WO2019167418A1 - Robot - Google Patents

Robot Download PDF

Info

Publication number
WO2019167418A1
WO2019167418A1 PCT/JP2018/048234 JP2018048234W WO2019167418A1 WO 2019167418 A1 WO2019167418 A1 WO 2019167418A1 JP 2018048234 W JP2018048234 W JP 2018048234W WO 2019167418 A1 WO2019167418 A1 WO 2019167418A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
robot
inverter
power semiconductor
semiconductor device
Prior art date
Application number
PCT/JP2018/048234
Other languages
French (fr)
Japanese (ja)
Inventor
原 淳一郎
半田 浩之
一大 村田
大治郎 有澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019167418A1 publication Critical patent/WO2019167418A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This disclosure relates to a robot having a robot arm.
  • a robot having a robot arm includes a motor that rotates the robot arm and a motor driving unit (inverter) for supplying an AC voltage to the motor.
  • a motor driving unit inverter
  • a robot having a motor drive unit provided outside a robot arm and configured to supply AC power from the motor drive unit to the motor by a cable connecting the motor drive unit and the motor is widely used.
  • the same number of motor drive units as the motors are provided. Therefore, as the number of robot arms increases, the number of motor drive units also increases. As a result, the number of cables for supplying an AC voltage from the motor drive unit to the motor increases. As a result, the total wiring length of the cable becomes long, and there is a problem that it is difficult to downsize the robot in order to secure the wiring space.
  • Patent Document 1 discloses a robot in which a motor drive unit is arranged in a robot arm and the motor drive units are connected in a daisy chain (a daisy chain connection).
  • Patent Document 1 does not disclose the heat dissipation from the motor drive unit.
  • the present disclosure provides a robot with improved heat dissipation.
  • a robot includes a motor, a power line and a ground line for supplying a DC voltage, an inverter having a power semiconductor device that converts the DC voltage into an AC voltage and supplies the AC voltage to the motor, A control line for supplying a control signal to the inverter and a first robot arm incorporating the inverter are provided, and the power semiconductor device is in contact with an inner surface of the first robot arm.
  • heat dissipation is improved.
  • FIG. 1 is a perspective view showing an appearance of a robot according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating the configuration of the robot according to the embodiment.
  • FIG. 3A is a diagram illustrating an example of an arrangement position of the inverter according to the embodiment.
  • FIG. 3B is a diagram illustrating another example of the arrangement positions of the inverters according to the embodiment.
  • FIG. 3C is a diagram illustrating still another example of the arrangement position of the inverter according to the embodiment.
  • FIG. 4A is a cross-sectional view showing an example of an inverter built in the third arm according to the embodiment.
  • FIG. 4B is a cross-sectional view illustrating another example of the inverter built in the third arm according to the embodiment.
  • FIG. 4A is a cross-sectional view showing an example of an inverter built in the third arm according to the embodiment.
  • FIG. 4B is a cross-sectional view illustrating another example of the inverter built in the third arm according to
  • FIG. 5A is a schematic cross-sectional view showing an example of the configuration of the power semiconductor device according to the embodiment.
  • FIG. 5B is a schematic cross-sectional view showing another example of the configuration of the power semiconductor device according to the embodiment.
  • FIG. 5C is a schematic cross-sectional view showing still another example of the configuration of the power semiconductor device according to the embodiment.
  • FIG. 6A is a cross-sectional view of the cable according to the embodiment.
  • FIG. 6B is a diagram illustrating the length of the shortest side of the case according to the embodiment.
  • FIG. 7A is a diagram illustrating a configuration of a robot according to a modification of the embodiment.
  • FIG. 7B is a cross-sectional view showing a second arm portion according to a modification of the embodiment.
  • the inverter is arranged outside the robot, and the inverter and the motor arranged inside the robot are connected by wiring (for example, a wire line).
  • wiring for driving and controlling the motor is arranged in the housing of the robot arm by the number of motors mounted on the robot.
  • a 6-axis drive robot which is a typical industrial robot, three power lines for U-phase, V-phase, and W-phase outputs, and 2 from a motor encoder (hereinafter also referred to as an encoder) Since five wires including the control lines are required for each motor, a total of 30 wires are arranged in the robot.
  • Patent Document 1 discloses disposing an inverter in a robot arm and connecting the inverters in a daisy chain. Thereby, since the wiring length of the wiring connecting the inverter and the motor can be shortened, the total wiring length can be reduced.
  • the robot includes a plurality of robot arms, that is, includes a plurality of motors and inverters, the number of wirings for supplying DC voltage to the inverters and the inverters is reduced by daisy chain connecting the plurality of inverters. be able to. Therefore, the total wiring length can be further reduced.
  • the robot arm can be reduced in size.
  • the robot arm can be operated at high speed, and the robot arm can be passed through a narrow space (for example, in the case of assembly work, the space inside the assembly object), thus improving the convenience of the robot. To do.
  • the weight of the robot can be reduced. Therefore, since the impact when the robot arm collides with something can be reduced, the safety of the robot is improved. For example, the robot can be safely operated as a collaborative robot that cooperates with the worker.
  • the output of the motor can be reduced by the weight reduction, the cost of the motor can be reduced. Further, the power consumption consumed by the robot can be reduced.
  • control device can be reduced in size compared to the case where the inverter is arranged in the control device (control box) outside the robot. Furthermore, the number of fans provided in the control device can be reduced.
  • the inventors of the present application have conducted intensive studies on a robot capable of reducing the total wiring length and suppressing the temperature rise of the robot arm. And it discovered that the rise in the temperature of a robot arm could be suppressed, maintaining the various merit described above by devising the arrangement position in the robot arm of the power semiconductor device which an inverter has.
  • the X axis, the Y axis, and the Z axis indicate the three axes of the three-dimensional orthogonal coordinate system.
  • the direction perpendicular to the installation surface on which the robot is installed is the Z-axis direction.
  • the Z-axis direction is a direction parallel to the vertical direction.
  • the X-axis direction and the Y-axis direction are orthogonal to each other, and both are directions orthogonal to the Z-axis direction.
  • a direction parallel to the Z axis is also referred to as a vertical direction
  • a direction orthogonal to the Z axis is also referred to as a horizontal direction.
  • the horizontal direction is, for example, a direction parallel to the setting surface.
  • FIG. 1 is a perspective view showing an appearance of a robot 10 according to the present embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the robot 10 according to the present embodiment.
  • the robot 10 according to the present embodiment is a six-axis articulated robot, but is not limited to this.
  • the robot 10 is, for example, an industrial-use robot that performs operations such as feeding, removing, transporting, and assembling precision equipment and parts constituting the precision device.
  • the robot 10 includes a robot arm 100, six motors (AC motors) including motors 210 and 220, six inverters including inverters 310 and 320, and a recovery.
  • the apparatus 400, the control apparatus 500, and the base 700 are provided.
  • the robot arm 100 includes a first arm 110, a second arm 120, a third arm 140, a fourth arm 150, and a fifth arm 160.
  • the second arm 120 is, for example, a Y-shaped arm having a first arm portion 120a, a second arm portion 130, and a third arm portion 130a, and the first arm portion 120a, the second arm portion 130, and the third arm portion 130a.
  • the arm unit 130a operates as a unit. In FIG. 1, only the inverter 320 built in the second arm 120 (for example, the second arm unit 130) among the six inverters is illustrated.
  • the robot 10 also includes a DC power supply line 610 and a ground line 620 for supplying a DC voltage to the inverter, a control line 630 for supplying a control signal to the inverter, and an AC voltage from the inverter to the motor.
  • An AC power supply line 640 and an encoder signal line 650 for transmitting an output signal of an encoder (not shown) attached to the rotation shaft of the motor and detecting the rotation position of the rotation shaft of the motor to the inverter.
  • the output signal includes, for example, information indicating the rotational position (angle) of the rotation shaft of the motor.
  • the DC power supply line 610 is an example of a power supply line.
  • the first arm 110 is connected to the base 700 so as to be rotatable around a first rotation axis a1 along the vertical direction.
  • the second arm 120 is connected to the first arm 110 so as to be rotatable around a second rotation axis a2 along the horizontal direction.
  • the third arm 140 is connected to the second arm 120 so as to be rotatable around a third rotation axis a3 along the horizontal direction.
  • the fourth arm 150 is connected to the third arm 140 so as to be rotatable about a fourth rotation axis a4 along the horizontal direction.
  • the fifth arm 160 is connected to the fourth arm 150 so as to be rotatable about a fifth rotation axis a5 along the horizontal direction.
  • an end factor (not shown) attached to the tip of the fifth arm 160 is connected to the fifth arm 160 so as to be rotatable about the sixth rotation axis a6.
  • a kind of end factor is attached according to the application.
  • Each arm is connected through a joint.
  • the “joint portion” has a function of rotating two arms connected to each other (for example, adjacent arms).
  • the first arm 110 includes a housing 112 that houses a motor 210, an inverter 310, and a recovery device 400.
  • the second arm 120 is configured by a housing 122 that incorporates a motor 220 and an inverter 320.
  • the third arm 140 to the fifth arm 160 are configured by a housing containing a motor and an inverter, like the second arm 120.
  • the collection device 400 is built in the first arm 110, but is not limited thereto, and may be built in any one of the first arm 110 to the fifth arm 160.
  • the casings of the first arm 110 to the fifth arm 160 including the casings 112 and 122 are made of metal or resin.
  • the metal is, for example, aluminum or an alloy (for example, Mg alloy).
  • the motor 210 is provided at the joint and generates a driving force that rotates the first arm 110 relative to the base 700. Specifically, the motor 210 is rotationally driven based on an alternating drive current that flows when a three-phase alternating voltage output from the inverter 310 is applied.
  • the motor 210 is, for example, a servo motor.
  • An encoder that detects a position signal of the rotation shaft is attached to the rotation shaft of the motor 210.
  • the motor 220 to the fifth arm 160 (not shown) built in the second arm 120 are provided at the corresponding joints, and the second arm 120 to the fifth arm 160 are connected to each other. Generate driving force to rotate.
  • the motor 210 built in the first arm 110 to the motor built in the fifth arm 160 are also referred to as a motor 210 or the like.
  • the inverter 310 includes a power semiconductor device that converts a DC voltage supplied from the DC power supply unit 510 into an AC voltage (for example, a three-phase AC voltage) and outputs the AC voltage to the motor 210.
  • the inverter 310 converts the input DC voltage into an AC voltage for driving the motor and supplies driving power to the motor 210 when the power semiconductor device is driven on and off according to the control signal received from the control unit 520. To do.
  • the AC voltage is supplied to the motor 210 via the AC power supply line 640.
  • inverters 320 (not shown) built in the second arm 120 to inverters (not shown) built in the second arm 120 supply driving power (AC power) to the corresponding motors.
  • the inverters 310 to 5 built in the first arm 110 are also referred to as inverters 310 and the like. The configuration of the inverter 310 and the like will be described later.
  • the switching element (power semiconductor switching element) included in the power semiconductor device is not particularly limited. For example, it may be a field effect transistor (eg, MOSFET) or an insulated gate bipolar transistor (IGBT). Alternatively, other transistors may be used.
  • the switching elements are GaN power semiconductor elements based on GaN (gallium nitride), SiC power semiconductor elements based on SiC (silicon carbide), and Si based on Si (silicon). A power semiconductor element or the like can be used. Note that a GaN power semiconductor element is preferably used as the switching element from the viewpoint of reducing heat generation in the power semiconductor device.
  • the motor 210 and the inverter 310 are arranged so as not to be in direct contact with each other.
  • the motor 210 and the inverter 310 are arranged with a gap of about 10 cm in the same casing.
  • the motor 210 and the inverter 310 are arranged so as not to be in thermal contact. Thereby, the loss in the inverter 310 can be reduced.
  • the recovery device 400 is connected to the DC power supply line 610 and the ground line 620, and recovers regenerative energy from each of the motor 210 and the like.
  • the recovery device 400 includes, for example, a capacitor or a resistor.
  • the collection device 400 collects the regenerative energy.
  • recovery apparatus 400 is collect
  • one collection device 400 is provided for the robot 10.
  • the control device 500 is a device that performs overall control of the operation of the robot 10.
  • the control device 500 is provided separately from the robot arm 100.
  • the control device 500 includes a DC power supply unit 510 and a control unit 520.
  • the DC power supply unit 510 and the control unit 520 are disposed in the casing of the control device 500.
  • the DC power supply unit 510 converts a power supply voltage, which is an AC voltage input from an AC power supply 800 (for example, a commercial power supply), into a DC voltage and outputs the DC voltage to the inverter 310 or the like.
  • the DC voltage is supplied to the inverter 310 and the like via the DC power supply line 610 and the ground line 620.
  • the type and configuration of the DC power supply unit 510 are not particularly limited, and are, for example, a PWM (Pulse Width Modulation) converter. Further, the conversion operation of the DC power supply unit 510 is controlled by the control unit 520.
  • Control unit 520 controls the conversion operation of inverter 310 and the like.
  • the control unit 520 generates a control signal that is an operation command (for example, a switching command) for controlling the power conversion operation of the inverter 310 or the like so that the motor 210 or the like performs a desired rotation operation.
  • the control unit 520 generates a control signal for on / off control of a switching element such as the inverter 310 based on a DC voltage output from the DC power supply unit 510 and an output signal from the encoder.
  • the control signal is supplied to the inverter 310 and the like via the control line 630.
  • control unit 520 when DC power supply unit 510 is a PWM converter, control unit 520 generates a control signal for controlling the switching operation of the switching element in the PMW converter, and outputs the control signal to DC power supply unit 510.
  • the control unit 520 executes various processes by causing a program execution unit such as a CPU (Central Processing Unit) or a processor to read and execute a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor to read and execute a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the DC power supply line 610 is a wiring that connects the DC power supply unit 510 and an input terminal (not shown) for power supply such as the inverter 310 and supplies a DC voltage from the DC power supply unit 510 to the inverter 310 and the like.
  • the ground line 620 connects the DC power supply unit 510 and a ground input terminal (not shown) such as the inverter 310.
  • the ground line 620 is grounded via the DC power supply unit 510.
  • the control line 630 connects the control unit 520 and the control signal input terminal (eg, gate terminal) of the inverter 310 and the like, and supplies a control signal (eg, clock signal) from the control unit 520 to the inverter 310 and the like. Wiring.
  • the control line 630 may further include wiring for transmitting an output signal acquired by the inverter 310 or the like via the encoder signal line 650 to the control unit 520.
  • the AC power supply line 640 is a wiring that connects the motor 210 and the like to the output terminal of the inverter 310 and the like, and is a wiring that supplies a driving AC voltage for driving the motor 210 and the like.
  • AC power supply line 640 includes three wires connected to each of the U phase, V phase, and W phase of motor 210 and the like. For example, an average current of about 2 A flows through the AC power supply line 640.
  • Encoder signal line 650 is a wiring for connecting motor 210 and the like to inverter 310 and the like, and supplies an output signal of an encoder attached to motor 210 and the like to inverter 310 and the like.
  • the base 700 is a fixed base to which the robot arm 100 is rotatably attached.
  • FIG. 3A is a diagram illustrating an example of an arrangement position of the inverter 320 according to the present embodiment.
  • FIG. 3B is a diagram showing another example of the arrangement position of the inverter 320 according to the present embodiment.
  • FIG. 3C is a diagram showing still another example of the arrangement position of the inverter 320 according to the present embodiment.
  • description will be made mainly using the second arm portion 130 of the second arm 120 and the inverter 320, but the same applies to other arms and inverters.
  • 3A and 3B only the first arm 110 to the third arm 140 are illustrated.
  • the inverter 320 is disposed in contact with the inner surface of the housing 133 of the second arm portion 130 of the second arm 120, for example. Specifically, the inverter 320 is arranged in contact with the inner surface of the wall portion 133a constituting the housing 133. The contact of the inverter 320 with the inner surface of the housing 133 of the second arm unit 130 is included in the contact of the inverter 320 with the inner surface of the second arm 120.
  • the inverter 320 is disposed, for example, on the inner surface of the housing 133 of the second arm unit 130 and in contact with the inner surface of the third arm 140 side. Specifically, the inverter 320 is arranged in contact with the inner surface of the wall portion 133b constituting the housing 133.
  • the wall part 133b is a wall part arranged on the other arm side among the wall parts 133a and 133b constituting the housing 133.
  • the second arm 120 is an example of a first robot arm
  • the third arm 140 is an example of a second robot arm.
  • At least one of the DC power supply line 610, the ground line 620, and the control line 630 is inserted into the wall part 133 b (the X-axis minus side wall part shown in FIG. 3C) of the housing 133.
  • a pair of openings (for example, openings 133c and 133d) are formed. Openings are also formed at positions corresponding to the openings 133c and 133d in the first arm portion 120a and the third arm 140.
  • the opening 133c is, for example, a hole for passing at least one of the DC power supply line 610, the ground line 620, and the control line 630 from one of the second arm part 130 and the third arm 140 to the other. That is, at least one of the openings 133c and 133d is connected to the DC power line 610, the ground from one of the second arm 120 and the third arm 140 outside the second arm 120 to the other (for example, from the inside to the outside of the second arm 120). It may be a hole for passing at least one of the line 620 and the control line 630.
  • the opening 133d is, for example, a hole for passing at least one of the DC power supply line 610, the ground line 620, and the control line 630 from one of the first arm part 120a and the second arm part 130 to the other. That is, at least one of the openings 133c and 133d has a DC power supply line 610 and a ground line 620 from one of the constituent parts (for example, the first arm part 120a and the second arm part 130) constituting the second arm 120 to the other. And a hole for passing at least one of the control lines 630.
  • the shapes of the openings 133c and 133d are, for example, circular, but are not particularly limited.
  • the inverter 320 is disposed between the openings 133c and 133d on the inner surface of the wall 133b, for example.
  • Inverter 320 is preferably arranged so that the direction in which openings 133c and 133d are arranged and the longitudinal direction of inverter 320 are parallel from the viewpoint of more utilizing the space in housing 133.
  • the inverter 320 being disposed between the openings 133c and 133d includes, for example, that at least a part of the inverter 320 is disposed between the openings 133c and 133d.
  • the DC power supply line 610, the ground line 620, and the control line 630 are also connected to the inverter 320.
  • the openings 133c and 133d are not limited to holes for passing the DC power supply line 610, the ground line 620, and the control line 630.
  • the opening 133c may be a hole for a joint part.
  • the opening 133c is an example of a second opening, and the opening 133d is an example of a third opening.
  • FIG. 4A is a cross-sectional view showing an example of inverter 320 built in second arm 120 according to the present embodiment.
  • 4A and 4B an example in which the second arm 120 includes the inverter 320 in the second arm unit 130 will be described, but the present invention is not limited to this.
  • illustration of the motor arranged in the second arm 120 is omitted.
  • the DC power supply line 610 and the ground line 620 are illustrated as one straight line
  • the three AC power supply lines 640 are illustrated as one straight line.
  • the inverter 320 includes a first circuit board 331, a second circuit board 332, a power semiconductor device 333, and a case 334.
  • the first circuit board 331 is a circuit board for converting a DC voltage into an AC voltage, and the power semiconductor device 333 is mounted thereon.
  • the second circuit board 332 is a circuit board for controlling the operation of the power semiconductor device 333 based on the control signal.
  • the first circuit board 331 and the second circuit board 332 are electrically connected by a signal line or the like, and the signal of the switching timing of the switching element is transmitted from the second circuit board 332 through the signal line or the like to the first circuit. It is transmitted to the substrate 331.
  • the power semiconductor device 333 converts the DC voltage supplied from the DC power supply unit 510 into an AC voltage.
  • the power semiconductor device 333 includes a switch pair (for example, a U-phase arm) in which two switching elements (for example, an upper arm side switching element and a lower arm side switching element) are connected in series.
  • the DC voltage is converted to an AC voltage output from the middle of the switching elements connected in series and output to the motor 210 and the like.
  • the AC power supply line 640 is a wiring that connects the intermediate unit and the motor 210 and the like.
  • the first circuit board 331 On the first circuit board 331, three power semiconductor devices 333 are mounted so as to be connected in parallel. Therefore, on the first circuit board 331, three switch pairs (U-phase arm, V-phase arm, and W-phase arm), that is, six switching elements are arranged. The six switching elements are ON / OFF controlled in accordance with a control signal input to the gate terminal, whereby the DC voltage is converted into a three-phase (U-phase, V-phase, and W-phase) AC voltage.
  • the case 334 includes a first circuit board 331, a second circuit board 332, and a power semiconductor device 333.
  • Case 334 is formed of metal or resin.
  • the case 334 may be made of aluminum, for example.
  • Case 334 is an example of a housing.
  • the case 334 is, for example, a hollow rectangular parallelepiped (box), but is not limited thereto.
  • the power semiconductor device 333 is arranged such that the surface opposite to the surface mounted on the first circuit board 331 (reverse surface) is in contact with the inner surface of the case 334. Specifically, the reverse surface of the power semiconductor device 333 is disposed in contact with the inner surface of the wall portion 334 a constituting the case 334.
  • the power semiconductor device 333 and the case 334 are disposed so as to be in surface contact, for example.
  • the inverter 320 has the case 334 in which the power semiconductor device 333 is built.
  • the power semiconductor device 333 is in contact with the inner surface of the case 334, and the outer surface corresponding to the inner surface of the case 334 is in contact with the inner surface of the housing 133.
  • the contact of the power semiconductor device 333 with the inner surface of the housing 133 via the case 334 is an example of the contact of the power semiconductor device 333 with the inner surface of the housing 133.
  • an object other than the case 334 may be disposed between the power semiconductor device 333 and the housing 133.
  • a member such as a heat dissipation sheet may be arranged between the power semiconductor device 333 and the housing 133 in addition to the wall portion 334a of the case 334 or instead of the wall portion 334a.
  • the power semiconductor device 333 is disposed with a space with respect to the inner surface of the wall portion 334a of the case 334
  • the case 334 is disposed with a space with respect to the inner surface of the wall portion 133a of the housing 133. This is not included in the case where the power semiconductor device 333 is in contact with the inner surface of the housing 133.
  • FIG. 4B is a cross-sectional view showing another example of inverter 320a built in second arm 120 according to the present embodiment.
  • the inverter 320a does not have the case 334, and the power semiconductor device 333 is in contact with the inner surface of the wall 133a of the housing 133.
  • the power semiconductor device 333 is in contact with the inner surface of the wall 133a of the housing 133.
  • the power semiconductor device 333 and the inner surface are in direct contact as shown in FIG. 4B, and the power semiconductor device 333 and the inner surface are in a heat dissipation sheet. Contact via a member such as.
  • the arrangement of the power semiconductor device 333 with a space from the inner surface of the housing 133 is not included in the contact of the power semiconductor device 333 with the inner surface of the housing 133.
  • the method of fixing the first circuit board 331 to the casing 133 is not particularly limited, but is fixed to the casing 133 with screws 335, for example.
  • the power semiconductor device 333 is in contact with the inner surface of the housing 133. In other words, the power semiconductor device 333 is in contact with the inner surface of the first arm 110.
  • FIG. 5A is a schematic cross-sectional view showing an example of the configuration of the power semiconductor device 333 according to the present embodiment. 5A to 5C, illustration of various lead wires and electrode pads is omitted.
  • the power semiconductor device 333 includes a substrate 333a, a semiconductor chip 333b, a filling layer 333c, and a heat dissipation layer 333d.
  • the substrate 333a is a substrate (for example, a metal base) on which the power semiconductor device 333 is mounted.
  • the semiconductor chip 333b is a power semiconductor chip mounted on the substrate 333a.
  • the semiconductor chip 333b includes, for example, a switching element (for example, a MOSFET or an IGBT).
  • the filling layer 333c covers the semiconductor chip 333b.
  • the filling layer 333c is formed of an insulating material such as resin.
  • the filling layer 333c is formed of, for example, an epoxy resin.
  • the heat dissipation layer 333d covers at least a part of the filling layer 333c, and dissipates heat from the semiconductor chip 333b to the housing 133.
  • the heat dissipation layer 333d is in direct contact with the inner surface of the housing 133 and has a role of transferring heat of the semiconductor chip 333b transmitted through the filling layer 333c to the housing 133 side.
  • the heat dissipation layer 333 d may be in direct contact with the inner surface of the case 334.
  • the heat radiation layer 333d is provided between the filling layer 333c and the housing 133 so as to be in contact with both.
  • 5A shows an example in which the heat dissipation layer 333d is provided so as to cover the entire outer periphery of the filling layer 333c and to be in direct contact with the filling layer 333c and the housing 133.
  • the heat dissipation layer 333d may be formed including a resin or may be formed including a ceramic.
  • an inorganic insulating material such as ceramic such as aluminum nitride (AlN) or silicon nitride (Si 3 N 4 ) is preferably used.
  • the heat dissipation layer 333d having high thermal conductivity and high heat resistance can be provided.
  • a resin having high heat resistance may be used.
  • the heat dissipation layer 333d may be a case that covers the filling layer 333c.
  • FIG. 5B is a schematic cross-sectional view showing another example of the configuration of the power semiconductor device 333 according to the present embodiment.
  • the heat dissipation layer 333d may be provided so as to cover almost the entire upper surface of the semiconductor chip 333b (for example, the surface opposite to the mounting surface of the semiconductor chip 333b).
  • the heat radiation layer 333d is preferably provided so as to cover at least the upper surface of the semiconductor chip 333b, for example.
  • the heat dissipation layer 333d may be, for example, a metal plate made of metal.
  • the heat dissipation layer 333d may be made of copper, for example. In the case where an insulating layer is formed on the surface of the semiconductor chip 333b, the heat dissipation layer 333d may be provided directly on the semiconductor chip 333b.
  • FIG. 5C is a schematic cross-sectional view showing still another example of the configuration of the power semiconductor device 333 according to the present embodiment.
  • a heat radiation terminal 333e may be provided on the back surface (the surface on the first circuit board 331 side) of the semiconductor chip 333b.
  • the semiconductor chip 333b and the first circuit board 331 may be thermally connected via the board 333a and the heat dissipation terminal 333e.
  • FIG. 6A is a cross-sectional view showing cable 600 according to the present embodiment.
  • FIG. 6B is a diagram showing the length of the shortest side of the case according to the present embodiment.
  • the cable 600 is a wiring that incorporates a DC power supply line 610 and a ground line 620, and includes a DC power supply line 610, a ground line 620, an inner sheath 600a, and an outer sheath 600b.
  • the DC power supply line 610 includes a conductor 610a and an insulator 610b.
  • the outer diameter D1 of the cross section of the DC power supply line 610 is defined as the outer diameter of the insulator 610b out of the conductor 610a and the insulator 610b.
  • the outer diameter D1 is, for example, 6 mm or less.
  • the ground wire 620 includes a conductor 620a and an insulator 620b.
  • the outer diameter D2 of the cross section of the ground wire 620 is defined as, for example, the outer diameter of the insulator 620b among the conductor 620a and the insulator 620b.
  • the outer diameter D2 is 6 mm or less, for example.
  • the outer diameter D3 of the cross section of the cable 600 is defined as, for example, the outer diameter of the outer sheath 600b.
  • the outer diameter D3 is, for example, 15 mm or less.
  • the case The thickness L of 334 is preferably equal to or less than the outer diameter D3 of the cross section of the cable 600 including the DC power supply line 610 and the ground line 620.
  • the thickness L may be smaller than the outer diameter D3.
  • the thickness L of the case 334 may be equal to or smaller than the outer diameter D1 of the cross section of the DC power supply line 610 or the outer diameter D2 of the cross section of the ground wire 620.
  • the thickness L is preferably equal to or less than the outer diameter D1 or the outer diameter D2. More preferably, the thickness L of the case 334 is less than or equal to the smaller outer diameter of the outer diameter D1 and the outer diameter D2.
  • the thickness L of the case 334 is, for example, the side having the shortest length among the three sides S1, S2, and S3 sharing one vertex V of the case 334 (see FIG. In the example of 6B, it is good that it is the length of side S1).
  • the inverter 320 may be provided with a connection wiring (not shown) for connecting to the cable 600 or the DC power supply line 610 and the ground line 620 on the side surface of the case 334. This further reduces the thickness of the arm housing.
  • the side surface of the case 334 is a surface including the side S1 having the shortest length among the three sides, and may be, for example, the side surface A including the sides S1 and S2 or the side surface B including the sides S1 and S3. It may be.
  • the outer surface of the wall portion 334a of the case 334 (that is, the surface in contact with the housing) is, for example, a surface that does not include the shortest side S1 among the three sides, and includes, for example, the sides S2 and S3. Surface.
  • the contact area between the case 334 and the housing 133 can be increased, so that the heat of the power semiconductor device 333 can be radiated more effectively.
  • the robot 10 includes the motor, the DC power supply line 610 (an example of the power supply line) and the ground line 620 for supplying a DC voltage, and the power supplied to the motor by converting the DC voltage into an AC voltage.
  • An inverter 320 including the semiconductor device 333, a control line 630 for supplying a control signal to the inverter 320, and a second arm 120 (an example of a first robot arm) incorporating the inverter 320 are provided.
  • the power semiconductor device 333 is in contact with the inner surface of the second arm 120.
  • the robot 10 described above incorporates the inverter 310 and the like in the robot arm 100 to reduce the total wiring length, and the power semiconductor device 333 such as the inverter 310 and the robot arm 100 (first arm 110 to fifth arm 160).
  • the heat dissipation can be improved by contacting with. That is, the robot 10 can simultaneously reduce the total wiring length and improve the heat dissipation.
  • a third arm 140 (an example of a second robot arm) that is rotatably connected to the second arm 120 is provided.
  • the power semiconductor device 333 is in contact with the inner surface of the second arm 120 and on the third arm 140 side. Specifically, the power semiconductor device 333 is in contact with the inner surface of the wall portion 133 b of the second arm 120.
  • the power semiconductor device 333 can be brought into contact with a portion of the second arm 120 that is difficult for the operator to contact. That is, it is possible to suppress an increase in the temperature of a portion of the robot 10 that the operator may touch (for example, a portion of the housing 133). Therefore, in a situation where there is an operator who cooperates with the robot 10, heat dissipation can be improved while ensuring safety for the operator. For example, the operator can be prevented from being burned.
  • the inverter 320 has a case 334 (an example of a housing) in which the power semiconductor device 333 is built.
  • the power semiconductor device 333 is in contact with the inner surface of the case 334, and the outer surface corresponding to the inner surface of the case 334 is in contact with the inner surface of the second arm 120.
  • the inverter 320 has the case 334, the heat of the power semiconductor device 333 can be efficiently diffused to the second arm 120 via the case 334. Therefore, the heat dissipation of the robot 10 is further improved.
  • the thickness L of the case 334 is equal to or less than the outer diameter D3 of the cross section of the cable 600 including the DC power supply line 610 and the ground line 620.
  • the second arm 120 can be made thin. That is, the second arm 120 can be reduced in size.
  • the thickness of the case 334 is equal to or less than the outer diameter D1 of the cross section of the DC power supply line 610 or the outer diameter D2 of the cross section of the ground wire 620.
  • the second arm 120 can be made thinner. That is, the second arm 120 can be reduced in size.
  • the case 334 has a hollow rectangular parallelepiped shape, and the thickness L of the case 334 is the length of the shortest side S1 among the three sides S1 to S3 sharing one vertex V of the case 334.
  • the second arm 120 can be reduced. That is, the second arm 120 can be reduced in size.
  • the power semiconductor device 333 has a Gan power semiconductor element.
  • the first arm 110 includes a recovery device 400 that is connected to the DC power supply line 610 and the ground line 620 and recovers regenerative energy from the motor 210 and the like.
  • the collection device 400 is disposed at a position closer to the motor 210 and the like as compared with the case where the collection device 400 is built in the control device 500 outside the robot arm 100. Therefore, the recovery device 400 can suppress an increase in the voltage of the DC power supply line 610 due to regenerative energy.
  • the second arm 120 has openings 133c and 133d (second opening and second openings) for drawing out at least one of the DC power supply line 610, the ground line 620, and the control line 630 from the inside of the second arm 120 to the outside.
  • the wall portion 133b is formed with an example of three openings.
  • the inverter 320 is arranged between the openings 133c and 133d in the inner surface of the wall 133b.
  • the second arm 120 can be further reduced in size.
  • FIG. 7A is a diagram illustrating a configuration of a robot 10a according to the present modification.
  • FIG. 7B is a cross-sectional view showing second arm portion 1130 according to a modification of the embodiment.
  • it demonstrates centering around difference with the robot 10 which concerns on embodiment, the same code
  • a robot 10a according to this modification includes a second arm 1120 having a second arm portion 1130 instead of the second arm 120 provided in the robot 10 according to the embodiment.
  • the second arm portion 1130 includes a housing 1133 that houses a motor (not shown) and an inverter 320 that is in contact with the inner surface of the wall portion 1133b.
  • an opening 1133 c is formed in the wall 1133 a of the housing 1133.
  • the second arm portion 1130 has an opening / closing portion 1133d that covers the opening 1133c.
  • the opening / closing part 1133d is a lid that can be opened and closed with respect to the opening 1133c.
  • the opening 1133c formed in the housing 1133 has a shape in which the inverter 320 in contact with the inner surface of the wall 1133b can be replaced.
  • the second arm 1120 has an opening / closing part 1133d that opens and closes an opening 1133c having a shape in which the inverter 320 can be replaced.
  • exchange the inverter 320 is a shape corresponding to the magnitude
  • the opening 1133c is an example of a first opening.
  • the material which comprises the opening / closing part 1133d is not specifically limited, For example, it forms with a metal or resin.
  • the opening / closing part 1133d may be formed of, for example, a transparent resin material.
  • the opening / closing part 1133d may be made of the same material as the housing 1133.
  • the second arm 1120 (an example of the first robot arm) of the robot 10a has the opening / closing part 1133d that opens and closes the opening 1133c (an example of the first opening) that can be replaced with the inverter 320.
  • the inverter 320 built in the second arm 1120 can be easily performed.
  • the opening / closing part 1133d for example, only the inverter 320 can be easily replaced.
  • the operator's safety can be ensured by closing the opening 1133c with the opening / closing part 1133d. Therefore, the convenience of the robot 10a is improved.
  • the power semiconductor device has been described with respect to the example having the filling layer and the heat dissipation layer, but is not limited thereto.
  • the power semiconductor device may have at least one of the filling layer and the heat dissipation layer.
  • the robot is an example of a 6-axis robot including the first to fifth arms, but is not limited thereto.
  • the robot may be a robot having one or more arms.
  • the second opening and the third opening are formed in the same wall portion in the housing
  • the present invention is not limited to this.
  • the second opening and the third opening may be formed in different wall portions.
  • the disposition of the inverter on the imaginary line connecting the second opening and the third opening along the inner surface of the wall portion includes the disposition of the inverter between the second opening and the third opening. It is.
  • the motor built in the arm in the above-described embodiment or the like is not limited to being a motor for rotating the arm containing the motor.
  • the motor built in the arm may be, for example, a motor for rotating another arm different from the arm.
  • the upper surface of the power semiconductor device (for example, the surface opposite to the mounting surface of the power semiconductor device) is in contact with the wall portion of the case, but the present invention is not limited to this.
  • the power semiconductor device at least a part of the side surface may be in contact with the wall of the case in addition to the upper surface.
  • Such a configuration may be realized, for example, by making the shape of the case according to the shape of the power semiconductor device.
  • the number of power semiconductor devices mounted on the first circuit board is three is shown, but the number of power semiconductor devices is not particularly limited as long as the number is one or more.
  • the types (for example, model numbers) of the motors and the inverters in the above-described embodiments are not particularly limited, and may be the same or different from each other.
  • the present disclosure is applicable to a robot having a robot arm.
  • Robot 100 Robot arm 110 First arm 112, 122, 133, 1133 Housing 120, 1120 Second arm (first robot arm) 120a First arm portion 130, 1130 Second arm portion 130a Third arm portion 133a, 133b, 334a, 1133a, 1133b Wall portion 133c Opening (second opening) 133d opening (third opening) 140 Third arm (second robot arm) 150 Fourth Arm 160 Fifth Arm 210, 220 Motor 310, 320, 320a Inverter 331 First Circuit Board 332 Second Circuit Board 333 Power Semiconductor Device 333a Substrate 333b Semiconductor Chip 333c Filling Layer 333d Heat Dissipation Layer 333e Heat Dissipation Terminal 334 Case 335 Screw 400 Collection Device 500 Control Device 510 DC Power Supply Unit 520 Control Unit 600 Cable 600a Inner Sheath 600b Outer Sheath 610 DC Power Supply Line 610a, 620a Conductor 610b, 620b Insulator 620 Ground Line 630 Control Line 640 AC Power Supply Line 650 En

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

A robot (10) is provided with: a motor; a ground wire (620) and a DC power supply wire (610) for supplying DC voltage; an inverter (320) having power semiconductor devices (333) which convert the DC voltage into AC voltage and supply the AC voltage to the motor; a control wire (630) for supplying a control signal to the inverter (320); and a second arm (120) that has the inverter (320) incorporated therein. The power semiconductor devices (333) are in contact with the inner surface of the second arm (120).

Description

ロボットrobot
 本開示は、ロボットアームを有するロボットに関する。 This disclosure relates to a robot having a robot arm.
 一般的に、ロボットアームを有するロボットは、ロボットアームを回転させるモータと、当該モータに交流電圧を供給するためのモータ駆動部(インバータ)とを備える。モータ駆動部がロボットアームの外部に設けられ、モータ駆動部とモータとを接続するケーブルにより、モータ駆動部からモータに交流電力を供給する構成のロボットが広く採用されている。 Generally, a robot having a robot arm includes a motor that rotates the robot arm and a motor driving unit (inverter) for supplying an AC voltage to the motor. 2. Description of the Related Art A robot having a motor drive unit provided outside a robot arm and configured to supply AC power from the motor drive unit to the motor by a cable connecting the motor drive unit and the motor is widely used.
 このような構成のロボットにおいて、モータ駆動部は、モータと同数設けられるため、ロボットアームの個数が増えると、モータ駆動部の個数も増える。これにより、モータ駆動部からモータに交流電圧を供給するためのケーブルの配線数が増加する。その結果、ケーブルの総配線長が長くなり、配線スペース確保のため、ロボットを小型化することが困難であるなどの問題があった。 In the robot having such a configuration, the same number of motor drive units as the motors are provided. Therefore, as the number of robot arms increases, the number of motor drive units also increases. As a result, the number of cables for supplying an AC voltage from the motor drive unit to the motor increases. As a result, the total wiring length of the cable becomes long, and there is a problem that it is difficult to downsize the robot in order to secure the wiring space.
 そこで、ケーブルの総配線長を減らすことが検討されている。例えば、特許文献1には、ロボットアーム内にモータ駆動部を配置し、かつモータ駆動部同士をデイジーチェーン接続(数珠つなぎ接続)するロボットが開示されている。 Therefore, reducing the total wiring length of the cable is being studied. For example, Patent Document 1 discloses a robot in which a motor drive unit is arranged in a robot arm and the motor drive units are connected in a daisy chain (a daisy chain connection).
特開2017-189833号公報JP 2017-189833 A
 しかしながら、モータ駆動部をロボットアーム内に配置すると、モータ駆動部からの放熱により当該ロボットアームの温度が上昇する。そのため、例えば、当該ロボットを作業者と協働する協働ロボットとして作動させるには、放熱性が向上されることが望まれる。特許文献1には、モータ駆動部からの放熱に対することは開示されていない。 However, when the motor drive unit is arranged in the robot arm, the temperature of the robot arm rises due to heat radiation from the motor drive unit. Therefore, for example, in order to operate the robot as a collaborative robot that cooperates with an operator, it is desired that heat dissipation be improved. Patent Document 1 does not disclose the heat dissipation from the motor drive unit.
 そこで、本開示は、放熱性が向上したロボットを提供する。 Therefore, the present disclosure provides a robot with improved heat dissipation.
 本開示の一態様に係るロボットは、モータと、直流電圧を供給するための電源線及びグランド線と、前記直流電圧を交流電圧に変換して前記モータに供給するパワー半導体装置を有するインバータと、前記インバータに制御信号を供給するための制御線と、前記インバータを内蔵する第1ロボットアームとを備え、前記パワー半導体装置は、前記第1ロボットアームの内面に接触している。 A robot according to one embodiment of the present disclosure includes a motor, a power line and a ground line for supplying a DC voltage, an inverter having a power semiconductor device that converts the DC voltage into an AC voltage and supplies the AC voltage to the motor, A control line for supplying a control signal to the inverter and a first robot arm incorporating the inverter are provided, and the power semiconductor device is in contact with an inner surface of the first robot arm.
 本開示の一態様に係るロボットによれば、放熱性が向上する。 According to the robot according to one aspect of the present disclosure, heat dissipation is improved.
図1は、実施の形態に係るロボットの外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of a robot according to an embodiment. 図2は、実施の形態に係るロボットの構成を示す概略図である。FIG. 2 is a schematic diagram illustrating the configuration of the robot according to the embodiment. 図3Aは、実施の形態に係るインバータの配置位置の一例を示す図である。FIG. 3A is a diagram illustrating an example of an arrangement position of the inverter according to the embodiment. 図3Bは、実施の形態に係るインバータの配置位置の別の一例を示す図である。FIG. 3B is a diagram illustrating another example of the arrangement positions of the inverters according to the embodiment. 図3Cは、実施の形態に係るインバータの配置位置のさらに別の一例を示す図である。FIG. 3C is a diagram illustrating still another example of the arrangement position of the inverter according to the embodiment. 図4Aは、実施の形態に係る第3アームに内蔵されるインバータの一例を示す断面図である。FIG. 4A is a cross-sectional view showing an example of an inverter built in the third arm according to the embodiment. 図4Bは、実施の形態に係る第3アームに内蔵されるインバータの別の一例を示す断面図である。FIG. 4B is a cross-sectional view illustrating another example of the inverter built in the third arm according to the embodiment. 図5Aは、実施の形態に係るパワー半導体装置の構成の一例を示す概略断面図である。FIG. 5A is a schematic cross-sectional view showing an example of the configuration of the power semiconductor device according to the embodiment. 図5Bは、実施の形態に係るパワー半導体装置の構成の別の一例を示す概略断面図である。FIG. 5B is a schematic cross-sectional view showing another example of the configuration of the power semiconductor device according to the embodiment. 図5Cは、実施の形態に係るパワー半導体装置の構成のさらに別の一例を示す概略断面図である。FIG. 5C is a schematic cross-sectional view showing still another example of the configuration of the power semiconductor device according to the embodiment. 図6Aは、実施の形態に係るケーブルの断面図である。FIG. 6A is a cross-sectional view of the cable according to the embodiment. 図6Bは、実施の形態に係るケースの最も短い辺の長さを示す図である。FIG. 6B is a diagram illustrating the length of the shortest side of the case according to the embodiment. 図7Aは、実施の形態の変形例に係るロボットの構成を示す図である。FIG. 7A is a diagram illustrating a configuration of a robot according to a modification of the embodiment. 図7Bは、実施の形態の変形例に係る第2アーム部を示す断面図である。FIG. 7B is a cross-sectional view showing a second arm portion according to a modification of the embodiment.
 (本開示に至った経緯)
 背景技術に記載のように、従来のロボットアームを有するロボットは、インバータがロボットの外部に配置され、インバータとロボットの内部に配置されるモータとが配線(例えば、ワイヤー線)で接続されている。そのため、ロボットアームの筐体内部には、モータの駆動及び制御するための配線が、ロボットに搭載されるモータの個数分配置されている。例えば、産業用ロボットとして代表的な6軸駆動のロボットでは、U相、V相、W相の出力のための3本の電源線と、モータエンコーダ(以降において、エンコーダとも記載する)からの2本の制御線とを合わせた5本の配線がモータのそれぞれにつき必要となるため、合計30本もの配線がロボット内に配置されている。
(Background to the disclosure)
As described in the background art, in a robot having a conventional robot arm, the inverter is arranged outside the robot, and the inverter and the motor arranged inside the robot are connected by wiring (for example, a wire line). . For this reason, wiring for driving and controlling the motor is arranged in the housing of the robot arm by the number of motors mounted on the robot. For example, in a 6-axis drive robot, which is a typical industrial robot, three power lines for U-phase, V-phase, and W-phase outputs, and 2 from a motor encoder (hereinafter also referred to as an encoder) Since five wires including the control lines are required for each motor, a total of 30 wires are arranged in the robot.
 そのため、従来のロボット内には、このような多数本のモータ駆動用配線を配線するスペースが必要となり、ロボットを小型化することが困難である。また、ロボットの組み立て作業では、配線を引き回す作業時間の短縮などに限界がある。また、ロボットを稼働中に、配線が断線するなどの不具合が発生しやすい。 Therefore, a space for wiring such a large number of motor driving wires is required in the conventional robot, and it is difficult to reduce the size of the robot. Further, in the assembly work of the robot, there is a limit to shortening the work time for routing the wiring. In addition, problems such as disconnection of wiring are likely to occur during operation of the robot.
 そこで、配線の総配線長を減少させることが検討されている。例えば、特許文献1には、ロボットアーム内にインバータを配置すること、及び、インバータ同士をデイジーチェーン接続することが開示されている。これにより、インバータとモータとを接続する配線の配線長を短くすることができるので、総配線長を減少させることが可能となる。また、ロボットが複数のロボットアームを備える、つまり、複数のモータ及びインバータを備える場合、複数のインバータ同士をデイジーチェーン接続することで、インバータと当該インバータに直流電圧を供給する配線の配線数を減らすことができる。よって、さらに、総配線長を減少させることができる。これらにより、以下のメリットがある。 Therefore, it has been studied to reduce the total wiring length of the wiring. For example, Patent Document 1 discloses disposing an inverter in a robot arm and connecting the inverters in a daisy chain. Thereby, since the wiring length of the wiring connecting the inverter and the motor can be shortened, the total wiring length can be reduced. In addition, when the robot includes a plurality of robot arms, that is, includes a plurality of motors and inverters, the number of wirings for supplying DC voltage to the inverters and the inverters is reduced by daisy chain connecting the plurality of inverters. be able to. Therefore, the total wiring length can be further reduced. These have the following advantages.
 総配線長が減少するので、ロボットアームを小型化することが可能となる。これにより、ロボットアームの動作を高速化すること、及び、狭い空間(例えば、組み立て作業の場合、組み立て対象物内の空間)にロボットアームを通すことが可能となるので、ロボットの利便性が向上する。 Since the total wiring length is reduced, the robot arm can be reduced in size. As a result, the robot arm can be operated at high speed, and the robot arm can be passed through a narrow space (for example, in the case of assembly work, the space inside the assembly object), thus improving the convenience of the robot. To do.
 また、総配線長が減少するので、ロボットの軽量化が可能となる。これにより、ロボットアームが何かに衝突したときの衝撃を低減することができるので、ロボットの安全性が向上する。例えば、ロボットを作業者と協働する協働ロボットとして安全に作動させることが可能となる。また、軽量化される分、モータの出力を下げることができるので、モータにおけるコストを低減することができる。また、ロボットが消費する消費電力を低減することができる。 Also, since the total wiring length is reduced, the weight of the robot can be reduced. Thereby, since the impact when the robot arm collides with something can be reduced, the safety of the robot is improved. For example, the robot can be safely operated as a collaborative robot that cooperates with the worker. In addition, since the output of the motor can be reduced by the weight reduction, the cost of the motor can be reduced. Further, the power consumption consumed by the robot can be reduced.
 また、配線数が減るので、ロボットの組み立て作業において配線を引き回す作業に要する作業時間の短縮が可能となる。また、配線を引き回す作業が容易に行えるようになるので、熟練工でなくても作業が可能となる。これらにより、ロボットの組み立て作業における作業効率が向上する。 Also, since the number of wires is reduced, it is possible to shorten the work time required for the work of routing the wires in the assembly work of the robot. In addition, since the work of routing the wiring can be easily performed, the work can be performed even if it is not a skilled worker. As a result, the work efficiency in the assembly work of the robot is improved.
 また、インバータがロボットの外部の制御装置(制御ボックス)内に配置されている場合に比べ、当該制御装置を小型化することができる。また、さらに、制御装置に設けられていたファンの数を減らすことができる。 Also, the control device can be reduced in size compared to the case where the inverter is arranged in the control device (control box) outside the robot. Furthermore, the number of fans provided in the control device can be reduced.
 また、総配線長が減少するので、配線が断線することを低減することが可能となる。これにより、配線の断線によるロボットの故障の発生が減るので、メンテナンス効率が向上する。 Also, since the total wiring length is reduced, it is possible to reduce the disconnection of the wiring. As a result, the occurrence of a robot failure due to the disconnection of the wiring is reduced, so that the maintenance efficiency is improved.
 また、総配線長が減少するので、ロボットの作製に要するコストを低減することができる。 Also, since the total wiring length is reduced, the cost required for manufacturing the robot can be reduced.
 上記のように、総配線長を減少させることで、様々なメリットがある。一方、インバータをロボットアーム内に配置することで、インバータからの放熱によりロボットアームの温度が上昇する。このように、従来のロボットは、総配線長を減少させることと、放熱性とを両立することができていなかった。 As described above, there are various merits by reducing the total wiring length. On the other hand, by disposing the inverter in the robot arm, the temperature of the robot arm rises due to heat radiation from the inverter. As described above, the conventional robot has not been able to reduce both the total wiring length and heat dissipation.
 そこで、本願発明者らは、総配線長を減少させつつ、かつロボットアームの温度の上昇を抑制することができるロボットについて、鋭意検討を行った。そして、インバータが有するパワー半導体装置のロボットアーム内における配置位置を工夫することで、上記に記載した様々なメリットを維持しつつ、ロボットアームの温度の上昇を抑制することができることを見出した。 Therefore, the inventors of the present application have conducted intensive studies on a robot capable of reducing the total wiring length and suppressing the temperature rise of the robot arm. And it discovered that the rise in the temperature of a robot arm could be suppressed, maintaining the various merit described above by devising the arrangement position in the robot arm of the power semiconductor device which an inverter has.
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims are described as arbitrary constituent elements.
 また、本明細書および図面において、X軸、Y軸およびZ軸は、三次元直交座標系の三軸を示している。実施の形態等では、ロボットが設置される設置面に対して垂直な方向をZ軸方向としている。例えば、ロボットが床面に設置される場合、Z軸方向は、鉛直方向と平行な方向である。X軸方向及びY軸方向は互いに直交し、かつ、いずれもZ軸方向に直交する方向である。また、以下では、Z軸と平行な方向を垂直方向とも記載し、当該Z軸と直交する方向を水平方向とも記載する。水平方向は、例えば、設定面に対して平行な方向である。 In the present specification and drawings, the X axis, the Y axis, and the Z axis indicate the three axes of the three-dimensional orthogonal coordinate system. In the embodiment, the direction perpendicular to the installation surface on which the robot is installed is the Z-axis direction. For example, when the robot is installed on the floor surface, the Z-axis direction is a direction parallel to the vertical direction. The X-axis direction and the Y-axis direction are orthogonal to each other, and both are directions orthogonal to the Z-axis direction. Hereinafter, a direction parallel to the Z axis is also referred to as a vertical direction, and a direction orthogonal to the Z axis is also referred to as a horizontal direction. The horizontal direction is, for example, a direction parallel to the setting surface.
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to substantially the same structure, and the overlapping description may be abbreviate | omitted or simplified.
 また、本明細書において、平行などの要素間の関係性を示す用語、及び、直方体などの要素の形状を示す用語、並びに、数値、及び、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 In this specification, terms indicating the relationship between elements such as parallelism, terms indicating the shape of elements such as a rectangular parallelepiped, and numerical values and numerical ranges are not expressions expressing only strict meanings. It is an expression that means to include a substantially equivalent range, for example, a difference of about several percent.
 (実施の形態)
 以下、本実施の形態に係るロボットについて、図1~図6Bを参照しながら説明する。
(Embodiment)
Hereinafter, the robot according to the present embodiment will be described with reference to FIGS. 1 to 6B.
 [1.ロボットの構成]
 まず、本実施の形態に係るロボットの構成について、図1及び図2を参照しながら説明する。図1は、本実施の形態に係るロボット10の外観を示す斜視図である。図2は、本実施の形態に係るロボット10の構成を示す概略図である。本実施の形態に係るロボット10は、6軸の多関節ロボットであるが、これに限定されない。また、ロボット10は、例えば、精密機器やこれを構成する部品の給材、除材、搬送、及び、組み立て等の作業を行う産業用途のロボットである。
[1. Robot configuration]
First, the configuration of the robot according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing an appearance of a robot 10 according to the present embodiment. FIG. 2 is a schematic diagram showing the configuration of the robot 10 according to the present embodiment. The robot 10 according to the present embodiment is a six-axis articulated robot, but is not limited to this. The robot 10 is, for example, an industrial-use robot that performs operations such as feeding, removing, transporting, and assembling precision equipment and parts constituting the precision device.
 図1及び図2に示すように、ロボット10は、ロボットアーム100と、モータ210及び220を含む6個のモータ(交流モータ)と、インバータ310、及び、320を含む6個のインバータと、回収装置400と、制御装置500と、基台700とを備える。ロボットアーム100は、第1アーム110と、第2アーム120と、第3アーム140と、第4アーム150と、第5アーム160とを有する。第2アーム120は、例えば、第1アーム部120aと第2アーム部130と第3アーム部130aとを有するY字型のアームであり、第1アーム部120aと第2アーム部130と第3アーム部130aとは一体として動作する。なお、図1では、6個のインバータのうち、第2アーム120(例えば、第2アーム部130)に内蔵されるインバータ320のみを図示している。 1 and 2, the robot 10 includes a robot arm 100, six motors (AC motors) including motors 210 and 220, six inverters including inverters 310 and 320, and a recovery. The apparatus 400, the control apparatus 500, and the base 700 are provided. The robot arm 100 includes a first arm 110, a second arm 120, a third arm 140, a fourth arm 150, and a fifth arm 160. The second arm 120 is, for example, a Y-shaped arm having a first arm portion 120a, a second arm portion 130, and a third arm portion 130a, and the first arm portion 120a, the second arm portion 130, and the third arm portion 130a. The arm unit 130a operates as a unit. In FIG. 1, only the inverter 320 built in the second arm 120 (for example, the second arm unit 130) among the six inverters is illustrated.
 また、ロボット10は、インバータに直流電圧を供給するための直流電源線610及びグランド線620と、インバータに制御信号を供給するための制御線630と、インバータからモータに交流電圧を供給するための交流電源線640と、モータの回転軸に取り付けられ当該モータの回転軸の回転位置を検出するエンコーダ(図示しない)の出力信号をインバータに送信するためのエンコーダ信号線650とを備える。出力信号には、例えば、モータの回転軸の回転位置(角度)を示す情報が含まれる。なお、直流電源線610は、電源線の一例である。 The robot 10 also includes a DC power supply line 610 and a ground line 620 for supplying a DC voltage to the inverter, a control line 630 for supplying a control signal to the inverter, and an AC voltage from the inverter to the motor. An AC power supply line 640 and an encoder signal line 650 for transmitting an output signal of an encoder (not shown) attached to the rotation shaft of the motor and detecting the rotation position of the rotation shaft of the motor to the inverter. The output signal includes, for example, information indicating the rotational position (angle) of the rotation shaft of the motor. Note that the DC power supply line 610 is an example of a power supply line.
 第1アーム110は、基台700に対して、垂直方向に沿う第1回転軸a1まわりに回転可能に連結されている。第2アーム120は、第1アーム110に対して、水平方向に沿う第2回転軸a2まわりに回転可能に連結されている。第3アーム140は、第2アーム120に対して、水平方向に沿う第3回転軸a3まわりに回転可能に連結されている。第4アーム150は、第3アーム140に対して、水平方向に沿う第4回転軸a4まわりに回転可能に連結されている。第5アーム160は、第4アーム150に対して、水平方向に沿う第5回転軸a5まわりに回転可能に連結されている。また、第5アーム160の先端に取り付けられるエンドファクター(図示しない)は、第5アーム160に対して、第6回転軸a6まわりに回転可能に連結される。エンドファクターは、用途に応じた種類のものが取り付けられる。なお、各アームは、関節部を介して連結されている。「関節部」とは、それにより連結された2つのアーム同士(例えば、隣接するアーム同士)を回動させる機能を有するものである。 The first arm 110 is connected to the base 700 so as to be rotatable around a first rotation axis a1 along the vertical direction. The second arm 120 is connected to the first arm 110 so as to be rotatable around a second rotation axis a2 along the horizontal direction. The third arm 140 is connected to the second arm 120 so as to be rotatable around a third rotation axis a3 along the horizontal direction. The fourth arm 150 is connected to the third arm 140 so as to be rotatable about a fourth rotation axis a4 along the horizontal direction. The fifth arm 160 is connected to the fourth arm 150 so as to be rotatable about a fifth rotation axis a5 along the horizontal direction. Further, an end factor (not shown) attached to the tip of the fifth arm 160 is connected to the fifth arm 160 so as to be rotatable about the sixth rotation axis a6. A kind of end factor is attached according to the application. Each arm is connected through a joint. The “joint portion” has a function of rotating two arms connected to each other (for example, adjacent arms).
 図2に示すように、第1アーム110は、モータ210と、インバータ310と、回収装置400とを内蔵する筐体112により構成される。第2アーム120は、モータ220と、インバータ320とを内蔵する筐体122により構成される。第3アーム140~第5アーム160は、図示を省略するが、第2アーム120と同様にモータとインバータとを内蔵する筐体により構成される。また、図2の例では、回収装置400は、第1アーム110に内蔵されているが、これに限定されず、第1アーム110~第5アーム160のいずれかに内蔵されていればよい。 As shown in FIG. 2, the first arm 110 includes a housing 112 that houses a motor 210, an inverter 310, and a recovery device 400. The second arm 120 is configured by a housing 122 that incorporates a motor 220 and an inverter 320. Although not shown, the third arm 140 to the fifth arm 160 are configured by a housing containing a motor and an inverter, like the second arm 120. In the example of FIG. 2, the collection device 400 is built in the first arm 110, but is not limited thereto, and may be built in any one of the first arm 110 to the fifth arm 160.
 筐体112及び122を含む第1アーム110~第5アーム160の筐体は、金属又は樹脂で形成される。金属は、例えば、アルミ、又は、合金(例えば、Mg合金)などである。 The casings of the first arm 110 to the fifth arm 160 including the casings 112 and 122 are made of metal or resin. The metal is, for example, aluminum or an alloy (for example, Mg alloy).
 モータ210は、関節部に設けられ、第1アーム110を基台700に対して回転させる駆動力を発生する。具体的には、モータ210は、インバータ310が出力する三相交流電圧が印加されること流れる交流の駆動電流に基づき、回転駆動する。モータ210は、例えば、サーボモータである。なお、モータ210の回転軸には、回転軸の位置信号を検出するエンコーダが取り付けられている。 The motor 210 is provided at the joint and generates a driving force that rotates the first arm 110 relative to the base 700. Specifically, the motor 210 is rotationally driven based on an alternating drive current that flows when a three-phase alternating voltage output from the inverter 310 is applied. The motor 210 is, for example, a servo motor. An encoder that detects a position signal of the rotation shaft is attached to the rotation shaft of the motor 210.
 また、同様に、第2アーム120に内蔵されるモータ220~第5アーム160に内蔵されるモータ(図示しない)は、それぞれ対応する関節部に設けられ、第2アーム120~第5アーム160を回動させる駆動力を発生する。以降において、第1アーム110に内蔵されるモータ210~第5アーム160に内蔵されるモータを、モータ210等とも記載する。 Similarly, the motor 220 to the fifth arm 160 (not shown) built in the second arm 120 are provided at the corresponding joints, and the second arm 120 to the fifth arm 160 are connected to each other. Generate driving force to rotate. Hereinafter, the motor 210 built in the first arm 110 to the motor built in the fifth arm 160 are also referred to as a motor 210 or the like.
 インバータ310は、直流電源部510から供給された直流電圧を交流電圧(例えば、3相交流電圧)に変換してモータ210に出力するパワー半導体装置を有する。インバータ310は、制御部520から受信した制御信号に応じて、パワー半導体装置がオンオフ駆動されることで、入力された直流電圧をモータ駆動用の交流電圧に変換し、モータ210に駆動電力を供給する。交流電圧は、交流電源線640を介して、モータ210に供給される。 The inverter 310 includes a power semiconductor device that converts a DC voltage supplied from the DC power supply unit 510 into an AC voltage (for example, a three-phase AC voltage) and outputs the AC voltage to the motor 210. The inverter 310 converts the input DC voltage into an AC voltage for driving the motor and supplies driving power to the motor 210 when the power semiconductor device is driven on and off according to the control signal received from the control unit 520. To do. The AC voltage is supplied to the motor 210 via the AC power supply line 640.
 また、同様に、第2アーム120に内蔵されるインバータ320~第5アーム160に内蔵されるインバータ(図示しない)は、それぞれ対応するモータに駆動電力(交流電力)を供給する。以降において、第1アーム110に内蔵されるインバータ310~第5アーム160に内蔵されるインバータを、インバータ310等とも記載する。インバータ310等の構成は、後述する。 Similarly, inverters 320 (not shown) built in the second arm 120 to inverters (not shown) built in the second arm 120 supply driving power (AC power) to the corresponding motors. Hereinafter, the inverters 310 to 5 built in the first arm 110 are also referred to as inverters 310 and the like. The configuration of the inverter 310 and the like will be described later.
 なお、パワー半導体装置が有するスイッチング素子(パワー半導体スイッチング素子)は特に限定されないが、例えば、電界効果トランジスタ(例えば、MOSFET)であってもよいし、絶縁ゲート型バイポーラトランジスタ(IGBT)であってもよいし、その他のトランジスタであってもよい。また、スイッチング素子は、GaN(ガリウムナイトライド)を基材とするGaNパワー半導体素子、SiC(シリコンカーバイト)を基材とするSiCパワー半導体素子、及び、Si(シリコン)を基材とするSiパワー半導体素子などを用いることができる。なお、パワー半導体装置における発熱を低減する観点から、スイッチング素子にGaNパワー半導体素子が用いられるとよい。 The switching element (power semiconductor switching element) included in the power semiconductor device is not particularly limited. For example, it may be a field effect transistor (eg, MOSFET) or an insulated gate bipolar transistor (IGBT). Alternatively, other transistors may be used. The switching elements are GaN power semiconductor elements based on GaN (gallium nitride), SiC power semiconductor elements based on SiC (silicon carbide), and Si based on Si (silicon). A power semiconductor element or the like can be used. Note that a GaN power semiconductor element is preferably used as the switching element from the viewpoint of reducing heat generation in the power semiconductor device.
 なお、モータ210とインバータ310とは、直接接触しないように配置される。例えば、モータ210とインバータ310とは同一の筐体内において、10cm程度の隙間をあけて配置される。例えば、モータ210とインバータ310とは、熱的に接触しないように配置される。これにより、インバータ310における損失を低減することができる。 Note that the motor 210 and the inverter 310 are arranged so as not to be in direct contact with each other. For example, the motor 210 and the inverter 310 are arranged with a gap of about 10 cm in the same casing. For example, the motor 210 and the inverter 310 are arranged so as not to be in thermal contact. Thereby, the loss in the inverter 310 can be reduced.
 回収装置400は、直流電源線610及びグランド線620に接続され、モータ210等のそれぞれからの回生エネルギーを回収する。回収装置400は、例えば、コンデンサ又は抵抗体を含んで構成される。回収装置400は、コンデンサを含む場合、回生エネルギーを蓄積することで回収する。また、回収装置400は、抵抗体を含む場合、回生エネルギーを消費することで回収する。回収装置400は、例えば、ロボット10に対して1つ設けられる。 The recovery device 400 is connected to the DC power supply line 610 and the ground line 620, and recovers regenerative energy from each of the motor 210 and the like. The recovery device 400 includes, for example, a capacitor or a resistor. When the collection device 400 includes a capacitor, the collection device 400 collects the regenerative energy. Moreover, the collection | recovery apparatus 400 is collect | recovered by consuming regenerative energy, when a resistor is included. For example, one collection device 400 is provided for the robot 10.
 制御装置500は、ロボット10の動作を統括制御する装置である。制御装置500は、ロボットアーム100とは別に設けられる。制御装置500は、直流電源部510と制御部520とを有する。直流電源部510と制御部520とは、制御装置500の筐体内に配置される。 The control device 500 is a device that performs overall control of the operation of the robot 10. The control device 500 is provided separately from the robot arm 100. The control device 500 includes a DC power supply unit 510 and a control unit 520. The DC power supply unit 510 and the control unit 520 are disposed in the casing of the control device 500.
 直流電源部510は、交流電源800(例えば、商用電源)から入力された交流電圧である電源電圧を、直流電圧に変換してインバータ310等に出力する。当該直流電圧は、直流電源線610及びグランド線620を介して、インバータ310等に供給される。直流電源部510の種類及び構成は、特に限定されないが、例えば、PWM(Pulse Width Modulation)コンバータである。また、直流電源部510の変換動作は、制御部520により制御される。 The DC power supply unit 510 converts a power supply voltage, which is an AC voltage input from an AC power supply 800 (for example, a commercial power supply), into a DC voltage and outputs the DC voltage to the inverter 310 or the like. The DC voltage is supplied to the inverter 310 and the like via the DC power supply line 610 and the ground line 620. The type and configuration of the DC power supply unit 510 are not particularly limited, and are, for example, a PWM (Pulse Width Modulation) converter. Further, the conversion operation of the DC power supply unit 510 is controlled by the control unit 520.
 制御部520は、インバータ310等の変換動作を制御する。制御部520は、モータ210等が所望の回転動作を行うようにインバータ310等の電力変換動作を制御するための動作命令(例えば、スイッチング命令)である制御信号を生成する。制御部520は、例えば、直流電源部510から出力される直流電圧と、エンコーダからの出力信号とに基づいて、インバータ310等のスイッチング素子をオン/オフ制御する制御信号を生成する。当該制御信号は、制御線630を介して、インバータ310等に供給される。 Control unit 520 controls the conversion operation of inverter 310 and the like. The control unit 520 generates a control signal that is an operation command (for example, a switching command) for controlling the power conversion operation of the inverter 310 or the like so that the motor 210 or the like performs a desired rotation operation. For example, the control unit 520 generates a control signal for on / off control of a switching element such as the inverter 310 based on a DC voltage output from the DC power supply unit 510 and an output signal from the encoder. The control signal is supplied to the inverter 310 and the like via the control line 630.
 また、制御部520は、直流電源部510がPWMコンバータである場合、PMWコンバータ内のスイッチング素子のスイッチング動作を制御するための制御信号を生成し、直流電源部510に出力する。 In addition, when DC power supply unit 510 is a PWM converter, control unit 520 generates a control signal for controlling the switching operation of the switching element in the PMW converter, and outputs the control signal to DC power supply unit 510.
 制御部520は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することにより、各種の処理をする実行する。 The control unit 520 executes various processes by causing a program execution unit such as a CPU (Central Processing Unit) or a processor to read and execute a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 直流電源線610は、直流電源部510とインバータ310等の電力供給用の入力端子(図示しない)とを接続し、直流電源部510からインバータ310等に直流電圧を供給する配線である。 The DC power supply line 610 is a wiring that connects the DC power supply unit 510 and an input terminal (not shown) for power supply such as the inverter 310 and supplies a DC voltage from the DC power supply unit 510 to the inverter 310 and the like.
 グランド線620は、直流電源部510とインバータ310等のグランド入力端子(図示しない)とを接続する。グランド線620は、例えば、直流電源部510を介して接地されている。 The ground line 620 connects the DC power supply unit 510 and a ground input terminal (not shown) such as the inverter 310. For example, the ground line 620 is grounded via the DC power supply unit 510.
 制御線630は、制御部520とインバータ310等の制御信号用の入力端子(例えばゲート端子)とを接続し、制御部520からインバータ310等に制御信号(例えば、クロック信号)を供給するための配線である。制御線630は、さらに、インバータ310等がエンコーダ信号線650を介して取得した出力信号を制御部520へ送信するための配線を含んでもよい。 The control line 630 connects the control unit 520 and the control signal input terminal (eg, gate terminal) of the inverter 310 and the like, and supplies a control signal (eg, clock signal) from the control unit 520 to the inverter 310 and the like. Wiring. The control line 630 may further include wiring for transmitting an output signal acquired by the inverter 310 or the like via the encoder signal line 650 to the control unit 520.
 交流電源線640は、モータ210等とインバータ310等の出力端子とを接続する配線であり、モータ210等を駆動させるための駆動用の交流電圧を供給する配線である。交流電源線640は、モータ210等のU相、V相、W相のそれぞれと接続される3本の配線を含む。交流電源線640には、例えば、平均して2A程度の電流が流れる。 The AC power supply line 640 is a wiring that connects the motor 210 and the like to the output terminal of the inverter 310 and the like, and is a wiring that supplies a driving AC voltage for driving the motor 210 and the like. AC power supply line 640 includes three wires connected to each of the U phase, V phase, and W phase of motor 210 and the like. For example, an average current of about 2 A flows through the AC power supply line 640.
 エンコーダ信号線650は、モータ210等とインバータ310等とを接続する配線であり、モータ210等に取り付けられたエンコーダの出力信号をインバータ310等に供給する。 Encoder signal line 650 is a wiring for connecting motor 210 and the like to inverter 310 and the like, and supplies an output signal of an encoder attached to motor 210 and the like to inverter 310 and the like.
 基台700は、ロボットアーム100が回転可能に取り付けられる固定台である。 The base 700 is a fixed base to which the robot arm 100 is rotatably attached.
 [2.インバータの設置位置]
 次に、アームの筐体内におけるインバータ310等の配置位置について、図3A~図3Cを参照しながら説明する。図3Aは、本実施の形態に係るインバータ320の配置位置の一例を示す図である。図3Bは、本実施の形態に係るインバータ320の配置位置の別の一例を示す図である。図3Cは、本実施の形態に係るインバータ320の配置位置のさらに別の一例を示す図である。なお、以降において、主に第2アーム120の第2アーム部130及びインバータ320を用いて説明するが、他のアーム及びインバータにおいても同様である。また、図3A及び図3Bでは、第1アーム110~第3アーム140のみを図示している。
[2. Inverter installation position]
Next, the arrangement position of the inverter 310 and the like in the arm casing will be described with reference to FIGS. 3A to 3C. FIG. 3A is a diagram illustrating an example of an arrangement position of the inverter 320 according to the present embodiment. FIG. 3B is a diagram showing another example of the arrangement position of the inverter 320 according to the present embodiment. FIG. 3C is a diagram showing still another example of the arrangement position of the inverter 320 according to the present embodiment. In the following, description will be made mainly using the second arm portion 130 of the second arm 120 and the inverter 320, but the same applies to other arms and inverters. 3A and 3B, only the first arm 110 to the third arm 140 are illustrated.
 図3Aに示すように、インバータ320は、例えば、第2アーム120の第2アーム部130の筐体133の内面に接触して配置される。具体的には、インバータ320は、筐体133を構成する壁部133aの内面に接触して配置される。インバータ320が第2アーム部130の筐体133の内面に接触することは、インバータ320が第2アーム120の内面に接触することに含まれる。 As shown in FIG. 3A, the inverter 320 is disposed in contact with the inner surface of the housing 133 of the second arm portion 130 of the second arm 120, for example. Specifically, the inverter 320 is arranged in contact with the inner surface of the wall portion 133a constituting the housing 133. The contact of the inverter 320 with the inner surface of the housing 133 of the second arm unit 130 is included in the contact of the inverter 320 with the inner surface of the second arm 120.
 図3Bに示すように、インバータ320は、例えば、第2アーム部130の筐体133の内面であって、第3アーム140側の内面に接触して配置される。具体的には、インバータ320は、筐体133を構成する壁部133bの内面に接触して配置される。壁部133bは、筐体133を構成する壁部133a及び133bのうち、他のアーム側に配置される壁部である。なお、第2アーム120は、第1ロボットアームの一例であり、第3アーム140は、第2ロボットアームの一例である。 As shown in FIG. 3B, the inverter 320 is disposed, for example, on the inner surface of the housing 133 of the second arm unit 130 and in contact with the inner surface of the third arm 140 side. Specifically, the inverter 320 is arranged in contact with the inner surface of the wall portion 133b constituting the housing 133. The wall part 133b is a wall part arranged on the other arm side among the wall parts 133a and 133b constituting the housing 133. The second arm 120 is an example of a first robot arm, and the third arm 140 is an example of a second robot arm.
 図3Cに示すように、筐体133の壁部133b(図3Cに示すX軸マイナス側の壁部)には、直流電源線610、グランド線620、及び、制御線630の少なくとも1つを挿通するための一対の開口(例えば、開口133c及び133d)が形成されている。第1アーム部120a及び第3アーム140における開口133c及び133dに対応する位置にも開口が形成されている。 As shown in FIG. 3C, at least one of the DC power supply line 610, the ground line 620, and the control line 630 is inserted into the wall part 133 b (the X-axis minus side wall part shown in FIG. 3C) of the housing 133. A pair of openings (for example, openings 133c and 133d) are formed. Openings are also formed at positions corresponding to the openings 133c and 133d in the first arm portion 120a and the third arm 140.
 開口133cは、例えば、第2アーム部130及び第3アーム140の一方から他方に直流電源線610、グランド線620、及び、制御線630の少なくとも1つを通すための穴である。すなわち、開口133c及び133dの少なくとも1つは、第2アーム120及び第2アーム120の外部の第3アーム140の一方から他方(例えば第2アーム120の内部から外部)に直流電源線610、グランド線620、及び、制御線630の少なくとも1つを通すための穴であってもよい。 The opening 133c is, for example, a hole for passing at least one of the DC power supply line 610, the ground line 620, and the control line 630 from one of the second arm part 130 and the third arm 140 to the other. That is, at least one of the openings 133c and 133d is connected to the DC power line 610, the ground from one of the second arm 120 and the third arm 140 outside the second arm 120 to the other (for example, from the inside to the outside of the second arm 120). It may be a hole for passing at least one of the line 620 and the control line 630.
 開口133dは、例えば、第1アーム部120a及び第2アーム部130の一方から他方に直流電源線610、グランド線620、及び、制御線630の少なくとも1つを通すための穴である。すなわち、開口133c及び133dの少なくとも1つは、第2アーム120を構成する各構成部(例えば、第1アーム部120a及び第2アーム部130)の一方から他方に直流電源線610、グランド線620、及び、制御線630の少なくとも1つを通すための穴であってもよい。なお、開口133c及び133dの形状は、例えば、円形であるが、特に限定されない。 The opening 133d is, for example, a hole for passing at least one of the DC power supply line 610, the ground line 620, and the control line 630 from one of the first arm part 120a and the second arm part 130 to the other. That is, at least one of the openings 133c and 133d has a DC power supply line 610 and a ground line 620 from one of the constituent parts (for example, the first arm part 120a and the second arm part 130) constituting the second arm 120 to the other. And a hole for passing at least one of the control lines 630. The shapes of the openings 133c and 133d are, for example, circular, but are not particularly limited.
 インバータ320は、例えば、壁部133bの内面のうち開口133c及び133dの間に配置される。インバータ320は、筐体133内のスペースをより活用する観点から、開口133c及び133dの並ぶ方向と、インバータ320の長手方向とが平行となるように配置されるとよい。インバータ320が開口133c及び133dの間に配置されるとは、例えば、インバータ320の少なくとも一部が開口133c及び133dに挟まれるように配置されることを含む。 The inverter 320 is disposed between the openings 133c and 133d on the inner surface of the wall 133b, for example. Inverter 320 is preferably arranged so that the direction in which openings 133c and 133d are arranged and the longitudinal direction of inverter 320 are parallel from the viewpoint of more utilizing the space in housing 133. The inverter 320 being disposed between the openings 133c and 133d includes, for example, that at least a part of the inverter 320 is disposed between the openings 133c and 133d.
 なお、図示しないが、直流電源線610、グランド線620、及び、制御線630は、インバータ320にも接続される。 Although not shown, the DC power supply line 610, the ground line 620, and the control line 630 are also connected to the inverter 320.
 なお、開口133c及び133dは、直流電源線610、グランド線620、及び、制御線630を通すための穴であることに限定されない。例えば、開口133cは、関節部用の穴であってもよい。また、開口133cは第2開口の一例であり、開口133dは第3開口の一例である。 Note that the openings 133c and 133d are not limited to holes for passing the DC power supply line 610, the ground line 620, and the control line 630. For example, the opening 133c may be a hole for a joint part. The opening 133c is an example of a second opening, and the opening 133d is an example of a third opening.
 [3.インバータの構成]
 次に、インバータ310等の構成について、図4A~図6Bを参照しながら説明する。図4Aは、本実施の形態に係る第2アーム120に内蔵されるインバータ320の一例を示す断面図である。なお、図4A及び図4Bでは、第2アーム120は、第2アーム部130にインバータ320を有する例について説明するが、これに限定されない。また、図4A及び図4Bでは、第2アーム120内に配置されるモータの図示を省略している。また、図4A及び図4Bでは、便宜上、直流電源線610及びグランド線620を1本の直線で図示しており、3本の交流電源線640を1本の直線で示している。
[3. Inverter configuration]
Next, the configuration of the inverter 310 and the like will be described with reference to FIGS. 4A to 6B. FIG. 4A is a cross-sectional view showing an example of inverter 320 built in second arm 120 according to the present embodiment. 4A and 4B, an example in which the second arm 120 includes the inverter 320 in the second arm unit 130 will be described, but the present invention is not limited to this. Also, in FIGS. 4A and 4B, illustration of the motor arranged in the second arm 120 is omitted. 4A and 4B, for convenience, the DC power supply line 610 and the ground line 620 are illustrated as one straight line, and the three AC power supply lines 640 are illustrated as one straight line.
 図4Aに示すように、インバータ320は、第1回路基板331と、第2回路基板332と、パワー半導体装置333と、ケース334とを有する。 As shown in FIG. 4A, the inverter 320 includes a first circuit board 331, a second circuit board 332, a power semiconductor device 333, and a case 334.
 第1回路基板331は、直流電圧を交流電圧に変換するための回路基板であり、パワー半導体装置333が実装される。 The first circuit board 331 is a circuit board for converting a DC voltage into an AC voltage, and the power semiconductor device 333 is mounted thereon.
 第2回路基板332は、制御信号に基づいてパワー半導体装置333の動作を制御するための回路基板である。 The second circuit board 332 is a circuit board for controlling the operation of the power semiconductor device 333 based on the control signal.
 第1回路基板331と第2回路基板332とは、信号線等で電気的に接続されており、当該信号線等を介して第2回路基板332からスイッチング素子のスイッチングタイミングの信号が第1回路基板331に伝達される。 The first circuit board 331 and the second circuit board 332 are electrically connected by a signal line or the like, and the signal of the switching timing of the switching element is transmitted from the second circuit board 332 through the signal line or the like to the first circuit. It is transmitted to the substrate 331.
 パワー半導体装置333は、直流電源部510から供給された直流電圧を交流電圧に変換する。パワー半導体装置333は、2つのスイッチング素子(例えば、上アーム側のスイッチング素子及び下アーム側のスイッチング素子)が直列に接続されたスイッチ対(例えば、U相アーム)を有する。直流電圧は、直列接続されたスイッチング素子の中間から出力される交流電圧に変換されてモータ210等に出力される。交流電源線640は、当該中間とモータ210等とを接続する配線である。 The power semiconductor device 333 converts the DC voltage supplied from the DC power supply unit 510 into an AC voltage. The power semiconductor device 333 includes a switch pair (for example, a U-phase arm) in which two switching elements (for example, an upper arm side switching element and a lower arm side switching element) are connected in series. The DC voltage is converted to an AC voltage output from the middle of the switching elements connected in series and output to the motor 210 and the like. The AC power supply line 640 is a wiring that connects the intermediate unit and the motor 210 and the like.
 第1回路基板331には、3つのパワー半導体装置333が並列に接続されるように実装される。そのため、第1回路基板331には、3つのスイッチ対(U相アーム、V相アーム、及び、W相アーム)、つまり6個のスイッチング素子が配置される。6個のスイッチング素子がゲート端子に入力される制御信号に従ってオン/オフ制御されることで、直流電圧は3相(U相、V相、及び、W相)の交流電圧に変換される。 On the first circuit board 331, three power semiconductor devices 333 are mounted so as to be connected in parallel. Therefore, on the first circuit board 331, three switch pairs (U-phase arm, V-phase arm, and W-phase arm), that is, six switching elements are arranged. The six switching elements are ON / OFF controlled in accordance with a control signal input to the gate terminal, whereby the DC voltage is converted into a three-phase (U-phase, V-phase, and W-phase) AC voltage.
 ケース334は、第1回路基板331、第2回路基板332、及び、パワー半導体装置333を内蔵する。ケース334は、金属又樹脂で形成される。ケース334は、例えば、アルミで形成されていてもよい。ケース334は、筐体の一例である。ケース334は、例えば、中空の直方体状(箱体)であるが、これに限定されない。 The case 334 includes a first circuit board 331, a second circuit board 332, and a power semiconductor device 333. Case 334 is formed of metal or resin. The case 334 may be made of aluminum, for example. Case 334 is an example of a housing. The case 334 is, for example, a hollow rectangular parallelepiped (box), but is not limited thereto.
 パワー半導体装置333は、第1回路基板331に実装される面と逆側の面(逆面)がケース334の内面に接触して配置される。具体的には、パワー半導体装置333の逆面は、ケース334を構成する壁部334aの内面に接触して配置される。パワー半導体装置333とケース334とは、例えば、面接触するように配置される。 The power semiconductor device 333 is arranged such that the surface opposite to the surface mounted on the first circuit board 331 (reverse surface) is in contact with the inner surface of the case 334. Specifically, the reverse surface of the power semiconductor device 333 is disposed in contact with the inner surface of the wall portion 334 a constituting the case 334. The power semiconductor device 333 and the case 334 are disposed so as to be in surface contact, for example.
 上記のように、インバータ320は、パワー半導体装置333を内蔵するケース334を有する。パワー半導体装置333は、ケース334の内面に接触しており、ケース334の内面に対応する外面は、筐体133の内面に接触している。パワー半導体装置333がケース334を介して筐体133の内面に接触することは、パワー半導体装置333が筐体133の内面に接触することの一例である。 As described above, the inverter 320 has the case 334 in which the power semiconductor device 333 is built. The power semiconductor device 333 is in contact with the inner surface of the case 334, and the outer surface corresponding to the inner surface of the case 334 is in contact with the inner surface of the housing 133. The contact of the power semiconductor device 333 with the inner surface of the housing 133 via the case 334 is an example of the contact of the power semiconductor device 333 with the inner surface of the housing 133.
 なお、パワー半導体装置333と筐体133との間には、ケース334以外の物体が配置されていてもよい。例えば、パワー半導体装置333と筐体133との間に、ケース334の壁部334aに加えて、又は、壁部334aに替えて放熱シートなどの部材が配置されていてもよい。なお、パワー半導体装置333がケース334の壁部334aの内面に対して空間をあけて配置されること、及び、ケース334が筐体133の壁部133aの内面に対して空間をあけて配置されることは、パワー半導体装置333が筐体133の内面に接触することに含まれない。 It should be noted that an object other than the case 334 may be disposed between the power semiconductor device 333 and the housing 133. For example, a member such as a heat dissipation sheet may be arranged between the power semiconductor device 333 and the housing 133 in addition to the wall portion 334a of the case 334 or instead of the wall portion 334a. The power semiconductor device 333 is disposed with a space with respect to the inner surface of the wall portion 334a of the case 334, and the case 334 is disposed with a space with respect to the inner surface of the wall portion 133a of the housing 133. This is not included in the case where the power semiconductor device 333 is in contact with the inner surface of the housing 133.
 インバータの別の構成について、図4Bを参照しながら説明する。図4Bは、本実施の形態に係る第2アーム120に内蔵されるインバータ320aの別の一例を示す断面図である。 Another configuration of the inverter will be described with reference to FIG. 4B. FIG. 4B is a cross-sectional view showing another example of inverter 320a built in second arm 120 according to the present embodiment.
 図4Bに示すように、インバータ320aは、ケース334を有しておらず、パワー半導体装置333が筐体133の壁部133aの内面に接触している。パワー半導体装置333が筐体133の壁部133aの内面に接触するとは、図4Bに示すようにパワー半導体装置333と内面とが直接接触すること、及び、パワー半導体装置333と内面とが放熱シートなどの部材を介して接触することを含む。なお、パワー半導体装置333が筐体133の内面に対して空間をあけて配置されることは、パワー半導体装置333が筐体133の内面に接触することに含まれない。また、図4Bの場合、筐体133に対する第1回路基板331の固定方法は特に限定されないが、例えば、ネジ335などにより筐体133に固定される。 As shown in FIG. 4B, the inverter 320a does not have the case 334, and the power semiconductor device 333 is in contact with the inner surface of the wall 133a of the housing 133. The power semiconductor device 333 is in contact with the inner surface of the wall 133a of the housing 133. The power semiconductor device 333 and the inner surface are in direct contact as shown in FIG. 4B, and the power semiconductor device 333 and the inner surface are in a heat dissipation sheet. Contact via a member such as. Note that the arrangement of the power semiconductor device 333 with a space from the inner surface of the housing 133 is not included in the contact of the power semiconductor device 333 with the inner surface of the housing 133. In the case of FIG. 4B, the method of fixing the first circuit board 331 to the casing 133 is not particularly limited, but is fixed to the casing 133 with screws 335, for example.
 図4A及び図4Bに示すように、パワー半導体装置333は、筐体133の内面に接触している。言い換えると、パワー半導体装置333は、第1アーム110の内面に接触している。 As shown in FIGS. 4A and 4B, the power semiconductor device 333 is in contact with the inner surface of the housing 133. In other words, the power semiconductor device 333 is in contact with the inner surface of the first arm 110.
 次に、インバータの構成について、図5A~図5Cを参照しながら説明する。図5Aは、本実施の形態に係るパワー半導体装置333の構成の一例を示す概略断面図である。なお、図5A~図5Cにおいて、各種リード線及び電極パッドなどは、図示を省略している。 Next, the configuration of the inverter will be described with reference to FIGS. 5A to 5C. FIG. 5A is a schematic cross-sectional view showing an example of the configuration of the power semiconductor device 333 according to the present embodiment. 5A to 5C, illustration of various lead wires and electrode pads is omitted.
 図5Aに示すように、パワー半導体装置333は、基板333aと、半導体チップ333bと、充填層333cと、放熱層333dとを有する。 As shown in FIG. 5A, the power semiconductor device 333 includes a substrate 333a, a semiconductor chip 333b, a filling layer 333c, and a heat dissipation layer 333d.
 基板333aは、パワー半導体装置333が実装される基板(例えば、金属ベース)である。 The substrate 333a is a substrate (for example, a metal base) on which the power semiconductor device 333 is mounted.
 半導体チップ333bは、基板333a上に実装されるパワー半導体チップである。半導体チップ333bは、例えば、スイッチング素子(例えば、MOSFET又はIGBTなど)を含んで構成される。 The semiconductor chip 333b is a power semiconductor chip mounted on the substrate 333a. The semiconductor chip 333b includes, for example, a switching element (for example, a MOSFET or an IGBT).
 充填層333cは、半導体チップ333bを覆う。充填層333cは、樹脂等の絶縁材料で形成される。充填層333cは、例えば、エポキシ樹脂などにより形成される。 The filling layer 333c covers the semiconductor chip 333b. The filling layer 333c is formed of an insulating material such as resin. The filling layer 333c is formed of, for example, an epoxy resin.
 放熱層333dは、充填層333cの少なくとも一部を覆い、半導体チップ333bからの熱を筐体133に放熱する。放熱層333dは、例えば、筐体133の内面と直接接触しており、充填層333cを伝わった半導体チップ333bの熱を、筐体133側に伝熱する役割を有する。なお、インバータ320がケース334を有する場合、放熱層333dはケース334の内面と直接接触してもよい。 The heat dissipation layer 333d covers at least a part of the filling layer 333c, and dissipates heat from the semiconductor chip 333b to the housing 133. For example, the heat dissipation layer 333d is in direct contact with the inner surface of the housing 133 and has a role of transferring heat of the semiconductor chip 333b transmitted through the filling layer 333c to the housing 133 side. Note that when the inverter 320 includes the case 334, the heat dissipation layer 333 d may be in direct contact with the inner surface of the case 334.
 放熱層333dは、充填層333cと筐体133との間であって、双方に接触するように設けられる。図5Aでは、放熱層333dは、充填層333cの外周の全域を覆い、充填層333c及び筐体133と直接接触するように設けられる例を示している。 The heat radiation layer 333d is provided between the filling layer 333c and the housing 133 so as to be in contact with both. 5A shows an example in which the heat dissipation layer 333d is provided so as to cover the entire outer periphery of the filling layer 333c and to be in direct contact with the filling layer 333c and the housing 133.
 放熱層333dは、樹脂を含んで形成されていてもよいし、セラミックを含んで形成されていてもよい。放熱層333dがセラミックを含んでいる場合、窒化アルミニウム(AlN)や窒化珪素(Si)等のセラミックなどの無機絶縁材料が用いられるとよい。これにより、高熱伝導率と高耐熱性とを有する放熱層333dを設けることができる。また、放熱層333dが樹脂を含んでいる場合、耐熱性の高い樹脂が用いられるとよい。これにより、セラミックを含む場合に比べ、パワー半導体装置333を軽量化及び低コスト化することができる。また、放熱層333dは、充填層333cを覆うケースであってもよい。 The heat dissipation layer 333d may be formed including a resin or may be formed including a ceramic. When the heat dissipation layer 333d includes ceramic, an inorganic insulating material such as ceramic such as aluminum nitride (AlN) or silicon nitride (Si 3 N 4 ) is preferably used. Thereby, the heat dissipation layer 333d having high thermal conductivity and high heat resistance can be provided. In the case where the heat dissipation layer 333d includes a resin, a resin having high heat resistance may be used. Thereby, compared with the case where a ceramic is included, the power semiconductor device 333 can be reduced in weight and cost. The heat dissipation layer 333d may be a case that covers the filling layer 333c.
 図5Bは、本実施の形態に係るパワー半導体装置333の構成の別の一例を示す概略断面図である。図5Bに示すように、放熱層333dは、半導体チップ333bの上面(例えば、半導体チップ333bにおける実装面と逆側の面)のほぼ全域を覆うように設けられてもよい。放熱層333dは、例えば、少なくとも半導体チップ333bの上面を覆うように設けられるとよい。放熱層333dは、例えば、金属で構成された金属板であってもよい。放熱層333dは、例えば、銅で構成されていてもよい。なお、半導体チップ333bの表面に絶縁層が形成されている場合などでは、放熱層333dは半導体チップ333bの上に直接設けられていてもよい。 FIG. 5B is a schematic cross-sectional view showing another example of the configuration of the power semiconductor device 333 according to the present embodiment. As shown in FIG. 5B, the heat dissipation layer 333d may be provided so as to cover almost the entire upper surface of the semiconductor chip 333b (for example, the surface opposite to the mounting surface of the semiconductor chip 333b). The heat radiation layer 333d is preferably provided so as to cover at least the upper surface of the semiconductor chip 333b, for example. The heat dissipation layer 333d may be, for example, a metal plate made of metal. The heat dissipation layer 333d may be made of copper, for example. In the case where an insulating layer is formed on the surface of the semiconductor chip 333b, the heat dissipation layer 333d may be provided directly on the semiconductor chip 333b.
 図5Cは、本実施の形態に係るパワー半導体装置333の構成のさらに別の一例を示す概略断面図である。図5Cに示すように、半導体チップ333bの裏面(第1回路基板331側の面)には、放熱端子333eが設けられていてもよい。言い換えると、半導体チップ333bと第1回路基板331とは、基板333a及び放熱端子333eを介して熱的に接続されていてもよい。これにより、半導体チップ333bの裏面から出た熱を第1回路基板331に伝えることができるので、半導体チップ333bの熱を効率的に放熱することができる。 FIG. 5C is a schematic cross-sectional view showing still another example of the configuration of the power semiconductor device 333 according to the present embodiment. As shown in FIG. 5C, a heat radiation terminal 333e may be provided on the back surface (the surface on the first circuit board 331 side) of the semiconductor chip 333b. In other words, the semiconductor chip 333b and the first circuit board 331 may be thermally connected via the board 333a and the heat dissipation terminal 333e. Thereby, since the heat generated from the back surface of the semiconductor chip 333b can be transmitted to the first circuit board 331, the heat of the semiconductor chip 333b can be efficiently radiated.
 次に、ケース334の大きさについて、図6A及び図6Bを参照しながら説明する。図6Aは、本実施の形態に係るケーブル600を示す断面図である。図6Bは、本実施の形態に係るケースの最も短い辺の長さを示す図である。 Next, the size of the case 334 will be described with reference to FIGS. 6A and 6B. FIG. 6A is a cross-sectional view showing cable 600 according to the present embodiment. FIG. 6B is a diagram showing the length of the shortest side of the case according to the present embodiment.
 図6Aに示すように、ケーブル600は、直流電源線610及びグランド線620を内蔵する配線であり、直流電源線610、グランド線620、内部シース600a、及び、外部シース600bを有する。 As shown in FIG. 6A, the cable 600 is a wiring that incorporates a DC power supply line 610 and a ground line 620, and includes a DC power supply line 610, a ground line 620, an inner sheath 600a, and an outer sheath 600b.
 直流電源線610は、導体610aと絶縁体610bとを有する。直流電源線610の断面の外径D1は、例えば、導体610a及び絶縁体610bのうち、絶縁体610bの外径と定義される。外径D1は、例えば、6mm以下である。 The DC power supply line 610 includes a conductor 610a and an insulator 610b. For example, the outer diameter D1 of the cross section of the DC power supply line 610 is defined as the outer diameter of the insulator 610b out of the conductor 610a and the insulator 610b. The outer diameter D1 is, for example, 6 mm or less.
 グランド線620は、導体620aと絶縁体620bとを有する。グランド線620の断面の外径D2は、例えば、導体620a及び絶縁体620bのうち、絶縁体620bの外径と定義される。外径D2は、例えば、6mm以下である。 The ground wire 620 includes a conductor 620a and an insulator 620b. The outer diameter D2 of the cross section of the ground wire 620 is defined as, for example, the outer diameter of the insulator 620b among the conductor 620a and the insulator 620b. The outer diameter D2 is 6 mm or less, for example.
 ケーブル600の断面の外径D3は、例えば、外部シース600bの外径と定義される。外径D3は、例えば、15mm以下である。 The outer diameter D3 of the cross section of the cable 600 is defined as, for example, the outer diameter of the outer sheath 600b. The outer diameter D3 is, for example, 15 mm or less.
 図6Bに示すように、ケース334の1つの頂点Vを共通する3辺S1、S2、及び、S3のうちの1辺(例えば、辺S1)の長さを当該ケースの厚みLとすると、ケース334の厚みLは直流電源線610及びグランド線620を内蔵するケーブル600の断面の外径D3以下であるとよい。 As shown in FIG. 6B, if the length of one side (for example, side S1) of the three sides S1, S2, and S3 sharing one vertex V of the case 334 is the thickness L of the case, the case The thickness L of 334 is preferably equal to or less than the outer diameter D3 of the cross section of the cable 600 including the DC power supply line 610 and the ground line 620.
 なお、厚みLは、外径D3よりさらに小さくてもよい。例えば、ケース334の厚みLは、直流電源線610の断面の外径D1、又は、グランド線620の断面の外径D2以下であってもよい。例えば、直流電源線610及びグランド線620が、ケーブル600に内蔵されておらず個別に配線されている場合、厚みLは、外径D1、又は、外径D2以下であるとよい。より好ましくは、ケース334の厚みLは、外径D1、及び、外径D2のうち小さい外径のサイズ以下であるとよい。 The thickness L may be smaller than the outer diameter D3. For example, the thickness L of the case 334 may be equal to or smaller than the outer diameter D1 of the cross section of the DC power supply line 610 or the outer diameter D2 of the cross section of the ground wire 620. For example, when the DC power supply line 610 and the ground line 620 are not built in the cable 600 and are individually wired, the thickness L is preferably equal to or less than the outer diameter D1 or the outer diameter D2. More preferably, the thickness L of the case 334 is less than or equal to the smaller outer diameter of the outer diameter D1 and the outer diameter D2.
 なお、インバータ320をより小型化する観点から、ケース334の厚みLは、例えば、ケース334の1つの頂点Vを共通する3辺S1、S2、及び、S3のうち最も長さが短い辺(図6Bの例では、辺S1)の長さであるとよい。 From the viewpoint of further reducing the size of the inverter 320, the thickness L of the case 334 is, for example, the side having the shortest length among the three sides S1, S2, and S3 sharing one vertex V of the case 334 (see FIG. In the example of 6B, it is good that it is the length of side S1).
 なお、インバータ320は、ケース334の側面に、ケーブル600、又は、直流電源線610及びグランド線620と接続するための接続配線(図示しない)が設けられるとよい。これにより、さらにアームの筐体を薄型化することができる。なお、ケース334の側面は、3辺のうち最も長さが短い辺S1を含む面であり、例えば、辺S1及びS2を含む側面Aであってもよいし、辺S1及びS3を含む側面Bであってもよい。 Note that the inverter 320 may be provided with a connection wiring (not shown) for connecting to the cable 600 or the DC power supply line 610 and the ground line 620 on the side surface of the case 334. This further reduces the thickness of the arm housing. Note that the side surface of the case 334 is a surface including the side S1 having the shortest length among the three sides, and may be, for example, the side surface A including the sides S1 and S2 or the side surface B including the sides S1 and S3. It may be.
 なお、ケース334の壁部334aの外面(つまり、筐体と接触する面)は、例えば、3辺のうち最も長さが短い辺S1を含まない面であり、例えば、辺S2及びS3を含む面である。これにより、ケース334と筐体133との接触面積を大きくすることができるので、より効果的にパワー半導体装置333の熱を放熱することができる。 Note that the outer surface of the wall portion 334a of the case 334 (that is, the surface in contact with the housing) is, for example, a surface that does not include the shortest side S1 among the three sides, and includes, for example, the sides S2 and S3. Surface. Thereby, the contact area between the case 334 and the housing 133 can be increased, so that the heat of the power semiconductor device 333 can be radiated more effectively.
 [4.効果など]
 以上説明したように、ロボット10は、モータと、直流電圧を供給するための直流電源線610(電源線の一例)及びグランド線620と、直流電圧を交流電圧に変換してモータに供給するパワー半導体装置333を有するインバータ320と、インバータ320に制御信号を供給するための制御線630と、インバータ320を内蔵する第2アーム120(第1ロボットアームの一例)とを備える。そして、パワー半導体装置333は、第2アーム120の内面に接触している。
[4. Effect etc.]
As described above, the robot 10 includes the motor, the DC power supply line 610 (an example of the power supply line) and the ground line 620 for supplying a DC voltage, and the power supplied to the motor by converting the DC voltage into an AC voltage. An inverter 320 including the semiconductor device 333, a control line 630 for supplying a control signal to the inverter 320, and a second arm 120 (an example of a first robot arm) incorporating the inverter 320 are provided. The power semiconductor device 333 is in contact with the inner surface of the second arm 120.
 これにより、パワー半導体装置333からの熱を第2アーム120に効率的に伝導させることができるので、ファンなどの構成を追加することなく、第2アーム120の高温化を抑制することができる。よって、ロボット10によれば、放熱性が向上する。 Thereby, since heat from the power semiconductor device 333 can be efficiently conducted to the second arm 120, it is possible to suppress an increase in the temperature of the second arm 120 without adding a configuration such as a fan. Therefore, according to the robot 10, heat dissipation is improved.
 また、上記のロボット10は、インバータ310等をロボットアーム100に内蔵することで総配線長を減らし、かつインバータ310等のパワー半導体装置333とロボットアーム100(第1アーム110~第5アーム160)とを接触させることで放熱性を向上することができる。つまり、ロボット10は、総配線長を減らすことと、放熱性を向上することとを両立することができる。 Further, the robot 10 described above incorporates the inverter 310 and the like in the robot arm 100 to reduce the total wiring length, and the power semiconductor device 333 such as the inverter 310 and the robot arm 100 (first arm 110 to fifth arm 160). The heat dissipation can be improved by contacting with. That is, the robot 10 can simultaneously reduce the total wiring length and improve the heat dissipation.
 また、さらに、第2アーム120に対して回転可能に連結された第3アーム140(第2ロボットアームの一例)を備える。そして、パワー半導体装置333は、第2アーム120の内面であって、第3アーム140側の内面に接触している。具体的には、パワー半導体装置333は、第2アーム120の壁部133bの内面に接触している。 Furthermore, a third arm 140 (an example of a second robot arm) that is rotatably connected to the second arm 120 is provided. The power semiconductor device 333 is in contact with the inner surface of the second arm 120 and on the third arm 140 side. Specifically, the power semiconductor device 333 is in contact with the inner surface of the wall portion 133 b of the second arm 120.
 これにより、第2アーム120のうち作業者が接触しにくい部分とパワー半導体装置333とを接触させることができる。つまり、ロボット10のうち、作業者が触れる可能性がある部分(例えば、筐体133の一部分)の温度が上昇することを抑制することができる。よって、ロボット10と協働する作業者がいる状況において、当該作業者に対する安全性を確保しつつ、放熱性を向上することができる。例えば、作業者が火傷することを抑制することができる。 Thereby, the power semiconductor device 333 can be brought into contact with a portion of the second arm 120 that is difficult for the operator to contact. That is, it is possible to suppress an increase in the temperature of a portion of the robot 10 that the operator may touch (for example, a portion of the housing 133). Therefore, in a situation where there is an operator who cooperates with the robot 10, heat dissipation can be improved while ensuring safety for the operator. For example, the operator can be prevented from being burned.
 また、インバータ320は、パワー半導体装置333を内蔵するケース334(筐体の一例)を有する。そして、パワー半導体装置333は、ケース334の内面に接触しており、ケース334の当該内面に対応する外面は、第2アーム120の内面に接触している。 Further, the inverter 320 has a case 334 (an example of a housing) in which the power semiconductor device 333 is built. The power semiconductor device 333 is in contact with the inner surface of the case 334, and the outer surface corresponding to the inner surface of the case 334 is in contact with the inner surface of the second arm 120.
 これにより、インバータ320がケース334を有する構成であっても、パワー半導体装置333の熱をケース334を介して第2アーム120に効率的に拡散することができる。よって、ロボット10の放熱性がさらに向上する。 Thus, even if the inverter 320 has the case 334, the heat of the power semiconductor device 333 can be efficiently diffused to the second arm 120 via the case 334. Therefore, the heat dissipation of the robot 10 is further improved.
 また、ケース334の厚みLは、直流電源線610及びグランド線620を内蔵するケーブル600の断面の外径D3以下である。 Further, the thickness L of the case 334 is equal to or less than the outer diameter D3 of the cross section of the cable 600 including the DC power supply line 610 and the ground line 620.
 これにより、ケース334の厚みLをケーブル600の外径D3以下とすることができるので、第2アーム120を薄くすることができる。つまり、第2アーム120を小型化することができる。 Thereby, since the thickness L of the case 334 can be made equal to or smaller than the outer diameter D3 of the cable 600, the second arm 120 can be made thin. That is, the second arm 120 can be reduced in size.
 また、ケース334の厚みは、直流電源線610の断面の外径D1又はグランド線620の断面の外径D2以下である。 In addition, the thickness of the case 334 is equal to or less than the outer diameter D1 of the cross section of the DC power supply line 610 or the outer diameter D2 of the cross section of the ground wire 620.
 これにより、ケース334の厚みLを直流電源線610の外径D1又はグランド線620の外径D2以下とすることができるので、第2アーム120を薄くすることができる。つまり、第2アーム120を小型化することができる。 Thereby, since the thickness L of the case 334 can be made equal to or less than the outer diameter D1 of the DC power supply line 610 or the outer diameter D2 of the ground wire 620, the second arm 120 can be made thinner. That is, the second arm 120 can be reduced in size.
 また、ケース334は、中空の直方体状であり、ケース334の厚みLは、当該ケース334の1つの頂点Vを共有する3辺S1~S3のうちの最も短い辺S1の長さである。 The case 334 has a hollow rectangular parallelepiped shape, and the thickness L of the case 334 is the length of the shortest side S1 among the three sides S1 to S3 sharing one vertex V of the case 334.
 これにより、ケース334の最も短い辺(例えば、辺S1)の長さである厚みLを薄くすることができるので、第2アーム120を薄くすることができる。つまり、第2アーム120を小型化することができる。 Thereby, since the thickness L which is the length of the shortest side (for example, side S1) of the case 334 can be reduced, the second arm 120 can be reduced. That is, the second arm 120 can be reduced in size.
 また、パワー半導体装置333は、Ganパワー半導体素子を有する。 Also, the power semiconductor device 333 has a Gan power semiconductor element.
 これにより、パワー半導体装置333からの発熱量を低減することができるので、ロボット10の温度が上昇することを、より抑制することができる。 Thereby, since the amount of heat generated from the power semiconductor device 333 can be reduced, it is possible to further suppress the temperature of the robot 10 from rising.
 また、さらに、第1アーム110内に、直流電源線610及びグランド線620に接続され、モータ210等からの回生エネルギーを回収する回収装置400を備える。 Further, the first arm 110 includes a recovery device 400 that is connected to the DC power supply line 610 and the ground line 620 and recovers regenerative energy from the motor 210 and the like.
 これにより、回収装置400は、ロボットアーム100の外部の制御装置500に内蔵されている場合に比べモータ210等に近い位置に配置される。よって、回収装置400は、回生エネルギーによって直流電源線610の電圧が上昇することを抑制することができる。 Thereby, the collection device 400 is disposed at a position closer to the motor 210 and the like as compared with the case where the collection device 400 is built in the control device 500 outside the robot arm 100. Therefore, the recovery device 400 can suppress an increase in the voltage of the DC power supply line 610 due to regenerative energy.
 また、第2アーム120は、直流電源線610、グランド線620、及び、制御線630の少なくとも1つを当該第2アーム120の内部から外部へ引き出すための開口133c及び133d(第2開口及び第3開口の一例)が形成された壁部133bを有する。そして、インバータ320は、壁部133bの内面のうち開口133c及133dの間に配置されている。 The second arm 120 has openings 133c and 133d (second opening and second openings) for drawing out at least one of the DC power supply line 610, the ground line 620, and the control line 630 from the inside of the second arm 120 to the outside. The wall portion 133b is formed with an example of three openings. The inverter 320 is arranged between the openings 133c and 133d in the inner surface of the wall 133b.
 これにより、第2アーム120内のスペースを有効に活用することができるので、第2アーム120をさらに小型化することができる。 Thereby, since the space in the second arm 120 can be used effectively, the second arm 120 can be further reduced in size.
 (実施の形態の変形例)
 以下、本変形例に係るロボット10aについて、図7A及び図7Bを参照しながら説明する。図7Aは、本変形例に係るロボット10aの構成を示す図である。図7Bは、実施の形態の変形例に係る第2アーム部1130を示す断面図である。なお、実施の形態に係るロボット10との相違点を中心に説明し、同様の構成については同一の符号を付し、説明を省略又は簡略化する場合がある。
(Modification of the embodiment)
Hereinafter, the robot 10a according to this modification will be described with reference to FIGS. 7A and 7B. FIG. 7A is a diagram illustrating a configuration of a robot 10a according to the present modification. FIG. 7B is a cross-sectional view showing second arm portion 1130 according to a modification of the embodiment. In addition, it demonstrates centering around difference with the robot 10 which concerns on embodiment, the same code | symbol is attached | subjected about the same structure, and description may be abbreviate | omitted or simplified.
 図7Aに示すように、本変形例に係るロボット10aは、実施の形態に係るロボット10が備える第2アーム120に替えて、第2アーム部1130を有する第2アーム1120を備える。第2アーム部1130は、モータ(図示しない)と壁部1133bの内面に接触しているインバータ320とを内蔵する筐体1133を有する。 7A, a robot 10a according to this modification includes a second arm 1120 having a second arm portion 1130 instead of the second arm 120 provided in the robot 10 according to the embodiment. The second arm portion 1130 includes a housing 1133 that houses a motor (not shown) and an inverter 320 that is in contact with the inner surface of the wall portion 1133b.
 図7Bに示すように、筐体1133の壁部1133aには、開口1133cが形成されている。そして、第2アーム部1130は、開口1133cを覆う開閉部1133dを有する。開閉部1133dは、開口1133cに対して、開閉自在に設けられる蓋である。なお、筐体1133に形成される開口1133cは、壁部1133bの内面に接触しているインバータ320の交換が可能な形状を有する。すなわち、第2アーム1120は、インバータ320の交換が可能な形状を有する開口1133cを開閉する開閉部1133dを有する。なお、インバータ320の交換が可能な形状とは、例えば、インバータ320の大きさ又は形状に対応した形状である。なお、開口1133cは、第1開口の一例である。 As shown in FIG. 7B, an opening 1133 c is formed in the wall 1133 a of the housing 1133. The second arm portion 1130 has an opening / closing portion 1133d that covers the opening 1133c. The opening / closing part 1133d is a lid that can be opened and closed with respect to the opening 1133c. Note that the opening 1133c formed in the housing 1133 has a shape in which the inverter 320 in contact with the inner surface of the wall 1133b can be replaced. That is, the second arm 1120 has an opening / closing part 1133d that opens and closes an opening 1133c having a shape in which the inverter 320 can be replaced. In addition, the shape which can replace | exchange the inverter 320 is a shape corresponding to the magnitude | size or shape of the inverter 320, for example. The opening 1133c is an example of a first opening.
 開閉部1133dを構成する材料は特に限定されないが、例えば、金属又は樹脂で形成される。開閉部1133dは、例えば、透明な樹脂材料で形成されてもよい。また、開閉部1133dは、筐体1133と同一の材料で構成されてもよい。 Although the material which comprises the opening / closing part 1133d is not specifically limited, For example, it forms with a metal or resin. The opening / closing part 1133d may be formed of, for example, a transparent resin material. The opening / closing part 1133d may be made of the same material as the housing 1133.
 以上説明したように、ロボット10aの第2アーム1120(第1ロボットアームの一例)は、インバータ320の交換が可能な形状の開口1133c(第1開口の一例)を開閉する開閉部1133dを有する。 As described above, the second arm 1120 (an example of the first robot arm) of the robot 10a has the opening / closing part 1133d that opens and closes the opening 1133c (an example of the first opening) that can be replaced with the inverter 320.
 これにより、第2アーム1120内に内蔵されたインバータ320のメンテナンスを容易に行うことができる。開閉部1133dが設けられることで、例えば、インバータ320のみを容易に交換することができる。また、ロボット10aの動作中においては、開口1133cを開閉部1133dによって閉じることで、作業者の安全を確保できる。よって、ロボット10aの利便性が向上する。 Thus, maintenance of the inverter 320 built in the second arm 1120 can be easily performed. By providing the opening / closing part 1133d, for example, only the inverter 320 can be easily replaced. Further, during the operation of the robot 10a, the operator's safety can be ensured by closing the opening 1133c with the opening / closing part 1133d. Therefore, the convenience of the robot 10a is improved.
 (その他の実施の形態)
 以上、実施の形態及び変形例(以降において、実施の形態等とも記載する)について説明したが、本開示は、上記実施の形態等に限定されるものではない。
(Other embodiments)
As described above, the embodiments and modifications (hereinafter also referred to as embodiments and the like) have been described, but the present disclosure is not limited to the above-described embodiments and the like.
 例えば、上記実施の形態等では、パワー半導体装置は、充填層と放熱層とを有する例について説明したが、これに限定されない。パワー半導体装置は、充填層と放熱層との少なくとも一方を有していればよい。 For example, in the above-described embodiment and the like, the power semiconductor device has been described with respect to the example having the filling layer and the heat dissipation layer, but is not limited thereto. The power semiconductor device may have at least one of the filling layer and the heat dissipation layer.
 また、上記実施の形態等では、ロボットは第1~第5アームを備える6軸のロボットである例を示したが、これに限定されない。ロボットは、1つ以上のアームを備えるロボットであればよい。 In the above-described embodiment and the like, the robot is an example of a 6-axis robot including the first to fifth arms, but is not limited thereto. The robot may be a robot having one or more arms.
 また、上記実施の形態等では、第2開口及び第3開口は、筐体における同一の壁部に形成されている例について説明したが、これに限定されない。例えば、第2開口及び第3開口は、互いに異なる壁部に形成されていてもよい。この場合に、第2開口及び第3開口を壁部の内面に沿って結んだ仮想線上にインバータが配置されることは、第2開口及び第3開口の間にインバータが配置されることに含まれる。 In the above-described embodiment and the like, the example in which the second opening and the third opening are formed in the same wall portion in the housing has been described, but the present invention is not limited to this. For example, the second opening and the third opening may be formed in different wall portions. In this case, the disposition of the inverter on the imaginary line connecting the second opening and the third opening along the inner surface of the wall portion includes the disposition of the inverter between the second opening and the third opening. It is.
 また、上記実施の形態等においてアームに内蔵されるモータは、当該モータを内蔵するアームを回転させるためのモータであることに限定されない。アームに内蔵されるモータは、例えば、当該アームと異なる別のアームを回転させるためのモータであってもよい。 Further, the motor built in the arm in the above-described embodiment or the like is not limited to being a motor for rotating the arm containing the motor. The motor built in the arm may be, for example, a motor for rotating another arm different from the arm.
 また、上記実施の形態等では、パワー半導体装置の上面(例えば、パワー半導体装置における実装面と逆の面)がケースの壁部に接触する例を示したが、これに限定されない。パワー半導体装置は、上面に加えさらに側面の少なくとも一部がケースの壁部に接触していてもよい。このような構成は、例えば、ケースの形状をパワー半導体装置の形状に応じた形状とすることで、実現されてもよい。 In the above-described embodiment and the like, an example has been shown in which the upper surface of the power semiconductor device (for example, the surface opposite to the mounting surface of the power semiconductor device) is in contact with the wall portion of the case, but the present invention is not limited to this. In the power semiconductor device, at least a part of the side surface may be in contact with the wall of the case in addition to the upper surface. Such a configuration may be realized, for example, by making the shape of the case according to the shape of the power semiconductor device.
 また、上記実施の形態等では、第1回路基板に実装されるパワー半導体装置の数が3つである例を示したが、パワー半導体装置の数は1以上であれば特に限定されない。 In the above-described embodiment and the like, the example in which the number of power semiconductor devices mounted on the first circuit board is three is shown, but the number of power semiconductor devices is not particularly limited as long as the number is one or more.
 また、上記実施の形態等における各モータ及び各インバータの種類(例えば、型番など)は特に限定されず、同一であってもよいし、互いに異なっていてもよい。 In addition, the types (for example, model numbers) of the motors and the inverters in the above-described embodiments are not particularly limited, and may be the same or different from each other.
 その他、上記実施の形態等に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, a form obtained by making various modifications conceived by those skilled in the art with respect to the above-described embodiment or the like, or realized by arbitrarily combining components and functions in each embodiment without departing from the gist of the present disclosure Forms to be made are also included in the present disclosure.
 本開示は、ロボットアームを有するロボットに適用可能である。 The present disclosure is applicable to a robot having a robot arm.
 10、10a  ロボット
 100  ロボットアーム
 110  第1アーム
 112、122、133、1133  筐体
 120、1120  第2アーム(第1ロボットアーム)
 120a  第1アーム部
 130、1130  第2アーム部
 130a  第3アーム部
 133a、133b、334a、1133a、1133b  壁部
 133c  開口(第2開口)
 133d  開口(第3開口)
 140  第3アーム(第2ロボットアーム)
 150  第4アーム
 160  第5アーム
 210、220  モータ
 310、320、320a  インバータ
 331  第1回路基板
 332  第2回路基板
 333  パワー半導体装置
 333a  基板
 333b  半導体チップ
 333c  充填層
 333d  放熱層
 333e  放熱端子
 334  ケース
 335  ネジ
 400  回収装置
 500  制御装置
 510  直流電源部
 520  制御部
 600  ケーブル
 600a  内部シース
 600b  外部シース
 610  直流電源線
 610a、620a  導体
 610b、620b  絶縁体
 620  グランド線
 630  制御線
 640  交流電源線
 650  エンコーダ信号線
 700  基台
 800  交流電源
 1133c  開口(第1開口)
 1133d  開閉部
 a1  第1回転軸
 a2  第2回転軸
 a3  第3回転軸
 a4  第4回転軸
 a5  第5回転軸
 a6  第6回転軸
 A、B  側面
 D1~D3  外径
 L  厚み
 S1~S3  辺
 V  頂点
10, 10a Robot 100 Robot arm 110 First arm 112, 122, 133, 1133 Housing 120, 1120 Second arm (first robot arm)
120a First arm portion 130, 1130 Second arm portion 130a Third arm portion 133a, 133b, 334a, 1133a, 1133b Wall portion 133c Opening (second opening)
133d opening (third opening)
140 Third arm (second robot arm)
150 Fourth Arm 160 Fifth Arm 210, 220 Motor 310, 320, 320a Inverter 331 First Circuit Board 332 Second Circuit Board 333 Power Semiconductor Device 333a Substrate 333b Semiconductor Chip 333c Filling Layer 333d Heat Dissipation Layer 333e Heat Dissipation Terminal 334 Case 335 Screw 400 Collection Device 500 Control Device 510 DC Power Supply Unit 520 Control Unit 600 Cable 600a Inner Sheath 600b Outer Sheath 610 DC Power Supply Line 610a, 620a Conductor 610b, 620b Insulator 620 Ground Line 630 Control Line 640 AC Power Supply Line 650 Encoder Signal Line 700 Base Stand 800 AC power supply 1133c Opening (first opening)
1133d Opening / Closing part a1 1st rotating shaft a2 2nd rotating shaft a3 3rd rotating shaft a4 4th rotating shaft a5 5th rotating shaft a6 6th rotating shaft A, B Side surface D1-D3 Outer diameter L Thickness S1-S3 Side V Vertex

Claims (10)

  1.  モータと、
     直流電圧を供給するための電源線及びグランド線と、
     前記直流電圧を交流電圧に変換して前記モータに供給するパワー半導体装置を有するインバータと、
     前記インバータに制御信号を供給するための制御線と、
     前記インバータを内蔵する第1ロボットアームとを備え、
     前記パワー半導体装置は、前記第1ロボットアームの内面に接触している
     ロボット。
    A motor,
    A power line and a ground line for supplying a DC voltage;
    An inverter having a power semiconductor device for converting the DC voltage into an AC voltage and supplying the converted voltage to the motor;
    A control line for supplying a control signal to the inverter;
    A first robot arm containing the inverter;
    The power semiconductor device is in contact with an inner surface of the first robot arm.
  2.  さらに、前記第1ロボットアームに対して回転可能に連結された第2ロボットアームを備え、
     前記パワー半導体装置は、前記第1ロボットアームの内面であって、前記第2ロボットアーム側の内面に接触している
     請求項1に記載のロボット。
    And a second robot arm rotatably connected to the first robot arm,
    The robot according to claim 1, wherein the power semiconductor device is in contact with an inner surface of the first robot arm and on an inner surface of the second robot arm.
  3.  前記インバータは、前記パワー半導体装置を内蔵する筐体を有し、
     前記パワー半導体装置は、前記筐体の内面に接触しており、
     前記筐体の前記内面に対応する外面は、前記第1ロボットアームの内面に接触している
     請求項1又は2に記載のロボット。
    The inverter has a housing containing the power semiconductor device,
    The power semiconductor device is in contact with the inner surface of the housing;
    The robot according to claim 1, wherein an outer surface corresponding to the inner surface of the housing is in contact with an inner surface of the first robot arm.
  4.  前記筐体の厚みは、前記電源線及び前記グランド線を内蔵するケーブルの断面の外径以下である
     請求項3に記載のロボット。
    The robot according to claim 3, wherein a thickness of the housing is equal to or less than an outer diameter of a cross section of a cable including the power supply line and the ground line.
  5.  前記筐体の厚みは、前記電源線又は前記グランド線の断面の外径以下である
     請求項3に記載のロボット。
    The robot according to claim 3, wherein a thickness of the housing is equal to or less than an outer diameter of a cross section of the power line or the ground line.
  6.  前記筐体は、中空の直方体状であり、
     前記筐体の厚みは、前記筐体の1つの頂点を共有する3辺のうちの最も短い辺の長さである
     請求項4又は5に記載のロボット。
    The housing has a hollow rectangular parallelepiped shape,
    The robot according to claim 4, wherein the thickness of the casing is the length of the shortest side among the three sides sharing one vertex of the casing.
  7.  前記パワー半導体装置は、Ganパワー半導体素子を有する
     請求項1~6のいずれか1項に記載のロボット。
    The robot according to any one of claims 1 to 6, wherein the power semiconductor device includes a Gan power semiconductor element.
  8.  前記第1ロボットアームは、前記インバータの交換が可能な形状の第1開口を開閉する開閉部を有する
     請求項1~7のいずれか1項に記載のロボット。
    The robot according to any one of claims 1 to 7, wherein the first robot arm includes an opening / closing portion that opens and closes a first opening having a shape that allows the inverter to be replaced.
  9.  さらに、前記第1ロボットアーム内に、前記電源線及び前記グランド線に接続され、前記モータからの回生エネルギーを回収する回収装置を備える
     請求項1~8のいずれか1項に記載のロボット。
    The robot according to any one of claims 1 to 8, further comprising a recovery device connected to the power line and the ground line in the first robot arm and recovering regenerative energy from the motor.
  10.  前記第1ロボットアームは、前記電源線、前記グランド線、及び、前記制御線の少なくとも1つを挿通するための第2開口及び第3開口が形成された壁部を有し、
     前記インバータは、前記壁部の内面のうち前記第2開口及び前記第3開口の間に配置されている
     請求項1~9のいずれか1項に記載のロボット。
    The first robot arm has a wall portion formed with a second opening and a third opening for inserting at least one of the power line, the ground line, and the control line,
    The robot according to any one of claims 1 to 9, wherein the inverter is disposed between the second opening and the third opening in the inner surface of the wall portion.
PCT/JP2018/048234 2018-03-01 2018-12-27 Robot WO2019167418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862637084P 2018-03-01 2018-03-01
US62/637,084 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019167418A1 true WO2019167418A1 (en) 2019-09-06

Family

ID=67808915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048234 WO2019167418A1 (en) 2018-03-01 2018-12-27 Robot

Country Status (1)

Country Link
WO (1) WO2019167418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298001A (en) * 2020-03-26 2022-11-04 三菱电机株式会社 Cable bundle, method for manufacturing cable bundle, and industrial robot having cable bundle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029084U (en) * 1983-07-29 1985-02-27 松下電器産業株式会社 robot arm
JP2010273434A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Ac adapter
JP2012076193A (en) * 2010-10-05 2012-04-19 Yaskawa Electric Corp Multi-finger hand unit and robot
JP2012125888A (en) * 2010-12-16 2012-07-05 Kawasaki Heavy Ind Ltd Apparatus and method for controlling robot
JP2012218136A (en) * 2011-04-14 2012-11-12 Seiko Epson Corp Robot
JP2015085394A (en) * 2013-10-28 2015-05-07 セイコーエプソン株式会社 Robot
JP2015085410A (en) * 2013-10-29 2015-05-07 セイコーエプソン株式会社 Robot
WO2017163612A1 (en) * 2016-03-24 2017-09-28 株式会社日立製作所 Power semiconductor module
JP2017189833A (en) * 2016-04-12 2017-10-19 ファナック株式会社 Robot having robot arm to which daisy chain can be connected

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029084U (en) * 1983-07-29 1985-02-27 松下電器産業株式会社 robot arm
JP2010273434A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Ac adapter
JP2012076193A (en) * 2010-10-05 2012-04-19 Yaskawa Electric Corp Multi-finger hand unit and robot
JP2012125888A (en) * 2010-12-16 2012-07-05 Kawasaki Heavy Ind Ltd Apparatus and method for controlling robot
JP2012218136A (en) * 2011-04-14 2012-11-12 Seiko Epson Corp Robot
JP2015085394A (en) * 2013-10-28 2015-05-07 セイコーエプソン株式会社 Robot
JP2015085410A (en) * 2013-10-29 2015-05-07 セイコーエプソン株式会社 Robot
WO2017163612A1 (en) * 2016-03-24 2017-09-28 株式会社日立製作所 Power semiconductor module
JP2017189833A (en) * 2016-04-12 2017-10-19 ファナック株式会社 Robot having robot arm to which daisy chain can be connected

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298001A (en) * 2020-03-26 2022-11-04 三菱电机株式会社 Cable bundle, method for manufacturing cable bundle, and industrial robot having cable bundle

Similar Documents

Publication Publication Date Title
JP6366809B2 (en) Integrated electric power steering system
JP5160185B2 (en) Inverter device
JP5472683B2 (en) Electric tool
JP4361486B2 (en) Device structure for mounting electric power components and control electronic components for electric motors
JP5970668B2 (en) Power module for electric power steering and electric power steering drive control apparatus using the same
US8198763B2 (en) Controller-integrated electric rotating machine with a shifted control circuit
JP4275614B2 (en) Rotating electric machine for vehicles
US8628309B2 (en) Turbomolecular pump device and controlling device thereof
JP6361396B2 (en) Electronic control unit and rotating electric machine using the same
JP5888010B2 (en) Inverter module
JP2008173716A (en) Electric power tool having brushless motor
JP7210283B2 (en) rotary electric motor
JP2017017975A (en) Electric compressor
US20210268644A1 (en) Robot arm and robot
JP5837176B1 (en) Controller-integrated rotating electrical machine
JP2020049618A (en) robot
WO2019167418A1 (en) Robot
JP7131619B2 (en) electric work machine
JP6350651B2 (en) Electric motor device
WO2016113858A1 (en) Motor, and motor production method
JP2020141499A (en) Motor control unit, and motor
WO2017002693A1 (en) Electric compressor
JP2007060733A (en) Power module
JP6961990B2 (en) Motor unit
JP6787164B2 (en) Control device integrated rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP