WO2019167454A1 - Joint structural body and method for manufacturing same - Google Patents

Joint structural body and method for manufacturing same Download PDF

Info

Publication number
WO2019167454A1
WO2019167454A1 PCT/JP2019/001057 JP2019001057W WO2019167454A1 WO 2019167454 A1 WO2019167454 A1 WO 2019167454A1 JP 2019001057 W JP2019001057 W JP 2019001057W WO 2019167454 A1 WO2019167454 A1 WO 2019167454A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
base material
metal base
weld
welding
Prior art date
Application number
PCT/JP2019/001057
Other languages
French (fr)
Japanese (ja)
Inventor
将也 中村
白井 秀彰
河西 文男
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019167454A1 publication Critical patent/WO2019167454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present disclosure relates to a bonded structure and a manufacturing method thereof.
  • Patent Document 1 includes a conductor having a joining portion and a joining member having a melting point lower than that of the conductor, and a tip portion of the joining portion forms an alloy layer made of an alloy of the conductor and the joining member.
  • a joint structure in which the base part of the joint is electrically joined by brazing of a joining member is described. Further, this document describes that the joining member and the conductor are melted by a gas arc to obtain the above joined structure.
  • the conventional technology described above is a technology for forming both an alloy layer and a brazing layer. According to this prior art, it is necessary to sandwich a brazing material for forming a brazing layer between metal base materials to be joined to each other. Therefore, the conventional joint structure has a problem that it is difficult to realize a reduction in size and weight because the brazing layer is included in addition to the alloy layer.
  • This disclosure is intended to provide a joint structure that can be reduced in size and weight as compared with the conventional one, and a manufacturing method thereof.
  • One aspect of the present disclosure includes a first metal base material made of a first metal, a second metal base material made of a second metal, the first metal base material, and the second metal base material.
  • a welded metal part to be connected The weld metal part is composed of an alloy of the first metal, the second metal, the first metal, and a third metal having a melting point lower than that of the second metal,
  • the first metal base material and the second metal base material are in a joint structure that is connected only through the weld metal portion.
  • the first metal and the second metal are disposed between a first metal base composed of a first metal and a second metal base composed of a second metal.
  • Direct heat input locally to the welding material composed of a third metal having a lower melting point A melting part containing the third metal, the first metal, and the second metal by melting the welding material by heating by the heat input and further melting a part of the first metal and the second metal.
  • the heat input is stopped to solidify the molten portion, and a weld metal portion is formed to connect the first metal base material and the second metal base material.
  • the joint structure has the above configuration.
  • the first metal base material and the second metal base material are connected only through the weld metal part, and the weld metal part includes the first metal, the second metal, the first metal, and the second metal. It is composed of an alloy with a third metal having a lower melting point.
  • the joint structure is not a structure having both an alloy layer and a brazing layer as in the conventional joint structure, but only the weld metal portion, and the first metal base material and the second metal base material are It is integrated.
  • the manufacturing method of the joined structure has the above configuration. Therefore, in the manufacturing method of the joined structure, the heat conduction to the first metal base material and the second metal base material is hindered by directly applying heat locally to the low melting point welding material, and the temperature rise Speed can be accelerated.
  • the melting point of the third metal which is lower than the melting points of the first metal and the second metal, is reached by heating due to heat input, melting of the welding material starts.
  • the melting point of the first metal of the first metal base material and the second metal of the second metal base material reach the melting points of the first metal base material, the first metal and the second metal start to melt.
  • a molten part including the third metal, the first metal, and the second metal is formed. Then, the said heat input is stopped
  • the bonded structure can be manufactured in a relatively small amount of total heat input and in a short time.
  • FIG. 1 is a plan view schematically showing a bonded structure according to Embodiment 1.
  • 2 is a cross-sectional view schematically showing a cross section taken along line II-II in FIG.
  • FIG. 3 is an explanatory diagram for explaining a method for measuring the content of alloy elements in the body portion at each welding depth position and the Vickers hardness
  • FIG. 4 is an explanatory diagram for explaining a manufacturing method of the bonded structure according to the second embodiment.
  • FIG. 5 is an explanatory diagram for explaining a modification of the groove portion shown in FIG. FIG.
  • FIG. 6 is an explanatory diagram for schematically explaining the operational effects of the manufacturing method of the bonded structure according to the second embodiment.
  • FIG. 7 is an explanatory diagram for explaining a method of manufacturing the bonded structure of the sample 1 in Experimental Example 1.
  • FIG. 8 is a photograph of the joined structure of Sample 1 in Experimental Example 1 as viewed from above.
  • FIG. 9 is a photograph showing a longitudinal section of the bonded structure of Sample 1 in Experimental Example 1
  • FIG. 10 is a photograph showing a longitudinal section of the bonded structure of Sample 2 in Experimental Example 2
  • FIG. 11 is a Vickers hardness distribution of the bonded structure of Sample 2 in Experimental Example 2.
  • Embodiment 1 The bonded structure of Embodiment 1 will be described with reference to FIGS. 1 and 2. As illustrated in FIG. 1 and FIG. 2, the joint structure 1 of the present embodiment includes a first metal base material 11, a second metal base material 12, and a weld metal portion 13. This will be described in detail below.
  • the first metal base material 11 is composed of a first metal. Specific examples of the first metal include copper, aluminum, iron, and alloys thereof.
  • the second metal base material 12 is made of a second metal. Specific examples of the second metal include copper, aluminum, iron, and alloys thereof.
  • the first metal and the second metal are preferably selected so that their melting points, characteristics, and the like are similar to each other from the viewpoints of the strength and conductivity of the bonded structure 1.
  • the first metal and the second metal are preferably the same type of metal. According to this configuration, it is possible to obtain the joint structure 1 that easily secures necessary strength and conductivity while reducing the size and weight.
  • the same kind means the case where the metal components with the highest content are the same when the chemical composition (mass%) of the first metal and the second metal is viewed.
  • both the first metal and the second metal can be copper or a copper alloy.
  • the weld metal part 13 is a part that connects the first metal base material 11 and the second metal base material 12.
  • the weld metal portion 13 is a metal portion that has been melted and solidified during welding, and does not include a heat affected zone.
  • the first metal base material 11 and the second metal base material 12 are connected only through the weld metal part 13. That is, the 1st metal base material 11 and the 2nd metal base material 12 do not have a brazing layer like the prior art mentioned above, and are joined only by the weld metal part 13.
  • the weld metal portion 13 is composed of an alloy of a first metal, a second metal, and a third metal.
  • the first metal is a metal derived from the first metal base material 11
  • the second metal is a metal derived from the second metal base material 12.
  • the third metal is a metal having a lower melting point than the first metal and the second metal.
  • examples of the third metal include a copper alloy having a melting point lower than these.
  • the third metal more specifically, P or a copper alloy containing P and Ag can be exemplified.
  • the third metal when the first metal and the second metal are both aluminum or an aluminum alloy, specific examples of the third metal include an aluminum alloy having a melting point lower than these.
  • the third metal more specifically, various types of aluminum alloy solders defined in JIS Z3263: 2002 can be exemplified.
  • both the first metal and the second metal are, for example, iron or an iron alloy, specifically, as the third metal, a copper-based alloy, an iron-based alloy, a Ni-based metal, or the like having a lower melting point than these. Can be illustrated.
  • the joint structure 1 of the present embodiment has the above configuration.
  • the first metal base material 11 and the second metal base material 12 are connected only through the weld metal part 13, and the weld metal part 13 includes the first metal, the second metal, and the first metal.
  • an alloy of a third metal having a melting point lower than that of the second metal.
  • the joining structure 1 of this embodiment is not a structure having both an alloy layer and a brazing layer as in the conventional joining structure, but only the weld metal portion 13 and the first metal base material 11 and the first metal base material 11.
  • the two-metal base material 12 is integrated. Therefore, according to the joint structure 1 of the present embodiment, the space can be saved as much as the brazing layer can be omitted, and a reduction in size and weight can be realized. Moreover, since the joining structure 1 of this embodiment is hard to receive the heat influence from a brazing part, there also exists an advantage which is easy to ensure intensity
  • the weld metal portion 13 includes a head 131 that is raised to a height that is higher than the surface of both base metals of the first metal base material 11 and the second metal base material 12, as illustrated in FIG. 2.
  • the body part 132 extending in the welding depth direction from the bottom surface of the head part 131 can be used.
  • the first metal base material 11 and the second metal base material 12 are integrated with each other while the strength is secured only by the weld metal portion 13 without forming a brazing layer as in the above-described prior art.
  • the joining structure 1 which is easy to obtain the effect mentioned above is obtained.
  • the weld metal part 13 swells more than the surface of both base materials, since there is no undercut and the stress concentration part which acts on the weld metal part 13 decreases, it is possible to improve the durability of the joint structure 1. become.
  • the weld metal portion 13 can be in a state in which the side surface of the first metal base material 11 and the side surface of the second metal base material 12 are in contact with each other.
  • the first metal base material 11 and the second metal base material 12 can be arranged such that the surfaces of the base materials are substantially flush.
  • the positions of both the base metal surfaces of the first metal base material 11 and the second metal base material 12 are defined as a reference plane BP, and the head is located on the outer side of the first metal base material 11 and the second metal base material 12 from the reference plane BP.
  • the height direction of 131 is taken. Further, the welding depth direction is taken from the reference plane BP to the inside of the first metal base material 11 and the second metal base material 12.
  • the height H of the head 131 of the weld metal part 13 is preferably 0 or more, more preferably 0, on the entire surface of the weld metal part 13. It should be super. In FIG. 2, the case where the height H of the head 131 is the highest is shown as an example.
  • the body portion 132 of the weld metal portion 13 can be formed such that the tip is tapered in the weld depth direction in a cross-sectional view along the weld depth direction. Further, the width at the base end of the body portion 132 is W1, the depth from the base end to the tip end of the body portion 132 is D, and the body portion 132 is configured to satisfy the relationship of D / W1 ⁇ 1. it can. According to this configuration, it is easy to ensure the bonding strength between the first metal base material 11 and the second metal base material 12. Moreover, the stress which acts at the time of solidification and contraction can be reduced, and there is an advantage that the reliability of the weld metal part 13 is improved. D / W1 can be preferably more than 1, more preferably 1.2 or more.
  • the body 132 can be configured to satisfy the relationship of W1 ⁇ W2. According to this configuration, since the bottom surface of the head 131 is in contact with the outer surfaces of the first metal base material 11 and the second metal base material 12, the height H of the head 131 of the weld metal part 13 is 0 or more. This makes it easier to improve the strength of the bonded structure 1.
  • the alloy component of the weld metal portion 13 is uniformized when viewed in the weld depth direction.
  • the weld metal portion 13 is formed by uniform melting and solidification of dissimilar metals having different melting points, thereby suppressing defects (distortion, cracking, thermal influence, etc.) caused by melting.
  • the body 1 can be obtained.
  • the alloy element of the trunk portion 132 at the center position in the welding width direction at each welding depth position of the trunk portion 132 is measured.
  • the measurement object can be an element that is not contained in the first metal and the second metal but is contained only in the third metal. If there is no such element, among the alloy elements constituting the weld metal part 13, an element having a higher content (mass%) than the first metal and the second metal may be measured. it can.
  • the measurement area at each welding depth position is a rectangular area of 0.1 mm ⁇ 0.1 mm.
  • the measurement is performed until the first metal base material 11 and the second metal base material 12 outside the trunk portion 132 are included at a pitch of 0.2 mm from the reference surface BP and the reference surface BP.
  • the content (%) of the element to be measured at each welding depth position from the reference plane BP side is A1 (reference plane BP), A2, A3,.
  • An is the content (mass%) of the last element to be measured in the body portion 132 just before the body portion 132 that goes out of the body portion 132.
  • the content (mass%) of the alloy element in the body portion 132 at each welding depth position is preferably 0.6 ⁇ A ave or more and 1.4 or more.
  • the alloy components in the weld metal portion 13 can be made uniform.
  • the Vickers hardness of the trunk portion 132 at the center position in the welding width direction at each welding depth position of the trunk portion 132 is measured in the welding depth direction.
  • the measurement area at each welding depth position is a rectangular area of 0.1 mm ⁇ 0.1 mm.
  • the measurement is performed until the first metal base material 11 and the second metal base material 12 outside the trunk portion 132 are included at a pitch of 0.2 mm from the reference surface BP and the reference surface BP.
  • Vickers hardness (Hv) at each welding depth position from the reference surface BP side is set to B1 (reference surface BP), B2, B3,.
  • Bn is the last Vickers hardness in the body part 132 just before the body part 132 that goes out of the body part 132.
  • the Vickers hardness (Hv) of the body portion 132 at each welding depth position is preferably 0.6 ⁇ B ave or more and 1.4 ⁇ B ave
  • Hv Vickers hardness
  • still more preferably 0.8 ⁇ B ave to 1.2 ⁇ B ave According to this configuration, the alloy components in the weld metal portion 13 can be made uniform.
  • each of the first metal base material 11 and the second metal base material 12 has an insulating coating 14 on the surface of the base material as illustrated in FIG. 1.
  • the first metal base material 11 and the second metal base material 12 exposed by peeling off can be configured to be connected only through the weld metal portion 13. According to this configuration, it is possible to shorten the peeling length of the insulating coating 14 as compared with the conventional bonding structure having both the alloy layer and the brazing layer, and to reduce the space and size of the bonding structure 1. It is advantageous to make.
  • the bonded structure 1 include a bonded portion that requires conduction in a generator or the like, and a bonded portion of a structural member that requires strength and airtightness. More specifically, the junction structure 1 can be used, for example, in a stator winding of a rotating electrical machine to form a junction between adjacent conductors. In this case, it is advantageous for reducing the size and weight of the rotating electrical machine by reducing the size and weight of the joint structure 1.
  • Embodiment 2 A method for manufacturing the bonded structure according to the second embodiment will be described with reference to FIGS.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the description of the bonded structure of Embodiment 1 can be referred to as appropriate.
  • the direct heat input is performed locally on the welding material 2 disposed between the two.
  • the welding material 2 is composed of a third metal having a melting point lower than that of the first metal and the second metal.
  • the welding material 2 may be supplied in the form of a wire or the like, or may be supplied in the form of a powder or the like.
  • the welding material 2 can be disposed in a groove portion 3 formed of a groove provided between the first metal base material 11 and the second metal base material 12. According to this structure, it becomes possible to supply the welding material 2 to the groove part 3, and it becomes easy to implement uniform melting in the welding depth direction.
  • FIG. 4 specifically, the first metal base material 11 and the second metal base material 12 in a state where the side surface of the first metal base material 11 and the side surface of the second metal base material 12 are in contact with each other.
  • FIG. 4A a V-shaped groove portion 31 is illustrated as the groove portion 3.
  • the groove portion includes a re-shaped groove portion 32 illustrated in FIG. 5A, a J-shaped groove portion illustrated in FIG. 5B, and H illustrated in FIG. It may be a groove portion or the like.
  • the cross-sectional shape of the groove portion 3 can be appropriately selected from those defined in JIS Z3001-1: 2013.
  • laser light 4 for heat input to the welding material 2.
  • it is easier to selectively heat the welding material 2 than in the case of using plasma or the like. Therefore, heat conduction to the first metal base material 11 and the second metal base material 12 is likely to be hindered, and the temperature increase rate is easily accelerated.
  • the absorption efficiency of the laser beam 4 is improved as the welding material 2 is melted, it becomes easier to accelerate the heating rate. Therefore, according to this configuration, it becomes easier to shorten the manufacturing time of the bonded structure 1.
  • it becomes easy to input heat directly into the welding material 2 it becomes easy to obtain the joining structure 1 with few welding defects, such as a thermal influence and a crack.
  • 5A to 5C show an example in which the laser beam 4 is used for heat input to the welding material 2.
  • the welding material 2 is melted by the heating by the heat input, and the first metal and the first metal By melting a part of the two metals, the melting part 5 including the third metal, the first metal, and the second metal is formed.
  • the surfaces of the first metal base material 11 and the second metal base material 12 (specifically, in the present embodiment, the first metal base material 11 and the second metal base material 12 in the groove portion 3). It is possible to melt the first metal and the second metal while removing the oxide layer that can be formed on the surface of the first metal. Therefore, according to this structure, it becomes easy to obtain the joining structure 1 with few welding defects, such as a thermal influence and a crack.
  • the method of making the reducing action acts is a method in which the welding material 2 is composed of a third metal containing an element that reduces the first metal surface and the second metal surface, the first metal surface, and the first metal surface. And a method of supplying a flux capable of reducing the surface of the two metals from the outside.
  • the former method compared with the latter method, there exists an advantage which can manufacture a joining structure body by simple equipment structure.
  • the first metal and the second metal are both copper or a copper alloy and the third metal is P or a copper alloy containing P and Ag, Cu can be reduced by P.
  • the first metal base material 11 and the second metal base material are solidified by stopping the heat input and solidifying the melting portion 5.
  • a weld metal part 13 connecting the material 12 is formed. Solidification of the melting part 5 may be either natural cooling or forced cooling.
  • the line CL represents the time for the manufacturing method in which the first metal base material and the second metal base material are directly heated and welded without using the welding material composed of the third metal.
  • the relationship with the junction temperature is schematically shown.
  • the line of the symbol L schematically shows the relationship between time and the junction temperature in the method for manufacturing the junction structure according to this embodiment.
  • the first metal and the second metal are composed of the same material, the first metal and second metal melting is assumed to be the same T m.
  • the laser beam 4 is used as the heat source.
  • the first metal base material 11 and the first metal base material 11 and the first Heat conduction to the two-metal base material 12 is hindered, and the rate of temperature rise can be accelerated (symbol L1).
  • the melting point Tm3 of the third metal which is lower than the melting points of the first metal and the second metal, is reached by heating due to heat input, the welding material 2 starts to melt. As the welding material 2 is melted, the absorption efficiency of the laser beam 4 is improved, and the heating rate can be further accelerated (reference L2).
  • the heating by the heat input and reaches the first metal and the melting point T m of a second metal of the second metal base member 12 of the first base metal 11, further melting of the first metal and the second metal begins.
  • the molten portion 5 including the third metal, the first metal, and the second metal is formed.
  • the said heat input is stopped (code
  • the first metal base material 11 and the second metal base material are used without using the welding material 2 made of the third metal.
  • the joined structure 1 can be manufactured in a relatively short total heat input (total heat input E1 ⁇ total heat input E2) and in a short time.
  • Example 1 Two rectangular conductor wires 10 covered with the insulating coating 14 were prepared.
  • the base material constituting the conductor wire 10 is oxygen-free copper (C1020).
  • the insulating coatings 14 at the end portions of the two conductor wires 10 were peeled off.
  • each conductor is formed such that the V-shaped groove portion 31 shown in FIG. Line 10 was grooved.
  • the width w of the V-shaped groove 31 was 0.8 mm, and the depth d of the V-shaped groove 31 was 0.8 mm.
  • the welding material 2 was disposed on the V-shaped groove portion 31 provided between the two conductor wires 10.
  • a BCuP-2 material formed in a substantially cylindrical shape having a diameter of 1.2 mm and a length of 2.5 mm was used.
  • the welding material 2 was irradiated with the laser beam 4 and heat was input.
  • the scanning trajectory 40 of the laser beam 4 was as indicated by the arrow shown in FIG.
  • the scanning trajectory 40 of the laser beam 4 is not limited to that shown in FIG. 7A, and can be changed to a scanning trajectory such as a straight line, an arc, or a rectangle.
  • the irradiation conditions of the laser beam 4 were as follows: frequency: 100 Hz, wobbling diameter: 0.5 mm, irradiation length s: 3 mm, scanning feed rate: 40 mm / s, and laser output P: 2 kW (peak).
  • the laser output P was specifically as shown in FIG. And while melting the welding material 2 by the heating by the said heat input, after melt
  • the weld metal portion 13 includes a head 131 that is raised to a height higher than the surface of the base material constituting the conductor wire 10, and a head 131.
  • the body portion 132 extends in the welding depth direction from the bottom surface.
  • the width at the proximal end of the trunk portion 132 is W1
  • the depth from the proximal end to the distal end of the trunk portion 132 is D.
  • the part 132 satisfies the relationship of D / W1 ⁇ 1.
  • the width of the head 131 is set to W2, it can also be seen that the head 131 and the trunk 132 satisfy the relationship of W1 ⁇ W2.
  • Example 2 In the method for manufacturing the bonded structure of sample 1 in Experimental Example 1, the bonded structure of sample 2 is the same as the method for manufacturing the bonded structure of sample 1 except that the laser output P is 1.8 kW (peak). The body was made.
  • the surface of the base material that is flush with the adjacent conductor wires 10 is defined as a reference plane BP (welding depth 0), and the body of the weld metal portion 13 is shown.
  • the Vickers hardness in the welding depth direction of the part 132 was measured. The result is shown in FIG. According to FIG. 11, since the Vickers hardness (Hv) of the trunk portion at each welding depth position satisfies 0.8 ⁇ B ave or more and 1.2 ⁇ B ave or less, the alloy components are made uniform. Can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

A joint structural body (1) has a first metal base material (11) which is configured from first metal, a second metal base material (12) which is configured from second metal, and a weld metal section (13) which connects the first metal base material (11) and the second metal base material (12). The weld metal section (13) is configured from an alloy of the first metal, the second metal, and third metal which has a melting point lower than those of the first metal and the second metal. The first metal base material (11) and the second metal base material (12) are connected only through the weld metal section (13). A weld material (2) configured from the third metal, the melting point of which is lower than those of the first metal and the second metal, is directly locally heated to melt the weld material (2) and also to melt part of each of the first metal and the second metal, thereby forming a molten section (5) containing the third metal, the first metal, and the second metal. Then the heating is stopped to allow the molten section (5) to solidify to thereby form the weld metal section (13), which connects the first metal base material (11) and the second metal base material (12).

Description

接合構造体およびその製造方法Junction structure and manufacturing method thereof 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年2月28日に出願された日本出願番号2018-34806号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-34806 filed on February 28, 2018, the contents of which are incorporated herein by reference.
 本開示は、接合構造体およびその製造方法に関する。 The present disclosure relates to a bonded structure and a manufacturing method thereof.
 従来、特許文献1には、接合部を有する導体と、導体より融点の低い接合部材と、を備え、接合部の先端部は、導体と接合部材との合金で構成された合金層をなし、接合部の根本部は、接合部材のろう付けにより電気的に接合されている接合構造体が記載されている。また、同文献には、接合部材と導体とをガスアークにて溶融させて、上記接合構造体を得る点が記載されている。 Conventionally, Patent Document 1 includes a conductor having a joining portion and a joining member having a melting point lower than that of the conductor, and a tip portion of the joining portion forms an alloy layer made of an alloy of the conductor and the joining member. A joint structure in which the base part of the joint is electrically joined by brazing of a joining member is described. Further, this document describes that the joining member and the conductor are melted by a gas arc to obtain the above joined structure.
WO2016/103989号公報WO2016 / 103989
 上述した従来技術は、合金層とろう付け層の両方を形成する技術である。この従来技術によると、互いに接合すべき金属母材の間にろう付け層を形成するためのろう付け材料を挟み込む必要が生じる。そのため、従来の接合構造体は、合金層以外にもろう付け層を有する分、小型軽量化が実現し難いという課題がある。 The conventional technology described above is a technology for forming both an alloy layer and a brazing layer. According to this prior art, it is necessary to sandwich a brazing material for forming a brazing layer between metal base materials to be joined to each other. Therefore, the conventional joint structure has a problem that it is difficult to realize a reduction in size and weight because the brazing layer is included in addition to the alloy layer.
 本開示は、従来に比べ、小型軽量化を実現可能な接合構造体、また、その製造方法を提供することを目的とする。 This disclosure is intended to provide a joint structure that can be reduced in size and weight as compared with the conventional one, and a manufacturing method thereof.
 本開示の一態様は、第1金属より構成される第1金属母材と、第2金属より構成される第2金属母材と、上記第1金属母材と上記第2金属母材とを繋ぐ溶接金属部と、を有しており、
 上記溶接金属部は、上記第1金属と、上記第2金属と、上記第1金属および上記第2金属より融点の低い第3金属と、の合金より構成されており、
 上記第1金属母材と上記第2金属母材とは、上記溶接金属部のみを介して繋がっている、接合構造体にある。
One aspect of the present disclosure includes a first metal base material made of a first metal, a second metal base material made of a second metal, the first metal base material, and the second metal base material. A welded metal part to be connected,
The weld metal part is composed of an alloy of the first metal, the second metal, the first metal, and a third metal having a melting point lower than that of the second metal,
The first metal base material and the second metal base material are in a joint structure that is connected only through the weld metal portion.
 本開示の他の態様は、第1金属より構成される第1金属母材と第2金属より構成される第2金属母材との間に配置された、上記第1金属および上記第2金属より融点の低い第3金属より構成される溶接材料に対して局所的に直接入熱し、
 上記入熱による加熱によって上記溶接材料を溶融させつつ、さらに上記第1金属および上記第2金属の一部を溶融させて、上記第3金属、上記第1金属および上記第2金属を含む溶融部を形成し、
 上記入熱を止めて上記溶融部を凝固させ、上記第1金属母材と上記第2金属母材とを繋ぐ溶接金属部を形成する、接合構造体の製造方法にある。
In another aspect of the present disclosure, the first metal and the second metal are disposed between a first metal base composed of a first metal and a second metal base composed of a second metal. Direct heat input locally to the welding material composed of a third metal having a lower melting point,
A melting part containing the third metal, the first metal, and the second metal by melting the welding material by heating by the heat input and further melting a part of the first metal and the second metal. Form the
In the method for manufacturing a joined structure, the heat input is stopped to solidify the molten portion, and a weld metal portion is formed to connect the first metal base material and the second metal base material.
 上記接合構造体は、上記構成を有している。特に、第1金属母材と第2金属母材とは、溶接金属部のみを介して繋がっており、その溶接金属部は、第1金属と、第2金属と、第1金属および第2金属より融点の低い第3金属と、の合金より構成されている。上記接合構造体によれば、溶接時に、第1金属母材と第2金属母材との間にろう付け層を形成するためのろう付け材料を挟み込む必要がない。また、上記接合構造体は、従来の接合構造体のように合金層およびろう付け層の両方を合わせ持つ構造ではなく、溶接金属部のみで、第1金属母材と第2金属母材とが一体化されている。そのため、上記接合構造体によれば、ろう付け層を省略できる分、省スペース化が図られ、小型軽量化が実現可能となる。また、上記接合構造体は、ろう付け部分からの熱影響を受け難いため、強度を確保しやすい利点もある。 The joint structure has the above configuration. In particular, the first metal base material and the second metal base material are connected only through the weld metal part, and the weld metal part includes the first metal, the second metal, the first metal, and the second metal. It is composed of an alloy with a third metal having a lower melting point. According to the above bonded structure, it is not necessary to sandwich a brazing material for forming a brazing layer between the first metal base material and the second metal base material during welding. In addition, the joint structure is not a structure having both an alloy layer and a brazing layer as in the conventional joint structure, but only the weld metal portion, and the first metal base material and the second metal base material are It is integrated. Therefore, according to the above-mentioned joined structure, space saving can be achieved as much as the brazing layer can be omitted, and a reduction in size and weight can be realized. Moreover, since the said joining structure is hard to receive the heat influence from a brazing part, there also exists an advantage which is easy to ensure intensity | strength.
 上記接合構造体の製造方法は、上記構成を有している。そのため、上記接合構造体の製造方法では、低融点の溶接材料に対して局所的に直接入熱することで、第1金属母材および第2金属母材への熱伝導が阻害され、昇温速度を加速させることができる。そして、入熱による加熱により、第1金属および第2金属の融点よりも低い第3金属の融点に達すると、溶接材料の溶融が始まる。また、上記入熱による加熱により、第1金属母材の第1金属および第2金属母材の第2金属の融点に達すると、さらに、第1金属および第2金属の溶融が始まる。その結果、第3金属、第1金属および第2金属を含む溶融部が形成される。その後、上記入熱を止めて溶融部を凝固させることで、第1金属母材と第2金属母材とを繋ぐ溶接金属部が形成される。 The manufacturing method of the joined structure has the above configuration. Therefore, in the manufacturing method of the joined structure, the heat conduction to the first metal base material and the second metal base material is hindered by directly applying heat locally to the low melting point welding material, and the temperature rise Speed can be accelerated. When the melting point of the third metal, which is lower than the melting points of the first metal and the second metal, is reached by heating due to heat input, melting of the welding material starts. When the melting point of the first metal of the first metal base material and the second metal of the second metal base material reach the melting points of the first metal base material, the first metal and the second metal start to melt. As a result, a molten part including the third metal, the first metal, and the second metal is formed. Then, the said heat input is stopped | fastened and the molten part is solidified, and the weld metal part which connects a 1st metal base material and a 2nd metal base material is formed.
 上記接合構造体の製造方法によれば、比較的少ない総入熱量かつ短時間で、上記接合構造体を製造することができる。 According to the method for manufacturing a bonded structure, the bonded structure can be manufactured in a relatively small amount of total heat input and in a short time.
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。 In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later, and does not limit the technical scope of this indication.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の接合構造体を模式的に示した平面図であり、 図2は、図1におけるII-II線断面を模式的に示した断面図であり、 図3は、各溶接深さ位置における胴部の合金元素の含有量、ビッカース硬さの測定方法を説明するための説明図であり、 図4は、実施形態2の接合構造体の製造方法を説明するための説明図であり、 図5は、図4(a)に示した開先部の変形例を説明するための説明図であり、 図6は、実施形態2の接合構造体の製造方法の作用効果を模式的に説明するための説明図であり、 図7は、実験例1における試料1の接合構造体の作製方法を説明するための説明図であり、 図8は、実験例1における試料1の接合構造体を上方から見た写真であり、 図9は、実験例1における試料1の接合構造体の縦断面を示す写真であり、 図10は、実験例2における試料2の接合構造体の縦断面を示す写真であり、 図11は、実験例2における試料2の接合構造体のビッカース硬度分布である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a plan view schematically showing a bonded structure according to Embodiment 1. 2 is a cross-sectional view schematically showing a cross section taken along line II-II in FIG. FIG. 3 is an explanatory diagram for explaining a method for measuring the content of alloy elements in the body portion at each welding depth position and the Vickers hardness, FIG. 4 is an explanatory diagram for explaining a manufacturing method of the bonded structure according to the second embodiment. FIG. 5 is an explanatory diagram for explaining a modification of the groove portion shown in FIG. FIG. 6 is an explanatory diagram for schematically explaining the operational effects of the manufacturing method of the bonded structure according to the second embodiment. FIG. 7 is an explanatory diagram for explaining a method of manufacturing the bonded structure of the sample 1 in Experimental Example 1. FIG. 8 is a photograph of the joined structure of Sample 1 in Experimental Example 1 as viewed from above. FIG. 9 is a photograph showing a longitudinal section of the bonded structure of Sample 1 in Experimental Example 1, FIG. 10 is a photograph showing a longitudinal section of the bonded structure of Sample 2 in Experimental Example 2, FIG. 11 is a Vickers hardness distribution of the bonded structure of Sample 2 in Experimental Example 2.
(実施形態1)
 実施形態1の接合構造体について、図1および図2を用いて説明する。図1および図2に例示されるように、本実施形態の接合構造体1は、第1金属母材11と、第2金属母材12と、溶接金属部13と、を有している。以下、これを詳説する。
(Embodiment 1)
The bonded structure of Embodiment 1 will be described with reference to FIGS. 1 and 2. As illustrated in FIG. 1 and FIG. 2, the joint structure 1 of the present embodiment includes a first metal base material 11, a second metal base material 12, and a weld metal portion 13. This will be described in detail below.
 第1金属母材11は、第1金属より構成される。第1金属としては、具体的には、銅、アルミニウム、鉄、これらの合金などを例示することができる。同様に、第2金属母材12は、第2金属より構成される。第2金属としては、具体的には、銅、アルミニウム、鉄、これらの合金などを例示することができる。 The first metal base material 11 is composed of a first metal. Specific examples of the first metal include copper, aluminum, iron, and alloys thereof. Similarly, the second metal base material 12 is made of a second metal. Specific examples of the second metal include copper, aluminum, iron, and alloys thereof.
 第1金属および第2金属は、接合構造体1の強度、導通性等の観点から、融点や特性等が互いに似たもの同士となるように選択されることが好ましい。具体的には、接合構造体1において、第1金属と第2金属とは、同種の金属であるとよい。この構成によれば、小型軽量化を図りつつ、必要な強度、導通性を確保しやすい接合構造体1が得られる。なお、同種とは、第1金属、第2金属の化学組成(質量%)を見たときに、最も含有量の多い金属成分が互いに同一である場合をいう。本実施形態では、接合構造体の強度および導電性などの観点から、第1金属、第2金属としては、いずれも、銅または銅合金を用いることができる。 The first metal and the second metal are preferably selected so that their melting points, characteristics, and the like are similar to each other from the viewpoints of the strength and conductivity of the bonded structure 1. Specifically, in the bonded structure 1, the first metal and the second metal are preferably the same type of metal. According to this configuration, it is possible to obtain the joint structure 1 that easily secures necessary strength and conductivity while reducing the size and weight. In addition, the same kind means the case where the metal components with the highest content are the same when the chemical composition (mass%) of the first metal and the second metal is viewed. In the present embodiment, from the viewpoint of the strength and conductivity of the bonded structure, both the first metal and the second metal can be copper or a copper alloy.
 溶接金属部13は、第1金属母材11と第2金属母材12とを繋ぐ部位である。なお、溶接金属部13は、溶接中に溶融凝固した金属部分であり、熱影響部を含まない。第1金属母材11と第2金属母材12とは、溶接金属部13のみを介して繋がっている。つまり、第1金属母材11と第2金属母材12とは、上述した従来技術のようにろう付け層を有しておらず、溶接金属部13だけで接合されている。 The weld metal part 13 is a part that connects the first metal base material 11 and the second metal base material 12. The weld metal portion 13 is a metal portion that has been melted and solidified during welding, and does not include a heat affected zone. The first metal base material 11 and the second metal base material 12 are connected only through the weld metal part 13. That is, the 1st metal base material 11 and the 2nd metal base material 12 do not have a brazing layer like the prior art mentioned above, and are joined only by the weld metal part 13. FIG.
 溶接金属部13は、第1金属と、第2金属と、第3金属と、の合金より構成されている。第1金属は、第1金属母材11に由来する金属であり、第2金属は、第2金属母材12に由来する金属である。第3金属は、第1金属および第2金属より融点の低い金属である。 The weld metal portion 13 is composed of an alloy of a first metal, a second metal, and a third metal. The first metal is a metal derived from the first metal base material 11, and the second metal is a metal derived from the second metal base material 12. The third metal is a metal having a lower melting point than the first metal and the second metal.
 第1金属、第2金属が、例えば、いずれも銅または銅合金である場合、第3金属としては、具体的には、これらよりも融点の低い銅合金などを例示することができる。この場合、第3金属としては、より具体的には、P、または、PおよびAgを含有する銅合金などを例示することができる。P、または、PおよびAgを含有する銅合金としては、質量%で、P:4.8~5.3%、残部がCuおよび不可避不純物(Pb、Sn、Fe:合計で0.2%以下)からなる銅合金(JIS Z3264に規定されるBCuP-1)、質量%で、P:6.8~7.5%、残部がCuおよび不可避不純物(Pb、Sn、Fe:合計で0.2%以下)からなる銅合金(JIS Z3264に規定されるBCuP-2)、質量%で、P:5.8~6.7%、Ag:4.8~5.2%、残部がCuおよび不可避不純物(Pb、Sn、Fe:合計で0.2%以下)からなる銅合金(JIS Z3264に規定されるBCuP-3)、質量%で、P:6.8~7.7%、Ag:5.8~6.2%、残部がCuおよび不可避不純物(Pb、Sn、Fe:合計で0.2%以下)からなる銅合金(JIS Z3264に規定されるBCuP-4)、質量%で、P:4.8~5.3%、Ag:14.5~15.5%、残部がCuおよび不可避不純物(Pb、Sn、Fe:合計で0.2%以下)からなる銅合金(JIS Z3264に規定されるBCuP-5)、質量%で、P:6.8~5.3%、Ag:1.8~2.2%、残部がCuおよび不可避不純物(Pb、Sn、Fe:合計で0.2%以下)からなる銅合金(JIS Z3264に規定されるBCuP-6)などを例示することができる。 When the first metal and the second metal are, for example, copper or a copper alloy, specifically, examples of the third metal include a copper alloy having a melting point lower than these. In this case, as the third metal, more specifically, P or a copper alloy containing P and Ag can be exemplified. As a copper alloy containing P or P and Ag, P: 4.8 to 5.3% by mass, the balance being Cu and inevitable impurities (Pb, Sn, Fe: 0.2% or less in total) ) Copper alloy (BCuP-1 as defined in JIS Z3264), mass%, P: 6.8 to 7.5%, the balance being Cu and inevitable impurities (Pb, Sn, Fe: 0.2 in total) % Copper alloy (BCuP-2 specified in JIS Z3264), P: 5.8 to 6.7% by mass, Ag: 4.8 to 5.2%, the balance being Cu and inevitable Copper alloy (BCuP-3 as defined in JIS Z3264) composed of impurities (Pb, Sn, Fe: 0.2% or less in total), mass%, P: 6.8 to 7.7%, Ag: 5 8 to 6.2%, the balance being Cu and inevitable impurities (Pb, Sn, Fe: total 0.2% or less) copper alloy (BCuP-4 as defined in JIS Z3264), P: 4.8 to 5.3%, Ag: 14.5 to 15.5%, balance in mass% Is a copper alloy (BCuP-5 as defined in JIS Z3264) composed of Cu and inevitable impurities (Pb, Sn, Fe: 0.2% or less in total), P: 6.8 to 5.3% in mass% , Ag: 1.8 to 2.2%, the balance being Cu and copper alloy (Pb, Sn, Fe: 0.2% or less in total) (CuCu-6 defined in JIS Z3264), etc. It can be illustrated.
 第1金属、第2金属が、例えば、いずれもアルミニウムまたはアルミニウム合金である場合、第3金属としては、具体的には、これらよりも融点の低いアルミニウム合金などを例示することができる。この場合、第3金属としては、より具体的には、JIS Z3263:2002に規定される各種のアルミニウム合金ろうなどを例示することができる。 For example, when the first metal and the second metal are both aluminum or an aluminum alloy, specific examples of the third metal include an aluminum alloy having a melting point lower than these. In this case, as the third metal, more specifically, various types of aluminum alloy solders defined in JIS Z3263: 2002 can be exemplified.
 第1金属、第2金属が、例えば、いずれも鉄または鉄合金である場合、第3金属としては、具体的には、これらよりも融点の低い銅系合金、鉄系合金、Ni基金属などを例示することができる。 When both the first metal and the second metal are, for example, iron or an iron alloy, specifically, as the third metal, a copper-based alloy, an iron-based alloy, a Ni-based metal, or the like having a lower melting point than these. Can be illustrated.
 本実施形態の接合構造体1は、上記構成を有している。特に、第1金属母材11と第2金属母材12とは、溶接金属部13のみを介して繋がっており、その溶接金属部13は、第1金属と、第2金属と、第1金属および第2金属より融点の低い第3金属と、の合金より構成されている。本実施形態の接合構造体1によれば、溶接時に、第1金属母材11と第2金属母材12との間にろう付け層を形成するためのろう付け材料を挟み込む必要がない。また、本実施形態の接合構造体1は、従来の接合構造体のように合金層およびろう付け層の両方を合わせ持つ構造ではなく、溶接金属部13のみで、第1金属母材11と第2金属母材12とが一体化されている。そのため、本実施形態の接合構造体1によれば、ろう付け層を省略できる分、省スペース化が図られ、小型軽量化が実現可能となる。また、本実施形態の接合構造体1は、ろう付け部分からの熱影響を受け難いため、強度を確保しやすい利点もある。 The joint structure 1 of the present embodiment has the above configuration. In particular, the first metal base material 11 and the second metal base material 12 are connected only through the weld metal part 13, and the weld metal part 13 includes the first metal, the second metal, and the first metal. And an alloy of a third metal having a melting point lower than that of the second metal. According to the joint structure 1 of the present embodiment, it is not necessary to sandwich a brazing material for forming a brazing layer between the first metal base material 11 and the second metal base material 12 during welding. Moreover, the joining structure 1 of this embodiment is not a structure having both an alloy layer and a brazing layer as in the conventional joining structure, but only the weld metal portion 13 and the first metal base material 11 and the first metal base material 11. The two-metal base material 12 is integrated. Therefore, according to the joint structure 1 of the present embodiment, the space can be saved as much as the brazing layer can be omitted, and a reduction in size and weight can be realized. Moreover, since the joining structure 1 of this embodiment is hard to receive the heat influence from a brazing part, there also exists an advantage which is easy to ensure intensity | strength.
 接合構造体1において、溶接金属部13は、図2に例示されるように、第1金属母材11および第2金属母材12の両母材表面以上の高さに盛り上がった頭部131と、頭部131の底面より溶接深さ方向に延びる胴部132と、を有する構成とすることができる。この構成によれば、上述した従来技術のようにろう付け層を形成することなく、溶接金属部13のみで強度を確保しつつ、第1金属母材11と第2金属母材12とを一体化することができる。そのため、上記構成によれば、上述した作用効果を得やすい接合構造体1が得られる。また、溶接金属部13が両母材表面以上に盛り上がることで、アンダーカットがなく、溶接金属部13に作用する応力集中部が少なくなるため、接合構造体1の耐久性を向上させることが可能になる。 In the joined structure 1, the weld metal portion 13 includes a head 131 that is raised to a height that is higher than the surface of both base metals of the first metal base material 11 and the second metal base material 12, as illustrated in FIG. 2. The body part 132 extending in the welding depth direction from the bottom surface of the head part 131 can be used. According to this configuration, the first metal base material 11 and the second metal base material 12 are integrated with each other while the strength is secured only by the weld metal portion 13 without forming a brazing layer as in the above-described prior art. Can be Therefore, according to the said structure, the joining structure 1 which is easy to obtain the effect mentioned above is obtained. Moreover, since the weld metal part 13 swells more than the surface of both base materials, since there is no undercut and the stress concentration part which acts on the weld metal part 13 decreases, it is possible to improve the durability of the joint structure 1. become.
 図2に例示されるように、溶接金属部13は、具体的には、第1金属母材11の側面と第2金属母材12の側面とが当接された状態とされることができる。また、第1金属母材11および第2金属母材12は、各母材表面がほぼ面一となるように配置されることができる。第1金属母材11および第2金属母材12の両母材表面の位置を基準面BPとし、基準面BPから第1金属母材11および第2金属母材12の外部側に、頭部131の高さ方向をとる。また、基準面BPから第1金属母材11および第2金属母材12の内部側に、溶接深さ方向をとる。この場合、接合構造体1の強度向上などの観点から、溶接金属部13の表面全てにおいて、溶接金属部13の頭部131の高さHは、0以上であることが好ましく、より好ましくは0超であるとよい。なお、図2では、頭部131の高さHが最も高い位置における場合を一例として示したものである。 As illustrated in FIG. 2, specifically, the weld metal portion 13 can be in a state in which the side surface of the first metal base material 11 and the side surface of the second metal base material 12 are in contact with each other. . The first metal base material 11 and the second metal base material 12 can be arranged such that the surfaces of the base materials are substantially flush. The positions of both the base metal surfaces of the first metal base material 11 and the second metal base material 12 are defined as a reference plane BP, and the head is located on the outer side of the first metal base material 11 and the second metal base material 12 from the reference plane BP. The height direction of 131 is taken. Further, the welding depth direction is taken from the reference plane BP to the inside of the first metal base material 11 and the second metal base material 12. In this case, from the viewpoint of improving the strength of the bonded structure 1 and the like, the height H of the head 131 of the weld metal part 13 is preferably 0 or more, more preferably 0, on the entire surface of the weld metal part 13. It should be super. In FIG. 2, the case where the height H of the head 131 is the highest is shown as an example.
 図2に例示されるように、溶接深さ方向に沿う断面視で、溶接金属部13の胴部132は、溶接深さ方向に先端が先細り状となるように形成されることができる。また、胴部132の基端における幅をW1、胴部132の基端から先端までの深さをDとしたき、胴部132は、D/W1≧1の関係を満たす構成とすることができる。この構成によれば、第1金属母材11と第2金属母材12との接合強度を確保しやすくなる。また、凝固、収縮時に作用する応力も低減することができ、溶接金属部13の信頼性が向上するなどの利点もある。D/W1は、好ましくは、1超、より好ましくは、1.2以上とすることができる。 As illustrated in FIG. 2, the body portion 132 of the weld metal portion 13 can be formed such that the tip is tapered in the weld depth direction in a cross-sectional view along the weld depth direction. Further, the width at the base end of the body portion 132 is W1, the depth from the base end to the tip end of the body portion 132 is D, and the body portion 132 is configured to satisfy the relationship of D / W1 ≧ 1. it can. According to this configuration, it is easy to ensure the bonding strength between the first metal base material 11 and the second metal base material 12. Moreover, the stress which acts at the time of solidification and contraction can be reduced, and there is an advantage that the reliability of the weld metal part 13 is improved. D / W1 can be preferably more than 1, more preferably 1.2 or more.
 また、頭部131の幅をW2としたき、胴部132は、W1≦W2の関係を満たす構成とすることができる。この構成によれば、第1金属母材11および第2金属母材12の外表面に頭部131の底面が接するので、溶接金属部13の頭部131の高さHが0以上となる構成を得やすくなり、接合構造体1の強度向上を図りやすくなる。 Further, when the width of the head 131 is W2, the body 132 can be configured to satisfy the relationship of W1 ≦ W2. According to this configuration, since the bottom surface of the head 131 is in contact with the outer surfaces of the first metal base material 11 and the second metal base material 12, the height H of the head 131 of the weld metal part 13 is 0 or more. This makes it easier to improve the strength of the bonded structure 1.
 溶接金属部13は、溶接深さ方向で見て、その合金成分が均一化されていることが好ましい。この構成によれば、融点の異なる異種金属同士の均一な溶融凝固による溶接金属部13が形成されていることによって、溶融させることによる欠陥(歪、割れ、熱影響等)が抑制された接合構造体1を得ることができる。 It is preferable that the alloy component of the weld metal portion 13 is uniformized when viewed in the weld depth direction. According to this configuration, the weld metal portion 13 is formed by uniform melting and solidification of dissimilar metals having different melting points, thereby suppressing defects (distortion, cracking, thermal influence, etc.) caused by melting. The body 1 can be obtained.
 ここで、図3に例示されるように、溶接深さ方向で、胴部132の各溶接深さ位置での溶接幅方向の中央位置における胴部132の合金元素を測定する。この際、測定対象は、第一に、第1金属、第2金属には含まれず、第3金属にのみ含有される元素とすることができる。もし、このような元素がない場合には、溶接金属部13を構成する合金元素のうち、第1金属、第2金属よりも含有量(質量%)が多い元素を、測定対象とすることができる。当該測定において、各溶接深さ位置での測定領域は、0.1mm×0.1mmの矩形領域とする。また、測定は、基準面BP、および、基準面BPから0.2mmピッチで、胴部132の外にある第1金属母材11、第2金属母材12を含むまで実施する。基準面BP側から各溶接深さ位置での測定対象元素の含有量(%)を、順にA1(基準面BP)、A2、A3、・・・Anとする。但し、Anは、胴部132の外に出る一つ手前の胴部132内における最後の測定対象元素の含有量(質量%)とする。そして、A1~Anまでの平均値をAaveとしたとき、各溶接深さ位置における胴部132の合金元素の含有量(質量%)は、好ましくは、0.6×Aave以上1.4×Aave以下、より好ましくは、0.7×Aave以上1.3×Aave以下、さらに好ましくは、0.8×Aave以上1.2×Aave以下とすることができる。この構成によれば、溶接金属部13における合金成分の均一化を確実なものとすることができる。 Here, as illustrated in FIG. 3, in the welding depth direction, the alloy element of the trunk portion 132 at the center position in the welding width direction at each welding depth position of the trunk portion 132 is measured. In this case, first, the measurement object can be an element that is not contained in the first metal and the second metal but is contained only in the third metal. If there is no such element, among the alloy elements constituting the weld metal part 13, an element having a higher content (mass%) than the first metal and the second metal may be measured. it can. In the measurement, the measurement area at each welding depth position is a rectangular area of 0.1 mm × 0.1 mm. Further, the measurement is performed until the first metal base material 11 and the second metal base material 12 outside the trunk portion 132 are included at a pitch of 0.2 mm from the reference surface BP and the reference surface BP. The content (%) of the element to be measured at each welding depth position from the reference plane BP side is A1 (reference plane BP), A2, A3,. However, An is the content (mass%) of the last element to be measured in the body portion 132 just before the body portion 132 that goes out of the body portion 132. When the average value from A1 to An is A ave , the content (mass%) of the alloy element in the body portion 132 at each welding depth position is preferably 0.6 × A ave or more and 1.4 or more. × A ave or less, more preferably 0.7 × A ave or more and 1.3 × A ave or less, and further preferably 0.8 × A ave or more and 1.2 × A ave or less. According to this configuration, the alloy components in the weld metal portion 13 can be made uniform.
 また、上記胴部の合金元素の測定と同様にして、溶接深さ方向で、胴部132の各溶接深さ位置での溶接幅方向の中央位置における胴部132のビッカース硬さを測定する。当該測定において、各溶接深さ位置での測定領域は、0.1mm×0.1mmの矩形領域とする。また、測定は、基準面BP、および、基準面BPから0.2mmピッチで、胴部132の外にある第1金属母材11、第2金属母材12を含むまで実施する。基準面BP側から各溶接深さ位置でのビッカース硬さ(Hv)を、順にB1(基準面BP)、B2、B3、・・・Bnとする。但し、Bnは、胴部132の外に出る一つ手前の胴部132内における最後のビッカース硬さとする。そして、B1~Bnまでの平均値をBaveとしたとき、各溶接深さ位置における胴部132のビッカース硬さ(Hv)は、好ましくは、0.6×Bave以上1.4×Bave以下、より好ましくは、0.7×Bave以上1.3×Bave以下、さらに好ましくは、0.8×Bave以上1.2×Bave以下とすることができる。この構成によれば、溶接金属部13における合金成分の均一化を確実なものとすることができる。 Similarly to the measurement of the alloy element of the trunk portion, the Vickers hardness of the trunk portion 132 at the center position in the welding width direction at each welding depth position of the trunk portion 132 is measured in the welding depth direction. In the measurement, the measurement area at each welding depth position is a rectangular area of 0.1 mm × 0.1 mm. Further, the measurement is performed until the first metal base material 11 and the second metal base material 12 outside the trunk portion 132 are included at a pitch of 0.2 mm from the reference surface BP and the reference surface BP. Vickers hardness (Hv) at each welding depth position from the reference surface BP side is set to B1 (reference surface BP), B2, B3,. However, Bn is the last Vickers hardness in the body part 132 just before the body part 132 that goes out of the body part 132. When the average value from B1 to Bn is B ave , the Vickers hardness (Hv) of the body portion 132 at each welding depth position is preferably 0.6 × B ave or more and 1.4 × B ave Hereinafter, more preferably 0.7 × B ave to 1.3 × B ave , and still more preferably 0.8 × B ave to 1.2 × B ave . According to this configuration, the alloy components in the weld metal portion 13 can be made uniform.
 接合構造体1において、第1金属母材11および第2金属母材12は、図1に例示されるように、いずれも、母材表面に絶縁被膜14を有しており、各絶縁被膜14が剥離されて露出した第1金属母材11と第2金属母材12とが、溶接金属部13のみを介して繋がっている構成とすることができる。この構成によれば、合金層およびろう付け層の両方を合わせ持った従来の接合構造体に比べ、絶縁被膜14の剥離長さを短くすることができ、接合構造体1の省スペース化、小型化に有利である。 In the bonded structure 1, each of the first metal base material 11 and the second metal base material 12 has an insulating coating 14 on the surface of the base material as illustrated in FIG. 1. The first metal base material 11 and the second metal base material 12 exposed by peeling off can be configured to be connected only through the weld metal portion 13. According to this configuration, it is possible to shorten the peeling length of the insulating coating 14 as compared with the conventional bonding structure having both the alloy layer and the brazing layer, and to reduce the space and size of the bonding structure 1. It is advantageous to make.
 接合構造体1の具体的な用途としては、例えば、発電機等における導通を必要とする接合部や、強度や気密性を必要とする構造部材の接合部などを例示することができる。より具体的には、接合構造体1は、例えば、回転電機の固定子巻線において、隣り合う導体同士の接合部を構成するために用いることができる。この場合には、接合構造体1の小型軽量化による回転電機の小型軽量化に有利である。 Specific examples of the use of the bonded structure 1 include a bonded portion that requires conduction in a generator or the like, and a bonded portion of a structural member that requires strength and airtightness. More specifically, the junction structure 1 can be used, for example, in a stator winding of a rotating electrical machine to form a junction between adjacent conductors. In this case, it is advantageous for reducing the size and weight of the rotating electrical machine by reducing the size and weight of the joint structure 1.
(実施形態2)
 実施形態2の接合構造体の製造方法について、図4~図6を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。また、実施形態1の接合構造体の説明は、適宜参照することができる。
(Embodiment 2)
A method for manufacturing the bonded structure according to the second embodiment will be described with reference to FIGS. Of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated. The description of the bonded structure of Embodiment 1 can be referred to as appropriate.
 本実施形態の接合構造体の製造方法では、図4(a)に例示されるように、第1金属より構成される第1金属母材11と第2金属より構成される第2金属母材12との間に配置された溶接材料2に対して局所的に直接入熱が行われる。 In the method for manufacturing a bonded structure according to the present embodiment, as illustrated in FIG. 4A, a first metal base material 11 made of a first metal and a second metal base material made of a second metal. The direct heat input is performed locally on the welding material 2 disposed between the two.
 溶接材料2は、第1金属および第2金属より融点の低い第3金属より構成される。溶接材料2は、例えば、ワイヤ等の形状で供給されてもよいし、粉体等の形状で供給されてもよい。 The welding material 2 is composed of a third metal having a melting point lower than that of the first metal and the second metal. For example, the welding material 2 may be supplied in the form of a wire or the like, or may be supplied in the form of a powder or the like.
 溶接材料2は、具体的には、第1金属母材11と第2金属母材12との間に設けられた溝(グルーブ)よりなる開先部3に配置されることができる。この構成によれば、開先部3に溶接材料2を供給することが可能となり、溶接深さ方向で均一な溶融を実施しやすくなる。図4では、具体的には、第1金属母材11の側面と第2金属母材12の側面とが当接された状態にある第1金属母材11と第2金属母材12との間に開先部3が設けられている例が示されている。また、図4(a)では、開先部3として、V形開先部31が例示されている。その他にも、開先部は、図5(a)に例示されるレ形開先部32、図5(b)に例示されるJ形開先部、図5(c)に例示されるH形開先部等であってもよい。なお、開先部3の断面形状は、JIS Z3001-1:2013に規定されるものを適宜選択することが可能である。 Specifically, the welding material 2 can be disposed in a groove portion 3 formed of a groove provided between the first metal base material 11 and the second metal base material 12. According to this structure, it becomes possible to supply the welding material 2 to the groove part 3, and it becomes easy to implement uniform melting in the welding depth direction. In FIG. 4, specifically, the first metal base material 11 and the second metal base material 12 in a state where the side surface of the first metal base material 11 and the side surface of the second metal base material 12 are in contact with each other. An example in which the groove portion 3 is provided between them is shown. In FIG. 4A, a V-shaped groove portion 31 is illustrated as the groove portion 3. In addition to this, the groove portion includes a re-shaped groove portion 32 illustrated in FIG. 5A, a J-shaped groove portion illustrated in FIG. 5B, and H illustrated in FIG. It may be a groove portion or the like. The cross-sectional shape of the groove portion 3 can be appropriately selected from those defined in JIS Z3001-1: 2013.
 溶接材料2への入熱には、レーザー光4を用いることが好ましい。この構成によれば、プラズマ等による場合に比べ、溶接材料2を選択的に加熱しやすい。そのため、第1金属母材11および第2金属母材12への熱伝導が阻害されやすくなり、昇温速度を加速させやすくなる。さらに、溶接材料2が溶融するにつれて、レーザー光4の吸収効率が向上するため、さらに昇温速度を加速させやすくなる。それ故、この構成によれば、接合構造体1の製造時間の短時間化をより図りやすくなる。また、この構成によれば、溶接材料2へ局所的に直接入熱しやすくなるので、熱影響や割れ等の溶接欠陥の少ない接合構造体1を得やすくなる。なお、図5(a)~図5(c)では、溶接材料2への入熱にレーザー光4を利用する例が記載されている。 It is preferable to use laser light 4 for heat input to the welding material 2. According to this configuration, it is easier to selectively heat the welding material 2 than in the case of using plasma or the like. Therefore, heat conduction to the first metal base material 11 and the second metal base material 12 is likely to be hindered, and the temperature increase rate is easily accelerated. Furthermore, since the absorption efficiency of the laser beam 4 is improved as the welding material 2 is melted, it becomes easier to accelerate the heating rate. Therefore, according to this configuration, it becomes easier to shorten the manufacturing time of the bonded structure 1. Moreover, according to this structure, since it becomes easy to input heat directly into the welding material 2, it becomes easy to obtain the joining structure 1 with few welding defects, such as a thermal influence and a crack. 5A to 5C show an example in which the laser beam 4 is used for heat input to the welding material 2.
 本実施形態の接合構造体の製造方法では、図4(b)および図4(c)に例示されるように、上記入熱による加熱によって溶接材料2を溶融させつつ、さらに第1金属および第2金属の一部を溶融させることで、第3金属、第1金属および第2金属を含む溶融部5が形成される。 In the manufacturing method of the bonded structure according to the present embodiment, as illustrated in FIGS. 4B and 4C, the welding material 2 is melted by the heating by the heat input, and the first metal and the first metal By melting a part of the two metals, the melting part 5 including the third metal, the first metal, and the second metal is formed.
 ここで、第1金属および第2金属を溶融させる際に、第1金属母材11および第2金属母材12の表面に還元作用を作用させることが好ましい。この構成によれば、第1金属母材11および第2金属母材12の表面(本実施形態では、具体的には、開先部3における第1金属母材11および第2金属母材12の表面)に形成されうる酸化層を除去しながら、第1金属および第2金属を溶融させることが可能となる。そのため、この構成によれば、熱影響や割れ等の溶接欠陥の少ない接合構造体1を得やすくなる。 Here, when the first metal and the second metal are melted, it is preferable to cause a reducing action to act on the surfaces of the first metal base material 11 and the second metal base material 12. According to this configuration, the surfaces of the first metal base material 11 and the second metal base material 12 (specifically, in the present embodiment, the first metal base material 11 and the second metal base material 12 in the groove portion 3). It is possible to melt the first metal and the second metal while removing the oxide layer that can be formed on the surface of the first metal. Therefore, according to this structure, it becomes easy to obtain the joining structure 1 with few welding defects, such as a thermal influence and a crack.
 還元作用を作用させる方法としては、具体的には、例えば、溶接材料2を、第1金属表面および第2金属表面を還元させる元素を含む第3金属より構成する方法、第1金属表面および第2金属表面を還元させることができるフラックスを外部から供給する方法などが挙げられる。前者の方法によれば、後者の方法に比べ、簡易な設備構成で接合構造体を製造することができる利点がある。なお、第1金属、第2金属がいずれも銅または銅合金、第3金属がPまたはPおよびAgを含有する銅合金である場合には、PによってCuを還元させることができる。 Specifically, for example, the method of making the reducing action acts is a method in which the welding material 2 is composed of a third metal containing an element that reduces the first metal surface and the second metal surface, the first metal surface, and the first metal surface. And a method of supplying a flux capable of reducing the surface of the two metals from the outside. According to the former method, compared with the latter method, there exists an advantage which can manufacture a joining structure body by simple equipment structure. When the first metal and the second metal are both copper or a copper alloy and the third metal is P or a copper alloy containing P and Ag, Cu can be reduced by P.
 本実施形態の接合構造体の製造方法では、図4(d)に例示されるように、上記入熱を止めて溶融部5を凝固させることで、第1金属母材11と第2金属母材12とを繋ぐ溶接金属部13が形成される。溶融部5の凝固は、自然冷却、強制冷却のいずれによってもよい。 In the method for manufacturing a bonded structure according to the present embodiment, as illustrated in FIG. 4D, the first metal base material 11 and the second metal base material are solidified by stopping the heat input and solidifying the melting portion 5. A weld metal part 13 connecting the material 12 is formed. Solidification of the melting part 5 may be either natural cooling or forced cooling.
 次に、図6を用いて、本実施形態の接合構造体の製造方法の作用効果を説明する。 Next, the operation and effect of the method for manufacturing the bonded structure according to this embodiment will be described with reference to FIG.
 図6(a)において、符合CLの線は、第3金属より構成される溶接材料を使わずに第1金属母材および第2金属母材へ直接入熱して溶接する製法についての、時間と接合部温度との関係を模式的に示したものである。これに対し、符合Lの線は、本実施形態の接合構造体の製造方法についての、時間と接合部温度との関係を模式的に示したものである。なお、ここでは、説明を簡略化するため、第1金属と第2金属とが同一材料より構成されており、第1金属および第2金属の融点が同一のTであるとする。また、本実施形態では、熱源には、レーザー光4を用いるものとする。 In FIG. 6 (a), the line CL represents the time for the manufacturing method in which the first metal base material and the second metal base material are directly heated and welded without using the welding material composed of the third metal. The relationship with the junction temperature is schematically shown. On the other hand, the line of the symbol L schematically shows the relationship between time and the junction temperature in the method for manufacturing the junction structure according to this embodiment. Here, for simplification of the description, the first metal and the second metal are composed of the same material, the first metal and second metal melting is assumed to be the same T m. In the present embodiment, the laser beam 4 is used as the heat source.
 図6(a)に示されるように、本実施形態の接合構造体の製造方法では、低融点の溶接材料2に対して局所的に直接入熱することで、第1金属母材11および第2金属母材12への熱伝導が阻害され、昇温速度を加速させることができる(符合L1)。そして、入熱による加熱により、第1金属および第2金属の融点よりも低い第3金属の融点Tm3に達すると、溶接材料2の溶融が始まる。溶接材料2が溶融するにつれて、レーザー光4の吸収効率が向上し、さらに昇温速度を加速させることができる(符合L2)。入熱による加熱により、第1金属母材11の第1金属および第2金属母材12の第2金属の融点Tに達すると、さらに、第1金属および第2金属の溶融が始まる。なお、その結果、第3金属、第1金属および第2金属を含む溶融部5が形成される。その後、上記入熱を止め(符合L3)、溶融部5を凝固させることで、第1金属母材11と第2金属母材12とを繋ぐ溶接金属部13が形成される(符合L4)。 As shown in FIG. 6A, in the manufacturing method of the joint structure according to the present embodiment, the first metal base material 11 and the first metal base material 11 and the first Heat conduction to the two-metal base material 12 is hindered, and the rate of temperature rise can be accelerated (symbol L1). When the melting point Tm3 of the third metal, which is lower than the melting points of the first metal and the second metal, is reached by heating due to heat input, the welding material 2 starts to melt. As the welding material 2 is melted, the absorption efficiency of the laser beam 4 is improved, and the heating rate can be further accelerated (reference L2). The heating by the heat input, and reaches the first metal and the melting point T m of a second metal of the second metal base member 12 of the first base metal 11, further melting of the first metal and the second metal begins. As a result, the molten portion 5 including the third metal, the first metal, and the second metal is formed. Then, the said heat input is stopped (code | symbol L3) and the weld metal part 13 which connects the 1st metal base material 11 and the 2nd metal base material 12 is formed by solidifying the fusion | melting part 5 (code | symbol L4).
 本実施形態の接合構造体の製造方法によれば、図6(b)に示されるように、第3金属より構成される溶接材料2を使わずに第1金属母材11および第2金属母材12へ直接入熱して溶接する製法に比べ、比較的少ない総入熱量(総熱量E1<総入熱量E2)かつ短時間で、接合構造体1を製造することができる。 According to the manufacturing method of the joined structure of the present embodiment, as shown in FIG. 6B, the first metal base material 11 and the second metal base material are used without using the welding material 2 made of the third metal. Compared to the manufacturing method in which heat is directly applied to the material 12 and welding is performed, the joined structure 1 can be manufactured in a relatively short total heat input (total heat input E1 <total heat input E2) and in a short time.
(実験例)
<実験例1>
 絶縁被膜14で覆われた平角形の導体線10を2本準備した。導体線10を構成する母材は、無酸素銅(C1020)である。次いで、2本の導体線10の端末部分の絶縁被膜14をそれぞれ剥離した。次いで、図7(a)に示されるように各導体線10の側面同士を当接させたときに、図7(b)に示されるV形開先部31が構成されるように、各導体線10を溝加工した。なお、V形開先部31の幅wは、0.8mm、V形開先部31の深さdは、0.8mmとした。次いで、図7(a)および図7(b)に示されるように、2本の導体線10間に設けられたV形開先部31に、溶接材料2を配置した。溶接材料2は、直径1.2mm×長さ2.5mmの略円柱状に形成されたBCuP-2材を用いた。次いで、図7(a)および図7(b)に示されるように、溶接材料2に対してレーザー光4を照射し、入熱した。この際、レーザー光4の走査軌跡40は、図7(a)に示す矢印の通りとした。レーザー光4の走査軌跡40は、図7(a)に限定されるものではなく、直線、円弧、矩形等の走査軌跡に変更することも可能である。また、レーザー光4の照射条件は、周波数:100Hz、ワブリング径:0.5mm、照射長さs:3mm、走査送り速度:40mm/s、レーザー出力P:2kW(ピーク)とした。なお、レーザー出力Pは、具体的には、図7(c)に示す通りとした。そして、上記入熱による加熱によって溶接材料2を溶融させつつ、さらに両導体線10の母材の一部を溶融させて溶融部5を形成した後、入熱を止めて溶融部5を凝固させた。これにより、無酸素銅とBCuP-2との合金よりなる溶接金属部13のみを介して両導体線10の母材間が一体的に繋がった試料1の接合構造体1を得た。
(Experimental example)
<Experimental example 1>
Two rectangular conductor wires 10 covered with the insulating coating 14 were prepared. The base material constituting the conductor wire 10 is oxygen-free copper (C1020). Next, the insulating coatings 14 at the end portions of the two conductor wires 10 were peeled off. Next, when the side surfaces of the conductor wires 10 are brought into contact with each other as shown in FIG. 7A, each conductor is formed such that the V-shaped groove portion 31 shown in FIG. Line 10 was grooved. The width w of the V-shaped groove 31 was 0.8 mm, and the depth d of the V-shaped groove 31 was 0.8 mm. Next, as shown in FIG. 7A and FIG. 7B, the welding material 2 was disposed on the V-shaped groove portion 31 provided between the two conductor wires 10. As the welding material 2, a BCuP-2 material formed in a substantially cylindrical shape having a diameter of 1.2 mm and a length of 2.5 mm was used. Next, as shown in FIG. 7A and FIG. 7B, the welding material 2 was irradiated with the laser beam 4 and heat was input. At this time, the scanning trajectory 40 of the laser beam 4 was as indicated by the arrow shown in FIG. The scanning trajectory 40 of the laser beam 4 is not limited to that shown in FIG. 7A, and can be changed to a scanning trajectory such as a straight line, an arc, or a rectangle. The irradiation conditions of the laser beam 4 were as follows: frequency: 100 Hz, wobbling diameter: 0.5 mm, irradiation length s: 3 mm, scanning feed rate: 40 mm / s, and laser output P: 2 kW (peak). The laser output P was specifically as shown in FIG. And while melting the welding material 2 by the heating by the said heat input, after melt | dissolving a part of base material of both the conductor wires 10 and forming the fusion | melting part 5, heat input is stopped and the fusion | melting part 5 is solidified. It was. As a result, the joined structure 1 of the sample 1 was obtained in which the base materials of the two conductor wires 10 were integrally connected only through the weld metal portion 13 made of an alloy of oxygen-free copper and BCuP-2.
 図8および図9に示されるように、試料1の接合構造体1において、溶接金属部13は、導体線10を構成する母材表面以上の高さに盛り上がった頭部131と、頭部131の底面より溶接深さ方向に延びる胴部132と、を有していることが分かる。また、図9に示されるように、溶接深さ方向に沿う断面視で、胴部132の基端における幅をW1、胴部132の基端から先端までの深さをDとしたき、胴部132は、D/W1≧1の関係を満たしていることが分かる。また、頭部131の幅をW2としたき、頭部131および胴部132は、W1≦W2の関係を満たしていることも分かる。 As shown in FIG. 8 and FIG. 9, in the joint structure 1 of the sample 1, the weld metal portion 13 includes a head 131 that is raised to a height higher than the surface of the base material constituting the conductor wire 10, and a head 131. It can be seen that the body portion 132 extends in the welding depth direction from the bottom surface. Further, as shown in FIG. 9, in a cross-sectional view along the welding depth direction, the width at the proximal end of the trunk portion 132 is W1, and the depth from the proximal end to the distal end of the trunk portion 132 is D. It can be seen that the part 132 satisfies the relationship of D / W1 ≧ 1. Further, when the width of the head 131 is set to W2, it can also be seen that the head 131 and the trunk 132 satisfy the relationship of W1 ≦ W2.
<実験例2>
 実験例1の試料1の接合構造体の作製方法において、レーザー出力P:1.8kW(ピーク)とした点以外は、試料1の接合構造体の作製方法と同様にして、試料2の接合構造体を作製した。
<Experimental example 2>
In the method for manufacturing the bonded structure of sample 1 in Experimental Example 1, the bonded structure of sample 2 is the same as the method for manufacturing the bonded structure of sample 1 except that the laser output P is 1.8 kW (peak). The body was made.
 図10に示される試料2の接合構造体1の溶接金属部13について、隣り合う各導体線10の面一な母材表面を基準面BP(溶接深さ0)とし、溶接金属部13の胴部132の溶接深さ方向のビッカース硬度を測定した。その結果を、図11に示す。図11によれば、各溶接深さ位置における胴部のビッカース硬さ(Hv)が、0.8×Bave以上1.2×Bave以下を満たしているため、合金成分が均一化されていると判断することができる。 With respect to the weld metal portion 13 of the joint structure 1 of the sample 2 shown in FIG. 10, the surface of the base material that is flush with the adjacent conductor wires 10 is defined as a reference plane BP (welding depth 0), and the body of the weld metal portion 13 is shown. The Vickers hardness in the welding depth direction of the part 132 was measured. The result is shown in FIG. According to FIG. 11, since the Vickers hardness (Hv) of the trunk portion at each welding depth position satisfies 0.8 × B ave or more and 1.2 × B ave or less, the alloy components are made uniform. Can be determined.
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 The present disclosure is not limited to the above embodiments and experimental examples, and various modifications can be made without departing from the scope of the disclosure. Moreover, each structure shown by each embodiment and each experiment example can be combined arbitrarily, respectively. That is, although the present disclosure has been described based on the embodiment, it is understood that the present disclosure is not limited to the embodiment, the structure, and the like. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  第1金属より構成される第1金属母材(11)と、第2金属より構成される第2金属母材(12)と、上記第1金属母材と上記第2金属母材とを繋ぐ溶接金属部(13)と、を有しており、
     上記溶接金属部は、上記第1金属と、上記第2金属と、上記第1金属および上記第2金属より融点の低い第3金属と、の合金より構成されており、
     上記第1金属母材と上記第2金属母材とは、上記溶接金属部のみを介して繋がっている、接合構造体(1)。
    The first metal base material (11) composed of the first metal, the second metal base material (12) composed of the second metal, and the first metal base material and the second metal base material are connected. A weld metal part (13),
    The weld metal part is composed of an alloy of the first metal, the second metal, the first metal, and a third metal having a melting point lower than that of the second metal,
    The said 1st metal base material and the said 2nd metal base material are the joining structures (1) connected only through the said weld metal part.
  2.  上記溶接金属部は、上記第1金属母材および上記第2金属母材の両母材表面以上の高さに盛り上がった頭部(131)と、上記頭部の底面より溶接深さ方向に延びる胴部(132)と、を有している、請求項1に記載の接合構造体。 The weld metal part extends in a welding depth direction from a head (131) raised to a height equal to or higher than the surfaces of both the first metal base and the second metal base, and from the bottom of the head. The joint structure according to claim 1, further comprising a trunk portion (132).
  3.  上記溶接深さ方向に沿う断面視で、上記胴部の基端における幅をW1、上記胴部の基端から先端までの深さをDとしたき、上記胴部は、D/W1≧1の関係を満たす、請求項2に記載の接合構造体。 In a cross-sectional view along the weld depth direction, the width at the base end of the body portion is W1, and the depth from the base end to the tip end of the body portion is D, where the body portion is D / W1 ≧ 1. The joined structure according to claim 2, satisfying the relationship:
  4.  上記頭部の幅をW2としたき、上記頭部および上記胴部は、W1≦W2の関係を満たす、請求項3に記載の接合構造体。 The joint structure according to claim 3, wherein the width of the head is W2, and the head and the body satisfy a relationship of W1 ≦ W2.
  5.  上記第1金属と上記第2金属とが同種の金属である、請求項1~4のいずれか1項に記載の接合構造体。 The bonded structure according to any one of claims 1 to 4, wherein the first metal and the second metal are the same kind of metal.
  6.  上記溶接金属部は、溶接深さ方向で見て、その合金成分が均一化されている、請求項1~5のいずれか1項に記載の接合構造体。 The bonded structure according to any one of claims 1 to 5, wherein the weld metal portion has a uniform alloy composition when viewed in the weld depth direction.
  7.  上記第1金属母材および上記第2金属母材は、いずれも、母材表面に絶縁被膜(14)を有しており、
     各上記絶縁被膜が剥離されて露出した上記第1金属母材と上記第2金属母材とが、上記溶接金属部のみを介して繋がっている、請求項1~6のいずれか1項に記載の接合構造体。
    Each of the first metal base material and the second metal base material has an insulating coating (14) on the surface of the base material.
    The first metal base material and the second metal base material exposed by peeling off each of the insulating coatings are connected only through the weld metal portion. Bonding structure.
  8.  第1金属より構成される第1金属母材(11)と第2金属より構成される第2金属母材(12)との間に配置された、上記第1金属および上記第2金属より融点の低い第3金属より構成される溶接材料(2)に対して局所的に直接入熱し、
     上記入熱による加熱によって上記溶接材料を溶融させつつ、さらに上記第1金属および上記第2金属の一部を溶融させて、上記第3金属、上記第1金属および上記第2金属を含む溶融部(5)を形成し、
     上記入熱を止めて上記溶融部を凝固させ、上記第1金属母材と上記第2金属母材とを繋ぐ溶接金属部(13)を形成する、接合構造体の製造方法。
    Melting | fusing point from the said 1st metal and said 2nd metal arrange | positioned between the 1st metal base material (11) comprised from a 1st metal, and the 2nd metal base material (12) comprised from a 2nd metal Direct heat input to the welding material (2) composed of the third metal having a low
    A melting part containing the third metal, the first metal, and the second metal by melting the welding material by heating by the heat input and further melting a part of the first metal and the second metal. Forming (5),
    The method for manufacturing a joined structure, wherein the heat input is stopped to solidify the melted portion, and a weld metal portion (13) that connects the first metal base material and the second metal base material is formed.
  9.  上記溶接材料は、上記第1金属母材と上記第2金属母材との間に設けられた溝よりなる開先部(3)に配置される、請求項8に記載の接合構造体の製造方法。 The said welding material manufactures the junction structure of Claim 8 arrange | positioned at the groove part (3) which consists of a groove | channel provided between the said 1st metal base material and the said 2nd metal base material. Method.
  10.  上記第1金属および上記第2金属を溶融させる際に、上記第1金属母材および上記第2金属母材の表面に還元作用を作用させる、請求項8または9に記載の接合構造体の製造方法。 The joint structure manufacturing method according to claim 8 or 9, wherein when the first metal and the second metal are melted, a reducing action is applied to the surfaces of the first metal base material and the second metal base material. Method.
PCT/JP2019/001057 2018-02-28 2019-01-16 Joint structural body and method for manufacturing same WO2019167454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018034806A JP2019147184A (en) 2018-02-28 2018-02-28 Joint structure and manufacturing method therefor
JP2018-034806 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167454A1 true WO2019167454A1 (en) 2019-09-06

Family

ID=67804986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001057 WO2019167454A1 (en) 2018-02-28 2019-01-16 Joint structural body and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2019147184A (en)
WO (1) WO2019167454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404436A (en) * 2020-11-12 2021-02-26 山东国铭球墨铸管科技有限公司 Manufacturing process of annular hot-press welding joint for metal pipeline connection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119003A (en) * 2000-10-10 2002-04-19 Mitsubishi Electric Corp Stator for dynamo-electric machine, and manufacturing method thefor
JP2003311467A (en) * 2002-04-17 2003-11-05 Honda Motor Co Ltd Laser welding method
US20160114428A1 (en) * 2014-10-22 2016-04-28 GM Global Technology Operations LLC Laser conduction mode welding of aluminum alloys with cross dual laser beams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119003A (en) * 2000-10-10 2002-04-19 Mitsubishi Electric Corp Stator for dynamo-electric machine, and manufacturing method thefor
JP2003311467A (en) * 2002-04-17 2003-11-05 Honda Motor Co Ltd Laser welding method
US20160114428A1 (en) * 2014-10-22 2016-04-28 GM Global Technology Operations LLC Laser conduction mode welding of aluminum alloys with cross dual laser beams

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404436A (en) * 2020-11-12 2021-02-26 山东国铭球墨铸管科技有限公司 Manufacturing process of annular hot-press welding joint for metal pipeline connection

Also Published As

Publication number Publication date
JP2019147184A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
CN103920966B (en) With reference to aluminium and the structures and methods of copper
KR100997607B1 (en) Method for joining members of different kinds
US20070181550A1 (en) A-TIG welding of copper alloys for generator components
JP5220449B2 (en) Method and apparatus for joining metal members
JP2009158777A (en) Coil component
WO2019167454A1 (en) Joint structural body and method for manufacturing same
WO2018088189A1 (en) Production method for conductive member having wire strand joining section, and conductive member having wire strand joining section
JP2007038280A (en) Iron tip for soldering iron, and method for producing the same
JP5461570B2 (en) Manufacturing method of electronic component terminal and electronic component terminal obtained by the manufacturing method
JP2023013804A (en) Joining device and joining method for friction stir joining and resistance welding
JP2023013803A (en) Joining device and joining method for friction stir joining and resistance welding
TW202015846A (en) Welding method using alloy powder as welding filler material
JP3327819B2 (en) How to join metal materials
WO2021047307A1 (en) Spot welding method for multi-layer conductor of motor winding
JPS6238802B2 (en)
JP2007123647A (en) Structure and method for attaching thermocouple for heater chip
JPS60106662A (en) Joining method of members
JP2010051989A (en) Laser joining method
JP4235168B2 (en) Bonding structure and bonding method of bus bar for electronic device and connection terminal
JP3720103B2 (en) Metal material welding method and welded product
JP3888077B2 (en) ELECTRODE FOR METAL JOINING, ITS MANUFACTURING METHOD, WELDING EQUIPMENT HAVING METAL JOINING ELECTRODE, AND PRODUCT WELDED BY IT
JP2007035280A (en) Laser welding method of copper lead wire and fuse element
JP2000190068A (en) Electronic parts jointing method
JP3602582B2 (en) Manufacturing method of electrode for resistance welding
JPH05290646A (en) Composite superconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761495

Country of ref document: EP

Kind code of ref document: A1