WO2019167534A1 - アンテナモジュール - Google Patents

アンテナモジュール Download PDF

Info

Publication number
WO2019167534A1
WO2019167534A1 PCT/JP2019/003328 JP2019003328W WO2019167534A1 WO 2019167534 A1 WO2019167534 A1 WO 2019167534A1 JP 2019003328 W JP2019003328 W JP 2019003328W WO 2019167534 A1 WO2019167534 A1 WO 2019167534A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
antenna module
antenna
heat
via conductors
Prior art date
Application number
PCT/JP2019/003328
Other languages
English (en)
French (fr)
Inventor
直志 菅原
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019167534A1 publication Critical patent/WO2019167534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to an antenna module.
  • a high frequency module in which a plurality of via conductors are formed around a high frequency element in order to shield unnecessary electromagnetic waves (noise) from the high frequency element from being radiated to the outside.
  • Patent Document 1 a semiconductor element (high-frequency element) is arranged in a composite resin material layer formed under a ceramic substrate, and the semiconductor A high-frequency semiconductor device in which a plurality of interlayer connection structure via holes (via conductors) are formed around an element is disclosed.
  • Patent Document 1 discloses a configuration in which a plurality of via conductors connect a circuit pattern formed on the lower surface of a ceramic multilayer substrate and an external connection electrode formed on the lower surface of the composite resin material layer. .
  • a closed region is formed by the specific electrode, the external connection electrode, and the two via conductors. Therefore, the specific electrode, the external connection electrode, and the two via conductors can function as a slot antenna.
  • the two via conductors formed around the high-frequency element and the two conductors connected to the two via conductors function as a slot antenna by forming a slot
  • electromagnetic waves are radiated from the slot antenna to the outside.
  • the effect (shield effect) of the via conductor that shields noise from the high-frequency element from being radiated to the outside can be reduced.
  • the characteristics of the antenna module can deviate from the desired characteristics.
  • the present invention has been made to solve the above-described problems, and an object thereof is to suppress the characteristics of the antenna module from deviating from desired characteristics.
  • the antenna module transmits and receives high-frequency signals.
  • the antenna module includes a first ground electrode and a second ground electrode, a plurality of via conductors, a first antenna element, and a first high-frequency element.
  • the first ground electrode and the second ground electrode are disposed to face each other.
  • the plurality of via conductors connect the first ground electrode and the second ground electrode.
  • the first antenna element is disposed on the opposite side to the plurality of via conductors with respect to the first ground electrode.
  • the first high-frequency element is disposed between the first ground electrode and the second ground electrode.
  • the first high frequency element supplies power to the first antenna element.
  • the distance between the first ground electrode and the second ground electrode is shorter than one half of the effective wavelength of the high-frequency signal between the first ground electrode and the second ground electrode.
  • the distance between the first ground electrode and the second ground electrode is a half of the effective wavelength of the high-frequency signal between the first ground electrode and the second ground electrode.
  • FIG. 1 is an external perspective view of an antenna module according to Embodiment 1.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 3 is a plan view of the antenna module of FIG. 2 from the X-axis direction. It is a graph which shows the result of having actually measured the relationship between the thickness of RFIC and the load (withstand load) which can be endured with a certain thickness.
  • 6 is a cross-sectional view of an antenna module according to Embodiment 2.
  • FIG. 6 is a cross-sectional view of an antenna module according to a modification of the second embodiment.
  • FIG. 6 is an external perspective view of an antenna module according to Embodiment 3.
  • FIG. It is the figure which planarly viewed from the Z-axis direction of the antenna module of FIG. It is the figure which planarly viewed the antenna module of FIG. 9 from the X-axis direction.
  • FIG. 1 is a block diagram of a communication apparatus 1000 that includes an antenna array 110.
  • the communication device 1000 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, or a personal computer provided with a communication function.
  • the communication apparatus 1000 includes an antenna module 100 and a BBIC (Baseband Integrated Circuit) 900 that constitutes a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC (Radio Frequency Integrated Circuit) 900 that is an example of a high-frequency element, and an antenna array 110.
  • RFIC Radio Frequency Integrated Circuit
  • the communication device 1000 up-converts the signal transmitted from the BBIC 900 to the antenna module 100 into a high-frequency signal and radiates it from the antenna array 110.
  • Communication apparatus 1000 down-converts the high-frequency signal received by antenna array 110 and processes the signal using BBIC 900.
  • FIG. 1 shows the configuration of RFIC 190 corresponding to antenna elements 1111 to 1114 among a plurality of antenna elements constituting antenna array 110.
  • the RFIC 190 includes switches 31A to 31D, 33A to 33D, 37, power amplifiers 32AT to 32DT, low noise amplifiers 32AR to 32DR, attenuators 34A to 34D, phase shifters 35A to 35D, and a signal synthesizer / demultiplexer. 36, a mixer 38, and an amplifier circuit 39.
  • RFIC 190 is formed, for example, as a one-chip integrated circuit component including circuit elements (switches, power amplifiers, low noise amplifiers, attenuators, and phase shifters) corresponding to a plurality of antenna elements included in antenna array 110.
  • the circuit element may be formed as a one-chip integrated circuit component for each antenna element, separately from the RFIC 190.
  • the switches 31A to 31D and 33A to 33D are switched to the low noise amplifiers 32AR to 32DR side, and the switch 37 is connected to the reception side amplifier of the amplifier circuit 39.
  • the high-frequency signals received by the antenna elements 1111 to 1114 pass through the signal paths from the switches 31A to 31D to the phase shifters 35A to 35D, are combined by the signal synthesizer / demultiplexer 36, and are down-converted by the mixer 38.
  • the signal is amplified by the amplifier circuit 39 and transmitted to the BBIC 900.
  • the switches 31A to 31D and 33A to 33D are switched to the power amplifiers 32AT to 32DT side, and the switch 37 is connected to the transmission side amplifier of the amplifier circuit 39.
  • the signal transmitted from the BBIC 900 is amplified by the amplifier circuit 39 and up-converted by the mixer 38.
  • the up-converted high-frequency signal is demultiplexed by the signal synthesizer / demultiplexer 36, passes through the signal paths from the phase shifters 35A to 35D to the switches 31A to 31D, and is fed to the antenna elements 1111 to 1114. .
  • the directivity of the antenna array 110 can be adjusted.
  • FIG. 2 is an external perspective view of the antenna module 100 according to the first embodiment.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • the antenna module 100 transmits and receives high-frequency signals.
  • the antenna module 100 includes antenna elements 1111 to 1114 (first antenna elements), a heat radiating member 120 (first heat radiating member), a dielectric layer 130, and a ground electrode 141 ( A first ground electrode), a ground electrode 142 (second ground electrode), a plurality of via conductors 150, a mold layer 170, and an RFIC 190 (first high-frequency element) are provided.
  • the ground electrode 142, the mold layer 170, and the dielectric layer 130 are stacked in this order with the Z-axis direction as the stacking direction.
  • the mold layer 170 is indicated by a dotted line so that the plurality of via conductors 150 can be easily seen.
  • the ground electrode 141 is disposed on the dielectric layer 130 so as to face the antenna elements 1111 to 1114.
  • the antenna module 100 is a microstrip antenna.
  • the ground electrodes 141 and 142 are connected by a plurality of via conductors 150.
  • the antenna elements 1111 to 1114 are arranged in a matrix in the dielectric layer 130 so as to be opposite to the plurality of via conductors 150 with respect to the ground electrode 141. Specifically, the antenna elements 1111 and 1112 are arranged along the Y axis. The antenna elements 1113 and 1114 are arranged along the Y axis. The antenna elements 1111 and 1113 are arranged along the X axis. The antenna elements 1112 and 1114 are arranged along the X axis.
  • the RFIC 190 is disposed on the mold layer 170 so as to be between the ground electrodes 141 and 142.
  • the RFIC 190 is connected to the antenna elements 1111 to 1114 by power supply lines (not shown), and supplies power to the antenna elements 1111 to 1114.
  • the plurality of via conductors 150 are arranged so as to surround the periphery of the RFIC 190.
  • the plurality of via conductors 150 shield noise from the RFIC 190 from being radiated to the outside.
  • the heat dissipation member 120 is disposed between the RFIC 190 and the ground electrode 142. When viewed in plan from the Z-axis direction, the heat dissipation member 120 overlaps the entire RFIC 190.
  • the heat radiating member 120 guides the heat of the RFIC 190 to the outside of the antenna module 100. Since metal has a relatively higher thermal conductivity than other materials, the heat dissipation member 120 preferably includes metal.
  • FIG. 4 is a plan view of the antenna module 100 of FIG. 2 from the X-axis direction.
  • the distance H1 represents the distance between the ground electrodes 141 and 142.
  • the distance W1 represents the distance between adjacent via conductors included in the plurality of via conductors 150.
  • the thickness H2 represents the thickness of the RFIC 190.
  • the mold layer 170 is indicated by a dotted line so that the plurality of via conductors 150 can be easily seen.
  • a closed region Slt1 is formed by the ground electrode 141, the two adjacent via conductors 150, and the ground electrode 142. Therefore, the ground electrode 141, the two adjacent via conductors 150, and the ground electrode 142 can function as a slot antenna.
  • the shielding effect of the plurality of via conductors 150 can be reduced.
  • the characteristics of the antenna module 100 deviate from the desired characteristics. obtain.
  • the distance H1 between the ground electrodes 141 and 142 is a half of the effective wavelength of the high-frequency signal between the ground electrodes 141 and 142 (hereinafter also simply referred to as “effective wavelength”).
  • effective wavelength the effective wavelength of the high-frequency signal between the ground electrodes 141 and 142
  • the ground electrode 141 forming the closed region Slt1 the adjacent two via conductors 150, and the ground electrode 142, a high frequency signal having an effective wavelength resonates and a standing wave is prevented from being generated. That is, since the ground electrode 141, the two adjacent via conductors 150, and the ground electrode 142 can be prevented from functioning as a slot antenna, the characteristics of the antenna module 100 are prevented from deviating from desired characteristics. Can do.
  • the distance W1 between two adjacent via conductors included in the plurality of via conductors 150 is also made smaller than one half of the effective wavelength. By doing so, it is possible to further prevent the ground electrode 141, the two adjacent via conductors 150, and the ground electrode 142 from functioning as a slot antenna, so that the characteristics of the antenna module 100 deviate from the desired characteristics. This can be further suppressed.
  • the thickness H2 of the RFIC 190 is set to 100 ⁇ m or more so that the RFIC 190 is not destroyed in the manufacturing process of the antenna module 100.
  • the RFIC 190 is picked up by a manufacturing machine and moved to an appropriate place. At the time of pickup, the RFIC 190 is subjected to a stress of about 10 N in the thickness direction (Z-axis direction in FIG. 4). Therefore, the RFIC 190 needs to be thick enough to withstand a stress of about 10N.
  • FIG. 5 is a graph showing the results of actual measurement of the relationship between the thickness H2 of the RFIC 190 and the load (withstand load) that can be endured at the thickness H2.
  • the minimum value of the thickness H2 that can withstand a load of 10 N is 70 ⁇ m. Therefore, in the antenna module 100, a design margin Mgn of about 30 ⁇ m is set so that the thickness H2 is set to 100 ⁇ m or more so that the thickness H2 does not become less than 70 ⁇ m even if manufacturing variations occur.
  • the strength of the RFIC 190 is maintained so as not to be destroyed in the manufacturing process of the antenna module 100.
  • the effective wavelength ⁇ g of the high-frequency signal in a specific layer (for example, the mold layer 170 in the first embodiment) between the first ground electrode and the second ground electrode is the free space wavelength (wavelength in vacuum) of the high-frequency signal.
  • ⁇ 0 , the specific dielectric constant ⁇ r of the specific layer, and the relative permeability ⁇ r of the specific layer are expressed by the following formula (1).
  • the antenna module concerning Embodiment 1 it can control that the characteristic of an antenna module deviates from a desired characteristic.
  • FIG. 6 is a cross-sectional view of the antenna module 200 according to the second embodiment.
  • the configuration of the antenna module 200 is a configuration in which the RFIC 190 of the antenna module 100 of FIG. 3 is replaced with the RFIC 290, and a heat radiation electrode 260 and an adhesive layer 280 are added. Since the configuration other than these is the same, the description will not be repeated.
  • the RFIC 290 includes a heat radiation electrode 260.
  • the heat radiation electrode 260 is formed inside the RFIC 290 when the RFIC 290 is manufactured. A part of the heat radiation electrode 260 is exposed to the outside of the RFIC 290 by polishing (grinding).
  • the heat radiating member 120 is fixed to the heat radiating electrode 260 via the adhesive layer 280.
  • the heat of the RFIC 290 is transmitted to the heat radiating member 120 mainly through the heat radiating electrode 260, so that the heat radiation of the RFIC 290 can be efficiently performed.
  • the antenna module according to the second embodiment and the modification it is possible to suppress the characteristic of the antenna module from deviating from a desired characteristic, and to efficiently dissipate heat from the high-frequency element.
  • FIG. 8 is an external perspective view of the antenna module 300 according to the third embodiment.
  • FIG. 9 is a plan view of the antenna module 300 of FIG. 8 from the Z-axis direction.
  • FIG. 10 is a plan view of the antenna module 300 of FIG. 9 from the X-axis direction.
  • the antenna module 300 includes antenna elements 3111 to 3114 (first antenna element), antenna elements 3115 to 3118 (second antenna element), and a heat radiating member 321 (first heat radiating member). ), A heat radiation member 322 (second heat radiation member), a heat sink 323 (third heat radiation member), dielectric layers 331 and 332, a ground electrode 341 (first ground electrode), and a ground electrode 342 (second ground). Electrode), a plurality of via conductors 350, a mold layer 370, a plurality of fixing members 380, an RFIC 391 (first high frequency element), and an RFIC 392 (second high frequency element).
  • the heat sink 323, the dielectric layer 332, the mold layer 370, and the dielectric layer 331 are stacked in this order with the Z-axis direction as the stacking direction. 8 and 10, the mold layer 370 is indicated by a dotted line so that the plurality of via conductors 350 can be easily seen.
  • the ground electrode 341 is disposed on the dielectric layer 331 so as to face the antenna elements 3111 to 3118.
  • the antenna module 300 is a microstrip antenna.
  • the ground electrode 342 is disposed on the dielectric layer 332.
  • the ground electrode 342 is connected to the ground electrode 341 by a plurality of via conductors 350.
  • the distance H31 between the ground electrodes 341 and 342 is smaller than one half of the effective wavelength.
  • the antenna elements 3111 to 3118 are arranged in a matrix in the dielectric layer 331 so as to be opposite to the ground electrode 341 from the plurality of via conductors 350. Specifically, the antenna elements 3111, 3112, 3115, and 3116 are arranged along the Y axis. The antenna elements 3113, 3114, 3117, 3118 are arranged along the Y axis. The antenna elements 3111 and 3113 are arranged along the X axis. The antenna elements 3112 and 3114 are arranged along the X axis. The antenna elements 3115 and 3117 are arranged along the X axis. The antenna elements 3116 and 3118 are arranged along the X axis.
  • the RFIC 391 is disposed on the mold layer 370 so as to be between the ground electrodes 341 and 342.
  • the RFIC 391 is connected to the antenna elements 3111 to 3114 by a power supply line (not shown), and supplies power to the antenna elements 3111 to 3114.
  • the thickness H32 of the RFIC 391 is 100 ⁇ m or more.
  • the RFIC 392 is disposed on the mold layer 370 so as to be between the ground electrodes 341 and 342.
  • the RFIC 392 is connected to the antenna elements 3115 to 3118 through a feed line (not shown) and supplies power to the antenna elements 3115 to 3118.
  • the thickness H33 of the RFIC 392 is 100 ⁇ m or more.
  • the plurality of via conductors 350 are arranged so as to surround the periphery of the RFICs 391 and 392.
  • the plurality of via conductors 350 shield noise from the RFIC 391 and the RFIC 392 from being radiated to the outside.
  • a distance W31 between two adjacent via conductors included in the plurality of via conductors 350 is smaller than a half of the effective wavelength.
  • the heat radiation member 321 is disposed between the RFIC 391 and the ground electrode 342. When viewed in plan from the Z-axis direction, the heat dissipation member 321 overlaps the entire RFIC 391. The heat dissipation member 321 guides the heat of the RFIC 391 to the outside of the antenna module 300. Since metal has a relatively higher thermal conductivity than other materials, it is desirable that the heat dissipation member 321 contain metal.
  • the heat radiation member 322 is disposed between the RFIC 392 and the ground electrode 342. When viewed in plan from the Z-axis direction, the heat dissipation member 322 overlaps the entire RFIC 392. The heat dissipation member 322 guides the heat of the RFIC 392 to the outside of the antenna module 300. Since metal has a relatively higher thermal conductivity than other materials, the heat dissipation member 322 preferably contains metal.
  • the heat sink 323 is fixed to the dielectric layer 332 by a plurality of fixing members 380. When viewed in plan from the Z-axis direction, the heat sink 323 overlaps all of the heat dissipating member 321 and all of the heat dissipating member 322.
  • the heat sink 323 is a heat radiating member common to the heat radiating members 321 and 322, and guides the heat of the heat radiating member 321 and the heat of the 322 to the outside of the antenna module 300.
  • the third heat radiating member may be a part of a housing that houses a plurality of high-frequency elements and a plurality of antenna elements.
  • the antenna module according to Embodiment 3 it is possible to suppress the characteristics of the antenna module from deviating from the desired characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

アンテナモジュールの特性が所望の特性から乖離することを抑制する。アンテナモジュール(100)は、高周波信号を送信および受信する。第1グランド電極(141)および第2グランド電極(142)は、互いに対向して配置されている。複数のビア導体(150)は、第1グランド電極(141)および第2グランド電極(142)を接続する。第1アンテナ素子(1111)は、第1グランド電極(141)に対して、複数のビア導体(150)とは反対側に配置されている。第1高周波素子(190)は、第1グランド電極(141)および第2グランド電極(142)の間に配置されている。第1高周波素子(190)は、第1アンテナ素子(1111)に電力を供給する。第1グランド電極(141)と第2グランド電極(142)との距離は、第1グランド電極(141)と第2グランド電極(142)との間での高周波信号の実効波長の2分の1より短い。

Description

アンテナモジュール
 本発明は、アンテナモジュールに関する。
 従来、高周波素子からの不要な電磁波(ノイズ)が外部へ放射されることを遮蔽するために、高周波素子の周囲に複数のビア導体が形成された高周波モジュールが知られている。たとえば、米国特許第6,815,810号明細書(特許文献1)には、セラミック基板の下部に形成された複合樹脂材料層において、半導体素子(高周波素子)が配置されているとともに、当該半導体素子の周囲に複数の層間接続構造ビアホール(ビア導体)が形成された高周波半導体装置が開示されている。
米国特許第6,815,810号明細書
 特許文献1には、複数のビア導体が、セラミック多層基板の下面に形成された回路パターンと、複合樹脂材料層の下部表面に形成された外部接続用電極とを接続する構成が開示されている。
 回路パターンに含まれる特定電極と外部接続用電極とが2つのビア導体で接続されている場合、特定電極、外部接続用電極、および2つのビア導体によって閉領域(スロット)が形成される。そのため、特定電極、外部接続用電極、および2つのビア導体は、スロットアンテナとして機能し得る。
 高周波素子の周囲に形成された2つのビア導体、および当該2つのビア導体が接続する2つの導体がスロットを形成することによりスロットアンテナとして機能すると、スロットアンテナから外部へ電磁波が放射されるため、高周波素子からのノイズが外部へ放射されることを遮蔽するというビア導体の効果(シールド効果)が減殺され得る。
 アンテナモジュールにおいて、所望の指向性を有する電磁波をアンテナ素子から放射する必要がある場合、意図されていないスロットアンテナが形成されると、アンテナモジュールの特性が所望の特性から乖離し得る。
 本発明は上記のような課題を解決するためになされたものであり、その目的は、アンテナモジュールの特性が所望の特性から乖離することを抑制することである。
 本発明の一実施形態によるアンテナモジュールは、高周波信号を送信および受信する。アンテナモジュールは、第1グランド電極および第2グランド電極と、複数のビア導体と、第1アンテナ素子と、第1高周波素子とを備える。第1グランド電極および第2グランド電極は、互いに対向して配置されている。複数のビア導体は、第1グランド電極および第2グランド電極を接続する。第1アンテナ素子は、第1グランド電極に対して、複数のビア導体とは反対側に配置されている。第1高周波素子は、第1グランド電極および第2グランド電極の間に配置されている。第1高周波素子は、第1アンテナ素子に電力を供給する。第1グランド電極と第2グランド電極との距離は、第1グランド電極と第2グランド電極との間での高周波信号の実効波長の2分の1より短い。
 本発明の一実施形態に係るアンテナモジュールによれば、第1グランド電極と第2グランド電極との距離が第1グランド電極と第2グランド電極との間での高周波信号の実効波長の2分の1より短いことにより、第1グランド電極、複数のビア導体、および第2グランド電極がスロットアンテナとして機能することを抑制することができる。その結果、アンテナモジュールの特性が所望の特性から乖離することを抑制することができる。
アンテナアレイを備える通信装置のブロック図である。 実施の形態1に係るアンテナモジュールの外観斜視図である。 図2のIII-III線断面図である。 図2のアンテナモジュールをX軸方向から平面視した図である。 RFICの厚みと、或る厚みで耐えられる荷重(耐荷重)との関係を実際に測定した結果を示すグラフである。 実施の形態2に係るアンテナモジュールの断面図である。 実施の形態2の変形例に係るアンテナモジュールの断面図である。 実施の形態3に係るアンテナモジュールの外観斜視図である。 図8のアンテナモジュールのZ軸方向から平面視した図である。 図9のアンテナモジュールをX軸方向から平面視した図である。
 以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 [実施の形態1]
 図1は、アンテナアレイ110を備える通信装置1000のブロック図である。通信装置1000は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末、もしくは通信機能を備えたパーソナルコンピュータなどである。
 図1に示されるように、通信装置1000は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC(Baseband Integrated Circuit)900とを備える。アンテナモジュール100は、高周波素子の一例であるRFIC(Radio Frequency Integrated Circuit)900と、アンテナアレイ110とを含む。
 通信装置1000は、BBIC900からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナアレイ110から放射する。通信装置1000は、アンテナアレイ110で受信した高周波信号をダウンコンバートしてBBIC900にて信号処理する。
 アンテナアレイ110は、複数の平板状のアンテナ素子(放射導体)が、規則的に配置されている。図1においては、アンテナアレイ110を構成する複数のアンテナ素子のうち、アンテナ素子1111~1114に対応するRFIC190の構成が示されている。
 RFIC190は、スイッチ31A~31D,33A~33D,37と、パワーアンプ32AT~32DTと、ローノイズアンプ32AR~32DRと、減衰器34A~34Dと、移相器35A~35Dと、信号合成/分波器36と、ミキサ38と、増幅回路39とを備える。
 RFIC190は、たとえば、アンテナアレイ110に含まれる複数のアンテナ素子に対応する回路要素(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、および移相器)を含む1チップの集積回路部品として形成される。あるいは、当該回路要素については、RFIC190とは別に、アンテナ素子毎に1チップの集積回路部品として形成されてもよい。
 高周波信号を受信する場合、スイッチ31A~31D,33A~33Dがローノイズアンプ32AR~32DR側へ切換えられるとともに、スイッチ37が増幅回路39の受信側アンプに接続される。
 アンテナ素子1111~1114で受信された高周波信号は、スイッチ31A~31Dから移相器35A~35Dまでの各信号経路を経由し、信号合成/分波器36で合波され、ミキサ38でダウンコンバートされ、増幅回路39で増幅されてBBIC900へ伝達される。
 高周波信号をアンテナアレイ110から送信する場合には、スイッチ31A~31D,33A~33Dがパワーアンプ32AT~32DT側へ切換えられるとともに、スイッチ37が増幅回路39の送信側アンプに接続される。
 BBIC900から伝達された信号は、増幅回路39で増幅され、ミキサ38でアップコンバートされる。アップコンバートされた高周波信号は、信号合成/分波器36で4分波され、移相器35A~35Dからスイッチ31A~31Dまでの各信号経路を通過してアンテナ素子1111~1114に給電される。各信号経路に配置された移相器35A~35Dの移相度が個別に調整されることにより、アンテナアレイ110の指向性を調整することが可能となる。
 図2は、実施の形態1に係るアンテナモジュール100の外観斜視図である。図3は、図2のIII-III線断面図である。アンテナモジュール100は、高周波信号を送信および受信する。
 図2および図3に示されるように、アンテナモジュール100は、アンテナ素子1111~1114(第1アンテナ素子)と、放熱部材120(第1放熱部材)と、誘電体層130と、グランド電極141(第1グランド電極)と、グランド電極142(第2グランド電極)と、複数のビア導体150と、モールド層170と、RFIC190(第1高周波素子)とを備える。
 グランド電極142、モールド層170、および誘電体層130は、Z軸方向を積層方向として、この順に積層されている。なお、図2においては、複数のビア導体150を見え易くするため、モールド層170を点線で示している。
 グランド電極141は、アンテナ素子1111~1114と対向するように誘電体層130に配置されている。アンテナモジュール100は、マイクロストリップアンテナである。グランド電極141および142は、複数のビア導体150によって接続されている。
 アンテナ素子1111~1114は、グランド電極141に対して、複数のビア導体150とは反対側となるように、誘電体層130において行列状に配置されている。具体的には、アンテナ素子1111,1112は、Y軸に沿って配置されている。アンテナ素子1113,1114は、Y軸に沿って配置されている。アンテナ素子1111,1113は、X軸に沿って配置されている。アンテナ素子1112,1114は、X軸に沿って配置されている。
 RFIC190は、グランド電極141および142の間となるようにモールド層170に配置されている。RFIC190は、不図示の給電ラインによってアンテナ素子1111~1114に接続され、アンテナ素子1111~1114に電力を供給する。
 複数のビア導体150は、RFIC190の周囲を囲むように配置されている。複数のビア導体150は、RFIC190からのノイズが外部へ放射されることを遮蔽する。
 放熱部材120は、RFIC190およびグランド電極142との間に配置されている。Z軸方向から平面視したとき、放熱部材120は、RFIC190の全部と重なっている。放熱部材120は、RFIC190の熱をアンテナモジュール100の外部へ導く。金属は他の物質よりも熱伝導率が比較的高いため、放熱部材120は金属を含んでいることが望ましい。
 図4は、図2のアンテナモジュール100をX軸方向から平面視した図である。図4において、距離H1は、グランド電極141と142との距離を表す。距離W1は、複数のビア導体150に含まれる隣接するビア導体の距離を表す。厚みH2は、RFIC190の厚みを表す。なお、図4においても図2と同様に、複数のビア導体150を見え易くするため、モールド層170を点線で示している。
 図4に示されるように、グランド電極141、隣接する2つのビア導体150、およびグランド電極142によって閉領域Slt1が形成されている。そのため、グランド電極141、隣接する2つのビア導体150、およびグランド電極142は、スロットアンテナとして機能し得る。
 グランド電極141、隣接する2つのビア導体150、およびグランド電極142がスロットアンテナとして機能すると、複数のビア導体150のシールド効果が減殺され得る。
 アンテナモジュール100において、所望の指向性を有する電磁波をアンテナ素子1111~1114から放射する必要がある場合、意図されていないスロットアンテナが形成されると、アンテナモジュール100の特性が所望の特性から乖離し得る。
 そこで、アンテナモジュール100においては、グランド電極141と142との距離H1をグランド電極141と142との間での高周波信号の実効波長(以下では単に「実効波長」ともいう。)の2分の1よりも小さくし、閉領域Slt1を形成するグランド電極141、隣接する2つのビア導体150、およびグランド電極142において、実効波長の高周波信号が共振し、定在波が生じることを抑制する。すなわち、グランド電極141、隣接する2つのビア導体150、およびグランド電極142がスロットアンテナとして機能することを抑制することができるため、アンテナモジュール100の特性が所望の特性から乖離することを抑制することができる。
 さらに、アンテナモジュール100においては、複数のビア導体150に含まれる隣接する2つのビア導体の距離W1も、実効波長の2分の1よりも小さくする。このようにすることで、グランド電極141、隣接する2つのビア導体150、およびグランド電極142がスロットアンテナとして機能することをさらに抑制することができるため、アンテナモジュール100の特性が所望の特性から乖離することをさらに抑制することができる。
 アンテナモジュール100においては、アンテナモジュール100の製造工程においてRFIC190が破壊されないように、RFIC190の厚みH2を100μm以上とする。
 アンテナモジュール100の製造工程において、RFIC190は、製造機械によってピックアップされ、適当な場所に移動される。ピックアップ時にRFIC190には、厚み方向(図4のZ軸方向)に10N程度の応力が負荷される。そのため、RFIC190には、10N程度の応力に耐えられる程度の厚みが必要になる。
 図5は、RFIC190の厚みH2と、厚みH2で耐えられる荷重(耐荷重)との関係を実際に測定した結果を示すグラフである。図5に示されるように、10Nの荷重に耐えられる厚みH2の最小値は、70μmである。そこで、アンテナモジュール100においては、製造バラツキが生じても厚みH2が70μm未満とならないように、30μm程度の設計マージンMgnを設定して、厚みH2を100μm以上とする。厚みH2を100μm以上とすることにより、RFIC190の強度が、アンテナモジュール100の製造工程において破壊されない程度に維持される。
 なお、第1グランド電極と第2グランド電極との間の特定層(たとえば、実施の形態1におけるモールド層170)における高周波信号の実効波長λは、高周波信号の自由空間波長(真空中の波長)λ、特定層の比誘電率ε、および特定層の比透磁率μを用いて、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 以上、実施の形態1に係るアンテナモジュールによれば、アンテナモジュールの特性が所望の特性から乖離することを抑制することができる。
 [実施の形態2]
 実施の形態2においては、高周波素子の放熱電極を用いて、放熱効果を向上させる構成について説明する。
 図6は、実施の形態2に係るアンテナモジュール200の断面図である。アンテナモジュール200の構成は、図3のアンテナモジュール100のRFIC190がRFIC290に置き換えられているとともに、放熱電極260および接着層280が加えられた構成である。これら以外の構成は同様であるため、説明を繰り返さない。
 図6に示されるように、RFIC290は、放熱電極260を含む。放熱電極260は、RFIC290の製造時にRFIC290の内部に形成される。放熱電極260の一部は、研磨加工(グラインド)によってRFIC290の外部に露出される。放熱部材120は、接着層280を介して放熱電極260に固定されている。
 アンテナモジュール200においては、RFIC290の熱が主に放熱電極260を介して放熱部材120に伝達されるため、RFIC290の放熱を効率的に行なうことができる。
 [実施の形態2の変形例]
 実施の形態2においては、高周波素子の放熱電極が放熱部材に固定される場合について説明した。放熱電極は、図7に示される実施の形態2の変形例に係るアンテナモジュール200Aのように、放熱電極260が放熱部材を介さずグランド電極142に直接的に近接あるいは接触していてもよい。
 以上、実施の形態2および変形例に係るアンテナモジュールによれば、アンテナモジュールの特性が所望の特性から乖離することを抑制することができるとともに、高周波素子の放熱を効率的に行なうことができる。
 [実施の形態3]
 実施の形態1および2においては、高周波素子を1つ備えるアンテナモジュールについて説明した。実施の形態3においては、複数の高周波素子を備えるアンテナモジュールについて説明する。
 図8は、実施の形態3に係るアンテナモジュール300の外観斜視図である。図9は、図8のアンテナモジュール300のZ軸方向から平面視した図である。図10は、図9のアンテナモジュール300をX軸方向から平面視した図である。
 図8~図10に示されるように、アンテナモジュール300は、アンテナ素子3111~3114(第1アンテナ素子)と、アンテナ素子3115~3118(第2アンテナ素子)と、放熱部材321(第1放熱部材)と、放熱部材322(第2放熱部材)と、ヒートシンク323(第3放熱部材)と、誘電体層331,332と、グランド電極341(第1グランド電極)と、グランド電極342(第2グランド電極)と、複数のビア導体350と、モールド層370と、複数の固定部材380と、RFIC391(第1高周波素子)と、RFIC392(第2高周波素子)とを備える。
 ヒートシンク323、誘電体層332、モールド層370、および誘電体層331は、Z軸方向を積層方向として、この順に積層されている。なお、図8および図10においては、複数のビア導体350を見え易くするため、モールド層370を点線で示している。
 グランド電極341は、アンテナ素子3111~3118と対向するように誘電体層331に配置されている。アンテナモジュール300は、マイクロストリップアンテナである。
 グランド電極342は、誘電体層332に配置されている。グランド電極342は、複数のビア導体350によってグランド電極341に接続されている。グランド電極341と342との距離H31は、実効波長の2分の1よりも小さい。
 アンテナ素子3111~3118は、グランド電極341に対して、複数のビア導体350とは反対側となるように、誘電体層331において行列状に配置されている。具体的には、アンテナ素子3111,3112,3115,3116は、Y軸に沿って配置されている。アンテナ素子3113,3114,3117,3118は、Y軸に沿って配置されている。アンテナ素子3111,3113は、X軸に沿って配置されている。アンテナ素子3112,3114は、X軸に沿って配置されている。アンテナ素子3115,3117は、X軸に沿って配置されている。アンテナ素子3116,3118は、X軸に沿って配置されている。
 RFIC391は、グランド電極341および342の間となるようにモールド層370に配置されている。RFIC391は、不図示の給電ラインによってアンテナ素子3111~3114に接続され、アンテナ素子3111~3114に電力を供給する。RFIC391の厚みH32は、100μm以上である。
 RFIC392は、グランド電極341および342の間となるようにモールド層370に配置されている。RFIC392は、不図示の給電ラインによってアンテナ素子3115~3118に接続され、アンテナ素子3115~3118に電力を供給する。RFIC392の厚みH33は、100μm以上である。
 複数のビア導体350は、RFIC391および392の周囲を囲むように配置されている。複数のビア導体350は、RFIC391およびRFIC392からのノイズが外部へ放射されることを遮蔽する。複数のビア導体350に含まれる隣接する2つのビア導体の距離W31は、実効波長の2分の1よりも小さい。
 放熱部材321は、RFIC391およびグランド電極342との間に配置されている。Z軸方向から平面視したとき、放熱部材321は、RFIC391の全部と重なっている。放熱部材321は、RFIC391の熱をアンテナモジュール300の外部へ導く。金属は他の物質よりも熱伝導率が比較的高いため、放熱部材321は金属を含んでいることが望ましい。
 放熱部材322は、RFIC392およびグランド電極342との間に配置されている。Z軸方向から平面視したとき、放熱部材322は、RFIC392の全部と重なっている。放熱部材322は、RFIC392の熱をアンテナモジュール300の外部へ導く。金属は他の物質よりも熱伝導率が比較的高いため、放熱部材322は金属を含んでいることが望ましい。
 ヒートシンク323は、複数の固定部材380によって誘電体層332に固定されている。Z軸方向から平面視したとき、ヒートシンク323は、放熱部材321の全部および放熱部材322の全部と重なっている。ヒートシンク323は、放熱部材321および322に共通の放熱部材であり、放熱部材321の熱および322の熱をアンテナモジュール300の外部へ導く。
 なお、実施の形態3においては、複数の高周波素子に共通の第3放熱部材がヒートシンクである場合について説明した。第3放熱部材は、複数の高周波素子および複数のアンテナ素子を収容する筐体の一部であってもよい。
 以上、実施の形態3に係るアンテナモジュールによれば、アンテナモジュールの特性が所望の特性から乖離することを抑制することができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 31A,31D,33A,33D,37 スイッチ、32AR,32DR ローノイズアンプ、32AT,32DT パワーアンプ、34A,34D 減衰器、35A,35D 移相器、36 分波器、38 ミキサ、39 増幅回路、100,200,200A,300 アンテナモジュール、110 アンテナアレイ、120,321,322 放熱部材、130,331,332 誘電体層、141,142,341,342 グランド電極、150,350 ビア導体、170,370 モールド層、260 放熱電極、280 接着層、323 ヒートシンク、380 固定部材、1000 通信装置、1111~1114,3111~3118 アンテナ素子、190,290,391,392 RFIC。

Claims (7)

  1.  高周波信号を送信および受信するためのアンテナモジュールであって、
     互いに対向して配置される第1グランド電極および第2グランド電極と、
     前記第1グランド電極および前記第2グランド電極を接続する複数のビア導体と、
     前記第1グランド電極に対して、前記複数のビア導体とは反対側に配置された第1アンテナ素子と、
     前記第1グランド電極および前記第2グランド電極の間に配置され、前記第1アンテナ素子に電力を供給する第1高周波素子とを備え、
     前記第1グランド電極と前記第2グランド電極との距離は、前記第1グランド電極と前記第2グランド電極との間での前記高周波信号の実効波長の2分の1より短い、アンテナモジュール。
  2.  前記複数のビア導体に含まれる隣接する2つのビア導体の距離は、前記実効波長の2分の1より短い、請求項1に記載のアンテナモジュール。
  3.  前記第1グランド電極の法線方向の前記第1高周波素子の厚みは、100μm以上である、請求項1または2に記載のアンテナモジュール。
  4.  前記第1高周波素子と前記第2グランド電極との間に配置され、前記第1高周波素子の熱を外部へ導く第1放熱部材をさらに備える、請求項1~3のいずれか1項に記載のアンテナモジュール。
  5.  前記第1放熱部材は、金属を含む、請求項4に記載のアンテナモジュール。
  6.  前記第1高周波素子は、前記第1高周波素子の外部に露出する放熱電極を含み、
     前記第1放熱部材は、前記放熱電極に固定されている、請求項4または5に記載のアンテナモジュール。
  7.  前記第1グランド電極に対して、前記複数のビア導体とは反対側に配置された第2アンテナ素子と、
     前記第1グランド電極と前記第2グランド電極との間に配置され、前記第2アンテナ素子に電力を供給する第2高周波素子と、
     前記第2高周波素子と前記第2グランド電極との間に配置され、前記第2高周波素子の熱を外部へ導く第2放熱部材と、
     前記第1放熱部材の熱および前記第2放熱部材の熱を外部へ導く第3放熱部材とをさらに備える、請求項4~6のいずれか1項に記載のアンテナモジュール。
PCT/JP2019/003328 2018-02-28 2019-01-31 アンテナモジュール WO2019167534A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035183 2018-02-28
JP2018035183 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167534A1 true WO2019167534A1 (ja) 2019-09-06

Family

ID=67806082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003328 WO2019167534A1 (ja) 2018-02-28 2019-01-31 アンテナモジュール

Country Status (1)

Country Link
WO (1) WO2019167534A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094312A (ja) * 2003-09-17 2005-04-07 Kyocera Corp アンテナ一体型高周波素子収納用パッケージおよびアンテナ装置
JP2006157066A (ja) * 2006-03-15 2006-06-15 Fujitsu Ltd 高周波パッケージモジュール
WO2014073355A1 (ja) * 2012-11-07 2014-05-15 株式会社村田製作所 アレーアンテナ
JP2015211056A (ja) * 2014-04-24 2015-11-24 日本電気株式会社 電子機器
US20170125895A1 (en) * 2014-08-13 2017-05-04 International Business Machines Corporation Wireless communications package with integrated antennas and air cavity
WO2017222471A1 (en) * 2016-06-24 2017-12-28 Agency For Science, Technology And Research Semiconductor package and method of forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094312A (ja) * 2003-09-17 2005-04-07 Kyocera Corp アンテナ一体型高周波素子収納用パッケージおよびアンテナ装置
JP2006157066A (ja) * 2006-03-15 2006-06-15 Fujitsu Ltd 高周波パッケージモジュール
WO2014073355A1 (ja) * 2012-11-07 2014-05-15 株式会社村田製作所 アレーアンテナ
JP2015211056A (ja) * 2014-04-24 2015-11-24 日本電気株式会社 電子機器
US20170125895A1 (en) * 2014-08-13 2017-05-04 International Business Machines Corporation Wireless communications package with integrated antennas and air cavity
WO2017222471A1 (en) * 2016-06-24 2017-12-28 Agency For Science, Technology And Research Semiconductor package and method of forming the same

Similar Documents

Publication Publication Date Title
US11011843B2 (en) Antenna element, antenna module, and communication apparatus
WO2018173750A1 (ja) アンテナモジュール及び通信装置
US11417940B2 (en) Antenna module and communication device
US11631936B2 (en) Antenna device
JP6881675B2 (ja) アンテナモジュール
US11936123B2 (en) Sub-array antenna, array antenna, antenna module, and communication device
CN111788743B (zh) 天线模块
WO2019163376A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
JP6777273B1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US11539122B2 (en) Antenna module and communication unit provided with the same
US12003012B2 (en) Antenna module
WO2021059738A1 (ja) アンテナモジュールおよびその製造方法、ならびに、集合基板
JPWO2020050341A1 (ja) アンテナ素子、アンテナモジュールおよび通信装置
WO2022138045A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20220216585A1 (en) Antenna module and communication device including the same
WO2022130877A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
US20230188223A1 (en) Communication apparatus
WO2019167534A1 (ja) アンテナモジュール
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
US20200274241A1 (en) Antenna module and antenna device
US20240120663A1 (en) Antenna module, communication device including the same, and method for manufacturing antenna module
US20220384945A1 (en) Antenna module and communication device equipped with the same
US20240106106A1 (en) Antenna module and communication device equipped with the antenna module
WO2023095643A1 (ja) アンテナモジュール、およびそれを搭載した通信装置
US20230411862A1 (en) Antenna module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP