60 to 80 ° C., and more preferably 65 to 75 ° C. By setting the temperature condition of the second step within this range, the lignin component remaining after the first step can be sufficiently removed.
 第2の工程においては、亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液或いは亜塩素酸イオンまたは次亜塩素酸イオンと弱酸を含む溶液を用いているため、第1の工程で残存した木質原材料に含まれるリグニン成分を確実に除去しながらも、セルロースとへミセルロースからなる構造を破壊すること無く維持できる。すなわち、本発明に係る木材の製造方法では、当該第2の工程を経ることによって、木質原材料にもともと含まれていたリグニン成分を大幅に低減することができる。 In the second step, since a solution containing chlorite ions or hypochlorite ions or a solution containing chlorite ions or hypochlorite ions and a weak acid is used, the wood remaining in the first step is used. While reliably removing the lignin component contained in the raw material, the structure composed of cellulose and hemicellulose can be maintained without destruction. That is, in the method for producing wood according to the present invention, the lignin component originally contained in the wood raw material can be greatly reduced by passing through the second step.
 第2の工程で得られた木材を水やアルコールなどで洗浄することが好ましい。洗浄は、水およびアルコールの混合物であってもよい。アルコールとしては、その後の工程で取り扱いやすい、メタノール、エタノールなどが挙げられる。洗浄処理することで、リグニン成分や余分な第2工程の原料・反応成分を除去することができるとともに、構造を維持した木材が得られやすいため好ましい。 It is preferable to wash the wood obtained in the second step with water or alcohol. Washing may be a mixture of water and alcohol. Examples of the alcohol include methanol and ethanol which are easy to handle in the subsequent steps. By performing the washing treatment, the lignin component and the extra raw material / reaction component in the second step can be removed, and a wood having a maintained structure is easily obtained, which is preferable.
 また、洗浄後、乾燥を行う際には、凍結乾燥を行うことが好ましい。 In addition, it is preferable to perform freeze-drying when drying after washing.
 第三実施形態に係る木材の製造方法によれば、木質原材料にもともと含まれていたリグニン成分の80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは98重量%以上、最も好ましくは99重量%以上を低減することができる。言い換えると、本発明に係る木材は、木質原材料にもともと含まれていたリグニン成分の80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは98重量%以上、最も好ましくは99重量%以上を低減した木材と言える。 According to the method for producing wood according to the third embodiment, 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight of the lignin component originally contained in the wood raw material. % Or more, most preferably 99% by weight or more can be reduced. In other words, the wood according to the present invention is 80% by weight or more of the lignin component originally contained in the wood raw material, preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 98% by weight or more. It can be said that the wood is preferably reduced by 99% by weight or more.
 特に、第三実施形態に係る木材の製造方法においては、木質原材料の形状及び寸法、木質原材料の原料とした木の種類、木質原材料の含水率等に応じて上記第1の工程及び第2の工程の条件を調整することによって、木質原材料に含まれる大凡全てのリグニン成分を除去することができる。なお、木質原材料に含まれる大凡全てのリグニン成分を除去するとは、木材中のリグニンを定量的に測定する手法により上記木質原材料に含まれるリグニン成分を測定したときに、検出限界以下となることを意味する。 In particular, in the wood manufacturing method according to the third embodiment, the first step and the second step according to the shape and size of the wood raw material, the type of wood used as the raw material of the wood raw material, the moisture content of the wood raw material, and the like. By adjusting the process conditions, almost all lignin components contained in the wood raw material can be removed. The removal of almost all lignin components contained in the wood raw material means that when the lignin component contained in the wood raw material is measured by a method for quantitatively measuring lignin in the wood, it is below the detection limit. means.
 また、本発明に係る木材の製造方法によれば、木材原材料に含まれていたリグニン成分を上述の範囲で低減できることから、処理前の木材原材料が白色化することとなる。木材原材料の白色化とは、リグニン成分の低減度合いに応じて白色に近づくことを意味し、リグニン成分の低減割合が高ければ高いほど、より白色に近い色を呈することを意味する。例えば、本発明に係る木材の製造方法により得られた木材のリグニン成分を測定したときに検出限界以下であった場合、当該木材は白色となる。このように、本発明に係る木材の製造方法によれば「白い木材」を製造することができる。 Moreover, according to the method for producing wood according to the present invention, the lignin component contained in the wood raw material can be reduced within the above-mentioned range, so that the wood raw material before treatment is whitened. The whitening of the wood raw material means that it approaches white according to the degree of reduction of the lignin component, and means that the higher the reduction ratio of the lignin component, the closer the color to white. For example, when the lignin component of the wood obtained by the wood production method according to the present invention is measured and is below the detection limit, the wood is white. Thus, according to the wood manufacturing method of the present invention, “white wood” can be manufactured.
 さらに、第三実施形態に係る木材の製造方法によれば、木材原材料に含まれていたリグニン成分を上述のように低減するとともに、セルロースとへミセルロースからなる構造を維持することができる。ここで、セルロースとへミセルロースからなる構造を維持するとは、木材原材料の原料として使用した木が本来有している細胞壁構造が維持されること、また、その結果、処理前の木材原材料の外形形状・寸法が維持されることを意味する。処理前の木材原材料の外形形状・寸法が維持されるとは、木材原材料の処理前後の寸法を測定した時にその変化量が5%以下、好ましくは3%以下、より好ましくは2%以下、更に好ましくは1%以下であることを意味する。 Furthermore, according to the wood manufacturing method according to the third embodiment, the lignin component contained in the wood raw material can be reduced as described above, and a structure composed of cellulose and hemicellulose can be maintained. Here, maintaining the structure composed of cellulose and hemicellulose means that the cell wall structure inherent to the wood used as the raw material for the wood raw material is maintained, and as a result, the outer shape of the wood raw material before processing. It means that the shape and dimensions are maintained. Maintaining the external shape and dimensions of the wood raw material before the treatment means that when the dimensions of the wood raw material before and after the treatment are measured, the amount of change is 5% or less, preferably 3% or less, more preferably 2% or less, Preferably it means 1% or less.
 以上のように、第三実施形態に係る木材の製造方法によれば、処理前の木材原材料に含まれるリグニン成分を大幅に低減でき、且つ処理前の木材原材料の外形形状・寸法を維持した木材を製造することができる。第一実施形態の木材、または第二実施形態の木材(以下「白い木材」)は、従来にない新たな材料として、特に限定されず、様々な分野への応用が可能となる。本発明の好適な形態は、木質原材料の形状を維持した木材である。 As described above, according to the wood manufacturing method according to the third embodiment, the lignin component contained in the wood raw material before treatment can be significantly reduced, and the wood shape and dimensions of the wood raw material before treatment can be maintained. Can be manufactured. The wood according to the first embodiment or the wood according to the second embodiment (hereinafter “white wood”) is not particularly limited as a new material that has not been conventionally used, and can be applied to various fields. The preferred form of the present invention is wood that maintains the shape of the wood raw material.
 白い木材の特徴として、原料の樹木が本来有している組織・細胞構造が維持されている点に着目すると、樹木が生み出した最適なフレーム構造を利用した材料開発の基盤として白い木材を利用できる。厳しい自然環境の中、100mを超える巨大な体躯の生存を1000年以上にも亘って保障するのは、樹木が精密に形成制御した木質高分子から成る階層構造に他ならない。 Focusing on the fact that the original structure and cellular structure of the original tree is maintained as a characteristic of white wood, white wood can be used as the basis for material development using the optimal frame structure created by the tree. . In a harsh natural environment, the survival of a huge body of more than 100 meters is guaranteed for more than 1000 years. This is a hierarchical structure made of woody macromolecules whose trees are precisely controlled.
 従来、ミクロフィブリルの製造において、組織構造が解消したパルプ状に加工してからミクロフィブリルを抽出するため、樹木が有していた階層構造とは無関係に、配向性を有しないミクロフィブリルしか得られない。また、配向性を有しないミクロフィブリルを一軸配向させる技術も確立されていない。しかしながら、白い木材はこの階層構造を維持していることから、白い木材における配向性を維持してミクロフィブリルを利用することができる。 Conventionally, in the production of microfibrils, microfibrils are extracted after being processed into a pulp-like structure, so that only microfibrils having no orientation can be obtained regardless of the hierarchical structure that trees have. Absent. In addition, a technique for uniaxially orienting microfibrils having no orientation has not been established. However, since white wood maintains this hierarchical structure, microfibrils can be utilized while maintaining the orientation in white wood.
 すなわち、得られた白い木材の接線方向並びに板目方向に圧縮すれば、セルロースミクロフィブリルが配向した紙やフィルムを開発することができる。また、原料として使用する樹木の種類によって、様々な組織構造を有する白い木材を得ることができる。このため、白い木材を使用した紙・フィルムについても、このような組織構造の特徴を生かすことができ、目的に応じた材料として利用できる。なお、得られた白い木材に含まれるセルロースミクロフィブリルは、従来、セルロースミクロフィブリルやセルロースナノファイパ一等が利用されてきた用途にも当然利用することができる。例えば、車体、タイヤ、窓ガラス、ディスプレイ、電池材料、スビーカー、おむつ、増粘剤、食品用包装材、人工血管、人工軟骨、食品添加物等に対して、白い木材由来のセルロースミクロフィプリルを利用することができる。 That is, by compressing in the tangential direction and the grain direction of the obtained white wood, it is possible to develop a paper or film in which cellulose microfibrils are oriented. Also, white wood having various organizational structures can be obtained depending on the type of tree used as a raw material. For this reason, paper / film using white wood can also take advantage of such characteristics of the structure and can be used as a material according to the purpose. In addition, naturally the cellulose microfibril contained in the obtained white wood can be utilized also for the use for which the cellulose microfibril, the cellulose nanofibre, etc. were utilized conventionally. For example, cellulose microfibrils derived from white wood are used for car bodies, tires, window glass, displays, battery materials, beakers, diapers, thickeners, food packaging materials, artificial blood vessels, artificial cartilage, food additives, etc. Can be used.
 一方、白い木材の特徴として、木材原材料(木質原材料)の外形形状・寸法を維持している点に着目すると、軽くて強い構造材料として白い木材を利用することができる。例えば、建築資材として、従来利用されてきた木材に代えて白い木材を利用することができる。なお、建築資材等のより強度が求められる分野へ使用される場合、白い木材に対して樹脂等のマトリックス成分を吸収させることもできる。すなわち、白い木材は、求められる強度に応じた、新たな3次元複合樹脂材料として使用することができる。 On the other hand, focusing on the fact that the shape and dimensions of the wood raw material (woody raw material) are maintained as a characteristic of white wood, white wood can be used as a light and strong structural material. For example, white wood can be used as a building material in place of the conventionally used wood. In addition, when used for the field | area where intensity | strength is requested | required of building materials etc., matrix components, such as resin, can also be absorbed with respect to white wood. That is, white wood can be used as a new three-dimensional composite resin material according to the required strength.
 また、白い木材の特徴として、木材原材料を構成するセルロースとへミセルロースからなる構造を維持する点に着目すると、細胞内腔が作るマイクロメートルオーダーの細孔に加え、多糖間にあるナノオーダーの微細孔が形成された多孔性材料として白い木材を利用することができる。ナノオーダーの微細孔が形成された材料をメソポーラス材料(細孔の直径が数ナノメートルから数十ナノメートルの多孔質材料)と呼称されるが、白い木材はメソポーラス材料として利用することができる。 In addition, as a characteristic of white wood, focusing on maintaining the structure consisting of cellulose and hemicellulose constituting the wood raw material, in addition to the micrometer-order pores created by the cell lumen, the nano-order between the polysaccharides White wood can be used as a porous material in which micropores are formed. A material in which nano-order micropores are formed is called a mesoporous material (a porous material having a pore diameter of several nanometers to several tens of nanometers), but white wood can be used as a mesoporous material.
 メソポーラス材料としての用途としては、例えば、ガス吸着材、断熱材、ガス分離材、微生物の培地などを挙げることができる。 Examples of the use as a mesoporous material include a gas adsorbent, a heat insulating material, a gas separator, and a microorganism culture medium.
 また、The Murata Science Foundation Annual Report No.30 2016 page 151-153に記載されるように、銀ナノワイヤーとセルロース繊維からなるナノペーパーとから高誘電材料を作製するという技術が知られている。白い木材の特徴としてセルロースミクロフィブリルが配向していることから、一軸配向したナノペーパーの特徴を維持した高誘電材料を作製することができる。なお、白い木材に銀ナノワイヤーを張り巡らせることで導電性材料を作製することができる。このように、白い木材は、電子部品の材料として使用することができる。 Also, The Murata Science Foundation Annual Report No. As described in 30 2016 page 151-153, a technique for producing a high dielectric material from silver nanowires and nanopaper made of cellulose fibers is known. Since cellulose microfibrils are oriented as a characteristic of white wood, a high dielectric material that maintains the characteristics of uniaxially oriented nanopaper can be produced. In addition, a conductive material can be produced by stretching silver nanowires over white wood. Thus, white wood can be used as a material for electronic components.
 さらに、白い木材における色の特徴、すなわち白色は、セルロースとへミセルロース成分の屈折率と、内部に含まれる空気の屈折率が異なることによる特徴である。したがって、白い木材に例えばアクリル系樹脂を含侵させることによって、セルロースとへミセルロース成分の屈折率と内部の屈折率とを近づけることができ、無色透明を呈することとなる。白い木材にアクリル系樹脂を含侵させた無色透明材料は、例えば、ディスプレイや太陽電池基板に応用することができる。 Furthermore, the color characteristics of white wood, that is, white is a characteristic that the refractive index of cellulose and hemicellulose components is different from the refractive index of air contained therein. Therefore, by impregnating, for example, an acrylic resin into white wood, the refractive index of cellulose and the hemicellulose component can be brought close to the internal refractive index, and the material becomes colorless and transparent. A colorless and transparent material in which an acrylic resin is impregnated in white wood can be applied to, for example, a display or a solar cell substrate.
 さらにまた、白い木材は、例えば水酸化ナトリウム水溶液に浸漬することで膨潤し、木材ゲル材料となる。これは白い木材を水酸化ナトリウム水溶液に浸漬すると、ナトリウムイオンがセルロース結晶内部に入り込み分子間を広げ、部分的に水酸化ナトリウム水溶液に溶解し、水で洗浄するとセルロース同士が架橋構造を形成することで、ゲルとしての物性を発現する。具体的な処理条件は8~20%の水酸化ナトリウム水溶液に室温で浸漬させて、12時間処理し、その後水で洗浄する条件を挙げることができる。白い木材を用いた木材ゲル材料は、例えば、ゲル化により弾性を有する機能性材料となるため、例えば創傷被膜材といった医療用ゲル材料や食品用ゲルに応用することができる。 Furthermore, white wood swells when immersed in, for example, an aqueous sodium hydroxide solution to become a wood gel material. This is because when white wood is immersed in an aqueous sodium hydroxide solution, sodium ions enter the inside of the cellulose crystals, spreading the molecules, partially dissolving in the aqueous sodium hydroxide solution, and washing with water forms a cross-linked structure between the celluloses. Thus, physical properties as a gel are expressed. Specific treatment conditions include a condition of immersing in an aqueous solution of 8 to 20% sodium hydroxide at room temperature, treating for 12 hours, and then washing with water. The wood gel material using white wood becomes, for example, a functional material having elasticity by gelation, and thus can be applied to a medical gel material such as a wound film material and a food gel.
 さらに、白い木材の特徴として、樹木由来且つ化学的な修飾を有しないという特徴に着目すると、生分解性材料であった低環境負荷な材料とも言える。すなわち、上述したように、白い木材の様々な特徴に着目して幅広い分野への具体的な応用が理解できるが、白い木材を利用した物は全てセルラーゼによって完全に分解することができる。例えば、白い木材のメソポーラス構造に着目して吸着材として利用した場合、当該吸着材を生分解することで、例えば、環境中から吸着した物質を濃縮することが可能となる。また、白い木材を従来の発泡スチロールに代わり、例えば、生分解性断熱材として利用することが可能となる。 Furthermore, focusing on the characteristic of white wood that is derived from trees and not chemically modified, it can be said that it is a low environmental load material that was a biodegradable material. That is, as described above, specific applications in a wide range of fields can be understood by paying attention to various features of white wood, but everything using white wood can be completely decomposed by cellulase. For example, when the mesoporous structure of white wood is used as an adsorbent, it is possible to concentrate the adsorbed substance from the environment, for example, by biodegrading the adsorbent. Further, white wood can be used as, for example, a biodegradable heat insulating material instead of conventional foamed polystyrene.
 以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to the following examples.
 [実施例1]
 本実施例では、スギ(針葉樹)からなる直方体(各辺1cm)の木材原材料(木質原材料)を準備した。先ず、エチレングリコールと50重量%硫酸を99:1(溶液中の酸濃度0.5重量%)で混合した溶液を準備した。密閉容器内にて、当該溶液に木材原材料を浸漬し、ポンピングをすることにより、木材原材料中の空気を溶媒と置換した。つぎに、木材原材料を溶液ごと耐圧管に移し、150℃(雰囲気温度)で1時間処理した(第1の工程)。
[Example 1]
In this example, a wood raw material (woody raw material) of a rectangular parallelepiped (each side 1 cm) made of cedar (coniferous tree) was prepared. First, a solution in which ethylene glycol and 50% by weight sulfuric acid were mixed at a ratio of 99: 1 (acid concentration in the solution: 0.5% by weight) was prepared. In the airtight container, the wood raw material was immersed in the solution and pumped to replace the air in the wood raw material with the solvent. Next, the wood raw material was transferred to the pressure tube together with the solution and treated at 150 ° C. (atmospheric temperature) for 1 hour (first step).
 処理後、木材原材料を取り出し、エタノールで繰り返し洗浄した。また、酢酸0.08ml、亜塩素酸ソーダ0.4g及び水60mlからなる溶液を準備した。そして、エタノール洗浄後の木材原材料を当該溶液に浸漬した。温度条件を70℃とし、浸漬時間を1時間とした(第2の工程)。本実施例では、第2の工程を7回、すなわち1時間の浸漬時聞が経過した後、酢酸0.08ml及び亜塩素酸ソーダ0.4gを加え更に1時間処理する工程を7回実施した(浸漬時間、合計8時間)。 After the treatment, the wood raw material was taken out and washed repeatedly with ethanol. Moreover, the solution which consists of 0.08 ml of acetic acid, 0.4 g of sodium chlorite, and 60 ml of water was prepared. And the wood raw material after ethanol washing was immersed in the said solution. The temperature condition was 70 ° C., and the immersion time was 1 hour (second step). In this example, the second step was performed 7 times, that is, after 1 hour of immersion, the step of adding 0.08 ml of acetic acid and 0.4 g of sodium chlorite and further treating for 1 hour was performed 7 times. (Immersion time, 8 hours total).
 そして、完全に漂白された木材を取り出し、水で洗浄することによって、リグニン成分が除去されるとともに、セルロースとへミセルロースからなる構造を維持した白い木材を得ることができた(図1)。なお、図1は、(A)に未処理の木質原材料、(B)に第1の工程処理後の木質原材料、(C)に得られた白い木材を示している。これら未処理の木質原材料(A)及び白い木材(C)の寸法を計測したところ以下のようになった(表1)。この結果から、白い木材は、未処理の木質原材料の外形形状・寸法を維持していることが明らかになった。 Then, by taking out the completely bleached wood and washing it with water, it was possible to remove the lignin component and obtain white wood that maintained the structure composed of cellulose and hemicellulose (FIG. 1). FIG. 1 shows untreated wood raw material in (A), wood raw material after the first step treatment in (B), and white wood obtained in (C). The dimensions of these untreated wood raw materials (A) and white wood (C) were measured as follows (Table 1). From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、(A)~(C)について構成成分を分析したところ、(B)の木質原材料ではリグニン量は13.81%であった。これに対して(C)の白い木材ではリグニン量は0.1重量%未満であった。具体的には、HPLCによる成分分析は下記のようであった。 Further, when the constituent components were analyzed for (A) to (C), the amount of lignin in the wood raw material of (B) was 13.81%. In contrast, in the white wood (C), the amount of lignin was less than 0.1% by weight. Specifically, the component analysis by HPLC was as follows.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ここで、木材中のセルロース量は、グルコース含有量(重量%)に0.9をかけた96.44×0.9=86.8重量%となる。また、ヘミセルロース量は、上記キシロース、アラビノース、マンノース、ガラクトース含有量(重量%)から、1.21×0.88+0.01×0.88+0.99×0.9+0.23×0.9=2.16重量%となる。 Here, the amount of cellulose in the wood is 96.44 × 0.9 = 86.8% by weight obtained by multiplying the glucose content (% by weight) by 0.9. Moreover, the amount of hemicellulose is 1.21 * 0.88 + 0.01 * 0.88 + 0.99 * 0.9 + 0.23 * 0.9 = 2. From said xylose, arabinose, mannose, and galactose content (weight%). 16% by weight.
 また、実施例1の白い木材のセルロースの粘度平均重合度は1115、X線回折による200面の半値全幅(FWHM)の値は、2.50(未処理は3.18)、最大荷重は27Nであった。実施例1の寸法を1.2cm×1.2cm×1cmとした以外は実施例1と同じ操作を行った白い木材の白色度はL*:94.0、a*:-0.26、b*:1.02(未処理:L*:80.11、a*:3.39、b*:17.7)であった。 Moreover, the viscosity average polymerization degree of the cellulose of the white wood of Example 1 is 1115, the full width at half maximum (FWHM) of 200 planes by X-ray diffraction is 2.50 (untreated 3.18), and the maximum load is 27N. Met. Except for the dimensions of Example 1 being 1.2 cm × 1.2 cm × 1 cm, the whiteness of white wood that was subjected to the same operation as Example 1 was L *: 94.0, a *: −0.26, b *: 1.02 (untreated: L *: 80.11, a *: 3.39, b *: 17.7).
 さらに、(A)~(C)について赤外線吸収スペクトルで成分を分析した結果を図2に示した。図2に示すように、(C)の白い木材においてはリグニンに帰属されるバンド(1510cm-1)は認められなかった。 Further, the results of analyzing the components of (A) to (C) by the infrared absorption spectrum are shown in FIG. As shown in FIG. 2, in the white wood of (C), no band (1510 cm −1 ) attributed to lignin was observed.
 さらに、未処理の木質原材料と、白い木材とについて、X線CT(マイクロフォーカスX線CTシステム、inspeXioSMX-100CT、島津製作所社製)により画像解析した結果を図3に示した。図3に示すように、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Further, FIG. 3 shows the result of image analysis of untreated wood raw material and white wood by X-ray CT (microfocus X-ray CT system, inspexIOSMX-100CT, manufactured by Shimadzu Corporation). As shown in FIG. 3, it was found that the white wood produced in this example maintained the tissue and cell structure like the untreated wood raw material.
 図4は、実施例1で使用した未処理の木質原材料と、白い木材とについてX線回折により得られたX線繊維図を示す画像である。図4のX線繊維図は、同心円状画像上に複数の回折スポットが観察される。ゆえに、本実施例で作製した白い木材は、未処理の木質原材料と同様に、細胞壁内のミクロフィブリルの配向を維持していることが分かった。 FIG. 4 is an image showing an X-ray fiber diagram obtained by X-ray diffraction of the untreated wood raw material used in Example 1 and white wood. In the X-ray fiber diagram of FIG. 4, a plurality of diffraction spots are observed on a concentric image. Therefore, it was found that the white wood produced in this example maintained the orientation of the microfibrils in the cell wall, as with the untreated wood raw material.
 なお、上記各種分析(寸法計測以外)においては、必要により、次の凍結乾燥を行った。以下の実施例においても同様である。50%エタノール水溶液に試料を浸漬した後、順に70%エタノール水溶液、90%エタノール水溶液、95%エタノール水溶液、99.5%エタノール水溶液、無水エタノール(3回)のそれぞれに試料を10~15分ほど浸漬した。その後、試料を無水エタノール:t-ブチルアルコール=1:1で15~30分ほど浸漬し、さらに、t-ブチルアルコールに15分以上浸漬した。この操作を3回繰り返した。サンプルから溶媒を軽くぬぐって、冷蔵庫に15分以上保存して凍結乾燥を行った。 In the above various analyzes (other than dimension measurement), the following freeze-drying was performed as necessary. The same applies to the following embodiments. After immersing the sample in 50% ethanol aqueous solution, the sample is placed in order of 70% ethanol aqueous solution, 90% ethanol aqueous solution, 95% ethanol aqueous solution, 99.5% ethanol aqueous solution, and absolute ethanol (3 times) for about 10 to 15 minutes. Soaked. Thereafter, the sample was immersed in absolute ethanol: t-butyl alcohol = 1: 1 for about 15 to 30 minutes, and further immersed in t-butyl alcohol for 15 minutes or more. This operation was repeated three times. The solvent was lightly wiped from the sample, stored in a refrigerator for 15 minutes or longer, and lyophilized.
 以上の結果より、本実施例では、原料としてスギを用いた木質原材料について、リグニン成分をほぼ完全に除去するとともに、セルロースとへミセルロースからなる構造を維持し、処理前の形状を維持した白い木材を製造できることが明らかとなった。 From the above results, in this example, the wood raw material using cedar as a raw material, the lignin component was almost completely removed, the structure composed of cellulose and hemicellulose was maintained, and the shape before processing was maintained. It became clear that wood could be manufactured.
 [実施例2]
 本実施例では、原料としてケヤキ(広葉樹)を使用し、第1の工程の条件を150℃で6時間処理とした以外は実施例1と同様にして白い木材を製造した。
[Example 2]
In this example, white wood was produced in the same manner as in Example 1 except that zelkova (hardwood) was used as a raw material and the conditions of the first step were treated at 150 ° C. for 6 hours.
 処理前の木質原材料及び得られた白い木材を図5に示した。また、本実施例の未処理の木質原材料及び白い木材の寸法を計測したところ以下のようになった。この結果から、白い木材は、未処理の木質原材料の外形形状・寸法を維持していることが明らかになった。 Fig. 5 shows the wood raw material before treatment and the obtained white wood. Moreover, it was as follows when the dimension of the untreated wood raw material and white wood of a present Example was measured. From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、処理前の木材原材料及び得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を図6に示した。図6に示すように、白い木材においてはリグニンに帰属されるバンド(1510cm-1)は認められなかった。 Moreover, the result of having analyzed the component with the infrared absorption spectrum about the raw material of wood before a process and the obtained white wood was shown in FIG. As shown in FIG. 6, a band (1510 cm −1 ) attributed to lignin was not observed in white wood.
 さらに、未処理の木質原材料と、白い木材とについて、X線CTにより画像解析した結果を図7に示した。図7に示すように、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Furthermore, FIG. 7 shows the result of image analysis of untreated wood raw materials and white wood by X-ray CT. As shown in FIG. 7, it was found that the white wood produced in this example maintained the tissue and cell structure like the untreated wood raw material.
 以上の結果より、本実施例では、原料としてケヤキを用いた木質原材料について、リグニン成分をほぼ完全に除去するとともに、セルロースとへミセルロースからなる構造を維持し、処理前の形状を維持した白い木材を製造できることが明らかとなった。 From the above results, in this example, the wood raw material using zelkova as a raw material, the lignin component was almost completely removed, the structure composed of cellulose and hemicellulose was maintained, and the shape before processing was maintained. It became clear that wood could be manufactured.
 [実施例3]
 本実施例では、第1の工程において、エチレングリコールの代わりにプロピレングリコールを用いたこと以外は実施例1と同様にして白い木材を製造した。
[Example 3]
In this example, white wood was produced in the same manner as in Example 1 except that propylene glycol was used instead of ethylene glycol in the first step.
 処理前の木質原材料及び得られた白い木材を図8に示した。なお、図8は、(A)に未処理の木質原材料、(B)に得られた白い木材を示している。これら未処理の木質原材料(A)及び白い木材(B)の寸法を計測したところ以下のようになった(表4)。この結果から、白い木材は、未処理の木質原材料の外形形状・寸法を維持していることが明らかになった。 Fig. 8 shows the wood raw material before treatment and the obtained white wood. In FIG. 8, (A) shows an untreated wood raw material, and (B) shows white wood obtained. The dimensions of these untreated wood raw materials (A) and white wood (B) were measured as follows (Table 4). From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 また、処理前の木材原材料及び得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を図9に示した。図9に示すように、白い木材においてはリグニンに帰属されるバンド(1510cm-1)は認められなかった。 Moreover, the result of having analyzed the component by the infrared absorption spectrum about the raw material of wood before a process and the obtained white wood was shown in FIG. As shown in FIG. 9, no band (1510 cm −1 ) attributed to lignin was observed in white wood.
 さらに、未処理の木質原材料と、白い木材とについて、X線CTにより画像解析した結果、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Furthermore, as a result of image analysis by X-ray CT for untreated wood raw material and white wood, the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
 以上の結果より、本実施例では、第1の工程におけるアルコールとしてプロピレングリコールを用いた場合において、リグニン成分をほぼ完全に除去するとともに、セルロースとへミセルロースからなる構造を維持し、処理前の形状を維持した白い木材を製造できることが明らかとなった。 From the above results, in this example, when propylene glycol was used as the alcohol in the first step, the lignin component was almost completely removed, and the structure composed of cellulose and hemicellulose was maintained. It became clear that it was possible to produce white wood that maintained its shape.
 [実施例4]
 本実施例では、原料としてハルニレ(広葉樹)を使用した以外は実施例1と同様にして白い木材を製造した。
[Example 4]
In this example, white wood was produced in the same manner as in Example 1 except that Harunire (hardwood) was used as a raw material.
 処理前の木質原材料及び得られた白い木材を図10に示した。なお、図10は、(A)に未処理の木質原材料、(B)に第1の工程処理後の木質原材料、(C)に得られた白い木材を示している。これら未処理の木質原材料(A)及び白い木材(C)の寸法を計測したところ以下のようになった(表5)。この結果から、白い木材は、未処理の木質原材料の外形形状・寸法を維持していることが明らかになった。 Fig. 10 shows the wood raw material before treatment and the obtained white wood. FIG. 10 shows an untreated wood raw material in (A), a wood raw material after the first step treatment in (B), and white wood obtained in (C). The dimensions of these untreated wood raw materials (A) and white wood (C) were measured as follows (Table 5). From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 また、処理前の木材原材料及び得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を図11に示した。図11に示すように、白い木材においてはリグニンに帰属されるバンド(1510cm-1)は認められなかった。 Moreover, the result of having analyzed the component with the infrared absorption spectrum about the raw material of wood before processing and the obtained white wood was shown in FIG. As shown in FIG. 11, no band (1510 cm −1 ) attributed to lignin was observed in white wood.
 さらに、未処理の木質原材料と、白い木材とについて、X線CTにより画像解析した結果、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Furthermore, as a result of image analysis by X-ray CT for untreated wood raw material and white wood, the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
 以上の結果より、本実施例では、原料としてハルニレを用いた木質原材料について、リグニン成分をほぼ完全に除去するとともに、セルロースとへミセルロースからなる構造を維持し、処理前の形状を維持した白い木材を製造できることが明らかとなった。 From the above results, in this example, the wood raw material using Harunire as a raw material, the lignin component was almost completely removed, the structure composed of cellulose and hemicellulose was maintained, and the shape before processing was maintained. It became clear that wood could be manufactured.
 [実施例5]
 本実施例では、原料としてブナ(広葉樹)を使用した以外は実施例1と同様にして白い木材を製造した。
[Example 5]
In this example, white wood was produced in the same manner as in Example 1 except that beech (hardwood) was used as a raw material.
 処理前の木質原材料及び得られた白い木材を図12に示した。なお、図12は、(A)に未処理の木質原材料、(B)に第1の工程処理後の木質原材料、(C)に得られた白い木材を示している。これら未処理の木質原材料(A)及び白い木材(C)の寸法を計測したところ以下のようになった(表6)。また、本実施例の未処理の木質原材料及び白い木材の寸法を計測したところ以下のようになった。この結果から、白い木材は、未処理の木質原材料の外形形状・寸法を維持していることが明らかになった。 Fig. 12 shows the wood raw material before treatment and the obtained white wood. FIG. 12 shows untreated wood raw material in (A), wood raw material after the first step treatment in (B), and white wood obtained in (C). The dimensions of these untreated wood raw materials (A) and white wood (C) were measured as follows (Table 6). Moreover, it was as follows when the dimension of the untreated wood raw material and white wood of a present Example was measured. From this result, it became clear that white wood maintains the external shape and dimensions of untreated woody raw materials.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 また、処理前の木材原材料及び得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を図13に示した。図13に示すように、白い木材においてはリグニンに帰属されるバンド(1510cm-1)は認められなかった。 Moreover, the result of having analyzed the component by the infrared absorption spectrum about the raw material of wood before a process and the obtained white wood was shown in FIG. As shown in FIG. 13, no band (1510 cm −1 ) attributed to lignin was observed in white wood.
 さらに、未処理の木質原材料と、白い木材とについて、X線CTにより画像解析した結果、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Furthermore, as a result of image analysis by X-ray CT for untreated wood raw material and white wood, the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
 以上の結果より、本実施例では、原料としてブナを用いた木質原材料について、リグニン成分をほぼ完全に除去するとともに、セルロースとへミセルロースからなる構造を維持し、処理前の形状を維持した白い木材を製造できることが明らかとなった。 From the above results, in this example, the wood raw material using beech as a raw material, the lignin component was almost completely removed, the structure composed of cellulose and hemicellulose was maintained, and the shape before processing was maintained. It became clear that wood could be manufactured.
 [実施例6]
 本実施例では、以下の条件で第1の工程の前にアルカリ処理を行ったこと、原料としてモウソウチクを使用したこと、第1の工程の条件を150℃で4時間処理としたこと以外は実施例1と同様にして白い木材を製造した。
[Example 6]
In this example, it was carried out except that the alkali treatment was performed before the first step under the following conditions, that Moso bamboo was used as a raw material, and the first step was performed at 150 ° C. for 4 hours. White wood was produced as in Example 1.
 アルカリ処理は、木材原材料を1%水酸化ナトリウム水溶液に浸漬させ、95℃で1時間、熱処理を施すことで行った。 The alkali treatment was performed by immersing the wood raw material in a 1% aqueous sodium hydroxide solution and performing heat treatment at 95 ° C. for 1 hour.
 得られた白い木材を図14に示した。また、本実施例の未処理の木質原材料及び白い木材の寸法を計測したところ、白い木材は、未処理の木質原材料の外形形状・寸法を維持していた。 The obtained white wood is shown in FIG. Moreover, when the dimension of the untreated wood raw material and white wood of a present Example was measured, the white wood maintained the external shape and dimension of the untreated wood raw material.
 また、処理前の木材原材料及び得られた白い木材について赤外線吸収スペクトルで成分を分析した結果を図15に示した。図15に示すように、白い木材においてはリグニンに帰属されるバンド(1510cm-1)は認められなかった。なお、図15において、S1~S4は内側から表皮にかけて区分を4つにわけたもの(内側S1→表皮側S4)である。 Moreover, the result of having analyzed the component by the infrared absorption spectrum about the raw material of wood before a process and the obtained white wood was shown in FIG. As shown in FIG. 15, no band (1510 cm −1 ) attributed to lignin was observed in white wood. In FIG. 15, S1 to S4 are divided into four sections from the inner side to the epidermis (inner side S1 → skin side S4).
 さらに、未処理の木質原材料と、白い木材とについて、X線CTにより画像解析した結果、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Furthermore, as a result of image analysis by X-ray CT for untreated wood raw material and white wood, the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
 また、実施例6の木材のセルロースの粘度平均重合度は1473であった。 Moreover, the viscosity average polymerization degree of the cellulose of the wood of Example 6 was 1473.
 以上の結果より、本実施例では、原料としてモウソウチクを用いた木質原材料について、リグニン成分をほぼ完全に除去するとともに、セルロースとへミセルロースからなる構造を維持し、処理前の形状を維持した白い木材を製造できることが明らかとなった。 From the above results, in this example, the wood raw material using Moso bamboo as a raw material, the lignin component was almost completely removed, the structure consisting of cellulose and hemicellulose was maintained, and the shape before processing was maintained It became clear that wood could be manufactured.
 [実施例7]
 本実施例では、原料としてバルサ(広葉樹)を使用した以外は実施例1と同様にして白い木材を製造した。
[Example 7]
In this example, white wood was produced in the same manner as in Example 1 except that balsa (hardwood) was used as a raw material.
 白い木材の白色度(寸法5cm×5cm×0.5cm)はL*:93.1、a*:-0.28、b*:1.36(未処理:L*:85.56、a*:2.25、b*:10.64)であった。 White wood whiteness (dimensions 5 cm × 5 cm × 0.5 cm) is L *: 93.1, a *: −0.28, b *: 1.36 (untreated: L *: 85.56, a * : 2.25, b *: 10.64).
 さらに、未処理の木質原材料と、白い木材とについて、X線CTにより画像解析した結果、本実施例で作製した白い木材は、未処理の木質原材料と同様に、組織及び細胞構造を維持していることが分かった。 Furthermore, as a result of image analysis by X-ray CT for untreated wood raw material and white wood, the white wood produced in this example maintains the tissue and cell structure in the same manner as the untreated wood raw material. I found out.
 なお、各実施例において、リグニン含有量は3重量%未満であり、セルロース含有量は75重量%以上であり、ヘミセルロース含有量は0.01重量%以上15重量%以下であった。 In each example, the lignin content was less than 3% by weight, the cellulose content was 75% by weight or more, and the hemicellulose content was 0.01% by weight or more and 15% by weight or less.
 本出願は、2018年2月28日に出願された日本特許出願番号2018-035653号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2018-035653 filed on Feb. 28, 2018, the disclosure of which is incorporated by reference as a whole.

Claims (15)

  1.  リグニン含有量が3重量%未満であり、セルロース含有量が75重量%以上である、木材。 Wood with a lignin content of less than 3% by weight and a cellulose content of 75% by weight or more.
  2.  前記セルロースの粘度平均重合度DPvが、300以上である、請求項1に記載の木材。 The wood according to claim 1, wherein the cellulose has a viscosity average degree of polymerization DPv of 300 or more.
  3.  ヘミセルロース含有量が0.01重量%以上15重量%以下である、請求項1または2に記載の木材。 The wood according to claim 1 or 2, wherein the hemicellulose content is 0.01 wt% or more and 15 wt% or less.
  4.  木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを経て作製され、リグニン成分が低減された木材。 A first step of immersing the wood raw material in a solution containing an acid and an alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower; and thereafter, converting the wooden raw material into a solution containing chlorite ions or hypochlorite ions. Wood produced through the second step of dipping and having reduced lignin components.
  5.  上記木質原材料の形状を維持したことを特徴とする請求項4記載の木材。 The wood according to claim 4, wherein the shape of the wood raw material is maintained.
  6.  リグニン成分が検出限界以下に低減されたことを特徴とする請求項4または5記載の木材。 6. The wood according to claim 4 or 5, wherein the lignin component is reduced below a detection limit.
  7.  白色であることを特徴とする請求項4~6のいずれか1項に記載の木材。 The wood according to any one of claims 4 to 6, which is white.
  8.  木質原材料を140℃以上170℃以下の条件下で酸とアルコールとを含有する溶液中に浸漬する第1の工程と、その後、木質原材料を亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液に浸漬する第2の工程とを含む、リグニン成分が低減された木材の製造方法。 A first step of immersing the wood raw material in a solution containing an acid and an alcohol under conditions of 140 ° C. or higher and 170 ° C. or lower; and thereafter, converting the wooden raw material into a solution containing chlorite ions or hypochlorite ions. The manufacturing method of the timber with which the lignin component was reduced including the 2nd process to immerse.
  9.  上記アルコールは、150℃以上の沸点を有するアルコールであることを特徴とする請求項8記載の木材の製造方法。 The method for producing wood according to claim 8, wherein the alcohol is an alcohol having a boiling point of 150 ° C or higher.
  10.  上記酸とアルコールとを含有する溶液は、硫酸とエチレングリコールとを含有する溶液または硫酸とプロピレングリコールとを含有する溶液であることを特徴とする請求項8または9記載の木材の製造方法。 The method for producing wood according to claim 8 or 9, wherein the solution containing an acid and an alcohol is a solution containing sulfuric acid and ethylene glycol or a solution containing sulfuric acid and propylene glycol.
  11.  上記酸とアルコールとを含有する溶液は、アルコール濃度を90~99.5重量%とし、酸濃度を0.05~10重量%とすることを特徴とする請求項8~10のいずれか1項に記載の木材の製造方法。 11. The solution containing an acid and an alcohol has an alcohol concentration of 90 to 99.5% by weight and an acid concentration of 0.05 to 10% by weight. The manufacturing method of the timber described in 2.
  12.  上記第1の工程では、上記木質原材料を上記溶液に浸漬させた状態で密閉し、密閉空間内を脱気することを特徴とする請求項8~11のいずれか1項に記載の木材の製造方法。 The wood production according to any one of claims 8 to 11, wherein, in the first step, the wood raw material is sealed in a state of being immersed in the solution, and the sealed space is deaerated. Method.
  13.  上記亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液は、亜塩素酸ナトリウム溶液または次亜塩素酸ナトリウム溶液であることを特徴とする請求項8~12のいずれか1項に記載の木材の製造方法。 The wood solution according to any one of claims 8 to 12, wherein the solution containing chlorite ions or hypochlorite ions is a sodium chlorite solution or a sodium hypochlorite solution. Production method.
  14.  上記亜塩素酸イオンまたは次亜塩素酸イオンを含む溶液は、亜塩素酸イオンまたは次亜塩素酸イオン濃度を0.01~10重量%とする溶液であることを特徴とする請求項8~13のいずれか1項に記載の木材の製造方法。 The solution containing the chlorite ion or hypochlorite ion is a solution having a concentration of chlorite ion or hypochlorite ion of 0.01 to 10% by weight. The manufacturing method of the timber of any one of these.
  15. 上記第2の工程を複数回繰り返すことを特徴とする請求項8~14のいずれか1項に記載の木材の製造方法。 The method for producing wood according to any one of claims 8 to 14, wherein the second step is repeated a plurality of times.
PCT/JP2019/007944 2018-02-28 2019-02-28 Wood and method for producing wood WO2019168127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503632A JP6941328B2 (en) 2018-02-28 2019-02-28 Wood and wood manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018035653 2018-02-28
JP2018-035653 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168127A1 true WO2019168127A1 (en) 2019-09-06

Family

ID=67806225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007944 WO2019168127A1 (en) 2018-02-28 2019-02-28 Wood and method for producing wood

Country Status (2)

Country Link
JP (1) JP6941328B2 (en)
WO (1) WO2019168127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112847709A (en) * 2021-01-06 2021-05-28 南京林业大学 Preparation method of rare earth-carbon quantum dot fluorescent transparent wood and fluorescent transparent wood

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693757A (en) * 1984-12-19 1987-09-15 Modeste Sabate Particular method for treating articles made of cork
JP2004330141A (en) * 2003-05-09 2004-11-25 Fumio Kadoi Whitened wood chip and its production method
JP2006001270A (en) * 2005-02-28 2006-01-05 Kosaka Sangyo Kk Lignin removed wood chips, manufacturing method of lignin removed wood chips, and organic matter decomposition assistant using lignin removed wood chips

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693757A (en) * 1984-12-19 1987-09-15 Modeste Sabate Particular method for treating articles made of cork
JP2004330141A (en) * 2003-05-09 2004-11-25 Fumio Kadoi Whitened wood chip and its production method
JP2006001270A (en) * 2005-02-28 2006-01-05 Kosaka Sangyo Kk Lignin removed wood chips, manufacturing method of lignin removed wood chips, and organic matter decomposition assistant using lignin removed wood chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112847709A (en) * 2021-01-06 2021-05-28 南京林业大学 Preparation method of rare earth-carbon quantum dot fluorescent transparent wood and fluorescent transparent wood

Also Published As

Publication number Publication date
JPWO2019168127A1 (en) 2021-02-25
JP6941328B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
Rambabu et al. Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films
Pejić et al. Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.)
Shi et al. Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood
Khakalo et al. All-wood composite material by partial fiber surface dissolution with an ionic liquid
Wang et al. Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement
Jang et al. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine
Park et al. Preparation and properties of holocellulose nanofibrils with different hemicellulose content
JP2017160396A (en) Cellulose oxide fiber, fine cellulose fiber dispersion and manufacturing method of fine cellulose fiber
Wikberg Advanced solid state NMR spectroscopic techniques in the study of thermally modified wood
Khalil et al. Determination of the combined effect of chemical modification and compression of agatis wood on the dimensional stability, termite resistance, and morphological structure
Horikawa et al. Development of colorless wood via two-step delignification involving alcoholysis and bleaching with maintaining natural hierarchical structure
WO2019168127A1 (en) Wood and method for producing wood
Hassan et al. Application of frankincense and rice starch as eco-friendly substances for the resizing of paper as a conservation practice
Salim et al. Effect of oil heat treatment on chemical constituents of Semantan bamboo (Gigantochloa scortechinii Gamble)
JP2010030081A (en) Method for reforming lumber
Suzuki et al. Characterization of cellulose nanofiber from steam-exploded Japanese cedar
Lv et al. Effects of microwave drying on the cell wall structures of round bamboo
US20230256645A1 (en) Modified wood and transparent wood composites, and systems and methods for forming and use thereof
Ebadi et al. Physical behavior of hydro-thermally treated oil palm wood in different buffered pH media
Sözen Determination of Changes in the Mechanical and Color Properties of Some Wood Species Treated with Shellac.
Kaurasea et al. Isolation of Cellulosic Nano Fibers from Delonix Regia Fruits by Mechanochemical Route.
IRBE et al. Durability of thermo-hydro treated (THT) birch veneers and plywood.
Fadl et al. Enhancement of the dimensional stability of natural wood by impregnates
RU2813172C1 (en) Fibrous semi-finished product from sunflower husks and a method of its production (options)
Tatari et al. SO2-alcohol-water (SAW) fractionation of Eldar pine (Pinus eldarica): effects of alcohol type on pulp and paper properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760113

Country of ref document: EP

Kind code of ref document: A1