WO2019168029A1 - Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material - Google Patents

Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material Download PDF

Info

Publication number
WO2019168029A1
WO2019168029A1 PCT/JP2019/007563 JP2019007563W WO2019168029A1 WO 2019168029 A1 WO2019168029 A1 WO 2019168029A1 JP 2019007563 W JP2019007563 W JP 2019007563W WO 2019168029 A1 WO2019168029 A1 WO 2019168029A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
powder
magnesium
compounds
Prior art date
Application number
PCT/JP2019/007563
Other languages
French (fr)
Japanese (ja)
Inventor
中田 嘉信
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019022732A external-priority patent/JP7251187B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020207023203A priority Critical patent/KR20200124224A/en
Priority to CN201980014342.XA priority patent/CN111771290A/en
Priority to US16/975,268 priority patent/US11380831B2/en
Priority to EP19761165.0A priority patent/EP3761381A4/en
Publication of WO2019168029A1 publication Critical patent/WO2019168029A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Definitions

  • the present invention relates to a thermoelectric conversion material composed of a sintered body of a magnesium-based compound, a thermoelectric conversion element including the thermoelectric conversion material, a thermoelectric conversion module, and a method for manufacturing the thermoelectric conversion material.
  • thermoelectric conversion element made of a thermoelectric conversion material is an electronic element capable of mutually converting heat and electricity, such as Seebeck effect and Peltier effect.
  • the Seebeck effect is an effect of converting thermal energy into electric energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of the thermoelectric conversion material. Such electromotive force is determined by the characteristics of the thermoelectric conversion material.
  • thermoelectric power generation utilizing this effect has been actively developed.
  • the thermoelectric conversion element described above has a structure in which electrodes are formed on one end side and the other end side of a thermoelectric conversion material.
  • thermoelectric conversion material As an index representing the characteristics of such a thermoelectric conversion element (thermoelectric conversion material), for example, the power factor (PF) expressed by the following formula (1) or the dimensionless figure of merit expressed by the following formula (2) (ZT) is used.
  • PF S 2 ⁇ (1)
  • ZT S 2 ⁇ T / ⁇ (2)
  • T absolute temperature (K)
  • thermal conductivity (W / (m ⁇ K))
  • thermoelectric conversion material for example, as shown in Patent Documents 1 and 2, materials obtained by adding various dopants to magnesium silicide have been proposed.
  • thermoelectric conversion material which consists of magnesium silicide shown in patent document 1, 2 it manufactures by sintering the raw material powder adjusted to the predetermined composition.
  • thermoelectric conversion material elements such as Sb and Bi used as dopants in the thermoelectric conversion material described above correspond to chemical substances specified by, for example, the chemical substance management promotion method (PRTR method), and therefore, it is necessary to strictly manage them. And handling was very complicated. In addition, since other dopant elements such as Al may be deteriorated by oxidation of the dopant element, the handling becomes complicated and there is a problem of oxidation during production.
  • magnesium silicide does not have a stable and low resistance, and generally has a very high electrical resistance, a large variation in electrical resistance depending on manufacturing conditions, and is important for thermoelectric materials. Since the electric resistance greatly fluctuates from a low temperature to a middle temperature, it could not be used as a thermoelectric conversion material.
  • the present invention has been made in view of the above-described circumstances, and can reduce the electric resistance value without adding a dopant element that is complicated to handle, and uses a thermoelectric conversion material excellent in thermoelectric characteristics. It is an object of the present invention to provide a thermoelectric conversion element, a thermoelectric conversion module, and a method for manufacturing the thermoelectric conversion material.
  • thermoelectric conversion material of the present invention is a thermoelectric conversion material made of a sintered body of a non-doped magnesium-based compound and has an electric resistance value of 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less. It is characterized by being.
  • thermoelectric conversion material comprising the sintered body of the non-doped magnesium compound of the present invention has an electrical resistance value of 1.0 ⁇ 10 ⁇ 4 without intentionally adding a dopant of a metal element such as Sb, Bi, or Al. It is a thermoelectric conversion material having a low power of ⁇ ⁇ m or less and a high power factor (PF) and dimensionless figure of merit (ZT).
  • PF power factor
  • ZT dimensionless figure of merit
  • the thermoelectric conversion material of the present invention is particularly excellent in thermoelectric characteristics in a relatively low temperature region from room temperature to about 300 ° C.
  • the magnesium compound is preferably one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds.
  • the magnesium compound is one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds, it is possible to obtain a thermoelectric conversion material having further excellent thermoelectric characteristics. it can.
  • thermoelectric conversion material of the present invention is characterized by being n-type.
  • n-type thermoelectric power can be used without intentionally adding a dopant of a metal element such as Sb, Bi, or Al, which is difficult to handle. It can be a conversion material.
  • thermoelectric conversion element of the present invention is characterized by including the above-described thermoelectric conversion material and electrodes bonded to one surface of the thermoelectric conversion material and the other surface facing each other. According to the thermoelectric conversion element of this structure, since it consists of the thermoelectric conversion material mentioned above, the thermoelectric conversion element excellent in the thermoelectric characteristic can be obtained.
  • thermoelectric conversion module of the present invention is characterized by including the above-described thermoelectric conversion element and terminals respectively joined to the electrodes of the thermoelectric conversion element. According to the thermoelectric conversion module having this configuration, since the thermoelectric conversion element made of the thermoelectric conversion material described above is provided, a thermoelectric conversion module having excellent thermoelectric characteristics can be obtained.
  • the manufacturing method of the thermoelectric conversion material of the present invention is a manufacturing method of the thermoelectric conversion material for manufacturing the above-described thermoelectric conversion material, in which silicon oxide powder is mixed with non-doped magnesium-based compound powder and sintered raw material powder is mixed. It is characterized by comprising a sintered raw material powder forming step to be obtained and a sintering step in which the sintered raw material powder is heated while being pressed to form a sintered body.
  • thermoelectric conversion material having this configuration
  • non-doped magnesium compound powder that is, magnesium compound powder to which no dopant is intentionally added
  • silicon oxide powder Since it has a sintering raw material powder forming step to be obtained, it becomes possible to keep the electrical resistance value of the sintered body of the magnesium-based compound low by adding silicon oxide without adding a dopant element. . Therefore, the thermoelectric conversion material mentioned above can be manufactured. Further, since silicon oxide is a chemically stable substance, it is easy to handle silicon oxide at the time of manufacture, and it becomes possible to efficiently manufacture a thermoelectric conversion material.
  • the amount of the silicon oxide powder added in the sintering raw material powder forming step is in the range of 0.1 mass% to 10.0 mass%. Is preferred. In this case, since the addition amount of the silicon oxide powder is in the range of 0.1 mass% or more and 10.0 mass% or less, the electrical resistance value of the magnesium compound sintered body can be reliably reduced. .
  • thermoelectric conversion material excellent in thermoelectric characteristics, a thermoelectric conversion element using the thermoelectric conversion element, a thermoelectric conversion module, and It is possible to provide a method for producing the thermoelectric conversion material.
  • thermoelectric conversion material which is one Embodiment of this invention, a thermoelectric conversion element using the same, and a thermoelectric conversion module. It is a flowchart which shows an example of the manufacturing method of the thermoelectric conversion material which is one Embodiment of this invention. It is sectional drawing which shows an example of the sintering apparatus used with the manufacturing method of the thermoelectric conversion material shown in FIG.
  • thermoelectric conversion material a thermoelectric conversion element, a thermoelectric conversion module, and a method of manufacturing a thermoelectric conversion material according to an embodiment of the present invention
  • a thermoelectric conversion material a thermoelectric conversion material, a thermoelectric conversion element, a thermoelectric conversion module, and a method of manufacturing a thermoelectric conversion material according to an embodiment of the present invention
  • a thermoelectric conversion material a thermoelectric conversion material, a thermoelectric conversion element, a thermoelectric conversion module, and a method of manufacturing a thermoelectric conversion material according to an embodiment of the present invention.
  • thermoelectric conversion material 11 which is embodiment of this invention, the thermoelectric conversion element 10 using this thermoelectric conversion material 11, and the thermoelectric conversion module 1 are shown.
  • a thermoelectric conversion module 1 shown in FIG. 1 includes a thermoelectric conversion material 11 according to the present embodiment, electrodes 12a and 12b formed on one surface 11a of the thermoelectric conversion material 11 and the other surface 11b opposite to the surface 11a. And terminals 13a and 13b connected to the electrodes 12a and 12b.
  • a thermoelectric conversion element 10 includes the thermoelectric conversion material 11 and the electrodes 12a and 12b.
  • the electrodes 12a and 12b are made of nickel, silver, cobalt, tungsten, molybdenum or the like.
  • the electrodes 12a and 12b can be formed by current sintering, plating, electrodeposition, or the like.
  • the terminals 13a and 13b are formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In this embodiment, an aluminum rolled plate is used.
  • the electrodes 12a and 12b of the thermoelectric conversion element 10 and the terminals 13a and 13b can be joined by Ag brazing, Ag plating, or the like.
  • the thermoelectric conversion material 11 in the present embodiment is composed of a magnesium compound sintered body.
  • the magnesium compound constituting the sintered body is preferably one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds.
  • the compound constituting the sintered body is magnesium silicide (Mg 2 Si).
  • the thermoelectric conversion material 11 according to the present embodiment is a non-doped thermoelectric conversion material and has an electric resistance value of 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less in a temperature range of 100 ° C. to 550 ° C.
  • the electric resistance value of the thermoelectric conversion material 11 in the temperature range of 100 ° C. or more and 550 ° C. or less is preferably 6.0 ⁇ 10 ⁇ 5 ⁇ ⁇ m or less.
  • the lower limit value of the electric resistance value of the thermoelectric conversion material 11 in the temperature range of 100 ° C. or higher and 550 ° C. or lower is preferably 1.0 ⁇ 10 ⁇ 5 ⁇ ⁇ m.
  • the thermoelectric conversion material 11 according to the present embodiment is an n-type thermoelectric conversion material in which electrons are carriers.
  • non-doped means that a metal element dopant is not added intentionally.
  • a dopant element such as Sb, Bi, or Al may be included.
  • the Sb content is less than 0.001 mass%
  • the Bi content is less than 0.001 mass%
  • the Al content is 0.25 mass% or less.
  • elements such as Na, K, B, Ga, In, P, As, Cu, and Y may be included as inevitable impurities, but even in that case, the content of each element Is preferably 0.01 mass% or less.
  • thermoelectric conversion material 11 in this embodiment since the electric resistance value is 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less, the dopant element mixed as an unavoidable impurity is very small. Therefore, the electrical resistance value is suppressed to be sufficiently low.
  • the electrical resistance value is suppressed low by adding silicon oxide. Oxygen constituting the added silicon oxide reacts with the magnesium compound Mg during sintering to form magnesium oxide, while Si constituting the silicon oxide segregates to the magnesium compound grain boundary. It is considered that dangling bonds at the interface are formed to reduce the resistance, or diffuse into the Mg compound and enter the Mg lattice sites to emit electrons and lower the electrical resistance. Of the added silicon oxide, unreacted silicon oxide may be contained in the thermoelectric conversion material 11.
  • thermoelectric conversion material 11 Accordingly, an example of a method for manufacturing the thermoelectric conversion material 11 according to the present embodiment described above will be described with reference to FIGS. 2 and 3.
  • the magnesium-based compound powder preparation step S01 First, powder of a non-doped magnesium-based compound (magnesium silicide) serving as a parent phase of a sintered body that is the thermoelectric conversion material 11 is manufactured.
  • the magnesium-based compound powder preparation step S01 includes a magnesium-based compound ingot forming step S11 for obtaining an ingot of a non-doped magnesium-based compound (magnesium silicide), and pulverizing the magnesium-based compound ingot (magnesium silicide) to form magnesium. And a pulverizing step S12 to make a system compound powder.
  • the dissolved raw material powder is weighed and mixed.
  • the melting raw material is silicon grains and magnesium grains.
  • the Sb content is less than 0.001 mass%
  • the Bi content is less than 0.001 mass%
  • the Al content is 0.25 mass% or less. It is preferable that the content of each element of Na, K, B, Ga, In, P, As, Cu, and Y be 0.01 mass% or less.
  • this mixture is charged into a crucible in an atmosphere melting furnace and melted, and then cooled and solidified. Thereby, the ingot of a magnesium type compound (magnesium silicide) is manufactured.
  • a magnesium type compound magnesium silicide
  • it is preferable to add a large amount of magnesium, for example, about 5 at% with respect to the stoichiometric composition of Mg: Si 2: 1 when the raw materials are weighed.
  • the obtained magnesium-based compound (magnesium silicide) ingot is pulverized by a pulverizer to form magnesium-based compound powder (magnesium silicide powder) (pulverization step S12).
  • the average particle size of the magnesium-based compound powder (magnesium silicide powder) is preferably in the range of 0.5 ⁇ m to 100 ⁇ m, and more preferably in the range of 1 ⁇ m to 75 ⁇ m.
  • magnesium silicide powder magnesium silicide powder
  • the magnesium compound ingot forming step S11 and the pulverizing step S12 can be omitted.
  • silicon oxide powder is mixed with the obtained magnesium-based compound powder (magnesium silicide powder) to obtain sintered raw material powder.
  • the amount of silicon oxide powder added is preferably in the range of 0.1 mass% to 10.0 mass%, and more preferably in the range of 0.3 mass% to 5.0 mass%.
  • the average particle diameter of the silicon oxide powder is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, and more preferably in the range of 0.5 ⁇ m to 50 ⁇ m.
  • the sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 includes, for example, a pressure-resistant housing 101, a vacuum pump 102 that depressurizes the inside of the pressure-resistant housing 101, and a hollow cylinder disposed in the pressure-resistant housing 101.
  • the carbon mold 103 having a shape, a pair of electrode portions 105a and 105b for applying a current while pressurizing the sintering raw material powder Q filled in the carbon mold 103, and a voltage is applied between the pair of electrode portions 105a and 105b.
  • a power supply device 106 Further, a carbon plate 107 and a carbon sheet 108 are disposed between the electrode portions 105a and 105b and the sintering raw material powder Q, respectively.
  • a thermometer, a displacement meter, etc. are provided.
  • the heater 109 is disposed on the outer peripheral side of the carbon mold 103.
  • the heater 109 is disposed on four side surfaces so as to cover the entire outer peripheral side of the carbon mold 103.
  • a carbon heater a nichrome wire heater, a molybdenum heater, a Kanthal wire heater, a high frequency heater, or the like can be used.
  • the raw material powder Q is filled into the carbon mold 103 of the electric current sintering apparatus 100 shown in FIG.
  • the carbon mold 103 is covered with a graphite sheet or a carbon sheet.
  • a direct current is passed between the pair of electrode portions 105a and 105b, and the current is passed through the sintered raw material powder Q to raise the temperature by self-heating (energization heating).
  • the movable electrode portion 105a is moved toward the sintering raw material powder Q, and the sintering raw material powder Q is moved to a predetermined pressure with the fixed electrode portion 105b. Pressurize.
  • the heater 109 is heated.
  • the sintered raw material powder Q is sintered by self-heating of the sintered raw material powder Q, heat from the heater 109, and pressurization.
  • the sintering condition in the sintering step S03 is that the heating temperature of the sintering raw material powder Q is in the range of 850 ° C. or more and 1030 ° C. or less, and the holding time at this heating temperature is 0 minute or more and 3 minutes or less. It is within the range. Further, the pressurizing load is in the range of 15 MPa or more and 60 MPa or less.
  • the atmosphere in the pressure-resistant casing 101 is preferably an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In a vacuum atmosphere, the pressure is preferably 5 Pa or less.
  • the minimum of the heating temperature of sintering raw material powder is 850 degreeC or more.
  • the upper limit of the heating temperature of the sintered raw material powder is preferably 1030 ° C. or less.
  • the lower limit of the holding time at the heating temperature is preferably 0 minutes or more.
  • the upper limit of the holding time at the heating temperature is preferably 3 minutes or less.
  • the lower limit of the pressure load is preferably 15 MPa or more.
  • the upper limit of the pressure load is preferably 60 MPa or less.
  • the polarities of the one electrode portion 105a and the other electrode portion 105b may be changed at predetermined time intervals. That is, the state in which one electrode part 105a is energized with the anode and the other electrode part 105b as the cathode and the state in which one electrode part 105a is energized with the cathode and the other electrode part 105b as the anode are alternately performed. It is.
  • the predetermined time interval is set within a range of 10 seconds to 300 seconds.
  • the predetermined time interval is preferably in the range of 30 seconds to 120 seconds.
  • thermoelectric conversion material 11 which is this embodiment is manufactured according to the above process.
  • the Sb content is less than 0.001 mass%
  • the Bi content is less than 0.001 mass%
  • the Al content is 0.25 mass% or less
  • Na , K, B, Ga, In, P, As, Cu, and Y the content of each element is 0.01 mass% or less
  • thermoelectric conversion comprising a sintered body of a magnesium-based compound
  • the Sb content is less than 0.001 mass%
  • the Bi content is less than 0.001 mass%
  • the Al content is 0.25 mass% or less
  • Na, K, B, Ga, In, P, Content of each element of As, Cu, and Y will be 0.01 mass% or less.
  • thermoelectric conversion material 11 of the present embodiment configured as described above, a dopant element, in particular, Sb, Bi, Al, which is difficult to handle, is not used as a dopant element, and it is relatively easy to manufacture. can do.
  • the electrical resistance value is kept low at 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ m or less, the power factor (PF) and the dimensionless figure of merit (ZT) are high, and the thermoelectric characteristics are excellent.
  • the magnesium compound constituting the thermoelectric conversion material 11 is one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds. Therefore, the thermoelectric conversion material 11 having further excellent thermoelectric characteristics can be obtained.
  • thermoelectric conversion material 11 of the present embodiment an n-type thermoelectric conversion material can be obtained without intentionally adding a dopant of a metal element such as Sb, Bi, or Al that is difficult to handle.
  • thermoelectric conversion material 11 according to the method for manufacturing a thermoelectric conversion material according to the present embodiment, a sintering raw material powder forming step of obtaining a sintering raw material powder by mixing silicon oxide powder with non-doped magnesium-based compound powder (magnesium silicide powder). Since S02 and the sintering step S03 in which the sintered raw material powder Q is heated while being pressed to form a sintered body, the thermoelectric conversion material 11 according to the present embodiment described above can be manufactured. it can.
  • silicon oxide it is possible to keep the electrical resistance value of the sintered body of the magnesium compound (magnesium silicide) low without adding a dopant element. Further, since silicon oxide is a relatively stable substance, it can be easily handled during production, and the thermoelectric conversion material 11 can be produced efficiently.
  • thermoelectric conversion element 10 and the thermoelectric conversion module 1 include the thermoelectric conversion material 11 described above, the thermoelectric characteristics are excellent. Therefore, it is possible to configure a thermoelectric conversion device having excellent thermoelectric conversion efficiency.
  • thermoelectric conversion element and thermoelectric conversion module of a structure as shown in FIG. 1 it is not limited to this, thermoelectric conversion material of this invention may be used.
  • the structure and arrangement of the electrodes and terminals are not particularly limited.
  • the magnesium-based compound constituting the sintered body has been described as magnesium silicide (Mg 2 Si).
  • Mg 2 Si magnesium silicide
  • the present invention is not limited to this, and any other composition may be used as long as it has thermoelectric properties.
  • the magnesium-based compound may be used.
  • the above-mentioned raw material particles weighed were charged into a crucible in an atmosphere melting furnace and melted, and then cooled and solidified. This produced the magnesium compound (magnesium silicide) ingot. Next, the ingot was crushed and classified to obtain a non-doped magnesium-based compound powder (magnesium silicide powder) having an average particle size of 30 ⁇ m.
  • silicon oxide powder SiO 2 powder having an average particle size of 15 ⁇ m was prepared, and magnesium silicide powder and silicon oxide powder were mixed to obtain sintered raw material powder. At this time, as shown in Table 1, the content of silicon oxide powder was adjusted. In the comparative example, no silicon oxide was added.
  • thermoelectric conversion material of this invention example and the comparative example was obtained.
  • thermoelectric conversion material Sb, Bi, Al, Na, K, B, Ga, In, P, As, Cu, Y content, electric resistance (R), Seebeck coefficient (S), power factor (PF), thermal conductivity ( ⁇ ), dimensionless figure of merit (ZT) were evaluated.
  • the electrical resistance value R and the Seebeck coefficient S were measured with ZEM-3 manufactured by Advance Riko. The measurement was performed at 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, and 550 ° C.
  • the thermal conductivity ⁇ was determined from thermal diffusivity ⁇ density ⁇ specific heat capacity.
  • the thermal diffusivity was measured using a thermal constant measuring device (TC-7000 model manufactured by Vacuum Riko), the density was measured using Archimedes method, and the specific heat was measured using a differential scanning calorimeter (DSC-7 model manufactured by PerkinElmer). The measurement was performed at 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, and 550 ° C.
  • the dimensionless figure of merit (ZT) was obtained from the following equation (2).
  • the dopant element was not contained, and the electric resistance value R was very high. Further, the value of the Seebeck coefficient S is relatively unstable, the power factor (PF) is low, the dimensionless figure of merit ZT is also low, and it is confirmed that the thermoelectric characteristics are inferior. In the example of the present invention to which silicon oxide was added, the electric resistance value R was sufficiently low even without containing a dopant element. It is also confirmed that the Seebeck coefficient S is stable, the power factor (PF) is sufficiently high, the dimensionless figure of merit ZT is sufficiently high, and the thermoelectric characteristics are excellent.
  • thermoelectric conversion material having excellent thermoelectric properties. It was.

Abstract

This thermoelectric conversion material is characterized by being formed of a sintered body of an undoped magnesium compound and by having an electrical resistance of 1.0 × 10-4 Ω·m or less. It is preferable that the magnesium compound is composed of one or more compounds which are selected from among MgSi compounds, MgSn compounds, MgSiSn compounds and MgSiGe compounds.

Description

熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
 本発明は、マグネシウム系化合物の焼結体からなる熱電変換材料、この熱電変換材料を備えた熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法に関する。
 本願は、2018年2月27日に、日本に出願された特願2018-033664号、及び2019年2月12日に、日本に出願された特願2019-022732号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermoelectric conversion material composed of a sintered body of a magnesium-based compound, a thermoelectric conversion element including the thermoelectric conversion material, a thermoelectric conversion module, and a method for manufacturing the thermoelectric conversion material.
This application claims priority based on Japanese Patent Application No. 2018-033664 filed in Japan on February 27, 2018 and Japanese Patent Application No. 2019-022732 filed on February 12, 2019 in Japan. , The contents of which are incorporated herein.
 熱電変換材料からなる熱電変換素子はゼーベック効果、ペルティエ効果といった、熱と電気とを相互に変換可能な電子素子である。ゼーベック効果は熱エネルギーを電気エネルギーに変換する効果であり、熱電変換材料の両端に温度差を生じさせると起電力が発生する現象である。こうした起電力は熱電変換材料の特性によって決まる。近年ではこの効果を利用した熱電発電の開発が盛んである。
上述の熱電変換素子は、熱電変換材料の一端側及び他端側にそれぞれ電極が形成された構造とされている。
A thermoelectric conversion element made of a thermoelectric conversion material is an electronic element capable of mutually converting heat and electricity, such as Seebeck effect and Peltier effect. The Seebeck effect is an effect of converting thermal energy into electric energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of the thermoelectric conversion material. Such electromotive force is determined by the characteristics of the thermoelectric conversion material. In recent years, thermoelectric power generation utilizing this effect has been actively developed.
The thermoelectric conversion element described above has a structure in which electrodes are formed on one end side and the other end side of a thermoelectric conversion material.
 このような熱電変換素子(熱電変換材料)の特性を表す指標として、例えば以下の(1)式で表されるパワーファクター(PF)や、以下の(2)式で表される無次元性能指数(ZT)が用いられている。なお、熱電変換材料においては、一面と他面側とで温度差を維持する必要があるため、熱伝導性が低いことが好ましい。
 PF=Sσ・・・(1)
  但し、S:ゼーベック係数(V/K)、σ:電気伝導率(S/m)
 ZT=SσT/κ・・・(2)
  但し、T=絶対温度(K)、κ=熱伝導率(W/(m×K))
As an index representing the characteristics of such a thermoelectric conversion element (thermoelectric conversion material), for example, the power factor (PF) expressed by the following formula (1) or the dimensionless figure of merit expressed by the following formula (2) (ZT) is used. In addition, in a thermoelectric conversion material, since it is necessary to maintain a temperature difference by the one surface and the other surface side, it is preferable that thermal conductivity is low.
PF = S 2 σ (1)
Where S: Seebeck coefficient (V / K), σ: electrical conductivity (S / m)
ZT = S 2 σT / κ (2)
Where T = absolute temperature (K), κ = thermal conductivity (W / (m × K))
 ここで、上述の熱電変換材料として、例えば特許文献1、2に示すように、マグネシウムシリサイドに各種ドーパントを添加したものが提案されている。なお、特許文献1、2に示すマグネシウムシリサイドからなる熱電変換材料においては、所定の組成に調整された原料粉末を焼結することによって製造されている。 Here, as the above-mentioned thermoelectric conversion material, for example, as shown in Patent Documents 1 and 2, materials obtained by adding various dopants to magnesium silicide have been proposed. In addition, in the thermoelectric conversion material which consists of magnesium silicide shown in patent document 1, 2, it manufactures by sintering the raw material powder adjusted to the predetermined composition.
特開2013-179322号公報JP 2013-179322 A 特開2017-152691号公報JP 2017-152691 A
 ここで、上述の熱電変換材料においてドーパントとして使用されるSb,Biといった元素は、例えば化学物質管理促進法(PRTR法)等によって指定された化学物質に該当するため、その管理を厳重に行う必要があり、取り扱いが非常に煩雑であった。また、Al等の他のドーパント元素においても、ドーパント元素の酸化等によって変質するおそれがあることから、やはり、取り扱いが煩雑となり、製造時の酸化といった問題があった。
 しかしながら、ドーパント元素を添加しないと、マグネシウムシリサイドは安定して低抵抗にならず、一般的には電気抵抗が非常に高くなり、製造条件により電気抵抗のばらつきが大きく、また、熱電材料で重要な低温から中温域の温度で電気抵抗が大きく変動するため、熱電変換材料として用いることができなかった。
Here, elements such as Sb and Bi used as dopants in the thermoelectric conversion material described above correspond to chemical substances specified by, for example, the chemical substance management promotion method (PRTR method), and therefore, it is necessary to strictly manage them. And handling was very complicated. In addition, since other dopant elements such as Al may be deteriorated by oxidation of the dopant element, the handling becomes complicated and there is a problem of oxidation during production.
However, without the addition of a dopant element, magnesium silicide does not have a stable and low resistance, and generally has a very high electrical resistance, a large variation in electrical resistance depending on manufacturing conditions, and is important for thermoelectric materials. Since the electric resistance greatly fluctuates from a low temperature to a middle temperature, it could not be used as a thermoelectric conversion material.
 この発明は、前述した事情に鑑みてなされたものであって、取り扱いが煩雑なドーパント元素を添加することなく電気抵抗値を低く抑えることができ、熱電特性に優れた熱電変換材料、これを用いた熱電変換素子、熱電変換モジュール、及び、この熱電変換材料の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and can reduce the electric resistance value without adding a dopant element that is complicated to handle, and uses a thermoelectric conversion material excellent in thermoelectric characteristics. It is an object of the present invention to provide a thermoelectric conversion element, a thermoelectric conversion module, and a method for manufacturing the thermoelectric conversion material.
 上記課題を解決するために、本発明の熱電変換材料は、ノンドープのマグネシウム系化合物の焼結体からなる熱電変換材料であって、電気抵抗値が1.0×10-4Ω・m以下とされていることを特徴としている。 In order to solve the above problems, the thermoelectric conversion material of the present invention is a thermoelectric conversion material made of a sintered body of a non-doped magnesium-based compound and has an electric resistance value of 1.0 × 10 −4 Ω · m or less. It is characterized by being.
 本発明のノンドープのマグネシウム系化合物の焼結体からなる熱電変換材料は、Sb、Bi、Al等の金属元素のドーパントを意図的に添加することなく、電気抵抗値を1.0×10-4Ω・m以下と低くし、高いパワーファクター(PF)及び無次元性能指数(ZT)を有する熱電変換材料である。また、本発明の熱電変換材料は、特に、室温から300℃程度の比較的低温領域での熱電特性に優れている。 The thermoelectric conversion material comprising the sintered body of the non-doped magnesium compound of the present invention has an electrical resistance value of 1.0 × 10 −4 without intentionally adding a dopant of a metal element such as Sb, Bi, or Al. It is a thermoelectric conversion material having a low power of Ω · m or less and a high power factor (PF) and dimensionless figure of merit (ZT). The thermoelectric conversion material of the present invention is particularly excellent in thermoelectric characteristics in a relatively low temperature region from room temperature to about 300 ° C.
 ここで、本発明の熱電変換材料においては、前記マグネシウム系化合物が、MgSi系化合物、MgSn系化合物、MgSiSn系化合物、MgSiGe系化合物から選択される1種又は2種以上であることが好ましい。
 この場合、前記マグネシウム系化合物がMgSi系化合物、MgSn系化合物、MgSiSn系化合物、MgSiGe系化合物から選択される1種又は2種以上であるので、さらに熱電特性に優れた熱電変換材料を得ることができる。
Here, in the thermoelectric conversion material of the present invention, the magnesium compound is preferably one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds.
In this case, since the magnesium compound is one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds, it is possible to obtain a thermoelectric conversion material having further excellent thermoelectric characteristics. it can.
 また、本発明の熱電変換材料は、n型であることを特徴とする
 この場合、取り扱いが困難なSb、Bi、Al等の金属元素のドーパントを意図的に添加することなく、n型の熱電変換材料とすることができる。
Further, the thermoelectric conversion material of the present invention is characterized by being n-type. In this case, n-type thermoelectric power can be used without intentionally adding a dopant of a metal element such as Sb, Bi, or Al, which is difficult to handle. It can be a conversion material.
 本発明の熱電変換素子は、上述の熱電変換材料と、前記熱電変換材料の一方の面および対向する他方の面にそれぞれ接合された電極と、を備えたことを特徴としている。
 この構成の熱電変換素子によれば、上述した熱電変換材料からなるので、熱電特性に優れた熱電変換素子を得ることができる。
A thermoelectric conversion element of the present invention is characterized by including the above-described thermoelectric conversion material and electrodes bonded to one surface of the thermoelectric conversion material and the other surface facing each other.
According to the thermoelectric conversion element of this structure, since it consists of the thermoelectric conversion material mentioned above, the thermoelectric conversion element excellent in the thermoelectric characteristic can be obtained.
 本発明の熱電変換モジュールは、上述の熱電変換素子と、前記熱電変換素子の前記電極にそれぞれ接合された端子と、を備えたことを特徴としている。
 この構成の熱電変換モジュールによれば、上述した熱電変換材料からなる熱電変換素子を備えているので、熱電特性に優れた熱電変換モジュールを得ることができる。
The thermoelectric conversion module of the present invention is characterized by including the above-described thermoelectric conversion element and terminals respectively joined to the electrodes of the thermoelectric conversion element.
According to the thermoelectric conversion module having this configuration, since the thermoelectric conversion element made of the thermoelectric conversion material described above is provided, a thermoelectric conversion module having excellent thermoelectric characteristics can be obtained.
 本発明の熱電変換材料の製造方法は、上述の熱電変換材料を製造する熱電変換材料の製造方法であって、ノンドープのマグネシウム系化合物粉に、シリコン酸化物粉を混合して焼結原料粉を得る焼結原料粉形成工程と、前記焼結原料粉を加圧しながら加熱して焼結体を形成する焼結工程と、を備えていることを特徴としている。 The manufacturing method of the thermoelectric conversion material of the present invention is a manufacturing method of the thermoelectric conversion material for manufacturing the above-described thermoelectric conversion material, in which silicon oxide powder is mixed with non-doped magnesium-based compound powder and sintered raw material powder is mixed. It is characterized by comprising a sintered raw material powder forming step to be obtained and a sintering step in which the sintered raw material powder is heated while being pressed to form a sintered body.
 この構成の熱電変換材料の製造方法によれば、ノンドープのマグネシウム系化合物粉、すなわち、意図的にドーパントが添加されていないマグネシウム系化合物粉に、シリコン酸化物粉を混合して焼結原料粉を得る焼結原料粉形成工程を備えているので、シリコン酸化物を添加することで、ドーパント元素を添加しなくても、マグネシウム系化合物の焼結体の電気抵抗値を低く抑えることが可能となる。よって、上述した熱電変換材料を製造することができる。
 また、シリコン酸化物は、化学的に安定な物質であることから、製造時におけるシリコン酸化物の取扱いが容易であり、熱電変換材料を効率良く製造することが可能となる。
According to the method for producing a thermoelectric conversion material having this configuration, non-doped magnesium compound powder, that is, magnesium compound powder to which no dopant is intentionally added, is mixed with silicon oxide powder to obtain sintered raw material powder. Since it has a sintering raw material powder forming step to be obtained, it becomes possible to keep the electrical resistance value of the sintered body of the magnesium-based compound low by adding silicon oxide without adding a dopant element. . Therefore, the thermoelectric conversion material mentioned above can be manufactured.
Further, since silicon oxide is a chemically stable substance, it is easy to handle silicon oxide at the time of manufacture, and it becomes possible to efficiently manufacture a thermoelectric conversion material.
 ここで、本発明の熱電変換材料の製造方法においては、前記焼結原料粉形成工程における前記シリコン酸化物粉の添加量が0.1mass%以上10.0mass%以下の範囲内とされていることが好ましい。
 この場合、前記シリコン酸化物粉の添加量が0.1mass%以上10.0mass%以下の範囲内とされているので、マグネシウム系化合物の焼結体の電気抵抗値を確実に低下させることができる。
Here, in the manufacturing method of the thermoelectric conversion material of the present invention, the amount of the silicon oxide powder added in the sintering raw material powder forming step is in the range of 0.1 mass% to 10.0 mass%. Is preferred.
In this case, since the addition amount of the silicon oxide powder is in the range of 0.1 mass% or more and 10.0 mass% or less, the electrical resistance value of the magnesium compound sintered body can be reliably reduced. .
 本発明によれば、取り扱いが煩雑なドーパント元素を添加することなく、電気抵抗値を低く抑えることができ、熱電特性に優れた熱電変換材料、これを用いた熱電変換素子、熱電変換モジュール、及び、この熱電変換材料の製造方法を提供することが可能となる。 According to the present invention, without adding a dopant element that is complicated to handle, the electric resistance value can be kept low, and a thermoelectric conversion material excellent in thermoelectric characteristics, a thermoelectric conversion element using the thermoelectric conversion element, a thermoelectric conversion module, and It is possible to provide a method for producing the thermoelectric conversion material.
本発明の一実施形態である熱電変換材料およびこれを用いた熱電変換素子、及び、熱電変換モジュールを示す断面図である。It is sectional drawing which shows the thermoelectric conversion material which is one Embodiment of this invention, a thermoelectric conversion element using the same, and a thermoelectric conversion module. 本発明の一実施形態である熱電変換材料の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the thermoelectric conversion material which is one Embodiment of this invention. 図2に示す熱電変換材料の製造方法で用いられる焼結装置の一例を示す断面図である。It is sectional drawing which shows an example of the sintering apparatus used with the manufacturing method of the thermoelectric conversion material shown in FIG.
 以下に、本発明の一実施形態である熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法について、添付した図面を参照して説明する。
 なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, a thermoelectric conversion material, a thermoelectric conversion element, a thermoelectric conversion module, and a method of manufacturing a thermoelectric conversion material according to an embodiment of the present invention will be described with reference to the accompanying drawings.
Each embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience. Not necessarily.
 図1に、本発明の実施形態である熱電変換材料11、この熱電変換材料11を用いた熱電変換素子10、及び、熱電変換モジュール1を示す。
 図1に示す熱電変換モジュール1は、本実施形態である熱電変換材料11と、この熱電変換材料11の一方の面11aおよびこれに対向する他方の面11bに形成された電極12a,12bと、この電極12a,12bに接続された端子13a,13bと、を備えている。
 なお、熱電変換材料11と電極12a,12bとを備えたものが、熱電変換素子10となる。
In FIG. 1, the thermoelectric conversion material 11 which is embodiment of this invention, the thermoelectric conversion element 10 using this thermoelectric conversion material 11, and the thermoelectric conversion module 1 are shown.
A thermoelectric conversion module 1 shown in FIG. 1 includes a thermoelectric conversion material 11 according to the present embodiment, electrodes 12a and 12b formed on one surface 11a of the thermoelectric conversion material 11 and the other surface 11b opposite to the surface 11a. And terminals 13a and 13b connected to the electrodes 12a and 12b.
A thermoelectric conversion element 10 includes the thermoelectric conversion material 11 and the electrodes 12a and 12b.
 電極12a,12bは、ニッケル、銀、コバルト、タングステン、モリブデン等が用いられる。電極12a,12bは、通電焼結、めっき、電着等によって形成することができる。
 端子13a,13bは、導電性に優れた金属材料、例えば、銅やアルミニウムなどの板材から形成されている。本実施形態では、アルミニウムの圧延板を用いている。また、熱電変換素子10の電極12a,12bと、端子13a,13bとは、Agろう、Agめっき等によって接合することができる。
The electrodes 12a and 12b are made of nickel, silver, cobalt, tungsten, molybdenum or the like. The electrodes 12a and 12b can be formed by current sintering, plating, electrodeposition, or the like.
The terminals 13a and 13b are formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In this embodiment, an aluminum rolled plate is used. The electrodes 12a and 12b of the thermoelectric conversion element 10 and the terminals 13a and 13b can be joined by Ag brazing, Ag plating, or the like.
 本実施形態における熱電変換材料11は、マグネシウム系化合物の焼結体で構成されている。
 ここで、焼結体を構成するマグネシウム系化合物としては、MgSi系化合物、MgSn系化合物、MgSiSn系化合物、MgSiGe系化合物から選択される1種又は2種以上であることが好ましい。
 なお、本実施形態においては、焼結体を構成する化合物は、マグネシウムシリサイド(MgSi)とされている。
The thermoelectric conversion material 11 in the present embodiment is composed of a magnesium compound sintered body.
Here, the magnesium compound constituting the sintered body is preferably one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds.
In the present embodiment, the compound constituting the sintered body is magnesium silicide (Mg 2 Si).
 本実施形態である熱電変換材料11においては、ノンドープの熱電変換材料であり、100℃以上550℃以下の温度範囲で電気抵抗値が1.0×10-4Ω・m以下とされている。なお、100℃以上550℃以下の温度範囲での熱電変換材料11の電気抵抗値は、6.0×10-5Ω・m以下であることが好ましい。
 100℃以上550℃以下の温度範囲での熱電変換材料11の電気抵抗値の下限値は1.0×10-5Ω・mであることが好ましい。
 また、本実施形態である熱電変換材料11は、電子がキャリアとなるn型の熱電変換材料とされている。
The thermoelectric conversion material 11 according to the present embodiment is a non-doped thermoelectric conversion material and has an electric resistance value of 1.0 × 10 −4 Ω · m or less in a temperature range of 100 ° C. to 550 ° C. The electric resistance value of the thermoelectric conversion material 11 in the temperature range of 100 ° C. or more and 550 ° C. or less is preferably 6.0 × 10 −5 Ω · m or less.
The lower limit value of the electric resistance value of the thermoelectric conversion material 11 in the temperature range of 100 ° C. or higher and 550 ° C. or lower is preferably 1.0 × 10 −5 Ω · m.
Further, the thermoelectric conversion material 11 according to the present embodiment is an n-type thermoelectric conversion material in which electrons are carriers.
 ここで、ノンドープとは意図的に金属元素のドーパントが添加されていないことを意味する。
 しかしながら、不可避不純物として、例えば、Sb、Bi、Al等のドーパント元素が含まれている場合もある。この場合、Sbの含有量が0.001mass%未満、Biの含有量が0.001mass%未満、Alの含有量が0.25mass%以下であることが好ましい。Sb、Bi、Al以外にも、不可避不純物として、Na、K、B、Ga、In、P、As、Cu、Yなどの元素が含まれる場合もあるが、その場合でも、各元素の含有量が0.01mass%以下とすることが好ましい。
Here, the term “non-doped” means that a metal element dopant is not added intentionally.
However, as an unavoidable impurity, for example, a dopant element such as Sb, Bi, or Al may be included. In this case, it is preferable that the Sb content is less than 0.001 mass%, the Bi content is less than 0.001 mass%, and the Al content is 0.25 mass% or less. In addition to Sb, Bi, and Al, elements such as Na, K, B, Ga, In, P, As, Cu, and Y may be included as inevitable impurities, but even in that case, the content of each element Is preferably 0.01 mass% or less.
 そして、本実施形態における熱電変換材料11においては、電気抵抗値が1.0×10-4Ω・m以下とされているので、不可避不純物として混入していたドーパント元素が非常に少ないにもかかわらず、電気抵抗値が十分に低く抑制されているのである。
 ここで、本実施形態では、シリコン酸化物を添加することによって、電気抵抗値を低く抑制している。添加されたシリコン酸化物を構成する酸素は、焼結中にマグネシウム系化合物のMgと反応して酸化マグネシウムを形成し、一方、シリコン酸化物を構成しているSiはマグネシウム系化合物粒界へ偏析して界面のダングリングボンドを形成して抵抗を低減させる、あるいは、Mg化合物中へ拡散して、Mgの格子サイトに入り、電子を放出して電気抵抗を下げていると考えている。なお、添加したシリコン酸化物のうち、未反応のシリコン酸化物が熱電変換材料11に含有されている場合もある。
In the thermoelectric conversion material 11 in this embodiment, since the electric resistance value is 1.0 × 10 −4 Ω · m or less, the dopant element mixed as an unavoidable impurity is very small. Therefore, the electrical resistance value is suppressed to be sufficiently low.
Here, in this embodiment, the electrical resistance value is suppressed low by adding silicon oxide. Oxygen constituting the added silicon oxide reacts with the magnesium compound Mg during sintering to form magnesium oxide, while Si constituting the silicon oxide segregates to the magnesium compound grain boundary. It is considered that dangling bonds at the interface are formed to reduce the resistance, or diffuse into the Mg compound and enter the Mg lattice sites to emit electrons and lower the electrical resistance. Of the added silicon oxide, unreacted silicon oxide may be contained in the thermoelectric conversion material 11.
 以下に、上述した本実施形態である熱電変換材料11の製造方法の一例について、図2及び図3を参照して説明する。 Hereinafter, an example of a method for manufacturing the thermoelectric conversion material 11 according to the present embodiment described above will be described with reference to FIGS. 2 and 3.
(マグネシウム系化合物粉末準備工程S01)
 まず、熱電変換材料11である焼結体の母相となるノンドープのマグネシウム系化合物(マグネシウムシリサイド)の粉を製造する。
 本実施形態では、マグネシウム系化合物粉準備工程S01は、ノンドープのマグネシウム系化合物(マグネシウムシリサイド)のインゴットを得るマグネシウム系化合物インゴット形成工程S11と、このマグネシウム系化合物インゴット(マグネシウムシリサイド)を粉砕してマグネシウム系化合物粉とする粉砕工程S12と、を備えている。
(Magnesium compound powder preparation step S01)
First, powder of a non-doped magnesium-based compound (magnesium silicide) serving as a parent phase of a sintered body that is the thermoelectric conversion material 11 is manufactured.
In this embodiment, the magnesium-based compound powder preparation step S01 includes a magnesium-based compound ingot forming step S11 for obtaining an ingot of a non-doped magnesium-based compound (magnesium silicide), and pulverizing the magnesium-based compound ingot (magnesium silicide) to form magnesium. And a pulverizing step S12 to make a system compound powder.
 マグネシウム系化合物インゴット形成工程S11においては、溶解原料粉末を計量して混合する。本実施形態では、マグネシウム系化合物がマグネシウムシリサイドとされているので、溶解原料は、シリコン粒及びマグネシウム粒となる。
 なお、本実施形態では、シリコン粒及びマグネシウム粒においては、Sbの含有量を0.001mass%未満、Biの含有量を0.001mass%未満、Alの含有量を0.25mass%以下とすることが好ましく、Na、K、B、Ga、In、P、As、Cu、Yの各元素の含有量を0.01mass%以下とすることが、さらに好ましい。
In the magnesium-based compound ingot forming step S11, the dissolved raw material powder is weighed and mixed. In this embodiment, since the magnesium-based compound is magnesium silicide, the melting raw material is silicon grains and magnesium grains.
In the present embodiment, in the silicon grains and magnesium grains, the Sb content is less than 0.001 mass%, the Bi content is less than 0.001 mass%, and the Al content is 0.25 mass% or less. It is preferable that the content of each element of Na, K, B, Ga, In, P, As, Cu, and Y be 0.01 mass% or less.
 そして、この混合物を、雰囲気溶解炉内の坩堝に装入して溶解し、その後、冷却して固化させる。これにより、マグネシウム系化合物(マグネシウムシリサイド)のインゴットが製造される。
 なお、加熱時に少量のマグネシウムが昇華することから、原料の計量時にMg:Si=2:1の化学量論組成に対して例えば5at%ほどマグネシウムを多く入れることが好ましい。
Then, this mixture is charged into a crucible in an atmosphere melting furnace and melted, and then cooled and solidified. Thereby, the ingot of a magnesium type compound (magnesium silicide) is manufactured.
In addition, since a small amount of magnesium is sublimated during heating, it is preferable to add a large amount of magnesium, for example, about 5 at% with respect to the stoichiometric composition of Mg: Si = 2: 1 when the raw materials are weighed.
 粉砕工程S12においては、得られたマグネシウム系化合物(マグネシウムシリサイド)のインゴットを、粉砕機によって粉砕し、マグネシウム系化合物粉(マグネシウムシリサイド粉)を形成する(粉砕工程S12)。
 なお、マグネシウム系化合物粉(マグネシウムシリサイド粉)の平均粒径を、0.5μm以上100μm以下の範囲内とすることが好ましく、1μm以上75μm以下の範囲内とすることがさらに好ましい。
In the pulverization step S12, the obtained magnesium-based compound (magnesium silicide) ingot is pulverized by a pulverizer to form magnesium-based compound powder (magnesium silicide powder) (pulverization step S12).
The average particle size of the magnesium-based compound powder (magnesium silicide powder) is preferably in the range of 0.5 μm to 100 μm, and more preferably in the range of 1 μm to 75 μm.
 なお、市販のノンドープのマグネシウム系化合物粉(マグネシウムシリサイド粉)を使用する場合には、上述のマグネシウム系化合物インゴット形成工程S11および粉砕工程S12を省略することもできる。 In addition, when using a commercially available non-doped magnesium compound powder (magnesium silicide powder), the magnesium compound ingot forming step S11 and the pulverizing step S12 can be omitted.
(焼結原料粉形成工程S02)
 次に、得られたマグネシウム系化合物粉(マグネシウムシリサイド粉)に、シリコン酸化物粉を混合し、焼結原料粉を得る。
 ここで、シリコン酸化物粉の添加量は、0.1mass%以上10.0mass%以下の範囲内とすることが好ましく、0.3mass%以上5.0mass%以下の範囲内とすることがより好ましい。
 また、シリコン酸化物粉の平均粒径は、0.1μm以上100μm以下の範囲内とすることが好ましく、0.5μm以上50μm以下の範囲内とすることがさらに好ましい。
 さらに、添加するシリコン酸化物はSiOx(X=1~2)であるとよい。さらに、添加するシリコン酸化物は非晶質、結晶質のいずれでもよい。
(Sintering raw material powder forming step S02)
Next, silicon oxide powder is mixed with the obtained magnesium-based compound powder (magnesium silicide powder) to obtain sintered raw material powder.
Here, the amount of silicon oxide powder added is preferably in the range of 0.1 mass% to 10.0 mass%, and more preferably in the range of 0.3 mass% to 5.0 mass%. .
The average particle diameter of the silicon oxide powder is preferably in the range of 0.1 μm to 100 μm, and more preferably in the range of 0.5 μm to 50 μm.
Further, the silicon oxide to be added is preferably SiOx (X = 1 to 2). Furthermore, the silicon oxide to be added may be either amorphous or crystalline.
(焼結工程S03)
 次に、上述のようにして得られた焼結原料粉を、加圧しながら加熱して焼結体を得る。
 本実施形態では、焼結工程S03において、図3に示す焼結装置(通電焼結装置100)を用いている。
(Sintering step S03)
Next, the sintered raw material powder obtained as described above is heated while being pressed to obtain a sintered body.
In the present embodiment, the sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 is used in the sintering step S03.
 図3に示す焼結装置(通電焼結装置100)は、例えば、耐圧筐体101と、この耐圧筐体101の内部を減圧する真空ポンプ102と、耐圧筐体101内に配された中空筒形のカーボンモールド103と、カーボンモールド103内に充填された焼結原料粉Qを加圧しつつ電流を印加する一対の電極部105a,105bと、この一対の電極部105a,105b間に電圧を印加する電源装置106とを備えている。また電極部105a,105bと焼結原料粉Qとの間には、カーボン板107、カーボンシート108がそれぞれ配される。これ以外にも、図示せぬ温度計、変位計などを有している。 The sintering apparatus (electric current sintering apparatus 100) shown in FIG. 3 includes, for example, a pressure-resistant housing 101, a vacuum pump 102 that depressurizes the inside of the pressure-resistant housing 101, and a hollow cylinder disposed in the pressure-resistant housing 101. The carbon mold 103 having a shape, a pair of electrode portions 105a and 105b for applying a current while pressurizing the sintering raw material powder Q filled in the carbon mold 103, and a voltage is applied between the pair of electrode portions 105a and 105b. And a power supply device 106. Further, a carbon plate 107 and a carbon sheet 108 are disposed between the electrode portions 105a and 105b and the sintering raw material powder Q, respectively. In addition to this, a thermometer, a displacement meter, etc. (not shown) are provided.
 また、本実施形態においては、カーボンモールド103の外周側にヒーター109が配設されている。ヒーター109は、カーボンモールド103の外周側の全面を覆うように四つの側面に配置されている。ヒーター109としては、カーボンヒーターやニクロム線ヒーター、モリブデンヒーター、カンタル線ヒーター、高周波ヒーター等が利用できる。 In this embodiment, the heater 109 is disposed on the outer peripheral side of the carbon mold 103. The heater 109 is disposed on four side surfaces so as to cover the entire outer peripheral side of the carbon mold 103. As the heater 109, a carbon heater, a nichrome wire heater, a molybdenum heater, a Kanthal wire heater, a high frequency heater, or the like can be used.
 焼結工程S03においては、まず、図3に示す通電焼結装置100のカーボンモールド103内に、焼結原料粉Qを充填する。カーボンモールド103は、例えば、内部がグラファイトシートやカーボンシートで覆われている。そして、電源装置106を用いて、一対の電極部105a,105b間に直流電流を流して、焼結原料粉Qに電流を流すことによって自己発熱により昇温する(通電加熱)。また、一対の電極部105a,105bのうち、可動側の電極部105aを焼結原料粉Qに向けて移動させ、固定側の電極部105bとの間で焼結原料粉Qを所定の圧力で加圧する。また、ヒーター109を加熱させる。
 これにより、焼結原料粉末Qの自己発熱及びヒーター109からの熱と、加圧により、焼結原料粉Qを焼結させる。
In the sintering step S03, first, the raw material powder Q is filled into the carbon mold 103 of the electric current sintering apparatus 100 shown in FIG. For example, the carbon mold 103 is covered with a graphite sheet or a carbon sheet. Then, using the power source device 106, a direct current is passed between the pair of electrode portions 105a and 105b, and the current is passed through the sintered raw material powder Q to raise the temperature by self-heating (energization heating). Further, of the pair of electrode portions 105a and 105b, the movable electrode portion 105a is moved toward the sintering raw material powder Q, and the sintering raw material powder Q is moved to a predetermined pressure with the fixed electrode portion 105b. Pressurize. Further, the heater 109 is heated.
As a result, the sintered raw material powder Q is sintered by self-heating of the sintered raw material powder Q, heat from the heater 109, and pressurization.
 本実施形態においては、焼結工程S03における焼結条件は、焼結原料粉Qの加熱温度が850℃以上1030℃以下の範囲内、この加熱温度での保持時間が0分以上3分以下の範囲内とされている。また、加圧荷重が15MPa以上60MPa以下の範囲内とされている。
 また、耐圧筐体101内の雰囲気はアルゴン雰囲気などの不活性雰囲気や真空雰囲気とするとよい。真空雰囲気とする場合は、圧力5Pa以下とするとよい。
In the present embodiment, the sintering condition in the sintering step S03 is that the heating temperature of the sintering raw material powder Q is in the range of 850 ° C. or more and 1030 ° C. or less, and the holding time at this heating temperature is 0 minute or more and 3 minutes or less. It is within the range. Further, the pressurizing load is in the range of 15 MPa or more and 60 MPa or less.
The atmosphere in the pressure-resistant casing 101 is preferably an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In a vacuum atmosphere, the pressure is preferably 5 Pa or less.
 なお、焼結原料粉の加熱温度の下限は850℃以上であることが好ましい。一方、焼結原料粉の加熱温度の上限は1030℃以下であることが好ましい。
 また、加熱温度での保持時間の下限は0分以上であることが好ましい。一方、加熱温度での保持時間の上限は3分以下であることが好ましい。
 さらに、加圧荷重の下限は15MPa以上であることが好ましい。一方、加圧荷重の上限は60MPa以下であることが好ましい。
In addition, it is preferable that the minimum of the heating temperature of sintering raw material powder is 850 degreeC or more. On the other hand, the upper limit of the heating temperature of the sintered raw material powder is preferably 1030 ° C. or less.
Further, the lower limit of the holding time at the heating temperature is preferably 0 minutes or more. On the other hand, the upper limit of the holding time at the heating temperature is preferably 3 minutes or less.
Furthermore, the lower limit of the pressure load is preferably 15 MPa or more. On the other hand, the upper limit of the pressure load is preferably 60 MPa or less.
 そして、この焼結工程S03においては、焼結原料粉Qに直流電流を流す際に、一方の電極部105aと他方の電極部105bの極性を所定の時間間隔で変更してもよい。すなわち、一方の電極部105aを陽極及び他方の電極部105bを陰極として通電する状態と、一方の電極部105aを陰極及び他方の電極部105bを陽極として通電する状態と、を交互に実施しているのである。本実施形態では、所定の時間間隔を10秒以上300秒以下の範囲内に設定している。なお、所定の時間間隔は、30秒以上120秒以下の範囲内とすることが好ましい。 In the sintering step S03, when a direct current is passed through the sintering raw material powder Q, the polarities of the one electrode portion 105a and the other electrode portion 105b may be changed at predetermined time intervals. That is, the state in which one electrode part 105a is energized with the anode and the other electrode part 105b as the cathode and the state in which one electrode part 105a is energized with the cathode and the other electrode part 105b as the anode are alternately performed. It is. In this embodiment, the predetermined time interval is set within a range of 10 seconds to 300 seconds. The predetermined time interval is preferably in the range of 30 seconds to 120 seconds.
 以上の工程により、本実施形態である熱電変換材料11が製造される。なお、上述のように、シリコン粒及びマグネシウム粒においては、Sbの含有量を0.001mass%未満、Biの含有量を0.001mass%未満、Alの含有量を0.25mass%以下とし、Na、K、B、Ga、In、P、As、Cu、Yの各元素の含有量を0.01mass%以下とし、さらにドーパントを添加していないので、マグネシウム系化合物の焼結体からなる熱電変換材料においても、Sbの含有量が0.001mass%未満、Biの含有量が0.001mass%未満、Alの含有量が0.25mass%以下とし、Na、K、B、Ga、In、P、As、Cu、Yの各元素の含有量が0.01mass%以下となる。 The thermoelectric conversion material 11 which is this embodiment is manufactured according to the above process. As described above, in the silicon grains and magnesium grains, the Sb content is less than 0.001 mass%, the Bi content is less than 0.001 mass%, the Al content is 0.25 mass% or less, and Na , K, B, Ga, In, P, As, Cu, and Y, the content of each element is 0.01 mass% or less, and since no dopant is added, thermoelectric conversion comprising a sintered body of a magnesium-based compound Also in the material, the Sb content is less than 0.001 mass%, the Bi content is less than 0.001 mass%, the Al content is 0.25 mass% or less, and Na, K, B, Ga, In, P, Content of each element of As, Cu, and Y will be 0.01 mass% or less.
 以上のような構成とされた本実施形態である熱電変換材料11によれば、ドーパント元素、特に、取り扱いが困難なSb,Bi,Alをドーパント元素として使用しておらず、比較的容易に製造することができる。
 また、電気抵抗値が1.0×10-4Ω・m以下と低く抑えられているので、パワーファクター(PF)及び無次元性能指数(ZT)が高くなり、熱電特性に優れている。
According to the thermoelectric conversion material 11 of the present embodiment configured as described above, a dopant element, in particular, Sb, Bi, Al, which is difficult to handle, is not used as a dopant element, and it is relatively easy to manufacture. can do.
In addition, since the electrical resistance value is kept low at 1.0 × 10 −4 Ω · m or less, the power factor (PF) and the dimensionless figure of merit (ZT) are high, and the thermoelectric characteristics are excellent.
 さらに、本実施形態によれば、熱電変換材料11を構成するマグネシウム系化合物が、MgSi系化合物、MgSn系化合物、MgSiSn系化合物、MgSiGe系化合物から選択される1種又は2種以上とされているので、さらに熱電特性に優れた熱電変換材料11を得ることができる。 Furthermore, according to the present embodiment, the magnesium compound constituting the thermoelectric conversion material 11 is one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds. Therefore, the thermoelectric conversion material 11 having further excellent thermoelectric characteristics can be obtained.
 また、本実施形態の熱電変換材料11によれば、取り扱いが困難なSb、Bi、Al等の金属元素のドーパントを意図的に添加することなく、n型の熱電変換材料とすることができる。 Further, according to the thermoelectric conversion material 11 of the present embodiment, an n-type thermoelectric conversion material can be obtained without intentionally adding a dopant of a metal element such as Sb, Bi, or Al that is difficult to handle.
 また、本実施形態である熱電変換材料の製造方法によれば、ノンドープのマグネシウム系化合物粉(マグネシウムシリサイド粉)に、シリコン酸化物粉を混合して焼結原料粉を得る焼結原料粉形成工程S02と、この焼結原料粉Qを加圧しながら加熱して焼結体を形成する焼結工程S03と、を備えているので、上述の本実施形態である熱電変換材料11を製造することができる。 Moreover, according to the method for manufacturing a thermoelectric conversion material according to the present embodiment, a sintering raw material powder forming step of obtaining a sintering raw material powder by mixing silicon oxide powder with non-doped magnesium-based compound powder (magnesium silicide powder). Since S02 and the sintering step S03 in which the sintered raw material powder Q is heated while being pressed to form a sintered body, the thermoelectric conversion material 11 according to the present embodiment described above can be manufactured. it can.
 さらに、本実施形態においては、シリコン酸化物を添加することにより、ドーパント元素を添加しなくても、マグネシウム系化合物(マグネシウムシリサイド)の焼結体の電気抵抗値を低く抑えることが可能となる。
また、シリコン酸化物は、比較的安定な物質であることから、製造時における取扱いが容易であり、効率良く熱電変換材料11を製造することができる。
Furthermore, in this embodiment, by adding silicon oxide, it is possible to keep the electrical resistance value of the sintered body of the magnesium compound (magnesium silicide) low without adding a dopant element.
Further, since silicon oxide is a relatively stable substance, it can be easily handled during production, and the thermoelectric conversion material 11 can be produced efficiently.
 本実施形態である熱電変換素子10、及び、熱電変換モジュール1は、上述の熱電変換材料11を備えているので、熱電特性に優れている。よって、熱電変換効率に優れた熱電変換装置を構成することが可能となる。 Since the thermoelectric conversion element 10 and the thermoelectric conversion module 1 according to the present embodiment include the thermoelectric conversion material 11 described above, the thermoelectric characteristics are excellent. Therefore, it is possible to configure a thermoelectric conversion device having excellent thermoelectric conversion efficiency.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、図1に示すような構造の熱電変換素子及び熱電変換モジュールを構成するものとして説明したが、これに限定されることはなく、本発明の熱電変換材料を用いていれば、電極や端子の構造及び配置等に特に制限はない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in this embodiment, although it demonstrated as what comprises the thermoelectric conversion element and thermoelectric conversion module of a structure as shown in FIG. 1, it is not limited to this, The thermoelectric conversion material of this invention may be used. For example, the structure and arrangement of the electrodes and terminals are not particularly limited.
 また、本実施形態では、焼結体を構成するマグネシウム系化合物をマグネシウムシリサイド(MgSi)として説明したが、これに限定されることはなく、熱電特性を有するものであれば、その他の組成のマグネシウム系化合物であってもよい。
 例えば、MgSi系化合物、MgSn系化合物、MgSiSn系化合物、MgSiGe系化合物から選択される1種又は2種以上に、所定のシリコン酸化物を添加して、ノンドープの焼結体を構成するマグネシウム系化合物を得てもよい。
In the present embodiment, the magnesium-based compound constituting the sintered body has been described as magnesium silicide (Mg 2 Si). However, the present invention is not limited to this, and any other composition may be used as long as it has thermoelectric properties. The magnesium-based compound may be used.
For example, a magnesium compound that forms a non-doped sintered body by adding a predetermined silicon oxide to one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds You may get
 以下、本発明の効果を確認すべく実施した実験結果について説明する。 Hereinafter, the results of experiments conducted to confirm the effects of the present invention will be described.
 純度99.9mass%のMg(株式会社高純度化学研究所製、粒状φ6mm×約6mmL)、純度99.999mass%のSi(株式会社高純度化学研究所製、粒状2~5mm)を秤量した。なお、Mgの昇華によるMg:Si=2:1の化学量論組成からのずれを考慮して、Mgを5at%多く混合した。 Mg having a purity of 99.9 mass% (manufactured by Kojundo Chemical Laboratory Co., Ltd., granular φ6 mm × about 6 mmL) and Si having a purity of 99.999 mass% (manufactured by Kojundo Chemical Laboratory Co., Ltd., granular 2 to 5 mm) were weighed. In consideration of the deviation from the stoichiometric composition of Mg: Si = 2: 1 due to Mg sublimation, 5 at% of Mg was mixed.
 秤量した上述の原料粒を、雰囲気溶解炉内の坩堝に装入して溶解し、その後、冷却して固化させた。これにより、マグネシウム系化合物(マグネシウムシリサイド)のインゴットを製造した。
 次に、このインゴットを破砕し、これを分級して平均粒径が30μmのノンドープのマグネシウム系化合物粉(マグネシウムシリサイド粉)を得た。
The above-mentioned raw material particles weighed were charged into a crucible in an atmosphere melting furnace and melted, and then cooled and solidified. This produced the magnesium compound (magnesium silicide) ingot.
Next, the ingot was crushed and classified to obtain a non-doped magnesium-based compound powder (magnesium silicide powder) having an average particle size of 30 μm.
 また、平均粒径が15μmのシリコン酸化物粉(SiO粉)を準備し、マグネシウムシリサイド粉とシリコン酸化物粉とを混合し、焼結原料粉を得た。このとき、表1に示すように、シリコン酸化物粉の含有量を調整した。なお、比較例においては、シリコン酸化物を添加しなかった。 Moreover, silicon oxide powder (SiO 2 powder) having an average particle size of 15 μm was prepared, and magnesium silicide powder and silicon oxide powder were mixed to obtain sintered raw material powder. At this time, as shown in Table 1, the content of silicon oxide powder was adjusted. In the comparative example, no silicon oxide was added.
 得られた焼結原料粉をカーボンシートで内側を覆ったカーボンモールドに充填した。そして、図3に示す焼結装置(通電焼結装置100)によって通電焼結した。なお、通電焼結条件は、雰囲気:真空(5Pa以下)、焼結温度:940℃、焼結温度における保持時間:30秒、加圧荷重:40MPaとした。
 このようにして、本発明例及び比較例の熱電変換材料を得た。
The obtained sintered raw material powder was filled into a carbon mold whose inside was covered with a carbon sheet. Then, current sintering was performed by a sintering apparatus (electric current sintering apparatus 100) shown in FIG. The current sintering conditions were as follows: atmosphere: vacuum (5 Pa or less), sintering temperature: 940 ° C., holding time at sintering temperature: 30 seconds, and pressure load: 40 MPa.
Thus, the thermoelectric conversion material of this invention example and the comparative example was obtained.
 得られた熱電変換材料について、Sb、Bi、Al、Na、K、B、Ga、In、P、As、Cu、Yの含有量、電気抵抗値(R)、ゼーベック係数(S)、パワーファクター(PF)、熱伝導率(κ)、無次元性能指数(ZT)について評価した。 About the obtained thermoelectric conversion material, Sb, Bi, Al, Na, K, B, Ga, In, P, As, Cu, Y content, electric resistance (R), Seebeck coefficient (S), power factor (PF), thermal conductivity (κ), dimensionless figure of merit (ZT) were evaluated.
 各元素の含有量は、セイコーインスツルメンツ製SPS3500を用いて、高周波誘導結合プラズマ発光分光分析法によって測定した。評価結果を表1に示す。 The content of each element was measured by high frequency inductively coupled plasma emission spectrometry using an SPS3500 manufactured by Seiko Instruments. The evaluation results are shown in Table 1.
 電気抵抗値Rとゼーベック係数Sは、アドバンス理工製ZEM-3によって測定した。測定は、100℃,200℃,300℃,400℃,500℃,550℃で実施した。
パワーファクター(PF)は、以下の(1)式から求めた。
   PF=S/R・・・(1)
  但し、S:ゼーベック係数(V/K)、R:電気抵抗値(Ω・m)
The electrical resistance value R and the Seebeck coefficient S were measured with ZEM-3 manufactured by Advance Riko. The measurement was performed at 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, and 550 ° C.
The power factor (PF) was obtained from the following equation (1).
PF = S 2 / R (1)
Where S: Seebeck coefficient (V / K), R: electrical resistance (Ω · m)
 熱伝導率κは、熱拡散率×密度×比熱容量から求めた。熱拡散率は熱定数測定装置(真空理工製TC-7000型)、密度はアルキメデス法、比熱は示差走査熱量計(パーキンエルマー製DSC-7型)を用いてそれぞれ測定を行った。測定は、100℃,200℃,300℃,400℃,500℃,550℃で実施した。
無次元性能指数(ZT)は、以下の(2)式から求めた。
    ZT=SσT/κ・・・(2)
  但し、T=絶対温度(K)、κ=熱伝導率(W/(m×K))
 評価結果を表2~6に示す。
The thermal conductivity κ was determined from thermal diffusivity × density × specific heat capacity. The thermal diffusivity was measured using a thermal constant measuring device (TC-7000 model manufactured by Vacuum Riko), the density was measured using Archimedes method, and the specific heat was measured using a differential scanning calorimeter (DSC-7 model manufactured by PerkinElmer). The measurement was performed at 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, and 550 ° C.
The dimensionless figure of merit (ZT) was obtained from the following equation (2).
ZT = S 2 σT / κ (2)
Where T = absolute temperature (K), κ = thermal conductivity (W / (m × K))
The evaluation results are shown in Tables 2-6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 シリコン酸化物を添加しなかった比較例においては、ドーパント元素を含有しておらず、電気抵抗値Rが非常に高くなった。また、ゼーベック係数Sは相対的に値が安定せず、パワーファクター(PF)が低くなり、無次元性能指数ZTも低く、熱電特性に劣っていることが確認される。
 シリコン酸化物を添加した本発明例においては、ドーパント元素を含有しなくても電気抵抗値Rが十分に低くなった。また、ゼーベック係数Sも安定しており、パワーファクター(PF)も十分に高く、かつ、無次元性能指数ZTも十分に高く、熱電特性も優れていることが確認される。
In the comparative example in which no silicon oxide was added, the dopant element was not contained, and the electric resistance value R was very high. Further, the value of the Seebeck coefficient S is relatively unstable, the power factor (PF) is low, the dimensionless figure of merit ZT is also low, and it is confirmed that the thermoelectric characteristics are inferior.
In the example of the present invention to which silicon oxide was added, the electric resistance value R was sufficiently low even without containing a dopant element. It is also confirmed that the Seebeck coefficient S is stable, the power factor (PF) is sufficiently high, the dimensionless figure of merit ZT is sufficiently high, and the thermoelectric characteristics are excellent.
 以上のことから、本発明例によれば、取り扱いが煩雑なドーパント元素を添加することなく電気抵抗値を低く抑えることができ、熱電特性に優れた熱電変換材料を提供可能であることが確認された。 From the above, according to the examples of the present invention, it was confirmed that the electrical resistance value can be kept low without adding a dopant element that is complicated to handle, and it is possible to provide a thermoelectric conversion material having excellent thermoelectric properties. It was.

Claims (7)

  1. ノンドープのマグネシウム系化合物の焼結体からなる熱電変換材料であって、
    電気抵抗値が1.0×10-4Ω・m以下とされていることを特徴とする熱電変換材料。
    A thermoelectric conversion material comprising a sintered body of a non-doped magnesium-based compound,
    A thermoelectric conversion material having an electric resistance value of 1.0 × 10 −4 Ω · m or less.
  2. 前記マグネシウム系化合物が、MgSi系化合物、MgSn系化合物、MgSiSn系化合物、MgSiGe系化合物から選択される1種又は2種以上であることを特徴とする請求項1に記載の熱電変換材料。 The thermoelectric conversion material according to claim 1, wherein the magnesium compound is one or more selected from MgSi compounds, MgSn compounds, MgSiSn compounds, and MgSiGe compounds.
  3. n型であることを特徴とする請求項1又は請求項2に記載の熱電変換材料。 The thermoelectric conversion material according to claim 1 or 2, wherein the thermoelectric conversion material is n-type.
  4.  請求項1から請求項3のいずれか一項に記載の熱電変換材料と、前記熱電変換材料の一方の面および対向する他方の面にそれぞれ接合された電極と、を備えたことを特徴とする熱電変換素子。 A thermoelectric conversion material according to any one of claims 1 to 3, and an electrode bonded to one surface of the thermoelectric conversion material and the other surface facing each other. Thermoelectric conversion element.
  5.  請求項4に記載の熱電変換素子と、前記熱電変換素子の前記電極にそれぞれ接合された端子と、を備えたことを特徴とする熱電変換モジュール。 A thermoelectric conversion module comprising: the thermoelectric conversion element according to claim 4; and a terminal joined to each of the electrodes of the thermoelectric conversion element.
  6. 請求項1から請求項3のいずれか一項に記載の熱電変換材料を製造する熱電変換材料の製造方法であって、
    ノンドープのマグネシウム系化合物粉に、シリコン酸化物粉を混合して焼結原料粉を得る焼結原料粉形成工程と、
    前記焼結原料粉を加圧しながら加熱して焼結体を形成する焼結工程と、
    を備えていることを特徴とする熱電変換材料の製造方法。
    A method for producing a thermoelectric conversion material for producing the thermoelectric conversion material according to any one of claims 1 to 3,
    A sintering raw material powder forming step for obtaining a sintering raw material powder by mixing silicon oxide powder with non-doped magnesium-based compound powder,
    A sintering process in which the sintered raw material powder is heated while being pressed to form a sintered body;
    A method for producing a thermoelectric conversion material, comprising:
  7. 前記焼結原料粉形成工程における前記シリコン酸化物粉の添加量が0.1mass%以上10.0mass%以下の範囲内とされていることを特徴とする請求項6に記載の熱電変換材料の製造方法。 The thermoelectric conversion material according to claim 6, wherein the amount of the silicon oxide powder added in the sintering raw material powder forming step is in a range of 0.1 mass% to 10.0 mass%. Method.
PCT/JP2019/007563 2018-02-27 2019-02-27 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material WO2019168029A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207023203A KR20200124224A (en) 2018-02-27 2019-02-27 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and manufacturing method of thermoelectric conversion material
CN201980014342.XA CN111771290A (en) 2018-02-27 2019-02-27 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
US16/975,268 US11380831B2 (en) 2018-02-27 2019-02-27 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion
EP19761165.0A EP3761381A4 (en) 2018-02-27 2019-02-27 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018033664 2018-02-27
JP2018-033664 2018-02-27
JP2019-022732 2019-02-12
JP2019022732A JP7251187B2 (en) 2018-02-27 2019-02-12 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material

Publications (1)

Publication Number Publication Date
WO2019168029A1 true WO2019168029A1 (en) 2019-09-06

Family

ID=67805353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007563 WO2019168029A1 (en) 2018-02-27 2019-02-27 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material

Country Status (1)

Country Link
WO (1) WO2019168029A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188368A (en) * 2007-03-23 2009-08-20 National Institute For Materials Science Thermoelectric semiconductor composed of magnesium, silicon and tin, and method of manufacturing the same
JP2013179322A (en) 2006-12-20 2013-09-09 Tokyo Univ Of Science Thermoelectric conversion material, production method therefor and thermoelectric conversion element
WO2016052272A1 (en) * 2014-10-03 2016-04-07 株式会社ミツバ P-type thermoelectric material, thermoelectric element and method for producing p-type thermoelectric material
JP2017152691A (en) 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter
WO2018012369A1 (en) * 2016-07-12 2018-01-18 学校法人東京理科大学 Polycrystalline magnesium silicide and use thereof
JP2018033664A (en) 2016-08-31 2018-03-08 セイコーエプソン株式会社 Liquid injection device and liquid injection method
JP2019012828A (en) * 2017-06-29 2019-01-24 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
JP2019022732A (en) 2008-11-27 2019-02-14 株式会社三洋物産 Game machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179322A (en) 2006-12-20 2013-09-09 Tokyo Univ Of Science Thermoelectric conversion material, production method therefor and thermoelectric conversion element
JP2009188368A (en) * 2007-03-23 2009-08-20 National Institute For Materials Science Thermoelectric semiconductor composed of magnesium, silicon and tin, and method of manufacturing the same
JP2019022732A (en) 2008-11-27 2019-02-14 株式会社三洋物産 Game machine
WO2016052272A1 (en) * 2014-10-03 2016-04-07 株式会社ミツバ P-type thermoelectric material, thermoelectric element and method for producing p-type thermoelectric material
JP2017152691A (en) 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter
WO2018012369A1 (en) * 2016-07-12 2018-01-18 学校法人東京理科大学 Polycrystalline magnesium silicide and use thereof
JP2018033664A (en) 2016-08-31 2018-03-08 セイコーエプソン株式会社 Liquid injection device and liquid injection method
JP2019012828A (en) * 2017-06-29 2019-01-24 三菱マテリアル株式会社 Thermoelectric conversion material, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material

Similar Documents

Publication Publication Date Title
US11647674B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
CN102099937A (en) Thermoelectric materials and chalcogenide compounds
CN108780833B (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for producing magnesium-based thermoelectric conversion material
WO2017170914A1 (en) Compound, thermoelectric conversion material, and method for producing compound
JP7251187B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for producing thermoelectric conversion material
JP2017175122A (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material
JP5881066B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6873104B2 (en) Compounds and thermoelectric conversion materials
WO2019168029A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and method for producing thermoelectric conversion material
WO2019163807A1 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JP2019012717A (en) Thermoelectric conversion material, and method of manufacturing thermoelectric conversion material
KR102409289B1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and manufacturing method of magnesium-based thermoelectric conversion material
WO2020137205A1 (en) Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
JP2018157130A (en) Manufacturing method of thermoelectric conversion material
WO2022059593A1 (en) Thermoelectric conversion material, thermoelectric conversion element, peltier element, thermoelectric conversion module, and peltier module
US20230097435A1 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JP2022049670A (en) Thermoelectric conversion material, thermoelectric conversion element, peltier element, thermoelectric conversion module, and peltier module
JP2022050680A (en) Thermoelectric conversion material and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019761165

Country of ref document: EP

Effective date: 20200928