WO2019221066A1 - Lock-up control device for automatic transmission - Google Patents

Lock-up control device for automatic transmission Download PDF

Info

Publication number
WO2019221066A1
WO2019221066A1 PCT/JP2019/018961 JP2019018961W WO2019221066A1 WO 2019221066 A1 WO2019221066 A1 WO 2019221066A1 JP 2019018961 W JP2019018961 W JP 2019018961W WO 2019221066 A1 WO2019221066 A1 WO 2019221066A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
coast slip
torque
rotational speed
speed
Prior art date
Application number
PCT/JP2019/018961
Other languages
French (fr)
Japanese (ja)
Inventor
旭明 王
直泰 池田
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2020519626A priority Critical patent/JP7057825B2/en
Publication of WO2019221066A1 publication Critical patent/WO2019221066A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a lockup control device for an automatic transmission mounted on a vehicle.
  • the pressure is gradually reduced with a pressure reduction gradient ⁇ set in accordance with at least the deceleration ⁇ when the vehicle speed is detected, and when the detected vehicle speed V reaches the lockup-off vehicle speed Vo, the pressure is reduced to the lockup-off pressure Poff at once (for example, see Patent Document 1).
  • the lock-up control when releasing the lock-up clutch, the lock-up control is performed by feed-forward control according to the differential pressure characteristic set according to the vehicle deceleration at the start of control. For this reason, there is a problem that deviation of the actual differential pressure with respect to the differential pressure characteristic after the start of the lock-up control is allowed, and the release timing of the lock-up clutch may deviate from a desired timing.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to suppress a lockup release timing from deviating from a desired timing while suppressing a response delay due to feedback control during coast slip deceleration.
  • a lockup control device for an automatic transmission includes a torque converter, a lockup clutch, and a lockup controller.
  • the lock-up controller is provided with a coast slip control unit that feedback-controls the lock-up differential pressure so that the actual coast slip rotational speed converges to the target coast slip rotational speed during coast deceleration by the accelerator release operation.
  • the coast slip control unit calculates a target coast slip rotational speed used in feedback control based on the look-ahead deceleration of the vehicle.
  • FIG. 1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to a first embodiment is applied. It is a shift schedule figure which shows an example of the D range continuously variable transmission schedule used when the continuously variable transmission control in automatic transmission mode is performed by a variator. It is a schematic block diagram which shows the lockup control apparatus of Example 1. FIG. It is a block block diagram which shows each block which comprises the lockup control part of a CVT control unit. It is a detailed block diagram which shows the target calculation block, torque capacity calculation block, and realization block which comprise the coast slip control part which has a lockup control part.
  • FIG. It is a flowchart which shows the flow of the coast slip control process performed in the coast slip control part of the CVT control unit of Example 1.
  • FIG. It is a flowchart which shows the flow of the lockup clutch torque capacity control processing performed in the coast slip control part of the CVT control unit of Example 1.
  • the lockup control device is applied to an engine vehicle equipped with a belt-type continuously variable transmission (an example of an automatic transmission) including a torque converter, a forward / reverse switching mechanism, a variator, and a final reduction mechanism. is there.
  • a belt-type continuously variable transmission an example of an automatic transmission
  • the configuration of the first embodiment is changed to “overall system configuration”, “configuration of lockup control device”, “detailed configuration of torque capacity calculation block,” “coast slip control processing configuration”, “lockup clutch torque capacity control”. The processing will be described separately.
  • FIG. 1 shows a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to a first embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6. Yes.
  • the belt type continuously variable transmission CVT is configured by incorporating the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5 in a transmission case (not shown).
  • the engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver.
  • the engine 1 includes an output torque control actuator 10 that performs torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like. For example, fuel cut control is executed during coasting by an accelerator release operation.
  • the torque converter 2 is a starting element by a fluid coupling having a torque increasing function and a torque fluctuation absorbing function.
  • the torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements.
  • the pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22.
  • the turbine runner 24 is connected to the torque converter output shaft 21.
  • the stator 26 is provided in the transmission case via the one-way clutch 25.
  • the forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates.
  • the forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected.
  • the reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected.
  • the forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
  • the variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and continuously changes the transmission gear ratio (ratio of variator input rotation to variator output rotation) by changing the belt contact diameter.
  • a gear shifting function is provided.
  • the primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45.
  • the secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b that are arranged coaxially with the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46.
  • the pulley belt 44 is stretched around a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43.
  • the pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements.
  • the pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
  • the final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the final speed reduction mechanism 5 is a speed reduction gear mechanism that includes an output gear 52 provided on the variator output shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on the outer peripheral position of the differential case. And a gear 55.
  • the differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
  • the engine vehicle control system includes a hydraulic control unit 7, a CVT control unit 8, and an engine control unit 9.
  • the CVT control unit 8 and the engine control unit 9 which are electronic control systems are connected by a CAN communication line 13 which can exchange information with each other.
  • the hydraulic control unit 7 performs primary pressure Ppri guided to the primary pressure chamber 45, secondary pressure Psec guided to the secondary pressure chamber 46, forward clutch pressure Pfc to the forward clutch 31, reverse brake pressure Prb to the reverse brake 32, etc. It is a unit that regulates pressure.
  • the hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. .
  • the hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76.
  • Each solenoid valve 72, 73, 74, 75, 76 performs a pressure adjustment operation according to a control command value (indicated current) output from the CVT control unit 8.
  • the line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL according to the line pressure command value output from the CVT control unit 8.
  • the line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
  • the primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure in accordance with the primary pressure command value output from the CVT control unit 8.
  • the secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
  • the select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the reverse brake pressure Prb commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value or the reverse brake pressure command value output from the CVT control unit 8. To do.
  • the lock-up pressure solenoid valve 76 adjusts to the LU command pressure Plu for engaging / slipping / releasing the lock-up clutch 20 according to the command current Alu output from the CVT control unit 8.
  • the CVT control unit 8 performs line pressure control, shift control, forward / reverse switching control, lockup control, and the like.
  • line pressure control a command value for obtaining a target line pressure corresponding to the accelerator opening is output to the line pressure solenoid valve 72.
  • shift control when the target gear ratio (target primary rotation Npri * ) is determined, a command value for obtaining the determined target gear ratio (target primary rotation speed Npri * ) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74.
  • a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position.
  • lock-up control the command current Alu for controlling the LU command pressure Plu for engaging / slipping / releasing the lock-up clutch 20 is output to the lock-up pressure solenoid valve 76.
  • the CVT control unit 8 includes a primary rotation sensor 90, a vehicle speed sensor 91, a secondary pressure sensor 92, an oil temperature sensor 93, an inhibitor switch 94, a brake switch 95, a turbine rotation sensor 96, a secondary rotation sensor 97, a primary pressure sensor 98, and the like. Sensor information and switch information are input.
  • the engine control unit 9 receives sensor information from the engine rotation sensor 12, accelerator opening sensor 14, and the like.
  • the CVT control unit 8 requests the engine control information and the accelerator opening information to the engine control unit 9, the CVT control unit 8 receives information on the engine speed Ne and the accelerator opening APO via the CAN communication line 13. Further, when requesting engine torque information to the engine control unit 9, information on the actual engine torque Te estimated in the engine control unit 9 is received via the CAN communication line 13.
  • FIG. 2 shows an example of the D range continuously variable transmission schedule used when the variator 4 executes the continuously variable transmission control in the automatic transmission mode when the D range is selected.
  • the “D range shift mode” is an automatic shift mode in which the gear ratio is automatically changed steplessly in accordance with the vehicle operating state.
  • the shift control in the “D range shift mode” is performed by operating points on the D range continuously variable shift schedule of FIG. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14) ( VSP, APO) determines the target primary rotational speed Npri * . Then, the actual primary rotational speed Npri from the primary rotational sensor 90 is performed by the pulley hydraulic pressure feedback control that matches the target primary rotational speed Npri * .
  • the gear ratio is represented by the slope of the gear ratio line drawn from the zero operating point, as is clear from the lowest gear ratio line and the highest gear ratio line of the D range continuously variable transmission schedule. Therefore, determining the target primary rotational speed Npri * by the operating point (VSP, APO) determines the target speed ratio of the variator 4.
  • the D range continuously variable transmission schedule used in the “D range speed change mode” has a gear ratio range of the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO).
  • the gear ratio is set to change steplessly. For example, when the vehicle speed VSP is constant, and shifting the downshift direction to perform the increased target primary rotation speed Npri * the accelerator depression operation, the target primary rotation speed Npri * decreases Doing accelerator return operation up Shift in the shift direction.
  • the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases.
  • FIG. 3 shows the lockup control device of the first embodiment.
  • Lock-up is abbreviated as “LU”
  • feedforward is abbreviated as “F / F”
  • feedback is abbreviated as “F / B”.
  • the drive system to which the lockup control device is applied includes an engine 1 (driving drive source), a torque converter 2 having a lockup clutch 20, a forward / reverse switching mechanism 3, and a variator 4.
  • the final reduction mechanism 5 and the drive wheels 6 are provided.
  • the control system to which the lockup control device is applied includes a CVT control unit 8, an engine control unit 9, and a lockup pressure solenoid valve 76.
  • the CVT control unit 8 is a lockup that performs integrated lockup control to change the clutch state of the lockup clutch 20 to the engaged state / slip engaged state / released state according to various requests.
  • a control unit 80 is provided.
  • the lockup control unit 80 includes a coast slip control unit 80a that performs coast slip control during a coast deceleration scene by an accelerator release operation.
  • the integrated lockup control in the lockup control unit 80 estimates the target driving force Fd * intended by the driver, and locks up so that the actual driving force Fd output to the driving wheels 6 becomes the target driving force Fd *. It is characterized in that the slip engagement state control of the clutch 20 is performed. At this time, the target driving force Fd * is converted into the target engine speed Ne * in order to improve the controllability in the slip engagement state control.
  • the converter torque Tcnv is calculated by executing control (F / F control + F / B control) for converging the actual engine speed Ne to the target engine speed Ne * . Then, as shown in FIG.
  • Tadj Tcnv + Tlu relationship that holds, calculates a target LU torque TLU of the lockup clutch 20 *, the target LU torque TLU * the obtained command current Alu lockup pressure solenoid valve 76 Output to.
  • the target driving force Fd * intended by the driver is realized in the slip engagement state control of the lockup clutch 20. I am doing so.
  • FIG. 4 shows each block constituting the lockup control unit 80 of the CVT control unit 8.
  • the block configuration of the lockup control unit 80 will be described with reference to FIG.
  • the lockup control unit 80 includes a driving force demand block 81, a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85, as shown in FIG.
  • the driving force demand block 81 calculates the target driving force Fd * based on the accelerator opening APO and the vehicle speed VSP, and converts the target driving force Fd * into the target engine speed Ne * using the engine overall performance characteristics. The profile of the target engine speed Ne * is calculated.
  • the driving force demand block 81 outputs a fastening request flag and a release request flag.
  • the request arbitration block 82 receives the engagement request flag and the release request flag from the driving force demand block 81, calculates a lockup request from various requests, and arbitrates the request to determine the priority.
  • Various requirements include basic requirements, DP requirements (DP stands for Driving pleasure), drivability requirements, protection requirements, FS requirements (FS stands for Fail Safe), technical limit requirements, other system requirements, coast slip requirements, Etc.
  • DP requirements DP stands for Driving pleasure
  • FS requirements FS stands for Fail Safe
  • the request arbitration block 82 outputs an immediate release request flag, a release request flag, a slip request flag, an engagement request flag, and the like.
  • the target calculation block 83 inputs the immediate release request flag, the release request flag, the slip request flag, the engagement request flag, etc. from the request arbitration block 82, and calculates the target differential rotation speed ⁇ N * as a differential rotation target from these LU requests. To do.
  • the target differential rotation target or the release differential rotation target is calculated in the target calculation block 83, the target engine speed Ne * calculated by the driving force demand block 81 is input.
  • a preset target slip rotation speed characteristic or a target slip rotation speed characteristic set by calculation is used for the immediate release differential rotation target and the slip differential rotation target.
  • the target slip rotation speed characteristics set in response to the coast slip request are referred to as “target coast slip rotation speed characteristics”.
  • the torque capacity calculation block 84 inputs the target differential rotation speed ⁇ N * , the turbine rotation speed Nt, the actual engine rotation speed Ne, and the like from the target calculation block 83. Then, the command torque (target LU torque Tlu * ) for realizing the target differential rotation speed ⁇ N * is calculated by calculating the corrected engine torque Tadj and the converter torque Tcnv (F / F control + F / B control).
  • the target differential rotation speed ⁇ N * based on the target coast slip rotation speed characteristic set in the target calculation block 83 is input.
  • the realization block 85 receives the target LU torque Tlu * from the torque capacity calculation block 84, converts the target LU torque Tlu * into the LU command pressure Plu, and further converts the LU command pressure Plu into the command current Alu.
  • the coast slip control includes each function of the coast capacity learning control that has been arranged in the realization block 85 until the request arbitration block 82, the target calculation block 83, and the torque capacity calculation block 84. Is rearranged. That is, the coast slip request function is arranged in the request arbitration block 82.
  • the torque capacity calculation block 84 is provided with a torque capacity control function of the lockup clutch 20 based on the target differential rotation speed ⁇ N * in the coast slip control. However, when there is a coast slip request, the torque capacity calculation block 84 resets the previous converter torque F / B compensation calculated value Tcnv_fb (c) to the initial value.
  • FIG. 5 shows a target calculation block 83, a torque capacity calculation block 84, and a realization block 85 that constitute the coast slip control unit 80a included in the lockup control unit 80.
  • the detailed configuration of each of the blocks 83, 84, and 85 will be described below with reference to FIG.
  • the target calculation block 83 has a look-ahead deceleration calculator 83a and a target coast slip rotational speed characteristic setting unit 83b.
  • the prefetch deceleration calculator 83a receives the target gear ratio of the variator 4 from the continuously variable transmission control unit 8a, and calculates a prefetch deceleration that cancels out the hydraulic response delay in feedback compensation. In other words, the vehicle speed reduction due to the target gear ratio is prefetched using the future value (target gear ratio) that is reached after the target gear ratio is instructed, instead of the current value due to the actual gear ratio of the variator 4. .
  • the target coast slip rotational speed characteristic setting unit 83b includes a pre-read deceleration from the pre-read deceleration calculator 83a, a vehicle speed VSP from the vehicle speed sensor 91, a preset first target coast slip rotational speed ⁇ N1 *, and a third value. Enter the target coast slip speed ⁇ N3 * . Then, the target coast slip rotational speed characteristic based on the first target coast slip rotational speed ⁇ N1 * , the second target coast slip rotational speed ⁇ N2 * calculated based on the look-ahead deceleration, and the third target coast slip rotational speed ⁇ N3 *. Set.
  • the first target coast slip rotational speed ⁇ N1 * is output as the target differential rotational speed ⁇ N * until the vehicle speed VSP decreases to the first set vehicle speed VSP1 after the coast slip control is started.
  • the second target coast slip rotational speed ⁇ N2 * is output as the target differential rotational speed ⁇ N * .
  • the third target coast slip rotational speed ⁇ N3 * is output as the target differential rotational speed ⁇ N * .
  • the torque capacity calculation block 84 includes a pre-read engine torque calculator 84a, a first adder 84b, a pump load torque calculator 84c, and a first differentiator 84d in the corrected engine torque calculation area 841.
  • the look-ahead engine torque calculator 84a receives the accelerator opening APO and the actual engine speed Ne, and uses a total engine performance map to estimate the look-ahead engine torque estimated to vary from the current engine torque to the hydraulic response delay time. ⁇ Tepre is calculated.
  • the current engine torque is acquired from the current accelerator opening APO, the actual engine speed Ne, and the engine overall performance map.
  • the engine torque ⁇ Tepre for the look-ahead is calculated by using the change rate of the accelerator opening APO and the actual engine speed Ne and the hydraulic response delay time, and the change width (positive or negative) of the engine torque from the current time until the hydraulic response delay time elapses. To do.
  • the first adder 84b calculates the pre-read engine torque Tepre by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ⁇ Tepre from the pre-read engine torque calculator 84a.
  • the pump load torque calculator 84c calculates a pump load torque Top that is a load torque by the oil pump 70 when being rotated by the engine 1.
  • the torque capacity calculation block 84 includes, in the converter torque calculation area 842, an F / F compensator 84e, a second difference unit 84f, a third difference unit 84g, an F / B compensator 84h, and a minimum value selector 84i. And a second adder 84j.
  • F compensation amount Tcnv_ff is calculated.
  • the second subtractor 84 f inputs the actual engine speed Ne from the engine speed sensor 12 and the turbine speed Nt from the turbine speed sensor 96. Then, the actual differential speed ⁇ N is calculated from the difference between the actual engine speed Ne and the turbine speed Nt.
  • the F / B compensator 84h receives the difference rotational speed deviation ⁇ from the third differentiator 84g, and performs PI feedback control on the converter torque F / B compensation calculated value Tcnv_fb (c) corresponding to the differential rotational speed deviation ⁇ . (P: proportional, I: integral).
  • the F / B compensator 84h when there is a coast slip request due to establishment of the coast slip control start condition in the request arbitration block 82, sets the converter torque F / B compensation calculated value Tcnv_fb (c) up to the previous time as an initial value. Reset to.
  • the minimum value selector 84i inputs the converter torque F / B compensation calculated value Tcnv_fb (c) from the F / B compensator 84h and the upper limit torque value Tcnv_max for the converter torque F / B compensation. Then, the converter torque F / B compensation Tcnv_fb is output by selecting the minimum value.
  • the fixed value K is set to be the upper limit torque value Tcnv_max that promotes the increase of the target LU torque Tlu * in the slip engagement scene of the lockup clutch 20.
  • the fixed value K is set to a torque value that is too low, the corrected engine torque Tadj that is the input torque to the torque converter 2 may not be exceeded due to the sum of the converter torque F / F compensation Tcnv_ff and the fixed value K. . That is, the target LU torque Tlu * does not become zero during the slip release scene of the lockup clutch 20, and the lockup clutch 20 cannot be released. Therefore, the fixed value K is a torque value that can exceed the corrected engine torque Tadj, which is the input torque to the torque converter 2, by considering the slip release scene of the lockup clutch 20 and the sum of the fixed value K and the converter torque F / F compensation. Set to the minimum value.
  • the second adder 84j adds the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i to calculate the converter torque Tcnv.
  • the torque capacity calculation block 84 includes a fourth differentiator 84k outside the corrected engine torque calculation area 841 and the converter torque calculation area 842.
  • the fourth subtractor 84k calculates the target LU torque Tlu * by subtracting the corrected engine torque Tadj from the first subtractor 84d and the converter torque Tcnv from the second adder 84j.
  • the realization block 85 includes a torque ⁇ hydraulic converter 85a and a hydraulic ⁇ current converter 85b.
  • the torque ⁇ hydraulic converter 85a converts the target LU torque Tlu * input from the torque capacity calculation block 84 into the LU command pressure Plu.
  • the hydraulic pressure ⁇ current converter 85b converts the LU command pressure Plu input from the torque ⁇ hydraulic converter 85a into a command current Alu.
  • FIG. 6 shows the flow of the coast slip control process executed by the coast slip control unit 80a of the CVT control unit 8 of the first embodiment. Hereinafter, each step of FIG. 6 will be described. This process is repeatedly performed in a predetermined control cycle.
  • step S100 following the start, it is determined whether or not there is a coast slip request. If YES (coast slip is requested), the process proceeds to step S101. If NO (coast slip is not requested), the process proceeds to the end.
  • the “coast slip request” is issued when the coast slip control start condition is satisfied during traveling.
  • the coast slip control start condition is determined to be satisfied when a predetermined time has elapsed from the start of the fuel cut control after the accelerator release operation condition is satisfied during traveling and then the fuel cut control of the engine 1 is started.
  • the coast slip control start condition is added with an oil temperature condition that the shift hydraulic fluid temperature is equal to or higher than a predetermined temperature.
  • step S101 following the determination that there is a coast slip request in step S100, the converter torque (FB) is reset, and the process proceeds to step S102.
  • resetting the converter torque means resetting the converter torque F / B compensation calculated value Tcnv_fb (c) calculated so far by the torque capacity control process to the initial value.
  • step S102 following the reset of the converter torque (FB) in step S101 or the determination that the coast slip control termination condition is not satisfied in step S109, it is determined whether or not the vehicle speed VSP is less than the first set vehicle speed VSP1. Judging. If YES (VSP ⁇ VSP1), the process proceeds to step 104. If NO (VSP ⁇ VSP1), the process proceeds to step S103.
  • the “first set vehicle speed VSP1” is a switching vehicle speed at which the coast slip control is shifted to the LU release control, and the vehicle speed value (for example, the lower limit vehicle speed range in which the coast slip control can be maintained while preventing the engine stall) (for example, 20km / h).
  • step S103 following the determination that VSP ⁇ VSP1 in step S102, the first target coast slip rotational speed ⁇ N1 * with a fixed value is given as the target coast slip rotational speed, and the process proceeds to step S108.
  • step S104 following the determination that VSP ⁇ VSP1 in step S102, it is determined whether or not the vehicle speed VSP is less than the second set vehicle speed VSP2. If YES (VSP ⁇ VSP2), the process proceeds to step 107. If NO (VSP ⁇ VSP2), the process proceeds to step S105.
  • the “second set vehicle speed VSP2” is a vehicle speed that is scheduled to be released from the lockup clutch 20, and is lower than the first set vehicle speed VSP1, and is a vehicle speed value just before deceleration stop (for example, about 10 km / h). ).
  • step S105 following the determination that VSP ⁇ VSP2 in step S104, a pre-reading deceleration is calculated based on the target gear ratio instructed to the variator 4, and the process proceeds to step S106.
  • step S106 following the calculation of the pre-reading deceleration in step S105, a second target coast slip rotational speed ⁇ N2 * in which the differential rotational speed increases with a gradient in accordance with the pre-reading deceleration of the vehicle is given, and the process proceeds to step S108.
  • the “second target coast slip rotational speed ⁇ N2 * ” has a large vehicle look-ahead deceleration in a decreasing gradient characteristic connecting the first target coast slip rotational speed ⁇ N1 * and the third target coast slip rotational speed ⁇ N3 *.
  • step S107 following the determination in step S104 that VSP ⁇ VSP2, a third target coast slip rotational speed ⁇ N3 * with a fixed value is given as the target coast slip rotational speed, and the process proceeds to step S108.
  • the “third target coast slip rotational speed ⁇ N3 * ” is given by a clutch release differential rotational speed minimum value (for example, about ⁇ 2000 rpm) at which the lockup clutch 20 can be completely released (see FIG. 8). .
  • step S108 following the application of the target coast slip rotational speed in step S103, step S106, or step S107, torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed, and the process proceeds to step S109.
  • step S109 following the LU clutch torque capacity control in step S108, it is determined whether a coast slip control end condition is satisfied. If YES (coast slip control end condition is satisfied), the process proceeds to the end. If NO (coast slip control end condition is not satisfied), the process returns to step S102.
  • FIG. 7 shows the flow of the lock-up clutch torque capacity control process executed by the coast slip controller 80a of the CVT control unit 8 of the first embodiment. Hereinafter, each step of FIG. 7 will be described. This process is repeatedly performed in a predetermined control cycle.
  • step S1 following the start, the target differential rotation speed ⁇ N * is read, and the process proceeds to step S2.
  • target differential rotation speed ⁇ N * is the first target coast slip rotation speed ⁇ N1 * , the second target coast slip rotation speed ⁇ N2 * , or the first target slip rotation speed given in the coast slip control process of FIG. This is the 3 target coast slip rotational speed ⁇ N3 * .
  • step S2 following the reading of the target differential rotation speed ⁇ N * in step S1, a pre-reading engine torque Tepre is calculated, and the process proceeds to step S3.
  • the look-ahead engine torque Tepre is an engine torque that compensates for the hydraulic response delay in the lockup hydraulic control.
  • the pre-read engine torque Tepre is calculated by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ⁇ Tepre in the pre-read engine torque calculator 84a and the first adder 84b.
  • step S3 following the calculation of the pre-reading engine torque Tepre in step S2, a corrected engine torque Tadj is calculated, and the process proceeds to step S4.
  • the corrected engine torque Tadj is an engine torque input to the torque converter 2.
  • the corrected engine torque Tadj is calculated in the first subtractor 84d by the difference between the pre-read engine torque Tepre and the pump load torque Top.
  • step S4 subsequent to the calculation of the correction engine torque Tadj in step S3, based on the read target differential speed .DELTA.N * at step S1, the converter torque F / F compensation min corresponding to the target rotational speed difference ⁇ N * Tcnv_ff And proceeds to step S5.
  • step S5 following the calculation of the converter torque F / F compensation amount Tcnv_ff in step S4, the converter torque F / B compensation calculated value Tcnv_fb (c ) And the process proceeds to step S6.
  • the converter torque F / B compensation calculated value Tcnv_fb (c) is reset to the initial value in the F / B compensator 84h. Then, the calculation is started as the converter torque F / B compensation for making the actual differential rotational speed ⁇ N coincide with the target differential rotational speed ⁇ N * .
  • step S6 following the calculation of converter torque F / B compensation calculation value Tcnv_fb (c) in step S5, converter torque F / B compensation calculation value Tcnv_fb (c) is the upper limit of converter torque F / B compensation. It is determined whether or not the torque value is equal to or less than Tcnv_max. If YES (Tcnv_fb (c) ⁇ Tcnv_max), the process proceeds to step S7. If NO (Tcnv_fb (c)> Tcnv_max), the process proceeds to step S8.
  • step S7 following the determination that Tcnv_fb (c) ⁇ Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the converter torque F / B compensation calculated value Tcnv_fb (c), and the process proceeds to step S9. move on.
  • step S8 following the determination that Tcnv_fb (c)> Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the upper limit torque value Tcnv_max for the converter torque F / B compensation, and the process proceeds to step S9. .
  • the selection of the converter torque F / B compensation Tcnv_fb in steps S6 to S8 is performed in the minimum value selector 84i.
  • step S9 following the setting of the converter torque F / B compensation Tcnv_fb in step S7 or step S8, the converter torque Tcnv is calculated, and the process proceeds to step S10.
  • the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i.
  • step S10 following calculation of converter torque Tcnv in step S9, target LU torque Tlu * is calculated, and the process proceeds to step S11.
  • the target LU torque Tlu * is calculated by subtracting the converter torque Tcnv calculated in step S9 from the corrected engine torque Tadj calculated in step S3 in the fourth subtractor 84k.
  • step S11 following the calculation of the target LU torque Tlu * in step S10, the torque-to-hydraulic converter 85a converts the target LU torque Tlu * into the LU command pressure Plu, and the process proceeds to step S12.
  • step S12 following the conversion to the LU command pressure Plu in step S11, the LU command pressure Plu is converted to the command current Alu in the hydraulic pressure ⁇ current converter 85b, and the process proceeds to step S13.
  • step S13 following the conversion to the instruction current Alu in step S12, the instruction current Alu is output to the lockup pressure solenoid valve 76, and the process proceeds to the end.
  • step S103 the first target coast slip rotational speed ⁇ N1 * based on the coast slip differential rotational speed value in the minimum rotational speed range that can be controlled by feedback control is given as the target coast slip rotational speed.
  • step S108 torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed.
  • the first target coast slip rotational speed ⁇ N1 * is read as the target differential rotational speed ⁇ N * in S1 of FIG. 7, and the torque capacity control process proceeds to S2 to S13 of FIG. Is executed.
  • the converter torque F / B compensation calculated value Tcnv_fb (c) is calculated based on the differential rotational speed deviation ⁇ between the target differential rotational speed ⁇ N * and the actual differential rotational speed ⁇ N.
  • the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff and the converter torque F / B compensation Tcnv_fb.
  • the target LU torque Tlu * is calculated by subtracting the converter torque Tcnv from the corrected engine torque Tadj.
  • the target LU torque Tlu * is converted into the LU command pressure Plu
  • the LU command pressure Plu is converted into the command current Alu
  • the command current Alu is output to the lockup pressure solenoid valve 76.
  • step S105 the look-ahead deceleration is calculated based on the target gear ratio instructed to the variator 4.
  • step S106 the second target coast slip rotational speed ⁇ N2 * in which the differential rotational speed increases with a gradient that matches the look-ahead deceleration of the vehicle is given as the target coast slip rotational speed.
  • step S108 torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed.
  • the second target coast slip rotational speed ⁇ N2 * is read as the target differential rotational speed ⁇ N * in S1 of FIG. 7, and the process proceeds to S2 to S13 of FIG. A torque capacity control process is executed.
  • step S107 the third target coast slip rotational speed ⁇ N3 * based on the clutch release differential rotational speed minimum value capable of completely releasing the lockup clutch 20 is given as the target coast slip rotational speed.
  • step S108 torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed.
  • the third target coast slip rotational speed ⁇ N3 * is read as the target differential rotational speed ⁇ N * in S1 of FIG. 7, and the process proceeds to S2 to S13 of FIG. A torque capacity control process is executed.
  • the present inventors pay attention to the above-mentioned problem and feedback-control the lockup differential pressure so that the actual coast slip rotational speed converges to the target coast slip rotational speed during coast deceleration by the accelerator release operation. And the structure which calculates the target coast slip rotation speed used by feedback control based on the look-ahead deceleration of a vehicle was employ
  • the coast slip control as the feedback control, the deviation between the target coast slip rotational speed and the actual coast slip rotational speed that occurs during the coast slip control is controlled as needed. As a result, it is possible to suppress the lockup release timing from deviating from a desired timing.
  • the target coast slip rotational speed using the pre-read deceleration of the vehicle, even if the actual coast slip rotational speed information with a hydraulic response delay is used, the target coast slip rotation in which the hydraulic response delay becomes the pre-read information. Offset by number. As a result, response delay due to feedback control can be suppressed during coast slip deceleration.
  • FIG. 8 is a time chart showing each characteristic in a coast deceleration scene where the vehicle deceleration is different.
  • the coast slip control action in a coast deceleration scene with different vehicle deceleration will be described with reference to FIG.
  • the section from time t0 to time t1 when the vehicle speed VSP reaches the first set vehicle speed VSP1 in the lower limit vehicle speed range where coast slip control can be maintained is the first target.
  • the coast slip control section maintains the coast slip rotational speed ⁇ N1 * .
  • the section from time t1 to time t2 when the second set vehicle speed VSP2 is reached is the LU clutch release control section based on the second target coast slip rotational speed ⁇ N2 * .
  • the section after time t2 is the LU clutch complete release section that maintains the third target coast slip rotational speed ⁇ N3 * .
  • the section from time t0 to time t1 when the vehicle speed VSP reaches the first set vehicle speed VSP1 in the lower limit vehicle speed range where coast slip control can be maintained is the first target.
  • the coast slip control section maintains the coast slip rotational speed ⁇ N1 * .
  • the section from the time t1 to the time t3 when the second set vehicle speed VSP2 is reached is the LU clutch release control section based on the second target coast slip rotational speed ⁇ N2 * .
  • the section after time t3 is the LU clutch complete release section in which the third target coast slip rotational speed ⁇ N3 * is maintained.
  • the first target is the section from time t0 to time t1 when the vehicle speed VSP reaches the first set vehicle speed VSP1 in the lower limit vehicle speed range where coast slip control can be maintained.
  • the coast slip control section maintains the coast slip rotational speed ⁇ N1 * .
  • the section from time t1 to time t4 when reaching the second set vehicle speed VSP2 is the LU clutch release control section based on the second target coast slip rotational speed ⁇ N2 * . Further, the section after time t4 is the LU clutch complete release section in which the third target coast slip rotational speed ⁇ N3 * is maintained.
  • the vehicle speed characteristics A, B, and C are compared.
  • the decreasing gradient angle due to the second target coast slip rotational speed ⁇ N2 * in the LU clutch release control section is the largest angle.
  • the decreasing gradient angle due to the second target coast slip rotational speed ⁇ N2 * in the LU clutch release control section is an intermediate angle between the vehicle speed characteristic A and the vehicle speed characteristic C.
  • the decrease gradient angle due to the second target coast slip rotational speed ⁇ N2 * in the LU clutch release control section is the smallest angle.
  • the torque converter 2, the lockup clutch 20, and the lockup controller (CVT control unit 8) are provided.
  • the torque converter 2 is interposed between the travel drive source (engine 1) and the speed change mechanism (variator 4).
  • the lock-up clutch 20 is provided in the torque converter 2 and directly connects the torque converter input shaft and the torque converter output shaft by fastening.
  • the lockup controller (CVT control unit 8) controls the engagement / slip / release of the lockup clutch 20.
  • the lockup controller (CVT control unit 8) is provided with a coast slip control unit 80a that feedback-controls the lockup differential pressure so that the actual slip rotation speed converges to the target coast slip rotation speed during coast deceleration by the accelerator release operation. .
  • the coast slip control unit 80a calculates the target coast slip rotational speed used in the feedback control based on the look-ahead deceleration of the vehicle (FIG. 3).
  • the target coast slip rotational speed used in the feedback control is calculated using the look-ahead deceleration of the vehicle.
  • the transmission mechanism is a continuously variable transmission mechanism (variator 4).
  • the coast slip control unit 80a calculates the pre-reading deceleration of the vehicle based on the target gear ratio instructed to the continuously variable transmission mechanism (variator 4) (FIG. 5). In this way, the look-ahead deceleration of the vehicle is calculated based on the target gear ratio acquired from the continuously variable transmission control unit 8a. As a result, it is possible to accurately calculate the look-ahead deceleration of the vehicle that cancels out the hydraulic response delay. That is, the target speed ratio acquired from the continuously variable speed control unit 8a is a speed change instruction value, and becomes the actual speed ratio after a time corresponding to the hydraulic response delay has elapsed since the target speed ratio was instructed. That is, the target gear ratio can be said to be gear ratio information obtained by prefetching the hydraulic response delay.
  • the coast slip control unit 80a performs the third target coast slip rotation from the first target coast slip rotation speed ⁇ N1 * through the second target coast slip rotation speed ⁇ N2 * according to the deceleration of the vehicle.
  • the first target coast slip rotational speed ⁇ N1 * is given as a coast slip differential rotational speed value in the minimum rotational speed range that can be controlled by feedback control.
  • the second target coast slip rotational speed ⁇ N2 * is given as a differential rotational speed calculated value that increases the differential rotational speed with a gradient that matches the pre-read deceleration of the vehicle.
  • the third target coast slip rotational speed ⁇ N3 * is given as a clutch release differential rotational speed value at which the lockup clutch 20 can be completely released (FIG. 8).
  • the target coasting slip rotation speed characteristic and set the properties from the first target coasting slip revolution speed .DELTA.N1 * via a second target coasting slip revolution speed .DELTA.N2 * transitions third target coasting slip revolution speed .DELTA.N3 * ing.
  • the second target coast slip rotational speed ⁇ N2 * increases with a gradient that matches the look-ahead deceleration of the vehicle.
  • the coast slip control unit 80a sets the target coast slip rotational speed characteristics to the first set vehicle speed VSP1 in the lower limit vehicle speed range in which coast slip control can be maintained, and to the second setting on the lower vehicle speed side than the first set vehicle speed VSP1.
  • the target coast slip rotational speed is shifted according to the vehicle speed VSP2.
  • the selected section of the first target coast slip rotational speed ⁇ N1 * is a deceleration section from the start vehicle speed of coast slip control to the first set vehicle speed VSP1.
  • the selected section of the second target coast slip rotational speed ⁇ N2 * is a deceleration section from reaching the first set vehicle speed VSP1 to reaching the second set vehicle speed VSP2.
  • the selected section of the third target coast slip rotational speed ⁇ N3 * is set as the deceleration section after reaching the second set vehicle speed VSP2 (FIG. 8).
  • the first set vehicle speed VSP1 is set to the vehicle speed in the lower limit vehicle speed range in which the coast slip control can be maintained.
  • the period from the start of the coast slip control to the arrival at the first set vehicle speed VSP1 is set as the selection section of the first target coast slip rotational speed ⁇ N1 * .
  • the lockup controller calculates the converter torque Tcnv by feedforward compensation based on the target differential rotational speed ⁇ N * and feedback compensation based on the differential rotational speed deviation ⁇ .
  • the lockup control unit 80 executes slip control for obtaining a target LU torque Tlu * calculated by subtracting the converter torque Tcnv from the input torque (corrected engine torque Tadj) to the torque converter 2.
  • the coast slip control unit 80a resets the feedback compensation amount of the converter torque Tcnv to an initial value and starts coast slip control (FIG. 6). As described above, when coast slip control is started, the feedback compensation amount of the converter torque Tcnv is reset to the initial value.
  • the lock-up control unit 80 is not a dedicated control unit for coast slip control, but is also used for other controls such as smooth LU control. For this reason, at the start of the coast slip control, by resetting the initial value for the feedback compensation of the converter torque Tcnv, the influence on the coast slip control due to the torque value for the feedback compensation by the integral term until the previous time is eliminated. .
  • the lockup control unit 80 has the driving force demand block 81 that converts the target driving force Fd * into the target engine speed Ne * .
  • the lockup control unit may be an example that does not have a driving force demand block and performs coast slip control by giving a target coast slip rotational speed characteristic.
  • Example 1 shows an example in which the lockup control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission.
  • the lock-up control device of the present invention may be applied to a vehicle equipped with a stepped transmission called step AT or a vehicle equipped with a continuously variable transmission with a sub-transmission as an automatic transmission.
  • the applied vehicle is not limited to an engine vehicle, and can be applied to a hybrid vehicle in which an engine and a motor are mounted on a traveling drive source, an electric vehicle in which a motor is mounted on a traveling drive source, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A lock-up control device for a belt-type continuously variable transmission (CVT) is equipped with a torque converter (2), a lock-up clutch (20), and a CVT control unit (8). The CVT control unit (8) is provided with a coast slip control unit (80a) which feedback-controls the lock-up differential pressure in a manner such that the actual slip rotation speed converges on a target coast slip rotation speed during a coasting deceleration in which the foot is taken off the accelerator. The coast slip control unit (80a) calculates the target coast slip rotation speed to be used in the feedback control on the basis of the anticipated vehicle deceleration.

Description

自動変速機のロックアップ制御装置Automatic transmission lockup control device
 本発明は、車両に搭載される自動変速機のロックアップ制御装置に関する。 The present invention relates to a lockup control device for an automatic transmission mounted on a vehicle.
 従来、ロックアップを出来るだけ低車速まで維持しつつ、エンストを防止でき、かつロックアップクラッチを解放する際のショックを低減することを課題とする車両の自動変速装置が知られている。この従来装置では、減速走行時に、車速V検出時点での減速度αから求められるロックアップオフ車速以下となるロックアップオフ車速到達予想時より所定時間だけ前の早出しロックアップオフ車速Vsを演算する。検出車速Vが早出しロックアップオフ車速Vsに達したとき、ロックアップオフ制御を開始し、該ロックアップオフ制御は、前記ロックアップオン圧Ponを、前記早出しロックアップオフ車速Vsに応じて設定された減圧初期圧Psに即座に減圧する。これに続いて少なくとも車速検出時の減速度αに応じて設定された減圧勾配βをもって緩やかに減圧し、検出車速Vが前記ロックアップオフ車速Voに達すると一気にロックアップオフ圧Poffに減圧する(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, there is known an automatic transmission for a vehicle that can prevent engine stall while maintaining lockup as low as possible, and reduce shock when releasing the lockup clutch. In this conventional apparatus, when decelerating, the fast-release lockup-off vehicle speed Vs is calculated a predetermined time before the expected arrival of the lockup-off vehicle speed that is equal to or lower than the lockup-off vehicle speed obtained from the deceleration α when the vehicle speed V is detected. To do. When the detected vehicle speed V reaches the fast-release lockup-off vehicle speed Vs, lock-up off control is started, and the lock-up off control determines the lockup on pressure Pon according to the fast-release lockup off vehicle speed Vs. The pressure is immediately reduced to the set initial pressure Ps. Subsequently, the pressure is gradually reduced with a pressure reduction gradient β set in accordance with at least the deceleration α when the vehicle speed is detected, and when the detected vehicle speed V reaches the lockup-off vehicle speed Vo, the pressure is reduced to the lockup-off pressure Poff at once ( For example, see Patent Document 1).
特開2012-347312号公報JP 2012-47312A
 上記従来装置にあっては、ロックアップクラッチを解放する際、制御開始時の車両減速度に応じて設定される差圧特性に沿ったフィードフォワード制御によりロックアップオフ制御を行うようにしている。このため、ロックアップオフ制御を開始した後の差圧特性に対する実差圧の偏差発生を許容し、ロックアップクラッチの解放タイミングが所望のタイミングからずれる虞がある、という問題があった。 In the above-described conventional device, when releasing the lock-up clutch, the lock-up control is performed by feed-forward control according to the differential pressure characteristic set according to the vehicle deceleration at the start of control. For this reason, there is a problem that deviation of the actual differential pressure with respect to the differential pressure characteristic after the start of the lock-up control is allowed, and the release timing of the lock-up clutch may deviate from a desired timing.
 本発明は、上記問題に着目してなされたもので、コーストスリップ減速時、フィードバック制御による応答遅れを抑えつつ、ロックアップ解放タイミングが所望のタイミングからずれることを抑制することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to suppress a lockup release timing from deviating from a desired timing while suppressing a response delay due to feedback control during coast slip deceleration.
 上記目的を達成するため、本発明の自動変速機のロックアップ制御装置は、トルクコンバータと、ロックアップクラッチと、ロックアップコントローラと、を備える。
ロックアップコントローラに、アクセル足離し操作によるコースト減速中、実コーストスリップ回転数が目標コーストスリップ回転数に収束するようにロックアップ差圧をフィードバック制御するコーストスリップ制御部を設ける。
コーストスリップ制御部は、フィードバック制御で用いる目標コーストスリップ回転数を、車両の先読み減速度に基づき算出する。
In order to achieve the above object, a lockup control device for an automatic transmission according to the present invention includes a torque converter, a lockup clutch, and a lockup controller.
The lock-up controller is provided with a coast slip control unit that feedback-controls the lock-up differential pressure so that the actual coast slip rotational speed converges to the target coast slip rotational speed during coast deceleration by the accelerator release operation.
The coast slip control unit calculates a target coast slip rotational speed used in feedback control based on the look-ahead deceleration of the vehicle.
 このように、目標コーストスリップ回転数を車両の先読み減速度を用いて算出することで、コーストスリップ減速時、フィードバック制御による応答遅れを抑えつつ、ロックアップ解放タイミングが所望のタイミングからずれることを抑制することができる。 In this way, by calculating the target coast slip rotation speed using the look-ahead deceleration of the vehicle, it is possible to suppress the lockup release timing from deviating from the desired timing while suppressing the response delay due to feedback control during coast slip deceleration. can do.
実施例1の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す全体システム図である。1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to a first embodiment is applied. 自動変速モードでの無段変速制御をバリエータにより実行する際に用いられるDレンジ無段変速スケジュールの一例を示す変速スケジュール図である。It is a shift schedule figure which shows an example of the D range continuously variable transmission schedule used when the continuously variable transmission control in automatic transmission mode is performed by a variator. 実施例1のロックアップ制御装置を示す概要構成図である。It is a schematic block diagram which shows the lockup control apparatus of Example 1. FIG. CVTコントロールユニットのロックアップ制御部を構成する各ブロックを示すブロック構成図である。It is a block block diagram which shows each block which comprises the lockup control part of a CVT control unit. ロックアップ制御部に有するコーストスリップ制御部を構成する目標算出ブロックとトルク容量演算ブロックと実現ブロックを示す詳細構成図である。It is a detailed block diagram which shows the target calculation block, torque capacity calculation block, and realization block which comprise the coast slip control part which has a lockup control part. 実施例1のCVTコントロールユニットのコーストスリップ制御部にて実行されるコーストスリップ制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the coast slip control process performed in the coast slip control part of the CVT control unit of Example 1. FIG. 実施例1のCVTコントロールユニットのコーストスリップ制御部にて実行されるロックアップクラッチトルク容量制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the lockup clutch torque capacity control processing performed in the coast slip control part of the CVT control unit of Example 1. 車両減速度が異なるコースト減速シーンにおける車速・目標コーストスリップ回転数・LU指示圧の各特性を示すタイムチャートである。It is a time chart which shows each characteristic of vehicle speed, target coast slip number of rotations, and LU indication pressure in a coast deceleration scene where vehicle deceleration differs.
 以下、本発明の自動変速機のロックアップ制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, a mode for carrying out a lockup control device for an automatic transmission according to the present invention will be described based on Example 1 shown in the drawings.
 実施例1におけるロックアップ制御装置は、トルクコンバータと前後進切替機構とバリエータと終減速機構により構成されるベルト式無段変速機(自動変速機の一例)を搭載したエンジン車に適用したものである。以下、実施例1の構成を、「全体システム構成」、「ロックアップ制御装置の構成」、「トルク容量演算ブロック等の詳細構成」、「コーストスリップ制御処理構成」、「ロックアップクラッチトルク容量制御処理構成」に分けて説明する。 The lockup control device according to the first embodiment is applied to an engine vehicle equipped with a belt-type continuously variable transmission (an example of an automatic transmission) including a torque converter, a forward / reverse switching mechanism, a variator, and a final reduction mechanism. is there. Hereinafter, the configuration of the first embodiment is changed to “overall system configuration”, “configuration of lockup control device”, “detailed configuration of torque capacity calculation block,” “coast slip control processing configuration”, “lockup clutch torque capacity control”. The processing will be described separately.
 [全体システム構成]
 図1は、実施例1の自動変速機のロックアップ制御装置が適用されたエンジン車の駆動系と制御系を示す。以下、図1に基づいて、全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an engine vehicle to which a lockup control device for an automatic transmission according to a first embodiment is applied. The overall system configuration will be described below with reference to FIG.
 エンジン車の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6,6と、を備えている。ここで、ベルト式無段変速機CVTは、トルクコンバータ2と前後進切替機構3とバリエータ4と終減速機構5を図外の変速機ケースに内蔵することにより構成される。 As shown in FIG. 1, the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, and drive wheels 6 and 6. Yes. Here, the belt type continuously variable transmission CVT is configured by incorporating the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5 in a transmission case (not shown).
 エンジン1は、ドライバーによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクを制御可能である。このエンジン1には、スロットルバルブ開閉動作や燃料カット動作等によりトルク制御を行う出力トルク制御アクチュエータ10を有する。例えば、アクセル足離し操作によるコースト走行時、燃料カット制御が実行される。 The engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver. The engine 1 includes an output torque control actuator 10 that performs torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like. For example, fuel cut control is executed during coasting by an accelerator release operation.
 トルクコンバータ2は、トルク増大機能やトルク変動吸収機能を有する流体継手による発進要素である。トルク増大機能やトルク変動吸収機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、ポンプインペラ23と、タービンランナ24と、ステータ26と、を構成要素とする。ポンプインペラ23は、エンジン出力軸11にコンバータハウジング22を介して連結される。タービンランナ24は、トルクコンバータ出力軸21に連結される。ステータ26は、変速機ケースにワンウェイクラッチ25を介して設けられる。 The torque converter 2 is a starting element by a fluid coupling having a torque increasing function and a torque fluctuation absorbing function. When the torque increasing function and the torque fluctuation absorbing function are not required, the lockup clutch 20 that can directly connect the engine output shaft 11 (= torque converter input shaft) and the torque converter output shaft 21 is provided. The torque converter 2 includes a pump impeller 23, a turbine runner 24, and a stator 26 as constituent elements. The pump impeller 23 is connected to the engine output shaft 11 via the converter housing 22. The turbine runner 24 is connected to the torque converter output shaft 21. The stator 26 is provided in the transmission case via the one-way clutch 25.
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数枚のクラッチプレートによる前進クラッチ31と、複数枚のブレーキプレートによる後退ブレーキ32と、を有する。前進クラッチ31は、Dレンジ等の前進走行レンジ選択時に前進クラッチ圧Pfcにより油圧締結される。後退ブレーキ32は、Rレンジ等の後退走行レンジ選択時に後退ブレーキ圧Prbにより油圧締結される。なお、前進クラッチ31と後退ブレーキ32は、Nレンジ(ニュートラルレンジ)の選択時には、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることでいずれも解放される。 The forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel. The forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates. The forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected. The reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected. The forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range) is selected.
 バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、プーリベルト44と、を有し、ベルト接触径の変化により変速比(バリエータ入力回転とバリエータ出力回転の比)を無段階に変化させる無段変速機能を備える。プライマリプーリ42は、バリエータ入力軸40の同軸上に配された固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bはプライマリ圧室45に導かれるプライマリ圧Ppriによりスライド動作する。セカンダリプーリ43は、バリエータ出力軸41の同軸上に配された固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bはセカンダリ圧室46に導かれるセカンダリ圧Psecによりスライド動作する。プーリベルト44は、プライマリプーリ42のV字形状をなすシーブ面と、セカンダリプーリ43のV字形状をなすシーブ面とに掛け渡されている。このプーリベルト44は、環状リングを内から外へ多数重ね合わせた2組の積層リングと、打ち抜き板材により形成され、2組の積層リングに沿って挟み込みにより環状に積層して取り付けられた多数のエレメントにより構成されている。なお、プーリベルト44としては、プーリ進行方向に多数配列したチェーンエレメントを、プーリ軸方向に貫通するピンにより結合したチェーンタイプのベルトであっても良い。 The variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and continuously changes the transmission gear ratio (ratio of variator input rotation to variator output rotation) by changing the belt contact diameter. A gear shifting function is provided. The primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45. The secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b that are arranged coaxially with the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46. The pulley belt 44 is stretched around a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43. The pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements. The pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
 終減速機構5は、バリエータ出力軸41からのバリエータ出力回転を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、減速ギヤ機構として、バリエータ出力軸41に設けられたアウトプットギヤ52と、アイドラ軸50に設けられたアイドラギヤ53及びリダクションギヤ54と、デフケースの外周位置に設けられたファイナルギヤ55と、を有する。そして、差動ギヤ機構として、左右のドライブ軸51,51に介装されたディファレンシャルギヤ56を有する。 The final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function. The final speed reduction mechanism 5 is a speed reduction gear mechanism that includes an output gear 52 provided on the variator output shaft 41, an idler gear 53 and a reduction gear 54 provided on the idler shaft 50, and a final gear provided on the outer peripheral position of the differential case. And a gear 55. The differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
 エンジン車の制御系は、図1に示すように、油圧制御ユニット7と、CVTコントロールユニット8と、エンジンコントロールユニット9と、を備えている。電子制御系であるCVTコントロールユニット8とエンジンコントロールユニット9は、互いの情報を交換可能なCAN通信線13により接続されている。 As shown in FIG. 1, the engine vehicle control system includes a hydraulic control unit 7, a CVT control unit 8, and an engine control unit 9. The CVT control unit 8 and the engine control unit 9 which are electronic control systems are connected by a CAN communication line 13 which can exchange information with each other.
 油圧制御ユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppri、セカンダリ圧室46に導かれるセカンダリ圧Psec、前進クラッチ31への前進クラッチ圧Pfc、後退ブレーキ32への後退ブレーキ圧Prb、等を調圧するユニットである。この油圧制御ユニット7は、走行用駆動源であるエンジン1により回転駆動されるオイルポンプ70と、オイルポンプ70からの吐出圧に基づいて各種の制御圧を調圧する油圧制御回路71と、を備える。油圧制御回路71には、ライン圧ソレノイド弁72と、プライマリ圧ソレノイド弁73と、セカンダリ圧ソレノイド弁74と、セレクトソレノイド弁75と、ロックアップ圧ソレノイド弁76と、を有する。なお、各ソレノイド弁72,73,74,75,76は、CVTコントロールユニット8から出力される制御指令値(指示電流)によって調圧動作を行う。 The hydraulic control unit 7 performs primary pressure Ppri guided to the primary pressure chamber 45, secondary pressure Psec guided to the secondary pressure chamber 46, forward clutch pressure Pfc to the forward clutch 31, reverse brake pressure Prb to the reverse brake 32, etc. It is a unit that regulates pressure. The hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. . The hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a select solenoid valve 75, and a lockup pressure solenoid valve 76. Each solenoid valve 72, 73, 74, 75, 76 performs a pressure adjustment operation according to a control command value (indicated current) output from the CVT control unit 8.
 ライン圧ソレノイド弁72は、CVTコントロールユニット8から出力されるライン圧指令値に応じ、オイルポンプ70からの吐出圧を、指令されたライン圧PLに調圧する。このライン圧PLは、各種の制御圧を調圧する際の元圧であり、駆動系を伝達するトルクに対してベルト滑りやクラッチ滑りを抑える油圧とされる。 The line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL according to the line pressure command value output from the CVT control unit 8. The line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
 プライマリ圧ソレノイド弁73は、CVTコントロールユニット8から出力されるプライマリ圧指令値に応じ、ライン圧PLを元圧として指令されたプライマリ圧Ppriに減圧調整する。セカンダリ圧ソレノイド弁74は、CVTコントロールユニット8から出力されるセカンダリ圧指令値に応じ、ライン圧PLを元圧として指令されたセカンダリ圧Psecに減圧調整する。 The primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure in accordance with the primary pressure command value output from the CVT control unit 8. The secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
 セレクトソレノイド弁75は、CVTコントロールユニット8から出力される前進クラッチ圧指令値又は後退ブレーキ圧指令値に応じ、ライン圧PLを元圧として指令された前進クラッチ圧Pfc又は後退ブレーキ圧Prbに減圧調整する。 The select solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc or the reverse brake pressure Prb commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value or the reverse brake pressure command value output from the CVT control unit 8. To do.
 ロックアップ圧ソレノイド弁76は、CVTコントロールユニット8から出力される指示電流Aluに応じ、ロックアップクラッチ20を締結/スリップ締結/解放するLU指示圧Pluに調圧する。 The lock-up pressure solenoid valve 76 adjusts to the LU command pressure Plu for engaging / slipping / releasing the lock-up clutch 20 according to the command current Alu output from the CVT control unit 8.
 CVTコントロールユニット8は、ライン圧制御や変速制御や前後進切替制御やロックアップ制御、等を行う。ライン圧制御では、アクセル開度等に応じた目標ライン圧を得る指令値をライン圧ソレノイド弁72に出力する。変速制御では、目標変速比(目標プライマリ回転Npri*)を決めると、決めた目標変速比(目標プライマリ回転数Npri*)を得る指令値をプライマリ圧ソレノイド弁73及びセカンダリ圧ソレノイド弁74に出力する。前後進切替制御では、選択されているレンジ位置に応じて前進クラッチ31と後退ブレーキ32の締結/解放を制御する指令値をセレクトソレノイド弁75に出力する。ロックアップ制御では、ロックアップクラッチ20を締結/スリップ締結/解放するLU指示圧Pluを制御する指示電流Aluをロックアップ圧ソレノイド弁76に出力する。 The CVT control unit 8 performs line pressure control, shift control, forward / reverse switching control, lockup control, and the like. In the line pressure control, a command value for obtaining a target line pressure corresponding to the accelerator opening is output to the line pressure solenoid valve 72. In the shift control, when the target gear ratio (target primary rotation Npri * ) is determined, a command value for obtaining the determined target gear ratio (target primary rotation speed Npri * ) is output to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74. . In the forward / reverse switching control, a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the select solenoid valve 75 according to the selected range position. In the lock-up control, the command current Alu for controlling the LU command pressure Plu for engaging / slipping / releasing the lock-up clutch 20 is output to the lock-up pressure solenoid valve 76.
 CVTコントロールユニット8には、プライマリ回転センサ90、車速センサ91、セカンダリ圧センサ92、油温センサ93、インヒビタスイッチ94、ブレーキスイッチ95、タービン回転センサ96、セカンダリ回転センサ97、プライマリ圧センサ98、等からのセンサ情報やスイッチ情報が入力される。 The CVT control unit 8 includes a primary rotation sensor 90, a vehicle speed sensor 91, a secondary pressure sensor 92, an oil temperature sensor 93, an inhibitor switch 94, a brake switch 95, a turbine rotation sensor 96, a secondary rotation sensor 97, a primary pressure sensor 98, and the like. Sensor information and switch information are input.
 エンジンコントロールユニット9には、エンジン回転センサ12、アクセル開度センサ14、等からのセンサ情報が入力される。CVTコントロールユニット8は、エンジン回転情報やアクセル開度情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジン回転数Neやアクセル開度APOの情報を受け取る。さらに、エンジントルク情報をエンジンコントロールユニット9へリクエストすると、CAN通信線13を介し、エンジンコントロールユニット9において推定演算される実エンジントルクTeの情報を受け取る。 The engine control unit 9 receives sensor information from the engine rotation sensor 12, accelerator opening sensor 14, and the like. When the CVT control unit 8 requests the engine control information and the accelerator opening information to the engine control unit 9, the CVT control unit 8 receives information on the engine speed Ne and the accelerator opening APO via the CAN communication line 13. Further, when requesting engine torque information to the engine control unit 9, information on the actual engine torque Te estimated in the engine control unit 9 is received via the CAN communication line 13.
 図2は、Dレンジ選択時に自動変速モードでの無段変速制御をバリエータ4により実行する際に用いられるDレンジ無段変速スケジュールの一例を示す。 FIG. 2 shows an example of the D range continuously variable transmission schedule used when the variator 4 executes the continuously variable transmission control in the automatic transmission mode when the D range is selected.
 「Dレンジ変速モード」は、車両運転状態に応じて変速比を自動的に無段階に変更する自動変速モードである。「Dレンジ変速モード」での変速制御は、車速VSP(車速センサ91)とアクセル開度APO(アクセル開度センサ14)により特定される図2のDレンジ無段変速スケジュール上での運転点(VSP,APO)により、目標プライマリ回転数Npri*を決める。そして、プライマリ回転センサ90からの実プライマリ回転数Npriを、目標プライマリ回転数Npri*に一致させるプーリ油圧のフィードバック制御により行われる。なお、変速比は、Dレンジ無段変速スケジュールの最Low変速比線や最High変速比線から明らかなように、ゼロ運転点から引かれる変速比線の傾きであらわされる。よって、運転点(VSP,APO)により目標プライマリ回転数Npri*を決めることは、バリエータ4の目標変速比を決めることになる。 The “D range shift mode” is an automatic shift mode in which the gear ratio is automatically changed steplessly in accordance with the vehicle operating state. The shift control in the “D range shift mode” is performed by operating points on the D range continuously variable shift schedule of FIG. 2 specified by the vehicle speed VSP (vehicle speed sensor 91) and the accelerator opening APO (accelerator opening sensor 14) ( VSP, APO) determines the target primary rotational speed Npri * . Then, the actual primary rotational speed Npri from the primary rotational sensor 90 is performed by the pulley hydraulic pressure feedback control that matches the target primary rotational speed Npri * . The gear ratio is represented by the slope of the gear ratio line drawn from the zero operating point, as is clear from the lowest gear ratio line and the highest gear ratio line of the D range continuously variable transmission schedule. Therefore, determining the target primary rotational speed Npri * by the operating point (VSP, APO) determines the target speed ratio of the variator 4.
 即ち、「Dレンジ変速モード」で用いられるDレンジ無段変速スケジュールは、図2に示すように、運転点(VSP,APO)に応じて最Low変速比と最High変速比による変速比幅の範囲内で変速比を無段階に変更するように設定されている。例えば、車速VSPが一定のときは、アクセル踏み込み操作を行うと目標プライマリ回転数Npri*が上昇してダウンシフト方向に変速し、アクセル戻し操作を行うと目標プライマリ回転数Npri*が低下してアップシフト方向に変速する。アクセル開度APOが一定のときは、車速VSPが上昇するとアップシフト方向に変速し、車速VSPが低下するとダウンシフト方向に変速する。なお、アクセル足離し操作によるコースト減速時の無段変速は、Dレンジ無段変速スケジュールの太実線で示すコースト変速線(APO=0)に沿って車速VSPが変化することで行われる。 That is, as shown in FIG. 2, the D range continuously variable transmission schedule used in the “D range speed change mode” has a gear ratio range of the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO). Within the range, the gear ratio is set to change steplessly. For example, when the vehicle speed VSP is constant, and shifting the downshift direction to perform the increased target primary rotation speed Npri * the accelerator depression operation, the target primary rotation speed Npri * decreases Doing accelerator return operation up Shift in the shift direction. When the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases. The continuously variable transmission during coast deceleration by the accelerator release operation is performed by changing the vehicle speed VSP along the coast shift line (APO = 0) indicated by the thick solid line of the D range continuously variable transmission schedule.
 [ロックアップ制御装置の構成]
 図3は、実施例1のロックアップ制御装置を示す。以下、図3に基づいてロックアップ制御装置の概要構成を説明する。なお、ロックアップを“LU”と略称し、フィードフォワードを“F/F”と略称し、フィードバックを“F/B”と略称する。
[Configuration of lock-up control device]
FIG. 3 shows the lockup control device of the first embodiment. Hereinafter, a schematic configuration of the lockup control device will be described with reference to FIG. Lock-up is abbreviated as “LU”, feedforward is abbreviated as “F / F”, and feedback is abbreviated as “F / B”.
 ロックアップ制御装置が適用される駆動系は、図3に示すように、エンジン1(走行用駆動源)と、ロックアップクラッチ20を有するトルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6と、を備えている。 As shown in FIG. 3, the drive system to which the lockup control device is applied includes an engine 1 (driving drive source), a torque converter 2 having a lockup clutch 20, a forward / reverse switching mechanism 3, and a variator 4. The final reduction mechanism 5 and the drive wheels 6 are provided.
 ロックアップ制御装置が適用される制御系は、図3に示すように、CVTコントロールユニット8と、エンジンコントロールユニット9と、ロックアップ圧ソレノイド弁76と、を備えている。CVTコントロールユニット8には、無段変速制御部8a以外に、様々な要求に応じてロックアップクラッチ20のクラッチ状態を、締結状態/スリップ締結状態/解放状態とする統合ロックアップ制御を行うロックアップ制御部80が設けられている。そして、ロックアップ制御部80には、アクセル足離し操作によるコースト減速シーンのときにコーストスリップ制御を行うコーストスリップ制御部80aを有する。 As shown in FIG. 3, the control system to which the lockup control device is applied includes a CVT control unit 8, an engine control unit 9, and a lockup pressure solenoid valve 76. In addition to the continuously variable transmission control unit 8a, the CVT control unit 8 is a lockup that performs integrated lockup control to change the clutch state of the lockup clutch 20 to the engaged state / slip engaged state / released state according to various requests. A control unit 80 is provided. The lockup control unit 80 includes a coast slip control unit 80a that performs coast slip control during a coast deceleration scene by an accelerator release operation.
 ロックアップ制御部80での統合ロックアップ制御は、運転者の意図する目標駆動力Fd*を推定し、駆動輪6へ出力される実駆動力Fdが目標駆動力Fd*になるようにロックアップクラッチ20のスリップ締結状態制御を行う点を特徴とする。その際、スリップ締結状態制御でのコントロール性を高めるために、目標駆動力Fd*を目標エンジン回転数Ne*に変換する。この目標エンジン回転数Ne*に実エンジン回転数Neを収束させる制御(F/F制御+F/B制御)を実行することでコンバータトルクTcnvを演算する。そして、図3に示すように、Tadj=Tcnv+Tluの関係が成り立つことで、ロックアップクラッチ20の目標LUトルクTlu*を算出し、目標LUトルクTlu*を得る指示電流Aluをロックアップ圧ソレノイド弁76に出力する。このように、目標エンジン回転数Ne*を得るようにトルクコンバータ2のトルク比を制御することで、ロックアップクラッチ20のスリップ締結状態制御において、運転者の意図する目標駆動力Fd*を実現するようにしている。 The integrated lockup control in the lockup control unit 80 estimates the target driving force Fd * intended by the driver, and locks up so that the actual driving force Fd output to the driving wheels 6 becomes the target driving force Fd *. It is characterized in that the slip engagement state control of the clutch 20 is performed. At this time, the target driving force Fd * is converted into the target engine speed Ne * in order to improve the controllability in the slip engagement state control. The converter torque Tcnv is calculated by executing control (F / F control + F / B control) for converging the actual engine speed Ne to the target engine speed Ne * . Then, as shown in FIG. 3, Tadj = Tcnv + Tlu relationship that holds, calculates a target LU torque TLU of the lockup clutch 20 *, the target LU torque TLU * the obtained command current Alu lockup pressure solenoid valve 76 Output to. Thus, by controlling the torque ratio of the torque converter 2 so as to obtain the target engine speed Ne * , the target driving force Fd * intended by the driver is realized in the slip engagement state control of the lockup clutch 20. I am doing so.
 図4は、CVTコントロールユニット8のロックアップ制御部80を構成する各ブロックを示す。以下、図4に基づいてロックアップ制御部80のブロック構成を説明する。 FIG. 4 shows each block constituting the lockup control unit 80 of the CVT control unit 8. Hereinafter, the block configuration of the lockup control unit 80 will be described with reference to FIG.
 ロックアップ制御部80は、図4に示すように、駆動力デマンドブロック81と、要求調停ブロック82と、目標算出ブロック83と、トルク容量演算ブロック84と、実現ブロック85と、を有する。 The lockup control unit 80 includes a driving force demand block 81, a request arbitration block 82, a target calculation block 83, a torque capacity calculation block 84, and an implementation block 85, as shown in FIG.
 駆動力デマンドブロック81は、アクセル開度APOや車速VSPに基づいて目標駆動力Fd*を演算し、エンジン全性能特性を用いて目標駆動力Fd*を目標エンジン回転数Ne*に変換することで、目標エンジン回転数Ne*のプロファイルを演算する。そして、駆動力デマンドブロック81からは、締結要求フラグや解放要求フラグを出力する。 The driving force demand block 81 calculates the target driving force Fd * based on the accelerator opening APO and the vehicle speed VSP, and converts the target driving force Fd * into the target engine speed Ne * using the engine overall performance characteristics. The profile of the target engine speed Ne * is calculated. The driving force demand block 81 outputs a fastening request flag and a release request flag.
 要求調停ブロック82は、駆動力デマンドブロック81からの締結要求フラグと解放要求フラグを入力し、各種要求からロックアップ要求を演算し、要求を調停して優先順位を決める。各種要求としては、基本要求、DP要求(DPはDriving pleasureの略)、運転性要求、保護要求、FS要求(FSはFail Safeの略)、技術限界要求、ほかのシステム要求、コーストスリップ要求、等がある。要求調停により要求調停ブロック82からは、即解放要求フラグや解放要求フラグやスリップ要求フラグや締結要求フラグ等を出力する。 The request arbitration block 82 receives the engagement request flag and the release request flag from the driving force demand block 81, calculates a lockup request from various requests, and arbitrates the request to determine the priority. Various requirements include basic requirements, DP requirements (DP stands for Driving pleasure), drivability requirements, protection requirements, FS requirements (FS stands for Fail Safe), technical limit requirements, other system requirements, coast slip requirements, Etc. By request arbitration, the request arbitration block 82 outputs an immediate release request flag, a release request flag, a slip request flag, an engagement request flag, and the like.
 目標算出ブロック83は、要求調停ブロック82からの即解放要求フラグ・解放要求フラグ・スリップ要求フラグ・締結要求フラグ等を入力し、これらのLU要求から差回転目標として目標差回転数ΔN*を演算する。この目標算出ブロック83にて締結差回転目標や解放差回転目標を算出するとき、駆動力デマンドブロック81により演算された目標エンジン回転数Ne*を入力する。なお、即解放差回転目標やスリップ差回転目標については、予め設定された目標スリップ回転数特性や演算により設定される目標スリップ回転数特性を用いる。ここで、演算により設定される目標スリップ回転数特性のうち、コーストスリップ要求に対して設定される目標スリップ回転数特性を、「目標コーストスリップ回転数特性」という。 The target calculation block 83 inputs the immediate release request flag, the release request flag, the slip request flag, the engagement request flag, etc. from the request arbitration block 82, and calculates the target differential rotation speed ΔN * as a differential rotation target from these LU requests. To do. When the target differential rotation target or the release differential rotation target is calculated in the target calculation block 83, the target engine speed Ne * calculated by the driving force demand block 81 is input. For the immediate release differential rotation target and the slip differential rotation target, a preset target slip rotation speed characteristic or a target slip rotation speed characteristic set by calculation is used. Here, among the target slip rotation speed characteristics set by calculation, the target slip rotation speed characteristics set in response to the coast slip request are referred to as “target coast slip rotation speed characteristics”.
 トルク容量演算ブロック84は、目標算出ブロック83から目標差回転数ΔN*とタービン回転数Ntと実エンジン回転数Ne等を入力する。そして、補正エンジントルクTadjの演算とコンバータトルクTcnvの演算(F/F制御+F/B制御)により、目標差回転数ΔN*を実現する指示トルク(目標LUトルクTlu*)を演算する。ここで、コーストスリップ要求があるときは、目標算出ブロック83において設定された目標コーストスリップ回転数特性に基づく目標差回転数ΔN*を入力する。 The torque capacity calculation block 84 inputs the target differential rotation speed ΔN * , the turbine rotation speed Nt, the actual engine rotation speed Ne, and the like from the target calculation block 83. Then, the command torque (target LU torque Tlu * ) for realizing the target differential rotation speed ΔN * is calculated by calculating the corrected engine torque Tadj and the converter torque Tcnv (F / F control + F / B control). Here, when there is a coast slip request, the target differential rotation speed ΔN * based on the target coast slip rotation speed characteristic set in the target calculation block 83 is input.
 実現ブロック85は、トルク容量演算ブロック84から目標LUトルクTlu*を入力し、目標LUトルクTlu*をLU指示圧Pluに変換し、さらに、LU指示圧Pluを指示電流Aluに変換する。 The realization block 85 receives the target LU torque Tlu * from the torque capacity calculation block 84, converts the target LU torque Tlu * into the LU command pressure Plu, and further converts the LU command pressure Plu into the command current Alu.
 ここで、コーストスリップ制御は、図4に示すように、それまで実現ブロック85に配置されていたコースト容量学習制御の各機能を、要求調停ブロック82と目標算出ブロック83とトルク容量演算ブロック84とに再配置したものである。つまり、要求調停ブロック82にコーストスリップ要求機能を配置する。目標算出ブロック83にコーストスリップ制御での目標コーストスリップ回転数特性による目標差回転数ΔN*(=Ne-Nt:負の値)の設定機能を配置する。トルク容量演算ブロック84にコーストスリップ制御での目標差回転数ΔN*に基づくロックアップクラッチ20のトルク容量制御機能を配置する。但し、トルク容量演算ブロック84では、コーストスリップ要求があると、前回までのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。 Here, as shown in FIG. 4, the coast slip control includes each function of the coast capacity learning control that has been arranged in the realization block 85 until the request arbitration block 82, the target calculation block 83, and the torque capacity calculation block 84. Is rearranged. That is, the coast slip request function is arranged in the request arbitration block 82. In the target calculation block 83, a setting function for setting the target differential rotation speed ΔN * (= Ne−Nt: negative value) based on the target coast slip rotation speed characteristic in the coast slip control is arranged. The torque capacity calculation block 84 is provided with a torque capacity control function of the lockup clutch 20 based on the target differential rotation speed ΔN * in the coast slip control. However, when there is a coast slip request, the torque capacity calculation block 84 resets the previous converter torque F / B compensation calculated value Tcnv_fb (c) to the initial value.
 [トルク容量演算ブロック等の詳細構成]
 図5は、ロックアップ制御部80に有するコーストスリップ制御部80aを構成する目標算出ブロック83とトルク容量演算ブロック84と実現ブロック85を示す。以下、図5に基づいて各ブロック83,84,85の詳細構成を説明する。
[Detailed configuration of torque capacity calculation block, etc.]
FIG. 5 shows a target calculation block 83, a torque capacity calculation block 84, and a realization block 85 that constitute the coast slip control unit 80a included in the lockup control unit 80. The detailed configuration of each of the blocks 83, 84, and 85 will be described below with reference to FIG.
 目標算出ブロック83は、先読み減速度算出器83aと、目標コーストスリップ回転数特性設定器83bとを有する。 The target calculation block 83 has a look-ahead deceleration calculator 83a and a target coast slip rotational speed characteristic setting unit 83b.
 先読み減速度算出器83aは、無段変速制御部8aからバリエータ4の目標変速比を入力し、フィードバック補償での油圧応答遅れ分を相殺する先読み減速度を算出する。つまり、車速低下による減速度を、バリエータ4の実変速比による現在値ではなく、目標変速比が指示された後に到達する未来値(目標変速比)を用い、目標変速比による車速低下を先読みする。 The prefetch deceleration calculator 83a receives the target gear ratio of the variator 4 from the continuously variable transmission control unit 8a, and calculates a prefetch deceleration that cancels out the hydraulic response delay in feedback compensation. In other words, the vehicle speed reduction due to the target gear ratio is prefetched using the future value (target gear ratio) that is reached after the target gear ratio is instructed, instead of the current value due to the actual gear ratio of the variator 4. .
 目標コーストスリップ回転数特性設定器83bは、先読み減速度算出器83aからの先読み減速度と、車速センサ91からの車速VSPと、予め設定されている第1目標コーストスリップ回転数ΔN1*及び第3目標コーストスリップ回転数ΔN3*を入力する。そして、第1目標コーストスリップ回転数ΔN1*と、先読み減速度に基づいて算出される第2目標コーストスリップ回転数ΔN2*と、第3目標コーストスリップ回転数ΔN3*とによる目標コーストスリップ回転数特性を設定する。コーストスリップ制御が開始されてから車速VSPが第1設定車速VSP1まで低下するまでの間は、第1目標コーストスリップ回転数ΔN1*を目標差回転数ΔN*として出力する。車速VSPが第1設定車速VSP1から第2設定車速VSP2に低下するまでの間は、第2目標コーストスリップ回転数ΔN2*を目標差回転数ΔN*として出力する。車速VSPが第2設定車速VSP2未満になると第3目標コーストスリップ回転数ΔN3*を目標差回転数ΔN*として出力する。 The target coast slip rotational speed characteristic setting unit 83b includes a pre-read deceleration from the pre-read deceleration calculator 83a, a vehicle speed VSP from the vehicle speed sensor 91, a preset first target coast slip rotational speed ΔN1 *, and a third value. Enter the target coast slip speed ΔN3 * . Then, the target coast slip rotational speed characteristic based on the first target coast slip rotational speed ΔN1 * , the second target coast slip rotational speed ΔN2 * calculated based on the look-ahead deceleration, and the third target coast slip rotational speed ΔN3 *. Set. The first target coast slip rotational speed ΔN1 * is output as the target differential rotational speed ΔN * until the vehicle speed VSP decreases to the first set vehicle speed VSP1 after the coast slip control is started. Until the vehicle speed VSP decreases from the first set vehicle speed VSP1 to the second set vehicle speed VSP2, the second target coast slip rotational speed ΔN2 * is output as the target differential rotational speed ΔN * . When the vehicle speed VSP falls below the second set vehicle speed VSP2, the third target coast slip rotational speed ΔN3 * is output as the target differential rotational speed ΔN * .
 トルク容量演算ブロック84は、補正エンジントルク演算エリア841に、先読み分エンジントルク算出器84aと、第1加算器84bと、ポンプ負荷トルク算出器84cと、第1差分器84dとを有する。 The torque capacity calculation block 84 includes a pre-read engine torque calculator 84a, a first adder 84b, a pump load torque calculator 84c, and a first differentiator 84d in the corrected engine torque calculation area 841.
 先読み分エンジントルク算出器84aは、アクセル開度APOと実エンジン回転数Neを入力し、エンジン全性能マップを用いて現時点のエンジントルクから油圧応答遅れ時間までに変動すると推定される先読み分エンジントルクΔTepreを算出する。なお、現時点のエンジントルクは、現時点のアクセル開度APOと実エンジン回転数Neとエンジン全性能マップにより取得される。先読み分エンジントルクΔTepreは、アクセル開度APOや実エンジン回転数Neの変化速度と油圧応答遅れ時間を用い、現時点から油圧応答遅れ時間を経過するまでのエンジントルクの変化幅(正又は負)とする。 The look-ahead engine torque calculator 84a receives the accelerator opening APO and the actual engine speed Ne, and uses a total engine performance map to estimate the look-ahead engine torque estimated to vary from the current engine torque to the hydraulic response delay time. ΔTepre is calculated. The current engine torque is acquired from the current accelerator opening APO, the actual engine speed Ne, and the engine overall performance map. The engine torque ΔTepre for the look-ahead is calculated by using the change rate of the accelerator opening APO and the actual engine speed Ne and the hydraulic response delay time, and the change width (positive or negative) of the engine torque from the current time until the hydraulic response delay time elapses. To do.
 第1加算器84bは、エンジンコントロールユニット9から取得した実エンジントルクTeと先読み分エンジントルク算出器84aからの先読み分エンジントルクΔTepreを加算することで、先読みエンジントルクTepreを算出する。 The first adder 84b calculates the pre-read engine torque Tepre by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ΔTepre from the pre-read engine torque calculator 84a.
 ポンプ負荷トルク算出器84cは、エンジン1により回転駆動されるときのオイルポンプ70による負荷トルクであるポンプ負荷トルクTopを算出する。 The pump load torque calculator 84c calculates a pump load torque Top that is a load torque by the oil pump 70 when being rotated by the engine 1.
 第1差分器84dは、第1加算器84bにより算出された先読みエンジントルクTepreとポンプ負荷トルク算出器84cにより算出されたポンプ負荷トルクTopの差により補正エンジントルクTadj(=Tepre-Top)を算出する。 The first subtractor 84d calculates a corrected engine torque Tadj (= Tepre-Top) based on the difference between the pre-read engine torque Tepre calculated by the first adder 84b and the pump load torque Top calculated by the pump load torque calculator 84c. To do.
 トルク容量演算ブロック84は、コンバータトルク演算エリア842に、F/F補償器84eと、第2差分器84fと、第3差分器84gと、F/B補償器84hと、最小値選択器84iと、第2加算器84jとを有する。 The torque capacity calculation block 84 includes, in the converter torque calculation area 842, an F / F compensator 84e, a second difference unit 84f, a third difference unit 84g, an F / B compensator 84h, and a minimum value selector 84i. And a second adder 84j.
 F/F補償器84eは、目標コーストスリップ回転数特性設定器83bからの目標差回転数ΔN*(=目標コーストスリップ回転数)を入力し、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出する。 The F / F compensator 84e receives the target differential rotational speed ΔN * (= target coast slip rotational speed) from the target coast slip rotational speed characteristic setting unit 83b, and converts the converter torque F / according to the target differential rotational speed ΔN *. F compensation amount Tcnv_ff is calculated.
 第2差分器84fは、エンジン回転センサ12からの実エンジン回転数Neと、タービン回転センサ96からのタービン回転数Ntを入力する。そして、実エンジン回転数Neとタービン回転数Ntの差により実差回転数ΔNを算出する。 The second subtractor 84 f inputs the actual engine speed Ne from the engine speed sensor 12 and the turbine speed Nt from the turbine speed sensor 96. Then, the actual differential speed ΔN is calculated from the difference between the actual engine speed Ne and the turbine speed Nt.
 第3差分器84gは、目標コーストスリップ回転数特性設定器83bからの目標差回転数ΔN*(=目標コーストスリップ回転数)と、第2差分器84fからの実差回転数ΔN(=実スリップ回転数)を入力する。そして、目標差回転数ΔN*と実差回転数ΔNの差により差回転数偏差δを算出する。 The third differentiator 84g includes a target differential rotational speed ΔN * (= target coast slip rotational speed) from the target coast slip rotational speed characteristic setting unit 83b and an actual differential rotational speed ΔN (= actual slip) from the second differentiator 84f. Enter the number of revolutions). Then, a differential rotational speed deviation δ is calculated from the difference between the target differential rotational speed ΔN * and the actual differential rotational speed ΔN.
 F/B補償器84hは、第3差分器84gからの差回転数偏差δを入力し、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を、PIフィードバック制御(P:比例、I:積分)により算出する。このF/B補償器84hは、要求調停ブロック82にてコーストスリップ制御の開始条件の成立によりコーストスリップ要求があると、前回までのコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットする。 The F / B compensator 84h receives the difference rotational speed deviation δ from the third differentiator 84g, and performs PI feedback control on the converter torque F / B compensation calculated value Tcnv_fb (c) corresponding to the differential rotational speed deviation δ. (P: proportional, I: integral). The F / B compensator 84h, when there is a coast slip request due to establishment of the coast slip control start condition in the request arbitration block 82, sets the converter torque F / B compensation calculated value Tcnv_fb (c) up to the previous time as an initial value. Reset to.
 最小値選択器84iは、F/B補償器84hからのコンバータトルクF/B補償分計算値Tcnv_fb(c)と、コンバータトルクF/B補償分の上限トルク値Tcnv_maxを入力する。そして、最小値選択によりコンバータトルクF/B補償分Tcnv_fbを出力する。 The minimum value selector 84i inputs the converter torque F / B compensation calculated value Tcnv_fb (c) from the F / B compensator 84h and the upper limit torque value Tcnv_max for the converter torque F / B compensation. Then, the converter torque F / B compensation Tcnv_fb is output by selecting the minimum value.
 ここで、コンバータトルクF/B補償分の上限トルク値Tcnv_maxは、
Tcnv_max=Tadj-Tcnv_ff-K(K:固定値)  …(1)
であらわされる式(1)、つまり、補正エンジントルクTadjとコンバータトルクF/F補償分Tcnv_ffに応じた可変トルク値で与える。なお、固定値Kは、ロックアップクラッチ20のスリップ締結シーンのときに目標LUトルクTlu*の上昇を促す上限トルク値Tcnv_maxになるように設定する。しかし、固定値Kを低過ぎるトルク値に設定した場合、コンバータトルクF/F補償分Tcnv_ffと固定値Kの和により、トルクコンバータ2への入力トルクである補正エンジントルクTadjを超えないことがある。つまり、ロックアップクラッチ20のスリップ解放シーンのときに目標LUトルクTlu*がゼロとはならず、ロックアップクラッチ20を解放することができない。よって、固定値Kは、ロックアップクラッチ20のスリップ解放シーンを考慮し、コンバータトルクF/F補償分との和により、トルクコンバータ2への入力トルクである補正エンジントルクTadjを超え得るトルク値のうち最小域の値に設定する。
Here, the upper limit torque value Tcnv_max for the converter torque F / B compensation is
Tcnv_max = Tadj−Tcnv_ff−K (K: fixed value)… (1)
(1), that is, a variable torque value corresponding to the corrected engine torque Tadj and the converter torque F / F compensation Tcnv_ff. Note that the fixed value K is set to be the upper limit torque value Tcnv_max that promotes the increase of the target LU torque Tlu * in the slip engagement scene of the lockup clutch 20. However, if the fixed value K is set to a torque value that is too low, the corrected engine torque Tadj that is the input torque to the torque converter 2 may not be exceeded due to the sum of the converter torque F / F compensation Tcnv_ff and the fixed value K. . That is, the target LU torque Tlu * does not become zero during the slip release scene of the lockup clutch 20, and the lockup clutch 20 cannot be released. Therefore, the fixed value K is a torque value that can exceed the corrected engine torque Tadj, which is the input torque to the torque converter 2, by considering the slip release scene of the lockup clutch 20 and the sum of the fixed value K and the converter torque F / F compensation. Set to the minimum value.
 第2加算器84jは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算し、コンバータトルクTcnvを算出する。 The second adder 84j adds the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i to calculate the converter torque Tcnv.
 トルク容量演算ブロック84は、補正エンジントルク演算エリア841とコンバータトルク演算エリア842の外部に第4差分器84kを有する。第4差分器84kは、第1差分器84dからの補正エンジントルクTadjと、第2加算器84jからのコンバータトルクTcnvを差し引いて目標LUトルクTlu*を算出する。 The torque capacity calculation block 84 includes a fourth differentiator 84k outside the corrected engine torque calculation area 841 and the converter torque calculation area 842. The fourth subtractor 84k calculates the target LU torque Tlu * by subtracting the corrected engine torque Tadj from the first subtractor 84d and the converter torque Tcnv from the second adder 84j.
 実現ブロック85は、トルク→油圧変換器85aと油圧→電流変換器85bを有する。トルク→油圧変換器85aは、トルク容量演算ブロック84から入力される目標LUトルクTlu*をLU指示圧Pluに変換する。油圧→電流変換器85bは、トルク→油圧変換器85aから入力されたLU指示圧Pluを指示電流Aluに変換する。 The realization block 85 includes a torque → hydraulic converter 85a and a hydraulic → current converter 85b. The torque → hydraulic converter 85a converts the target LU torque Tlu * input from the torque capacity calculation block 84 into the LU command pressure Plu. The hydraulic pressure → current converter 85b converts the LU command pressure Plu input from the torque → hydraulic converter 85a into a command current Alu.
 [コーストスリップ制御処理構成]
 図6は、実施例1のCVTコントロールユニット8のコーストスリップ制御部80aにて実行されるコーストスリップ制御処理の流れを示す。以下、図6の各ステップについて説明する。なお、この処理は、所定の制御周期により繰り返し処理動作が行われる。
[Coast slip control processing configuration]
FIG. 6 shows the flow of the coast slip control process executed by the coast slip control unit 80a of the CVT control unit 8 of the first embodiment. Hereinafter, each step of FIG. 6 will be described. This process is repeatedly performed in a predetermined control cycle.
 ステップS100では、スタートに続き、コーストスリップ要求有りか否かを判断する。YES(コーストスリップ要求有り)の場合はステップS101へ進み、NO(コーストスリップ要求無し)の場合はエンドへ進む。 In step S100, following the start, it is determined whether or not there is a coast slip request. If YES (coast slip is requested), the process proceeds to step S101. If NO (coast slip is not requested), the process proceeds to the end.
 ここで、「コーストスリップ要求」は、走行中、コーストスリップ制御開始条件が成立したときに出される。コーストスリップ制御開始条件は、走行中、アクセル足離し操作条件が成立した後、エンジン1のフューエルカット制御が開始され、フューエルカット制御の開始から所定時間が経過したことで成立と判断する。なお、コーストスリップ制御開始条件には、変速作動油温が所定温度以上という油温条件が付加される。 Here, the “coast slip request” is issued when the coast slip control start condition is satisfied during traveling. The coast slip control start condition is determined to be satisfied when a predetermined time has elapsed from the start of the fuel cut control after the accelerator release operation condition is satisfied during traveling and then the fuel cut control of the engine 1 is started. The coast slip control start condition is added with an oil temperature condition that the shift hydraulic fluid temperature is equal to or higher than a predetermined temperature.
 ステップS101では、ステップS100でのコーストスリップ要求有りとの判断に続き、コンバータトルク(FB)をリセットし、ステップS102へ進む。 In step S101, following the determination that there is a coast slip request in step S100, the converter torque (FB) is reset, and the process proceeds to step S102.
 ここで、コンバータトルク(FB)をリセットするとは、トルク容量制御処理によりそれまで計算されていたコンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットすることをいう。 Here, resetting the converter torque (FB) means resetting the converter torque F / B compensation calculated value Tcnv_fb (c) calculated so far by the torque capacity control process to the initial value.
 ステップS102では、ステップS101でのコンバータトルク(FB)のリセット、或いは、ステップS109でのコーストスリップ制御終了条件不成立であるとの判断に続き、車速VSPが第1設定車速VSP1未満であるか否かを判断する。YES(VSP<VSP1)の場合はステップ104へ進み、NO(VSP≧VSP1)の場合はステップS103へ進む。 In step S102, following the reset of the converter torque (FB) in step S101 or the determination that the coast slip control termination condition is not satisfied in step S109, it is determined whether or not the vehicle speed VSP is less than the first set vehicle speed VSP1. Judging. If YES (VSP <VSP1), the process proceeds to step 104. If NO (VSP ≧ VSP1), the process proceeds to step S103.
 ここで、「第1設定車速VSP1」は、コーストスリップ制御からLU解放制御へと移行する切替車速であり、エンジンストールを防止しながらコーストスリップ制御を維持可能な下限車速域の車速値(例えば、20km/h程度)に設定される。 Here, the “first set vehicle speed VSP1” is a switching vehicle speed at which the coast slip control is shifted to the LU release control, and the vehicle speed value (for example, the lower limit vehicle speed range in which the coast slip control can be maintained while preventing the engine stall) (for example, 20km / h).
 ステップS103では、ステップS102でのVSP≧VSP1であるとの判断に続き、目標コーストスリップ回転数として固定値による第1目標コーストスリップ回転数ΔN1*を与え、ステップS108へ進む。 In step S103, following the determination that VSP ≧ VSP1 in step S102, the first target coast slip rotational speed ΔN1 * with a fixed value is given as the target coast slip rotational speed, and the process proceeds to step S108.
 ここで、「第1目標コーストスリップ回転数ΔN1*」は、フィードバック補償(=フィードバック制御)でコントロールできる最小回転数域のコーストスリップ差回転数値(例えば、-20rpm程度)で与えられる(図8参照)。 Here, the “first target coast slip rotational speed ΔN1 * ” is given as a coast slip differential rotational speed value (for example, about −20 rpm) in the minimum rotational speed range that can be controlled by feedback compensation (= feedback control) (see FIG. 8). ).
 ステップS104では、ステップS102でのVSP<VSP1であるとの判断に続き、車速VSPが第2設定車速VSP2未満であるか否かを判断する。YES(VSP<VSP2)の場合はステップ107へ進み、NO(VSP≧VSP2)の場合はステップS105へ進む。 In step S104, following the determination that VSP <VSP1 in step S102, it is determined whether or not the vehicle speed VSP is less than the second set vehicle speed VSP2. If YES (VSP <VSP2), the process proceeds to step 107. If NO (VSP ≧ VSP2), the process proceeds to step S105.
 ここで、「第2設定車速VSP2」は、ロックアップクラッチ20の解放完了予定の車速であり、第1設定車速VSP1よりさらに低車速側であり減速停止直前の車速値(例えば、10km/h程度)に設定される。 Here, the “second set vehicle speed VSP2” is a vehicle speed that is scheduled to be released from the lockup clutch 20, and is lower than the first set vehicle speed VSP1, and is a vehicle speed value just before deceleration stop (for example, about 10 km / h). ).
 ステップS105では、ステップS104でのVSP≧VSP2であるとの判断に続き、バリエータ4へ指示される目標変速比に基づいて先読み減速度を算出し、ステップS106へ進む。 In step S105, following the determination that VSP ≧ VSP2 in step S104, a pre-reading deceleration is calculated based on the target gear ratio instructed to the variator 4, and the process proceeds to step S106.
 ステップS106では、ステップS105での先読み減速度の算出に続き、車両の先読み減速度に合わせた勾配で差回転数が増加する第2目標コーストスリップ回転数ΔN2*を与え、ステップS108へ進む。 In step S106, following the calculation of the pre-reading deceleration in step S105, a second target coast slip rotational speed ΔN2 * in which the differential rotational speed increases with a gradient in accordance with the pre-reading deceleration of the vehicle is given, and the process proceeds to step S108.
 ここで、「第2目標コーストスリップ回転数ΔN2*」は、第1目標コーストスリップ回転数ΔN1*と第3目標コーストスリップ回転数ΔN3*とを繋ぐ低下勾配特性において、車両の先読み減速度が大きいほど大きな低下勾配角度とされる(図8参照)。 Here, the “second target coast slip rotational speed ΔN2 * ” has a large vehicle look-ahead deceleration in a decreasing gradient characteristic connecting the first target coast slip rotational speed ΔN1 * and the third target coast slip rotational speed ΔN3 *. The lower the gradient angle is, the larger the angle is (see FIG. 8).
 ステップS107では、ステップS104でのVSP<VSP2であるとの判断に続き、目標コーストスリップ回転数として固定値による第3目標コーストスリップ回転数ΔN3*を与え、ステップS108へ進む。 In step S107, following the determination in step S104 that VSP <VSP2, a third target coast slip rotational speed ΔN3 * with a fixed value is given as the target coast slip rotational speed, and the process proceeds to step S108.
 ここで、「第3目標コーストスリップ回転数ΔN3*」は、ロックアップクラッチ20を完全解放することが可能なクラッチ解放差回転数最小値(例えば、-2000rpm程度)で与えられる(図8参照)。 Here, the “third target coast slip rotational speed ΔN3 * ” is given by a clutch release differential rotational speed minimum value (for example, about −2000 rpm) at which the lockup clutch 20 can be completely released (see FIG. 8). .
 ステップS108では、ステップS103又はステップS106又はステップS107の目標コーストスリップ回転数の付与に続き、図7に示すロックアップクラッチ20のトルク容量制御を実行し、ステップS109へ進む。 In step S108, following the application of the target coast slip rotational speed in step S103, step S106, or step S107, torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed, and the process proceeds to step S109.
 ステップS109では、ステップS108でのLUクラッチトルク容量制御に続き、コーストスリップ制御終了条件が成立しているか否かを判断する。YES(コーストスリップ制御終了条件成立)の場合はエンドへ進み、NO(コーストスリップ制御終了条件不成立)の場合はステップS102へ戻る。 In step S109, following the LU clutch torque capacity control in step S108, it is determined whether a coast slip control end condition is satisfied. If YES (coast slip control end condition is satisfied), the process proceeds to the end. If NO (coast slip control end condition is not satisfied), the process returns to step S102.
 ここで、「コーストスリップ制御終了条件」とは、アクセル足離し操作によるコースト走行状態(=惰性走行状態)から脱する条件をいう。つまり、アクセル再踏み込み操作やブレーキ踏み込み操作や車両停止判定等が行われ、コースト走行状態から脱すると終了条件成立とされる。 Here, the “coast slip control end condition” refers to a condition for escaping from the coast running state (= inertia running state) by the accelerator release operation. That is, an accelerator re-depressing operation, a brake depressing operation, a vehicle stop determination, and the like are performed, and the exit condition is satisfied when the vehicle is out of the coasting state.
 [ロックアップクラッチトルク容量制御処理構成]
 図7は、実施例1のCVTコントロールユニット8のコーストスリップ制御部80aにて実行されるロックアップクラッチトルク容量制御処理の流れを示す。以下、図7の各ステップについて説明する。なお、この処理は、所定の制御周期により繰り返し処理動作が行われる。
[Lock-up clutch torque capacity control processing configuration]
FIG. 7 shows the flow of the lock-up clutch torque capacity control process executed by the coast slip controller 80a of the CVT control unit 8 of the first embodiment. Hereinafter, each step of FIG. 7 will be described. This process is repeatedly performed in a predetermined control cycle.
 ステップS1では、スタートに続き、目標差回転数ΔN*を読み込み、ステップS2へ進む。 In step S1, following the start, the target differential rotation speed ΔN * is read, and the process proceeds to step S2.
 ここで、「目標差回転数ΔN*」とは、図6のコーストスリップ制御処理で与えられた第1目標コーストスリップ回転数ΔN1*、又は、第2目標コーストスリップ回転数ΔN2*、又は、第3目標コーストスリップ回転数ΔN3*をいう。 Here, the “target differential rotation speed ΔN * ” is the first target coast slip rotation speed ΔN1 * , the second target coast slip rotation speed ΔN2 * , or the first target slip rotation speed given in the coast slip control process of FIG. This is the 3 target coast slip rotational speed ΔN3 * .
 ステップS2では、ステップS1での目標差回転数ΔN*の読み込みに続き、先読みエンジントルクTepreを算出し、ステップS3へ進む。 In step S2, following the reading of the target differential rotation speed ΔN * in step S1, a pre-reading engine torque Tepre is calculated, and the process proceeds to step S3.
 ここで、先読みエンジントルクTepreとは、ロックアップ油圧制御での油圧応答遅れ分を補償するエンジントルクである。先読みエンジントルクTepreは、先読み分エンジントルク算出器84aと第1加算器84bにおいて、エンジンコントロールユニット9から取得した実エンジントルクTeと先読み分エンジントルクΔTepreを加算することで算出される。 Here, the look-ahead engine torque Tepre is an engine torque that compensates for the hydraulic response delay in the lockup hydraulic control. The pre-read engine torque Tepre is calculated by adding the actual engine torque Te acquired from the engine control unit 9 and the pre-read engine torque ΔTepre in the pre-read engine torque calculator 84a and the first adder 84b.
 ステップS3では、ステップS2での先読みエンジントルクTepreの算出に続き、補正エンジントルクTadjを算出し、ステップS4へ進む。 In step S3, following the calculation of the pre-reading engine torque Tepre in step S2, a corrected engine torque Tadj is calculated, and the process proceeds to step S4.
 ここで、補正エンジントルクTadjとは、トルクコンバータ2に入力されるエンジントルクである。補正エンジントルクTadjは、第1差分器84dにおいて、先読みエンジントルクTepreとポンプ負荷トルクTopの差により算出される。 Here, the corrected engine torque Tadj is an engine torque input to the torque converter 2. The corrected engine torque Tadj is calculated in the first subtractor 84d by the difference between the pre-read engine torque Tepre and the pump load torque Top.
 ステップS4では、ステップS3での補正エンジントルクTadjの算出に続き、ステップS1で読み込まれた目標差回転数ΔN*に基づいて、目標差回転数ΔN*に応じたコンバータトルクF/F補償分Tcnv_ffを算出し、ステップS5へ進む。 In step S4, subsequent to the calculation of the correction engine torque Tadj in step S3, based on the read target differential speed .DELTA.N * at step S1, the converter torque F / F compensation min corresponding to the target rotational speed difference ΔN * Tcnv_ff And proceeds to step S5.
 ここで、「コンバータトルクF/F補償分Tcnv_ff」は、目標差回転数ΔN*(=目標コーストスリップ回転数)を入力するF/F補償器84eにおいて、目標差回転数ΔN*に収束させるロックアップトルクのF/F補償分として算出される。 Here, the “converter torque F / F compensation Tcnv_ff” is a lock that converges to the target differential rotational speed ΔN * in the F / F compensator 84e that inputs the target differential rotational speed ΔN * (= target coast slip rotational speed). Calculated as F / F compensation for up-torque.
 ステップS5では、ステップS4でのコンバータトルクF/F補償分Tcnv_ffの算出に続き、差回転数偏差δに基づいて、差回転数偏差δに応じたコンバータトルクF/B補償分計算値Tcnv_fb(c)を算出し、ステップS6へ進む。 In step S5, following the calculation of the converter torque F / F compensation amount Tcnv_ff in step S4, the converter torque F / B compensation calculated value Tcnv_fb (c ) And the process proceeds to step S6.
 ここで、「差回転数偏差δ」は、コーストスリップ制御での目標差回転数ΔN*と実差回転数ΔN(=Ne-Nt)の差により算出される。そして、コーストスリップ要求があると、コンバータトルクF/B補償分計算値Tcnv_fb(c)は、F/B補償器84hにおいて、コンバータトルクF/B補償分計算値Tcnv_fb(c)を初期値にリセットし、実差回転数ΔNを目標差回転数ΔN*に一致させるコンバータトルクF/B補償分として算出が開始される。 Here, the “differential rotational speed deviation δ” is calculated by the difference between the target differential rotational speed ΔN * and the actual differential rotational speed ΔN (= Ne−Nt) in the coast slip control. When there is a coast slip request, the converter torque F / B compensation calculated value Tcnv_fb (c) is reset to the initial value in the F / B compensator 84h. Then, the calculation is started as the converter torque F / B compensation for making the actual differential rotational speed ΔN coincide with the target differential rotational speed ΔN * .
 ステップS6では、ステップS5でのコンバータトルクF/B補償分計算値Tcnv_fb(c)の算出に続き、コンバータトルクF/B補償分計算値Tcnv_fb(c)が、コンバータトルクF/B補償分の上限トルク値Tcnv_max以下であるか否かを判断する。YES(Tcnv_fb(c)≦Tcnv_max)の場合はステップS7へ進み、NO(Tcnv_fb(c)>Tcnv_max)の場合はステップS8へ進む。 In step S6, following the calculation of converter torque F / B compensation calculation value Tcnv_fb (c) in step S5, converter torque F / B compensation calculation value Tcnv_fb (c) is the upper limit of converter torque F / B compensation. It is determined whether or not the torque value is equal to or less than Tcnv_max. If YES (Tcnv_fb (c) ≦ Tcnv_max), the process proceeds to step S7. If NO (Tcnv_fb (c)> Tcnv_max), the process proceeds to step S8.
 ステップS7では、ステップS6でのTcnv_fb(c)≦Tcnv_maxであるとの判断に続き、コンバータトルクF/B補償分Tcnv_fbを、コンバータトルクF/B補償分計算値Tcnv_fb(c)とし、ステップS9へ進む。 In step S7, following the determination that Tcnv_fb (c) ≦ Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the converter torque F / B compensation calculated value Tcnv_fb (c), and the process proceeds to step S9. move on.
 ステップS8では、ステップS6でのTcnv_fb(c)>Tcnv_maxであるとの判断に続き、コンバータトルクF/B補償分Tcnv_fbを、コンバータトルクF/B補償分の上限トルク値Tcnv_maxとし、ステップS9へ進む。 In step S8, following the determination that Tcnv_fb (c)> Tcnv_max in step S6, the converter torque F / B compensation amount Tcnv_fb is set as the upper limit torque value Tcnv_max for the converter torque F / B compensation, and the process proceeds to step S9. .
 ここで、ステップS6~ステップS8によるコンバータトルクF/B補償分Tcnv_fbの選択は、最小値選択器84iにおいて行われる。 Here, the selection of the converter torque F / B compensation Tcnv_fb in steps S6 to S8 is performed in the minimum value selector 84i.
 ステップS9では、ステップS7又はステップS8でのコンバータトルクF/B補償分Tcnv_fbの設定に続き、コンバータトルクTcnvを算出し、ステップS10へ進む。 In step S9, following the setting of the converter torque F / B compensation Tcnv_fb in step S7 or step S8, the converter torque Tcnv is calculated, and the process proceeds to step S10.
 ここで、コンバータトルクTcnvは、F/F補償器84eからのコンバータトルクF/F補償分Tcnv_ffと、最小値選択器84iからのコンバータトルクF/B補償分Tcnv_fbを加算することで算出される。 Here, the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff from the F / F compensator 84e and the converter torque F / B compensation Tcnv_fb from the minimum value selector 84i.
 ステップS10では、ステップS9でのコンバータトルクTcnvの算出に続き、目標LUトルクTlu*を算出し、ステップS11へ進む。 In step S10, following calculation of converter torque Tcnv in step S9, target LU torque Tlu * is calculated, and the process proceeds to step S11.
 ここで、目標LUトルクTlu*は、第4差分器84kにおいて、ステップS3にて算出された補正エンジントルクTadjから、ステップS9にて算出されたコンバータトルクTcnvを差し引くことで算出する。 Here, the target LU torque Tlu * is calculated by subtracting the converter torque Tcnv calculated in step S9 from the corrected engine torque Tadj calculated in step S3 in the fourth subtractor 84k.
 ステップS11では、ステップS10での目標LUトルクTlu*の算出に続き、トルク→油圧変換器85aにおいて、目標LUトルクTlu*をLU指示圧Pluに変換し、ステップS12へ進む。 In step S11, following the calculation of the target LU torque Tlu * in step S10, the torque-to-hydraulic converter 85a converts the target LU torque Tlu * into the LU command pressure Plu, and the process proceeds to step S12.
 ステップS12では、ステップS11でのLU指示圧Pluへの変換に続き、油圧→電流変換器85bにおいて、LU指示圧Pluを指示電流Aluに変換し、ステップS13へ進む。 In step S12, following the conversion to the LU command pressure Plu in step S11, the LU command pressure Plu is converted to the command current Alu in the hydraulic pressure → current converter 85b, and the process proceeds to step S13.
 ステップS13では、ステップS12での指示電流Aluへの変換に続き、ロックアップ圧ソレノイド弁76へ指示電流Aluを出力し、エンドへ進む。 In step S13, following the conversion to the instruction current Alu in step S12, the instruction current Alu is output to the lockup pressure solenoid valve 76, and the process proceeds to the end.
 次に、実施例1の作用を、「実施例1のコーストスリップ制御処理作用」と「車両減速度が異なるコースト減速シーンでのコーストスリップ制御作用」に分けて説明する。 Next, the operation of the first embodiment will be described by dividing it into “coast slip control processing operation of the first embodiment” and “coast slip control operation in a coast deceleration scene with different vehicle deceleration”.
 [実施例1のコーストスリップ制御処理作用]
 図6に示すフローチャートに基づいてコーストスリップ制御処理作用を説明する。S100にてコーストスリップ要求有りと判断されると、S100→S101へと進み、S101では、トルク容量制御処理により前回まで計算されていたコンバータトルクF/B補償分計算値Tcnv_fb(c)が初期値にリセットされる。つまり、積分項を含めてコンバータトルクF/B補償分計算値Tcnv_fb(c)をリセットしてコーストスリップ制御が開始される。
[Coast Slip Control Processing Action of Example 1]
The operation of the coast slip control process will be described based on the flowchart shown in FIG. If it is determined in S100 that there is a coast slip request, the process proceeds from S100 to S101. In S101, the converter torque F / B compensation calculated value Tcnv_fb (c) calculated up to the previous time by the torque capacity control process is the initial value. Reset to. That is, the converter torque F / B compensation calculated value Tcnv_fb (c) including the integral term is reset and the coast slip control is started.
 コーストスリップ制御が開始されると、S101からS102→S103→S108→S109へと進む。そして、車速VSPが第1設定車速VSP1以上である間であって、コーストスリップ制御終了条件が成立していないと、S102→S103→S108→S109へと進む流れが繰り返される。つまり、ステップS103において、目標コーストスリップ回転数として、フィードバック制御でコントロールできる最小回転数域のコーストスリップ差回転数値による第1目標コーストスリップ回転数ΔN1*が与えられる。そして、ステップS108において、図7に示すロックアップクラッチ20のトルク容量制御が実行される。 When the coast slip control is started, the process proceeds from S101 to S102 → S103 → S108 → S109. Then, while the vehicle speed VSP is equal to or higher than the first set vehicle speed VSP1 and the coast slip control end condition is not satisfied, the flow from S102 → S103 → S108 → S109 is repeated. That is, in step S103, the first target coast slip rotational speed ΔN1 * based on the coast slip differential rotational speed value in the minimum rotational speed range that can be controlled by feedback control is given as the target coast slip rotational speed. In step S108, torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed.
 このロックアップクラッチ20のトルク容量制御では、図7のS1において、第1目標コーストスリップ回転数ΔN1*が目標差回転数ΔN*として読み込まれ、図7のS2~S13へと進むトルク容量制御処理が実行される。トルク容量制御処理では、S5において、目標差回転数ΔN*と実差回転数ΔNの差回転数偏差δに基づいてコンバータトルクF/B補償分計算値Tcnv_fb(c)が算出される。S9において、コンバータトルクF/F補償分Tcnv_ffとコンバータトルクF/B補償分Tcnv_fbを加算することでコンバータトルクTcnvが算出される。次のS10において、補正エンジントルクTadjからコンバータトルクTcnvを差し引くことで目標LUトルクTlu*が算出される。そして、S11~S13にて目標LUトルクTlu*を、LU指示圧Pluに変換し、LU指示圧Pluを指示電流Aluに変換し、ロックアップ圧ソレノイド弁76へ指示電流Aluが出力される。 In the torque capacity control of the lockup clutch 20, the first target coast slip rotational speed ΔN1 * is read as the target differential rotational speed ΔN * in S1 of FIG. 7, and the torque capacity control process proceeds to S2 to S13 of FIG. Is executed. In the torque capacity control process, in S5, the converter torque F / B compensation calculated value Tcnv_fb (c) is calculated based on the differential rotational speed deviation δ between the target differential rotational speed ΔN * and the actual differential rotational speed ΔN. In S9, the converter torque Tcnv is calculated by adding the converter torque F / F compensation Tcnv_ff and the converter torque F / B compensation Tcnv_fb. In the next S10, the target LU torque Tlu * is calculated by subtracting the converter torque Tcnv from the corrected engine torque Tadj. In S11 to S13, the target LU torque Tlu * is converted into the LU command pressure Plu, the LU command pressure Plu is converted into the command current Alu, and the command current Alu is output to the lockup pressure solenoid valve 76.
 コーストスリップ制御の開始後、減速によって車速VSPが第1設定車速VSP1未満になると、S102からS104→S105→S106→S108→S109へと進む。そして、車速VSPが第2設定車速VSP2以上である間であって、コーストスリップ制御終了条件が成立していないと、S102→S104→S105→S106→S108→S109へと進む流れが繰り返される。つまり、ステップS105では、バリエータ4へ指示される目標変速比に基づいて先読み減速度が算出される。ステップS106では、目標コーストスリップ回転数として、車両の先読み減速度に合わせた勾配で差回転数が増加する第2目標コーストスリップ回転数ΔN2*が与えられる。そして、ステップS108において、図7に示すロックアップクラッチ20のトルク容量制御が実行される。 When the vehicle speed VSP becomes lower than the first set vehicle speed VSP1 due to deceleration after the start of the coast slip control, the process proceeds from S102 to S104 → S105 → S106 → S108 → S109. Then, while the vehicle speed VSP is equal to or higher than the second set vehicle speed VSP2 and the coast slip control end condition is not satisfied, the flow from S102 → S104 → S105 → S106 → S108 → S109 is repeated. That is, in step S105, the look-ahead deceleration is calculated based on the target gear ratio instructed to the variator 4. In step S106, the second target coast slip rotational speed ΔN2 * in which the differential rotational speed increases with a gradient that matches the look-ahead deceleration of the vehicle is given as the target coast slip rotational speed. In step S108, torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed.
 このロックアップクラッチ20のトルク容量制御では、図7のS1において、第2目標コーストスリップ回転数ΔN2*が目標差回転数ΔN*として読み込まれ、上記同様に、図7のS2~S13へと進むトルク容量制御処理が実行される。 In the torque capacity control of the lockup clutch 20, the second target coast slip rotational speed ΔN2 * is read as the target differential rotational speed ΔN * in S1 of FIG. 7, and the process proceeds to S2 to S13 of FIG. A torque capacity control process is executed.
 さらなる減速によって車速VSPが第2設定車速VSP2未満になると、S102からS104→S107→S108→S109へと進む。そして、コーストスリップ制御終了条件が成立していない間は、S102→S104→S107→S108→S109へと進む流れが繰り返される。つまり、ステップS107では、目標コーストスリップ回転数として、ロックアップクラッチ20を完全解放することが可能なクラッチ解放差回転数最小値による第3目標コーストスリップ回転数ΔN3*が与えられる。そして、ステップS108において、図7に示すロックアップクラッチ20のトルク容量制御が実行される。 When the vehicle speed VSP becomes lower than the second set vehicle speed VSP2 due to further deceleration, the process proceeds from S102 to S104 → S107 → S108 → S109. While the coast slip control end condition is not satisfied, the flow of going from S102 → S104 → S107 → S108 → S109 is repeated. That is, in step S107, the third target coast slip rotational speed ΔN3 * based on the clutch release differential rotational speed minimum value capable of completely releasing the lockup clutch 20 is given as the target coast slip rotational speed. In step S108, torque capacity control of the lockup clutch 20 shown in FIG. 7 is executed.
 このロックアップクラッチ20のトルク容量制御では、図7のS1において、第3目標コーストスリップ回転数ΔN3*が目標差回転数ΔN*として読み込まれ、上記同様に、図7のS2~S13へと進むトルク容量制御処理が実行される。 In the torque capacity control of the lockup clutch 20, the third target coast slip rotational speed ΔN3 * is read as the target differential rotational speed ΔN * in S1 of FIG. 7, and the process proceeds to S2 to S13 of FIG. A torque capacity control process is executed.
 [車両減速度が異なるコースト減速シーンでのコーストスリップ制御作用]
 まず、コーストスリップ制御においてロックアップクラッチを解放する際、制御開始時の車両減速度に応じて設定される目標コーストスリップ回転数特性に沿ったフィードフォワード制御によりコーストスリップ制御を行うものを比較例とする。
[Coast slip control action in coastal deceleration scenes with different vehicle deceleration]
First, when releasing the lock-up clutch in the coast slip control, the coast slip control is performed by the feed forward control according to the target coast slip rotational speed characteristic set according to the vehicle deceleration at the start of the control and the comparative example. To do.
 この比較例の場合、目標コーストスリップ回転数特性により制御指令を決めるフィードフォワード制御である。このため、コーストスリップ制御を開始した後、目標コーストスリップ回転数特性と実コーストスリップ回転数特性との間に偏差が発生しても、発生した偏差が制御に反映されずに許容されることになる。よって、ロックアップクラッチの解放タイミングが所望のタイミングからずれる虞がある。 In the case of this comparative example, it is feedforward control in which a control command is determined by the target coast slip rotational speed characteristic. For this reason, even if a deviation occurs between the target coast slip speed characteristic and the actual coast slip speed characteristic after the coast slip control is started, the generated deviation is allowed without being reflected in the control. Become. Therefore, there is a possibility that the release timing of the lockup clutch is deviated from a desired timing.
 そこで、コーストスリップ制御を、フィードバック制御により実行する案がある。しかし、目標コーストスリップ回転数と実コーストスリップ回転数の偏差により制御指令を決めるフィードバック制御では、油圧応答遅れがある実コーストスリップ回転数の情報を用いることになる。よって、実コーストスリップ回転数情報の油圧応答遅れにより、ロックアップクラッチの解放タイミングが所望のタイミングからずれてしまう新たな原因を作ってしまうことになる。 Therefore, there is a plan to execute coast slip control by feedback control. However, in feedback control in which a control command is determined based on a deviation between the target coast slip rotational speed and the actual coast slip rotational speed, information on the actual coast slip rotational speed with a hydraulic response delay is used. Therefore, a new cause of the shift timing of the lockup clutch being deviated from the desired timing is created due to the hydraulic response delay of the actual coast slip rotation speed information.
 本発明者等は、上記課題に着目し、アクセル足離し操作によるコースト減速中、実コーストスリップ回転数が目標コーストスリップ回転数に収束するようにロックアップ差圧をフィードバック制御する。そして、フィードバック制御で用いる目標コーストスリップ回転数を、車両の先読み減速度に基づき算出する構成を採用した。 The present inventors pay attention to the above-mentioned problem and feedback-control the lockup differential pressure so that the actual coast slip rotational speed converges to the target coast slip rotational speed during coast deceleration by the accelerator release operation. And the structure which calculates the target coast slip rotation speed used by feedback control based on the look-ahead deceleration of a vehicle was employ | adopted.
 このように、コーストスリップ制御をフィードバック制御とすることで、コーストスリップ制御中に発生する目標コーストスリップ回転数と実コーストスリップ回転数の偏差を随時抑える制御となる。この結果、ロックアップ解放タイミングが所望のタイミングからずれることを抑制することができる。 Thus, by using the coast slip control as the feedback control, the deviation between the target coast slip rotational speed and the actual coast slip rotational speed that occurs during the coast slip control is controlled as needed. As a result, it is possible to suppress the lockup release timing from deviating from a desired timing.
 さらに、目標コーストスリップ回転数を車両の先読み減速度を用いて算出することで、油圧応答遅れがある実コーストスリップ回転数情報を用いても、油圧応答遅れ分が先読み情報になる目標コーストスリップ回転数により相殺される。この結果、コーストスリップ減速時、フィードバック制御による応答遅れを抑えることができる。 Furthermore, by calculating the target coast slip rotational speed using the pre-read deceleration of the vehicle, even if the actual coast slip rotational speed information with a hydraulic response delay is used, the target coast slip rotation in which the hydraulic response delay becomes the pre-read information. Offset by number. As a result, response delay due to feedback control can be suppressed during coast slip deceleration.
 図8は、車両減速度が異なるコースト減速シーンでの各特性を示すタイムチャートである。以下、図8に基づいて車両減速度が異なるコースト減速シーンでのコーストスリップ制御作用を説明する。 FIG. 8 is a time chart showing each characteristic in a coast deceleration scene where the vehicle deceleration is different. Hereinafter, the coast slip control action in a coast deceleration scene with different vehicle deceleration will be described with reference to FIG.
 車両減速度大(0.5G)の車速特性をAとすると、時刻t0から車速VSPがコーストスリップ制御を維持可能な下限車速域の第1設定車速VSP1に到達する時刻t1までの区間が第1目標コーストスリップ回転数ΔN1*を維持するコーストスリップ制御区間になる。そして、時刻t1から第2設定車速VSP2に到達する時刻t2までの区間が第2目標コーストスリップ回転数ΔN2*によるLUクラッチ解放制御区間になる。さらに、時刻t2以降の区間が第3目標コーストスリップ回転数ΔN3*を維持するLUクラッチ完全解放区間になる。 Assuming that the vehicle speed characteristics of the large vehicle deceleration (0.5G) are A, the section from time t0 to time t1 when the vehicle speed VSP reaches the first set vehicle speed VSP1 in the lower limit vehicle speed range where coast slip control can be maintained is the first target. The coast slip control section maintains the coast slip rotational speed ΔN1 * . The section from time t1 to time t2 when the second set vehicle speed VSP2 is reached is the LU clutch release control section based on the second target coast slip rotational speed ΔN2 * . Furthermore, the section after time t2 is the LU clutch complete release section that maintains the third target coast slip rotational speed ΔN3 * .
 車両減速度中(0.2G)の車速特性をBとすると、時刻t0から車速VSPがコーストスリップ制御を維持可能な下限車速域の第1設定車速VSP1に到達する時刻t1までの区間が第1目標コーストスリップ回転数ΔN1*を維持するコーストスリップ制御区間になる。そして、時刻t1から第2設定車速VSP2に到達する時刻t3までの区間が第2目標コーストスリップ回転数ΔN2*によるLUクラッチ解放制御区間になる。さらに、時刻t3以降の区間が第3目標コーストスリップ回転数ΔN3*を維持するLUクラッチ完全解放区間になる。 Assuming that the vehicle speed characteristics during vehicle deceleration (0.2G) is B, the section from time t0 to time t1 when the vehicle speed VSP reaches the first set vehicle speed VSP1 in the lower limit vehicle speed range where coast slip control can be maintained is the first target. The coast slip control section maintains the coast slip rotational speed ΔN1 * . The section from the time t1 to the time t3 when the second set vehicle speed VSP2 is reached is the LU clutch release control section based on the second target coast slip rotational speed ΔN2 * . Further, the section after time t3 is the LU clutch complete release section in which the third target coast slip rotational speed ΔN3 * is maintained.
 車両減速度小(0.1G)の車速特性をCとすると、時刻t0から車速VSPがコーストスリップ制御を維持可能な下限車速域の第1設定車速VSP1に到達する時刻t1までの区間が第1目標コーストスリップ回転数ΔN1*を維持するコーストスリップ制御区間になる。そして、時刻t1から第2設定車速VSP2に到達する時刻t4までの区間が第2目標コーストスリップ回転数ΔN2*によるLUクラッチ解放制御区間になる。さらに、時刻t4以降の区間が第3目標コーストスリップ回転数ΔN3*を維持するLUクラッチ完全解放区間になる。 If the vehicle speed characteristic of small vehicle deceleration (0.1G) is C, the first target is the section from time t0 to time t1 when the vehicle speed VSP reaches the first set vehicle speed VSP1 in the lower limit vehicle speed range where coast slip control can be maintained. The coast slip control section maintains the coast slip rotational speed ΔN1 * . The section from time t1 to time t4 when reaching the second set vehicle speed VSP2 is the LU clutch release control section based on the second target coast slip rotational speed ΔN2 * . Further, the section after time t4 is the LU clutch complete release section in which the third target coast slip rotational speed ΔN3 * is maintained.
 そこで、車速特性A,B,Cを対比する。車両減速度大(0.5G)の車速特性Aの場合、LUクラッチ解放制御区間での第2目標コーストスリップ回転数ΔN2*による低下勾配角度が最も大きな角度になる。そして、車速特性Aの場合、LUクラッチ解放制御時間TA(=t1~t2)が最も短い時間になり、時刻t2がロックアップクラッチ20の解放タイミングになる。 Therefore, the vehicle speed characteristics A, B, and C are compared. In the case of the vehicle speed characteristic A with a large vehicle deceleration (0.5 G ) , the decreasing gradient angle due to the second target coast slip rotational speed ΔN2 * in the LU clutch release control section is the largest angle. In the case of the vehicle speed characteristic A, the LU clutch release control time TA (= t1 to t2) is the shortest time, and the time t2 is the release timing of the lockup clutch 20.
 車両減速度中(0.2G)の車速特性Bの場合、LUクラッチ解放制御区間での第2目標コーストスリップ回転数ΔN2*による低下勾配角度が車速特性Aと車速特性Cの中間角度になる。そして、車速特性Bの場合、LUクラッチ解放制御時間TB(=t1~t3)が車速特性Aと車速特性Cの中間時間になり、時刻t3がロックアップクラッチ20の解放タイミングになる。 In the case of the vehicle speed characteristic B during vehicle deceleration (0.2G), the decreasing gradient angle due to the second target coast slip rotational speed ΔN2 * in the LU clutch release control section is an intermediate angle between the vehicle speed characteristic A and the vehicle speed characteristic C. In the case of the vehicle speed characteristic B, the LU clutch release control time TB (= t1 to t3) is an intermediate time between the vehicle speed characteristic A and the vehicle speed characteristic C, and the time t3 is the release timing of the lockup clutch 20.
 車両減速度小(0.1G)の車速特性Cの場合、LUクラッチ解放制御区間での第2目標コーストスリップ回転数ΔN2*による低下勾配角度が最も小さな角度になる。そして、車速特性Cの場合、LUクラッチ解放制御時間TC(=t1~t4)が最も長い時間になり、時刻t4がロックアップクラッチ20の解放タイミングになる。 In the case of the vehicle speed characteristic C with a small vehicle deceleration (0.1 G), the decrease gradient angle due to the second target coast slip rotational speed ΔN2 * in the LU clutch release control section is the smallest angle. In the case of the vehicle speed characteristic C, the LU clutch release control time TC (= t1 to t4) is the longest time, and the time t4 is the release timing of the lockup clutch 20.
 このように、車速特性A,B,Cによる車両減速度を精度良く把握しておくと、車両減速度の大きさにかかわらず、適切なロックアップクラッチ20の解放タイミングを得ることができる。 Thus, if the vehicle deceleration due to the vehicle speed characteristics A, B, and C is accurately grasped, an appropriate release timing of the lockup clutch 20 can be obtained regardless of the magnitude of the vehicle deceleration.
 以上説明したように、実施例1のベルト式無段変速機CVTのロックアップ制御装置にあっては、下記に列挙する効果が得られる。 As described above, in the lock-up control device for the belt-type continuously variable transmission CVT according to the first embodiment, the following effects can be obtained.
 (1) トルクコンバータ2と、ロックアップクラッチ20と、ロックアップコントローラ(CVTコントロールユニット8)と、を備える。
トルクコンバータ2は、走行用駆動源(エンジン1)と変速機構(バリエータ4)との間に介装される。
ロックアップクラッチ20は、トルクコンバータ2に有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結する。
ロックアップコントローラ(CVTコントロールユニット8)は、ロックアップクラッチ20の締結/スリップ/解放の制御を行う。
ロックアップコントローラ(CVTコントロールユニット8)に、アクセル足離し操作によるコースト減速中、実スリップ回転数が目標コーストスリップ回転数に収束するようにロックアップ差圧をフィードバック制御するコーストスリップ制御部80aを設ける。
コーストスリップ制御部80aは、フィードバック制御で用いる目標コーストスリップ回転数を、車両の先読み減速度に基づき算出する(図3)。
 このように、フィードバック制御で用いる目標コーストスリップ回転数が、車両の先読み減速度を用いて算出される。この結果、コーストスリップ減速時、フィードバック制御による応答遅れを抑えつつ、ロックアップ解放タイミングが所望のタイミングからずれることを抑制することができる。
(1) The torque converter 2, the lockup clutch 20, and the lockup controller (CVT control unit 8) are provided.
The torque converter 2 is interposed between the travel drive source (engine 1) and the speed change mechanism (variator 4).
The lock-up clutch 20 is provided in the torque converter 2 and directly connects the torque converter input shaft and the torque converter output shaft by fastening.
The lockup controller (CVT control unit 8) controls the engagement / slip / release of the lockup clutch 20.
The lockup controller (CVT control unit 8) is provided with a coast slip control unit 80a that feedback-controls the lockup differential pressure so that the actual slip rotation speed converges to the target coast slip rotation speed during coast deceleration by the accelerator release operation. .
The coast slip control unit 80a calculates the target coast slip rotational speed used in the feedback control based on the look-ahead deceleration of the vehicle (FIG. 3).
Thus, the target coast slip rotational speed used in the feedback control is calculated using the look-ahead deceleration of the vehicle. As a result, at the time of coast slip deceleration, it is possible to suppress the lockup release timing from deviating from a desired timing while suppressing response delay due to feedback control.
 (2) 変速機構は、無段変速機構(バリエータ4)である。
コーストスリップ制御部80aは、無段変速機構(バリエータ4)へ指示する目標変速比に基づいて車両の先読み減速度を算出する(図5)。
 このように、車両の先読み減速度を、無段変速制御部8aから取得される目標変速比に基づいて算出している。この結果、油圧応答遅れを相殺する車両の先読み減速度を精度良く算出することができる。
即ち、無段変速制御部8aから取得される目標変速比は、変速指示値であり、目標変速比が指示されてから油圧応答遅れ分の時間が経過した後に実変速比となる。つまり、目標変速比は、油圧応答遅れ分を先読みした変速比情報といえる。
(2) The transmission mechanism is a continuously variable transmission mechanism (variator 4).
The coast slip control unit 80a calculates the pre-reading deceleration of the vehicle based on the target gear ratio instructed to the continuously variable transmission mechanism (variator 4) (FIG. 5).
In this way, the look-ahead deceleration of the vehicle is calculated based on the target gear ratio acquired from the continuously variable transmission control unit 8a. As a result, it is possible to accurately calculate the look-ahead deceleration of the vehicle that cancels out the hydraulic response delay.
That is, the target speed ratio acquired from the continuously variable speed control unit 8a is a speed change instruction value, and becomes the actual speed ratio after a time corresponding to the hydraulic response delay has elapsed since the target speed ratio was instructed. That is, the target gear ratio can be said to be gear ratio information obtained by prefetching the hydraulic response delay.
 (3) コーストスリップ制御部80aは、コーストスリップ要求があると、車両の減速にしたがって第1目標コーストスリップ回転数ΔN1*から第2目標コーストスリップ回転数ΔN2*を介して第3目標コーストスリップ回転数ΔN3*へと移行する目標コーストスリップ回転数特性を設定する。
第1目標コーストスリップ回転数ΔN1*を、フィードバック制御でコントロールできる最小回転数域のコーストスリップ差回転数値で与える。
第2目標コーストスリップ回転数ΔN2*を、車両の先読み減速度に合わせた勾配で差回転数が増加する差回転数算出値で与える。
第3目標コーストスリップ回転数ΔN3*を、ロックアップクラッチ20を完全解放可能なクラッチ解放差回転数値で与える(図8)。
 このように、目標コーストスリップ回転数特性を、第1目標コーストスリップ回転数ΔN1*から第2目標コーストスリップ回転数ΔN2*を介して第3目標コーストスリップ回転数ΔN3*と移行する特性に設定している。第2目標コーストスリップ回転数ΔN2*は、車両の先読み減速度に合わせた勾配で差回転数が増加する。この結果、コーストスリップ制御状態からロックアップ解放状態へ移行するとき、ロックアップ解放による車両挙動変化を抑え、スムースにロックアップクラッチ20を完全解放することができる。
(3) When there is a coast slip request, the coast slip control unit 80a performs the third target coast slip rotation from the first target coast slip rotation speed ΔN1 * through the second target coast slip rotation speed ΔN2 * according to the deceleration of the vehicle. Sets the target coast slip speed characteristic that shifts to the number ΔN3 * .
The first target coast slip rotational speed ΔN1 * is given as a coast slip differential rotational speed value in the minimum rotational speed range that can be controlled by feedback control.
The second target coast slip rotational speed ΔN2 * is given as a differential rotational speed calculated value that increases the differential rotational speed with a gradient that matches the pre-read deceleration of the vehicle.
The third target coast slip rotational speed ΔN3 * is given as a clutch release differential rotational speed value at which the lockup clutch 20 can be completely released (FIG. 8).
Thus, the target coasting slip rotation speed characteristic, and set the properties from the first target coasting slip revolution speed .DELTA.N1 * via a second target coasting slip revolution speed .DELTA.N2 * transitions third target coasting slip revolution speed .DELTA.N3 * ing. The second target coast slip rotational speed ΔN2 * increases with a gradient that matches the look-ahead deceleration of the vehicle. As a result, when shifting from the coast slip control state to the lockup release state, it is possible to suppress a change in vehicle behavior due to the lockup release and to completely release the lockup clutch 20 smoothly.
 (4) コーストスリップ制御部80aは、目標コーストスリップ回転数特性を、コーストスリップ制御を維持可能な下限車速域の第1設定車速VSP1と、第1設定車速VSP1よりさらに低車速側の第2設定車速VSP2とによって各目標コーストスリップ回転数を移行させる特性とする。
第1目標コーストスリップ回転数ΔN1*の選択区間を、コーストスリップ制御の開始車速から第1設定車速VSP1に到達するまでの減速区間とする。
第2目標コーストスリップ回転数ΔN2*の選択区間を、第1設定車速VSP1に到達してから第2設定車速VSP2に到達するまでの減速区間とする。
第3目標コーストスリップ回転数ΔN3*の選択区間を、第2設定車速VSP2に到達してからの減速区間とする(図8)。
 このように、第1設定車速VSP1を、コーストスリップ制御を維持可能な下限車速域の車速としている。コーストスリップ制御の開始車速から第1設定車速VSP1に到達するまでを、第1目標コーストスリップ回転数ΔN1*の選択区間としている。この結果、コースト減速時、微小スリップ量によるコーストスリップ制御が実行される区間を、車速限界に近づくまで長く確保することができる。
(4) The coast slip control unit 80a sets the target coast slip rotational speed characteristics to the first set vehicle speed VSP1 in the lower limit vehicle speed range in which coast slip control can be maintained, and to the second setting on the lower vehicle speed side than the first set vehicle speed VSP1. The target coast slip rotational speed is shifted according to the vehicle speed VSP2.
The selected section of the first target coast slip rotational speed ΔN1 * is a deceleration section from the start vehicle speed of coast slip control to the first set vehicle speed VSP1.
The selected section of the second target coast slip rotational speed ΔN2 * is a deceleration section from reaching the first set vehicle speed VSP1 to reaching the second set vehicle speed VSP2.
The selected section of the third target coast slip rotational speed ΔN3 * is set as the deceleration section after reaching the second set vehicle speed VSP2 (FIG. 8).
As described above, the first set vehicle speed VSP1 is set to the vehicle speed in the lower limit vehicle speed range in which the coast slip control can be maintained. The period from the start of the coast slip control to the arrival at the first set vehicle speed VSP1 is set as the selection section of the first target coast slip rotational speed ΔN1 * . As a result, at the time of coast deceleration, a section in which coast slip control with a minute slip amount is executed can be secured long until the vehicle speed limit is approached.
 (5) ロックアップコントローラ(CVTコントロールユニット8)は、目標差回転数ΔN*に基づくフィードフォワード補償と差回転数偏差δに基づくフィードバック補償によりコンバータトルクTcnvを演算する。トルクコンバータ2への入力トルク(補正エンジントルクTadj)からコンバータトルクTcnvを差し引いて演算される目標LUトルクTlu*を得るスリップ制御を実行するロックアップ制御部80を有する。
コーストスリップ制御部80aは、コーストスリップ要求があると、コンバータトルクTcnvのフィードバック補償分を初期値にリセットし、コーストスリップ制御を開始する(図6)。
 このように、コーストスリップ制御を開始するとき、コンバータトルクTcnvのフィードバック補償分を初期値にリセットする。この結果、ロックアップ制御部80を用いてコーストスリップ制御を実行するとき、コーストスリップ制御の開始直後から安定したスリップ回転を保持することができる。
即ち、ロックアップ制御部80は、コーストスリップ制御専用の制御部ではなく、スムースLU制御等のように他の制御と兼用している。このため、コーストスリップ制御の開始時において、コンバータトルクTcnvのフィードバック補償分の初期値リセットを行うことにより、前回までの積分項によるフィードバック補償分のトルク値によるコーストスリップ制御への影響が排除される。
(5) The lockup controller (CVT control unit 8) calculates the converter torque Tcnv by feedforward compensation based on the target differential rotational speed ΔN * and feedback compensation based on the differential rotational speed deviation δ. The lockup control unit 80 executes slip control for obtaining a target LU torque Tlu * calculated by subtracting the converter torque Tcnv from the input torque (corrected engine torque Tadj) to the torque converter 2.
When there is a coast slip request, the coast slip control unit 80a resets the feedback compensation amount of the converter torque Tcnv to an initial value and starts coast slip control (FIG. 6).
As described above, when coast slip control is started, the feedback compensation amount of the converter torque Tcnv is reset to the initial value. As a result, when coast slip control is executed using the lockup control unit 80, stable slip rotation can be maintained immediately after the start of coast slip control.
In other words, the lock-up control unit 80 is not a dedicated control unit for coast slip control, but is also used for other controls such as smooth LU control. For this reason, at the start of the coast slip control, by resetting the initial value for the feedback compensation of the converter torque Tcnv, the influence on the coast slip control due to the torque value for the feedback compensation by the integral term until the previous time is eliminated. .
 以上、本発明の自動変速機のロックアップ制御装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 The automatic transmission lockup control device of the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are allowed without departing from the spirit of the invention according to each claim of the claims.
 実施例1では、ロックアップ制御部80として、目標駆動力Fd*を目標エンジン回転数Ne*に変換する駆動力デマンドブロック81を有する例を示した。しかし、ロックアップ制御部としては、駆動力デマンドブロックを有さず、目標コーストスリップ回転数特性を与えることでコーストスリップ制御する例であっても良い。 In the first embodiment, the lockup control unit 80 has the driving force demand block 81 that converts the target driving force Fd * into the target engine speed Ne * . However, the lockup control unit may be an example that does not have a driving force demand block and performs coast slip control by giving a target coast slip rotational speed characteristic.
 実施例1では、本発明のロックアップ制御装置を、自動変速機としてベルト式無段変速機CVTを搭載したエンジン車に適用する例を示した。しかし、本発明のロックアップ制御装置は、自動変速機として、ステップATと呼ばれる有段変速機を搭載した車両や副変速機付き無段変速機を搭載した車両等に適用しても良い。また、適用される車両としても、エンジン車に限らず、走行用駆動源にエンジンとモータを搭載したハイブリッド車、走行用駆動源にモータを搭載した電気自動車等に対しても適用できる。 Example 1 shows an example in which the lockup control device of the present invention is applied to an engine vehicle equipped with a belt type continuously variable transmission CVT as an automatic transmission. However, the lock-up control device of the present invention may be applied to a vehicle equipped with a stepped transmission called step AT or a vehicle equipped with a continuously variable transmission with a sub-transmission as an automatic transmission. Further, the applied vehicle is not limited to an engine vehicle, and can be applied to a hybrid vehicle in which an engine and a motor are mounted on a traveling drive source, an electric vehicle in which a motor is mounted on a traveling drive source, and the like.

Claims (5)

  1.  走行用駆動源と変速機構との間に介装されるトルクコンバータと、
     前記トルクコンバータに有し、締結によりトルクコンバータ入力軸とトルクコンバータ出力軸を直結するロックアップクラッチと、
     前記ロックアップクラッチの締結/スリップ/解放の制御を行うロックアップコントローラと、を備え、
     前記ロックアップコントローラに、アクセル足離し操作によるコースト減速中、実スリップ回転数が目標コーストスリップ回転数に収束するようにロックアップ差圧をフィードバック制御するコーストスリップ制御部を設け、
     前記コーストスリップ制御部は、フィードバック制御で用いる前記目標コーストスリップ回転数を、車両の先読み減速度に基づき算出する、
     自動変速機のロックアップ制御装置。
    A torque converter interposed between the traveling drive source and the speed change mechanism;
    A lock-up clutch that is connected to the torque converter input shaft and the torque converter output shaft by fastening;
    A lockup controller for controlling the engagement / slip / release of the lockup clutch, and
    In the lockup controller, a coast slip control unit that feedback-controls the lockup differential pressure is provided so that the actual slip rotation speed converges to the target coast slip rotation speed during coast deceleration by an accelerator release operation,
    The coast slip control unit calculates the target coast slip rotational speed used in feedback control based on a look-ahead deceleration of a vehicle.
    Automatic transmission lockup control device.
  2.  請求項1に記載された自動変速機のロックアップ制御装置において、
     前記変速機構は、無段変速機構であり、
     前記コーストスリップ制御部は、前記無段変速機構へ指示する目標変速比に基づいて前記車両の先読み減速度を算出する、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to claim 1,
    The transmission mechanism is a continuously variable transmission mechanism,
    The coast slip control unit calculates a look-ahead deceleration of the vehicle based on a target gear ratio instructed to the continuously variable transmission mechanism;
    Automatic transmission lockup control device.
  3.  請求項1又は2に記載された自動変速機のロックアップ制御装置において、
     前記コーストスリップ制御部は、コーストスリップ要求があると、車両の減速にしたがって第1目標コーストスリップ回転数から第2目標コーストスリップ回転数を介して第3目標コーストスリップ回転数へと移行する目標コーストスリップ回転数特性を設定し、
     前記第1目標コーストスリップ回転数を、フィードバック制御でコントロールできる最小回転数域のコーストスリップ差回転数値で与え、
     前記第2目標コーストスリップ回転数を、前記車両の先読み減速度に合わせた勾配で差回転数が増加する差回転数算出値で与え、
     前記第3目標コーストスリップ回転数を、前記ロックアップクラッチを完全解放可能なクラッチ解放差回転数値で与える、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to claim 1 or 2,
    When there is a coast slip request, the coast slip control unit shifts from the first target coast slip rotational speed to the third target coast slip rotational speed via the second target coast slip rotational speed as the vehicle decelerates. Set the slip speed characteristics,
    The first target coast slip rotational speed is given as a coast slip differential rotational numerical value in a minimum rotational speed range that can be controlled by feedback control,
    The second target coast slip rotational speed is given as a differential rotational speed calculated value in which the differential rotational speed increases with a gradient that matches the look-ahead deceleration of the vehicle,
    The third target coast slip rotation speed is given as a clutch release differential rotation value capable of completely releasing the lockup clutch.
    Automatic transmission lockup control device.
  4.  請求項3に記載された自動変速機のロックアップ制御装置において、
     前記コーストスリップ制御部は、前記目標コーストスリップ回転数特性を、コーストスリップ制御を維持可能な下限車速域の第1設定車速と、前記第1設定車速よりさらに低車速側の第2設定車速とによって各目標コーストスリップ回転数を移行させる特性とし、
     前記第1目標コーストスリップ回転数の選択区間を、コーストスリップ制御の開始車速から前記第1設定車速に到達するまでの減速区間とし、
     前記第2目標コーストスリップ回転数の選択区間を、前記第1設定車速に到達してから前記第2設定車速に到達するまでの減速区間とし、
     前記第3目標コーストスリップ回転数の選択区間を、前記第2設定車速に到達してからの減速区間とする、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to claim 3,
    The coast slip control unit determines the target coast slip rotational speed characteristic by a first set vehicle speed in a lower limit vehicle speed range in which coast slip control can be maintained and a second set vehicle speed on the vehicle speed side lower than the first set vehicle speed. Each target coast slip rotation speed has a characteristic to shift,
    The selected section of the first target coast slip rotational speed is a deceleration section from the start vehicle speed of coast slip control until reaching the first set vehicle speed,
    The selected section of the second target coast slip rotational speed is a deceleration section from reaching the first set vehicle speed to reaching the second set vehicle speed,
    The third target coast slip rotational speed selection section is a deceleration section after reaching the second set vehicle speed,
    Automatic transmission lockup control device.
  5.  請求項1から4までの何れか一項に記載された自動変速機のロックアップ制御装置において、
     前記ロックアップコントローラは、目標差回転数に基づくフィードフォワード補償と差回転数偏差に基づくフィードバック補償によりコンバータトルクを演算し、トルクコンバータへの入力トルクから前記コンバータトルクを差し引いて演算される目標ロックアップトルクを得るスリップ制御を実行するロックアップ制御部を有し、
     前記コーストスリップ制御部は、コーストスリップ要求があると、前記コンバータトルクのフィードバック補償分を初期値にリセットし、コーストスリップ制御を開始する、
     自動変速機のロックアップ制御装置。
    In the automatic transmission lockup control device according to any one of claims 1 to 4,
    The lockup controller calculates a converter torque by feedforward compensation based on a target differential rotational speed and feedback compensation based on a differential rotational speed deviation, and calculates a target lockup calculated by subtracting the converter torque from an input torque to the torque converter. A lock-up control unit that executes slip control for obtaining torque;
    When there is a coast slip request, the coast slip control unit resets the feedback compensation amount of the converter torque to an initial value, and starts coast slip control.
    Automatic transmission lockup control device.
PCT/JP2019/018961 2018-05-14 2019-05-13 Lock-up control device for automatic transmission WO2019221066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519626A JP7057825B2 (en) 2018-05-14 2019-05-13 Automatic transmission lockup controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-092819 2018-05-14
JP2018092819 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019221066A1 true WO2019221066A1 (en) 2019-11-21

Family

ID=68540057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018961 WO2019221066A1 (en) 2018-05-14 2019-05-13 Lock-up control device for automatic transmission

Country Status (2)

Country Link
JP (1) JP7057825B2 (en)
WO (1) WO2019221066A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694122A (en) * 1992-09-08 1994-04-05 Nippondenso Co Ltd Slip controller for lock up clutch
JPH0953718A (en) * 1995-08-09 1997-02-25 Toyota Motor Corp Slip control device for direct connection clutch for vehicle
JP2010038300A (en) * 2008-08-06 2010-02-18 Toyota Motor Corp Control device and control method of vehicle
JP2010169162A (en) * 2009-01-21 2010-08-05 Toyota Motor Corp Vehicle control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7028904B2 (en) 2019-03-21 2022-03-02 アカデミア シニカ Synthetic peptides, pharmaceutical compositions comprising them and their use in the treatment of thromboembolism-related diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694122A (en) * 1992-09-08 1994-04-05 Nippondenso Co Ltd Slip controller for lock up clutch
JPH0953718A (en) * 1995-08-09 1997-02-25 Toyota Motor Corp Slip control device for direct connection clutch for vehicle
JP2010038300A (en) * 2008-08-06 2010-02-18 Toyota Motor Corp Control device and control method of vehicle
JP2010169162A (en) * 2009-01-21 2010-08-05 Toyota Motor Corp Vehicle control device

Also Published As

Publication number Publication date
JP7057825B2 (en) 2022-04-20
JPWO2019221066A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
EP2436954B1 (en) Continuously variable transmission and shift control method thereof
CN109790920B (en) Shift control method and shift control device for continuously variable transmission
JP2009002451A (en) Control device for lock-up clutch
WO2017138194A1 (en) Control method and control device for gear change mechanism
JP6442056B2 (en) Transmission and transmission control method
JP6942238B2 (en) Automatic transmission lockup controller and control method
WO2019167507A1 (en) Lock-up control device and control method for automatic transmission
JP2010196881A (en) Control device for vehicle
JP6960545B2 (en) Belt type continuously variable transmission
JP7044896B2 (en) Lock-up controller for automatic transmission
JP6971396B2 (en) Automatic transmission lockup controller
WO2019221066A1 (en) Lock-up control device for automatic transmission
JP2018115700A (en) Lock-up clutch control device and control method for vehicle
JP6865888B2 (en) Automatic transmission lockup controller and control method
JP6576275B2 (en) Control device for automatic transmission
JP6921999B2 (en) Lock-up engagement control device for automatic transmission
JP7058909B2 (en) Belt type continuously variable transmission control device
JP7194293B2 (en) AUTOMATIC TRANSMISSION CONTROL DEVICE AND CONTROL METHOD
JP2010025246A (en) Gear shift control device for vehicle
JP7133034B2 (en) Vehicle and vehicle control method
WO2012098773A1 (en) Transmission control device for continuously variable transmission
JP2020026811A (en) Shift control device for continuously variable transmission
JP2019082192A (en) Shift control device of continuously variable transmission
JP2021032305A (en) Vehicle control device and vehicle control method
JP2019124263A (en) Vehicle and method for controlling vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804560

Country of ref document: EP

Kind code of ref document: A1