WO2019167508A1 - Lock-up control device and control method for automatic transmission - Google Patents

Lock-up control device and control method for automatic transmission Download PDF

Info

Publication number
WO2019167508A1
WO2019167508A1 PCT/JP2019/002622 JP2019002622W WO2019167508A1 WO 2019167508 A1 WO2019167508 A1 WO 2019167508A1 JP 2019002622 W JP2019002622 W JP 2019002622W WO 2019167508 A1 WO2019167508 A1 WO 2019167508A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
converter
control
target
lockup
Prior art date
Application number
PCT/JP2019/002622
Other languages
French (fr)
Japanese (ja)
Inventor
直泰 池田
旭明 王
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020502872A priority Critical patent/JP6942238B2/en
Publication of WO2019167508A1 publication Critical patent/WO2019167508A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a lockup control device and control method for an automatic transmission mounted on a vehicle.
  • the conventional apparatus has a problem that it is necessary to experience learning control repeatedly until a desired learning value can be acquired as the initial value of the lockup differential pressure. Also, since the initial value of the lock-up differential pressure by learning control is used at the start of coast capacity learning control, the initial differential pressure varies depending on the operating state before the coast capacity learning control starts, and in the start area of coast capacity learning control. There was a problem that the slip amount fluctuated.
  • the present invention has been made paying attention to the above problem, and it is an object of the present invention to maintain stable slip rotation immediately after the start of coast slip control without the need for learning control during coasting.
  • the present invention includes a torque converter, a lock-up clutch, and a transmission controller.
  • the transmission controller calculates the converter torque by feedforward compensation based on the target differential speed and feedback compensation based on the differential speed deviation, and the target lockup torque calculated by subtracting the converter torque from the input torque to the torque converter.
  • a lock-up control unit for executing the obtained slip control.
  • the lockup control unit resets the converter torque feedback compensation amount in the feedback compensation to the initial value and starts the coast slip control when the start condition of the coast slip control is satisfied during the coast running by the accelerator release operation.
  • 1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to an embodiment is applied. It is a shift schedule figure which shows an example of the D range continuously variable transmission schedule used when the continuously variable transmission control in automatic transmission mode is performed by a variator. It is a schematic block diagram which shows the lockup control apparatus of an Example. It is a block block diagram which shows each block which comprises the lockup control part of a CVT control unit. It is a detailed block diagram which shows the target calculation block, torque capacity calculation block, and realization block which comprise a lockup control part. It is a flowchart which shows the flow of the coast slip control process performed in the lockup control part of the CVT control unit of an Example.
  • Accelerator opening APO, target differential rotation, idle switch Idle SW, fuel cut flag F / C flag, coast slip request, LU torque, LU command differential pressure, turbine in coast slip control executed during coast running in the embodiment 5 is a time chart showing characteristics of a rotational speed Nt and an engine rotational speed Ne.
  • the lockup control device in the embodiment is applied to an engine vehicle equipped with a belt-type continuously variable transmission (an example of an automatic transmission) configured by a torque converter, a forward / reverse switching mechanism, a variator, and a final reduction mechanism.
  • a belt-type continuously variable transmission an example of an automatic transmission
  • the configuration of the embodiment is divided into “the overall system configuration”, “the configuration of the lockup control device”, “the detailed configuration such as the torque capacity calculation block”, “the coast slip control processing configuration”, “the lockup clutch torque capacity control processing”.
  • the description will be divided into “configuration”.
  • FIG. 1 shows a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to an embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6. Yes.
  • the belt type continuously variable transmission CVT is configured by incorporating the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5 in a transmission case (not shown).
  • the engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver.
  • the engine 1 includes an output torque control actuator 10 that performs torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like. For example, fuel cut control is executed during coasting by an accelerator release operation.
  • the torque converter 2 is a starting element by a fluid coupling having a torque increasing function and a torque fluctuation absorbing function.
  • the torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements.
  • the pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22.
  • the turbine runner 24 is connected to the torque converter output shaft 21.
  • the stator 26 is provided in the transmission case via the one-way clutch 25.
  • the forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates.
  • the forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected.
  • the reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected.
  • the forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
  • the variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and continuously changes the transmission gear ratio (ratio of variator input rotation to variator output rotation) by changing the belt contact diameter.
  • a gear shifting function is provided.
  • the primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45.
  • the secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b arranged on the same axis as the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46.
  • the pulley belt 44 is stretched around a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43.
  • the pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements.
  • the pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
  • the final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the final speed reduction mechanism 5 is a speed reduction gear mechanism that includes an output gear 52 provided on the variator output shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on the outer peripheral position of the differential case. And a gear 55.
  • the differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
  • the engine vehicle control system includes a hydraulic control unit 7, a CVT control unit 8, and an engine control unit 9.
  • the CVT control unit 8 and the engine control unit 9 which are electronic control systems are connected by a CAN communication line 13 which can exchange information with each other.
  • the hydraulic control unit 7 performs primary pressure Ppri guided to the primary pressure chamber 45, secondary pressure Psec guided to the secondary pressure chamber 46, forward clutch pressure Pfc to the forward clutch 31, reverse brake pressure Prb to the reverse brake 32, and the like. It is a unit that regulates pressure.
  • the hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. .
  • the hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76. Each solenoid valve 72, 73, 74, 75, 76 performs a pressure adjustment operation according to a control command value (indicated current) output from the CVT control unit 8.
  • the line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL according to the line pressure command value output from the CVT control unit 8.
  • the line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
  • the primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure in accordance with the primary pressure command value output from the CVT control unit 8.
  • the secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
  • the select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the reverse brake pressure Prb commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value or the reverse brake pressure command value output from the CVT control unit 8. To do.
  • the lock-up pressure solenoid valve 76 adjusts to a lock-up hydraulic pressure Plu for engaging / slipping / releasing the lock-up clutch 20 according to the command current Alu output from the CVT control unit 8.
  • the CVT control unit 8 performs line pressure control, shift control, forward / reverse switching control, lockup control, and the like.
  • line pressure control a command value for obtaining a target line pressure corresponding to the accelerator opening is output to the line pressure solenoid valve 72.
  • shift control when the target gear ratio (target primary rotation Npri * ) is determined, a command value for obtaining the determined target gear ratio (target primary rotation Npri * ) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74.
  • the forward / reverse switching control a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position.
  • lockup control the command current Alu for controlling the lockup hydraulic pressure Plu for engaging / slipping / releasing the lockup clutch 20 is output to the lockup pressure solenoid valve 76.
  • the CVT control unit 8 includes a primary rotation sensor 90, a vehicle speed sensor 91, a secondary pressure sensor 92, an oil temperature sensor 93, an inhibitor switch 94, a brake switch 95, a turbine rotation sensor 96, a secondary rotation sensor 97, a primary pressure sensor 98, and the like. Sensor information and switch information are input.
  • the engine control unit 9 receives sensor information from the engine rotation sensor 12, accelerator opening sensor 14, and the like.
  • the CVT control unit 8 requests the engine control information and the accelerator opening information to the engine control unit 9, the CVT control unit 8 receives information on the engine speed Ne and the accelerator opening APO via the CAN communication line 13. Further, when requesting engine torque information to the engine control unit 9, information on the actual engine torque Te estimated in the engine control unit 9 is received via the CAN communication line 13.
  • FIG. 2 shows an example of the D range continuously variable transmission schedule used when the variator 4 executes the continuously variable transmission control in the automatic transmission mode when the D range is selected.
  • the “D range shift mode” is an automatic shift mode in which the gear ratio is automatically changed steplessly in accordance with the vehicle operating state.
  • the shift control in the “D range shift mode” is performed by operating points on the D range continuously variable shift schedule of FIG. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14) ( VSP, APO) determines the target primary rotational speed Npri * . Then, the pulley primary pressure control is performed so that the actual primary rotational speed Npri from the primary rotational sensor 90 matches the target primary rotational speed Npri * .
  • the D range continuously variable transmission schedule used in the “D range speed change mode” has a gear ratio range of the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO).
  • the gear ratio is set to change steplessly. For example, when the vehicle speed VSP is constant, and shifting the downshift direction to perform the increased target primary rotation speed Npri * the accelerator depression operation, the target primary rotation speed Npri * decreases Doing accelerator return operation up Shift in the shift direction.
  • the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases.
  • FIG. 3 shows the lock-up control device of the embodiment.
  • lockup is abbreviated as “LU”
  • feedforward is abbreviated as “F / F”
  • feedback is abbreviated as “F / B”.
  • the drive system to which the lockup control device is applied includes an engine 1 (driving drive source), a torque converter 2 having a lockup clutch 20, a forward / reverse switching mechanism 3, and a variator 4.
  • the final reduction mechanism 5 and the drive wheels 6 are provided.
  • the control system to which the lockup control device is applied includes a CVT control unit 8, an engine control unit 9, and a lockup pressure solenoid valve 76.
  • the CVT control unit 8 is provided with a lockup control unit 80 that changes the clutch state of the lockup clutch 20 to the engaged state / slip engaged state / released state according to various requests.
  • the lockup control in the lockup control unit 80 estimates the target driving force Fd * intended by the driver, and locks up the clutch so that the actual driving force Fd output to the driving wheels 6 becomes the target driving force Fd *. 20 slip control is performed. At this time, the target driving force Fd * is converted into the target engine speed Ne * in order to improve the controllability in the slip control.
  • the converter torque Tcnv is calculated by executing control (F / F control + F / B control) for converging the actual engine speed Ne to the target engine speed Ne * . Then, as shown in FIG.
  • Tadj Tcnv + Tlu relationship that holds, calculates a target LU torque TLU of the lockup clutch 20 *, the target LU torque TLU * the obtained command current Alu lockup pressure solenoid valve 76 Output to.
  • the target driving force Fd * intended by the driver can be realized during the slip control of the lockup clutch 20. Can do.
  • FIG. 4 shows each block constituting the lockup control unit 80 of the CVT control unit 8.
  • the block configuration of the lockup control unit 80 will be described with reference to FIG.
  • the lockup control unit 80 includes a driving force demand block 81, a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85, as shown in FIG.
  • the driving force demand block 81 calculates the target driving force Fd * based on the accelerator opening APO and the vehicle speed VSP, and converts the target driving force Fd * into the target engine speed Ne * using the engine overall performance characteristics.
  • the profile of the target engine speed Ne * is calculated.
  • the engagement request flag is output when the profile of the target engine speed Ne * is realized by the clutch slip control.
  • a release request flag is output when a profile of the target engine speed Ne * is realized by clutch slip control.
  • the request arbitration block 82 receives the engagement request flag and the release request flag from the driving force demand block 81, calculates a lockup request from various requests, and arbitrates the request to determine the priority.
  • Various requirements include basic requirements, DP requirements (DP stands for Driving pleasure), drivability requirements, protection requirements, FS requirements (FS stands for Fail Safe), technical limit requirements, other system requirements, coast slip requirements, Etc.
  • the target calculation block 83 inputs the immediate release request flag, the release request flag, the slip request flag, and the engagement request flag from the request arbitration block 82, and calculates the target differential rotation speed ⁇ N * as a differential rotation target from these LU requests. .
  • the target differential rotation target or the release differential rotation target is calculated in the target calculation block 83, the target engine speed Ne * calculated by the driving force demand block 81 is input.
  • a preset target slip characteristic is used for the immediate release differential rotation target and the slip differential rotation target.
  • the torque capacity calculation block 84 inputs the target differential rotation speed ⁇ N * , the prefetch turbine rotation speed Ntpre, the actual engine rotation speed Ne, and the like from the target calculation block 83. Then, the command torque (target LU torque Tlu * ) for realizing the target differential rotation speed ⁇ N * is calculated by calculating the corrected engine torque Tadj and the converter torque Tcnv (F / F control + F / B control).
  • the realization block 85 receives the target LU torque Tlu * from the torque capacity calculation block 84, converts the target lockup torque Tlu * into the lockup hydraulic pressure Plu, and further converts the lockup hydraulic pressure Plu into the command current Alu.
  • each function of the coast capacity learning control arranged in the realization block 85 is changed to a request arbitration block 82, a target calculation block 83, and a torque capacity calculation block 84. And rearranged. That is, the coast slip request function is arranged in the request arbitration block 82.
  • the torque capacity calculation block 84 is provided with a torque capacity control function of the lockup clutch 20 based on the target differential rotation speed ⁇ N * in the coast slip control.
  • the previous converter torque F / B compensation calculation value Tcnv_fb (c) is reset to the initial value.
  • FIG. 5 shows a target calculation block 83, a torque capacity calculation block 84, and a realization block 85 that constitute the lockup control unit 80.
  • the detailed configuration of each of the blocks 83, 84, and 85 will be described below with reference to FIG.
  • the target calculation block 83 includes a pre-read turbine rotational speed calculator 83a and a first subtractor 83b.
  • the prefetch turbine rotational speed calculator 83a inputs the prefetch speed ratio of the variator 4 and the secondary rotational speed Nsec from the secondary rotational sensor 97, and calculates the prefetch turbine rotational speed Ntpre that compensates for the hydraulic response delay in the lockup hydraulic control.
  • the look-ahead gear ratio of the variator 4 is a gear ratio that is estimated to be reached when the hydraulic response delay time elapses, using the gear ratio, the speed ratio progress speed, and the hydraulic response delay time at that time.
  • the first subtractor 83b calculates the target differential rotation speed ⁇ N * based on the difference between the target engine speed Ne * calculated by the driving force demand block 81 and the prefetch turbine speed Ntpre calculated by the prefetch turbine speed calculator 83a. To do.
  • the torque capacity calculation block 84 has a look-ahead engine torque calculator 84a, a first adder 84b, a pump load torque calculator 84c, and a second differentiator 84d in the corrected engine torque calculation area 841.
  • the look-ahead engine torque calculator 84a receives the accelerator opening APO and the actual engine speed Ne, and uses a total engine performance map to estimate the look-ahead engine torque estimated to vary from the current engine torque to the hydraulic response delay time. ⁇ Tepre is calculated.
  • the current engine torque is acquired from the current accelerator opening APO, the actual engine speed Ne, and the engine overall performance map.
  • the engine torque ⁇ Tepre for the look-ahead is calculated by using the change rate of the accelerator opening APO and the actual engine speed Ne and the hydraulic response delay time, and the change width (positive or negative) of the engine torque from the current time until the hydraulic response delay time elapses. To do.
  • the first adder 84b calculates the pre-read engine torque Tepre by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ⁇ Tepre from the pre-read engine torque calculator 84a.
  • the pump load torque calculator 84c calculates a pump load torque Top that is a load torque by the oil pump 70 when being rotated by the engine 1.
  • the torque capacity calculation block 84 includes an F / F compensator 84e, a third difference unit 84f, a fourth difference unit 84g, an F / B compensator 84h, a minimum value selector 84i, and a second adder 84j. In the converter torque calculation area 842.
  • the third subtractor 84f inputs the actual engine rotational speed Ne from the engine rotational sensor 12 and the prefetch turbine rotational speed Ntpre calculated by the prefetch turbine rotational speed calculator 83a. Then, the actual differential speed ⁇ N is calculated from the difference between the actual engine speed Ne and the look-ahead turbine speed Ntpre.
  • the F / B compensator 84h receives the difference rotational speed deviation ⁇ from the fourth differentiator 84g and performs PI feedback control on the converter torque F / B compensation calculated value Tcnv_fb (c) corresponding to the differential rotational speed deviation ⁇ . (P: proportional, I: integral).
  • the F / B compensator 84h when there is a coast slip request due to establishment of the coast slip control start condition in the request arbitration block 82, sets the converter torque F / B compensation calculated value Tcnv_fb (c) up to the previous time as an initial value. Reset to.
  • the minimum value selector 84i inputs the converter torque F / B compensation calculated value Tcnv_fb (c) from the F / B compensator 84h and the upper limit torque value Tcnv_max for the converter torque F / B compensation. Then, the converter torque F / B compensation Tcnv_fb is output by selecting the minimum value.
  • the fixed value K is set to be the upper limit torque value Tcnv_max that promotes the increase of the target LU torque Tlu * in the slip engagement scene of the lockup clutch 20.
  • the fixed value K is set to a torque value that is too low, the corrected engine torque Tadj that is the input torque to the torque converter 2 may not be exceeded due to the sum of the converter torque F / F compensation Tcnv_ff and the fixed value K. . That is, the target LU torque Tlu * does not become zero during the slip release scene of the lockup clutch 20, and the lockup clutch 20 cannot be released. Therefore, the fixed value K is a torque value that can exceed the corrected engine torque Tadj, which is the input torque to the torque converter 2, by considering the slip release scene of the lockup clutch 20 and the sum of the fixed value K and the converter torque F / F compensation. Set to the minimum value.
  • the second adder 84j adds the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i to calculate the converter torque Tcnv.
  • the torque capacity calculation block 84 includes a fifth differentiator 84k outside the corrected engine torque calculation area 841 and the converter torque calculation area 842.
  • the fifth subtractor 84k calculates the target LU torque Tlu * by subtracting the corrected engine torque Tadj from the second subtractor 84d and the converter torque Tcnv from the second adder 84j.
  • the realization block 85 includes a torque ⁇ hydraulic converter 85a and a hydraulic ⁇ current converter 85b.
  • the torque ⁇ hydraulic pressure converter 85a converts the target LU torque Tlu * input from the torque capacity calculation block 84 into the LU hydraulic pressure Plu.
  • the hydraulic pressure ⁇ current converter 85b converts the LU hydraulic pressure Plu input from the torque ⁇ hydraulic converter 85a into an instruction current Alu.
  • FIG. 6 shows the flow of the coast slip control process executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment.
  • This process is repeatedly performed in a predetermined control cycle.
  • step S01 following the start, it is determined whether a coast slip control start condition is satisfied. If YES (coast slip control start condition is satisfied), the process proceeds to step S02. If NO (coast slip control start condition is not satisfied), the process proceeds to the end.
  • the coast slip control start condition is determined to be satisfied when a predetermined time has elapsed from the start of the fuel cut control after the accelerator release operation condition is satisfied during traveling and then the fuel cut control of the engine 1 is started.
  • the coast slip control start condition is added with an oil temperature condition that the shift hydraulic fluid temperature is equal to or higher than a predetermined temperature.
  • step S02 following the determination that the coast slip control start condition is satisfied in step S01, the converter torque (FB) is reset, and the process proceeds to step S03.
  • resetting the converter torque means resetting the converter torque F / B compensation calculated value Tcnv_fb (c) calculated so far by the torque capacity control process to the initial value.
  • step S03 the torque capacity control (FIG. 7) of the lockup clutch 20 is executed following the resetting of the converter torque (FB) in step S02 or the determination that the coast slip control termination condition is not satisfied in step S04. Then, the process proceeds to step S04.
  • step S04 following the LU clutch torque capacity control in step S03, it is determined whether a coast slip control end condition is satisfied. If YES (coast slip control end condition is satisfied), the process proceeds to the end. If NO (coast slip control end condition is not satisfied), the process returns to step S03.
  • FIG. 7 shows a flow of lockup clutch torque capacity control processing executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment.
  • FIG. 7 shows a flow of lockup clutch torque capacity control processing executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment.
  • This process is repeatedly performed in a predetermined control cycle.
  • step S1 following the start, the pre-reading turbine rotational speed Ntpre is calculated, and the process proceeds to step S2.
  • the look-ahead turbine speed Ntpre is the turbine speed that compensates for the hydraulic response delay in the lock-up hydraulic control.
  • the prefetch turbine rotational speed Ntpre is calculated in the prefetch turbine rotational speed calculator 83 a based on the prefetch speed ratio of the variator 4 and the secondary rotational speed Nsec from the secondary rotation sensor 97.
  • step S2 following the calculation of the pre-reading turbine rotational speed Ntpre in step S1, a pre-reading engine torque Tepre is calculated, and the process proceeds to step S3.
  • the look-ahead engine torque Tepre is an engine torque that compensates for the hydraulic response delay in the lockup hydraulic control.
  • the pre-read engine torque Tepre is calculated by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ⁇ Tepre in the pre-read engine torque calculator 84a and the first adder 84b.
  • step S3 following the calculation of the pre-reading engine torque Tepre in step S2, a corrected engine torque Tadj is calculated, and the process proceeds to step S4.
  • the corrected engine torque Tadj is an engine torque input to the torque converter 2.
  • the corrected engine torque Tadj is calculated in the second subtractor 84d by the difference between the pre-read engine torque Tepre and the pump load torque Top.
  • step S4 subsequent to the calculation of the correction engine torque Tadj in step S3, based on the target rotational speed difference .DELTA.N *, calculates the converter torque F / F compensation min Tcnv_ff in accordance with the target rotational speed difference .DELTA.N *, step S5 Proceed to
  • the first difference unit 83b calculates the difference between the target engine rotation speed Ne * and the pre-read turbine rotation speed Ntpre.
  • step S5 following the calculation of the converter torque F / F compensation amount Tcnv_ff in step S4, the converter torque F / B compensation calculated value Tcnv_fb (c ) And the process proceeds to step S6.
  • the converter torque F / B compensation calculated value Tcnv_fb (c) is reset to the initial value by the converter torque F / B compensation calculated value Tcnv_fb (c) in the F / B compensator 84h. Is started as a converter torque F / B compensation amount that matches the target rotational speed ⁇ N * .
  • the converter torque F / B compensation calculated value Tcnv_fb (c) is calculated by the F / B compensator 84h as the converter torque F / B compensation for causing the actual differential rotational speed ⁇ N to coincide with the target differential rotational speed ⁇ N * .
  • step S6 following the calculation of converter torque F / B compensation calculation value Tcnv_fb (c) in step S5, converter torque F / B compensation calculation value Tcnv_fb (c) is the upper limit of converter torque F / B compensation. It is determined whether the torque value is equal to or less than Tcnv_max. If YES (Tcnv_fb (c) ⁇ Tcnv_max), the process proceeds to step S7. If NO (Tcnv_fb (c)> Tcnv_max), the process proceeds to step S8.
  • step S7 following the determination that Tcnv_fb (c) ⁇ Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the converter torque F / B compensation calculated value Tcnv_fb (c), and the process proceeds to step S9. move on.
  • step S8 following the determination that Tcnv_fb (c)> Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the upper limit torque value Tcnv_max for the converter torque F / B compensation, and the process proceeds to step S9. .
  • the selection of the converter torque F / B compensation Tcnv_fb in steps S6 to S8 is performed in the minimum value selector 84i.
  • step S9 following the setting of the converter torque F / B compensation Tcnv_fb in step S7 or step S8, the converter torque Tcnv is calculated, and the process proceeds to step S10.
  • the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i.
  • step S10 following calculation of converter torque Tcnv in step S9, target LU torque Tlu * is calculated, and the process proceeds to step S11.
  • the target LU torque Tlu * is calculated by subtracting the corrected engine torque Tadj calculated in step S3 and the converter torque Tcnv calculated in step S9 in the fifth differentiator 84k.
  • step S11 following the calculation of the target LU torque Tlu * in step S10, the torque LU pressure converter 85a converts the target LU torque Tlu * into the LU oil pressure Plu, and the process proceeds to step S12.
  • step S12 following the conversion to the LU hydraulic pressure Plu in step S11, the hydraulic pressure ⁇ current converter 85b converts the LU hydraulic pressure Plu to the command current Alu, and the process proceeds to step S13.
  • step S13 following the conversion to the instruction current Alu in step S12, the instruction current Alu is output to the lockup pressure solenoid valve 76, and the process proceeds to the end.
  • FIG. 8 is a time chart showing coast capacity learning control executed during coasting in the comparative example.
  • the coast capacity learning control and its problem in the comparative example will be described below with reference to FIG.
  • coast capacity learning control of the lock-up clutch arranged in the realization block is executed.
  • the previous learning value is set as the initial value of the LU command differential pressure, the coast capacity learning condition is satisfied, and the learning start set is set.
  • the target slip rotation F / B control is started at time t4 when the turbine rotation speed Nt is reduced to the threshold value due to the increase in the volume of the LU command differential pressure by the F / F control from time t3.
  • the convergence learning control to the target slip rotation speed is started. Then, at time t6 when the actual slip rotation speed is equal to or less than the threshold value and the slip convergence condition that the predetermined time elapses is satisfied, the convergence learning control is terminated, and the LU instruction differential pressure at time t6 is used as a learning value to be used next time Is updated.
  • the coast capacity learning control is repeatedly experienced until a desired learning value can be acquired as the initial value of the LU instruction differential pressure when starting the coast capacity learning control.
  • the LU instruction differential pressure learning value by learning is used as the initial value at the start of coast capacity learning control. For this reason, the initial differential pressure varies depending on the operating state before the coast capacity learning control is started, and the slip amount varies in the start area of the coast capacity learning control (the target slip rotation F / B control area or the like).
  • the lockup capacity corresponding to the coast torque is a physical quantity unique to the hardware, and therefore, the learning control is based on the coast driving experience. Since learning control needs to detect a physical quantity, the coast capacity learning function is arranged in a realization block (hardware specific function).
  • StepA verifies whether the requirements for coast slip control and coast capacity learning control are the same. The reason is that if the function of the same request is implemented, it can do what it wants.
  • Step B if the request is the same, verify whether the mechanism (solution principle) of both controls is the same. The reason is that the same requirements can be satisfied if the solution principle is the same.
  • StepC if the requirements and principles are the same, we will examine whether this function can ensure the same performance as coast capacity learning. The reason is that if the principle is really the same, the control result should be the same.
  • StepD if the requirements and principles are the same, and equivalent performance can be secured or there is a prospect of achievement, the function can be replaced.
  • StepE if the requirements for coast slip control and coast capacity learning are different, the principle is different, or equivalent performance can be secured or there is no prospect of achieving it, the function cannot be replaced.
  • Step B Verify whether the principles of Coast slip control and coast capacity learning control in Step B are the same.
  • the mechanism of both controls is to make a differential pressure value that can stably maintain a minute slip rotation.
  • the F / B control in the torque capacity calculation block 84 in the coast slip control after the LU reconstruction is to control the hydraulic pressure so as to maintain the differential rotation, and has the same principle as the coast capacity learning control. . From the above verification, it was confirmed that the principles of coast slip control and coast capacity learning control are the same.
  • StepC It is verified whether the coast slip control of StepC can secure the same performance as the coast capacity learning control. For this, it was confirmed from the experimental data of the single-plate LU clutch that coast slip control itself was possible and that release responsiveness in coast slip control during sudden deceleration (0.6G deceleration) could be secured. It was done. And since it is a multi-plate LU clutch, coast slip control is not impossible. From the above verification, it was confirmed from the experimental data that there is a possibility of achieving the same performance as the coast capacity learning control performance by the coast slip control.
  • This verification method proceeds from Step A ⁇ Step B ⁇ Step C ⁇ Step D in the flowchart of FIG. 9 and obtained a verification result that coast capacity learning control can be replaced with coast slip control.
  • the initial value for the converter torque F / B compensation is reset and the coast slip control is performed. Be started. As a result, it is possible to maintain a stable slip rotation immediately after the start of the coast slip control without performing learning control during coasting.
  • step S02 the converter torque F / B compensation calculated value Tcnv_fb (c) calculated up to the previous time by the torque capacity control process is reset to the initial value. That is, the converter torque F / B compensation calculated value Tcnv_fb (c) including the integral term is reset and the coast slip control is started.
  • step S03 torque capacity control (FIG. 7) of the lockup clutch 20 in coast slip control is executed.
  • the converter torque F / B compensation calculation value Tcnv_fb (c) is calculated as the converter torque F / B compensation for making the actual differential rotation speed ⁇ N coincide with the target differential rotation speed ⁇ N *.
  • step S04 the process proceeds to the end, and the coast slip control is ended.
  • coast slip control is started at time t4. That is, a coast slip request is output at time t4, the target differential rotation speed in coast slip control is set, and the LU torque is slightly increased by increasing the volume of the LU command differential pressure by F / F control.
  • a section from time t4 to time t5 until the coast slip end condition is satisfied is a coast slip control section.
  • the capacity of the LU command differential pressure is controlled by F / F compensation and F / B compensation for converging the actual differential rotational speed ⁇ N to the target differential rotational speed ⁇ N * in the coast slip control.
  • the torque converter 2, the lockup clutch 20, and the transmission controller (CVT control unit 8) are provided.
  • the torque converter 2 is interposed between the travel drive source (engine 1) and the speed change mechanism (variator 4).
  • the lock-up clutch 20 is provided in the torque converter 2 and directly connects the torque converter input shaft and the torque converter output shaft by fastening.
  • the transmission controller (CVT control unit 8) controls the engagement / slip / release of the lock-up clutch 20.
  • the transmission controller (CVT control unit 8) calculates the converter torque Tcnv by feedforward compensation based on the target differential rotational speed ⁇ N * and feedback compensation based on the differential rotational speed deviation ⁇ , and the input torque (correction engine) to the torque converter 2 is calculated.
  • a lockup control unit 80 is provided that performs slip control to obtain a target lockup torque Tlu * calculated by subtracting the converter torque Tcnv from the torque Tadj).
  • the lockup control unit 80 resets the converter torque F / B compensation in the feedback compensation to the initial value and starts the coast slip control when the start condition of the coast slip control is satisfied during the coast traveling by the accelerator release operation. .
  • the initial value for the converter torque F / B compensation it is not necessary to perform learning control during coast driving, and stable slip rotation is maintained immediately after the start of coast slip control. be able to.
  • the influence on the coast slip control due to the torque value for the converter torque F / B compensation by the previous integral term is eliminated. .
  • the driving source for traveling is the engine 1.
  • the lockup control unit 80 starts the fuel cut control of the engine 1 after the accelerator foot release operation condition is satisfied during traveling, and the coast slip control start condition is satisfied when a predetermined time elapses from the start of the fuel cut control.
  • coast slip control that converges to an appropriate slip amount with good response immediately after the start of control can be executed.
  • the lockup control unit 80 sets the target differential rotation speed ⁇ N * due to a small slip rotation of a constant value, and calculates the converter torque F / B compensation calculated value Tcnv_fb up to the previous time. (c) is reset to the initial value.
  • the slip of the lock-up clutch 20 is made early as in the coast capacity learning control. Can be controlled.
  • the lockup control unit 80 includes a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85.
  • the functions of the coast capacity learning control that have been arranged in the realization block 85 are rearranged in the request arbitration block 82, the target calculation block 83, and the torque capacity calculation block 84. In this way, by relocating each function of the coast capacity learning control that has been arranged in the realization block 85, the lockup control unit 80 can change the coast lockup control without changing the basic configuration of the lockup control unit 80. Can be incorporated.
  • the lockup control unit 80 includes the drive force demand block 81 that converts the target drive force Fd * into the target engine speed Ne * is shown.
  • the lock-up control unit may not be provided with a driving force demand block, and may be an example in which slip control is performed by giving a target slip rotation speed characteristic.
  • the lockup control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission.
  • the lock-up control device of the present invention may be applied to a vehicle equipped with a stepped transmission called step AT or a vehicle equipped with a continuously variable transmission with a sub-transmission as an automatic transmission.
  • the applied vehicle is not limited to an engine vehicle, and can be applied to a hybrid vehicle in which an engine and a motor are mounted on a traveling drive source, an electric vehicle in which a motor is mounted on a traveling drive source, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A belt-type continuously variable transmission (CVT) is provided with a torque converter (2), a lock-up clutch (20), and a CVT control unit (8). A lock-up control unit (80) calculates a converter torque (Tcnv) through feed forward compensation based on a target differential rotation speed (ΔN*) and feedback compensation based on differential rotation speed deviation (δ), obtains a target LU torque (Tlu*) by subtracting the converter torque (Tcnv) from an adjusted engine torque (Tadj) inputted to the torque converter (2), and outputs the corresponding indicated current (Alu). When a start condition for coasting slip control is satisfied during coasting based on an acceleration release operation, the control unit (80) resets the converter torque F/B compensation amount to an initial value, and starts the coasting slip control.

Description

自動変速機のロックアップ制御装置および制御方法Lockup control device and control method for automatic transmission
 本発明は、車両に搭載される自動変速機のロックアップ制御装置および制御方法に関する。 The present invention relates to a lockup control device and control method for an automatic transmission mounted on a vehicle.
 従来、コースト走行中(=惰性走行中)、ロックアップ差圧の初期値を学習制御により取得しながらコースト容量学習制御を行う自動変速機のロックアップ制御装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, a lockup control device for an automatic transmission that performs coast capacity learning control while acquiring an initial value of a lockup differential pressure by learning control during coasting (= during coasting) is known (for example, Patent Documents). 1).
 上記従来装置にあっては、ロックアップ差圧初期値として所望の学習値が取得できるようになるまでは、学習制御を繰り返し経験する必要がある、という問題があった。また、コースト容量学習制御の開始時に学習制御によるロックアップ差圧の初期値が用いられるため、コースト容量学習制御開始前の運転状態によっては初期差圧がばらつき、コースト容量学習制御の開始域にてスリップ量が変動する、という問題があった。 The conventional apparatus has a problem that it is necessary to experience learning control repeatedly until a desired learning value can be acquired as the initial value of the lockup differential pressure. Also, since the initial value of the lock-up differential pressure by learning control is used at the start of coast capacity learning control, the initial differential pressure varies depending on the operating state before the coast capacity learning control starts, and in the start area of coast capacity learning control. There was a problem that the slip amount fluctuated.
 本発明は、上記問題に着目してなされたもので、コースト走行中、学習制御を行う必要なく、コーストスリップ制御の開始直後から安定したスリップ回転を保持することを目的とする。 The present invention has been made paying attention to the above problem, and it is an object of the present invention to maintain stable slip rotation immediately after the start of coast slip control without the need for learning control during coasting.
特開平9-203462号公報JP-A-9-203462
 本発明は、トルクコンバータと、ロックアップクラッチと、変速機コントローラと、を備える。
 変速機コントローラに、目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを演算し、トルクコンバータへの入力トルクからコンバータトルクを差し引いて演算される目標ロックアップトルクを得るスリップ制御を実行するロックアップ制御部を設ける。
 ロックアップ制御部は、アクセル足離し操作によるコースト走行中、コーストスリップ制御の開始条件が成立すると、フィードバック補償でのコンバータトルクフィードバック補償分を初期値にリセットし、コーストスリップ制御を開始する。
The present invention includes a torque converter, a lock-up clutch, and a transmission controller.
The transmission controller calculates the converter torque by feedforward compensation based on the target differential speed and feedback compensation based on the differential speed deviation, and the target lockup torque calculated by subtracting the converter torque from the input torque to the torque converter. There is provided a lock-up control unit for executing the obtained slip control.
The lockup control unit resets the converter torque feedback compensation amount in the feedback compensation to the initial value and starts the coast slip control when the start condition of the coast slip control is satisfied during the coast running by the accelerator release operation.
 このように、コンバータトルクフィードバック補償分の初期値リセットによりコーストスリップ制御を開始することで、コースト走行中、学習制御を行う必要なく、コーストスリップ制御の開始直後から安定したスリップ回転を保持することができる。 In this way, by starting the coast slip control by resetting the initial value for the converter torque feedback compensation, it is possible to maintain a stable slip rotation immediately after the start of the coast slip control without the need to perform the learning control during the coast running. it can.
実施例の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す全体システム図である。1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to an embodiment is applied. 自動変速モードでの無段変速制御をバリエータにより実行する際に用いられるDレンジ無段変速スケジュールの一例を示す変速スケジュール図である。It is a shift schedule figure which shows an example of the D range continuously variable transmission schedule used when the continuously variable transmission control in automatic transmission mode is performed by a variator. 実施例のロックアップ制御装置を示す概要構成図である。It is a schematic block diagram which shows the lockup control apparatus of an Example. CVTコントロールユニットのロックアップ制御部を構成する各ブロックを示すブロック構成図である。It is a block block diagram which shows each block which comprises the lockup control part of a CVT control unit. ロックアップ制御部を構成する目標算出ブロックとトルク容量演算ブロックと実現ブロックを示す詳細構成図である。It is a detailed block diagram which shows the target calculation block, torque capacity calculation block, and realization block which comprise a lockup control part. 実施例のCVTコントロールユニットのロックアップ制御部にて実行されるコーストスリップ制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the coast slip control process performed in the lockup control part of the CVT control unit of an Example. 実施例のCVTコントロールユニットのロックアップ制御部にて実行されるロックアップクラッチトルク容量制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the lockup clutch torque capacity control processing performed in the lockup control part of the CVT control unit of an Example. 比較例でのコースト走行中に実行されるコースト容量学習制御におけるアクセル開度APO・LU要求・アイドルスイッチIdle SW・フューエルカットフラグF/C flag・学習条件・エンジントルクTe・タービン回転数Nt・エンジン回転数Ne・LU指示差圧の各特性を示すタイムチャートである。Accelerator opening APO, LU requirement, idle switch Idle SW, fuel cut flag F / C flag, learning conditions, engine torque Te, turbine speed Nt, engine in coast capacity learning control executed during coast running in comparative example 4 is a time chart showing characteristics of a rotational speed Ne / LU indicated differential pressure. 比較例でのコースト容量学習制御をコーストスリップ制御に置き換え可能かどうかを検討する際の検討動作の流れを示すフローチャートである。It is a flowchart which shows the flow of examination operation | movement at the time of examining whether coast capacity learning control in a comparative example can be replaced by coast slip control. 実施例でのコースト走行中に実行されるコーストスリップ制御におけるアクセル開度APO・目標差回転・アイドルスイッチIdle SW・フューエルカットフラグF/C flag・コーストスリップ要求・LUトルク・LU指示差圧・タービン回転数Nt・エンジン回転数Neの各特性を示すタイムチャートである。Accelerator opening APO, target differential rotation, idle switch Idle SW, fuel cut flag F / C flag, coast slip request, LU torque, LU command differential pressure, turbine in coast slip control executed during coast running in the embodiment 5 is a time chart showing characteristics of a rotational speed Nt and an engine rotational speed Ne.
 以下、本発明の自動変速機のロックアップ制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。 Hereinafter, a mode for carrying out a lockup control device for an automatic transmission according to the present invention will be described based on an embodiment shown in the drawings.
 実施例におけるロックアップ制御装置は、トルクコンバータと前後進切替機構とバリエータと終減速機構により構成されるベルト式無段変速機(自動変速機の一例)を搭載したエンジン車に適用したものである。以下、実施例の構成を、「全体システム構成」、「ロックアップ制御装置の構成」、「トルク容量演算ブロック等の詳細構成」、「コーストスリップ制御処理構成」、「ロックアップクラッチトルク容量制御処理構成」に分けて説明する。 The lockup control device in the embodiment is applied to an engine vehicle equipped with a belt-type continuously variable transmission (an example of an automatic transmission) configured by a torque converter, a forward / reverse switching mechanism, a variator, and a final reduction mechanism. . Hereinafter, the configuration of the embodiment is divided into “the overall system configuration”, “the configuration of the lockup control device”, “the detailed configuration such as the torque capacity calculation block”, “the coast slip control processing configuration”, “the lockup clutch torque capacity control processing”. The description will be divided into “configuration”.
 [全体システム構成]
 図1は、実施例の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す。以下、図1に基づいて、全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to an embodiment is applied. The overall system configuration will be described below with reference to FIG.
 エンジン車の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6,6と、を備えている。ここで、ベルト式無段変速機CVTは、トルクコンバータ2と前後進切替機構3とバリエータ4と終減速機構5を図外の変速機ケースに内蔵することにより構成される。 As shown in FIG. 1, the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6. Yes. Here, the belt type continuously variable transmission CVT is configured by incorporating the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5 in a transmission case (not shown).
 エンジン1は、ドライバーによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクを制御可能である。このエンジン1は、スロットルバルブ開閉動作や燃料カット動作等によりトルク制御を行う出力トルク制御アクチュエータ10を有する。例えば、アクセル足離し操作によるコースト走行時、燃料カット制御が実行される。 The engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver. The engine 1 includes an output torque control actuator 10 that performs torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like. For example, fuel cut control is executed during coasting by an accelerator release operation.
 トルクコンバータ2は、トルク増大機能やトルク変動吸収機能を有する流体継手による発進要素である。トルクコンバータ2は、トルク増大機能やトルク変動吸収機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、ポンプインペラ23と、タービンランナ24と、ステータ26と、を構成要素とする。ポンプインペラ23は、エンジン出力軸11にコンバータハウジング22を介して連結される。タービンランナ24は、トルクコンバータ出力軸21に連結される。ステータ26は、変速機ケースにワンウェイクラッチ25を介して設けられる。 The torque converter 2 is a starting element by a fluid coupling having a torque increasing function and a torque fluctuation absorbing function. The torque converter 2 has a lock-up clutch 20 that can directly connect the engine output shaft 11 (= torque converter input shaft) and the torque converter output shaft 21 when a torque increasing function and a torque fluctuation absorbing function are not required. The torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements. The pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22. The turbine runner 24 is connected to the torque converter output shaft 21. The stator 26 is provided in the transmission case via the one-way clutch 25.
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数枚のクラッチプレートによる前進クラッチ31と、複数枚のブレーキプレートによる後退ブレーキ32と、を有する。前進クラッチ31は、Dレンジ等の前進走行レンジ選択時に前進クラッチ圧Pfcにより油圧締結される。後退ブレーキ32は、Rレンジ等の後退走行レンジ選択時に後退ブレーキ圧Prbにより油圧締結される。なお、前進クラッチ31と後退ブレーキ32は、Nレンジ(ニュートラルレンジ)の選択時には、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることでいずれも解放される。 The forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel. The forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates. The forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected. The reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected. The forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
 バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、プーリベルト44と、を有し、ベルト接触径の変化により変速比(バリエータ入力回転とバリエータ出力回転の比)を無段階に変化させる無段変速機能を備える。プライマリプーリ42は、バリエータ入力軸40の同軸上に配された固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bはプライマリ圧室45に導かれるプライマリ圧Ppriによりスライド動作する。セカンダリプーリ43は、バリエータ出力軸41の同軸上に配された固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bはセカンダリ圧室46に導かれるセカンダリ圧Psecによりスライド動作する。プーリベルト44は、プライマリプーリ42のV字形状をなすシーブ面と、セカンダリプーリ43のV字形状をなすシーブ面とに掛け渡されている。このプーリベルト44は、環状リングを内から外へ多数重ね合わせた2組の積層リングと、打ち抜き板材により形成され、2組の積層リングに沿って挟み込みにより環状に積層して取り付けられた多数のエレメントにより構成されている。なお、プーリベルト44としては、プーリ進行方向に多数配列したチェーンエレメントを、プーリ軸方向に貫通するピンにより結合したチェーンタイプのベルトであっても良い。 The variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and continuously changes the transmission gear ratio (ratio of variator input rotation to variator output rotation) by changing the belt contact diameter. A gear shifting function is provided. The primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45. The secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b arranged on the same axis as the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46. The pulley belt 44 is stretched around a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43. The pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements. The pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
 終減速機構5は、バリエータ出力軸41からのバリエータ出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、減速ギヤ機構として、バリエータ出力軸41に設けられたアウトプットギヤ52と、アイドラ軸50に設けられたアイドラギヤ53及びリダクションギヤ54と、デフケースの外周位置に設けられたファイナルギヤ55と、を有する。そして、差動ギヤ機構として、左右のドライブ軸51,51に介装されたディファレンシャルギヤ56を有する。 The final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function. The final speed reduction mechanism 5 is a speed reduction gear mechanism that includes an output gear 52 provided on the variator output shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on the outer peripheral position of the differential case. And a gear 55. The differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
 エンジン車の制御系は、図1に示すように、油圧制御ユニット7と、CVTコントロールユニット8と、エンジンコントロールユニット9と、を備えている。電子制御系であるCVTコントロールユニット8とエンジンコントロールユニット9は、互いの情報を交換可能なCAN通信線13により接続されている。 As shown in FIG. 1, the engine vehicle control system includes a hydraulic control unit 7, a CVT control unit 8, and an engine control unit 9. The CVT control unit 8 and the engine control unit 9 which are electronic control systems are connected by a CAN communication line 13 which can exchange information with each other.
 油圧制御ユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppri、セカンダリ圧室46に導かれるセカンダリ圧Psec、前進クラッチ31への前進クラッチ圧Pfc、後退ブレーキ32への後退ブレーキ圧Prb、等を調圧するユニットである。この油圧制御ユニット7は、走行用駆動源であるエンジン1により回転駆動されるオイルポンプ70と、オイルポンプ70からの吐出圧に基づいて各種の制御圧を調圧する油圧制御回路71と、を備える。油圧制御回路71には、ライン圧ソレノイド弁72と、プライマリ圧ソレノイド弁73と、セカンダリ圧ソレノイド弁74と、セレクトソレノイド弁75と、ロックアップ圧ソレノイド弁76と、を有する。なお、各ソレノイド弁72,73,74,75,76は、CVTコントロールユニット8から出力される制御指令値(指示電流)によって調圧動作を行う。 The hydraulic control unit 7 performs primary pressure Ppri guided to the primary pressure chamber 45, secondary pressure Psec guided to the secondary pressure chamber 46, forward clutch pressure Pfc to the forward clutch 31, reverse brake pressure Prb to the reverse brake 32, and the like. It is a unit that regulates pressure. The hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. . The hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76. Each solenoid valve 72, 73, 74, 75, 76 performs a pressure adjustment operation according to a control command value (indicated current) output from the CVT control unit 8.
 ライン圧ソレノイド弁72は、CVTコントロールユニット8から出力されるライン圧指令値に応じ、オイルポンプ70からの吐出圧を、指令されたライン圧PLに調圧する。このライン圧PLは、各種の制御圧を調圧する際の元圧であり、駆動系を伝達するトルクに対してベルト滑りやクラッチ滑りを抑える油圧とされる。 The line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL according to the line pressure command value output from the CVT control unit 8. The line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
 プライマリ圧ソレノイド弁73は、CVTコントロールユニット8から出力されるプライマリ圧指令値に応じ、ライン圧PLを元圧として指令されたプライマリ圧Ppriに減圧調整する。セカンダリ圧ソレノイド弁74は、CVTコントロールユニット8から出力されるセカンダリ圧指令値に応じ、ライン圧PLを元圧として指令されたセカンダリ圧Psecに減圧調整する。 The primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure in accordance with the primary pressure command value output from the CVT control unit 8. The secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
 セレクトソレノイド弁75は、CVTコントロールユニット8から出力される前進クラッチ圧指令値又は後退ブレーキ圧指令値に応じ、ライン圧PLを元圧として指令された前進クラッチ圧Pfc又は後退ブレーキ圧Prbに減圧調整する。 The select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the reverse brake pressure Prb commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value or the reverse brake pressure command value output from the CVT control unit 8. To do.
 ロックアップ圧ソレノイド弁76は、CVTコントロールユニット8から出力される指示電流Aluに応じ、ロックアップクラッチ20を締結/スリップ締結/解放するロックアップ油圧Pluに調圧する。 The lock-up pressure solenoid valve 76 adjusts to a lock-up hydraulic pressure Plu for engaging / slipping / releasing the lock-up clutch 20 according to the command current Alu output from the CVT control unit 8.
 CVTコントロールユニット8は、ライン圧制御や変速制御や前後進切替制御やロックアップ制御、等を行う。ライン圧制御では、アクセル開度等に応じた目標ライン圧を得る指令値をライン圧ソレノイド弁72に出力する。変速制御では、目標変速比(目標プライマリ回転Npri*)を決めると、決めた目標変速比(目標プライマリ回転Npri*)を得る指令値をプライマリ圧ソレノイド弁73及びセカンダリ圧ソレノイド弁74に出力する。前後進切替制御では、選択されているレンジ位置に応じて前進クラッチ31と後退ブレーキ32の締結/解放を制御する指令値をセレクトソレノイド弁75に出力する。ロックアップ制御では、ロックアップクラッチ20を締結/スリップ締結/解放するロックアップ油圧Pluを制御する指示電流Aluをロックアップ圧ソレノイド弁76に出力する。 The CVT control unit 8 performs line pressure control, shift control, forward / reverse switching control, lockup control, and the like. In the line pressure control, a command value for obtaining a target line pressure corresponding to the accelerator opening is output to the line pressure solenoid valve 72. In the shift control, when the target gear ratio (target primary rotation Npri * ) is determined, a command value for obtaining the determined target gear ratio (target primary rotation Npri * ) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74. In the forward / reverse switching control, a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position. In the lockup control, the command current Alu for controlling the lockup hydraulic pressure Plu for engaging / slipping / releasing the lockup clutch 20 is output to the lockup pressure solenoid valve 76.
 CVTコントロールユニット8には、プライマリ回転センサ90、車速センサ91、セカンダリ圧センサ92、油温センサ93、インヒビタスイッチ94、ブレーキスイッチ95、タービン回転センサ96、セカンダリ回転センサ97、プライマリ圧センサ98、等からのセンサ情報やスイッチ情報が入力される。 The CVT control unit 8 includes a primary rotation sensor 90, a vehicle speed sensor 91, a secondary pressure sensor 92, an oil temperature sensor 93, an inhibitor switch 94, a brake switch 95, a turbine rotation sensor 96, a secondary rotation sensor 97, a primary pressure sensor 98, and the like. Sensor information and switch information are input.
 エンジンコントロールユニット9には、エンジン回転センサ12、アクセル開度センサ14、等からのセンサ情報が入力される。CVTコントロールユニット8は、エンジン回転情報やアクセル開度情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジン回転数Neやアクセル開度APOの情報を受け取る。さらに、エンジントルク情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジンコントロールユニット9において推定演算される実エンジントルクTeの情報を受け取る。 The engine control unit 9 receives sensor information from the engine rotation sensor 12, accelerator opening sensor 14, and the like. When the CVT control unit 8 requests the engine control information and the accelerator opening information to the engine control unit 9, the CVT control unit 8 receives information on the engine speed Ne and the accelerator opening APO via the CAN communication line 13. Further, when requesting engine torque information to the engine control unit 9, information on the actual engine torque Te estimated in the engine control unit 9 is received via the CAN communication line 13.
 図2は、Dレンジ選択時に自動変速モードでの無段変速制御をバリエータ4により実行する際に用いられるDレンジ無段変速スケジュールの一例を示す。 FIG. 2 shows an example of the D range continuously variable transmission schedule used when the variator 4 executes the continuously variable transmission control in the automatic transmission mode when the D range is selected.
 「Dレンジ変速モード」は、車両運転状態に応じて変速比を自動的に無段階に変更する自動変速モードである。「Dレンジ変速モード」での変速制御は、車速VSP(車速センサ91)とアクセル開度APO(アクセル開度センサ14)により特定される図2のDレンジ無段変速スケジュール上での運転点(VSP,APO)により、目標プライマリ回転数Npri*を決める。そして、プライマリ回転センサ90からの実プライマリ回転数Npriを、目標プライマリ回転数Npri*に一致させるプーリ油圧制御により行われる。 The “D range shift mode” is an automatic shift mode in which the gear ratio is automatically changed steplessly in accordance with the vehicle operating state. The shift control in the “D range shift mode” is performed by operating points on the D range continuously variable shift schedule of FIG. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14) ( VSP, APO) determines the target primary rotational speed Npri * . Then, the pulley primary pressure control is performed so that the actual primary rotational speed Npri from the primary rotational sensor 90 matches the target primary rotational speed Npri * .
 即ち、「Dレンジ変速モード」で用いられるDレンジ無段変速スケジュールは、図2に示すように、運転点(VSP,APO)に応じて最Low変速比と最High変速比による変速比幅の範囲内で変速比を無段階に変更するように設定されている。例えば、車速VSPが一定のときは、アクセル踏み込み操作を行うと目標プライマリ回転数Npri*が上昇してダウンシフト方向に変速し、アクセル戻し操作を行うと目標プライマリ回転数Npri*が低下してアップシフト方向に変速する。アクセル開度APOが一定のときは、車速VSPが上昇するとアップシフト方向に変速し、車速VSPが低下するとダウンシフト方向に変速する。 That is, as shown in FIG. 2, the D range continuously variable transmission schedule used in the “D range speed change mode” has a gear ratio range of the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO). Within the range, the gear ratio is set to change steplessly. For example, when the vehicle speed VSP is constant, and shifting the downshift direction to perform the increased target primary rotation speed Npri * the accelerator depression operation, the target primary rotation speed Npri * decreases Doing accelerator return operation up Shift in the shift direction. When the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases.
 [ロックアップ制御装置の構成]
 図3は、実施例のロックアップ制御装置を示す。以下、図3に基づいてロックアップ制御装置の概要構成を説明する。なお、以下では、ロックアップを“LU”と略称し、フィードフォワードを“F/F”と略称し、フィードバックを“F/B”と略称する。
[Configuration of lock-up control device]
FIG. 3 shows the lock-up control device of the embodiment. Hereinafter, a schematic configuration of the lockup control device will be described with reference to FIG. In the following, lockup is abbreviated as “LU”, feedforward is abbreviated as “F / F”, and feedback is abbreviated as “F / B”.
 ロックアップ制御装置が適用される駆動系は、図3に示すように、エンジン1(走行用駆動源)と、ロックアップクラッチ20を有するトルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6と、を備えている。 As shown in FIG. 3, the drive system to which the lockup control device is applied includes an engine 1 (driving drive source), a torque converter 2 having a lockup clutch 20, a forward / reverse switching mechanism 3, and a variator 4. The final reduction mechanism 5 and the drive wheels 6 are provided.
 ロックアップ制御装置が適用される制御系は、図3に示すように、CVTコントロールユニット8と、エンジンコントロールユニット9と、ロックアップ圧ソレノイド弁76と、を備えている。CVTコントロールユニット8には、ロックアップクラッチ20のクラッチ状態を、様々な要求に応じて締結状態/スリップ締結状態/解放状態とするロックアップ制御部80が設けられている。 As shown in FIG. 3, the control system to which the lockup control device is applied includes a CVT control unit 8, an engine control unit 9, and a lockup pressure solenoid valve 76. The CVT control unit 8 is provided with a lockup control unit 80 that changes the clutch state of the lockup clutch 20 to the engaged state / slip engaged state / released state according to various requests.
 ロックアップ制御部80でのロックアップ制御は、運転者の意図する目標駆動力Fd*を推定し、駆動輪6へ出力される実駆動力Fdが目標駆動力Fd*になるようにロックアップクラッチ20のスリップ制御を行う点を特徴とする。その際、スリップ制御におけるコントロール性を高めるために、目標駆動力Fd*を目標エンジン回転数Ne*に変換する。この目標エンジン回転数Ne*に実エンジン回転数Neを収束させる制御(F/F制御+F/B制御)を実行することでコンバータトルクTcnvを演算する。そして、図3に示すように、Tadj=Tcnv+Tluの関係が成り立つことで、ロックアップクラッチ20の目標LUトルクTlu*を算出し、目標LUトルクTlu*を得る指示電流Aluをロックアップ圧ソレノイド弁76に出力する。このように、目標エンジン回転数Ne*を得るようにトルクコンバータ2のトルク比を制御することで、ロックアップクラッチ20のスリップ制御中において、運転者の意図する目標駆動力Fd*を実現することができる。 The lockup control in the lockup control unit 80 estimates the target driving force Fd * intended by the driver, and locks up the clutch so that the actual driving force Fd output to the driving wheels 6 becomes the target driving force Fd *. 20 slip control is performed. At this time, the target driving force Fd * is converted into the target engine speed Ne * in order to improve the controllability in the slip control. The converter torque Tcnv is calculated by executing control (F / F control + F / B control) for converging the actual engine speed Ne to the target engine speed Ne * . Then, as shown in FIG. 3, Tadj = Tcnv + Tlu relationship that holds, calculates a target LU torque TLU of the lockup clutch 20 *, the target LU torque TLU * the obtained command current Alu lockup pressure solenoid valve 76 Output to. In this way, by controlling the torque ratio of the torque converter 2 so as to obtain the target engine speed Ne * , the target driving force Fd * intended by the driver can be realized during the slip control of the lockup clutch 20. Can do.
 図4は、CVTコントロールユニット8のロックアップ制御部80を構成する各ブロックを示す。以下、図4に基づいてロックアップ制御部80のブロック構成を説明する。 FIG. 4 shows each block constituting the lockup control unit 80 of the CVT control unit 8. Hereinafter, the block configuration of the lockup control unit 80 will be described with reference to FIG.
 ロックアップ制御部80は、図4に示すように、駆動力デマンドブロック81と、要求調停ブロック82と、目標算出ブロック83と、トルク容量演算ブロック84と、実現ブロック85と、を有する。 The lockup control unit 80 includes a driving force demand block 81, a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85, as shown in FIG.
 駆動力デマンドブロック81は、アクセル開度APOや車速VSPに基づいて目標駆動力Fd*を演算し、エンジン全性能特性を用いて目標駆動力Fd*を目標エンジン回転数Ne*に変換することで、目標エンジン回転数Ne*のプロファイルを演算する。そして、ロックアップクラッチ20の完全解放中、クラッチスリップ制御により目標エンジン回転数Ne*のプロファイルを実現するときに締結要求フラグを出力する。一方、ロックアップクラッチ20の完全締結中、クラッチスリップ制御により目標エンジン回転数Ne*のプロファイルを実現するときに解放要求フラグを出力する。 The driving force demand block 81 calculates the target driving force Fd * based on the accelerator opening APO and the vehicle speed VSP, and converts the target driving force Fd * into the target engine speed Ne * using the engine overall performance characteristics. The profile of the target engine speed Ne * is calculated. When the lockup clutch 20 is completely released, the engagement request flag is output when the profile of the target engine speed Ne * is realized by the clutch slip control. On the other hand, when the lock-up clutch 20 is completely engaged, a release request flag is output when a profile of the target engine speed Ne * is realized by clutch slip control.
 要求調停ブロック82は、駆動力デマンドブロック81からの締結要求フラグと解放要求フラグを入力し、各種要求からロックアップ要求を演算し、要求を調停して優先順位を決める。各種要求としては、基本要求、DP要求(DPはDriving pleasureの略)、運転性要求、保護要求、FS要求(FSはFail Safeの略)、技術限界要求、ほかのシステム要求、コーストスリップ要求、等がある。 The request arbitration block 82 receives the engagement request flag and the release request flag from the driving force demand block 81, calculates a lockup request from various requests, and arbitrates the request to determine the priority. Various requirements include basic requirements, DP requirements (DP stands for Driving pleasure), drivability requirements, protection requirements, FS requirements (FS stands for Fail Safe), technical limit requirements, other system requirements, coast slip requirements, Etc.
 目標算出ブロック83は、要求調停ブロック82からの即解放要求フラグ・解放要求フラグ・スリップ要求フラグ・締結要求フラグを入力し、これらのLU要求から差回転目標として目標差回転数ΔN*を演算する。この目標算出ブロック83にて締結差回転目標や解放差回転目標を算出するとき、駆動力デマンドブロック81により演算された目標エンジン回転数Ne*を入力する。なお、即解放差回転目標やスリップ差回転目標については、予め設定された目標スリップ特性を用いる。 The target calculation block 83 inputs the immediate release request flag, the release request flag, the slip request flag, and the engagement request flag from the request arbitration block 82, and calculates the target differential rotation speed ΔN * as a differential rotation target from these LU requests. . When the target differential rotation target or the release differential rotation target is calculated in the target calculation block 83, the target engine speed Ne * calculated by the driving force demand block 81 is input. A preset target slip characteristic is used for the immediate release differential rotation target and the slip differential rotation target.
 トルク容量演算ブロック84は、目標算出ブロック83から目標差回転数ΔN*と先読みタービン回転数Ntpreと実エンジン回転数Ne等を入力する。そして、補正エンジントルクTadjの演算とコンバータトルクTcnvの演算(F/F制御+F/B制御)により、目標差回転数ΔN*を実現する指示トルク(目標LUトルクTlu*)を演算する。 The torque capacity calculation block 84 inputs the target differential rotation speed ΔN * , the prefetch turbine rotation speed Ntpre, the actual engine rotation speed Ne, and the like from the target calculation block 83. Then, the command torque (target LU torque Tlu * ) for realizing the target differential rotation speed ΔN * is calculated by calculating the corrected engine torque Tadj and the converter torque Tcnv (F / F control + F / B control).
 実現ブロック85は、トルク容量演算ブロック84から目標LUトルクTlu*を入力し、目標ロックアップトルクTlu*をロックアップ油圧Pluに変換し、さらに、ロックアップ油圧Pluを指示電流Aluに変換する。 The realization block 85 receives the target LU torque Tlu * from the torque capacity calculation block 84, converts the target lockup torque Tlu * into the lockup hydraulic pressure Plu, and further converts the lockup hydraulic pressure Plu into the command current Alu.
 ここで、実施例のコーストスリップ制御は、図4に示すように、実現ブロック85に配置されていたコースト容量学習制御の各機能を、要求調停ブロック82と目標算出ブロック83とトルク容量演算ブロック84とに再配置したものである。つまり、要求調停ブロック82にコーストスリップ要求機能を配置する。目標算出ブロック83にコーストスリップ制御での目標スリップ回転数である目標差回転数ΔN*(=Nt-Ne)の設定機能を配置する。トルク容量演算ブロック84にコーストスリップ制御での目標差回転数ΔN*に基づくロックアップクラッチ20のトルク容量制御機能を配置する。但し、コーストスリップ要求があると、前回までのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。 Here, in the coast slip control of the embodiment, as shown in FIG. 4, each function of the coast capacity learning control arranged in the realization block 85 is changed to a request arbitration block 82, a target calculation block 83, and a torque capacity calculation block 84. And rearranged. That is, the coast slip request function is arranged in the request arbitration block 82. In the target calculation block 83, a function for setting a target differential rotation speed ΔN * (= Nt−Ne), which is a target slip rotation speed in coast slip control, is arranged. The torque capacity calculation block 84 is provided with a torque capacity control function of the lockup clutch 20 based on the target differential rotation speed ΔN * in the coast slip control. However, when there is a coast slip request, the previous converter torque F / B compensation calculation value Tcnv_fb (c) is reset to the initial value.
 [トルク容量演算ブロック等の詳細構成]
 図5は、ロックアップ制御部80を構成する目標算出ブロック83とトルク容量演算ブロック84と実現ブロック85を示す。以下、図5に基づいて各ブロック83,84,85の詳細構成を説明する。
[Detailed configuration of torque capacity calculation block, etc.]
FIG. 5 shows a target calculation block 83, a torque capacity calculation block 84, and a realization block 85 that constitute the lockup control unit 80. The detailed configuration of each of the blocks 83, 84, and 85 will be described below with reference to FIG.
 目標算出ブロック83は、先読みタービン回転数算出器83aと、第1差分器83bと、を有する。 The target calculation block 83 includes a pre-read turbine rotational speed calculator 83a and a first subtractor 83b.
 先読みタービン回転数算出器83aは、バリエータ4の先読み変速比とセカンダリ回転センサ97からのセカンダリ回転数Nsecを入力し、ロックアップ油圧制御での油圧応答遅れ分を補償する先読みタービン回転数Ntpreを算出する。なお、バリエータ4の先読み変速比は、そのときの変速比と変速比進行速度と油圧応答遅れ時間を用い、油圧応答遅れ時間を経過したときに到達するであろうと推定される変速比とする。 The prefetch turbine rotational speed calculator 83a inputs the prefetch speed ratio of the variator 4 and the secondary rotational speed Nsec from the secondary rotational sensor 97, and calculates the prefetch turbine rotational speed Ntpre that compensates for the hydraulic response delay in the lockup hydraulic control. To do. Note that the look-ahead gear ratio of the variator 4 is a gear ratio that is estimated to be reached when the hydraulic response delay time elapses, using the gear ratio, the speed ratio progress speed, and the hydraulic response delay time at that time.
 第1差分器83bは、駆動力デマンドブロック81により算出された目標エンジン回転数Ne*と先読みタービン回転数算出器83aにより算出された先読みタービン回転数Ntpreの差により目標差回転数ΔN*を算出する。 The first subtractor 83b calculates the target differential rotation speed ΔN * based on the difference between the target engine speed Ne * calculated by the driving force demand block 81 and the prefetch turbine speed Ntpre calculated by the prefetch turbine speed calculator 83a. To do.
 トルク容量演算ブロック84は、先読み分エンジントルク算出器84aと、第1加算器84bと、ポンプ負荷トルク算出器84cと、第2差分器84dと、を補正エンジントルク演算エリア841に有する。 The torque capacity calculation block 84 has a look-ahead engine torque calculator 84a, a first adder 84b, a pump load torque calculator 84c, and a second differentiator 84d in the corrected engine torque calculation area 841.
 先読み分エンジントルク算出器84aは、アクセル開度APOと実エンジン回転数Neを入力し、エンジン全性能マップを用いて現時点のエンジントルクから油圧応答遅れ時間までに変動すると推定される先読み分エンジントルクΔTepreを算出する。なお、現時点のエンジントルクは、現時点のアクセル開度APOと実エンジン回転数Neとエンジン全性能マップにより取得される。先読み分エンジントルクΔTepreは、アクセル開度APOや実エンジン回転数Neの変化速度と油圧応答遅れ時間を用い、現時点から油圧応答遅れ時間を経過するまでのエンジントルクの変化幅(正又は負)とする。 The look-ahead engine torque calculator 84a receives the accelerator opening APO and the actual engine speed Ne, and uses a total engine performance map to estimate the look-ahead engine torque estimated to vary from the current engine torque to the hydraulic response delay time. ΔTepre is calculated. The current engine torque is acquired from the current accelerator opening APO, the actual engine speed Ne, and the engine overall performance map. The engine torque ΔTepre for the look-ahead is calculated by using the change rate of the accelerator opening APO and the actual engine speed Ne and the hydraulic response delay time, and the change width (positive or negative) of the engine torque from the current time until the hydraulic response delay time elapses. To do.
 第1加算器84bは、エンジンコントロールユニット9から取得した実エンジントルクTeと先読み分エンジントルク算出器84aからの先読み分エンジントルクΔTepreを加算することで、先読みエンジントルクTepreを算出する。 The first adder 84b calculates the pre-read engine torque Tepre by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ΔTepre from the pre-read engine torque calculator 84a.
 ポンプ負荷トルク算出器84cは、エンジン1により回転駆動されるときのオイルポンプ70による負荷トルクであるポンプ負荷トルクTopを算出する。 The pump load torque calculator 84c calculates a pump load torque Top that is a load torque by the oil pump 70 when being rotated by the engine 1.
 第2差分器84dは、第1加算器84bにより算出された先読みエンジントルクTepreとポンプ負荷トルク算出器84cにより算出されたポンプ負荷トルクTopの差により補正エンジントルクTadj(=Tepre-Top)を算出する。 The second subtractor 84d calculates a corrected engine torque Tadj (= Tepre-Top) based on the difference between the pre-read engine torque Tepre calculated by the first adder 84b and the pump load torque Top calculated by the pump load torque calculator 84c. To do.
 トルク容量演算ブロック84は、F/F補償器84eと、第3差分器84fと、第4差分器84gと、F/B補償器84hと、最小値選択器84iと、第2加算器84jと、をコンバータトルク演算エリア842に有する。 The torque capacity calculation block 84 includes an F / F compensator 84e, a third difference unit 84f, a fourth difference unit 84g, an F / B compensator 84h, a minimum value selector 84i, and a second adder 84j. In the converter torque calculation area 842.
 F/F補償器84eは、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)を入力し、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出する。 The F / F compensator 84e receives the target differential rotational speed ΔN * (= target slip rotational speed) from the first differentiator 83b, and calculates the converter torque F / F compensation Tcnv_ff corresponding to the target differential rotational speed ΔN *. calculate.
 第3差分器84fは、エンジン回転センサ12からの実エンジン回転数Neと、先読みタービン回転数算出器83aにより算出された先読みタービン回転数Ntpreを入力する。そして、実エンジン回転数Neと先読みタービン回転数Ntpreの差により実差回転数ΔNを算出する。 The third subtractor 84f inputs the actual engine rotational speed Ne from the engine rotational sensor 12 and the prefetch turbine rotational speed Ntpre calculated by the prefetch turbine rotational speed calculator 83a. Then, the actual differential speed ΔN is calculated from the difference between the actual engine speed Ne and the look-ahead turbine speed Ntpre.
 第4差分器84gは、第1差分器83bからの目標差回転数ΔN*(=目標スリップ回転数)と、第3差分器84fからの実差回転数ΔN(=実スリップ回転数)を入力する。そして、目標差回転数ΔN*と実差回転数ΔNの差により差回転数偏差δを算出する。 The fourth subtractor 84g receives the target differential rotation speed ΔN * (= target slip rotation speed) from the first subtractor 83b and the actual differential rotation speed ΔN (= actual slip rotation speed) from the third subtractor 84f. To do. Then, a differential rotational speed deviation δ is calculated from the difference between the target differential rotational speed ΔN * and the actual differential rotational speed ΔN.
 F/B補償器84hは、第4差分器84gからの差回転数偏差δを入力し、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を、PIフィードバック制御(P:比例、I:積分)により算出する。このF/B補償器84hは、要求調停ブロック82にてコーストスリップ制御の開始条件の成立によりコーストスリップ要求があると、前回までのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。 The F / B compensator 84h receives the difference rotational speed deviation δ from the fourth differentiator 84g and performs PI feedback control on the converter torque F / B compensation calculated value Tcnv_fb (c) corresponding to the differential rotational speed deviation δ. (P: proportional, I: integral). The F / B compensator 84h, when there is a coast slip request due to establishment of the coast slip control start condition in the request arbitration block 82, sets the converter torque F / B compensation calculated value Tcnv_fb (c) up to the previous time as an initial value. Reset to.
 最小値選択器84iは、F/B補償器84hからのコンバータトルクF/B補償分計算値Tcnv_fb(c)と、コンバータトルクF/B補償分の上限トルク値Tcnv_maxを入力する。そして、最小値選択によりコンバータトルクF/B補償分Tcnv_fbを出力する。 The minimum value selector 84i inputs the converter torque F / B compensation calculated value Tcnv_fb (c) from the F / B compensator 84h and the upper limit torque value Tcnv_max for the converter torque F / B compensation. Then, the converter torque F / B compensation Tcnv_fb is output by selecting the minimum value.
 ここで、コンバータトルクF/B補償分の上限トルク値Tcnv_maxは、
  Tcnv_max=Tadj-Tcnv_ff-K(K:固定値)  …(1)
であらわされる式(1)、つまり、補正エンジントルクTadjとコンバータトルクF/F補償分Tcnv_ffに応じた可変トルク値で与える。なお、固定値Kは、ロックアップクラッチ20のスリップ締結シーンのときに目標LUトルクTlu*の上昇を促す上限トルク値Tcnv_maxになるように設定する。しかし、固定値Kを低過ぎるトルク値に設定した場合、コンバータトルクF/F補償分Tcnv_ffと固定値Kの和により、トルクコンバータ2への入力トルクである補正エンジントルクTadjを超えないことがある。つまり、ロックアップクラッチ20のスリップ解放シーンのときに目標LUトルクTlu*がゼロとはならず、ロックアップクラッチ20を解放することができない。よって、固定値Kは、ロックアップクラッチ20のスリップ解放シーンを考慮し、コンバータトルクF/F補償分との和により、トルクコンバータ2への入力トルクである補正エンジントルクTadjを超え得るトルク値のうち最小域の値に設定する。
Here, the upper limit torque value Tcnv_max for the converter torque F / B compensation is
Tcnv_max = Tadj−Tcnv_ff−K (K: fixed value)… (1)
(1), that is, a variable torque value corresponding to the corrected engine torque Tadj and the converter torque F / F compensation Tcnv_ff. Note that the fixed value K is set to be the upper limit torque value Tcnv_max that promotes the increase of the target LU torque Tlu * in the slip engagement scene of the lockup clutch 20. However, if the fixed value K is set to a torque value that is too low, the corrected engine torque Tadj that is the input torque to the torque converter 2 may not be exceeded due to the sum of the converter torque F / F compensation Tcnv_ff and the fixed value K. . That is, the target LU torque Tlu * does not become zero during the slip release scene of the lockup clutch 20, and the lockup clutch 20 cannot be released. Therefore, the fixed value K is a torque value that can exceed the corrected engine torque Tadj, which is the input torque to the torque converter 2, by considering the slip release scene of the lockup clutch 20 and the sum of the fixed value K and the converter torque F / F compensation. Set to the minimum value.
 第2加算器84jは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算し、コンバータトルクTcnvを算出する。 The second adder 84j adds the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i to calculate the converter torque Tcnv.
 トルク容量演算ブロック84は、補正エンジントルク演算エリア841とコンバータトルク演算エリア842の外部に第5差分器84kを有する。第5差分器84kは、第2差分器84dからの補正エンジントルクTadjと、第2加算器84jからのコンバータトルクTcnvを差し引いて目標LUトルクTlu*を算出する。 The torque capacity calculation block 84 includes a fifth differentiator 84k outside the corrected engine torque calculation area 841 and the converter torque calculation area 842. The fifth subtractor 84k calculates the target LU torque Tlu * by subtracting the corrected engine torque Tadj from the second subtractor 84d and the converter torque Tcnv from the second adder 84j.
 実現ブロック85は、トルク→油圧変換器85aと、油圧→電流変換器85bと、を有する。トルク→油圧変換器85aは、トルク容量演算ブロック84から入力される目標LUトルクTlu*をLU油圧Pluに変換する。油圧→電流変換器85bは、トルク→油圧変換器85aから入力されたLU油圧Pluを指示電流Aluに変換する。 The realization block 85 includes a torque → hydraulic converter 85a and a hydraulic → current converter 85b. The torque → hydraulic pressure converter 85a converts the target LU torque Tlu * input from the torque capacity calculation block 84 into the LU hydraulic pressure Plu. The hydraulic pressure → current converter 85b converts the LU hydraulic pressure Plu input from the torque → hydraulic converter 85a into an instruction current Alu.
 [コーストスリップ制御処理構成]
 図6は、実施例のCVTコントロールユニット8のロックアップ制御部80にて実行されるコーストスリップ制御処理の流れを示す。以下、実施例のコーストスリップ制御処理構成をあらわす図6の各ステップについて説明する。なお、この処理は、所定の制御周期により繰り返し処理動作が行われる。
[Coast slip control processing configuration]
FIG. 6 shows the flow of the coast slip control process executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment. Hereinafter, each step of FIG. 6 showing the coast slip control processing configuration of the embodiment will be described. This process is repeatedly performed in a predetermined control cycle.
 ステップS01では、スタートに続き、コーストスリップ制御開始条件が成立しているか否かを判断する。YES(コーストスリップ制御開始条件成立)の場合はステップS02へ進み、NO(コーストスリップ制御開始条件不成立)の場合はエンドへ進む。 In step S01, following the start, it is determined whether a coast slip control start condition is satisfied. If YES (coast slip control start condition is satisfied), the process proceeds to step S02. If NO (coast slip control start condition is not satisfied), the process proceeds to the end.
 ここで、コーストスリップ制御開始条件は、走行中、アクセル足離し操作条件が成立した後、エンジン1のフューエルカット制御が開始され、フューエルカット制御の開始から所定時間が経過したことで成立と判断する。なお、コーストスリップ制御開始条件には、変速作動油温が所定温度以上という油温条件が付加される。 Here, the coast slip control start condition is determined to be satisfied when a predetermined time has elapsed from the start of the fuel cut control after the accelerator release operation condition is satisfied during traveling and then the fuel cut control of the engine 1 is started. . The coast slip control start condition is added with an oil temperature condition that the shift hydraulic fluid temperature is equal to or higher than a predetermined temperature.
 ステップS02では、ステップS01でのコーストスリップ制御開始条件成立であるとの判断に続き、コンバータトルク(FB)をリセットし、ステップS03へ進む。 In step S02, following the determination that the coast slip control start condition is satisfied in step S01, the converter torque (FB) is reset, and the process proceeds to step S03.
 ここで、コンバータトルク(FB)をリセットするとは、トルク容量制御処理によりそれまで計算されていたコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットすることをいう。 Here, resetting the converter torque (FB) means resetting the converter torque F / B compensation calculated value Tcnv_fb (c) calculated so far by the torque capacity control process to the initial value.
 ステップS03では、ステップS02でのコンバータトルク(FB)のリセット、或いは、ステップS04でのコーストスリップ制御終了条件不成立であるとの判断に続き、ロックアップクラッチ20のトルク容量制御(図7)を実行し、ステップS04へ進む。 In step S03, the torque capacity control (FIG. 7) of the lockup clutch 20 is executed following the resetting of the converter torque (FB) in step S02 or the determination that the coast slip control termination condition is not satisfied in step S04. Then, the process proceeds to step S04.
 ステップS04では、ステップS03でのLUクラッチトルク容量制御に続き、コーストスリップ制御終了条件が成立しているか否かを判断する。YES(コーストスリップ制御終了条件成立)の場合はエンドへ進み、NO(コーストスリップ制御終了条件不成立)の場合はステップS03へ戻る。 In step S04, following the LU clutch torque capacity control in step S03, it is determined whether a coast slip control end condition is satisfied. If YES (coast slip control end condition is satisfied), the process proceeds to the end. If NO (coast slip control end condition is not satisfied), the process returns to step S03.
 [ロックアップクラッチトルク容量制御処理構成]
 図7は、実施例のCVTコントロールユニット8のロックアップ制御部80にて実行されるロックアップクラッチトルク容量制御処理の流れを示す。以下、実施例のロックアップクラッチトルク容量制御処理構成をあらわす図7の各ステップについて説明する。なお、この処理は、所定の制御周期により繰り返し処理動作が行われる。
[Lock-up clutch torque capacity control processing configuration]
FIG. 7 shows a flow of lockup clutch torque capacity control processing executed by the lockup control unit 80 of the CVT control unit 8 of the embodiment. Hereinafter, each step of FIG. 7 showing the lockup clutch torque capacity control processing configuration of the embodiment will be described. This process is repeatedly performed in a predetermined control cycle.
 ステップS1では、スタートに続き、先読みタービン回転数Ntpreを算出し、ステップS2へ進む。 In step S1, following the start, the pre-reading turbine rotational speed Ntpre is calculated, and the process proceeds to step S2.
 ここで、先読みタービン回転数Ntpreとは、ロックアップ油圧制御での油圧応答遅れ分を補償するタービン回転数である。先読みタービン回転数Ntpreは、先読みタービン回転数算出器83aにおいて、バリエータ4の先読み変速比とセカンダリ回転センサ97からのセカンダリ回転数Nsecに基づいて算出される。 Here, the look-ahead turbine speed Ntpre is the turbine speed that compensates for the hydraulic response delay in the lock-up hydraulic control. The prefetch turbine rotational speed Ntpre is calculated in the prefetch turbine rotational speed calculator 83 a based on the prefetch speed ratio of the variator 4 and the secondary rotational speed Nsec from the secondary rotation sensor 97.
 ステップS2では、ステップS1での先読みタービン回転数Ntpreの算出に続き、先読みエンジントルクTepreを算出し、ステップS3へ進む。 In step S2, following the calculation of the pre-reading turbine rotational speed Ntpre in step S1, a pre-reading engine torque Tepre is calculated, and the process proceeds to step S3.
 ここで、先読みエンジントルクTepreとは、ロックアップ油圧制御での油圧応答遅れ分を補償するエンジントルクである。先読みエンジントルクTepreは、先読み分エンジントルク算出器84aと第1加算器84bにおいて、エンジンコントロールユニット9から取得した実エンジントルクTeと先読み分エンジントルクΔTepreを加算することで算出される。 Here, the look-ahead engine torque Tepre is an engine torque that compensates for the hydraulic response delay in the lockup hydraulic control. The pre-read engine torque Tepre is calculated by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ΔTepre in the pre-read engine torque calculator 84a and the first adder 84b.
 ステップS3では、ステップS2での先読みエンジントルクTepreの算出に続き、補正エンジントルクTadjを算出し、ステップS4へ進む。 In step S3, following the calculation of the pre-reading engine torque Tepre in step S2, a corrected engine torque Tadj is calculated, and the process proceeds to step S4.
 ここで、補正エンジントルクTadjとは、トルクコンバータ2に入力されるエンジントルクである。補正エンジントルクTadjは、第2差分器84dにおいて、先読みエンジントルクTepreとポンプ負荷トルクTopの差により算出される。 Here, the corrected engine torque Tadj is an engine torque input to the torque converter 2. The corrected engine torque Tadj is calculated in the second subtractor 84d by the difference between the pre-read engine torque Tepre and the pump load torque Top.
 ステップS4では、ステップS3での補正エンジントルクTadjの算出に続き、目標差回転数ΔN*に基づいて、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出し、ステップS5へ進む。 In step S4, subsequent to the calculation of the correction engine torque Tadj in step S3, based on the target rotational speed difference .DELTA.N *, calculates the converter torque F / F compensation min Tcnv_ff in accordance with the target rotational speed difference .DELTA.N *, step S5 Proceed to
 ここで、「目標差回転数ΔN*」は、コーストスリップ要求の場合、コーストスリップ制御での目標スリップ回転数である目標差回転数ΔN*(=Nt-Ne:例えば、200rpm程度の微小スリップ量)が選択される。目標スリップ回転数が与えられないスリップ要求である場合、第1差分器83bにおいて、目標エンジン回転数Ne*と先読みタービン回転数Ntpreの差により算出される。コンバータトルクF/F補償分Tcnv_ffは、目標差回転数ΔN*(=目標スリップ回転数)を入力するF/F補償器84eにおいて、目標差回転数ΔN*に収束させる
ロックアップトルクのF/F補償分として算出される。
Here, the “target differential rotational speed ΔN * ” is the target differential rotational speed ΔN * (= Nt−Ne: for example, a minute slip amount of about 200 rpm when the coast slip request is made. ) Is selected. In the case of a slip request in which the target slip rotation speed is not given, the first difference unit 83b calculates the difference between the target engine rotation speed Ne * and the pre-read turbine rotation speed Ntpre. The converter torque F / F compensation Tcnv_ff is the F / F of the lockup torque that converges to the target differential rotational speed ΔN * in the F / F compensator 84e that inputs the target differential rotational speed ΔN * (= target slip rotational speed). Calculated as compensation.
 ステップS5では、ステップS4でのコンバータトルクF/F補償分Tcnv_ffの算出に続き、差回転数偏差δに基づいて、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を算出し、ステップS6へ進む。 In step S5, following the calculation of the converter torque F / F compensation amount Tcnv_ff in step S4, the converter torque F / B compensation calculated value Tcnv_fb (c ) And the process proceeds to step S6.
 ここで、「差回転数偏差δ」は、コーストスリップ要求の場合、コーストスリップ制御での目標差回転数ΔN*と実差回転数ΔN(=タービン回転数Nt-エンジン回転数Ne)の差により算出される。そして、コンバータトルクF/B補償分計算値Tcnv_fb(c)は、F/B補償器84hにおいて、コンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットし、実差回転数ΔNを目標差回転数ΔN*に一致させるコンバータトルクF/B補償分として算出が開始される。 Here, the “differential rotational speed deviation δ” is the difference between the target differential rotational speed ΔN * and the actual differential rotational speed ΔN (= turbine rotational speed Nt−engine rotational speed Ne) in coast slip control in the case of coast slip request. Calculated. Then, the converter torque F / B compensation calculated value Tcnv_fb (c) is reset to the initial value by the converter torque F / B compensation calculated value Tcnv_fb (c) in the F / B compensator 84h. Is started as a converter torque F / B compensation amount that matches the target rotational speed ΔN * .
 「差回転数偏差δ」は、目標スリップ回転数が与えられないスリップ要求である場合、第4差分器84gにおいて、第1差分器83bからの目標差回転数ΔN*と、第3差分器84fからの実差回転数ΔN(=エンジン回転数Ne-先読みタービン回転数Ntpre)の差により算出される。コンバータトルクF/B補償分計算値Tcnv_fb(c)は、F/B補償器84hにおいて、実差回転数ΔNを目標差回転数ΔN*に一致させるコンバータトルクF/B補償分として算出される。 The “differential rotational speed deviation δ” is a slip request in which the target slip rotational speed is not given, and in the fourth subtractor 84g, the target differential rotational speed ΔN * from the first subtractor 83b and the third subtractor 84f. Is calculated by the difference between the actual rotational speed ΔN (= engine rotational speed Ne−pre-reading turbine rotational speed Ntpre). The converter torque F / B compensation calculated value Tcnv_fb (c) is calculated by the F / B compensator 84h as the converter torque F / B compensation for causing the actual differential rotational speed ΔN to coincide with the target differential rotational speed ΔN * .
 ステップS6では、ステップS5でのコンバータトルクF/B補償分計算値Tcnv_fb(c)の算出に続き、コンバータトルクF/B補償分計算値Tcnv_fb(c)が、コンバータトルクF/B補償分の上限トルク値Tcnv_max以下であるか否かを判断する。YES(Tcnv_fb(c)≦Tcnv_max)の場合はステップS7へ進み、NO(Tcnv_fb(c)>Tcnv_max)の場合はステップS8へ進む。 In step S6, following the calculation of converter torque F / B compensation calculation value Tcnv_fb (c) in step S5, converter torque F / B compensation calculation value Tcnv_fb (c) is the upper limit of converter torque F / B compensation. It is determined whether the torque value is equal to or less than Tcnv_max. If YES (Tcnv_fb (c) ≦ Tcnv_max), the process proceeds to step S7. If NO (Tcnv_fb (c)> Tcnv_max), the process proceeds to step S8.
 ステップS7では、ステップS6でのTcnv_fb(c)≦Tcnv_maxであるとの判断に続き、コンバータトルクF/B補償分Tcnv_fbを、コンバータトルクF/B補償分計算値Tcnv_fb(c)とし、ステップS9へ進む。 In step S7, following the determination that Tcnv_fb (c) ≦ Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the converter torque F / B compensation calculated value Tcnv_fb (c), and the process proceeds to step S9. move on.
 ステップS8では、ステップS6でのTcnv_fb(c)>Tcnv_maxであるとの判断に続き、コンバータトルクF/B補償分Tcnv_fbを、コンバータトルクF/B補償分の上限トルク値Tcnv_maxとし、ステップS9へ進む。 In step S8, following the determination that Tcnv_fb (c)> Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the upper limit torque value Tcnv_max for the converter torque F / B compensation, and the process proceeds to step S9. .
 ここで、ステップS6~ステップS8によるコンバータトルクF/B補償分Tcnv_fbの選択は、最小値選択器84iにおいて行われる。 Here, the selection of the converter torque F / B compensation Tcnv_fb in steps S6 to S8 is performed in the minimum value selector 84i.
 ステップS9では、ステップS7又はステップS8でのコンバータトルクF/B補償分Tcnv_fbの設定に続き、コンバータトルクTcnvを算出し、ステップS10へ進む。 In step S9, following the setting of the converter torque F / B compensation Tcnv_fb in step S7 or step S8, the converter torque Tcnv is calculated, and the process proceeds to step S10.
 ここで、コンバータトルクTcnvは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと、最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算することで算出される。 Here, the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i.
 ステップS10では、ステップS9でのコンバータトルクTcnvの算出に続き、目標LUトルクTlu*を算出し、ステップS11へ進む。 In step S10, following calculation of converter torque Tcnv in step S9, target LU torque Tlu * is calculated, and the process proceeds to step S11.
 ここで、目標LUトルクTlu*は、第5差分器84kにおいて、ステップS3にて算出された補正エンジントルクTadjと、ステップS9にて算出されたコンバータトルクTcnvを差し引くことで算出する。 Here, the target LU torque Tlu * is calculated by subtracting the corrected engine torque Tadj calculated in step S3 and the converter torque Tcnv calculated in step S9 in the fifth differentiator 84k.
 ステップS11では、ステップS10での目標LUトルクTlu*の算出に続き、トルク→油圧変換器85aにおいて、目標LUトルクTlu*をLU油圧Pluに変換し、ステップS12へ進む。 In step S11, following the calculation of the target LU torque Tlu * in step S10, the torque LU pressure converter 85a converts the target LU torque Tlu * into the LU oil pressure Plu, and the process proceeds to step S12.
 ステップS12では、ステップS11でのLU油圧Pluへの変換に続き、油圧→電流変換器85bにおいて、LU油圧Pluを指示電流Aluに変換し、ステップS13へ進む。 In step S12, following the conversion to the LU hydraulic pressure Plu in step S11, the hydraulic pressure → current converter 85b converts the LU hydraulic pressure Plu to the command current Alu, and the process proceeds to step S13.
 ステップS13では、ステップS12での指示電流Aluへの変換に続き、ロックアップ圧ソレノイド弁76へ指示電流Aluを出力し、エンドへ進む。 In step S13, following the conversion to the instruction current Alu in step S12, the instruction current Alu is output to the lockup pressure solenoid valve 76, and the process proceeds to the end.
 次に、実施例の作用を、「比較例でのコーストスリップ制御とその課題について」、「コースト容量学習制御とコーストスリップ制御の置き換え検討」、「実施例でのコーストスリップ制御作用」に分けて説明する。 Next, the operation of the embodiment is divided into “coast slip control and its problems in the comparative example”, “replacement study of coast capacity learning control and coast slip control”, and “coast slip control operation in the embodiment”. explain.
 [比較例でのコースト容量学習制御とその課題について]
 図8は、比較例でのコースト走行中に実行されるコースト容量学習制御を示すタイムチャートである。以下、図8に基づいて比較例でのコースト容量学習制御とその課題について説明する。なお、比較例は、コースト走行中、実現ブロックに配置されたロックアップクラッチのコースト容量学習制御を実行するものとする。
[Coast capacity learning control and its problem in comparative example]
FIG. 8 is a time chart showing coast capacity learning control executed during coasting in the comparative example. The coast capacity learning control and its problem in the comparative example will be described below with reference to FIG. In the comparative example, during coast running, coast capacity learning control of the lock-up clutch arranged in the realization block is executed.
 この比較例の場合、LUクラッチ締結状態において、図8の時刻t1にてアクセル足離し操作が行われアイドルスイッチがONになると、減速を開始し、エンジントルクTe、エンジン回転数Ne、タービン回転数Ntが低下を開始する。そして、時刻t2にてエンジントルクTeが正から負へと切り替わると、エンジントルクTe、エンジン回転数Ne、タービン回転数Ntの低下勾配が、時刻t2までに比べて緩やかになる。 In the case of this comparative example, when the accelerator release operation is performed at time t1 in FIG. 8 and the idle switch is turned on in the LU clutch engaged state, deceleration starts, and engine torque Te, engine speed Ne, turbine speed Nt begins to decline. Then, when the engine torque Te is switched from positive to negative at time t2, the decreasing gradients of the engine torque Te, the engine speed Ne, and the turbine speed Nt become gentler than before time t2.
 時刻t3にてフューエルカットフラグが立ち、エンジンの燃料供給が停止すると、前回学習値をLU指示差圧の初期値とし、コースト容量学習条件が成立し、学習開始セットとされる。時刻t3からのF/F制御によるLU指示差圧の容量上げによりタービン回転数Ntが閾値まで低下した時刻t4になると、目標スリップ回転F/B制御が開始される。 When the fuel cut flag is set at time t3 and the fuel supply of the engine is stopped, the previous learning value is set as the initial value of the LU command differential pressure, the coast capacity learning condition is satisfied, and the learning start set is set. The target slip rotation F / B control is started at time t4 when the turbine rotation speed Nt is reduced to the threshold value due to the increase in the volume of the LU command differential pressure by the F / F control from time t3.
 時刻t5になり、タービン回転数Ntとエンジン回転数Neとの間の実スリップ回転数が閾値以下になると、目標スリップ回転数への収束学習制御が開始される。そして、実スリップ回転数が閾値以下で所定時間経過というスリップ収束条件が成立する時刻t6になると、収束学習制御を終了し、時刻t6でのLU指示差圧を学習値として、次回に用いる学習値が更新される。 At time t5, when the actual slip rotation speed between the turbine rotation speed Nt and the engine rotation speed Ne falls below the threshold value, the convergence learning control to the target slip rotation speed is started. Then, at time t6 when the actual slip rotation speed is equal to or less than the threshold value and the slip convergence condition that the predetermined time elapses is satisfied, the convergence learning control is terminated, and the LU instruction differential pressure at time t6 is used as a learning value to be used next time Is updated.
 時刻t6からアクセル再踏み込み操作時刻t7までは、時刻t6でのLU指示差圧を保持することで、タービン回転数Ntとエンジン回転数Neとの間の実スリップ回転数として、微小差回転数ΔNを維持するμスリップ制御が実行される。なお、コースト状態でのスリップ差回転は、駆動輪側からの入力になることで、ドライブ状態(Ne>Nt)とは反対にタービン回転数Nt>エンジン回転数Neという関係になる。 From time t6 to accelerator re-depressing operation time t7, by retaining the LU command differential pressure at time t6, the actual slip rotation speed between the turbine rotation speed Nt and the engine rotation speed Ne is a minute difference rotation speed ΔN Μ slip control is performed to maintain the. Note that the slip differential rotation in the coast state becomes an input from the drive wheel side, so that the turbine rotational speed Nt> the engine rotational speed Ne is in a relationship opposite to the drive state (Ne> Nt).
 このように、比較例にあっては、コースト容量学習制御を開始するときのLU指示差圧の初期値として所望の学習値が取得できるようになるまでは、コースト容量学習制御を繰り返して経験する必要がある。また、コースト容量学習制御の開始時に学習によるLU指示差圧学習値が初期値として用いられる。このため、コースト容量学習制御開始前の運転状態によっては初期差圧がばらつき、コースト容量学習制御の開始域(目標スリップ回転F/B制御領域等)にてスリップ量が変動する。 As described above, in the comparative example, the coast capacity learning control is repeatedly experienced until a desired learning value can be acquired as the initial value of the LU instruction differential pressure when starting the coast capacity learning control. There is a need. Also, the LU instruction differential pressure learning value by learning is used as the initial value at the start of coast capacity learning control. For this reason, the initial differential pressure varies depending on the operating state before the coast capacity learning control is started, and the slip amount varies in the start area of the coast capacity learning control (the target slip rotation F / B control area or the like).
 [コースト容量学習制御とコーストスリップ制御の置き換え検討]
 比較例のコースト容量学習制御を実現ブロックに配置する理由について説明する。
 ドライブ状態からコースト状態への切り替え時、ロックアップ容量が過多であるとフューエルカットへの入りショックを生じる。逆に、ロックアップ容量が不足するとエンジン回転の吹け上がりを生じる。よって、コースト時のロックアップ容量は、容量の過不足がないように、コーストトルクに相当するぎりぎりの容量まで下げたいという要求がある。
[Consideration of coast capacity learning control and coast slip control]
The reason why the coast capacity learning control of the comparative example is arranged in the realization block will be described.
When switching from the drive state to the coast state, if the lockup capacity is excessive, a shock to enter the fuel cut occurs. On the contrary, if the lockup capacity is insufficient, the engine speed is increased. Therefore, there is a demand to reduce the lock-up capacity at the time of coasting to a marginal capacity corresponding to the coast torque so that there is no excess or deficiency in capacity.
 このように、コーストトルクに相当するロックアップ容量は、ハードウェア固有の物理量であるため、コースト走行経験に基づく学習制御とする。そして、学習制御では物理量を検知する必要があるため、コースト容量学習機能は実現ブロック(ハードウェア固有機能)に配置される。 As described above, the lockup capacity corresponding to the coast torque is a physical quantity unique to the hardware, and therefore, the learning control is based on the coast driving experience. Since learning control needs to detect a physical quantity, the coast capacity learning function is arranged in a realization block (hardware specific function).
 次に、実現ブロックに配置されているコースト容量学習制御を、各種スリップ制御の一態様という形でコーストスリップ制御に置き換えることが可能かどうかを、図9のフローチャートに基づいて検討する。考え方は、下記の通りである。 Next, it will be examined based on the flowchart of FIG. 9 whether the coast capacity learning control arranged in the realization block can be replaced with the coast slip control in the form of various modes of slip control. The idea is as follows.
 StepAでは、コーストスリップ制御とコースト容量学習制御の要求が同じかどうかを検証する。理由は、同じ要求の機能が実装してあれば、やりたいことができることによる。 StepA verifies whether the requirements for coast slip control and coast capacity learning control are the same. The reason is that if the function of the same request is implemented, it can do what it wants.
 StepBでは、要求が同じであれば、両制御のメカニズム(解決原理)が同じであるかどうかを検証する。理由は、解決原理が同じであれば、同じ要求を満足できることによる。 In Step B, if the request is the same, verify whether the mechanism (solution principle) of both controls is the same. The reason is that the same requirements can be satisfied if the solution principle is the same.
 StepCでは、要求と原理が同じであれば、この機能はコースト容量学習と同等な性能を確保できるかどうかを検討する。理由は、本当に原理が同じであれば、その制御結果は同じはずであることによる。 In StepC, if the requirements and principles are the same, we will examine whether this function can ensure the same performance as coast capacity learning. The reason is that if the principle is really the same, the control result should be the same.
 StepDでは、要求と原理が同じであり、かつ、同等な性能確保できるまたは達成見込みがあれば、機能置き換え可能とする。 In StepD, if the requirements and principles are the same, and equivalent performance can be secured or there is a prospect of achievement, the function can be replaced.
 StepEでは、コーストスリップ制御とコースト容量学習の要求が異なったり、原理が異なったり、同等な性能確保できるまたは達成見込みが無いときは、機能置き換え不可能とする。 In StepE, if the requirements for coast slip control and coast capacity learning are different, the principle is different, or equivalent performance can be secured or there is no prospect of achieving it, the function cannot be replaced.
 StepAのコーストスリップ制御とコースト容量学習制御の要求が同じかどうかを検証する。基本要求は、エンジンストール耐力向上、減速引き込まれ防止、LU解除車速の下げのため、コーストスリップしたい(ぎりぎりのLU容量にしておきたい)という点で同じである。つまり、代表的なシーンである低μ路での急ブレーキシーンにおいては、応答良くLUクラッチを解放してエンジンストールを防止したいという要求がある。制御入り条件と制御抜け条件は、コースト容量学習制御をコーストスリップ制御へ機能移植しても同じである。また、トルク容量演算において目標差回転でスリップコントロールできるので、コーストスリップ制御でもコースト容量学習制御と同じことができるはずである。
 上記検証によって、コーストスリップ制御とコースト容量学習制御について、要求が同じであることを確認できた。
It is verified whether the coast slip control and the coast capacity learning control of Step A are the same. The basic requirements are the same in that you want to perform a coast slip (to keep the LU capacity at the bare limit) to improve engine stall resistance, prevent deceleration from being pulled in, and lower the LU release vehicle speed. That is, in a sudden braking scene on a low μ road, which is a typical scene, there is a demand to release the LU clutch with good response to prevent engine stall. The condition for entering control and the condition for missing control are the same even if the coast capacity learning control is transferred to the coast slip control. In addition, since slip control can be performed by target differential rotation in torque capacity calculation, coast slip control should be able to perform the same as coast capacity learning control.
From the above verification, it was confirmed that the requirements were the same for the coast slip control and the coast capacity learning control.
 StepBのコーストスリップ制御とコースト容量学習制御の原理が同じかどうかを検証する。両制御のメカニズムは、微小スリップ回転を安定的に保持可能な差圧値にすることにある。これに対し、LU再構築後のコーストスリップ制御におけるトルク容量演算ブロック84でのF/B制御は、差回転を維持するように油圧をコントロールするものであり、コースト容量学習制御と同じ原理である。
 上記検証によって、コーストスリップ制御とコースト容量学習制御について、原理が同じであることを確認できた。
Verify whether the principles of Coast slip control and coast capacity learning control in Step B are the same. The mechanism of both controls is to make a differential pressure value that can stably maintain a minute slip rotation. On the other hand, the F / B control in the torque capacity calculation block 84 in the coast slip control after the LU reconstruction is to control the hydraulic pressure so as to maintain the differential rotation, and has the same principle as the coast capacity learning control. .
From the above verification, it was confirmed that the principles of coast slip control and coast capacity learning control are the same.
 StepCのコーストスリップ制御でコースト容量学習制御と同等な性能を確保できるかどうかを検証する。これに対しては、単板LUクラッチの実験データから、コーストスリップ制御そのものができていること、急減速時(0.6G減速)のコーストスリップ制御での解除応答性が確保できていることが確認された。そして、多板LUクラッチだから、コーストスリップ制御できないということはない。
 上記検証によって、実験データからコースト容量学習制御性能と同等な性能をコーストスリップ制御により達成する見込みがあることを確認できた。
It is verified whether the coast slip control of StepC can secure the same performance as the coast capacity learning control. For this, it was confirmed from the experimental data of the single-plate LU clutch that coast slip control itself was possible and that release responsiveness in coast slip control during sudden deceleration (0.6G deceleration) could be secured. It was done. And since it is a multi-plate LU clutch, coast slip control is not impossible.
From the above verification, it was confirmed from the experimental data that there is a possibility of achieving the same performance as the coast capacity learning control performance by the coast slip control.
 この確認手法により、図9のフローチャートにおいて、StepA→StepB→StepC→StepDへと進み、コースト容量学習制御をコーストスリップ制御へ置き換えることが可能であるとの検証結果を得た。 This verification method proceeds from Step A → Step B → Step C → Step D in the flowchart of FIG. 9 and obtained a verification result that coast capacity learning control can be replaced with coast slip control.
 [実施例でのコーストスリップ制御作用]
 本発明者等は、上記検証結果に基づいて、アクセル足離し操作によるコースト走行中、コーストスリップ制御の開始条件が成立すると、コンバータトルクF/B補償分を初期値にリセットし、コーストスリップ制御を開始する手段を採用した。より具体的には、実現ブロック85に配置されていたコースト容量学習制御の各機能を、要求調停ブロック82と目標算出ブロック83とトルク容量演算ブロック84とに再配置し、コースト容量学習制御をコーストスリップ制御へ置き換える構成とした。
[Coast slip control action in the embodiment]
Based on the above verification results, the present inventors reset the converter torque F / B compensation to the initial value and perform coast slip control when the coast slip control start condition is satisfied during coast travel by the accelerator release operation. Adopted means to start. More specifically, each function of the coast capacity learning control arranged in the realization block 85 is rearranged in the request arbitration block 82, the target calculation block 83, and the torque capacity calculation block 84, and the coast capacity learning control is coasted. The configuration is replaced with slip control.
 このように、実現ブロック85に配置されていたコースト容量学習制御の各機能を再配置することで、開始条件が成立すると、コンバータトルクF/B補償分の初期値をリセットしてコーストスリップ制御が開始される。この結果、コースト走行中、学習制御を行う必要なく、コーストスリップ制御の開始直後から安定したスリップ回転を保持することができる。 As described above, when the start condition is satisfied by rearranging the functions of the coast capacity learning control that has been arranged in the realization block 85, the initial value for the converter torque F / B compensation is reset and the coast slip control is performed. Be started. As a result, it is possible to maintain a stable slip rotation immediately after the start of the coast slip control without performing learning control during coasting.
 図6に示すフローチャートに基づいてコーストスリップ制御処理作用を説明する。
 コーストスリップ制御開始条件が成立するとS01→S02→S03→S04へと進み、コーストスリップ制御終了条件が不成立の間は、S03→S04へと進む流れが繰り返される。
The operation of the coast slip control process will be described based on the flowchart shown in FIG.
When the coast slip control start condition is satisfied, the process proceeds from S01 → S02 → S03 → S04, and while the coast slip control end condition is not satisfied, the process proceeds from S03 to S04 is repeated.
 ステップS02では、トルク容量制御処理により前回まで計算されていたコンバータトルクF/B補償分計算値Tcnv_fb(c)が初期値にリセットされる。つまり、積分項を含めてコンバータトルクF/B補償分計算値Tcnv_fb(c)をリセットしてコーストスリップ制御が開始される。 In step S02, the converter torque F / B compensation calculated value Tcnv_fb (c) calculated up to the previous time by the torque capacity control process is reset to the initial value. That is, the converter torque F / B compensation calculated value Tcnv_fb (c) including the integral term is reset and the coast slip control is started.
 ステップS03では、コーストスリップ制御でのロックアップクラッチ20のトルク容量制御(図7)が実行される。このロックアップクラッチ20のトルク容量制御では、ステップS4において、「目標差回転数ΔN*」として、コーストスリップ制御用の目標スリップ回転数である目標差回転数ΔN*(=Nt-Ne)が選択される。ステップS5において、「差回転数偏差δ」として、コーストスリップ制御での目標差回転数ΔN*と実差回転数ΔN(=タービン回転数Nt-エンジン回転数Ne)の差により算出される。そして、F/B補償器84hにおいて、コンバータトルクF/B補償分計算値Tcnv_fb(c)が、実差回転数ΔNを目標差回転数ΔN*に一致させるコンバータトルクF/B補償分として算出される。 In step S03, torque capacity control (FIG. 7) of the lockup clutch 20 in coast slip control is executed. In the torque capacity control of the lockup clutch 20, the target differential rotational speed ΔN * (= Nt−Ne), which is the target slip rotational speed for coast slip control, is selected as “target differential rotational speed ΔN * ” in step S4. Is done. In step S5, the “differential rotational speed deviation δ” is calculated from the difference between the target differential rotational speed ΔN * and the actual differential rotational speed ΔN (= turbine rotational speed Nt−engine rotational speed Ne) in coast slip control. Then, in the F / B compensator 84h, the converter torque F / B compensation calculation value Tcnv_fb (c) is calculated as the converter torque F / B compensation for making the actual differential rotation speed ΔN coincide with the target differential rotation speed ΔN *. The
 その後、ステップS04のコーストスリップ制御終了条件が成立するとエンドへ進み、コーストスリップ制御が終了する。 Thereafter, when the coast slip control end condition of step S04 is satisfied, the process proceeds to the end, and the coast slip control is ended.
 次に、図10に示すタイムチャートに基づいて実施例でのコースト走行中に実行されるコーストスリップ制御作用を説明する。 Next, the coast slip control action executed during the coast running in the embodiment will be described based on the time chart shown in FIG.
 この実施例の場合、LUクラッチ締結状態において、図10の時刻t1にてアクセル足離し操作が行われアイドルスイッチがONになると、減速を開始し、エンジントルクTe、エンジン回転数Ne、タービン回転数Ntが低下を開始する。そして、時刻t2にてエンジントルクTeが正から負へと切り替わると、エンジントルクTe、エンジン回転数Ne、タービン回転数Ntの低下勾配が、時刻t2までに比べて緩やかになる。 In the case of this embodiment, in the LU clutch engaged state, when the accelerator release operation is performed at time t1 in FIG. 10 and the idle switch is turned on, the deceleration starts, and the engine torque Te, the engine speed Ne, and the turbine speed Nt begins to decline. Then, when the engine torque Te is switched from positive to negative at time t2, the decreasing gradients of the engine torque Te, the engine speed Ne, and the turbine speed Nt become gentler than before time t2.
 時刻t3にてフューエルカットフラグが立ち、時刻t3から時刻t4までのエンジントルクが燃料停止トルクに近づく所定の待ち時間が経過すると、時刻t4にてコーストスリップ制御が開始される。つまり、時刻t4にてコーストスリップ要求が出力され、コーストスリップ制御での目標差回転数が設定され、F/F制御によるLU指示差圧の容量上げによりLUトルクが少し上げられる。 When the fuel cut flag is set at time t3 and a predetermined waiting time has elapsed when the engine torque from time t3 to time t4 approaches the fuel stop torque, coast slip control is started at time t4. That is, a coast slip request is output at time t4, the target differential rotation speed in coast slip control is set, and the LU torque is slightly increased by increasing the volume of the LU command differential pressure by F / F control.
 時刻t4からコーストスリップ終了条件が成立するまでの時刻t5までの区間が、コーストスリップ制御区間となる。このコーストスリップ制御区間では、実差回転数ΔNをコーストスリップ制御での目標差回転数ΔN*に収束させるF/F補償とF/B補償によりLU指示差圧の容量が制御される。 A section from time t4 to time t5 until the coast slip end condition is satisfied is a coast slip control section. In this coast slip control section, the capacity of the LU command differential pressure is controlled by F / F compensation and F / B compensation for converging the actual differential rotational speed ΔN to the target differential rotational speed ΔN * in the coast slip control.
 このLU指示差圧の容量制御により、学習制御を行う必要なく、コーストスリップ制御の開始直後から、タービン回転数Ntとエンジン回転数Neとの微小スリップ量による差回転数ΔNが、安定的に保持されることになる。 Due to this LU commanded differential pressure capacity control, there is no need to perform learning control, and immediately after the start of coast slip control, the differential rotational speed ΔN due to the minute slip amount between the turbine rotational speed Nt and the engine rotational speed Ne is stably maintained. Will be.
 以上説明したように、実施例のベルト式無段変速機CVTのロックアップ制御装置にあっては、下記に列挙する効果が得られる。 As described above, in the lock-up control device of the belt type continuously variable transmission CVT of the embodiment, the effects listed below can be obtained.
 (1) トルクコンバータ2と、ロックアップクラッチ20と、変速機コントローラ(CVTコントロールユニット8)と、を備える。
 トルクコンバータ2は、走行用駆動源(エンジン1)と変速機構(バリエータ4)との間に介装される。
 ロックアップクラッチ20は、トルクコンバータ2に有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結する。
 変速機コントローラ(CVTコントロールユニット8)は、ロックアップクラッチ20の締結/スリップ/解放の制御を行う。
 変速機コントローラ(CVTコントロールユニット8)に、目標差回転数ΔN*に基づくフィードフォワード補償と差回転数偏差δに基づくフィードバック補償によりコンバータトルクTcnvを演算し、トルクコンバータ2への入力トルク(補正エンジントルクTadj)からコンバータトルクTcnvを差し引いて演算される目標ロックアップトルクTlu*を得るスリップ制御を実行するロックアップ制御部80を設ける。
 ロックアップ制御部80は、アクセル足離し操作によるコースト走行中、コーストスリップ制御の開始条件が成立すると、フィードバック補償でのコンバータトルクF/B補償分を初期値にリセットし、コーストスリップ制御を開始する。
 このように、コンバータトルクF/B補償分の初期値リセットによりコーストスリップ制御を開始することで、コースト走行中、学習制御を行う必要なく、コーストスリップ制御の開始直後から安定したスリップ回転を保持することができる。即ち、コンバータトルクF/B補償分の初期値リセットにより、コーストスリップ制御の開始時において、前回までの積分項によるコンバータトルクF/B補償分のトルク値によるコーストスリップ制御への影響が排除される。
(1) The torque converter 2, the lockup clutch 20, and the transmission controller (CVT control unit 8) are provided.
The torque converter 2 is interposed between the travel drive source (engine 1) and the speed change mechanism (variator 4).
The lock-up clutch 20 is provided in the torque converter 2 and directly connects the torque converter input shaft and the torque converter output shaft by fastening.
The transmission controller (CVT control unit 8) controls the engagement / slip / release of the lock-up clutch 20.
The transmission controller (CVT control unit 8) calculates the converter torque Tcnv by feedforward compensation based on the target differential rotational speed ΔN * and feedback compensation based on the differential rotational speed deviation δ, and the input torque (correction engine) to the torque converter 2 is calculated. A lockup control unit 80 is provided that performs slip control to obtain a target lockup torque Tlu * calculated by subtracting the converter torque Tcnv from the torque Tadj).
The lockup control unit 80 resets the converter torque F / B compensation in the feedback compensation to the initial value and starts the coast slip control when the start condition of the coast slip control is satisfied during the coast traveling by the accelerator release operation. .
In this way, by starting the coast slip control by resetting the initial value for the converter torque F / B compensation, it is not necessary to perform learning control during coast driving, and stable slip rotation is maintained immediately after the start of coast slip control. be able to. In other words, by resetting the initial value for the converter torque F / B compensation, at the start of the coast slip control, the influence on the coast slip control due to the torque value for the converter torque F / B compensation by the previous integral term is eliminated. .
 (2) 走行用駆動源がエンジン1である。
 ロックアップ制御部80は、走行中、アクセル足離し操作条件が成立した後、エンジン1のフューエルカット制御が開始され、フューエルカット制御の開始から所定時間が経過すると、コーストスリップ制御の開始条件が成立したとする。
 このように、コーストスリップ制御の開始条件に時間条件を付加し、エンジントルクが安定するのを待つことで、制御開始直後から応答良く適正なスリップ量に収束するコーストスリップ制御を実行することができる。
(2) The driving source for traveling is the engine 1.
The lockup control unit 80 starts the fuel cut control of the engine 1 after the accelerator foot release operation condition is satisfied during traveling, and the coast slip control start condition is satisfied when a predetermined time elapses from the start of the fuel cut control. Suppose that
Thus, by adding a time condition to the start condition of coast slip control and waiting for the engine torque to stabilize, coast slip control that converges to an appropriate slip amount with good response immediately after the start of control can be executed. .
 (3) ロックアップ制御部80は、コーストスリップ制御の開始条件が成立すると、一定値の微小スリップ回転による目標差回転数ΔN*を設定し、前回までのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。
 このように、制御開始条件の成立により目標差回転数ΔN*の設定と初期値リセットを行うことで、コーストスリップ制御を開始する場合、コースト容量学習制御と同等にロックアップクラッチ20の滑りを早期化する制御を行うことができる。
(3) When the coast slip control start condition is satisfied, the lockup control unit 80 sets the target differential rotation speed ΔN * due to a small slip rotation of a constant value, and calculates the converter torque F / B compensation calculated value Tcnv_fb up to the previous time. (c) is reset to the initial value.
As described above, when the coast slip control is started by setting the target differential rotation speed ΔN * and resetting the initial value when the control start condition is satisfied, the slip of the lock-up clutch 20 is made early as in the coast capacity learning control. Can be controlled.
 (4) ロックアップ制御部80は、要求調停ブロック82と、目標算出ブロック83と、トルク容量演算ブロック84と、実現ブロック85と、を有する。
 実現ブロック85に配置されていたコースト容量学習制御の各機能を、要求調停ブロック82と目標算出ブロック83とトルク容量演算ブロック84とに再配置する。
 このように、実現ブロック85に配置されていたコースト容量学習制御の各機能を再配置することで、ロックアップ制御部80の基本構成を変更することなく、ロックアップ制御部80にコーストロックアップ制御を組み込むことができる。
(4) The lockup control unit 80 includes a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85.
The functions of the coast capacity learning control that have been arranged in the realization block 85 are rearranged in the request arbitration block 82, the target calculation block 83, and the torque capacity calculation block 84.
In this way, by relocating each function of the coast capacity learning control that has been arranged in the realization block 85, the lockup control unit 80 can change the coast lockup control without changing the basic configuration of the lockup control unit 80. Can be incorporated.
 以上、本発明の自動変速機のロックアップ制御装置を実施例に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The automatic transmission lockup control device of the present invention has been described above based on the embodiments. However, the specific configuration is not limited to the first embodiment, and design changes and additions are allowed without departing from the spirit of the invention according to each claim of the claims.
 実施例では、ロックアップ制御部80として、目標駆動力Fd*を目標エンジン回転数Ne*に変換する駆動力デマンドブロック81を有する例を示した。しかし、ロックアップ制御部としては、駆動力デマンドブロックを有さず、目標スリップ回転数特性を与えることでスリップ制御する例であっても良い。 In the embodiment, an example in which the lockup control unit 80 includes the drive force demand block 81 that converts the target drive force Fd * into the target engine speed Ne * is shown. However, the lock-up control unit may not be provided with a driving force demand block, and may be an example in which slip control is performed by giving a target slip rotation speed characteristic.
 実施例では、本発明のロックアップ制御装置を、自動変速機としてベルト式無段変速機CVTを搭載したエンジン車に適用する例を示した。しかし、本発明のロックアップ制御装置は、自動変速機として、ステップATと呼ばれる有段変速機を搭載した車両や副変速機付き無段変速機を搭載した車両等に適用しても良い。また、適用される車両としても、エンジン車に限らず、走行用駆動源にエンジンとモータを搭載したハイブリッド車、走行用駆動源にモータを搭載した電気自動車等に対しても適用できる。 In the embodiment, an example in which the lockup control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission is shown. However, the lock-up control device of the present invention may be applied to a vehicle equipped with a stepped transmission called step AT or a vehicle equipped with a continuously variable transmission with a sub-transmission as an automatic transmission. Further, the applied vehicle is not limited to an engine vehicle, and can be applied to a hybrid vehicle in which an engine and a motor are mounted on a traveling drive source, an electric vehicle in which a motor is mounted on a traveling drive source, and the like.

Claims (5)

  1.  走行用駆動源と変速機構との間に介装されるトルクコンバータと、
     前記トルクコンバータに有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチと、
     前記ロックアップクラッチの締結/スリップ/解放の制御を行う変速機コントローラと、を備え、
     前記変速機コントローラに、目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを演算し、前記トルクコンバータへの入力トルクから前記コンバータトルクを差し引いて演算される目標ロックアップトルクを得るスリップ制御を実行するロックアップ制御部を設け、
     前記ロックアップ制御部は、アクセル足離し操作によるコースト走行中、コーストスリップ制御の開始条件が成立すると、前記フィードバック補償でのコンバータトルクフィードバック補償分を初期値にリセットし、コーストスリップ制御を開始する、
     自動変速機のロックアップ制御装置。
    A torque converter interposed between the traveling drive source and the speed change mechanism;
    A lock-up clutch that is provided in the torque converter and that directly connects the torque converter input shaft and the torque converter output shaft by fastening;
    A transmission controller that controls engagement / slip / release of the lock-up clutch, and
    A target lock is calculated by calculating a converter torque by feedforward compensation based on a target differential rotational speed and feedback compensation based on a differential rotational speed deviation in the transmission controller, and subtracting the converter torque from an input torque to the torque converter. Provide a lock-up control unit that performs slip control to obtain up torque,
    The lockup control unit resets the converter torque feedback compensation amount in the feedback compensation to the initial value and starts the coast slip control when the coast slip control start condition is satisfied during the coast running by the accelerator release operation.
    Automatic transmission lockup control device.
  2.  請求項1に記載された自動変速機のロックアップ制御装置において、
     前記走行用駆動源がエンジンであり、
     前記ロックアップ制御部は、走行中、アクセル足離し操作条件が成立した後、前記エンジンのフューエルカット制御が開始され、前記フューエルカット制御の開始から所定時間が経過すると、コーストスリップ制御の開始条件が成立したとする、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to claim 1,
    The driving source for traveling is an engine;
    The lockup control unit starts the fuel cut control of the engine after the accelerator release operation condition is established during traveling, and when a predetermined time elapses from the start of the fuel cut control, the start condition of the coast slip control is Suppose that
    Automatic transmission lockup control device.
  3.  請求項1又は2に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、コーストスリップ制御の開始条件が成立すると、一定値の微小スリップ回転による目標差回転数を設定し、前回までのコンバータトルクフィードバック補償分計算値を初期値にリセットする、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to claim 1 or 2,
    When the start condition of the coast slip control is satisfied, the lockup control unit sets a target differential rotation speed by a minute slip rotation of a constant value, and resets a converter torque feedback compensation calculation value up to the previous value to an initial value.
    Automatic transmission lockup control device.
  4.  請求項1から3までの何れか一項に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップ制御部は、
     各種要求を調停して優先順位を決める要求調停ブロックと、
     前記要求調停ブロックからの要求フラグを入力し、差回転目標である目標差回転数を演算する目標算出ブロックと、
     前記目標算出ブロックから目標差回転数を入力し、目標差回転数を実現する目標ロックアップトルクを演算するトルク容量演算ブロックと、
     前記トルク容量演算ブロックからの目標ロックアップトルクをロックアップ油圧指示値に変換する実現ブロックと、を有し、
     前記実現ブロックに配置されていたコースト容量学習制御の各機能を、前記要求調停ブロックと前記目標算出ブロックと前記トルク容量演算ブロックとに再配置する、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to any one of claims 1 to 3,
    The lockup control unit
    A request arbitration block that arbitrates various requests and determines priorities;
    A target calculation block that inputs a request flag from the request arbitration block and calculates a target differential rotation speed that is a differential rotation target;
    A torque capacity calculation block for inputting a target differential rotation speed from the target calculation block and calculating a target lockup torque for realizing the target differential rotation speed;
    A realization block for converting a target lockup torque from the torque capacity calculation block into a lockup hydraulic pressure instruction value;
    Relocating each function of coast capacity learning control that has been arranged in the realization block to the request arbitration block, the target calculation block, and the torque capacity calculation block,
    Automatic transmission lockup control device.
  5.  走行用駆動源と変速機構との間に介装されるトルクコンバータと、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチと、を備えた自動変速機のロックアップ制御方法であって、
     前記ロックアップクラッチのスリップ締結の要求時に、
     目標差回転数に基づくコンバータトルクフィードフォワード補償分を演算し、
     差回転数偏差に基づくコンバータトルクフィードバック補償分を演算し、
     前記コンバータトルクフィードバック補償分と前記コンバータトルクフィードバック補償分とからコンバータトルクを演算し、
     前記トルクコンバータへの入力トルクを演算し、
     前記入力トルクから前記コンバータトルクを差し引いて目標ロックアップトルクを演算し、
     この目標ロックアップトルクに従ってロックアップ油圧を供給し、
     ここで、アクセル足離し操作によるコースト走行中、コーストスリップ制御の開始条件が成立すると、前記コンバータトルクフィードバック補償分を初期値にリセットし、コーストスリップ制御を開始する、
     自動変速機のロックアップ制御方法。
    A lockup control method for an automatic transmission, comprising: a torque converter interposed between a driving source for traveling and a transmission mechanism; and a lockup clutch that directly connects a torque converter input shaft and a torque converter output shaft by fastening. There,
    When requesting slip engagement of the lock-up clutch,
    Calculate the converter torque feed forward compensation based on the target differential speed,
    Calculate the converter torque feedback compensation based on the differential speed deviation,
    The converter torque is calculated from the converter torque feedback compensation and the converter torque feedback compensation,
    Calculate the input torque to the torque converter,
    Subtracting the converter torque from the input torque to calculate a target lockup torque,
    According to this target lockup torque, the lockup hydraulic pressure is supplied,
    Here, during coast running by accelerator release operation, when the start condition of coast slip control is satisfied, the converter torque feedback compensation is reset to an initial value, and coast slip control is started.
    Automatic transmission lockup control method.
PCT/JP2019/002622 2018-02-27 2019-01-28 Lock-up control device and control method for automatic transmission WO2019167508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502872A JP6942238B2 (en) 2018-02-27 2019-01-28 Automatic transmission lockup controller and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032651 2018-02-27
JP2018032651 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167508A1 true WO2019167508A1 (en) 2019-09-06

Family

ID=67805308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002622 WO2019167508A1 (en) 2018-02-27 2019-01-28 Lock-up control device and control method for automatic transmission

Country Status (2)

Country Link
JP (1) JP6942238B2 (en)
WO (1) WO2019167508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800227A (en) * 2021-09-30 2021-12-17 兰州万里航空机电有限责任公司 Rotary executing device of fixed-force lock
US20220306107A1 (en) * 2021-03-23 2022-09-29 Ford Global Technologies, Llc Management of transmission transitions in wheel torque- based actuator torque determination system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942439A (en) * 1995-08-01 1997-02-14 Toyota Motor Corp Slip control device of vehicular direct-coupled clutch
JP2014219030A (en) * 2013-05-06 2014-11-20 トヨタ自動車株式会社 Control device for vehicular lock-up clutch
WO2017154506A1 (en) * 2016-03-09 2017-09-14 ジヤトコ株式会社 Slip lock-up control device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942439A (en) * 1995-08-01 1997-02-14 Toyota Motor Corp Slip control device of vehicular direct-coupled clutch
JP2014219030A (en) * 2013-05-06 2014-11-20 トヨタ自動車株式会社 Control device for vehicular lock-up clutch
WO2017154506A1 (en) * 2016-03-09 2017-09-14 ジヤトコ株式会社 Slip lock-up control device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220306107A1 (en) * 2021-03-23 2022-09-29 Ford Global Technologies, Llc Management of transmission transitions in wheel torque- based actuator torque determination system
US11643081B2 (en) * 2021-03-23 2023-05-09 Ford Global Technologies, Llc Management of transmission transitions in wheel torque-based actuator torque determination system
CN113800227A (en) * 2021-09-30 2021-12-17 兰州万里航空机电有限责任公司 Rotary executing device of fixed-force lock

Also Published As

Publication number Publication date
JP6942238B2 (en) 2021-09-29
JPWO2019167508A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6423895B2 (en) Control device for continuously variable transmission for vehicle
JP5983857B2 (en) Transmission control apparatus and control method
JP2009002451A (en) Control device for lock-up clutch
WO2019167508A1 (en) Lock-up control device and control method for automatic transmission
JP7024473B2 (en) Vehicle control device
WO2019167507A1 (en) Lock-up control device and control method for automatic transmission
JP2011241963A (en) Device for control of power transmission gear for vehicle
WO2018124022A1 (en) Control device for continuously variable transmission and control method for continuously variable transmission
JP6971396B2 (en) Automatic transmission lockup controller
JP7044896B2 (en) Lock-up controller for automatic transmission
JP5994663B2 (en) Vehicle control device
JP6865888B2 (en) Automatic transmission lockup controller and control method
WO2019221066A1 (en) Lock-up control device for automatic transmission
JP6921999B2 (en) Lock-up engagement control device for automatic transmission
JP2014152895A (en) Control device of non-stage transmission for vehicle
JP7058909B2 (en) Belt type continuously variable transmission control device
JP2010025246A (en) Gear shift control device for vehicle
JP2007057073A (en) Control device for continuously variable transmission
WO2012098773A1 (en) Transmission control device for continuously variable transmission
JP5387419B2 (en) Control device for continuously variable transmission for vehicle
JP2021032304A (en) Vehicle control device and vehicle control method
JP2021032305A (en) Vehicle control device and vehicle control method
JP2021099149A (en) Vehicle transmission control device
JP2021067326A (en) Control device of continuously variable transmission
JP2019027497A (en) Vehicle control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760176

Country of ref document: EP

Kind code of ref document: A1