WO2019167843A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2019167843A1
WO2019167843A1 PCT/JP2019/006856 JP2019006856W WO2019167843A1 WO 2019167843 A1 WO2019167843 A1 WO 2019167843A1 JP 2019006856 W JP2019006856 W JP 2019006856W WO 2019167843 A1 WO2019167843 A1 WO 2019167843A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
holder
axial direction
sensor magnet
cylindrical portion
Prior art date
Application number
PCT/JP2019/006856
Other languages
French (fr)
Japanese (ja)
Inventor
雄策 吉田
梅田 智之
藤原 英雄
尚 石田
中島 拓
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980015290.8A priority Critical patent/CN111771318A/en
Publication of WO2019167843A1 publication Critical patent/WO2019167843A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes

Definitions

  • the present invention relates to a motor.
  • Japanese Laid-Open Patent Publication No. 2006-158059 discloses a structure in which the position detection accuracy is improved by attaching a back yoke to a bracket for holding a bearing to block magnetic noise generated from other than the sensor magnet. .
  • one aspect of the present invention is to provide a motor with reduced manufacturing cost while suppressing magnetic noise from affecting the sensor.
  • a motor includes a rotor that can rotate around a central axis that extends in the vertical direction, a stator that has a plurality of coils and is positioned on the outer side in the radial direction of the rotor, Is provided.
  • the rotor has a shaft extending along the central axis, and a sensor magnet located at the upper end of the shaft.
  • the bus bar unit includes a bus bar connected to the coil, a magnetic member made of a magnetic material, and a bus bar holder that extends along a plane orthogonal to the central axis and supports the bus bar and the magnetic member.
  • the bus bar holder is provided with a central hole into which the shaft is inserted.
  • the magnetic member has a cylindrical portion extending in the axial direction along the inner peripheral surface of the central hole. At least a part of the cylindrical portion overlaps the sensor magnet in the axial direction.
  • a motor with reduced manufacturing costs while suppressing magnetic noise from affecting the sensor.
  • FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment.
  • FIG. 2 is a perspective view of the phase bus bar unit according to the embodiment.
  • FIG. 3 is a plan view of a phase bus bar unit according to an embodiment.
  • the Z-axis direction in each figure is a direction parallel to the central axis J shown in FIG.
  • the positive side (+ Z side) in the Z-axis direction is referred to as “upper side”
  • the negative side ( ⁇ Z side) in the Z-axis direction is referred to as “lower side”.
  • the upper side and the lower side are directions used for explanation only, and do not limit the actual positional relationship and direction.
  • the direction parallel to the central axis J (Z-axis direction) is simply referred to as “axial direction” or “vertical direction”
  • the radial direction around the central axis J is simply referred to as “radial direction”.
  • the circumferential direction around the central axis J that is, the circumference of the central axis J is simply referred to as “circumferential direction”.
  • “plan view” means a state viewed from the axial direction.
  • FIG. 1 is a schematic cross-sectional view of the motor 1.
  • a control device (external device) 9 is connected to the motor 1.
  • the control device 9 supplies power to the motor 1 via the control terminal 9a and controls the rotation of the motor 1.
  • the motor 1 includes a rotor 3, a stator 4, a housing 2, a bearing holder 5, an upper bearing (bearing) 6A, a lower bearing (bearing) 6B, a neutral point bus bar unit 10, and a phase bus bar unit. (Bus bar unit) 20.
  • the rotor 3 is rotatable around a central axis J extending in the vertical direction.
  • the rotor 3 includes a shaft 3a, a rotor core 3b, a rotor magnet 3c, a sensor magnet 3d, and a sensor magnet mounting member 3e.
  • the shaft 3a extends along the central axis J.
  • the shaft 3a is rotatably supported around the central axis J by the upper bearing 6A and the lower bearing 6B.
  • the rotor core 3b is fixed to the outer peripheral surface of the shaft 3a.
  • the rotor magnet 3c is fixed to the outer peripheral surface of the rotor core 3b.
  • the sensor magnet 3d is fixed to the upper end of the shaft 3a. That is, the sensor magnet 3d is located at the upper end of the shaft 3a. Fixing holes 3aa extending along the axial direction are provided on the upper end surface of the shaft 3a. The sensor magnet 3d is provided with a fixing hole 3da penetrating along the axial direction. The sensor magnet attachment member 3e is a bar extending along the axial direction. The sensor magnet attachment member 3e is fitted into the fixing hole 3aa of the shaft 3a and the fixing hole 3da of the sensor magnet 3d. Thereby, the sensor magnet attachment member 3e fixes the shaft 3a and the sensor magnet 3d to each other.
  • the sensor magnet 3d rotates around the central axis J together with the shaft 3a.
  • the sensor magnet 3d faces the rotation sensor 9b provided in the control device 9 in the axial direction. That is, the sensor magnet 3d is located immediately below the rotation sensor 9b.
  • the rotation sensor 9b is mounted on the lower surface of a circuit board (not shown) of the control device 9.
  • the rotation sensor 9b measures the rotation angle of the rotor 3 from the change in magnetic flux of the sensor magnet 3d.
  • the stator 4 is annularly arranged around the central axis J.
  • the stator 4 is located on the radially outer side of the rotor 3.
  • the stator 4 is opposed to the rotor 3 in the radial direction through a gap.
  • the stator 4 surrounds the outer side of the rotor 3 in the radial direction.
  • the stator 4 is fixed to the inner peripheral surface of the housing 2.
  • the stator 4 includes an annular stator core 4a, a pair of insulators 4b mounted on the stator core 4a from above and below, and a coil 7 wound around the stator core 4a via the insulator 4b.
  • the plurality of coils 7 of the present embodiment constitute a three-phase circuit of a plurality of systems (two systems in the present embodiment).
  • the U-phase, V-phase, and W-phase coils 7 are Y-connected.
  • the stator 4 of this embodiment is provided with 12 coils 7.
  • a coil wire 7a extends from each coil 7.
  • 6 coil wires 7 a are connected to the phase bus bar 21 of the phase bus bar unit 20.
  • the other six coil wires 7 a are connected to the neutral point bus bar 11 of the neutral point bus bar unit 10.
  • the housing 2 has a cylindrical shape that opens upward (+ Z side).
  • the housing 2 accommodates the rotor 3, the stator 4 and the bearing holder 5.
  • the housing 2 has a cylindrical part 2a and a bottom part 2b.
  • the cylindrical portion 2a surrounds the stator 4 from the outside in the radial direction.
  • the bottom 2b is located at the lower end of the cylinder 2a.
  • a lower bearing holding portion 2c that holds the lower bearing 6B is provided in the center of the bottom portion 2b in plan view.
  • the bearing holder 5 is located above the stator 4.
  • the bearing holder 5 is located between the phase bus bar unit 20 and the neutral point bus bar unit 10 in the axial direction. That is, the bearing holder 5 is located between the phase bus bar unit 20 and the stator 4.
  • the bearing holder 5 is made of metal.
  • the bearing holder 5 is held on the inner peripheral surface of the housing 2.
  • the bearing holder 5 has an upper bearing holding portion 5a.
  • the upper bearing holding portion 5a holds the upper bearing 6A.
  • the bearing holder 5 rotatably supports the shaft 3a via the upper bearing 6A.
  • the upper bearing holding portion 5 a is located at the center of the bearing holder 5 in plan view.
  • the upper bearing holding portion 5a includes a holding cylinder portion 5aa extending in the axial direction around the central axis J, and an upper end protruding portion 5ab extending radially inward from the upper end of the holding cylinder portion 5aa.
  • the upper end protrusion 5ab positions the upper bearing 6A in the vertical direction.
  • a hole 5c penetrating in the axial direction is provided in the center of the upper end protrusion 5ab in plan view. The hole 5c allows the shaft 3a to pass inside.
  • the bearing holder 5 is provided with a coil wire passage hole 5d and a screw hole 5f penetrating in the vertical direction.
  • the coil wire 7a that is drawn from the coil 7 and connected to the phase bus bar unit 20 passes through the coil wire passage hole 5d.
  • a fixing screw 8 for fixing the phase bus bar unit 20 to the bearing holder 5 is inserted into the screw hole 5f.
  • the neutral point bus bar unit 10 is located above the stator 4.
  • the neutral point bus bar unit 10 includes a neutral point bus bar holder 12 and a plurality (two in this embodiment) of neutral point bus bars 11.
  • the neutral point bus bar holder 12 holds the neutral point bus bar 11.
  • the neutral point bus bar unit 10 is provided with a pair of neutral point bus bars 11.
  • the neutral point bus bar holder 12 extends along a plane orthogonal to the central axis J.
  • the neutral point bus bar holder 12 has a leg portion 12a.
  • the leg portion 12a extends downward along the axial direction.
  • the lower end of the leg portion 12a is in contact with the upper surface of the stator core 4a.
  • the neutral point bus-bar holder 12 has the support part 12b.
  • the support portion 12b extends upward along the axial direction.
  • the support portion 12 b surrounds the coil wire 7 a and suppresses the coil wire 7 a from contacting the coil wire passage hole 5 d of the bearing holder 5.
  • Each neutral point bus bar 11 has three coil wire connecting portions 11a.
  • Neutral point bus bar 11 is connected to coil wire 7a at coil wire connecting portion 11a.
  • the neutral point bus bar 11 connects the coil wires 7a extending from different coils 7 to constitute a neutral point of the three-phase circuit.
  • phase bus bar unit 20 is located above the stator 4 and the bearing holder 5.
  • the phase bus bar unit 20 is provided between the coil wire 7 a drawn up to the upper side of the bearing holder 5 and the control device 9 so as to electrically connect them.
  • FIG. 2 is a perspective view of the phase bus bar unit 20.
  • FIG. 3 is a plan view of the phase bus bar unit 20.
  • the phase bus bar unit 20 includes a plurality (six in this embodiment) of phase bus bars (bus bars) 21, a bus bar holder 30, a pair of terminal receiving members 40, and a reinforcing member (magnetic). Member) 50.
  • the phase bus bar 21 includes a bus bar main body part 22, a coil wire connection part 24, and an external connection terminal 27.
  • the bus bar main body portion 22 and the coil wire connection portion 24 are a single member.
  • the external connection terminal 27 is a separate member from the bus bar main body 22 and is connected to the bus bar main body 22.
  • the external connection terminal 27 and the bus bar main body 22 may be a single member.
  • Each part of the bus bar for phase 21 is plate-shaped and is formed by press working.
  • the phase bus bar 21 is processed in the bus bar main body portion 22 such that the axial direction is the plate thickness direction.
  • the phase bus bar 21 is processed so that the direction perpendicular to the axial direction is the plate thickness direction in the coil wire connection portion 24 and the external connection terminal 27.
  • the phase bus bar 21 is embedded in the holder main body 31 of the bus bar holder 30. That is, the bus bar holder 30 is manufactured by insert molding for embedding the phase bus bar 21.
  • the bus bar main body 22 extends linearly along a plane orthogonal to the axial direction.
  • a terminal connection portion 22 a is provided at one end of the bus bar main body portion 22.
  • a coil wire connecting portion 24 is connected to the other end of the bus bar main body portion 22.
  • the coil wire connecting portion 24 is connected to the coil wire 7a.
  • the coil wire connection unit 24 holds the coil wire 7a.
  • the planar view shape of the coil wire connecting portion 24 is a substantially U-shape opening outward in the radial direction.
  • the terminal connection unit 22 a holds the external connection terminal 27.
  • the terminal connection portion 22a is provided with an insertion hole 22aa penetrating in the axial direction.
  • the external connection terminal 27 is press-fitted into the insertion hole 22aa from below. Thereby, the phase bus bar 21 and the external connection terminal 27 are mechanically and electrically connected.
  • the terminal connection portion 22a and the external connection terminal 27 may be connected to each other by a welding method such as laser welding.
  • the external connection terminal 27 extends along the axial direction.
  • the external connection terminal 27 of the present embodiment is provided with a slit 27a extending downward from the upper end portion.
  • the control terminal 9a of the control device 9 is inserted into the slit 27a. As a result, the control device 9 is connected to the motor 1 via the external connection terminal 27.
  • a plurality (six in this embodiment) of bus bars 21 are classified into a first bus bar group 28 and a second bus bar group 29.
  • Each of the first bus bar group 28 and the second bus bar group 29 includes a plurality of (three in this embodiment) phase bus bars 21. That is, the phase bus bar unit 20 includes a plurality of phase bus bars 21, and the plurality of phase bus bars 21 are classified into a plurality of bus bar groups (a first bus bar group 28 and a second bus bar group 29).
  • the phase bus bars 21 belonging to the first bus bar group 28 and the second bus bar group 29 are respectively connected to coils 7 of different systems.
  • the three coils connected to the three phase bus bars 21 of the first bus bar group 28 constitute a three-phase circuit of one system, and the three coils connected to the three phase bus bars 21 of the second bus bar group 29.
  • the coil constitutes a three-phase circuit of another system.
  • First bus bar group 28 and second bus bar group 29 include a U-phase bus bar, a V-phase bus bar, and a W-phase bus bar, respectively. That is, the three-phase bus bars 21 of the first bus bar group 28 and the second bus bar group 29 are connected to the U-phase, V-phase, and W-phase coils 7, respectively.
  • the first bus bar group 28 and the second bus bar group 29 are arranged side by side in the circumferential direction.
  • the phase bus bar 21 of the first bus bar group 28 and the phase bus bar 21 of the second bus bar group 29 are arranged to be pointed around the central axis J.
  • the in-phase bus bars 21 have the same shape. For this reason, in the bus bar unit 20 for phases, the number of parts can be reduced.
  • the phase bus bars 21 included in the first bus bar group 28 and the second bus bar group 29 are arranged in the bus bar main body 22 so as to overlap each other in the radial direction. That is, in the first bus bar group 28 and the second bus bar group 29, the bus bar main body portions 22 of the three phase bus bars 21 are arranged side by side in the radial direction. For this reason, it is suppressed that the area
  • the bus bar holder 30 is provided on the upper side (one side in the axial direction) of the stator.
  • the bus bar holder 30 extends along a plane orthogonal to the central axis J.
  • the bus bar holder 30 is made of a resin material.
  • the bus bar holder 30 includes a holder main body portion 31, a cylindrical portion 33, and a plurality (six in this embodiment) of square tube portions 37.
  • the holder main body 31 extends along a plane orthogonal to the central axis J.
  • the holder main body 31 has an upper surface 31a facing the upper side (one side in the axial direction) and a lower surface 31b facing the lower side (the other side in the axial direction).
  • a phase bus bar 21 and a reinforcing member 50 are embedded in the holder body 31.
  • the bus bar holder 30 supports the phase bus bar 21 and the reinforcing member 50. Further, the bus bar holder 30 is reinforced by the phase bus bar 21 and the reinforcing member 50.
  • the holder main body 31 is provided with a central hole 35 centered on the central axis J. That is, the bus bar holder 30 is provided with a central hole 35.
  • the central hole 35 penetrates in the axial direction.
  • the central hole 35 is circular when viewed from the axial direction.
  • the central hole 35 allows the shaft 3a to pass inside.
  • the holder main body 31 has a pair of bus bar embedded regions 31 ⁇ / b> A and a pair of reinforcing member embedded regions 31 ⁇ / b> B around the central hole 35.
  • the bus bar embedded regions 31A and the reinforcing member embedded regions 31B are alternately arranged along the circumferential direction.
  • the bus bar body 22 of the phase bus bar 21 is embedded in the pair of bus bar embedded regions 31A.
  • the pair of bus bar embedded regions 31 ⁇ / b> A are arranged on opposite sides in the radial direction with the central hole 35 therebetween as viewed from the axial direction.
  • the pair of bus bar embedded regions 31A one of the three phase bus bars 21 belonging to the first bus bar group 28 is embedded, and the other one of the three phase bus bars 21 belonging to the second bus bar group 29 is embedded. Therefore, the first bus bar group 28 and the second bus bar group 29 are arranged on the opposite sides in the radial direction with the central hole 35 therebetween as viewed from the axial direction.
  • pair of reinforcing member embedding regions 31B a pair of radially extending portions 54b of the reinforcing member 50 described later is embedded.
  • the pair of reinforcing member embedding regions 31B are arranged on the opposite sides in the radial direction with the central hole 35 therebetween as viewed from the axial direction.
  • the holder main body 31 is reinforced by the phase bus bar 21 in the bus bar embedded region 31A. Further, the holder main body 31 is reinforced by the reinforcing member 50 in the reinforcing member embedded region 31B.
  • the cylindrical portion 33 extends along the axial direction from the periphery of the central hole 35 of the holder main body portion 31. In the present embodiment, the cylindrical portion 33 extends upward and downward with respect to the holder main body portion 31.
  • the outer peripheral surface of the cylindrical portion 33 is circular when viewed from the axial direction. Further, the inner peripheral surface of the cylindrical portion 33 coincides with the inner peripheral surface of the central hole 35 when viewed from the axial direction. On the lower side of the holder main body 31, the outer peripheral surface of the cylindrical portion 33 fits into a hole 5 c provided in the bearing holder 5. Accordingly, the phase bus bar unit 20 is positioned in the radial direction.
  • the rectangular tube portion 37 extends upward from the upper surface 31 a of the holder main body portion 31.
  • the rectangular tube portion 37 is a rectangular tube that is rectangular when viewed from the axial direction.
  • the same number (ie, six) of the rectangular tube portions 37 as the external connection terminals 27 provided in the phase bus bar unit 20 are provided in the bus bar holder 30.
  • a terminal passage hole 37a penetrating along the axial direction is provided inside the rectangular tube portion 37.
  • the terminal passage hole 37 a surrounds the external connection terminal 27.
  • the rectangular tube part 37 protects the external connection terminal 27.
  • the terminal receiving member 40 has a plate shape extending along a plane orthogonal to the axial direction.
  • the terminal receiving member 40 is fixed to the lower surface 31 b of the holder main body 31.
  • One of the pair of terminal receiving members 40 is located below the three terminal connecting portions 22 a of the first bus bar group 28.
  • One of the pair of terminal receiving members 40 is located below the three terminal connection portions 22 a of the second bus bar group 29.
  • the terminal receiving member 40 is in contact with the lower end portion of the external connection terminal 27 on a backup surface (not shown) facing upward.
  • a backup surface (not shown) facing upward.
  • the terminal receiving member 40 supports the external connection terminal 27 on the backup surface, and suppresses the external connection terminal 27 from being detached from the insertion hole 22aa of the phase bus bar 21.
  • the reinforcing member 50 is embedded in the bus bar holder 30. That is, the bus bar holder 30 is manufactured by insert molding in which the reinforcing member 50 is embedded.
  • the reinforcing member 50 is made of a metal material and reinforces the bus bar holder 30.
  • the reinforcing member 50 is made of a magnetic material.
  • the reinforcing member 50 includes a cylindrical portion 51, a flat plate portion 54, a pair of bent portions 53, and a pair of fixed portions 52.
  • the reinforcing member 50 is embedded in the bus bar holder 30 in part of the cylindrical portion 51 and the flat plate portion 54.
  • the cylindrical portion 51 extends in a cylindrical shape along the axial direction.
  • the cylindrical portion 51 surrounds the central axis J. Therefore, the reinforcing member 50 extends in the axial direction along the inner peripheral surface of the central hole 35 provided in the bus bar holder 30.
  • the cylindrical portion 51 has a cylindrical shape.
  • the cylindrical portion 51 is not limited to a circular shape in plan view, and may be a square tube having a rectangular shape in plan view.
  • the upper end portion of the shaft 3a is disposed inside the cylindrical portion 51.
  • a sensor magnet 3d fixed to the upper end portion of the shaft 3a is disposed inside the cylindrical portion 51. That is, the cylindrical part 51 surrounds the sensor magnet 3d from the outside in the radial direction.
  • the phase bus bar unit 20 an alternating current flows through the phase bus bar 21 disposed around the central hole 35. For this reason, a magnetic field is generated around the phase bus bar 21 due to a change in the current flowing through the phase bus bar 21.
  • the magnetic field generated from the sensor magnet 3d is detected by the rotation sensor 9b provided in the control device 9, and used for measurement of the rotation angle by the rotation sensor 9b. For this reason, the magnetic flux of the sensor magnet 3d may be affected by the magnetic field generated from the phase bus bar 21 and may affect the measurement of the rotation angle by the rotation sensor 9b.
  • the reinforcing member 50 is made of a magnetic material, and surrounds the sensor magnet 3 d in the cylindrical portion 51.
  • the cylindrical part 51 functions as a magnetic shield. That is, the cylindrical part 51 suppresses the magnetic noise from the outside of the cylindrical part 51 from affecting the magnetic flux of the sensor magnet 3 d located inside the cylindrical part 51. As a result, the measurement accuracy of the rotation angle by the rotation sensor 9b can be improved, and the highly reliable motor 1 can be configured.
  • the phase bus bar 21 has an external connection terminal 27 extending upward with respect to the bus bar holder 30.
  • the magnetic field generated by the external connection terminal 27 tends to affect the measurement accuracy of the rotation angle in the rotation sensor 9b located above the sensor magnet 3d.
  • the cylindrical part 51 shields between the external connection terminal 27 and the sensor magnet 3d. For this reason, it can suppress that the magnetic field produced from the external connection terminal 27 influences the inner side of the cylindrical part 51, and can raise the measurement precision of the rotation angle by the rotation sensor 9b.
  • the upper end of the cylindrical portion 51 is located above the upper end of the sensor magnet 3d. Therefore, according to this embodiment, it can suppress that the magnetic flux which goes upwards from the upper end of the sensor magnet 3d is influenced by the magnetic field produced from the phase bus bar 21. Moreover, the lower end of the cylindrical part 51 is located below the lower end of the sensor magnet 3d. Therefore, according to this embodiment, it can suppress that the magnetic flux which comes out from the upper end of the sensor magnet 3d and enters the inside of the sensor magnet 3d from the lower end is influenced by the magnetic field generated from the phase bus bar 21. In addition, in this embodiment, the case where the cylindrical part 51 encloses the full length of the axial direction of the sensor magnet 3d was illustrated.
  • the cylindrical part 51 is embedded in the cylindrical part 33 of the bus bar holder 30.
  • the bus bar holder 30 is made of a resin material in order to ensure insulation between the phase bus bars 21. For this reason, the bus bar holder 30 has a lower strength than the metal material.
  • the central hole 35 through which the central axis J passes is provided in the bus bar holder 30, the strength around the central hole 35 is low.
  • the cylindrical portion 51 surrounding the central hole 35 is embedded inside the bus bar holder 30, thereby reinforcing the periphery of the central hole 35 of the bus bar holder 30 and applying stress to the bus bar holder 30. Even if it exists, damage to the bus bar holder 30 can be suppressed.
  • the cylindrical portion 33 that functions as a magnetic shield is embedded in the bus bar holder 30. For this reason, the bus bar holder 30 and the cylindrical portion 33 can be handled as a single component. According to this embodiment, compared with the case where a bus-bar holder and a magnetic shield are provided as separate parts, the cost concerning an assembly process etc. can be reduced and the motor 1 can be manufactured at low cost.
  • the flat plate portion 54 extends in the radial direction from the cylindrical portion 51 along a plane orthogonal to the central axis J. As shown in FIG. 3, the flat plate portion 54 includes an annular portion 54 a that surrounds the central hole 35 and a pair of radially extending portions 54 b that extend radially outward from the annular portion 54 a.
  • the flat plate portion 54 is embedded in the holder main body portion 31 except for the radially outer end portion of the radially extending portion 54b. That is, at least a part of the flat plate portion 54 is embedded in the holder main body portion 31 of the bus bar holder 30. Thereby, the flat plate part 54 reinforces the holder main body part 31.
  • the fixed portion 52 is connected to the radially outer edge portion of the radially extending portion 54 b via the bent portion 53.
  • the pair of radially extending portions 54b extend along the radial direction.
  • the radially extending portion 54 b is located between the first bus bar group 28 and the second bus bar group 29 in the circumferential direction. That is, the radially extending portion 54b extends in the radial direction between the bus bar groups adjacent in the circumferential direction.
  • the plurality of phase bus bars 21 are classified into a first bus bar group 28 and a second bus bar group 29, and are arranged firmly for each bus bar group.
  • Each phase bus bar 21 is embedded in a bus bar embedded region 31 ⁇ / b> A of the holder main body 31.
  • the holder main body 31 is reinforced by the phase bus bar 21 in the bus bar embedded region 31A.
  • the radially extending portion 54 b is embedded in the reinforcing member embedded region 31 ⁇ / b> B of the holder main body portion 31.
  • the reinforcing member embedded region 31B is located between the bus bar embedded regions 31A in the circumferential direction.
  • the radially extending portion 54b reinforces the region between the pair of bus bar embedded regions 31A (that is, the reinforcing member embedded region 31B).
  • the plurality of bus bar groups and the radially extending portions 54 b are alternately embedded in the circumferential direction in the holder main body portion 31.
  • region of the circumferential direction of the holder main-body part 31 is reinforced, and damage to the bus-bar holder 30 can be suppressed effectively.
  • the phase bus bar 21 and the reinforcing member 50 which are metal materials, have higher heat conduction characteristics than the holder main body portion 31, which is a resin material.
  • the cooling efficiency differs depending on the region. easy. According to the present embodiment, since the metal material is embedded in the entire region in the circumferential direction of the holder main body 31, it is possible to suppress warping during the molding of the holder main body 31.
  • the annular portion 54 a extends annularly along the outer peripheral surface of the tubular portion 51.
  • the annular portion 54 a is connected to the outer peripheral surface of the cylindrical portion 51.
  • the annular portion 54 a surrounds the central hole 35 of the bus bar holder 30. Since the annular portion 54 a is embedded in the holder main body portion 31, the periphery of the central hole 35 of the bus bar holder 30 is reinforced. Thereby, even if it is a case where stress is added to the bus-bar holder 30, damage to the bus-bar holder 30 is suppressed.
  • the annular portion 54a is located between the pair of radially extending portions 54b and connects the pair of radially extending portions 54b to each other. That is, the plurality (two in the present embodiment) of radially extending portions 54b are connected to each other via the annular portion 54a. Thereby, the rigidity of the plurality of radially extending portions 54b can be increased by the annular portion 54a. As a result, the reinforcing effect of the holder body 31 by the radially extending portion 54b can be enhanced.
  • the flat plate portion 54 is arranged at a position different from the phase bus bar 21 when viewed from the axial direction. That is, the flat plate portion 54 and the phase bus bar 21 do not overlap in the axial direction.
  • the holder main body 31 is reinforced by the flat plate portion 54 and the phase bus bar 21.
  • the bent portion 53 and the fixing portion 52 are not embedded in the bus bar holder 30. That is, the bent portion 53 and the fixing portion 52 are exposed from the bus bar holder 30.
  • the bent portion 53 is located at the radially outer end portion of the radially extending portion 54 b of the flat plate portion 54.
  • the bent portion 53 connects the flat plate portion 54 and the fixed portion 52.
  • the bent portion 53 is bent downward with respect to the flat plate portion 54.
  • the fixing portion 52 extends in a plate shape along a plane orthogonal to the central axis J. By providing the bent portion 53 between the flat plate portion 54 and the fixed portion 52, the fixed portion 52 is disposed below the flat plate portion 54.
  • the lower surface of the fixing portion 52 contacts the upper surface of the bearing holder 5.
  • the fixing portion 52 is provided with a through hole 52a penetrating in the axial direction.
  • a fixing screw 8 for fixing the phase bus bar unit 20 to the bearing holder 5 is inserted into the through hole 52a. Accordingly, the phase bus bar unit 20 is fixed to other components (in the present embodiment, the bearing holder 5) in the fixing portion 52.
  • the bus bar holder 30 is made of a resin material, if the bus bar holder 30 is directly fixed to another component (for example, the bearing holder 5), the bus bar holder 30 may be damaged by the fastening force at the time of fixing. is there.
  • the phase bus bar unit 20 is fixed to the bearing holder 5 at the fixing portion 52 that reinforces the bus bar holder 30. Since the reinforcing member 50 reinforces the bearing holder 5, it has a higher strength than the resin material constituting the bearing holder 5.
  • the reinforcing member 50 is made of a metal material. For this reason, when fixing the bus bar unit 20 for phases to the bearing holder 5, it can suppress that a part of bus bar unit 20 for phases is damaged.
  • the reinforcing member 50 that reinforces the bus bar holder 30 has the fixing portion 52. That is, the reinforcing member 50 has a function of reinforcing the bus bar holder 30 and a function of fixing the phase bus bar unit 20 to other members. For this reason, compared with the case where a bus-bar unit has a bus-bar holder and a fixing member, it can suppress that a number of parts increases. As a result, not only the manufacturing cost of components can be suppressed, but also the management costs of components accompanying an increase in the number of components can be suppressed, and the motor 1 can be manufactured at low cost.
  • the fixing portion 52 may be fixed to components other than the phase bus bar unit 20 constituting the motor 1.
  • the fixing portion 52 may be fixed to the stator 4.
  • the fixing portion 52 and the other component may be fixed by other means.
  • the fixing part 52 may be fixed to other parts by caulking.
  • the reinforcing member 50 is made of a metal material.
  • the reinforcing member 50 may be made of other materials as long as the cylindrical portion 51 is made of a magnetic material and the fixing portion 52 is made of a material having higher strength than the bus bar holder 30.
  • the bus bar unit to which the configuration of the present invention is applied may be a bus bar unit having a neutral point bus bar. That is, the bus bar provided in the bus bar unit may be a neutral point bus bar or a phase bus bar as long as it is connected to the coil.

Abstract

This motor is provided with: a rotor that is rotatable about the center axis extending in the vertical direction; a stator that has a plurality of coils and that is located radially outside the rotor; and a bus bar unit that is provided on the upper side of the stator. The rotor has a shaft that extends along the center axis, and has a sensor magnet that is located at an upper end portion of the shaft. The bus bar unit has a bus bar that is connected to the coils, a magnetic member that is formed from a magnetic material, and a bus bar holder that extends along a flat surface orthogonal to the center axis so as to support the magnetic member and the bus bar. The bus bar holder is provided with a center hole through which the shaft is inserted. The magnetic member has a cylindrical part that extends in the axial direction along the inner circumferential surface of the center hole. The cylindrical part at least partially overlaps the sensor magnet in the axial direction.

Description

モータmotor
 本発明は、モータに関する。 The present invention relates to a motor.
 センサマグネットとセンサを用いてロータの位置検出を行う機電一体型のモータが知られている。日本特開2006-158059号公報には、ベアリングを保持するブラケットにバックヨークを取り付けることで、センサマグネット以外から発生する磁気的なノイズを遮断して位置検出精度を高めた構造が開示されている。 An electromechanically integrated motor that detects the rotor position using a sensor magnet and a sensor is known. Japanese Laid-Open Patent Publication No. 2006-158059 discloses a structure in which the position detection accuracy is improved by attaching a back yoke to a bracket for holding a bearing to block magnetic noise generated from other than the sensor magnet. .
日本特開2006-158059号公報Japanese Unexamined Patent Publication No. 2006-158059
 日本特開2006-158059号公報に記載の構造においては、バックヨークを設けるため部品点数が増加し、それに伴い製造工程も複雑化するため、製造コストが高くなるという問題があった。 In the structure described in Japanese Patent Application Laid-Open No. 2006-158059, since the back yoke is provided, the number of parts is increased, and the manufacturing process is complicated accordingly.
 本発明の一つの態様は、上記問題点に鑑みて、磁気的なノイズがセンサに影響を与えることを抑制しつつ製造コストを低減したモータの提供を目的の一つとする。 In view of the above problems, one aspect of the present invention is to provide a motor with reduced manufacturing cost while suppressing magnetic noise from affecting the sensor.
 本発明の一態様のモータは、上下方向に延びる中心軸周りに回転可能なロータと、複数のコイルを有しロータの径方向外側に位置するステータと、ステータの上側に設けられるバスバーユニットと、を備える。ロータは、中心軸に沿って延びるシャフトと、シャフトの上端部に位置するセンサマグネットと、を有する。バスバーユニットは、コイルに接続されるバスバーと、磁性材料からなる磁性部材と、中心軸と直交する平面に沿って延びバスバーおよび磁性部材を支持するバスバーホルダと、を有する。バスバーホルダには、シャフトが挿入される中央孔が設けられる。磁性部材は、中央孔の内周面に沿って軸方向に延びる筒状部を有する。筒状部の少なくとも一部は、軸方向においてセンサマグネットに重なる。 A motor according to an aspect of the present invention includes a rotor that can rotate around a central axis that extends in the vertical direction, a stator that has a plurality of coils and is positioned on the outer side in the radial direction of the rotor, Is provided. The rotor has a shaft extending along the central axis, and a sensor magnet located at the upper end of the shaft. The bus bar unit includes a bus bar connected to the coil, a magnetic member made of a magnetic material, and a bus bar holder that extends along a plane orthogonal to the central axis and supports the bus bar and the magnetic member. The bus bar holder is provided with a central hole into which the shaft is inserted. The magnetic member has a cylindrical portion extending in the axial direction along the inner peripheral surface of the central hole. At least a part of the cylindrical portion overlaps the sensor magnet in the axial direction.
 本発明の一態様によれば、磁気的なノイズがセンサに影響を与えることを抑制しつつ製造コストを低減したモータが提供される。 According to one aspect of the present invention, there is provided a motor with reduced manufacturing costs while suppressing magnetic noise from affecting the sensor.
図1は、一実施形態のモータの断面模式図である。FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment. 図2は、一実施形態の相用バスバーユニットの斜視図である。FIG. 2 is a perspective view of the phase bus bar unit according to the embodiment. 図3は、一実施形態の相用バスバーユニットの平面図である。FIG. 3 is a plan view of a phase bus bar unit according to an embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るバスバーユニットおよびモータについて説明する。なお、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, a bus bar unit and a motor according to an embodiment of the present invention will be described with reference to the drawings. In the following drawings, in order to make each configuration easy to understand, the actual structure may be different from the scale, number, or the like in each structure.
 各図には、適宜Z軸を示す。各図のZ軸方向は、図1に示す中心軸Jと平行な方向とする。また、以下の説明においては、Z軸方向の正の側(+Z側)を「上側」と呼び、Z軸方向の負の側(-Z側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる方向であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。 Each figure shows the Z-axis as appropriate. The Z-axis direction in each figure is a direction parallel to the central axis J shown in FIG. In the following description, the positive side (+ Z side) in the Z-axis direction is referred to as “upper side”, and the negative side (−Z side) in the Z-axis direction is referred to as “lower side”. The upper side and the lower side are directions used for explanation only, and do not limit the actual positional relationship and direction. Unless otherwise specified, the direction parallel to the central axis J (Z-axis direction) is simply referred to as “axial direction” or “vertical direction”, and the radial direction around the central axis J is simply referred to as “radial direction”. The circumferential direction around the central axis J, that is, the circumference of the central axis J is simply referred to as “circumferential direction”. Furthermore, in the following description, “plan view” means a state viewed from the axial direction.
 <モータ>
 図1は、モータ1の断面模式図である。
 モータ1には、制御装置(外部装置)9が接続される。制御装置9は、制御端子9aを介してモータ1に電源を供給するとともに、モータ1の回転を制御する。
<Motor>
FIG. 1 is a schematic cross-sectional view of the motor 1.
A control device (external device) 9 is connected to the motor 1. The control device 9 supplies power to the motor 1 via the control terminal 9a and controls the rotation of the motor 1.
 モータ1は、ロータ3と、ステータ4と、ハウジング2と、ベアリングホルダ5と、上側ベアリング(ベアリング)6Aと、下側ベアリング(ベアリング)6Bと、中性点バスバーユニット10と、相用バスバーユニット(バスバーユニット)20と、を備える。 The motor 1 includes a rotor 3, a stator 4, a housing 2, a bearing holder 5, an upper bearing (bearing) 6A, a lower bearing (bearing) 6B, a neutral point bus bar unit 10, and a phase bus bar unit. (Bus bar unit) 20.
 ロータ3は、上下方向に延びる中心軸J周りに回転可能である。ロータ3は、シャフト3aと、ロータコア3bと、ロータマグネット3cと、センサマグネット3dと、センサマグネット取り付け部材3eと、を有する。 The rotor 3 is rotatable around a central axis J extending in the vertical direction. The rotor 3 includes a shaft 3a, a rotor core 3b, a rotor magnet 3c, a sensor magnet 3d, and a sensor magnet mounting member 3e.
 シャフト3aは、中心軸Jに沿って延びる。シャフト3aは、上側ベアリング6Aと下側ベアリング6Bとによって、中心軸Jの軸周りに回転可能に支持される。ロータコア3bは、シャフト3aの外周面に固定される。ロータマグネット3cは、ロータコア3bの外周面に固定される。 The shaft 3a extends along the central axis J. The shaft 3a is rotatably supported around the central axis J by the upper bearing 6A and the lower bearing 6B. The rotor core 3b is fixed to the outer peripheral surface of the shaft 3a. The rotor magnet 3c is fixed to the outer peripheral surface of the rotor core 3b.
 シャフト3aの上端部には、センサマグネット3dが固定される。すなわち、センサマグネット3dは、シャフト3aの上端部に位置する。シャフト3aの上端面には、それぞれ軸方向に沿って延びる固定孔3aaが設けられる。また、センサマグネット3dには、軸方向に沿って貫通する固定孔3daが設けられる。センサマグネット取り付け部材3eは、軸方向に沿って延びる棒材である。センサマグネット取り付け部材3eは、シャフト3aの固定孔3aaおよびセンサマグネット3dの固定孔3daに嵌合する。これによって、センサマグネット取り付け部材3eは、シャフト3aとセンサマグネット3dとを互いに固定する。 The sensor magnet 3d is fixed to the upper end of the shaft 3a. That is, the sensor magnet 3d is located at the upper end of the shaft 3a. Fixing holes 3aa extending along the axial direction are provided on the upper end surface of the shaft 3a. The sensor magnet 3d is provided with a fixing hole 3da penetrating along the axial direction. The sensor magnet attachment member 3e is a bar extending along the axial direction. The sensor magnet attachment member 3e is fitted into the fixing hole 3aa of the shaft 3a and the fixing hole 3da of the sensor magnet 3d. Thereby, the sensor magnet attachment member 3e fixes the shaft 3a and the sensor magnet 3d to each other.
 センサマグネット3dは、シャフト3aとともに中心軸J周りに回転する。センサマグネット3dは、軸方向において制御装置9に設けられた回転センサ9bに対向する。すなわち、センサマグネット3dは、回転センサ9bの直下に位置する。回転センサ9bは、制御装置9の回路基板(図示略)の下面に実装される。回転センサ9bは、センサマグネット3dの磁束変化からロータ3の回転角度を測定する。 The sensor magnet 3d rotates around the central axis J together with the shaft 3a. The sensor magnet 3d faces the rotation sensor 9b provided in the control device 9 in the axial direction. That is, the sensor magnet 3d is located immediately below the rotation sensor 9b. The rotation sensor 9b is mounted on the lower surface of a circuit board (not shown) of the control device 9. The rotation sensor 9b measures the rotation angle of the rotor 3 from the change in magnetic flux of the sensor magnet 3d.
 ステータ4は、中心軸J周りに環状に配置される。ステータ4は、ロータ3の径方向外側に位置する。ステータ4は、ロータ3と隙間を介して径方向に対向する。ステータ4は、ロータ3の径方向外側を囲む。ステータ4は、ハウジング2の内周面に固定される。ステータ4は、環状のステータコア4aと、ステータコア4aに上下方向から装着された一対のインシュレータ4bと、インシュレータ4bを介してステータコア4aに巻き回されるコイル7と、を有する。 The stator 4 is annularly arranged around the central axis J. The stator 4 is located on the radially outer side of the rotor 3. The stator 4 is opposed to the rotor 3 in the radial direction through a gap. The stator 4 surrounds the outer side of the rotor 3 in the radial direction. The stator 4 is fixed to the inner peripheral surface of the housing 2. The stator 4 includes an annular stator core 4a, a pair of insulators 4b mounted on the stator core 4a from above and below, and a coil 7 wound around the stator core 4a via the insulator 4b.
 本実施形態の複数のコイル7は、複数系統(本実施形態では2系統)の三相回路を構成する。それぞれの系統において、U相、V相およびW相のコイル7は、Y結線される。本実施形態のステータ4には、12個のコイル7が設けられる。それぞれのコイル7からは、それぞれコイル線7aが延び出る。12本のコイル線7aのうち、6本のコイル線7aは、相用バスバーユニット20の相用バスバー21に接続される。また、他の6本のコイル線7aは、中性点バスバーユニット10の中性点バスバー11に接続される。 The plurality of coils 7 of the present embodiment constitute a three-phase circuit of a plurality of systems (two systems in the present embodiment). In each system, the U-phase, V-phase, and W-phase coils 7 are Y-connected. The stator 4 of this embodiment is provided with 12 coils 7. A coil wire 7a extends from each coil 7. Among the 12 coil wires 7 a, 6 coil wires 7 a are connected to the phase bus bar 21 of the phase bus bar unit 20. The other six coil wires 7 a are connected to the neutral point bus bar 11 of the neutral point bus bar unit 10.
 ハウジング2は、上側(+Z側)に開口する筒状である。ハウジング2は、ロータ3、ステータ4およびベアリングホルダ5を収容する。ハウジング2は、筒部2aと底部2bとを有する。筒部2aは、ステータ4を径方向外側から囲む。底部2bは、筒部2aの下端に位置する。底部2bの平面視中央には、下側ベアリング6Bを保持する下側ベアリング保持部2cが設けられる。 The housing 2 has a cylindrical shape that opens upward (+ Z side). The housing 2 accommodates the rotor 3, the stator 4 and the bearing holder 5. The housing 2 has a cylindrical part 2a and a bottom part 2b. The cylindrical portion 2a surrounds the stator 4 from the outside in the radial direction. The bottom 2b is located at the lower end of the cylinder 2a. A lower bearing holding portion 2c that holds the lower bearing 6B is provided in the center of the bottom portion 2b in plan view.
 ベアリングホルダ5は、ステータ4の上側に位置する。また、ベアリングホルダ5は、軸方向において相用バスバーユニット20と中性点バスバーユニット10との間に位置する。すなわち、ベアリングホルダ5は、相用バスバーユニット20とステータ4の間に位置する。ベアリングホルダ5は、金属製である。ベアリングホルダ5は、ハウジング2の内周面に保持される。 The bearing holder 5 is located above the stator 4. The bearing holder 5 is located between the phase bus bar unit 20 and the neutral point bus bar unit 10 in the axial direction. That is, the bearing holder 5 is located between the phase bus bar unit 20 and the stator 4. The bearing holder 5 is made of metal. The bearing holder 5 is held on the inner peripheral surface of the housing 2.
 ベアリングホルダ5は、上側ベアリング保持部5aを有する。上側ベアリング保持部5aは、上側ベアリング6Aを保持する。ベアリングホルダ5は、上側ベアリング6Aを介してシャフト3aを回転可能に支持する。上側ベアリング保持部5aは、ベアリングホルダ5の平面視中央に位置する。上側ベアリング保持部5aは、中心軸Jを中心として軸方向に延びる保持筒部5aaと、保持筒部5aaの上端から径方向内側に延びる上端突出部5abと、を有する。上端突出部5abは、上側ベアリング6Aを上下方向に位置決めする。上端突出部5abの平面視中央には、軸方向に貫通する孔部5cが設けられる。孔部5cは、内側にシャフト3aを通過させる。 The bearing holder 5 has an upper bearing holding portion 5a. The upper bearing holding portion 5a holds the upper bearing 6A. The bearing holder 5 rotatably supports the shaft 3a via the upper bearing 6A. The upper bearing holding portion 5 a is located at the center of the bearing holder 5 in plan view. The upper bearing holding portion 5a includes a holding cylinder portion 5aa extending in the axial direction around the central axis J, and an upper end protruding portion 5ab extending radially inward from the upper end of the holding cylinder portion 5aa. The upper end protrusion 5ab positions the upper bearing 6A in the vertical direction. A hole 5c penetrating in the axial direction is provided in the center of the upper end protrusion 5ab in plan view. The hole 5c allows the shaft 3a to pass inside.
 ベアリングホルダ5には、上下方向に貫通するコイル線通過孔5dおよびネジ孔5fが設けられる。コイル線通過孔5dには、コイル7から引き出されて相用バスバーユニット20に接続されるコイル線7aが通過する。ネジ孔5fには、相用バスバーユニット20をベアリングホルダ5に固定する固定ネジ8が挿入される。 The bearing holder 5 is provided with a coil wire passage hole 5d and a screw hole 5f penetrating in the vertical direction. The coil wire 7a that is drawn from the coil 7 and connected to the phase bus bar unit 20 passes through the coil wire passage hole 5d. A fixing screw 8 for fixing the phase bus bar unit 20 to the bearing holder 5 is inserted into the screw hole 5f.
 中性点バスバーユニット10は、ステータ4の上側に位置する。中性点バスバーユニット10は、中性点バスバーホルダ12と、複数(本実施形態では2つ)の中性点バスバー11と、を有する。中性点バスバーホルダ12は、中性点バスバー11を保持する。本実施形態において、中性点バスバーユニット10には、一対の中性点バスバー11が設けられる。 The neutral point bus bar unit 10 is located above the stator 4. The neutral point bus bar unit 10 includes a neutral point bus bar holder 12 and a plurality (two in this embodiment) of neutral point bus bars 11. The neutral point bus bar holder 12 holds the neutral point bus bar 11. In the present embodiment, the neutral point bus bar unit 10 is provided with a pair of neutral point bus bars 11.
 中性点バスバーホルダ12は、中心軸Jと直交する平面に沿って延びる。中性点バスバーホルダ12は、脚部12aを有する。脚部12aは、軸方向に沿って下側に延びる。脚部12aの下端は、ステータコア4aの上面に接触する。また、中性点バスバーホルダ12は、サポート部12bを有する。サポート部12bは、軸方向に沿って上側に延びる。サポート部12bは、コイル線7aを囲み、ベアリングホルダ5のコイル線通過孔5dにコイル線7aが接触することを抑制する。 The neutral point bus bar holder 12 extends along a plane orthogonal to the central axis J. The neutral point bus bar holder 12 has a leg portion 12a. The leg portion 12a extends downward along the axial direction. The lower end of the leg portion 12a is in contact with the upper surface of the stator core 4a. Moreover, the neutral point bus-bar holder 12 has the support part 12b. The support portion 12b extends upward along the axial direction. The support portion 12 b surrounds the coil wire 7 a and suppresses the coil wire 7 a from contacting the coil wire passage hole 5 d of the bearing holder 5.
 中性点バスバー11は、それぞれ3つのコイル線接続部11aを有する。中性点バスバー11は、コイル線接続部11aにおいて、コイル線7aと接続される。中性点バスバー11は、異なるコイル7から延び出るコイル線7a同士を結線して、三相回路の中性点を構成する。 Each neutral point bus bar 11 has three coil wire connecting portions 11a. Neutral point bus bar 11 is connected to coil wire 7a at coil wire connecting portion 11a. The neutral point bus bar 11 connects the coil wires 7a extending from different coils 7 to constitute a neutral point of the three-phase circuit.
 (相用バスバーユニット)
 相用バスバーユニット20は、ステータ4およびベアリングホルダ5の上側に位置する。相用バスバーユニット20は、ベアリングホルダ5の上側まで引き出されたコイル線7aと制御装置9との間に介在しこれらを電気的に接続するために設けられる。
(Phase bus bar unit)
The phase bus bar unit 20 is located above the stator 4 and the bearing holder 5. The phase bus bar unit 20 is provided between the coil wire 7 a drawn up to the upper side of the bearing holder 5 and the control device 9 so as to electrically connect them.
 図2は、相用バスバーユニット20の斜視図である。図3は、相用バスバーユニット20の平面図である。
 図2に示すように、相用バスバーユニット20は、複数(本実施形態では6つ)の相用バスバー(バスバー)21と、バスバーホルダ30と、一対の端子受け部材40と、補強部材(磁性部材)50と、を有する。
FIG. 2 is a perspective view of the phase bus bar unit 20. FIG. 3 is a plan view of the phase bus bar unit 20.
As shown in FIG. 2, the phase bus bar unit 20 includes a plurality (six in this embodiment) of phase bus bars (bus bars) 21, a bus bar holder 30, a pair of terminal receiving members 40, and a reinforcing member (magnetic). Member) 50.
 相用バスバー21は、バスバー本体部22と、コイル線接続部24と、外部接続端子27と、を有する。本実施形態において、バスバー本体部22とコイル線接続部24とは、単一の部材である。また、外部接続端子27は、バスバー本体部22と別部材であり、バスバー本体部22に接続される。なお、外部接続端子27とバスバー本体部22とは、単一の部材であってもよい。 The phase bus bar 21 includes a bus bar main body part 22, a coil wire connection part 24, and an external connection terminal 27. In the present embodiment, the bus bar main body portion 22 and the coil wire connection portion 24 are a single member. The external connection terminal 27 is a separate member from the bus bar main body 22 and is connected to the bus bar main body 22. The external connection terminal 27 and the bus bar main body 22 may be a single member.
 相用バスバー21の各部は、板状でありプレス加工によって成形される。相用バスバー21は、バスバー本体部22において軸方向が板厚方向となるように加工されている。また、相用バスバー21は、コイル線接続部24および外部接続端子27において軸方向と直交する方向が板厚方向となるように加工されている。 Each part of the bus bar for phase 21 is plate-shaped and is formed by press working. The phase bus bar 21 is processed in the bus bar main body portion 22 such that the axial direction is the plate thickness direction. The phase bus bar 21 is processed so that the direction perpendicular to the axial direction is the plate thickness direction in the coil wire connection portion 24 and the external connection terminal 27.
 図3に示すように、相用バスバー21は、バスバーホルダ30のホルダ本体部31の内部に埋め込まれる。すなわち、バスバーホルダ30は、相用バスバー21を埋め込むインサート成形によって製造される。 As shown in FIG. 3, the phase bus bar 21 is embedded in the holder main body 31 of the bus bar holder 30. That is, the bus bar holder 30 is manufactured by insert molding for embedding the phase bus bar 21.
 バスバー本体部22は、軸方向と直交する平面に沿って線状に延びる。バスバー本体部22の一端には、端子接続部22aが設けられる。また、バスバー本体部22の他端には、コイル線接続部24が接続される。 The bus bar main body 22 extends linearly along a plane orthogonal to the axial direction. A terminal connection portion 22 a is provided at one end of the bus bar main body portion 22. In addition, a coil wire connecting portion 24 is connected to the other end of the bus bar main body portion 22.
 コイル線接続部24は、コイル線7aに接続される。コイル線接続部24は、コイル線7aを把持する。コイル線接続部24の平面視形状は、径方向外側に開口する略U字状である。 The coil wire connecting portion 24 is connected to the coil wire 7a. The coil wire connection unit 24 holds the coil wire 7a. The planar view shape of the coil wire connecting portion 24 is a substantially U-shape opening outward in the radial direction.
 端子接続部22aは、外部接続端子27を保持する。端子接続部22aには、軸方向に貫通する挿入孔22aaが設けられる。挿入孔22aaには、下側から外部接続端子27が圧入される。これにより、相用バスバー21と外部接続端子27とが、機械的および電気的に接続される。なお、端子接続部22aと外部接続端子27とは、レーザ溶接等の溶接方法によって、互いに接続されていてもよい。 The terminal connection unit 22 a holds the external connection terminal 27. The terminal connection portion 22a is provided with an insertion hole 22aa penetrating in the axial direction. The external connection terminal 27 is press-fitted into the insertion hole 22aa from below. Thereby, the phase bus bar 21 and the external connection terminal 27 are mechanically and electrically connected. The terminal connection portion 22a and the external connection terminal 27 may be connected to each other by a welding method such as laser welding.
 図2に示すように、外部接続端子27は、軸方向に沿って延びる。本実施形態の外部接続端子27には、上端部から下側に向かって延びるスリット27aが設けられる。スリット27aには、制御装置9の制御端子9aが挿入される。これにより、制御装置9が外部接続端子27を介してモータ1に接続される。 As shown in FIG. 2, the external connection terminal 27 extends along the axial direction. The external connection terminal 27 of the present embodiment is provided with a slit 27a extending downward from the upper end portion. The control terminal 9a of the control device 9 is inserted into the slit 27a. As a result, the control device 9 is connected to the motor 1 via the external connection terminal 27.
 図3に示すように、複数(本実施形態では6つ)の相用バスバー21は、第1バスバー群28および第2バスバー群29に分類される。第1バスバー群28および第2バスバー群29は、それぞれ複数(本実施形態では3つ)の相用バスバー21を含む。すなわち、相用バスバーユニット20は、複数の相用バスバー21を有し、複数の相用バスバー21は、複数のバスバー群(第1バスバー群28および第2バスバー群29)に分類される。 As shown in FIG. 3, a plurality (six in this embodiment) of bus bars 21 are classified into a first bus bar group 28 and a second bus bar group 29. Each of the first bus bar group 28 and the second bus bar group 29 includes a plurality of (three in this embodiment) phase bus bars 21. That is, the phase bus bar unit 20 includes a plurality of phase bus bars 21, and the plurality of phase bus bars 21 are classified into a plurality of bus bar groups (a first bus bar group 28 and a second bus bar group 29).
 第1バスバー群28および第2バスバー群29に属する相用バスバー21は、それぞれ異なる系統のコイル7に接続される。第1バスバー群28の3つの相用バスバー21に接続される3つのコイルは、1つの系統の三相回路を構成し、第2バスバー群29の3つの相用バスバー21に接続される3つのコイルは、他の系統の三相回路を構成する。第1バスバー群28および第2バスバー群29には、それぞれU相用バスバー、V相用バスバーおよびW相バスバーが含まれる。すなわち、第1バスバー群28および第2バスバー群29の3つの相用バスバー21は、それぞれU相、V相、W相のコイル7に接続される。 The phase bus bars 21 belonging to the first bus bar group 28 and the second bus bar group 29 are respectively connected to coils 7 of different systems. The three coils connected to the three phase bus bars 21 of the first bus bar group 28 constitute a three-phase circuit of one system, and the three coils connected to the three phase bus bars 21 of the second bus bar group 29. The coil constitutes a three-phase circuit of another system. First bus bar group 28 and second bus bar group 29 include a U-phase bus bar, a V-phase bus bar, and a W-phase bus bar, respectively. That is, the three-phase bus bars 21 of the first bus bar group 28 and the second bus bar group 29 are connected to the U-phase, V-phase, and W-phase coils 7, respectively.
 第1バスバー群28と第2バスバー群29とは、周方向に並んで配置される。また、第1バスバー群28の相用バスバー21と第2バスバー群29の相用バスバー21とは、中心軸Jを中心として点対象に配置されている。第1バスバー群28および第2バスバー群29において、同相の相用バスバー21同士は、同形状である。このため、相用バスバーユニット20において、部品点数を削減することができる。 The first bus bar group 28 and the second bus bar group 29 are arranged side by side in the circumferential direction. In addition, the phase bus bar 21 of the first bus bar group 28 and the phase bus bar 21 of the second bus bar group 29 are arranged to be pointed around the central axis J. In the first bus bar group 28 and the second bus bar group 29, the in-phase bus bars 21 have the same shape. For this reason, in the bus bar unit 20 for phases, the number of parts can be reduced.
 第1バスバー群28および第2バスバー群29にそれぞれ含まれる相用バスバー21同士は、バスバー本体部22において、径方向に重って配置される。すなわち、第1バスバー群28および第2バスバー群29において、3つの相用バスバー21のバスバー本体部22は、径方向に並んで配置される。このため、軸方向から見て、相用バスバー21が配置される領域が、周方向に拡がることを抑制される。これにより、バスバー本体部22の長さを短くすることができ、相用バスバー21に要する材料費を抑え低コスト化を図るとともに、相用バスバーユニット20を軽量化できる。 The phase bus bars 21 included in the first bus bar group 28 and the second bus bar group 29 are arranged in the bus bar main body 22 so as to overlap each other in the radial direction. That is, in the first bus bar group 28 and the second bus bar group 29, the bus bar main body portions 22 of the three phase bus bars 21 are arranged side by side in the radial direction. For this reason, it is suppressed that the area | region where the bus bar 21 for phases is arrange | positioned seeing from an axial direction expands in the circumferential direction. Thereby, the length of the bus bar main-body part 22 can be shortened, the material cost required for the phase bus bar 21 can be suppressed, the cost can be reduced, and the phase bus bar unit 20 can be reduced in weight.
 図1に示すように、バスバーホルダ30は、ステータの上側(軸方向一方側)に設けられる。バスバーホルダ30は、中心軸Jと直交する平面に沿って延びる。バスバーホルダ30は、樹脂材料から構成される。 As shown in FIG. 1, the bus bar holder 30 is provided on the upper side (one side in the axial direction) of the stator. The bus bar holder 30 extends along a plane orthogonal to the central axis J. The bus bar holder 30 is made of a resin material.
 バスバーホルダ30は、ホルダ本体部31と、円筒部33と、複数(本実施形態では6つ)の角筒部37と、を有する。 The bus bar holder 30 includes a holder main body portion 31, a cylindrical portion 33, and a plurality (six in this embodiment) of square tube portions 37.
 ホルダ本体部31は、中心軸Jと直交する平面に沿って延びる。ホルダ本体部31は、上側(軸方向一方側)を向く上面31aと、下側(軸方向他方側)を向く下面31bと、を有する。ホルダ本体部31には、相用バスバー21および補強部材50が埋め込まれる。これにより、バスバーホルダ30は、相用バスバー21および補強部材50を支持する。また、バスバーホルダ30は、相用バスバー21および補強部材50により補強される。 The holder main body 31 extends along a plane orthogonal to the central axis J. The holder main body 31 has an upper surface 31a facing the upper side (one side in the axial direction) and a lower surface 31b facing the lower side (the other side in the axial direction). A phase bus bar 21 and a reinforcing member 50 are embedded in the holder body 31. Thereby, the bus bar holder 30 supports the phase bus bar 21 and the reinforcing member 50. Further, the bus bar holder 30 is reinforced by the phase bus bar 21 and the reinforcing member 50.
 ホルダ本体部31には、中心軸Jを中心とする中央孔35が設けられる。すなわち、バスバーホルダ30には、中央孔35が設けられる。中央孔35は、軸方向に貫通する。中央孔35は、軸方向から見て円形である。中央孔35は、内側にシャフト3aを通過させる。 The holder main body 31 is provided with a central hole 35 centered on the central axis J. That is, the bus bar holder 30 is provided with a central hole 35. The central hole 35 penetrates in the axial direction. The central hole 35 is circular when viewed from the axial direction. The central hole 35 allows the shaft 3a to pass inside.
 図3に示すように、ホルダ本体部31は、中央孔35周りに、一対のバスバー埋込領域31Aと、一対の補強部材埋込領域31Bと、有する。バスバー埋込領域31Aと補強部材埋込領域31Bとは、周方向に沿って交互に配置される。 As shown in FIG. 3, the holder main body 31 has a pair of bus bar embedded regions 31 </ b> A and a pair of reinforcing member embedded regions 31 </ b> B around the central hole 35. The bus bar embedded regions 31A and the reinforcing member embedded regions 31B are alternately arranged along the circumferential direction.
 一対のバスバー埋込領域31Aには、相用バスバー21のバスバー本体部22が埋め込まれる。一対のバスバー埋込領域31Aは、軸方向から見て中央孔35を挟んで互いに径方向の反対側に配置される。一対のバスバー埋込領域31Aのうち、一方には第1バスバー群28に属する3つの相用バスバー21が埋め込まれ、他方には第2バスバー群29に属する3つの相用バスバー21が埋め込まれる。したがって、第1バスバー群28および第2バスバー群29は、軸方向から見て中央孔35を挟んで互いに径方向の反対側に配置される。 The bus bar body 22 of the phase bus bar 21 is embedded in the pair of bus bar embedded regions 31A. The pair of bus bar embedded regions 31 </ b> A are arranged on opposite sides in the radial direction with the central hole 35 therebetween as viewed from the axial direction. Of the pair of bus bar embedded regions 31A, one of the three phase bus bars 21 belonging to the first bus bar group 28 is embedded, and the other one of the three phase bus bars 21 belonging to the second bus bar group 29 is embedded. Therefore, the first bus bar group 28 and the second bus bar group 29 are arranged on the opposite sides in the radial direction with the central hole 35 therebetween as viewed from the axial direction.
 一対の補強部材埋込領域31Bには、後段において説明する補強部材50の一対の径方向延在部54bが、それぞれ埋め込まれる。一対の補強部材埋込領域31Bは、軸方向から見て中央孔35を挟んで互いに径方向の反対側に配置される。 In the pair of reinforcing member embedding regions 31B, a pair of radially extending portions 54b of the reinforcing member 50 described later is embedded. The pair of reinforcing member embedding regions 31B are arranged on the opposite sides in the radial direction with the central hole 35 therebetween as viewed from the axial direction.
 ホルダ本体部31は、バスバー埋込領域31Aにおいて相用バスバー21によって補強される。また、ホルダ本体部31は、補強部材埋込領域31Bにおいて補強部材50によって補強される。 The holder main body 31 is reinforced by the phase bus bar 21 in the bus bar embedded region 31A. Further, the holder main body 31 is reinforced by the reinforcing member 50 in the reinforcing member embedded region 31B.
 図1に示すように、円筒部33は、ホルダ本体部31の中央孔35の周縁から軸方向に沿って延びる。本実施形態において、円筒部33は、ホルダ本体部31に対して、上側および下側に延びる。 As shown in FIG. 1, the cylindrical portion 33 extends along the axial direction from the periphery of the central hole 35 of the holder main body portion 31. In the present embodiment, the cylindrical portion 33 extends upward and downward with respect to the holder main body portion 31.
 円筒部33の外周面は、軸方向から見て円形である。また、円筒部33の内周面は、軸方向からみて中央孔35の内周面と一致する。ホルダ本体部31の下側において、円筒部33の外周面は、ベアリングホルダ5に設けられた孔部5cに嵌る。これにより、相用バスバーユニット20は、径方向に位置決めされる。 The outer peripheral surface of the cylindrical portion 33 is circular when viewed from the axial direction. Further, the inner peripheral surface of the cylindrical portion 33 coincides with the inner peripheral surface of the central hole 35 when viewed from the axial direction. On the lower side of the holder main body 31, the outer peripheral surface of the cylindrical portion 33 fits into a hole 5 c provided in the bearing holder 5. Accordingly, the phase bus bar unit 20 is positioned in the radial direction.
 図2に示すように、角筒部37は、ホルダ本体部31の上面31aから上側に延びる。角筒部37は、軸方向から見て矩形の角筒である。角筒部37は、相用バスバーユニット20に設けられる外部接続端子27と同数(すなわち6つ)だけバスバーホルダ30に設けられる。角筒部37の内側には、軸方向に沿って貫通する端子通過孔37aが設けられる。端子通過孔37aは、外部接続端子27を囲む。これにより、角筒部37は、外部接続端子27を保護する。 As shown in FIG. 2, the rectangular tube portion 37 extends upward from the upper surface 31 a of the holder main body portion 31. The rectangular tube portion 37 is a rectangular tube that is rectangular when viewed from the axial direction. The same number (ie, six) of the rectangular tube portions 37 as the external connection terminals 27 provided in the phase bus bar unit 20 are provided in the bus bar holder 30. Inside the rectangular tube portion 37, a terminal passage hole 37a penetrating along the axial direction is provided. The terminal passage hole 37 a surrounds the external connection terminal 27. Thereby, the rectangular tube part 37 protects the external connection terminal 27.
 端子受け部材40は、軸方向と直交する平面に沿って延びる板状である。端子受け部材40は、ホルダ本体部31の下面31bに固定される。一対の端子受け部材40のうち一方は、第1バスバー群28の3つの端子接続部22aの下側に位置する。また、一対の端子受け部材40のうち一方は、第2バスバー群29の3つの端子接続部22aの下側に位置する。 The terminal receiving member 40 has a plate shape extending along a plane orthogonal to the axial direction. The terminal receiving member 40 is fixed to the lower surface 31 b of the holder main body 31. One of the pair of terminal receiving members 40 is located below the three terminal connecting portions 22 a of the first bus bar group 28. One of the pair of terminal receiving members 40 is located below the three terminal connection portions 22 a of the second bus bar group 29.
 端子受け部材40は、上側を向くバックアップ面(図示略)において、外部接続端子27の下端部と接触する。外部接続端子27は、制御装置9に接続される際に、制御装置9の制御端子9aから下側に向かう応力を受ける。端子受け部材40は、バックアップ面において、外部接続端子27を支持し、外部接続端子27が相用バスバー21の挿入孔22aaから離脱することを抑制する。 The terminal receiving member 40 is in contact with the lower end portion of the external connection terminal 27 on a backup surface (not shown) facing upward. When the external connection terminal 27 is connected to the control device 9, it receives a downward stress from the control terminal 9 a of the control device 9. The terminal receiving member 40 supports the external connection terminal 27 on the backup surface, and suppresses the external connection terminal 27 from being detached from the insertion hole 22aa of the phase bus bar 21.
 図1に示すように、補強部材50は、少なくとも一部が、バスバーホルダ30の内部に埋め込まれる。すなわち、バスバーホルダ30は、補強部材50を埋め込むインサート成形によって製造される。補強部材50は、金属材料からなり、バスバーホルダ30を補強する。また、補強部材50は、磁性材料からなる。 As shown in FIG. 1, at least a part of the reinforcing member 50 is embedded in the bus bar holder 30. That is, the bus bar holder 30 is manufactured by insert molding in which the reinforcing member 50 is embedded. The reinforcing member 50 is made of a metal material and reinforces the bus bar holder 30. The reinforcing member 50 is made of a magnetic material.
 補強部材50は、筒状部51と、平板部54と、一対の折曲部53と、一対の固定部52と、を有する。補強部材50は、筒状部51および平板部54の一部において、バスバーホルダ30に埋め込まれる。 The reinforcing member 50 includes a cylindrical portion 51, a flat plate portion 54, a pair of bent portions 53, and a pair of fixed portions 52. The reinforcing member 50 is embedded in the bus bar holder 30 in part of the cylindrical portion 51 and the flat plate portion 54.
 筒状部51は、軸方向に沿って筒状に延びる。筒状部51は、中心軸Jを囲む。したがって、補強部材50は、バスバーホルダ30に設けられた中央孔35の内周面に沿って軸方向に延びる。なお、本実施形態において、筒状部51は、円筒形状である。しかしながら、筒状部51は、平面視形状が円形に限らず、平面視形状が矩形状の角筒であってもよい。 The cylindrical portion 51 extends in a cylindrical shape along the axial direction. The cylindrical portion 51 surrounds the central axis J. Therefore, the reinforcing member 50 extends in the axial direction along the inner peripheral surface of the central hole 35 provided in the bus bar holder 30. In the present embodiment, the cylindrical portion 51 has a cylindrical shape. However, the cylindrical portion 51 is not limited to a circular shape in plan view, and may be a square tube having a rectangular shape in plan view.
 筒状部51の内側には、シャフト3aの上端部が配置される。また、筒状部51の内側には、シャフト3aの上端部に固定されたセンサマグネット3dが配置される。すなわち、筒状部51は、センサマグネット3dを径方向外側から囲む。 The upper end portion of the shaft 3a is disposed inside the cylindrical portion 51. A sensor magnet 3d fixed to the upper end portion of the shaft 3a is disposed inside the cylindrical portion 51. That is, the cylindrical part 51 surrounds the sensor magnet 3d from the outside in the radial direction.
 相用バスバーユニット20において、中央孔35の周囲に配置される相用バスバー21には、交流電流が流れる。このため、相用バスバー21の周囲には、相用バスバー21に流れる電流の変化に伴い磁場が生じる。上述したように、センサマグネット3dから発生する磁場は、制御装置9に設けられる回転センサ9bで検出され、回転センサ9bによる回転角度の測定に利用される。このため、センサマグネット3dの磁束が、相用バスバー21から生じる磁場により影響を受けて、回転センサ9bによる回転角度の測定に影響を及ぼす虞がある。本実施形態によれば、補強部材50が磁性材料からなり、筒状部51においてセンサマグネット3dを囲む。このため、筒状部51は、磁気シールドとして機能する。すなわち、筒状部51は、筒状部51の外部からの磁気的なノイズが筒状部51の内側に位置するセンサマグネット3dの磁束に影響を及ぼすことを抑制する。結果的に、回転センサ9bによる回転角度の測定精度を高めて、信頼性の高いモータ1を構成することができる。 In the phase bus bar unit 20, an alternating current flows through the phase bus bar 21 disposed around the central hole 35. For this reason, a magnetic field is generated around the phase bus bar 21 due to a change in the current flowing through the phase bus bar 21. As described above, the magnetic field generated from the sensor magnet 3d is detected by the rotation sensor 9b provided in the control device 9, and used for measurement of the rotation angle by the rotation sensor 9b. For this reason, the magnetic flux of the sensor magnet 3d may be affected by the magnetic field generated from the phase bus bar 21 and may affect the measurement of the rotation angle by the rotation sensor 9b. According to the present embodiment, the reinforcing member 50 is made of a magnetic material, and surrounds the sensor magnet 3 d in the cylindrical portion 51. For this reason, the cylindrical part 51 functions as a magnetic shield. That is, the cylindrical part 51 suppresses the magnetic noise from the outside of the cylindrical part 51 from affecting the magnetic flux of the sensor magnet 3 d located inside the cylindrical part 51. As a result, the measurement accuracy of the rotation angle by the rotation sensor 9b can be improved, and the highly reliable motor 1 can be configured.
 本実施形態において、相用バスバー21は、バスバーホルダ30に対して上側に延びる外部接続端子27を有する。このため、外部接続端子27が生じる磁場は、センサマグネット3dの上側に位置する回転センサ9bにおける回転角度の測定精度に影響を与えやすい。本実施形態によれば、筒状部51は、外部接続端子27とセンサマグネット3dとの間を遮蔽する。このため、外部接続端子27から生じる磁場が、筒状部51の内側に影響を与えることを抑制して、回転センサ9bによる回転角度の測定精度を高めることができる。 In this embodiment, the phase bus bar 21 has an external connection terminal 27 extending upward with respect to the bus bar holder 30. For this reason, the magnetic field generated by the external connection terminal 27 tends to affect the measurement accuracy of the rotation angle in the rotation sensor 9b located above the sensor magnet 3d. According to this embodiment, the cylindrical part 51 shields between the external connection terminal 27 and the sensor magnet 3d. For this reason, it can suppress that the magnetic field produced from the external connection terminal 27 influences the inner side of the cylindrical part 51, and can raise the measurement precision of the rotation angle by the rotation sensor 9b.
 本実施形態において、筒状部51の上端は、センサマグネット3dの上端より上側に位置する。したがって、本実施形態によれば、センサマグネット3dの上端から上側に向かう磁束が、相用バスバー21から生じる磁場により影響を受けることを抑制できる。また、筒状部51の下端が、センサマグネット3dの下端より下側に位置する。したがって、本実施形態によれば、センサマグネット3d上端から出て下端からセンサマグネット3dの内部に入る磁束が、相用バスバー21から生じる磁場により影響を受けることを抑制できる。 なお、本実施形態では、筒状部51がセンサマグネット3dの軸方向の全長を囲む場合について例示した。しかしながら、筒状部51の少なくとも一部が、軸方向においてセンサマグネット3dに重なっていれば、筒状部51の外部からの磁気的なノイズがセンサマグネット3dの磁束に影響を及ぼすことを抑制し、回転センサ9bの測定精度を高める一定の効果を奏することができる。 In the present embodiment, the upper end of the cylindrical portion 51 is located above the upper end of the sensor magnet 3d. Therefore, according to this embodiment, it can suppress that the magnetic flux which goes upwards from the upper end of the sensor magnet 3d is influenced by the magnetic field produced from the phase bus bar 21. Moreover, the lower end of the cylindrical part 51 is located below the lower end of the sensor magnet 3d. Therefore, according to this embodiment, it can suppress that the magnetic flux which comes out from the upper end of the sensor magnet 3d and enters the inside of the sensor magnet 3d from the lower end is influenced by the magnetic field generated from the phase bus bar 21. In addition, in this embodiment, the case where the cylindrical part 51 encloses the full length of the axial direction of the sensor magnet 3d was illustrated. However, if at least a part of the cylindrical portion 51 overlaps the sensor magnet 3d in the axial direction, magnetic noise from the outside of the cylindrical portion 51 is prevented from affecting the magnetic flux of the sensor magnet 3d. It is possible to achieve a certain effect of increasing the measurement accuracy of the rotation sensor 9b.
 筒状部51は、バスバーホルダ30の円筒部33の内部に埋め込まれる。バスバーホルダ30は、相用バスバー21同士の絶縁を確保するために樹脂材料から構成される。このため、バスバーホルダ30は、金属材料と比較して強度が低い。また、バスバーホルダ30には、中心軸Jが通過する中央孔35が設けられるため、中央孔35周りの強度が低い。本実施形態によれば、バスバーホルダ30の内部に中央孔35を囲む筒状部51が埋め込まれることで、バスバーホルダ30の中央孔35周りを補強し、バスバーホルダ30に応力が加わった場合であっても、バスバーホルダ30の損傷を抑制できる。 The cylindrical part 51 is embedded in the cylindrical part 33 of the bus bar holder 30. The bus bar holder 30 is made of a resin material in order to ensure insulation between the phase bus bars 21. For this reason, the bus bar holder 30 has a lower strength than the metal material. Moreover, since the central hole 35 through which the central axis J passes is provided in the bus bar holder 30, the strength around the central hole 35 is low. According to the present embodiment, the cylindrical portion 51 surrounding the central hole 35 is embedded inside the bus bar holder 30, thereby reinforcing the periphery of the central hole 35 of the bus bar holder 30 and applying stress to the bus bar holder 30. Even if it exists, damage to the bus bar holder 30 can be suppressed.
 本実施形態によれば、磁気シールドとして機能する円筒部33が、バスバーホルダ30に埋め込まれている。このため、バスバーホルダ30と円筒部33とを単一の部品として扱うことができる。本実施形態によれば、バスバーホルダと磁気シールドとを別部品として設ける場合と比較して、組み立て工程等に係るコストを低減しモータ1を低コストで製造することができる。 According to the present embodiment, the cylindrical portion 33 that functions as a magnetic shield is embedded in the bus bar holder 30. For this reason, the bus bar holder 30 and the cylindrical portion 33 can be handled as a single component. According to this embodiment, compared with the case where a bus-bar holder and a magnetic shield are provided as separate parts, the cost concerning an assembly process etc. can be reduced and the motor 1 can be manufactured at low cost.
 平板部54は、筒状部51から中心軸Jと直交する平面に沿って径方向に延びる。図3に示すように、平板部54は、中央孔35を囲む環状部54aと、環状部54aから径方向外側に延びる一対の径方向延在部54bとを有する。 The flat plate portion 54 extends in the radial direction from the cylindrical portion 51 along a plane orthogonal to the central axis J. As shown in FIG. 3, the flat plate portion 54 includes an annular portion 54 a that surrounds the central hole 35 and a pair of radially extending portions 54 b that extend radially outward from the annular portion 54 a.
 平板部54は、径方向延在部54bの径方向外端部を除き、ホルダ本体部31の内部に埋め込まれる。すなわち、平板部54は、少なくとも一部が、バスバーホルダ30のホルダ本体部31の内部に埋め込まれる。これにより、平板部54は、ホルダ本体部31を補強する。径方向延在部54bの径方向外縁部には、折曲部53を介して、固定部52が接続される。 The flat plate portion 54 is embedded in the holder main body portion 31 except for the radially outer end portion of the radially extending portion 54b. That is, at least a part of the flat plate portion 54 is embedded in the holder main body portion 31 of the bus bar holder 30. Thereby, the flat plate part 54 reinforces the holder main body part 31. The fixed portion 52 is connected to the radially outer edge portion of the radially extending portion 54 b via the bent portion 53.
 一対の径方向延在部54bは、それぞれ径方向に沿って延びる。径方向延在部54bは、周方向において、第1バスバー群28と第2バスバー群29との間に位置する。すなわち、径方向延在部54bは、周方向に隣り合うバスバー群同士の間を径方向に延びる。 The pair of radially extending portions 54b extend along the radial direction. The radially extending portion 54 b is located between the first bus bar group 28 and the second bus bar group 29 in the circumferential direction. That is, the radially extending portion 54b extends in the radial direction between the bus bar groups adjacent in the circumferential direction.
 本実施形態において、複数の相用バスバー21は、第1バスバー群28と第2バスバー群29とに分類され、それぞれのバスバー群ごとに固めて配置される。また、それぞれの相用バスバー21は、ホルダ本体部31のバスバー埋込領域31Aに埋め込まれる。ホルダ本体部31は、バスバー埋込領域31Aにおいて、相用バスバー21によって補強される。一方で、径方向延在部54bは、ホルダ本体部31の補強部材埋込領域31Bに埋め込まれる。補強部材埋込領域31Bは、周方向において、バスバー埋込領域31Aの間に位置する。したがって、径方向延在部54bは、一対のバスバー埋込領域31A同士の間の領域(すなわち、補強部材埋込領域31B)を補強する。本実施形態によれば、複数のバスバー群と径方向延在部54bとが、ホルダ本体部31において周方向に交互に埋め込まれる。これにより、ホルダ本体部31の周方向の全域を補強して、バスバーホルダ30の損傷を効果的に抑制できる。 また、金属材料である相用バスバー21および補強部材50は、樹脂材料であるホルダ本体部31と比較して熱伝導特性が高い。ホルダ本体部31に、金属材料が埋め込まれた領域と、金属材料が埋め込まれない領域と、がそれぞれ設けられると、領域ごとに冷却効率が異なるため、バスバーホルダ30の成形時の反りが顕著となり易い。本実施形態によれば、ホルダ本体部31の周方向の全域に金属材料が埋め込まれるため、ホルダ本体部31の成形時の反りを抑制できる。 In the present embodiment, the plurality of phase bus bars 21 are classified into a first bus bar group 28 and a second bus bar group 29, and are arranged firmly for each bus bar group. Each phase bus bar 21 is embedded in a bus bar embedded region 31 </ b> A of the holder main body 31. The holder main body 31 is reinforced by the phase bus bar 21 in the bus bar embedded region 31A. On the other hand, the radially extending portion 54 b is embedded in the reinforcing member embedded region 31 </ b> B of the holder main body portion 31. The reinforcing member embedded region 31B is located between the bus bar embedded regions 31A in the circumferential direction. Accordingly, the radially extending portion 54b reinforces the region between the pair of bus bar embedded regions 31A (that is, the reinforcing member embedded region 31B). According to the present embodiment, the plurality of bus bar groups and the radially extending portions 54 b are alternately embedded in the circumferential direction in the holder main body portion 31. Thereby, the whole area | region of the circumferential direction of the holder main-body part 31 is reinforced, and damage to the bus-bar holder 30 can be suppressed effectively. Also, the phase bus bar 21 and the reinforcing member 50, which are metal materials, have higher heat conduction characteristics than the holder main body portion 31, which is a resin material. When the holder body 31 is provided with a region in which the metal material is embedded and a region in which the metal material is not embedded, the cooling efficiency differs depending on the region. easy. According to the present embodiment, since the metal material is embedded in the entire region in the circumferential direction of the holder main body 31, it is possible to suppress warping during the molding of the holder main body 31.
 環状部54aは、筒状部51の外周面に沿って環状に延びる。環状部54aは、筒状部51の外周面に接続されている。環状部54aは、バスバーホルダ30の中央孔35を囲む。環状部54aは、ホルダ本体部31の内部に埋め込まれるため、バスバーホルダ30の中央孔35周りを補強する。これにより、バスバーホルダ30に応力が加わった場合であっても、バスバーホルダ30の損傷を抑制する。 The annular portion 54 a extends annularly along the outer peripheral surface of the tubular portion 51. The annular portion 54 a is connected to the outer peripheral surface of the cylindrical portion 51. The annular portion 54 a surrounds the central hole 35 of the bus bar holder 30. Since the annular portion 54 a is embedded in the holder main body portion 31, the periphery of the central hole 35 of the bus bar holder 30 is reinforced. Thereby, even if it is a case where stress is added to the bus-bar holder 30, damage to the bus-bar holder 30 is suppressed.
 環状部54aは、一対の径方向延在部54bの間に位置し、一対の径方向延在部54b同士を繋ぐ。すなわち、複数(本実施形態では2つ)の径方向延在部54bは、環状部54aを介して互いに繋がる。これにより、複数の径方向延在部54bの剛性を環状部54aによって高めることができる。結果的に、径方向延在部54bによるホルダ本体部31の補強効果を高めることができる。 The annular portion 54a is located between the pair of radially extending portions 54b and connects the pair of radially extending portions 54b to each other. That is, the plurality (two in the present embodiment) of radially extending portions 54b are connected to each other via the annular portion 54a. Thereby, the rigidity of the plurality of radially extending portions 54b can be increased by the annular portion 54a. As a result, the reinforcing effect of the holder body 31 by the radially extending portion 54b can be enhanced.
 本実施形態において、平板部54は、軸方向から見て相用バスバー21と異なる位置に配置される。すなわち、平板部54と相用バスバー21とは、軸方向に重なることがない。ホルダ本体部31は、平板部54および相用バスバー21によってそれぞれ補強される。平板部54と相用バスバー21とが、軸方向から見て互いに異なる位置に設けられることで、平板部54を過度にホルダ本体部31に埋め込まれることがない。このため、相用バスバーユニット20の重量を抑制しつつ、バスバーホルダ30全体の強度をバランスよく高めることができる。 In the present embodiment, the flat plate portion 54 is arranged at a position different from the phase bus bar 21 when viewed from the axial direction. That is, the flat plate portion 54 and the phase bus bar 21 do not overlap in the axial direction. The holder main body 31 is reinforced by the flat plate portion 54 and the phase bus bar 21. By providing the flat plate portion 54 and the phase bus bar 21 at positions different from each other when viewed in the axial direction, the flat plate portion 54 is not excessively embedded in the holder main body portion 31. For this reason, the intensity | strength of the bus bar holder 30 whole can be improved with sufficient balance, suppressing the weight of the bus bar unit 20 for phases.
 図1に示すように、折曲部53および固定部52は、バスバーホルダ30に埋め込まれていない。すなわち、折曲部53および固定部52は、バスバーホルダ30から露出する。折曲部53は、平板部54の径方向延在部54bの径方向外端部に位置する。折曲部53は、平板部54と固定部52とを繋げる。折曲部53は、平板部54に対して下側に折れ曲がっている。一方で、固定部52は、中心軸Jと直交する平面に沿って板状に延びる。平板部54と固定部52との間に折曲部53が設けられることで、固定部52は、平板部54に対して、下側に配置される。 As shown in FIG. 1, the bent portion 53 and the fixing portion 52 are not embedded in the bus bar holder 30. That is, the bent portion 53 and the fixing portion 52 are exposed from the bus bar holder 30. The bent portion 53 is located at the radially outer end portion of the radially extending portion 54 b of the flat plate portion 54. The bent portion 53 connects the flat plate portion 54 and the fixed portion 52. The bent portion 53 is bent downward with respect to the flat plate portion 54. On the other hand, the fixing portion 52 extends in a plate shape along a plane orthogonal to the central axis J. By providing the bent portion 53 between the flat plate portion 54 and the fixed portion 52, the fixed portion 52 is disposed below the flat plate portion 54.
 固定部52の下面は、ベアリングホルダ5の上面に接触する。固定部52には、軸方向に貫通する貫通孔52aが設けられる。貫通孔52aには、相用バスバーユニット20をベアリングホルダ5に固定する固定ネジ8が挿入される。これにより、相用バスバーユニット20は、固定部52において他の部品(本実施形態においては、ベアリングホルダ5)に固定される。 The lower surface of the fixing portion 52 contacts the upper surface of the bearing holder 5. The fixing portion 52 is provided with a through hole 52a penetrating in the axial direction. A fixing screw 8 for fixing the phase bus bar unit 20 to the bearing holder 5 is inserted into the through hole 52a. Accordingly, the phase bus bar unit 20 is fixed to other components (in the present embodiment, the bearing holder 5) in the fixing portion 52.
 バスバーホルダ30は、樹脂材料から構成されるため、バスバーホルダ30を直接的に他の部品(例えばベアリングホルダ5)に固定しようとすると、固定時の締結力でバスバーホルダ30に損傷が生じる虞がある。本実施形態によれば、相用バスバーユニット20は、バスバーホルダ30を補強する固定部52において、ベアリングホルダ5に固定される。補強部材50は、ベアリングホルダ5を補強するため、ベアリングホルダ5を構成する樹脂材料と比較して高強度である。特に、本実施形態において、補強部材50は、金属材料からなる。このため、相用バスバーユニット20をベアリングホルダ5に固定する際に相用バスバーユニット20の一部が損傷することが抑制できる。 Since the bus bar holder 30 is made of a resin material, if the bus bar holder 30 is directly fixed to another component (for example, the bearing holder 5), the bus bar holder 30 may be damaged by the fastening force at the time of fixing. is there. According to the present embodiment, the phase bus bar unit 20 is fixed to the bearing holder 5 at the fixing portion 52 that reinforces the bus bar holder 30. Since the reinforcing member 50 reinforces the bearing holder 5, it has a higher strength than the resin material constituting the bearing holder 5. In particular, in the present embodiment, the reinforcing member 50 is made of a metal material. For this reason, when fixing the bus bar unit 20 for phases to the bearing holder 5, it can suppress that a part of bus bar unit 20 for phases is damaged.
 本実施形態によれば、バスバーホルダ30を補強する補強部材50が固定部52を有する。すなわち、補強部材50は、バスバーホルダ30を補強する機能と、相用バスバーユニット20を他の部材に固定する機能と、を有する。このため、バスバーユニットが、バスバーホルダと固定部材とをそれぞれ有する場合と比較して、部品点数が増加することを抑制できる。結果的に、部品の製造コストを抑制できるのみならず、部品点数の増加に伴う部品の管理コストを抑制でき、モータ1を低コストで製造することができる。 According to the present embodiment, the reinforcing member 50 that reinforces the bus bar holder 30 has the fixing portion 52. That is, the reinforcing member 50 has a function of reinforcing the bus bar holder 30 and a function of fixing the phase bus bar unit 20 to other members. For this reason, compared with the case where a bus-bar unit has a bus-bar holder and a fixing member, it can suppress that a number of parts increases. As a result, not only the manufacturing cost of components can be suppressed, but also the management costs of components accompanying an increase in the number of components can be suppressed, and the motor 1 can be manufactured at low cost.
 なお、本実施形態では、固定部52がベアリングホルダ5に固定される場合を例示したが、固定部52は、モータ1を構成する相用バスバーユニット20以外の部品に固定されていてもよい。例えば、固定部52は、ステータ4に固定されていてもよい。また、本実施形態では、固定部52が固定ネジ8によって他の部品に固定される場合を例示したが、固定部52と他の部品との固定は、他の手段によってなされていてもよい。例えば、固定部52は、カシメによって他の部品と固定されていてもよい。 In the present embodiment, the case where the fixing portion 52 is fixed to the bearing holder 5 is illustrated, but the fixing portion 52 may be fixed to components other than the phase bus bar unit 20 constituting the motor 1. For example, the fixing portion 52 may be fixed to the stator 4. Further, in the present embodiment, the case where the fixing portion 52 is fixed to another component by the fixing screw 8 is exemplified, but the fixing portion 52 and the other component may be fixed by other means. For example, the fixing part 52 may be fixed to other parts by caulking.
 また、本実施形態では、補強部材50が金属材料からなるとして説明した。しかしながら、補強部材50は、筒状部51が磁性材料からなり、固定部52がバスバーホルダ30より高強度な材料からなるものであれば、その他の材料から構成されていてもよい。 In the present embodiment, the description has been given on the assumption that the reinforcing member 50 is made of a metal material. However, the reinforcing member 50 may be made of other materials as long as the cylindrical portion 51 is made of a magnetic material and the fixing portion 52 is made of a material having higher strength than the bus bar holder 30.
 また、本実施形態では、相用バスバーユニット20について、本発明を適用する場合について説明した。しかしながら、本発明の構成が適用されるバスバーユニットは、中性点バスバーを有するバスバーユニットであってもよい。すなわち、バスバーユニットに設けられるバスバーは、コイルに接続されれば、中性点バスバーであっても、相用バスバーであってもよい。 In the present embodiment, the case where the present invention is applied to the phase bus bar unit 20 has been described. However, the bus bar unit to which the configuration of the present invention is applied may be a bus bar unit having a neutral point bus bar. That is, the bus bar provided in the bus bar unit may be a neutral point bus bar or a phase bus bar as long as it is connected to the coil.
 以上に、本発明の一実施形態を説明したが、一実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although one embodiment of the present invention has been described above, each configuration and combination thereof in the embodiment is an example, and addition, omission, replacement, and others of the configuration are within a range not departing from the gist of the present invention. Can be changed. Further, the present invention is not limited by the embodiment.
1…モータ、3…ロータ、3a…シャフト、3d…センサマグネット、4…ステータ、5…ベアリングホルダ、6A…上側ベアリング(ベアリング)、7…コイル、20…相用バスバーユニット(バスバーユニット)、21…相用バスバー(バスバー)、27…外部接続端子、30…バスバーホルダ、35…中央孔、50…補強部材(磁性部材)、51…筒状部、52…固定部、52a…貫通孔、54…平板部、54a…環状部、54b…径方向延在部、J…中心軸 DESCRIPTION OF SYMBOLS 1 ... Motor, 3 ... Rotor, 3a ... Shaft, 3d ... Sensor magnet, 4 ... Stator, 5 ... Bearing holder, 6A ... Upper bearing (bearing), 7 ... Coil, 20 ... Phase busbar unit (busbar unit), 21 ... Bus bar (bus bar), 27 .. external connection terminal, 30... Bus bar holder, 35... Central hole, 50 .. reinforcing member (magnetic member), 51. ... flat plate part, 54a ... annular part, 54b ... radially extending part, J ... central axis

Claims (9)

  1.  上下方向に延びる中心軸周りに回転可能なロータと、
     複数のコイルを有し前記ロータの径方向外側に位置するステータと、
     前記ステータの上側に設けられるバスバーユニットと、を備え、
     前記ロータは、
      前記中心軸に沿って延びるシャフトと、
      前記シャフトの上端部に位置するセンサマグネットと、を有し、
     前記バスバーユニットは、
      前記コイルに接続されるバスバーと、
      磁性材料からなる磁性部材と、
      前記中心軸と直交する平面に沿って延び前記バスバーおよび前記磁性部材を支持するバスバーホルダと、を有し、
     前記バスバーホルダには、前記シャフトが挿入される中央孔が設けられ、
     前記磁性部材は、前記中央孔の内周面に沿って軸方向に延びる筒状部を有し、
     前記筒状部の少なくとも一部は、軸方向において前記センサマグネットに重なる、モータ。
    A rotor rotatable around a central axis extending in the vertical direction;
    A stator having a plurality of coils and positioned radially outside the rotor;
    A bus bar unit provided on the upper side of the stator,
    The rotor is
    A shaft extending along the central axis;
    A sensor magnet located at the upper end of the shaft,
    The bus bar unit is
    A bus bar connected to the coil;
    A magnetic member made of a magnetic material;
    A bus bar holder that extends along a plane orthogonal to the central axis and supports the bus bar and the magnetic member;
    The bus bar holder is provided with a central hole into which the shaft is inserted,
    The magnetic member has a cylindrical portion extending in the axial direction along the inner peripheral surface of the central hole,
    A motor in which at least a part of the cylindrical portion overlaps the sensor magnet in the axial direction.
  2.  前記磁性部材は、前記筒状部から前記中心軸と直交する平面に沿って径方向に延びる平板部を有し、
     前記平板部は、少なくとも一部が、前記バスバーホルダの内部に埋め込まれる、請求項1に記載のモータ。
    The magnetic member has a flat plate portion extending in a radial direction along a plane orthogonal to the central axis from the cylindrical portion,
    The motor according to claim 1, wherein at least a part of the flat plate portion is embedded in the bus bar holder.
  3.  前記平板部は、軸方向から見て前記バスバーと異なる位置に配置される、請求項2に記載のモータ。 The motor according to claim 2, wherein the flat plate portion is disposed at a position different from the bus bar as viewed in the axial direction.
  4.  前記バスバーユニットは、複数の前記バスバーを有し、
     複数の前記バスバーは、複数のバスバー群に分類され、
     複数の前記バスバー群は、周方向に並んで配置され、
     前記平板部は、周方向に隣り合う前記バスバー群同士の間を径方向に延びる複数の径方向延在部を有する、請求項2又は3に記載のモータ。
    The bus bar unit has a plurality of the bus bars,
    The plurality of bus bars are classified into a plurality of bus bar groups,
    The plurality of bus bar groups are arranged side by side in the circumferential direction,
    4. The motor according to claim 2, wherein the flat plate portion includes a plurality of radially extending portions extending in a radial direction between the bus bar groups adjacent in the circumferential direction.
  5.  前記平板部は、前記筒状部の外周面に沿って環状に延びる環状部を有し、
     複数の前記径方向延在部は、前記環状部を介して互いに繋がる、請求項4に記載のモータ。
    The flat plate portion has an annular portion extending annularly along the outer peripheral surface of the cylindrical portion,
    The motor according to claim 4, wherein the plurality of radially extending portions are connected to each other via the annular portion.
  6.  前記バスバーは、少なくとも一部が、前記バスバーホルダの内部に埋め込まれている、請求項1~5の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 5, wherein at least a part of the bus bar is embedded in the bus bar holder.
  7.  前記バスバーは、軸方向に沿って延びる外部接続端子を有し、
     前記筒状部は、前記外部接続端子と前記センサマグネットとの間を遮蔽する、請求項1~6の何れか一項に記載のモータ。
    The bus bar has an external connection terminal extending along the axial direction,
    The motor according to any one of claims 1 to 6, wherein the cylindrical portion shields between the external connection terminal and the sensor magnet.
  8.  前記筒状部の上端が、前記センサマグネットの上端より上側に位置する、請求項1~7の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 7, wherein an upper end of the cylindrical portion is located above an upper end of the sensor magnet.
  9.  前記筒状部の下端が、前記センサマグネットの下端より下側に位置する、請求項1~8の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 8, wherein a lower end of the cylindrical portion is located below a lower end of the sensor magnet.
PCT/JP2019/006856 2018-02-28 2019-02-22 Motor WO2019167843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980015290.8A CN111771318A (en) 2018-02-28 2019-02-22 Motor with a stator having a stator core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-034515 2018-02-28
JP2018034515 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167843A1 true WO2019167843A1 (en) 2019-09-06

Family

ID=67804932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006856 WO2019167843A1 (en) 2018-02-28 2019-02-22 Motor

Country Status (2)

Country Link
CN (1) CN111771318A (en)
WO (1) WO2019167843A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158059A (en) * 2004-11-29 2006-06-15 Yaskawa Electric Corp Magnetic encoder and motor equipped with the same
WO2014054095A1 (en) * 2012-10-01 2014-04-10 トヨタ自動車株式会社 Internal combustion engine
JP2017051014A (en) * 2015-09-03 2017-03-09 日立オートモティブシステムズ株式会社 Motor control device
WO2017119584A1 (en) * 2016-01-07 2017-07-13 엘지이노텍 주식회사 Motor, and motor-driven steering apparatus having same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593625B2 (en) * 2015-05-25 2019-10-23 株式会社ジェイテクト Rotation angle detector
KR102596664B1 (en) * 2016-07-18 2023-11-02 엘지이노텍 주식회사 Motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158059A (en) * 2004-11-29 2006-06-15 Yaskawa Electric Corp Magnetic encoder and motor equipped with the same
WO2014054095A1 (en) * 2012-10-01 2014-04-10 トヨタ自動車株式会社 Internal combustion engine
JP2017051014A (en) * 2015-09-03 2017-03-09 日立オートモティブシステムズ株式会社 Motor control device
WO2017119584A1 (en) * 2016-01-07 2017-07-13 엘지이노텍 주식회사 Motor, and motor-driven steering apparatus having same

Also Published As

Publication number Publication date
CN111771318A (en) 2020-10-13

Similar Documents

Publication Publication Date Title
JP7024783B2 (en) Busbar unit and motor equipped with it
CN110601388B (en) Motor
CN107925301B (en) Motor with a stator having a stator core
WO2017026492A1 (en) Motor
JP6589336B2 (en) Motor and in-vehicle device
JPWO2018030479A1 (en) motor
JP7052789B2 (en) Busbar unit and motor equipped with it
JP7006675B2 (en) motor
US20190326799A1 (en) Motor
CN110212674B (en) Motor
JPWO2018062346A1 (en) motor
JP4884106B2 (en) Rotating electric machine
JP7318654B2 (en) motor
JPWO2019102643A1 (en) Busbar unit and motor
JP6693148B2 (en) motor
JP2021052492A (en) Bus-bar unit and motor
WO2019167843A1 (en) Motor
JP6722332B2 (en) motor
JP7405089B2 (en) motor
JP2008011653A (en) Rotating electric machine
JP7192788B2 (en) Busbar unit and motor
CN109586479B (en) Motor and electric power steering apparatus
JP4875933B2 (en) Rotating electric machine
WO2020067254A1 (en) Motor
JP2016226179A (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP