WO2019167913A1 - Transducer, and actuator and energy harvester using same - Google Patents

Transducer, and actuator and energy harvester using same Download PDF

Info

Publication number
WO2019167913A1
WO2019167913A1 PCT/JP2019/007193 JP2019007193W WO2019167913A1 WO 2019167913 A1 WO2019167913 A1 WO 2019167913A1 JP 2019007193 W JP2019007193 W JP 2019007193W WO 2019167913 A1 WO2019167913 A1 WO 2019167913A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
magnet structure
wiring
plane
transducer
Prior art date
Application number
PCT/JP2019/007193
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健一
祥悟 門田
進士 忠彦
範栄 吾妻
Original Assignee
Tdk株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社, 国立大学法人東京工業大学 filed Critical Tdk株式会社
Priority to JP2020503507A priority Critical patent/JP7176701B2/en
Publication of WO2019167913A1 publication Critical patent/WO2019167913A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors

Definitions

  • the present invention relates to a transducer that is an electromagnetic induction device, and more particularly to a transducer that can be used as an actuator or energy harvester capable of two-dimensional operation.
  • Patent Document 1 discloses an actuator that enables two-dimensional operation by arranging magnets in a matrix. Is described. The actuator described in Patent Document 1 realizes a two-dimensional operation by assigning four coils to one magnet and controlling the direction of current flowing through these coils.
  • the actuator described in Patent Document 1 has a problem that it is difficult to reduce the size because four coils are assigned to one magnet. In particular, it is difficult to reduce the size in the thickness direction perpendicular to the drive plane, and it is not suitable for applications that require a low profile, such as a portable device.
  • a linear motor described in Non-Patent Document 1 is known as an actuator that can be reduced in height.
  • the linear motor described in Non-Patent Document 1 only reciprocates in one axis direction and cannot perform a two-dimensional operation.
  • the actuator described in Patent Document 2 has an excellent feature that it can operate two-dimensionally and has a low profile.
  • Non-Patent Document 2 proposes a method of supporting a magnet structure with an elastic hinge obtained by processing silicon into a meander shape.
  • the actuator functions as an energy harvester that generates weak power by applying external force.
  • the actuator is a transducer that converts electricity and force to each other.
  • the actuator described in Patent Document 2 is used as an energy harvester, there is still a problem as to how the circuit board and the magnet structure are relatively slid by an external force.
  • an object of the present invention is to provide a transducer capable of sufficiently securing the amount of displacement in the xy plane direction while keeping the distance between the magnet structure and the circuit board constant, and an actuator and an energy harvester using the transducer. Is to provide.
  • the transducer includes a plurality of first magnets having a north pole as a magnetic pole face located in a first plane extending in a first direction and a second direction orthogonal to the first direction, A circuit board on which a magnet structure including a plurality of second magnets whose magnetic pole faces located on one plane are S poles, and first and second wirings overlapping the first plane of the magnet structure are formed A first sliding mechanism that slides the magnet structure and the circuit board relatively in a first direction, and a second sliding mechanism that slides the magnet structure and the circuit board relatively in a second direction.
  • the magnet structure includes a first arrangement portion in which the first magnet and the second magnet are alternately arranged in the first direction, and the first magnet and the second magnet are alternately arranged in the second direction.
  • first wiring is at least one of the first and second magnets included in the first array portion.
  • second wiring crosses at least a part of the first and second magnets included in the second arrangement portion in the first direction, and the magnet structure and the circuit board. Are magnetically attracted to each other across the first and second sliding mechanisms.
  • the relative two-dimensional operation of the circuit board and the magnet structure can be smoothly performed, and a sufficient amount of displacement is ensured. It becomes possible. Further, since no elastic hinge or the like is used, deformation in the z direction does not occur. Moreover, since the magnet structure and the circuit board are magnetically attracted to each other, it is possible to maintain an integrated state without separating each member during actual use.
  • the first sliding mechanism includes a first microball that can roll in a first direction
  • the second sliding mechanism includes a second microball that can roll in a second direction. It does not matter. According to this, a low profile can be achieved, and the microball does not fall off due to pressurization by magnetic attraction.
  • the transducer according to the present invention further includes a support body on which a first guide groove extending in a first direction and a second guide groove extending in a second direction are formed, and the first microball is It may roll along the first guide groove, and the second microball may roll along the second guide groove. According to this, a smooth two-dimensional operation can be realized by interposing the support body between the magnet structure and the circuit board.
  • a third guide groove extending in the first direction is formed in the magnet structure or the support fixed to the magnet structure, and the second guide is formed in the circuit board or the support fixed to the circuit board.
  • a fourth guide groove extending in the direction is formed, the first microball rolls along the first and third guide grooves, and the second microball is the second and fourth guide grooves. It may be one that rolls along. According to this, a one-dimensional operation in the first direction can be performed between the magnet structure and the support, and a one-dimensional operation in the second direction can be performed between the circuit board and the support.
  • the transducer according to the present invention further includes a soft magnetic body fixed to the circuit board, and the magnet structure and the circuit board are attracted to each other by a magnetic attractive force acting between the magnet structure and the soft magnetic body. It does not matter. According to this, the magnet structure and the circuit board can be magnetically attracted to each other without separately using a permanent magnet in addition to the magnet structure.
  • the circuit board has second and third planes parallel to the first plane, the first wiring is formed on the second plane, and the second wiring is formed on the third plane.
  • the distance between the first plane and the third plane may be larger than the distance between the first plane and the second plane. According to this, since the first wiring is closer to the magnet structure than the second wiring, the driving force in the first direction is increased.
  • the second and third planes may be the front and back of the circuit board. According to this, the first and second wirings can be formed on the circuit board without using the multilayer wiring board.
  • the first sliding mechanism causes the magnet structure and the second sliding mechanism to slide relative to the circuit board in the first direction
  • the second sliding mechanism includes the first sliding mechanism.
  • the magnet structure may be slid relative to the circuit board in the second direction without sliding relative to the circuit board. According to this, since a large driving force is required for driving in the first direction, it is possible to obtain a large driving force by bringing the first wiring closer to the magnet structure.
  • the transducer according to the present invention may further include a drive circuit for supplying a drive current to the first and second wirings.
  • the transducer according to the present invention can be used as an actuator.
  • the driving current per unit sliding amount supplied to the second wiring by the driving circuit may be larger than the driving current per unit sliding amount supplied to the first wiring by the driving circuit. According to this, even if the distance from the magnet structure is farther in the second wiring than in the first wiring, and thus the driving force in the second direction is relatively weak, Driving force can be increased by giving more driving current to the two wirings.
  • the second wiring may have a larger conductor thickness than the first wiring. According to this, when the transducer according to the present invention is used as an actuator, the wiring resistance of the second wiring through which a larger driving current flows can be reduced, and the conductor thickness of the first wiring is thin. The distance between the structure and the second wiring can be further reduced.
  • the transducer according to the present invention may further include a rectification transformer circuit that generates an output voltage based on the induced current flowing in the first and second wirings. According to this, the transducer according to the present invention can be used as an energy harvester.
  • the transducer according to the present invention includes the two sliding mechanisms for guiding the two-dimensional operation, the distance between the magnet structure and the circuit board is kept constant while maintaining the distance in the xy plane direction. A sufficient amount of displacement can be secured.
  • FIG. 1 is a schematic cross-sectional view for explaining the configuration of a transducer 100 according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic exploded perspective view of the transducer 100.
  • FIG. 3 is a schematic plan view of the magnet structure 10 as viewed from the first plane S1 side.
  • FIG. 4 is a cross-sectional view of the circuit board 20 as viewed from the y direction.
  • FIG. 5 is a cross-sectional view of the circuit board 20 according to the modification viewed from the y direction.
  • FIG. 6 is a plan view showing the first wiring 21 extracted.
  • FIG. 7 is a plan view showing the second wiring 22 extracted.
  • FIG. 8 is a diagram for explaining the influence of the current flowing through the first wiring 21 on the magnet structure 10.
  • FIG. 9 is a diagram for explaining the influence of the current flowing through the second wiring 22 on the magnet structure 10.
  • FIG. 10 is a diagram for explaining the direction of the induced current flowing in the first wiring 21 due to the external force applied to the magnet structure 10.
  • FIG. 11 is a diagram for explaining the direction of the induced current flowing in the second wiring 22 due to the external force applied to the magnet structure 10.
  • FIG. 12 is a schematic perspective view for explaining the configuration of the support 40.
  • FIG. 13 is an enlarged view of the support 40.
  • FIG. 14 is a schematic perspective view for explaining the configuration of the support 50.
  • FIG. 15 is an enlarged view of the support 50.
  • FIG. 16 is a schematic perspective view for explaining the configuration of the support body 60.
  • FIG. 17 is an enlarged view of the support body 60.
  • FIG. 18 is a circuit diagram of the drive circuit 70 when the transducer 100 is used as an actuator.
  • FIG. 19 is a cross-sectional view of the circuit board 20 according to the modification viewed from the y direction.
  • FIG. 20 is a block diagram showing a circuit necessary when the transducer 100 is used as an energy harvester.
  • FIG. 1 is a schematic cross-sectional view for explaining the configuration of a transducer 100 according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic exploded perspective view of the transducer 100 according to the present embodiment.
  • the transducer 100 is a device that can be used as an actuator or an energy harvester, and faces the magnet structure 10 and the first plane S1 of the magnet structure 10 as shown in FIGS.
  • the circuit board 20, the steel plate 30 fixed to the circuit board 20, the support bodies 40, 50, 60, and the microballs B1, B2 are provided.
  • the magnet structure 10 is fixed to the support body 40, and the circuit board 20 and the steel plate 30 are fixed to the support body 60.
  • the support body 50 is positioned so as to be sandwiched between the support body 40 and the support body 60, and thereby the distance between the magnet structure 10 and the circuit board 20 in the z direction is kept constant.
  • a microball B1 that guides movement in the x direction is interposed between the support body 50 and the support body 60
  • a microball B2 that guides movement in the y direction is interposed between the support body 50 and the support body 40. Is intervening.
  • the magnet structure 10 and the circuit board 20 are attracted to each other by the magnetic attraction force AF acting between the magnet structure 10 and the steel plate 30, and thereby the respective members are integrated without being separated. Is retained.
  • another soft magnetic material may be used instead of the steel plate 30.
  • FIG. 3 is a schematic plan view of the magnet structure 10 as viewed from the first plane S1 side.
  • the magnet structure 10 includes a plurality of first and second magnets 11 and 12 arranged in a matrix in the x direction and the y direction.
  • the magnets 11 and 12 are provided on a support substrate 13 made of glass, soft magnetic material, or the like, and the magnetic pole surface is located on the first plane S1 extending in the xy direction. Note that the support substrate 13 is not shown in FIG. 3 in consideration of the visibility of the drawing.
  • the first magnet 11 has an N pole on the first plane S1
  • the second magnet 12 has the first plane S1.
  • the magnetic pole surface located at is the S pole.
  • the first magnet 11 and the second magnet 12 are arranged in a matrix in a checkered pattern.
  • each row extending in the x direction constitutes a first array portion Lx in which the first magnets 11 and the second magnets 12 are alternately arranged in the x direction
  • each column extending in the y direction is The first magnet 11 and the second magnet 12 constitute a second array portion Ly in which the first magnet 11 and the second magnet 12 are alternately arrayed in the y direction.
  • the adjacent first magnet 11 and second magnet 12 are separated via the slit SL, and the slit SL reaches the surface layer of the support substrate 13. .
  • the support substrate 13 is not necessarily required when the slit SL is not formed.
  • FIG. 4 is a cross-sectional view of the circuit board 20 as viewed from the y direction.
  • the circuit board 20 includes a substrate 23, a first wiring 21 formed on one surface 24 of the substrate 23, and a second wiring 22 formed on the other surface 25 of the substrate 23. And.
  • the surface 24 constitutes the second plane S2, and the surface 25 constitutes the third plane S3.
  • the second and third planes S2 and S3 are xy planes that overlap the first plane S1 of the magnet structure 10, and the second plane S2 is closer to the first plane S1 than the third plane S3. close. That is, the magnet structure 10 and the surface 24 of the substrate 23 are disposed so as to face each other. In this way, if the first wiring 21 and the second wiring 22 are formed on the front and back of the substrate 23, it is not necessary to use a multilayer wiring board or the like.
  • the first wiring 21 and the second wiring 22 may be stacked via the via.
  • the distance between the second plane S2 and the third plane S3 is reduced, the distance between the magnet structure 10 and the first wiring 21 in the z direction and the distance between the magnet structure 10 and the second wiring 22 are reduced. It is possible to reduce the difference in distance in the z direction.
  • FIG. 6 is a plan view showing the first wiring 21 extracted.
  • the positions of the first and second magnets 11 and 12 are also displayed in order to clarify the planar positional relationship with the magnet structure 10.
  • the first wiring 21 is one wiring that can be drawn with a single stroke, and has a planar shape meandering in a meander shape.
  • FIG. 7 is a plan view showing the second wiring 22 extracted.
  • the positions of the first and second magnets 11 and 12 are also displayed in order to clarify the planar positional relationship with the magnet structure 10.
  • the second wiring 22 is one wiring that can be drawn with a single stroke, and has a planar shape meandering in a meander shape.
  • the second wiring 22 the fourth portion of the wiring crossing the third wiring portion 22x 1 across the first magnet 11 in the x-direction, the second magnet 12 in the x-direction and 22x 2, and a connecting portion 22y extending in the y direction so as to connect them.
  • FIG. 8 is a diagram for explaining the influence of the current flowing through the first wiring 21 on the magnet structure 10.
  • the direction of the current with respect to the first magnet 11 is the downward direction ( ⁇ y direction).
  • a Lorentz force F L 1 in the right direction (+ x direction) acts.
  • the Lorentz force F L1 in the right direction (+ x direction) acts on the first wiring 21. That is, the Lorentz force F L 1 in the right direction (+ x direction) acts on the first wiring 21 for both the first and second magnets 11 and 12.
  • the transducer 100 according to the present embodiment when used as an actuator, the relative positional relationship between the magnet structure 10 and the circuit board 20 in the x direction can be changed by flowing the current I1 or I2.
  • the magnitude and speed of the change can be controlled by the current I1 or I2.
  • FIG. 9 is a diagram for explaining the influence of the current flowing through the second wiring 22 on the magnet structure 10.
  • the transducer 100 according to the present embodiment when used as an actuator, the relative positional relationship between the magnet structure 10 and the circuit board 20 in the y direction can be changed by flowing the current I3 or I4.
  • the magnitude and speed of the change can be controlled by the current I3 or I4.
  • the relative positional relationship between the magnet structure 10 and the circuit board 20 in the x direction is changed by passing the current I1 or I2 through the first wiring 21. Since the relative positional relationship between the magnet structure 10 and the circuit board 20 in the y direction can be changed by passing the current I3 or I4 through the second wiring 22, the magnets can be changed by the currents I1 to I4.
  • the planar positional relationship between the structure 10 and the circuit board 20 can be changed. That is, the magnet structure 10 and the circuit board 20 can be relatively two-dimensionally operated.
  • the transducer 100 when the relative position of the magnet structure 10 and the circuit board 20 changes due to the action of an external force, an induced current is generated in the first and second wirings 21 and 22. Therefore, the transducer 100 according to the present embodiment can be used as an energy harvester. Specifically, as shown in FIG. 10, when an external force F E 1 is applied, a current I1 flows through the first wiring 21, and when an external force F E2 is applied, a current I2 flows through the first wiring 21. Further, as shown in FIG. 11, when the external force F E 3 is applied, a current I3 flows through the second wiring 22, and when the external force F E 4 is applied, a current I4 flows through the wiring 21. In this way, an induced current can be generated by a relative two-dimensional operation of the magnet structure 10 and the circuit board 20 by an external force.
  • the relative movement of the magnet structure 10 and the circuit board 20 in the x direction is guided by the rolling of the microball B1 shown in FIG. 1, and the relative movement of the magnet structure 10 and the circuit board 20 in the y direction.
  • the movement is guided by the rolling of the microball B2 shown in FIG.
  • FIG. 12 is a schematic perspective view for explaining the configuration of the support 40.
  • the support body 40 is a frame-like body having an opening 40a, and the magnet structure 10 is fixed to the opening 40a.
  • the support 40 has a surface 41 on one side and a surface 42 on the other side in the z direction, and four guide grooves G4 are formed on the surface 42 on the other side.
  • the guide groove G4 is a V-shaped groove disposed in the vicinity of the corner of the support body 40, and its extending direction is the y direction.
  • FIG. 14 is a schematic perspective view for explaining the configuration of the support 50.
  • the support 50 is a frame-like body having an opening 50a.
  • the support 50 has a surface 51 on one side and a surface 52 on the other side in the z direction, and four guide grooves G2 are formed on the surface 51 on one side, and four guide grooves are formed on the surface 52 on the other side.
  • G1 is formed.
  • each of the guide grooves G1 and G2 is a V-shaped groove disposed in the vicinity of the corner portion of the support 50, and the guide groove G1 extends in the x direction and is guided.
  • the groove G2 extends in the y direction.
  • the guide groove G4 and the guide groove G2 overlap each other when viewed from the z direction, and the microball B2 is sandwiched between the guide grooves G4 and G2.
  • the microball B2 can roll in the y direction along the guide grooves G4 and G2, and a sliding mechanism is configured to slide the support body 40 and the support body 50 in the y direction relatively.
  • FIG. 16 is a schematic perspective view for explaining the configuration of the support 60.
  • the support 60 is a plate-like body, and the circuit board 20 is fixed to the surface 61 on one side, and the steel plate 30 is fixed to the surface 62 on the other side. Further, four guide grooves G ⁇ b> 3 are formed on the surface 61 on one side of the support body 60.
  • the guide groove G3 is a V-shaped groove disposed in the vicinity of the corner of the support body 60, and its extending direction is the x direction.
  • the guide groove G1 and the guide groove G3 overlap each other when viewed from the z direction, and the microball B1 is sandwiched between the guide grooves G1 and G3.
  • the microball B1 can roll in the x direction along the guide grooves G1 and G3, and a sliding mechanism is configured to slide the support 50 and the support 60 in the x direction relatively.
  • the magnet structure 10 and the circuit board 20 are relatively slidable in the xy directions.
  • the relative movement in the x direction is guided by the rolling of the microball B1 along the guide grooves G1 and G3 while keeping the gap in the z direction between the magnet structure 10 and the circuit board 20 constant, and the y direction
  • the relative movement is guided by the rolling of the microball B2 along the guide grooves G2 and G4 a smooth two-dimensional operation is possible.
  • the amount of displacement is determined by the length of the guide grooves G1 to G4, it is possible to ensure a sufficient amount of displacement.
  • the transducer 100 can be used with the support 40 or the support 60 fixed to the casing of the device.
  • the magnet structure 10 can be driven two-dimensionally with respect to the housing by passing a current through the wires 21 and 22.
  • the imaging element is fixed to the casing and the optical lens is fixed to the magnet structure 10
  • the support 60 when the magnet structure 10 is slid in the x direction, not only the magnet structure 10 but also the support 50 needs to be slid in the x direction.
  • the magnet structure 10 When the magnet structure 10 is slid in the y direction, it is sufficient to slide the magnet structure 10 in the y direction without sliding the support 50. This means that the driving force required for sliding in the x direction is greater than the driving force required for sliding in the y direction.
  • the first wiring 21 that generates the driving force in the x direction is located on the second plane S2 that is closer to the magnet structure 10, and the second wiring that generates the driving force in the y direction.
  • the driving force per unit current amount is larger in the x direction than in the y direction. That is, the first wiring 21 that contributes to sliding in the x direction with a large required driving force is arranged on the second plane S2 close to the magnet structure 10, and contributes to sliding in the y direction with a small necessary driving force.
  • the second wiring 22 By arranging the second wiring 22 to be arranged on the third plane S3 far from the magnet structure 10, it is possible to ensure a balance between the generated driving force and the driving force necessary for sliding.
  • FIG. 18 is a circuit diagram of the drive circuit 70 when the transducer 100 according to the present embodiment is used as an actuator.
  • the drive circuit 70 shown in FIG. 18 includes a control circuit 71 that generates drive signals Dx and Dy based on the control signal CNT, an amplifier 72 that converts the drive signal Dx into a drive current Ix, and the drive signal Dy into the drive current Iy. And an amplifier 73 for conversion.
  • the control signal CNT is a signal for instructing an operation direction and an operation amount of the transducer 100 that is an actuator. For example, when the transducer 100 that is an actuator is used as a camera shake correction mechanism, a camera shake supplied from an acceleration sensor or the like is used. This corresponds to the detection signal.
  • the control circuit 71 Based on the control signal CNT, the control circuit 71 generates a drive signal Dx indicating the drive amount in the x direction and a drive signal Dy indicating the drive amount in the y direction, and supplies these to the amplifiers 72 and 73, respectively.
  • the drive signals Dx and Dy are converted into drive currents Ix 1 and Iy 1 by the amplifiers 72 and 73 and supplied to the first and second wirings 21 and 22, respectively.
  • the drive currents Ix 1 and Iy 1 per unit sliding amount may be the same, but the second wiring 22 that contributes to the sliding in the y direction is arranged on the third plane S 3 far from the magnet structure 10. Therefore, depending on the thickness of the substrate 23, the driving force in the y direction may be insufficient. In such a case, a difference is provided between the gains of the drive signal Dx and the drive signal Dy so that the indicated value of the drive signal Dy per unit sliding amount is larger than the indicated value of the drive signal Dx per unit sliding amount.
  • the driving force in the y direction may be increased by designing the control circuit 71.
  • the gain of the drive signal Dx and the drive signal Dy by the control circuit 71 is constant, and the drive current Iy 1 per unit instruction value of the drive signal Dy is more than the drive current Ix 1 per unit instruction value of the drive signal Dx.
  • the amplifiers 72 and 73 may be designed so as to increase.
  • the driving current Iy 1 per unit sliding amount becomes larger than the driving current Ix 1 per unit sliding amount, so that the reduction in driving force due to the far distance from the magnet structure 10 is compensated. Is possible.
  • a larger current flows in the second wiring 22 contributing to the sliding in the y direction than in the first wiring 21 contributing to the sliding in the x direction. Therefore, as shown in FIG.
  • the conductor thickness T1 of the wiring 21 may be designed to be thinner and the conductor thickness T2 of the second wiring 22 may be designed to be thicker (T1 ⁇ T2). According to this, since the resistance value of the second wiring 22 through which a larger current flows can be lowered and the conductor thickness T1 of the first wiring 21 is thin, the magnet structure 10 and the second wiring 22 can be reduced. It becomes possible to make the distance closer.
  • FIG. 20 is a block diagram showing a circuit required when the transducer 100 according to the present embodiment is used as an energy harvester.
  • induced currents Ix 2 and Iy 2 are input to the rectifying transformer circuit 80.
  • the rectifying transformer circuit 80 rectifies the induced currents Ix 2 and Iy 2 and generates an output voltage OUT. As a result, when an external force acts on the transducer 100, the output voltage OUT can be obtained.
  • the first and second wires 21 and 22 are assigned to all of the first and second magnets 11 and 12, but such a configuration is not essential in the present invention. . Therefore, for the first wiring 21, it is sufficient to cross at least a part of the first magnet 11 and the second magnet 12 constituting the first array portion Lx in the y direction, and for the second wiring 22. It is sufficient to cross at least a part of the first magnet 11 and the second magnet 12 constituting the second array portion Ly in the x direction.
  • the support bodies 40 and 60 are used.
  • the support body 40 may be omitted by providing the magnet structure 10 itself with the guide groove G4, or the guide groove G3 may be provided in the circuit board 20 itself.
  • the support 60 may be omitted.
  • microballs B1 and guide grooves G1 and G3 constituting a sliding mechanism in the x direction are used, and four microballs B2 and guide grooves G2 and G4 constituting a sliding mechanism in the y direction are used.
  • the set is used, these numbers are not particularly limited.

Abstract

[Problem] To provide a transducer capable of ensuring a sufficient amount of displacement in xy-plane directions while maintaining a constant distance between a magnet structure and a circuit board. [Solution] This transducer is provided with: a magnet structure 10 including a magnet 11 having a north-pole magnetic pole face and a magnet 12 having a south-pole magnetic pole face; a circuit board 20 having wires 21, 22 formed thereon; a first sliding mechanism for causing the magnet structure 10 and the circuit board 20 to slide in the x-direction; and a second sliding mechanism for causing the magnet structure 10 and the circuit board 20 to slide in the y-direction. In the magnet structure 10, the magnets 11, 12 are arranged in a matrix form. The wire 21 crosses the magnets 11, 12 in the y-direction, and the wire 22 crosses the magnets 11, 12 in the x-direction. According to the present invention, two-dimensional operations of the circuit board 20 and the magnet structure 10 can be performed smoothly, and a sufficient amount of displacement can also be ensured. In addition, since an elastic hinge and the like are not used, deformation in the z-direction does not occur.

Description

トランデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタTransducer, and actuator and energy harvester using the same
 本発明は電磁誘導デバイスであるトランデューサに関し、特に、2次元的な動作が可能なアクチュエータ又はエネルギハーベスタとして利用できるトランデューサに関する。 The present invention relates to a transducer that is an electromagnetic induction device, and more particularly to a transducer that can be used as an actuator or energy harvester capable of two-dimensional operation.
 電磁力を用いたアクチュエータとしては、1軸方向に往復運動可能なものが一般的であるが、特許文献1には、磁石をマトリクス状に配列することによって2次元的な動作を可能としたアクチュエータが記載されている。特許文献1に記載されたアクチュエータは、1個の磁石に対して4個のコイルを割り当て、これらのコイルに流す電流の向きを制御することによって2次元的な動作を実現している。 As an actuator using electromagnetic force, one that can reciprocate in one axial direction is generally used. However, Patent Document 1 discloses an actuator that enables two-dimensional operation by arranging magnets in a matrix. Is described. The actuator described in Patent Document 1 realizes a two-dimensional operation by assigning four coils to one magnet and controlling the direction of current flowing through these coils.
 しかしながら、特許文献1に記載されたアクチュエータは、1個の磁石に対して4個のコイルを割り当てていることから、小型化することが困難であるという問題がある。特に、駆動平面に対して垂直な厚さ方向におけるサイズを縮小することは困難であり、携帯型デバイスのように低背化が求められる用途には不向きである。 However, the actuator described in Patent Document 1 has a problem that it is difficult to reduce the size because four coils are assigned to one magnet. In particular, it is difficult to reduce the size in the thickness direction perpendicular to the drive plane, and it is not suitable for applications that require a low profile, such as a portable device.
 低背化が可能なアクチュエータとしては、非特許文献1に記載されたリニアモータが知られている。しかしながら、非特許文献1に記載されたリニアモータは、1軸方向に往復運動するだけであり、2次元的な動作はできない。 A linear motor described in Non-Patent Document 1 is known as an actuator that can be reduced in height. However, the linear motor described in Non-Patent Document 1 only reciprocates in one axis direction and cannot perform a two-dimensional operation.
 これに対し、特許文献2に記載されたアクチュエータは、2次元的な動作が可能であり、且つ、低背であるという優れた特徴を有している。 On the other hand, the actuator described in Patent Document 2 has an excellent feature that it can operate two-dimensionally and has a low profile.
特開平11-196560号公報Japanese Patent Laid-Open No. 11-196560 国際公開第2017/126577号International Publication No. 2017/1226577
 特許文献2に記載されたアクチュエータは、回路基板と磁石構造体が互いに向かい合うように配置され、この状態で両者が相対的に2次元動作することが可能である。このような2次元動作をスムーズに行うためには、回路基板と磁石構造体を相対的にどのように滑動させるかが問題となる。この点に関し、非特許文献2には、シリコンをミアンダ状に加工した弾性ヒンジによって磁石構造体を支持する方法が提案されている。 The actuator described in Patent Document 2 is arranged so that the circuit board and the magnet structure face each other, and in this state, both can relatively move two-dimensionally. In order to perform such a two-dimensional operation smoothly, it becomes a problem how to relatively slide the circuit board and the magnet structure. In this regard, Non-Patent Document 2 proposes a method of supporting a magnet structure with an elastic hinge obtained by processing silicon into a meander shape.
 しかしながら、非特許文献2に記載された支持方法では、xy平面方向への変位量が不十分であるとともに、弾性ヒンジがz方向へ変形することから磁石構造体と回路基板との距離を一定に保つことができないという問題があった。 However, with the support method described in Non-Patent Document 2, the amount of displacement in the xy plane direction is insufficient, and the elastic hinge is deformed in the z direction, so the distance between the magnet structure and the circuit board is constant. There was a problem that could not be kept.
 また、アクチュエータは、外力を加えることにより微弱な発電を行うエネルギーハーベスタとして機能する。つまり、アクチュエータは、電気と力を相互に変換するトランデューサであると言える。しかしながら、特許文献2に記載されたアクチュエータをエネルギーハーベスタとして用いる場合においても、やはり、外力によって回路基板と磁石構造体を相対的にどのように滑動させるかが問題となる。 Also, the actuator functions as an energy harvester that generates weak power by applying external force. In other words, it can be said that the actuator is a transducer that converts electricity and force to each other. However, even when the actuator described in Patent Document 2 is used as an energy harvester, there is still a problem as to how the circuit board and the magnet structure are relatively slid by an external force.
 したがって、本発明の目的は、磁石構造体と回路基板との距離を一定に保ちつつ、xy平面方向への変位量を十分に確保することが可能なトランデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタを提供することである。 Accordingly, an object of the present invention is to provide a transducer capable of sufficiently securing the amount of displacement in the xy plane direction while keeping the distance between the magnet structure and the circuit board constant, and an actuator and an energy harvester using the transducer. Is to provide.
 本発明によるトランデューサは、第1の方向及び第1の方向と直交する第2の方向に延在する第1の平面に位置する磁極面がN極である複数の第1の磁石と、第1の平面に位置する磁極面がS極である複数の第2の磁石とを含む磁石構造体と、磁石構造体の第1の平面と重なる第1及び第2の配線が形成された回路基板と、磁石構造体と回路基板を相対的に第1の方向に滑動させる第1の滑動機構と、磁石構造体と回路基板を相対的に第2の方向に滑動させる第2の滑動機構とを備え、磁石構造体は、第1の磁石と第2の磁石が第1の方向に交互に配列された第1の配列部分と、第1の磁石と第2の磁石が第2の方向に交互に配列された第2の配列部分とを含み、第1の配線は、第1の配列部分に含まれる第1及び第2の磁石の少なくとも一部を第2の方向に横断し、第2の配線は、第2の配列部分に含まれる第1及び第2の磁石の少なくとも一部を第1の方向に横断し、磁石構造体と回路基板は、第1及び第2の滑動機構を挟んで、互いに磁気吸引されていることを特徴とする。 The transducer according to the present invention includes a plurality of first magnets having a north pole as a magnetic pole face located in a first plane extending in a first direction and a second direction orthogonal to the first direction, A circuit board on which a magnet structure including a plurality of second magnets whose magnetic pole faces located on one plane are S poles, and first and second wirings overlapping the first plane of the magnet structure are formed A first sliding mechanism that slides the magnet structure and the circuit board relatively in a first direction, and a second sliding mechanism that slides the magnet structure and the circuit board relatively in a second direction. The magnet structure includes a first arrangement portion in which the first magnet and the second magnet are alternately arranged in the first direction, and the first magnet and the second magnet are alternately arranged in the second direction. And the first wiring is at least one of the first and second magnets included in the first array portion. And the second wiring crosses at least a part of the first and second magnets included in the second arrangement portion in the first direction, and the magnet structure and the circuit board. Are magnetically attracted to each other across the first and second sliding mechanisms.
 本発明によれば、第1及び第2の滑動機構を備えていることから、回路基板と磁石構造体の相対的な二次元動作をスムーズに行うことができるとともに、十分な変位量を確保することが可能となる。また、弾性ヒンジなどを用いないことから、z方向への変形も生じない。しかも、磁石構造体と回路基板が互いに磁気吸引されていることから、実使用時において各部材が分離することなく、一体化された状態を保持することが可能となる。 According to the present invention, since the first and second sliding mechanisms are provided, the relative two-dimensional operation of the circuit board and the magnet structure can be smoothly performed, and a sufficient amount of displacement is ensured. It becomes possible. Further, since no elastic hinge or the like is used, deformation in the z direction does not occur. Moreover, since the magnet structure and the circuit board are magnetically attracted to each other, it is possible to maintain an integrated state without separating each member during actual use.
 本発明において、第1の滑動機構は第1の方向に転動自在な第1のマイクロボールを含み、第2の滑動機構は第2の方向に転動自在な第2のマイクロボールを含むものであっても構わない。これによれば、低背化を達成することができるとともに、磁気吸引による与圧によってマイクロボールが脱落することもない。 In the present invention, the first sliding mechanism includes a first microball that can roll in a first direction, and the second sliding mechanism includes a second microball that can roll in a second direction. It does not matter. According to this, a low profile can be achieved, and the microball does not fall off due to pressurization by magnetic attraction.
 本発明によるトランデューサは、第1の方向に延在する第1の案内溝と第2の方向に延在する第2の案内溝が形成された支持体をさらに備え、第1のマイクロボールは第1の案内溝に沿って転動し、第2のマイクロボールは第2の案内溝に沿って転動するものであっても構わない。これによれば、磁石構造体と回路基板の間に支持体を介在させることによって、スムーズな2次元的な動作を実現することが可能となる。 The transducer according to the present invention further includes a support body on which a first guide groove extending in a first direction and a second guide groove extending in a second direction are formed, and the first microball is It may roll along the first guide groove, and the second microball may roll along the second guide groove. According to this, a smooth two-dimensional operation can be realized by interposing the support body between the magnet structure and the circuit board.
 本発明において、磁石構造体又はこれに固定された支持体には、第1の方向に延在する第3の案内溝が形成され、回路基板又はこれに固定された支持体には、第2の方向に延在する第4の案内溝が形成され、第1のマイクロボールは第1及び第3の案内溝に沿って転動し、第2のマイクロボールは第2及び第4の案内溝に沿って転動するものであっても構わない。これによれば、磁石構造体と支持体との間で第1の方向における一次元動作を行い、回路基板と支持体との間で第2の方向における一次元動作を行うことができる。 In the present invention, a third guide groove extending in the first direction is formed in the magnet structure or the support fixed to the magnet structure, and the second guide is formed in the circuit board or the support fixed to the circuit board. A fourth guide groove extending in the direction is formed, the first microball rolls along the first and third guide grooves, and the second microball is the second and fourth guide grooves. It may be one that rolls along. According to this, a one-dimensional operation in the first direction can be performed between the magnet structure and the support, and a one-dimensional operation in the second direction can be performed between the circuit board and the support.
 本発明によるトランデューサは、回路基板に固定された軟磁性体をさらに備え、磁石構造体と回路基板は、磁石構造体と軟磁性体との間に作用する磁気吸引力によって互いに吸引されるものであっても構わない。これによれば、磁石構造体の他に永久磁石などを別途用いることなく、磁石構造体と回路基板を互いに磁気吸引させることが可能となる。 The transducer according to the present invention further includes a soft magnetic body fixed to the circuit board, and the magnet structure and the circuit board are attracted to each other by a magnetic attractive force acting between the magnet structure and the soft magnetic body. It does not matter. According to this, the magnet structure and the circuit board can be magnetically attracted to each other without separately using a permanent magnet in addition to the magnet structure.
 本発明において、回路基板は、第1の平面と平行な第2及び第3の平面を有し、第1の配線は第2の平面に形成され、第2の配線は第3の平面に形成され、第1の平面と第3の平面の距離は、第1の平面と第2の平面の距離よりも大きくても構わない。これによれば、第1の配線の方が第2の配線よりも磁石構造体に近くなることから、第1の方向における駆動力が高められる。 In the present invention, the circuit board has second and third planes parallel to the first plane, the first wiring is formed on the second plane, and the second wiring is formed on the third plane. In addition, the distance between the first plane and the third plane may be larger than the distance between the first plane and the second plane. According to this, since the first wiring is closer to the magnet structure than the second wiring, the driving force in the first direction is increased.
 本発明において、第2及び第3の平面は、回路基板の表裏であっても構わない。これによれば、多層配線基板を用いることなく、第1及び第2の配線を回路基板上に形成することが可能となる。 In the present invention, the second and third planes may be the front and back of the circuit board. According to this, the first and second wirings can be formed on the circuit board without using the multilayer wiring board.
 本発明において、第1の滑動機構は、磁石構造体及び第2の滑動機構を回路基板に対して相対的に第1の方向に滑動させ、第2の滑動機構は、第1の滑動機構を回路基板に対して相対的に第2の方向に滑動させることなく、磁石構造体を回路基板に対して相対的に第2の方向に滑動させるものであっても構わない。これによれば、第1の方向への駆動により大きな駆動力が必要となることから、第1の配線をより磁石構造体に近づけることにより、大きな駆動力を得ることが可能となる。 In the present invention, the first sliding mechanism causes the magnet structure and the second sliding mechanism to slide relative to the circuit board in the first direction, and the second sliding mechanism includes the first sliding mechanism. The magnet structure may be slid relative to the circuit board in the second direction without sliding relative to the circuit board. According to this, since a large driving force is required for driving in the first direction, it is possible to obtain a large driving force by bringing the first wiring closer to the magnet structure.
 本発明によるトランデューサは、第1及び第2の配線に駆動電流を供給する駆動回路をさらに備えるものであっても構わない。これによれば、本発明によるトランデューサをアクチュエータとして用いることが可能となる。この場合、駆動回路が第1の配線に供給する単位滑動量当たりの駆動電流よりも、駆動回路が第2の配線に供給する単位滑動量当たりの駆動電流の方が大きくても構わない。これによれば、磁石構造体からの距離が第1の配線に比べて第2の配線の方が遠く、このため第2の方向への駆動力が相対的に弱い場合であっても、第2の配線により多くの駆動電流を与えることによって、駆動力を増加させることが可能となる。 The transducer according to the present invention may further include a drive circuit for supplying a drive current to the first and second wirings. According to this, the transducer according to the present invention can be used as an actuator. In this case, the driving current per unit sliding amount supplied to the second wiring by the driving circuit may be larger than the driving current per unit sliding amount supplied to the first wiring by the driving circuit. According to this, even if the distance from the magnet structure is farther in the second wiring than in the first wiring, and thus the driving force in the second direction is relatively weak, Driving force can be increased by giving more driving current to the two wirings.
 本発明において、第1の配線よりも第2の配線の方が、導体厚が大きくても構わない。これによれば、本発明によるトランデューサをアクチュエータとして用いる場合、より大きな駆動電流の流れる第2の配線の配線抵抗を低下させることができるとともに、第1の配線の導体厚が薄いことから、磁石構造体と第2の配線との距離をより近づけることが可能となる。 In the present invention, the second wiring may have a larger conductor thickness than the first wiring. According to this, when the transducer according to the present invention is used as an actuator, the wiring resistance of the second wiring through which a larger driving current flows can be reduced, and the conductor thickness of the first wiring is thin. The distance between the structure and the second wiring can be further reduced.
 本発明によるトランデューサは、第1及び第2の配線に流れる誘導電流に基づいて出力電圧を生成する整流変圧回路をさらに備えるるものであっても構わない。これによれば、本発明によるトランデューサをエネルギーハーベスタとして用いることが可能となる。 The transducer according to the present invention may further include a rectification transformer circuit that generates an output voltage based on the induced current flowing in the first and second wirings. According to this, the transducer according to the present invention can be used as an energy harvester.
 このように、本発明によるトランデューサは、2次元的な動作を案内する2つの滑動機構を備えていることから、磁石構造体と回路基板との距離を一定に保ちつつ、xy平面方向への変位量を十分に確保することが可能となる。 As described above, since the transducer according to the present invention includes the two sliding mechanisms for guiding the two-dimensional operation, the distance between the magnet structure and the circuit board is kept constant while maintaining the distance in the xy plane direction. A sufficient amount of displacement can be secured.
図1は、本発明の好ましい実施形態によるトランデューサ100の構成を説明するための略断面図である。FIG. 1 is a schematic cross-sectional view for explaining the configuration of a transducer 100 according to a preferred embodiment of the present invention. 図2は、トランデューサ100の略分解斜視図である。FIG. 2 is a schematic exploded perspective view of the transducer 100. 図3は、磁石構造体10を第1の平面S1側から見た略平面図である。FIG. 3 is a schematic plan view of the magnet structure 10 as viewed from the first plane S1 side. 図4は、回路基板20をy方向から見た断面図である。FIG. 4 is a cross-sectional view of the circuit board 20 as viewed from the y direction. 図5は、変形例による回路基板20をy方向から見た断面図である。FIG. 5 is a cross-sectional view of the circuit board 20 according to the modification viewed from the y direction. 図6は、第1の配線21を抜き出して示す平面図である。FIG. 6 is a plan view showing the first wiring 21 extracted. 図7は、第2の配線22を抜き出して示す平面図である。FIG. 7 is a plan view showing the second wiring 22 extracted. 図8は、第1の配線21に流れる電流が磁石構造体10に与える影響を説明するための図である。FIG. 8 is a diagram for explaining the influence of the current flowing through the first wiring 21 on the magnet structure 10. 図9は、第2の配線22に流れる電流が磁石構造体10に与える影響を説明するための図である。FIG. 9 is a diagram for explaining the influence of the current flowing through the second wiring 22 on the magnet structure 10. 図10は、磁石構造体10に与えられる外力によって第1の配線21に流れる誘導電流の方向を説明するための図である。FIG. 10 is a diagram for explaining the direction of the induced current flowing in the first wiring 21 due to the external force applied to the magnet structure 10. 図11は、磁石構造体10に与えられる外力によって第2の配線22に流れる誘導電流の方向を説明するための図である。FIG. 11 is a diagram for explaining the direction of the induced current flowing in the second wiring 22 due to the external force applied to the magnet structure 10. 図12は、支持体40の構成を説明するための略透視斜視図である。FIG. 12 is a schematic perspective view for explaining the configuration of the support 40. 図13は、支持体40の拡大図である。FIG. 13 is an enlarged view of the support 40. 図14は、支持体50の構成を説明するための略透視斜視図である。FIG. 14 is a schematic perspective view for explaining the configuration of the support 50. 図15は、支持体50の拡大図である。FIG. 15 is an enlarged view of the support 50. 図16は、支持体60の構成を説明するための略透視斜視図である。FIG. 16 is a schematic perspective view for explaining the configuration of the support body 60. 図17は、支持体60の拡大図である。FIG. 17 is an enlarged view of the support body 60. 図18は、トランデューサ100をアクチュエータとして用いる場合の駆動回路70の回路図である。FIG. 18 is a circuit diagram of the drive circuit 70 when the transducer 100 is used as an actuator. 図19は、変形例による回路基板20をy方向から見た断面図である。FIG. 19 is a cross-sectional view of the circuit board 20 according to the modification viewed from the y direction. 図20は、トランデューサ100をエネルギーハーベスタとして用いる場合に必要な回路を示すブロック図である。FIG. 20 is a block diagram showing a circuit necessary when the transducer 100 is used as an energy harvester.
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の好ましい実施形態によるトランデューサ100の構成を説明するための略断面図である。また、図2は、本実施形態によるトランデューサ100の略分解斜視図である。 FIG. 1 is a schematic cross-sectional view for explaining the configuration of a transducer 100 according to a preferred embodiment of the present invention. FIG. 2 is a schematic exploded perspective view of the transducer 100 according to the present embodiment.
 本実施形態によるトランデューサ100は、アクチュエータ又はエネルギーハーベスタとして用いることができる装置であり、図1及び図2に示すように、磁石構造体10と、磁石構造体10の第1の平面S1と向かい合う回路基板20と、回路基板20に固定された鋼板30と、支持体40,50,60と、マイクロボールB1,B2とを備えている。磁石構造体10は支持体40に固定され、回路基板20及び鋼板30は支持体60に固定されている。また、支持体50は、支持体40と支持体60の間に挟まれるように位置し、これにより、磁石構造体10と回路基板20のz方向における間隔が一定に保たれている。支持体50と支持体60の間には、x方向への移動を案内するマイクロボールB1が介在し、支持体50と支持体40の間には、y方向への移動を案内するマイクロボールB2が介在している。磁石構造体10と回路基板20は、磁石構造体10と鋼板30との間に作用する磁気吸引力AFによって互いに吸引されており、これにより、各部材が分離することなく、一体化された状態が保持される。尚、鋼板30の代わりに他の軟磁性体を用いても構わない。 The transducer 100 according to the present embodiment is a device that can be used as an actuator or an energy harvester, and faces the magnet structure 10 and the first plane S1 of the magnet structure 10 as shown in FIGS. The circuit board 20, the steel plate 30 fixed to the circuit board 20, the support bodies 40, 50, 60, and the microballs B1, B2 are provided. The magnet structure 10 is fixed to the support body 40, and the circuit board 20 and the steel plate 30 are fixed to the support body 60. Further, the support body 50 is positioned so as to be sandwiched between the support body 40 and the support body 60, and thereby the distance between the magnet structure 10 and the circuit board 20 in the z direction is kept constant. A microball B1 that guides movement in the x direction is interposed between the support body 50 and the support body 60, and a microball B2 that guides movement in the y direction is interposed between the support body 50 and the support body 40. Is intervening. The magnet structure 10 and the circuit board 20 are attracted to each other by the magnetic attraction force AF acting between the magnet structure 10 and the steel plate 30, and thereby the respective members are integrated without being separated. Is retained. Note that another soft magnetic material may be used instead of the steel plate 30.
 図3は、磁石構造体10を第1の平面S1側から見た略平面図である。 FIG. 3 is a schematic plan view of the magnet structure 10 as viewed from the first plane S1 side.
 図3に示すように、磁石構造体10は、x方向及びy方向にマトリクス状に配列された複数の第1及び第2の磁石11,12を備えている。磁石11,12は、ガラスや軟磁性体などからなる支持基板13上に設けられており、xy方向に延在する第1の平面S1に磁極面が位置している。尚、図面の見やすさを考慮して、図3においては支持基板13が図示されていない。磁石構造体10を構成する磁石11,12のうち、第1の磁石11は第1の平面S1に位置する磁極面がN極であり、逆に、第2の磁石12は第1の平面S1に位置する磁極面がS極である。そして、これら第1の磁石11と第2の磁石12が市松模様にマトリクス配列されている。つまり、x方向に延在する各行は、第1の磁石11と第2の磁石12がx方向に交互に配列された第1の配列部分Lxを構成し、y方向に延在する各列は、第1の磁石11と第2の磁石12がy方向に交互に配列された第2の配列部分Lyを構成する。 As shown in FIG. 3, the magnet structure 10 includes a plurality of first and second magnets 11 and 12 arranged in a matrix in the x direction and the y direction. The magnets 11 and 12 are provided on a support substrate 13 made of glass, soft magnetic material, or the like, and the magnetic pole surface is located on the first plane S1 extending in the xy direction. Note that the support substrate 13 is not shown in FIG. 3 in consideration of the visibility of the drawing. Of the magnets 11 and 12 constituting the magnet structure 10, the first magnet 11 has an N pole on the first plane S1, and conversely, the second magnet 12 has the first plane S1. The magnetic pole surface located at is the S pole. The first magnet 11 and the second magnet 12 are arranged in a matrix in a checkered pattern. That is, each row extending in the x direction constitutes a first array portion Lx in which the first magnets 11 and the second magnets 12 are alternately arranged in the x direction, and each column extending in the y direction is The first magnet 11 and the second magnet 12 constitute a second array portion Ly in which the first magnet 11 and the second magnet 12 are alternately arrayed in the y direction.
 図3に示すように、本実施形態においては、隣接する第1の磁石11と第2の磁石12がスリットSLを介して分離しており、かかるスリットSLは支持基板13の表層に達している。但し、本発明においてこのようなスリットSLを設けることは必須でない。尚、スリットSLを形成しない場合、支持基板13は必ずしも必要ではない。 As shown in FIG. 3, in the present embodiment, the adjacent first magnet 11 and second magnet 12 are separated via the slit SL, and the slit SL reaches the surface layer of the support substrate 13. . However, it is not essential to provide such a slit SL in the present invention. Note that the support substrate 13 is not necessarily required when the slit SL is not formed.
 図4は、回路基板20をy方向から見た断面図である。 FIG. 4 is a cross-sectional view of the circuit board 20 as viewed from the y direction.
 図4に示すように、回路基板20は、基板23と、基板23の一方の表面24に形成された第1の配線21と、基板23の他方の表面25に形成された第2の配線22とを備えている。表面24は第2の平面S2を構成し、表面25は第3の平面S3を構成している。第2及び第3の平面S2,S3は、磁石構造体10の第1の平面S1と重なるxy面であり、第2の平面S2の方が第3の平面S3よりも第1の平面S1に近い。つまり、磁石構造体10と基板23の表面24が互いに向かい合うように配置される。このように、第1の配線21と第2の配線22を基板23の表裏に形成すれば、多層配線基板などを使用する必要がない。 As shown in FIG. 4, the circuit board 20 includes a substrate 23, a first wiring 21 formed on one surface 24 of the substrate 23, and a second wiring 22 formed on the other surface 25 of the substrate 23. And. The surface 24 constitutes the second plane S2, and the surface 25 constitutes the third plane S3. The second and third planes S2 and S3 are xy planes that overlap the first plane S1 of the magnet structure 10, and the second plane S2 is closer to the first plane S1 than the third plane S3. close. That is, the magnet structure 10 and the surface 24 of the substrate 23 are disposed so as to face each other. In this way, if the first wiring 21 and the second wiring 22 are formed on the front and back of the substrate 23, it is not necessary to use a multilayer wiring board or the like.
 但し、第1の配線21と第2の配線22を基板23の表裏に形成することは必須でなく、図5に示す変形例による回路基板20のように、基板23の表面24に絶縁膜26を介して第1の配線21と第2の配線22を積層しても構わない。この場合、第2の平面S2と第3の平面S3の距離が近くなることから、磁石構造体10と第1の配線21のz方向における距離と、磁石構造体10と第2の配線22のz方向における距離の差を縮小することが可能となる。 However, it is not essential to form the first wiring 21 and the second wiring 22 on the front and back of the substrate 23, and the insulating film 26 is formed on the surface 24 of the substrate 23 as in the circuit substrate 20 according to the modification shown in FIG. The first wiring 21 and the second wiring 22 may be stacked via the via. In this case, since the distance between the second plane S2 and the third plane S3 is reduced, the distance between the magnet structure 10 and the first wiring 21 in the z direction and the distance between the magnet structure 10 and the second wiring 22 are reduced. It is possible to reduce the difference in distance in the z direction.
 図6は、第1の配線21を抜き出して示す平面図である。図6においては、磁石構造体10との平面的な位置関係を明確にすべく、第1及び第2の磁石11,12の位置についても表示されている。 FIG. 6 is a plan view showing the first wiring 21 extracted. In FIG. 6, the positions of the first and second magnets 11 and 12 are also displayed in order to clarify the planar positional relationship with the magnet structure 10.
 図6に示すように、第1の配線21は、一筆書き可能な1本の配線であり、ミアンダ状に蛇行する平面形状を有している。より具体的に説明すると、第1の配線21は、第1の磁石11をy方向に横断する第1の配線部分21yと、第2の磁石12をy方向に横断する第2の配線部分21yと、両者を接続するようx方向に延在する接続部分21xとを含んでいる。 As shown in FIG. 6, the first wiring 21 is one wiring that can be drawn with a single stroke, and has a planar shape meandering in a meander shape. To be more specific, the first wire 21, the second wire portion crossing the first wiring portion 21y 1 across the first magnet 11 in the y-direction, the second magnet 12 in the y-direction and 21y 2, and a connecting portion 21x extending in the x direction so as to connect the two.
 かかる構成により、第1の配線21に電流を流すと、第1の配線部分21yと第2の配線部分21yには、互いに逆方向の電流が流れる。図6に示す例では、第1の配線21の一端Aから他端Bに向かって電流を流すと、第1の配線部分21yには下方向(-y方向)に電流が流れ、第2の配線部分21yには上方向(+y方向)に電流が流れることになる。 With this configuration, when an electric current is applied to the first wiring 21, the first wiring portion 21y 1 and the second wiring portion 21y 2, current flows in the reverse direction to each other. In the example shown in FIG. 6, when a current flows from one end A to the other end B of the first wiring 21, a current flows downward (−y direction) through the first wiring portion 21 y 1 . of so that the current flows in the upward direction (+ y direction) on the wiring portion 21y 2.
 図7は、第2の配線22を抜き出して示す平面図である。図7においては、磁石構造体10との平面的な位置関係を明確にすべく、第1及び第2の磁石11,12の位置についても表示されている。 FIG. 7 is a plan view showing the second wiring 22 extracted. In FIG. 7, the positions of the first and second magnets 11 and 12 are also displayed in order to clarify the planar positional relationship with the magnet structure 10.
 図7に示すように、第2の配線22は、一筆書き可能な1本の配線であり、ミアンダ状に蛇行する平面形状を有している。より具体的に説明すると、第2の配線22は、第1の磁石11をx方向に横断する第3の配線部分22xと、第2の磁石12をx方向に横断する第4の配線部分22xと、両者を接続するようy方向に延在する接続部分22yとを含んでいる。 As shown in FIG. 7, the second wiring 22 is one wiring that can be drawn with a single stroke, and has a planar shape meandering in a meander shape. To be more specific, the second wiring 22, the fourth portion of the wiring crossing the third wiring portion 22x 1 across the first magnet 11 in the x-direction, the second magnet 12 in the x-direction and 22x 2, and a connecting portion 22y extending in the y direction so as to connect them.
 かかる構成により、第2の配線22に電流を流すと、第3の配線部分22xと第4の配線部分22xには、互いに逆方向の電流が流れる。図7に示す例では、第2の配線22の一端Cから他端Dに向かって電流を流すと、第3の配線部分22xには右方向(+x方向)に電流が流れ、第4の配線部分22xには左方向(-x方向)に電流が流れることになる。 With this configuration, when an electric current is applied to the second wiring 22, the third wiring portion 22x 1 and the fourth wiring portion 22x 2, current flows in the reverse direction to each other. In the example shown in FIG. 7, when a current flows from one end C to the other end D of the second wiring 22, a current flows in the right direction (+ x direction) through the third wiring portion 22 x 1 , so that the current flows in the left direction (-x direction) on the wiring portion 22x 2.
 図8は、第1の配線21に流れる電流が磁石構造体10に与える影響を説明するための図である。 FIG. 8 is a diagram for explaining the influence of the current flowing through the first wiring 21 on the magnet structure 10.
 図8に示すように、第1の配線21に電流I1又はI2が流れると、磁石構造体10と第1の配線21との間にはx方向のローレンツ力F1又はF2が働く。 As shown in FIG. 8, when a current I 1 or I 2 flows through the first wiring 21, an x-direction Lorentz force F L 1 or F L 2 acts between the magnet structure 10 and the first wiring 21. .
 具体的には、第1の配線21に電流I1が流れた場合、第1の磁石11に対しては電流の方向が下方向(-y方向)であることから、第1の配線21には右方向(+x方向)のローレンツ力F1が作用する。一方、第2の磁石12に対しては電流の方向が上方向(+y方向)であることから、第1の配線21には右方向(+x方向)のローレンツ力F1が作用する。つまり、第1及び第2の磁石11,12のいずれに対しても、第1の配線21には右方向(+x方向)のローレンツ力F1が作用することになる。 Specifically, when the current I1 flows through the first wiring 21, the direction of the current with respect to the first magnet 11 is the downward direction (−y direction). A Lorentz force F L 1 in the right direction (+ x direction) acts. On the other hand, since the current direction is the upward direction (+ y direction) with respect to the second magnet 12, the Lorentz force F L1 in the right direction (+ x direction) acts on the first wiring 21. That is, the Lorentz force F L 1 in the right direction (+ x direction) acts on the first wiring 21 for both the first and second magnets 11 and 12.
 逆に、第1の配線21に電流I2が流れた場合、第1の磁石11に対しては電流の方向が上方向(+y方向)であることから、第1の配線21には左方向(-x方向)のローレンツ力F2が作用する。一方、第2の磁石12に対しては電流の方向が下方向(-y方向)であることから、第1の配線21には左方向(-x方向)のローレンツ力F2が作用する。つまり、第1及び第2の磁石11,12のいずれに対しても、第1の配線21には左方向(-x方向)のローレンツ力F2が作用することになる。 On the contrary, when the current I2 flows through the first wiring 21, the direction of the current is upward (+ y direction) with respect to the first magnet 11, and therefore the left direction ( The Lorentz force F L2 in the −x direction) acts. On the other hand, since the direction of the current is downward (−y direction) with respect to the second magnet 12, the left direction (−x direction) Lorentz force F L2 acts on the first wiring 21. . That is, the Lorentz force F L 2 in the left direction (−x direction) acts on the first wiring 21 with respect to both the first and second magnets 11 and 12.
 したがって、本実施形態によるトランデューサ100をアクチュエータとして用いる場合、電流I1又はI2を流すことにより、磁石構造体10と回路基板20のx方向における相対的な位置関係を変化させることができる。変化の大きさ及び速度は、電流I1又はI2によって制御することができる。 Therefore, when the transducer 100 according to the present embodiment is used as an actuator, the relative positional relationship between the magnet structure 10 and the circuit board 20 in the x direction can be changed by flowing the current I1 or I2. The magnitude and speed of the change can be controlled by the current I1 or I2.
 図9は、第2の配線22に流れる電流が磁石構造体10に与える影響を説明するための図である。 FIG. 9 is a diagram for explaining the influence of the current flowing through the second wiring 22 on the magnet structure 10.
 図9に示すように、第2の配線22に電流I3又はI4が流れると、磁石構造体10と第2の配線22との間にはy方向のローレンツ力F3又はF4が働く。 As shown in FIG. 9, when a current I3 or I4 flows through the second wiring 22, a Lorentz force F L3 or F L4 in the y direction acts between the magnet structure 10 and the second wiring 22. .
 具体的には、第2の配線22に電流I3が流れた場合、第1の磁石11に対しては電流の方向が右方向(+x方向)であることから、第2の配線22には上方向(+y方向)のローレンツ力F3が作用する。一方、第2の磁石12に対しては電流の方向が左方向(-x方向)であることから、第2の配線22には上方向(+y方向)のローレンツ力F3が作用する。つまり、第1及び第2の磁石11,12のいずれに対しても、第2の配線22には上方向(+y方向)のローレンツ力F3が作用することになる。 Specifically, when the current I3 flows through the second wiring 22, the current direction is the right direction (+ x direction) with respect to the first magnet 11, so A Lorentz force F L 3 in the direction (+ y direction) acts. On the other hand, since the current direction is the left direction (−x direction) with respect to the second magnet 12, an upward (+ y direction) Lorentz force F L 3 acts on the second wiring 22. That is, the Lorentz force F L 3 in the upward direction (+ y direction) acts on the second wiring 22 with respect to both the first and second magnets 11 and 12.
 逆に、第2の配線22に電流I4が流れた場合、第1の磁石11に対しては電流の方向が左方向(-x方向)であることから、第2の配線22には下方向(-y方向)のローレンツ力F4が作用する。一方、第2の磁石12に対しては電流の方向が右方向(+x方向)であることから、第2の配線22には下方向(-y方向)のローレンツ力F4が作用する。つまり、第1及び第2の磁石11,12のいずれに対しても、第2の配線22には下方向(-y方向)のローレンツ力F4が作用することになる。 On the contrary, when the current I4 flows through the second wiring 22, the direction of the current is the left direction (−x direction) with respect to the first magnet 11, and therefore the second wiring 22 has a downward direction. A Lorentz force F L 4 in the (−y direction) acts. On the other hand, since the current direction is rightward (+ x direction) with respect to the second magnet 12, a downward (−y direction) Lorentz force F L 4 acts on the second wiring 22. That is, the Lorentz force F L 4 in the downward direction (−y direction) acts on the second wiring 22 for both the first and second magnets 11 and 12.
 したがって、本実施形態によるトランデューサ100をアクチュエータとして用いる場合、電流I3又はI4を流すことにより、磁石構造体10と回路基板20のy方向における相対的な位置関係を変化させることができる。変化の大きさ及び速度は、電流I3又はI4によって制御することができる。 Therefore, when the transducer 100 according to the present embodiment is used as an actuator, the relative positional relationship between the magnet structure 10 and the circuit board 20 in the y direction can be changed by flowing the current I3 or I4. The magnitude and speed of the change can be controlled by the current I3 or I4.
 このように、本実施形態によるトランデューサ100をアクチュエータとして用いる場合、第1の配線21に電流I1又はI2を流すことによって磁石構造体10と回路基板20のx方向における相対的な位置関係を変化させることができ、第2の配線22に電流I3又はI4を流すことによって磁石構造体10と回路基板20のy方向における相対的な位置関係を変化させることができることから、電流I1~I4によって磁石構造体10と回路基板20の平面的な位置関係を変化させることができる。つまり、磁石構造体10と回路基板20を相対的に2次元動作させることが可能となる。 As described above, when the transducer 100 according to the present embodiment is used as an actuator, the relative positional relationship between the magnet structure 10 and the circuit board 20 in the x direction is changed by passing the current I1 or I2 through the first wiring 21. Since the relative positional relationship between the magnet structure 10 and the circuit board 20 in the y direction can be changed by passing the current I3 or I4 through the second wiring 22, the magnets can be changed by the currents I1 to I4. The planar positional relationship between the structure 10 and the circuit board 20 can be changed. That is, the magnet structure 10 and the circuit board 20 can be relatively two-dimensionally operated.
 一方、外力が作用することによって、磁石構造体10と回路基板20の相対的な位置が変化すると、第1及び第2の配線21,22には誘導電流が発生する。したがって、本実施形態によるトランデューサ100は、エネルギーハーベスタとして用いることができる。具体的には、図10に示すように、外力F1が作用すると第1の配線21に電流I1が流れ、外力F2が作用すると第1の配線21に電流I2が流れる。また、図11に示すように、外力F3が作用すると第2の配線22に電流I3が流れ、外力F4が作用すると21の配線22に電流I4が流れる。このように、外力による磁石構造体10と回路基板20の相対的な2次元動作によって、誘導電流を発生させることが可能となる。 On the other hand, when the relative position of the magnet structure 10 and the circuit board 20 changes due to the action of an external force, an induced current is generated in the first and second wirings 21 and 22. Therefore, the transducer 100 according to the present embodiment can be used as an energy harvester. Specifically, as shown in FIG. 10, when an external force F E 1 is applied, a current I1 flows through the first wiring 21, and when an external force F E2 is applied, a current I2 flows through the first wiring 21. Further, as shown in FIG. 11, when the external force F E 3 is applied, a current I3 flows through the second wiring 22, and when the external force F E 4 is applied, a current I4 flows through the wiring 21. In this way, an induced current can be generated by a relative two-dimensional operation of the magnet structure 10 and the circuit board 20 by an external force.
 ここで、磁石構造体10と回路基板20のx方向における相対的な移動は、図1に示すマイクロボールB1の転動によって案内され、磁石構造体10と回路基板20のy方向における相対的な移動は、図1に示すマイクロボールB2の転動によって案内される。 Here, the relative movement of the magnet structure 10 and the circuit board 20 in the x direction is guided by the rolling of the microball B1 shown in FIG. 1, and the relative movement of the magnet structure 10 and the circuit board 20 in the y direction. The movement is guided by the rolling of the microball B2 shown in FIG.
 図12は、支持体40の構成を説明するための略透視斜視図である。 FIG. 12 is a schematic perspective view for explaining the configuration of the support 40.
 図12に示すように、支持体40は開口部40aを有する枠状体であり、開口部40aに磁石構造体10が固定される。支持体40は、z方向における一方側の表面41と他方側の表面42を有し、他方側の表面42には4つの案内溝G4が形成されている。拡大図である図13に示すように、案内溝G4は、支持体40の角部近傍に配置されたV字型の溝であり、その延在方向はy方向である。 As shown in FIG. 12, the support body 40 is a frame-like body having an opening 40a, and the magnet structure 10 is fixed to the opening 40a. The support 40 has a surface 41 on one side and a surface 42 on the other side in the z direction, and four guide grooves G4 are formed on the surface 42 on the other side. As shown in FIG. 13 which is an enlarged view, the guide groove G4 is a V-shaped groove disposed in the vicinity of the corner of the support body 40, and its extending direction is the y direction.
 図14は、支持体50の構成を説明するための略透視斜視図である。 FIG. 14 is a schematic perspective view for explaining the configuration of the support 50.
 図14に示すように、支持体50は開口部50aを有する枠状体であり、トランデューサ100を組み立てると、開口部50aに磁石構造体10及び回路基板20が露出し、両者が互いに向かい合う。支持体50は、z方向における一方側の表面51と他方側の表面52を有し、一方側の表面51には4つの案内溝G2が形成され、他方側の表面52には4つの案内溝G1が形成されている。拡大図である図15に示すように、案内溝G1,G2はいずれも支持体50の角部近傍に配置されたV字型の溝であり、案内溝G1はx方向に延在し、案内溝G2はy方向に延在している。そして、支持体40と支持体50を重ねると、z方向から見て案内溝G4と案内溝G2が互いに重なり、これら案内溝G4,G2にマイクロボールB2が挟み込まれる。これにより、マイクロボールB2は案内溝G4,G2に沿ってy方向に転動自在となり、支持体40と支持体50を相対的にy方向に滑動させる滑動機構が構成される。 As shown in FIG. 14, the support 50 is a frame-like body having an opening 50a. When the transducer 100 is assembled, the magnet structure 10 and the circuit board 20 are exposed in the opening 50a, and both face each other. The support 50 has a surface 51 on one side and a surface 52 on the other side in the z direction, and four guide grooves G2 are formed on the surface 51 on one side, and four guide grooves are formed on the surface 52 on the other side. G1 is formed. As shown in FIG. 15 which is an enlarged view, each of the guide grooves G1 and G2 is a V-shaped groove disposed in the vicinity of the corner portion of the support 50, and the guide groove G1 extends in the x direction and is guided. The groove G2 extends in the y direction. When the support body 40 and the support body 50 are overlapped, the guide groove G4 and the guide groove G2 overlap each other when viewed from the z direction, and the microball B2 is sandwiched between the guide grooves G4 and G2. As a result, the microball B2 can roll in the y direction along the guide grooves G4 and G2, and a sliding mechanism is configured to slide the support body 40 and the support body 50 in the y direction relatively.
 図16は、支持体60の構成を説明するための略透視斜視図である。 FIG. 16 is a schematic perspective view for explaining the configuration of the support 60.
 図16に示すように、支持体60は板状体であり、その一方側の表面61に回路基板20が固定され、他方側の表面62に鋼板30が固定される。さらに、支持体60の一方側の表面61には4つの案内溝G3が形成されている。拡大図である図17に示すように、案内溝G3は支持体60の角部近傍に配置されたV字型の溝であり、その延在方向はx方向である。そして、支持体50と支持体60を重ねると、z方向から見て案内溝G1と案内溝G3が互いに重なり、これら案内溝G1,G3にはマイクロボールB1が挟み込まれる。これにより、マイクロボールB1は案内溝G1,G3に沿ってx方向に転動自在となり、支持体50と支持体60を相対的にx方向に滑動させる滑動機構が構成される。 As shown in FIG. 16, the support 60 is a plate-like body, and the circuit board 20 is fixed to the surface 61 on one side, and the steel plate 30 is fixed to the surface 62 on the other side. Further, four guide grooves G <b> 3 are formed on the surface 61 on one side of the support body 60. As shown in FIG. 17 which is an enlarged view, the guide groove G3 is a V-shaped groove disposed in the vicinity of the corner of the support body 60, and its extending direction is the x direction. When the support 50 and the support 60 are overlapped, the guide groove G1 and the guide groove G3 overlap each other when viewed from the z direction, and the microball B1 is sandwiched between the guide grooves G1 and G3. As a result, the microball B1 can roll in the x direction along the guide grooves G1 and G3, and a sliding mechanism is configured to slide the support 50 and the support 60 in the x direction relatively.
 したがって、マイクロボールB1,B2を介して支持体40,50,60を重ねることによりトランデューサ100を組み立てると、磁石構造体10と回路基板20は、相対的にxy方向に滑動自在となる。つまり、磁石構造体10と回路基板20のz方向における間隔を一定に保ったまま、x方向における相対的な動きは案内溝G1,G3に沿ったマイクロボールB1の転動によって案内され、y方向における相対的な動きは案内溝G2,G4に沿ったマイクロボールB2の転動によって案内されるため、スムーズな2次元動作が可能となる。また、変位量は、案内溝G1~G4の長さによって決まることから、十分な変位量を確保することも可能となる。 Therefore, when the transducer 100 is assembled by stacking the supports 40, 50, 60 via the microballs B1, B2, the magnet structure 10 and the circuit board 20 are relatively slidable in the xy directions. In other words, the relative movement in the x direction is guided by the rolling of the microball B1 along the guide grooves G1 and G3 while keeping the gap in the z direction between the magnet structure 10 and the circuit board 20 constant, and the y direction Since the relative movement is guided by the rolling of the microball B2 along the guide grooves G2 and G4, a smooth two-dimensional operation is possible. Further, since the amount of displacement is determined by the length of the guide grooves G1 to G4, it is possible to ensure a sufficient amount of displacement.
 本実施形態によるトランデューサ100は、支持体40又は支持体60を機器の筐体に固定して使用することができる。例えば、支持体60を機器の筐体に固定すれば、配線21,22に電流を流すことにより、筐体に対して磁石構造体10を2次元的に駆動することが可能となる。この場合、例えば筐体に撮像素子を固定し、磁石構造体10に光学レンズを固定すれば、光学レンズを2次元的に駆動することによって手ぶれ補正を行うことも可能である。 The transducer 100 according to the present embodiment can be used with the support 40 or the support 60 fixed to the casing of the device. For example, if the support body 60 is fixed to the housing of the device, the magnet structure 10 can be driven two-dimensionally with respect to the housing by passing a current through the wires 21 and 22. In this case, for example, when the imaging element is fixed to the casing and the optical lens is fixed to the magnet structure 10, it is possible to perform camera shake correction by driving the optical lens two-dimensionally.
 また、支持体60を筐体に固定する場合、磁石構造体10をx方向に滑動させる際には、磁石構造体10だけでなく支持体50についてもx方向に滑動させる必要があるのに対し、磁石構造体10をy方向に滑動させる際には、支持体50を滑動させることなく、磁石構造体10をy方向に滑動させれば足りる。このことは、x方向の滑動に必要な駆動力がy方向の滑動に必要な駆動力よりも大きいことを意味する。しかしながら、本実施形態においては、x方向への駆動力を生じさせる第1の配線21がより磁石構造体10に近い第2の平面S2に位置し、y方向への駆動力を生じさせる第2の配線22がより磁石構造体10から遠い第3の平面S3に位置していることから、単位電流量当たりの駆動力は、y方向よりもx方向の方が大きくなる。つまり、必要な駆動力が大きいx方向への滑動に寄与する第1の配線21を磁石構造体10に近い第2の平面S2に配置し、必要な駆動力が小さいy方向への滑動に寄与する第2の配線22を磁石構造体10から遠い第3の平面S3に配置することで、発生する駆動力と滑動に必要な駆動力のバランスを確保することが可能となる。 Further, when the support 60 is fixed to the housing, when the magnet structure 10 is slid in the x direction, not only the magnet structure 10 but also the support 50 needs to be slid in the x direction. When the magnet structure 10 is slid in the y direction, it is sufficient to slide the magnet structure 10 in the y direction without sliding the support 50. This means that the driving force required for sliding in the x direction is greater than the driving force required for sliding in the y direction. However, in the present embodiment, the first wiring 21 that generates the driving force in the x direction is located on the second plane S2 that is closer to the magnet structure 10, and the second wiring that generates the driving force in the y direction. Since the wiring 22 is located on the third plane S3 farther from the magnet structure 10, the driving force per unit current amount is larger in the x direction than in the y direction. That is, the first wiring 21 that contributes to sliding in the x direction with a large required driving force is arranged on the second plane S2 close to the magnet structure 10, and contributes to sliding in the y direction with a small necessary driving force. By arranging the second wiring 22 to be arranged on the third plane S3 far from the magnet structure 10, it is possible to ensure a balance between the generated driving force and the driving force necessary for sliding.
 図18は、本実施形態によるトランデューサ100をアクチュエータとして用いる場合の駆動回路70の回路図である。 FIG. 18 is a circuit diagram of the drive circuit 70 when the transducer 100 according to the present embodiment is used as an actuator.
 図18に示す駆動回路70は、制御信号CNTに基づいて駆動信号Dx,Dyを生成する制御回路71と、駆動信号Dxを駆動電流Ixに変換するアンプ72と、駆動信号Dyを駆動電流Iyに変換するアンプ73とを有している。制御信号CNTは、アクチュエータであるトランデューサ100の動作方向及び動作量を指示する信号であり、例えばアクチュエータであるトランデューサ100を手ぶれ補正機構として使用する場合には、加速度センサなどから供給される手ぶれ検出信号が該当する。制御回路71は、制御信号CNTに基づき、x方向への駆動量を示す駆動信号Dxと、y方向への駆動量を示す駆動信号Dyを生成し、これらをアンプ72,73にそれぞれ供給する。そして、アンプ72,73によって駆動信号Dx,Dyが駆動電流Ix,Iyに変換され、それぞれ第1及び第2の配線21,22に供給される。これにより、制御信号CNTに基づいて、磁石構造体10と回路基板20を相対的に2次元滑動させることが可能となる。 The drive circuit 70 shown in FIG. 18 includes a control circuit 71 that generates drive signals Dx and Dy based on the control signal CNT, an amplifier 72 that converts the drive signal Dx into a drive current Ix, and the drive signal Dy into the drive current Iy. And an amplifier 73 for conversion. The control signal CNT is a signal for instructing an operation direction and an operation amount of the transducer 100 that is an actuator. For example, when the transducer 100 that is an actuator is used as a camera shake correction mechanism, a camera shake supplied from an acceleration sensor or the like is used. This corresponds to the detection signal. Based on the control signal CNT, the control circuit 71 generates a drive signal Dx indicating the drive amount in the x direction and a drive signal Dy indicating the drive amount in the y direction, and supplies these to the amplifiers 72 and 73, respectively. The drive signals Dx and Dy are converted into drive currents Ix 1 and Iy 1 by the amplifiers 72 and 73 and supplied to the first and second wirings 21 and 22, respectively. Thereby, based on the control signal CNT, the magnet structure 10 and the circuit board 20 can be relatively slid two-dimensionally.
 単位滑動量当たりの駆動電流Ix,Iyは互いに同じであっても構わないが、y方向への滑動に寄与する第2の配線22が磁石構造体10から遠い第3の平面S3に配置されているため、基板23の厚さによっては、y方向への駆動力が不足する可能性がある。このような場合には、駆動信号Dxと駆動信号Dyのゲインに差を設け、単位滑動量当たりの駆動信号Dxの指示値よりも、単位滑動量当たりの駆動信号Dyの指示値が大きくなるよう、制御回路71を設計することによって、y方向への駆動力を増大させても構わない。或いは、制御回路71による駆動信号Dxと駆動信号Dyのゲインは一定とし、駆動信号Dxの単位指示値当たりの駆動電流Ixよりも、駆動信号Dyの単位指示値当たりの駆動電流Iyの方が大きくなるよう、アンプ72,73を設計しても構わない。 The drive currents Ix 1 and Iy 1 per unit sliding amount may be the same, but the second wiring 22 that contributes to the sliding in the y direction is arranged on the third plane S 3 far from the magnet structure 10. Therefore, depending on the thickness of the substrate 23, the driving force in the y direction may be insufficient. In such a case, a difference is provided between the gains of the drive signal Dx and the drive signal Dy so that the indicated value of the drive signal Dy per unit sliding amount is larger than the indicated value of the drive signal Dx per unit sliding amount. The driving force in the y direction may be increased by designing the control circuit 71. Alternatively, the gain of the drive signal Dx and the drive signal Dy by the control circuit 71 is constant, and the drive current Iy 1 per unit instruction value of the drive signal Dy is more than the drive current Ix 1 per unit instruction value of the drive signal Dx. The amplifiers 72 and 73 may be designed so as to increase.
 これによれば、単位滑動量当たりの駆動電流Ixよりも単位滑動量当たりの駆動電流Iyの方が大きくなるため、磁石構造体10からの距離が遠いことによる駆動力の低下を補うことが可能となる。この場合、x方向の滑動に寄与する第1の配線21よりも、y方向の滑動に寄与する第2の配線22の方がより大きな電流が流れることから、図19に示すように、第1の配線21の導体厚T1をより薄く設計し、第2の配線22の導体厚T2をより厚く設計しても構わない(T1<T2)。これによれば、より大きな電流が流れる第2の配線22の抵抗値を下げることができるとともに、第1の配線21の導体厚T1が薄いことから、磁石構造体10と第2の配線22の距離をより近づけることが可能となる。 According to this, the driving current Iy 1 per unit sliding amount becomes larger than the driving current Ix 1 per unit sliding amount, so that the reduction in driving force due to the far distance from the magnet structure 10 is compensated. Is possible. In this case, a larger current flows in the second wiring 22 contributing to the sliding in the y direction than in the first wiring 21 contributing to the sliding in the x direction. Therefore, as shown in FIG. The conductor thickness T1 of the wiring 21 may be designed to be thinner and the conductor thickness T2 of the second wiring 22 may be designed to be thicker (T1 <T2). According to this, since the resistance value of the second wiring 22 through which a larger current flows can be lowered and the conductor thickness T1 of the first wiring 21 is thin, the magnet structure 10 and the second wiring 22 can be reduced. It becomes possible to make the distance closer.
 図20は、本実施形態によるトランデューサ100をエネルギーハーベスタとして用いる場合に必要な回路を示すブロック図である。 FIG. 20 is a block diagram showing a circuit required when the transducer 100 according to the present embodiment is used as an energy harvester.
 本実施形態によるトランデューサ100をエネルギーハーベスタとして用いる場合、整流変圧回路80に誘導電流Ix及びIyを入力する。整流変圧回路80は、誘導電流Ix及びIyを整流し、出力電圧OUTを生成する。これにより、トランデューサ100に外力が作用すると、出力電圧OUTを得ることが可能となる。 When the transducer 100 according to the present embodiment is used as an energy harvester, induced currents Ix 2 and Iy 2 are input to the rectifying transformer circuit 80. The rectifying transformer circuit 80 rectifies the induced currents Ix 2 and Iy 2 and generates an output voltage OUT. As a result, when an external force acts on the transducer 100, the output voltage OUT can be obtained.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.
 例えば、上記実施形態では、第1及び第2の磁石11,12の全てに第1及び第2の配線21,22が割り当てられているが、本発明においてこのような構成とすることは必須でない。したがって、第1の配線21については、第1の配列部分Lxを構成する第1の磁石11及び第2の磁石12の少なくとも一部をy方向に横断すれば足り、第2の配線22については、第2の配列部分Lyを構成する第1の磁石11及び第2の磁石12の少なくとも一部をx方向に横断すれば足りる。 For example, in the above embodiment, the first and second wires 21 and 22 are assigned to all of the first and second magnets 11 and 12, but such a configuration is not essential in the present invention. . Therefore, for the first wiring 21, it is sufficient to cross at least a part of the first magnet 11 and the second magnet 12 constituting the first array portion Lx in the y direction, and for the second wiring 22. It is sufficient to cross at least a part of the first magnet 11 and the second magnet 12 constituting the second array portion Ly in the x direction.
 また、上記実施形態では、支持体40,60を用いているが、磁石構造体10自体に案内溝G4を設けることにより支持体40を省略しても構わないし、回路基板20自体に案内溝G3を設けることにより支持体60を省略しても構わない。 In the above embodiment, the support bodies 40 and 60 are used. However, the support body 40 may be omitted by providing the magnet structure 10 itself with the guide groove G4, or the guide groove G3 may be provided in the circuit board 20 itself. By providing the support 60, the support 60 may be omitted.
 また、上記実施形態では、x方向への滑動機構を構成するマイクロボールB1及び案内溝G1,G3を4セット用い、y方向への滑動機構を構成するマイクロボールB2及び案内溝G2,G4を4セット用いているが、これらの数については特に限定されない。 In the above embodiment, four sets of microballs B1 and guide grooves G1 and G3 constituting a sliding mechanism in the x direction are used, and four microballs B2 and guide grooves G2 and G4 constituting a sliding mechanism in the y direction are used. Although the set is used, these numbers are not particularly limited.
10  磁石構造体
11  第1の磁石
12  第2の磁石
13  支持基板
20  回路基板
21  第1の配線
21x  接続部分
21y  第1の配線部分
21y  第2の配線部分
22  第2の配線
22x  第3の配線部分
22x  第4の配線部分
22y  接続部分
23  基板
24  基板の一方の表面
25  基板の他方の表面
26  絶縁膜
30  鋼板
40  支持体
40a  開口部
41  支持体の一方の表面
42  支持体の他方の表面
50  支持体
50a  開口部
51  支持体の一方の表面
52  支持体の他方の表面
60  支持体
61  支持体の一方の表面
62  支持体の一方の表面
70  駆動回路
71  制御回路
72,73  アンプ
80  整流変圧回路
100  トランデューサ
AF  磁気吸引力
B1,B2  マイクロボール
CNT  制御信号
Dx,Dy  駆動信号
1~F4  ローレンツ力
1~F4  外力
G1~G4  案内溝
I1~I4  電流
Ix,Iy  駆動電流
Ix,Iy  誘導電流
OUT  出力信号
S1  第1の平面
S2  第2の平面
S3  第3の平面
SL  スリット
DESCRIPTION OF SYMBOLS 10 Magnet structure 11 1st magnet 12 2nd magnet 13 Support substrate 20 Circuit board 21 1st wiring 21x Connection part 21y 1 1st wiring part 21y 2 2nd wiring part 22 2nd wiring 22x 1st 3 wiring portion 22x 2 4th wiring portion 22y connection portion 23 substrate 24 one surface 25 of substrate 25 other surface 26 of substrate 26 insulating film 30 steel plate 40 support 40a opening 41 support one surface 42 of support The other surface 50 Support 50a Opening 51 One surface 52 of the support 52 The other surface 60 of the support 60 The support 61 The one surface 62 of the support The one surface 70 of the support 70 The drive circuit 71 The control circuits 72 and 73 Amplifier 80 rectifier transformer circuit 100 transducer AF magnetic attraction force B1, B2 microballs CNT control signals Dx, Dy drive signal F L 1 ~ L 4 Lorentz force F E 1 ~ F E 4 external force G1 ~ G4 guide grooves I1 ~ I4 current Ix 1, Iy 1 driving current Ix 2, Iy 2 induced current OUT output signal S1 first plane S2 second plane S3 first 3 plane SL slit

Claims (12)

  1.  第1の方向及び前記第1の方向と直交する第2の方向に延在する第1の平面に位置する磁極面がN極である複数の第1の磁石と、前記第1の平面に位置する磁極面がS極である複数の第2の磁石とを含む磁石構造体と、
     前記磁石構造体の前記第1の平面と重なる第1及び第2の配線が形成された回路基板と、
     前記磁石構造体と前記回路基板を相対的に前記第1の方向に滑動させる第1の滑動機構と、
     前記磁石構造体と前記回路基板を相対的に前記第2の方向に滑動させる第2の滑動機構と、を備え、
     前記磁石構造体は、前記第1の磁石と前記第2の磁石が前記第1の方向に交互に配列された第1の配列部分と、前記第1の磁石と前記第2の磁石が前記第2の方向に交互に配列された第2の配列部分とを含み、
     前記第1の配線は、前記第1の配列部分に含まれる前記第1及び第2の磁石の少なくとも一部を前記第2の方向に横断し、
     前記第2の配線は、前記第2の配列部分に含まれる前記第1及び第2の磁石の少なくとも一部を前記第1の方向に横断し、
     前記磁石構造体と前記回路基板は、前記第1及び第2の滑動機構を挟んで、互いに磁気吸引されていることを特徴とするトランデューサ。
    A plurality of first magnets whose N poles are magnetic pole faces located in a first plane extending in a first direction and a second direction orthogonal to the first direction, and located in the first plane A magnet structure including a plurality of second magnets whose magnetic pole surfaces are S poles;
    A circuit board on which first and second wirings that overlap the first plane of the magnet structure are formed;
    A first sliding mechanism for sliding the magnet structure and the circuit board relatively in the first direction;
    A second sliding mechanism for sliding the magnet structure and the circuit board relatively in the second direction;
    The magnet structure includes a first arrangement portion in which the first magnets and the second magnets are alternately arranged in the first direction, and the first magnets and the second magnets in the first direction. Second arrangement portions arranged alternately in two directions,
    The first wiring crosses at least a part of the first and second magnets included in the first arrangement portion in the second direction,
    The second wiring crosses at least a part of the first and second magnets included in the second arrangement portion in the first direction,
    The transducer, wherein the magnet structure and the circuit board are magnetically attracted to each other with the first and second sliding mechanisms interposed therebetween.
  2.  前記第1の滑動機構は、前記第1の方向に転動自在な第1のマイクロボールを含み、
     前記第2の滑動機構は、前記第2の方向に転動自在な第2のマイクロボールを含むことを特徴とする請求項1に記載のトランデューサ。
    The first sliding mechanism includes a first microball that can freely roll in the first direction;
    The transducer according to claim 1, wherein the second sliding mechanism includes a second microball that can roll in the second direction.
  3.  前記第1の方向に延在する第1の案内溝と前記第2の方向に延在する第2の案内溝が形成された支持体をさらに備え、
     前記第1のマイクロボールは前記第1の案内溝に沿って転動し、前記第2のマイクロボールは前記第2の案内溝に沿って転動することを特徴とする請求項2に記載のトランデューサ。
    A support body formed with a first guide groove extending in the first direction and a second guide groove extending in the second direction;
    The first microball rolls along the first guide groove, and the second microball rolls along the second guide groove. Transducer.
  4.  前記磁石構造体又はこれに固定された支持体には、前記第1の方向に延在する第3の案内溝が形成され、
     前記回路基板又はこれに固定された支持体には、前記第2の方向に延在する第4の案内溝が形成され、
     前記第1のマイクロボールは前記第1及び第3の案内溝に沿って転動し、前記第2のマイクロボールは前記第2及び第4の案内溝に沿って転動することを特徴とする請求項3に記載のトランデューサ。
    A third guide groove extending in the first direction is formed in the magnet structure or the support fixed to the magnet structure,
    A fourth guide groove extending in the second direction is formed in the circuit board or the support fixed to the circuit board,
    The first microball rolls along the first and third guide grooves, and the second microball rolls along the second and fourth guide grooves. The transducer according to claim 3.
  5.  前記回路基板に固定された軟磁性体をさらに備え、
     前記磁石構造体と前記回路基板は、前記磁石構造体と前記軟磁性体との間に作用する磁気吸引力によって互いに吸引されていることを特徴とする請求項1乃至4のいずれか一項に記載のトランデューサ。
    A soft magnetic material fixed to the circuit board;
    5. The magnetic structure according to claim 1, wherein the magnet structure and the circuit board are attracted to each other by a magnetic attraction force acting between the magnet structure and the soft magnetic body. The listed transducer.
  6.  前記回路基板は、前記第1の平面と平行な第2及び第3の平面を有し、
     前記第1の配線は前記第2の平面に形成され、前記第2の配線は前記第3の平面に形成され、
     前記第1の平面と前記第3の平面の距離は、前記第1の平面と前記第2の平面の距離よりも大きいことを特徴とする請求項1乃至5のいずれか一項に記載のトランデューサ。
    The circuit board has second and third planes parallel to the first plane,
    The first wiring is formed on the second plane, the second wiring is formed on the third plane,
    6. The transformer according to claim 1, wherein a distance between the first plane and the third plane is larger than a distance between the first plane and the second plane. Deusa.
  7.  前記第2及び第3の平面は、前記回路基板の表裏であることを特徴とする請求項6に記載のトランデューサ。 The transducer according to claim 6, wherein the second and third planes are front and back of the circuit board.
  8.  前記第1の滑動機構は、前記磁石構造体及び前記第2の滑動機構を前記回路基板に対して相対的に前記第1の方向に滑動させ、
     前記第2の滑動機構は、前記第1の滑動機構を前記回路基板に対して相対的に前記第2の方向に滑動させることなく、前記磁石構造体を前記回路基板に対して相対的に前記第2の方向に滑動させることを特徴とする請求項6又は7に記載のトランデューサ。
    The first sliding mechanism slides the magnet structure and the second sliding mechanism relative to the circuit board in the first direction,
    The second sliding mechanism moves the magnet structure relative to the circuit board without sliding the first sliding mechanism in the second direction relative to the circuit board. The transducer according to claim 6 or 7, wherein the transducer is slid in a second direction.
  9.  前記第1の配線よりも前記第2の配線の方が、導体厚が大きいことを特徴とする請求項1乃至8のいずれか一項に記載のトランデューサ。 The transducer according to any one of claims 1 to 8, wherein a conductor thickness of the second wiring is larger than that of the first wiring.
  10.  請求項1乃至9のいずれか一項に記載のトランデューサと、前記第1及び第2の配線に駆動電流を供給する駆動回路とを備えることを特徴とするアクチュエータ。 An actuator comprising: the transducer according to any one of claims 1 to 9; and a drive circuit that supplies a drive current to the first and second wirings.
  11.  前記駆動回路が前記第1の配線に供給する単位滑動量当たりの駆動電流よりも、前記駆動回路が前記第2の配線に供給する単位滑動量当たりの駆動電流の方が大きいことを特徴とする請求項10に記載のアクチュエータ。 The driving current per unit sliding amount supplied to the second wiring by the driving circuit is larger than the driving current per unit sliding amount supplied to the first wiring by the driving circuit. The actuator according to claim 10.
  12.  請求項1乃至9のいずれか一項に記載のトランデューサと、前記第1及び第2の配線に流れる誘導電流に基づいて出力電圧を生成する整流変圧回路とを備えることを特徴とするエネルギーハーベスタ。 An energy harvester comprising: the transducer according to any one of claims 1 to 9; and a rectifier transformer circuit that generates an output voltage based on an induced current flowing through the first and second wirings. .
PCT/JP2019/007193 2018-02-28 2019-02-26 Transducer, and actuator and energy harvester using same WO2019167913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503507A JP7176701B2 (en) 2018-02-28 2019-02-26 Transducer and actuator and energy harvester using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-034551 2018-02-28
JP2018034551 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167913A1 true WO2019167913A1 (en) 2019-09-06

Family

ID=67805826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007193 WO2019167913A1 (en) 2018-02-28 2019-02-26 Transducer, and actuator and energy harvester using same

Country Status (2)

Country Link
JP (1) JP7176701B2 (en)
WO (1) WO2019167913A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112526A (en) * 2000-06-26 2002-04-12 Nikon Corp Flat motor, stage-positioning system, and aligner
JP2006136154A (en) * 2004-11-08 2006-05-25 Canon Inc Positioning device and exposure apparatus using the same, and method of manufacturing device
JP2015163004A (en) * 2014-02-28 2015-09-07 国立大学法人横浜国立大学 electromagnetic actuator
WO2015165335A1 (en) * 2014-04-28 2015-11-05 清华大学 Integrated magnetic suspension coarse and fine moving mask table driven by planar motor
WO2017126577A1 (en) * 2016-01-22 2017-07-27 Tdk株式会社 Actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112526A (en) * 2000-06-26 2002-04-12 Nikon Corp Flat motor, stage-positioning system, and aligner
JP2006136154A (en) * 2004-11-08 2006-05-25 Canon Inc Positioning device and exposure apparatus using the same, and method of manufacturing device
JP2015163004A (en) * 2014-02-28 2015-09-07 国立大学法人横浜国立大学 electromagnetic actuator
WO2015165335A1 (en) * 2014-04-28 2015-11-05 清华大学 Integrated magnetic suspension coarse and fine moving mask table driven by planar motor
WO2017126577A1 (en) * 2016-01-22 2017-07-27 Tdk株式会社 Actuator

Also Published As

Publication number Publication date
JPWO2019167913A1 (en) 2021-02-12
JP7176701B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
CN107925717B (en) Rotary ball guided voice coil motor
US4485339A (en) Electro-magnetic alignment device
EP0130357B1 (en) Electro-magnetic alignment assemblies
US7633190B2 (en) Voice coil motors
US8044541B2 (en) Multi-degree-of-freedom actuator and stage device
US20070097530A1 (en) Optical devices
US10381911B2 (en) Linear motor, magnet unit, and stage device
KR20020003563A (en) Linear motor and production method therefor
JP5731871B2 (en) Position detecting apparatus and actuator using the same
JP2007128072A (en) Optical device
US20100033031A1 (en) Voice coil motor for optical device
JPH07131966A (en) Two-dimensional linear motor
US20050184618A1 (en) Transfer apparatus
JP2017187694A (en) Drive device and lens unit
Han et al. An in-plane, large-stroke, multipole electromagnetic microactuator realized by guideways stacking mechanism
WO2019167913A1 (en) Transducer, and actuator and energy harvester using same
JP6749346B2 (en) Actuator
CN107925336A (en) Transverse magnetic flux linear electric machine
JPS62207165A (en) Two-dimensional actuator
JP7045672B2 (en) Actuator
KR101370230B1 (en) Linear motor
JP2016144257A (en) Magnet device
JP2908249B2 (en) Flat motor device
JPH03178746A (en) Two-dimensional moveable stage device
CN110806629A (en) Lens driving device, camera device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761423

Country of ref document: EP

Kind code of ref document: A1